1 // SPDX-License-Identifier: GPL-2.0
3 * DAMON Primitives for Virtual Address Spaces
8 #define pr_fmt(fmt) "damon-va: " fmt
10 #include <asm-generic/mman-common.h>
11 #include <linux/highmem.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/page_idle.h>
15 #include <linux/pagewalk.h>
16 #include <linux/sched/mm.h>
18 #include "ops-common.h"
20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference
27 * count. Caller must put the returned task, unless it is NULL.
29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
31 return get_pid_task(t->pid, PIDTYPE_PID);
35 * Get the mm_struct of the given target
37 * Caller _must_ put the mm_struct after use, unless it is NULL.
39 * Returns the mm_struct of the target on success, NULL on failure
41 static struct mm_struct *damon_get_mm(struct damon_target *t)
43 struct task_struct *task;
46 task = damon_get_task_struct(t);
50 mm = get_task_mm(task);
51 put_task_struct(task);
56 * Functions for the initial monitoring target regions construction
60 * Size-evenly split a region into 'nr_pieces' small regions
62 * Returns 0 on success, or negative error code otherwise.
64 static int damon_va_evenly_split_region(struct damon_target *t,
65 struct damon_region *r, unsigned int nr_pieces)
67 unsigned long sz_orig, sz_piece, orig_end;
68 struct damon_region *n = NULL, *next;
75 sz_orig = r->ar.end - r->ar.start;
76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
81 r->ar.end = r->ar.start + sz_piece;
82 next = damon_next_region(r);
83 for (start = r->ar.end; start + sz_piece <= orig_end;
85 n = damon_new_region(start, start + sz_piece);
88 damon_insert_region(n, r, next, t);
91 /* complement last region for possible rounding error */
98 static unsigned long sz_range(struct damon_addr_range *r)
100 return r->end - r->start;
104 * Find three regions separated by two biggest unmapped regions
106 * vma the head vma of the target address space
107 * regions an array of three address ranges that results will be saved
109 * This function receives an address space and finds three regions in it which
110 * separated by the two biggest unmapped regions in the space. Please refer to
111 * below comments of '__damon_va_init_regions()' function to know why this is
114 * Returns 0 if success, or negative error code otherwise.
116 static int __damon_va_three_regions(struct vm_area_struct *vma,
117 struct damon_addr_range regions[3])
119 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0};
120 struct vm_area_struct *last_vma = NULL;
121 unsigned long start = 0;
122 struct rb_root rbroot;
124 /* Find two biggest gaps so that first_gap > second_gap > others */
125 for (; vma; vma = vma->vm_next) {
127 start = vma->vm_start;
131 if (vma->rb_subtree_gap <= sz_range(&second_gap)) {
132 rbroot.rb_node = &vma->vm_rb;
133 vma = rb_entry(rb_last(&rbroot),
134 struct vm_area_struct, vm_rb);
138 gap.start = last_vma->vm_end;
139 gap.end = vma->vm_start;
140 if (sz_range(&gap) > sz_range(&second_gap)) {
141 swap(gap, second_gap);
142 if (sz_range(&second_gap) > sz_range(&first_gap))
143 swap(second_gap, first_gap);
149 if (!sz_range(&second_gap) || !sz_range(&first_gap))
152 /* Sort the two biggest gaps by address */
153 if (first_gap.start > second_gap.start)
154 swap(first_gap, second_gap);
156 /* Store the result */
157 regions[0].start = ALIGN(start, DAMON_MIN_REGION);
158 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
159 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
160 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
161 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
162 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION);
168 * Get the three regions in the given target (task)
170 * Returns 0 on success, negative error code otherwise.
