2 * processor_idle - idle state submodule to the ACPI processor driver
8 * - Added processor hotplug support
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 #define pr_fmt(fmt) "ACPI: " fmt
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h> /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <acpi/processor.h>
37 * Include the apic definitions for x86 to have the APIC timer related defines
38 * available also for UP (on SMP it gets magically included via linux/smp.h).
39 * asm/acpi.h is not an option, as it would require more include magic. Also
40 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
46 #define ACPI_PROCESSOR_CLASS "processor"
47 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
48 ACPI_MODULE_NAME("processor_idle");
50 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
51 module_param(max_cstate, uint, 0000);
52 static unsigned int nocst __read_mostly;
53 module_param(nocst, uint, 0000);
54 static int bm_check_disable __read_mostly;
55 module_param(bm_check_disable, uint, 0000);
57 static unsigned int latency_factor __read_mostly = 2;
58 module_param(latency_factor, uint, 0644);
60 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
62 struct cpuidle_driver acpi_idle_driver = {
67 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
69 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
71 static int disabled_by_idle_boot_param(void)
73 return boot_option_idle_override == IDLE_POLL ||
74 boot_option_idle_override == IDLE_HALT;
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
81 * To skip this limit, boot/load with a large max_cstate limit.
83 static int set_max_cstate(const struct dmi_system_id *id)
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
88 pr_notice("%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92 max_cstate = (long)id->driver_data;
97 static const struct dmi_system_id processor_power_dmi_table[] = {
98 { set_max_cstate, "Clevo 5600D", {
99 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
102 { set_max_cstate, "Pavilion zv5000", {
103 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
106 { set_max_cstate, "Asus L8400B", {
107 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
115 * Callers should disable interrupts before the call and enable
116 * interrupts after return.
118 static void acpi_safe_halt(void)
120 if (!tif_need_resched()) {
126 #ifdef ARCH_APICTIMER_STOPS_ON_C3
129 * Some BIOS implementations switch to C3 in the published C2 state.
130 * This seems to be a common problem on AMD boxen, but other vendors
131 * are affected too. We pick the most conservative approach: we assume
132 * that the local APIC stops in both C2 and C3.
134 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135 struct acpi_processor_cx *cx)
137 struct acpi_processor_power *pwr = &pr->power;
138 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
140 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
143 if (amd_e400_c1e_detected)
144 type = ACPI_STATE_C1;
147 * Check, if one of the previous states already marked the lapic
150 if (pwr->timer_broadcast_on_state < state)
153 if (cx->type >= type)
154 pr->power.timer_broadcast_on_state = state;
157 static void __lapic_timer_propagate_broadcast(void *arg)
159 struct acpi_processor *pr = (struct acpi_processor *) arg;
161 if (pr->power.timer_broadcast_on_state < INT_MAX)
162 tick_broadcast_enable();
164 tick_broadcast_disable();
167 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
169 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173 /* Power(C) State timer broadcast control */
174 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
175 struct acpi_processor_cx *cx,
178 int state = cx - pr->power.states;
180 if (state >= pr->power.timer_broadcast_on_state) {
182 tick_broadcast_enter();
184 tick_broadcast_exit();
190 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
191 struct acpi_processor_cx *cstate) { }
192 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
193 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194 struct acpi_processor_cx *cx,
201 #if defined(CONFIG_X86)
202 static void tsc_check_state(int state)
204 switch (boot_cpu_data.x86_vendor) {
206 case X86_VENDOR_INTEL:
208 * AMD Fam10h TSC will tick in all
209 * C/P/S0/S1 states when this bit is set.
211 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
216 /* TSC could halt in idle, so notify users */
217 if (state > ACPI_STATE_C1)
218 mark_tsc_unstable("TSC halts in idle");
222 static void tsc_check_state(int state) { return; }
225 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
231 /* if info is obtained from pblk/fadt, type equals state */
232 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
233 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
235 #ifndef CONFIG_HOTPLUG_CPU
237 * Check for P_LVL2_UP flag before entering C2 and above on
240 if ((num_online_cpus() > 1) &&
241 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
245 /* determine C2 and C3 address from pblk */
246 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
247 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
249 /* determine latencies from FADT */
250 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
251 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
254 * FADT specified C2 latency must be less than or equal to
257 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
258 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
259 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
261 pr->power.states[ACPI_STATE_C2].address = 0;
265 * FADT supplied C3 latency must be less than or equal to
268 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
269 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
272 pr->power.states[ACPI_STATE_C3].address = 0;
275 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
276 "lvl2[0x%08x] lvl3[0x%08x]\n",
277 pr->power.states[ACPI_STATE_C2].address,
278 pr->power.states[ACPI_STATE_C3].address));
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
285 if (!pr->power.states[ACPI_STATE_C1].valid) {
286 /* set the first C-State to C1 */
287 /* all processors need to support C1 */
288 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289 pr->power.states[ACPI_STATE_C1].valid = 1;
290 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
292 /* the C0 state only exists as a filler in our array */
293 pr->power.states[ACPI_STATE_C0].valid = 1;
297 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
303 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
304 union acpi_object *cst;
311 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
312 if (ACPI_FAILURE(status)) {
313 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
317 cst = buffer.pointer;
319 /* There must be at least 2 elements */
320 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
321 pr_err("not enough elements in _CST\n");
326 count = cst->package.elements[0].integer.value;
328 /* Validate number of power states. */
329 if (count < 1 || count != cst->package.count - 1) {
330 pr_err("count given by _CST is not valid\n");
335 /* Tell driver that at least _CST is supported. */
336 pr->flags.has_cst = 1;
338 for (i = 1; i <= count; i++) {
339 union acpi_object *element;
340 union acpi_object *obj;
341 struct acpi_power_register *reg;
342 struct acpi_processor_cx cx;
344 memset(&cx, 0, sizeof(cx));
346 element = &(cst->package.elements[i]);
347 if (element->type != ACPI_TYPE_PACKAGE)
350 if (element->package.count != 4)
353 obj = &(element->package.elements[0]);
355 if (obj->type != ACPI_TYPE_BUFFER)
358 reg = (struct acpi_power_register *)obj->buffer.pointer;
360 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
361 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
364 /* There should be an easy way to extract an integer... */
365 obj = &(element->package.elements[1]);
366 if (obj->type != ACPI_TYPE_INTEGER)
369 cx.type = obj->integer.value;
371 * Some buggy BIOSes won't list C1 in _CST -
372 * Let acpi_processor_get_power_info_default() handle them later
374 if (i == 1 && cx.type != ACPI_STATE_C1)
377 cx.address = reg->address;
378 cx.index = current_count + 1;
380 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
381 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
382 if (acpi_processor_ffh_cstate_probe
383 (pr->id, &cx, reg) == 0) {
384 cx.entry_method = ACPI_CSTATE_FFH;
385 } else if (cx.type == ACPI_STATE_C1) {
387 * C1 is a special case where FIXED_HARDWARE
388 * can be handled in non-MWAIT way as well.
389 * In that case, save this _CST entry info.
390 * Otherwise, ignore this info and continue.
392 cx.entry_method = ACPI_CSTATE_HALT;
393 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
397 if (cx.type == ACPI_STATE_C1 &&
398 (boot_option_idle_override == IDLE_NOMWAIT)) {
400 * In most cases the C1 space_id obtained from
401 * _CST object is FIXED_HARDWARE access mode.
402 * But when the option of idle=halt is added,
403 * the entry_method type should be changed from
404 * CSTATE_FFH to CSTATE_HALT.
405 * When the option of idle=nomwait is added,
406 * the C1 entry_method type should be
409 cx.entry_method = ACPI_CSTATE_HALT;
410 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
413 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
417 if (cx.type == ACPI_STATE_C1) {
421 obj = &(element->package.elements[2]);
422 if (obj->type != ACPI_TYPE_INTEGER)
425 cx.latency = obj->integer.value;
427 obj = &(element->package.elements[3]);
428 if (obj->type != ACPI_TYPE_INTEGER)
432 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
435 * We support total ACPI_PROCESSOR_MAX_POWER - 1
436 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
438 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
439 pr_warn("Limiting number of power states to max (%d)\n",
440 ACPI_PROCESSOR_MAX_POWER);
441 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
446 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
449 /* Validate number of power states discovered */
450 if (current_count < 2)
454 kfree(buffer.pointer);
459 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
460 struct acpi_processor_cx *cx)
462 static int bm_check_flag = -1;
463 static int bm_control_flag = -1;
470 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
471 * DMA transfers are used by any ISA device to avoid livelock.
472 * Note that we could disable Type-F DMA (as recommended by
473 * the erratum), but this is known to disrupt certain ISA
474 * devices thus we take the conservative approach.
476 else if (errata.piix4.fdma) {
477 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
478 "C3 not supported on PIIX4 with Type-F DMA\n"));
482 /* All the logic here assumes flags.bm_check is same across all CPUs */
483 if (bm_check_flag == -1) {
484 /* Determine whether bm_check is needed based on CPU */
485 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
486 bm_check_flag = pr->flags.bm_check;
487 bm_control_flag = pr->flags.bm_control;
489 pr->flags.bm_check = bm_check_flag;
490 pr->flags.bm_control = bm_control_flag;
493 if (pr->flags.bm_check) {
494 if (!pr->flags.bm_control) {
495 if (pr->flags.has_cst != 1) {
496 /* bus mastering control is necessary */
497 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
498 "C3 support requires BM control\n"));
501 /* Here we enter C3 without bus mastering */
502 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
503 "C3 support without BM control\n"));
508 * WBINVD should be set in fadt, for C3 state to be
509 * supported on when bm_check is not required.
511 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
512 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
513 "Cache invalidation should work properly"
514 " for C3 to be enabled on SMP systems\n"));
520 * Otherwise we've met all of our C3 requirements.