172 static int damon_va_three_regions(struct damon_target *t,
173 struct damon_addr_range regions[3])
175 struct mm_struct *mm;
178 mm = damon_get_mm(t);
183 rc = __damon_va_three_regions(mm->mmap, regions);
184 mmap_read_unlock(mm);
191 * Initialize the monitoring target regions for the given target (task)
195 * Because only a number of small portions of the entire address space
196 * is actually mapped to the memory and accessed, monitoring the unmapped
197 * regions is wasteful. That said, because we can deal with small noises,
198 * tracking every mapping is not strictly required but could even incur a high
199 * overhead if the mapping frequently changes or the number of mappings is
200 * high. The adaptive regions adjustment mechanism will further help to deal
201 * with the noise by simply identifying the unmapped areas as a region that
202 * has no access. Moreover, applying the real mappings that would have many
203 * unmapped areas inside will make the adaptive mechanism quite complex. That
204 * said, too huge unmapped areas inside the monitoring target should be removed
205 * to not take the time for the adaptive mechanism.
207 * For the reason, we convert the complex mappings to three distinct regions
208 * that cover every mapped area of the address space. Also the two gaps
209 * between the three regions are the two biggest unmapped areas in the given
210 * address space. In detail, this function first identifies the start and the
211 * end of the mappings and the two biggest unmapped areas of the address space.
212 * Then, it constructs the three regions as below:
214 * [mappings[0]->start, big_two_unmapped_areas[0]->start)
215 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
216 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
218 * As usual memory map of processes is as below, the gap between the heap and
219 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
220 * region and the stack will be two biggest unmapped regions. Because these
221 * gaps are exceptionally huge areas in usual address space, excluding these
222 * two biggest unmapped regions will be sufficient to make a trade-off.
225 * <BIG UNMAPPED REGION 1>
226 * <uppermost mmap()-ed region>
227 * (other mmap()-ed regions and small unmapped regions)
228 * <lowermost mmap()-ed region>
229 * <BIG UNMAPPED REGION 2>
232 static void __damon_va_init_regions(struct damon_ctx *ctx,
233 struct damon_target *t)
235 struct damon_target *ti;
236 struct damon_region *r;
237 struct damon_addr_range regions[3];
238 unsigned long sz = 0, nr_pieces;
241 if (damon_va_three_regions(t, regions)) {
242 damon_for_each_target(ti, ctx) {
247 pr_debug("Failed to get three regions of %dth target\n", tidx);
251 for (i = 0; i < 3; i++)
252 sz += regions[i].end - regions[i].start;
253 if (ctx->min_nr_regions)
254 sz /= ctx->min_nr_regions;
255 if (sz < DAMON_MIN_REGION)
256 sz = DAMON_MIN_REGION;
258 /* Set the initial three regions of the target */
259 for (i = 0; i < 3; i++) {
260 r = damon_new_region(regions[i].start, regions[i].end);
262 pr_err("%d'th init region creation failed\n", i);
265 damon_add_region(r, t);
267 nr_pieces = (regions[i].end - regions[i].start) / sz;
268 damon_va_evenly_split_region(t, r, nr_pieces);
272 /* Initialize '->regions_list' of every target (task) */
273 static void damon_va_init(struct damon_ctx *ctx)
275 struct damon_target *t;
277 damon_for_each_target(t, ctx) {
278 /* the user may set the target regions as they want */
279 if (!damon_nr_regions(t))
280 __damon_va_init_regions(ctx, t);
285 * Update regions for current memory mappings
287 static void damon_va_update(struct damon_ctx *ctx)
289 struct damon_addr_range three_regions[3];
290 struct damon_target *t;
292 damon_for_each_target(t, ctx) {
293 if (damon_va_three_regions(t, three_regions))
295 damon_set_regions(t, three_regions, 3);
299 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
300 unsigned long next, struct mm_walk *walk)
305 if (pmd_huge(*pmd)) {
306 ptl = pmd_lock(walk->mm, pmd);
307 if (pmd_huge(*pmd)) {
308 damon_pmdp_mkold(pmd, walk->mm, addr);
315 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
317 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
318 if (!pte_present(*pte))
320 damon_ptep_mkold(pte, walk->mm, addr);
322 pte_unmap_unlock(pte, ptl);
326 #ifdef CONFIG_HUGETLB_PAGE
327 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
328 struct vm_area_struct *vma, unsigned long addr)
330 bool referenced = false;
331 pte_t entry = huge_ptep_get(pte);
332 struct page *page = pte_page(entry);
336 if (pte_young(entry)) {
338 entry = pte_mkold(entry);
339 set_huge_pte_at(mm, addr, pte, entry);
342 #ifdef CONFIG_MMU_NOTIFIER
343 if (mmu_notifier_clear_young(mm, addr,
344 addr + huge_page_size(hstate_vma(vma))))
346 #endif /* CONFIG_MMU_NOTIFIER */
349 set_page_young(page);
355 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
356 unsigned long addr, unsigned long end,
357 struct mm_walk *walk)
359 struct hstate *h = hstate_vma(walk->vma);
363 ptl = huge_pte_lock(h, walk->mm, pte);
364 entry = huge_ptep_get(pte);
365 if (!pte_present(entry))
368 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
375 #define damon_mkold_hugetlb_entry NULL
376 #endif /* CONFIG_HUGETLB_PAGE */
378 static const struct mm_walk_ops damon_mkold_ops = {
379 .pmd_entry = damon_mkold_pmd_entry,
380 .hugetlb_entry = damon_mkold_hugetlb_entry,
383 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
386 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
387 mmap_read_unlock(mm);
391 * Functions for the access checking of the regions
394 static void __damon_va_prepare_access_check(struct damon_ctx *ctx,
395 struct mm_struct *mm, struct damon_region *r)
397 r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
399 damon_va_mkold(mm, r->sampling_addr);
402 static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
404 struct damon_target *t;
405 struct mm_struct *mm;
406 struct damon_region *r;
408 damon_for_each_target(t, ctx) {
409 mm = damon_get_mm(t);
412 damon_for_each_region(r, t)
413 __damon_va_prepare_access_check(ctx, mm, r);
418 struct damon_young_walk_private {
419 unsigned long *page_sz;
423 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
424 unsigned long next, struct mm_walk *walk)
429 struct damon_young_walk_private *priv = walk->private;
431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
432 if (pmd_huge(*pmd)) {
433 ptl = pmd_lock(walk->mm, pmd);
434 if (!pmd_huge(*pmd)) {
438 page = damon_get_page(pmd_pfn(*pmd));
441 if (pmd_young(*pmd) || !page_is_idle(page) ||
442 mmu_notifier_test_young(walk->mm,
444 *priv->page_sz = HPAGE_PMD_SIZE;
454 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
456 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
458 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
459 if (!pte_present(*pte))
461 page = damon_get_page(pte_pfn(*pte));
464 if (pte_young(*pte) || !page_is_idle(page) ||
465 mmu_notifier_test_young(walk->mm, addr)) {
466 *priv->page_sz = PAGE_SIZE;
471 pte_unmap_unlock(pte, ptl);
475 #ifdef CONFIG_HUGETLB_PAGE
476 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
477 unsigned long addr, unsigned long end,
478 struct mm_walk *walk)
480 struct damon_young_walk_private *priv = walk->private;
481 struct hstate *h = hstate_vma(walk->vma);
486 ptl = huge_pte_lock(h, walk->mm, pte);
487 entry = huge_ptep_get(pte);
488 if (!pte_present(entry))
491 page = pte_page(entry);
494 if (pte_young(entry) || !page_is_idle(page) ||
495 mmu_notifier_test_young(walk->mm, addr)) {
496 *priv->page_sz = huge_page_size(h);
507 #define damon_young_hugetlb_entry NULL
508 #endif /* CONFIG_HUGETLB_PAGE */
510 static const struct mm_walk_ops damon_young_ops = {
511 .pmd_entry = damon_young_pmd_entry,
512 .hugetlb_entry = damon_young_hugetlb_entry,
515 static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
516 unsigned long *page_sz)
518 struct damon_young_walk_private arg = {
524 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
525 mmap_read_unlock(mm);
530 * Check whether the region was accessed after the last preparation
532 * mm 'mm_struct' for the given virtual address space
533 * r the region to be checked
535 static void __damon_va_check_access(struct damon_ctx *ctx,
536 struct mm_struct *mm, struct damon_region *r)
538 static struct mm_struct *last_mm;
539 static unsigned long last_addr;
540 static unsigned long last_page_sz = PAGE_SIZE;
541 static bool last_accessed;
543 /* If the region is in the last checked page, reuse the result */
544 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) ==
545 ALIGN_DOWN(r->sampling_addr, last_page_sz))) {
551 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz);
556 last_addr = r->sampling_addr;
559 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
561 struct damon_target *t;
562 struct mm_struct *mm;
563 struct damon_region *r;
564 unsigned int max_nr_accesses = 0;
566 damon_for_each_target(t, ctx) {
567 mm = damon_get_mm(t);
570 damon_for_each_region(r, t) {
571 __damon_va_check_access(ctx, mm, r);
572 max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
577 return max_nr_accesses;
581 * Functions for the target validity check and cleanup
584 static bool damon_va_target_valid(void *target)
586 struct damon_target *t = target;
587 struct task_struct *task;
589 task = damon_get_task_struct(t);
591 put_task_struct(task);
598 #ifndef CONFIG_ADVISE_SYSCALLS
599 static unsigned long damos_madvise(struct damon_target *target,
600 struct damon_region *r, int behavior)
605 static unsigned long damos_madvise(struct damon_target *target,
606 struct damon_region *r, int behavior)
608 struct mm_struct *mm;
609 unsigned long start = PAGE_ALIGN(r->ar.start);
610 unsigned long len = PAGE_ALIGN(r->ar.end - r->ar.start);
611 unsigned long applied;
613 mm = damon_get_mm(target);
617 applied = do_madvise(mm, start, len, behavior) ? 0 : len;
622 #endif /* CONFIG_ADVISE_SYSCALLS */
624 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
625 struct damon_target *t, struct damon_region *r,
626 struct damos *scheme)
630 switch (scheme->action) {
632 madv_action = MADV_WILLNEED;
635 madv_action = MADV_COLD;
638 madv_action = MADV_PAGEOUT;
641 madv_action = MADV_HUGEPAGE;
643 case DAMOS_NOHUGEPAGE:
644 madv_action = MADV_NOHUGEPAGE;
652 return damos_madvise(t, r, madv_action);
655 static int damon_va_scheme_score(struct damon_ctx *context,
656 struct damon_target *t, struct damon_region *r,
657 struct damos *scheme)
660 switch (scheme->action) {
662 return damon_pageout_score(context, r, scheme);
667 return DAMOS_MAX_SCORE;
670 static int __init damon_va_initcall(void)
672 struct damon_operations ops = {
673 .id = DAMON_OPS_VADDR,
674 .init = damon_va_init,
675 .update = damon_va_update,
676 .prepare_access_checks = damon_va_prepare_access_checks,
677 .check_accesses = damon_va_check_accesses,
678 .reset_aggregated = NULL,
679 .target_valid = damon_va_target_valid,
681 .apply_scheme = damon_va_apply_scheme,
682 .get_scheme_score = damon_va_scheme_score,
684 /* ops for fixed virtual address ranges */
685 struct damon_operations ops_fvaddr = ops;
688 /* Don't set the monitoring target regions for the entire mapping */
689 ops_fvaddr.id = DAMON_OPS_FVADDR;
690 ops_fvaddr.init = NULL;
691 ops_fvaddr.update = NULL;
693 err = damon_register_ops(&ops);
696 return damon_register_ops(&ops_fvaddr);
699 subsys_initcall(damon_va_initcall);
701 #include "vaddr-test.h"