521 * Normalize the C3 latency to expidite policy. Enable
522 * checking of bus mastering status (bm_check) so we can
523 * use this in our C3 policy
528 * On older chipsets, BM_RLD needs to be set
529 * in order for Bus Master activity to wake the
530 * system from C3. Newer chipsets handle DMA
531 * during C3 automatically and BM_RLD is a NOP.
532 * In either case, the proper way to
533 * handle BM_RLD is to set it and leave it set.
535 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
540 static int acpi_processor_power_verify(struct acpi_processor *pr)
543 unsigned int working = 0;
545 pr->power.timer_broadcast_on_state = INT_MAX;
547 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
548 struct acpi_processor_cx *cx = &pr->power.states[i];
562 acpi_processor_power_verify_c3(pr, cx);
568 lapic_timer_check_state(i, pr, cx);
569 tsc_check_state(cx->type);
573 lapic_timer_propagate_broadcast(pr);
578 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
584 /* NOTE: the idle thread may not be running while calling
587 /* Zero initialize all the C-states info. */
588 memset(pr->power.states, 0, sizeof(pr->power.states));
590 result = acpi_processor_get_power_info_cst(pr);
591 if (result == -ENODEV)
592 result = acpi_processor_get_power_info_fadt(pr);
597 acpi_processor_get_power_info_default(pr);
599 pr->power.count = acpi_processor_power_verify(pr);
602 * if one state of type C2 or C3 is available, mark this
603 * CPU as being "idle manageable"
605 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
606 if (pr->power.states[i].valid) {
608 if (pr->power.states[i].type >= ACPI_STATE_C2)
617 * acpi_idle_bm_check - checks if bus master activity was detected
619 static int acpi_idle_bm_check(void)
623 if (bm_check_disable)
626 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
628 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
630 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
631 * the true state of bus mastering activity; forcing us to
632 * manually check the BMIDEA bit of each IDE channel.
634 else if (errata.piix4.bmisx) {
635 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
636 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
643 * acpi_idle_do_entry - enter idle state using the appropriate method
646 * Caller disables interrupt before call and enables interrupt after return.
648 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
650 if (cx->entry_method == ACPI_CSTATE_FFH) {
651 /* Call into architectural FFH based C-state */
652 acpi_processor_ffh_cstate_enter(cx);
653 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
656 /* IO port based C-state */
658 /* Dummy wait op - must do something useless after P_LVL2 read
659 because chipsets cannot guarantee that STPCLK# signal
660 gets asserted in time to freeze execution properly. */
661 inl(acpi_gbl_FADT.xpm_timer_block.address);
666 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
667 * @dev: the target CPU
668 * @index: the index of suggested state
670 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
672 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
674 ACPI_FLUSH_CPU_CACHE();
678 if (cx->entry_method == ACPI_CSTATE_HALT)
680 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
682 /* See comment in acpi_idle_do_entry() */
683 inl(acpi_gbl_FADT.xpm_timer_block.address);
692 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
694 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
695 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
698 static int c3_cpu_count;
699 static DEFINE_RAW_SPINLOCK(c3_lock);
702 * acpi_idle_enter_bm - enters C3 with proper BM handling
703 * @pr: Target processor
704 * @cx: Target state context
705 * @timer_bc: Whether or not to change timer mode to broadcast
707 static void acpi_idle_enter_bm(struct acpi_processor *pr,
708 struct acpi_processor_cx *cx, bool timer_bc)
710 acpi_unlazy_tlb(smp_processor_id());
713 * Must be done before busmaster disable as we might need to
717 lapic_timer_state_broadcast(pr, cx, 1);
721 * bm_check implies we need ARB_DIS
722 * bm_control implies whether we can do ARB_DIS
724 * That leaves a case where bm_check is set and bm_control is
725 * not set. In that case we cannot do much, we enter C3
726 * without doing anything.
728 if (pr->flags.bm_control) {
729 raw_spin_lock(&c3_lock);
731 /* Disable bus master arbitration when all CPUs are in C3 */
732 if (c3_cpu_count == num_online_cpus())
733 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
734 raw_spin_unlock(&c3_lock);
737 acpi_idle_do_entry(cx);
739 /* Re-enable bus master arbitration */
740 if (pr->flags.bm_control) {
741 raw_spin_lock(&c3_lock);
742 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
744 raw_spin_unlock(&c3_lock);
748 lapic_timer_state_broadcast(pr, cx, 0);
751 static int acpi_idle_enter(struct cpuidle_device *dev,
752 struct cpuidle_driver *drv, int index)
754 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
755 struct acpi_processor *pr;
757 pr = __this_cpu_read(processors);
761 if (cx->type != ACPI_STATE_C1) {
762 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
763 index = CPUIDLE_DRIVER_STATE_START;
764 cx = per_cpu(acpi_cstate[index], dev->cpu);
765 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
766 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
767 acpi_idle_enter_bm(pr, cx, true);
769 } else if (drv->safe_state_index >= 0) {
770 index = drv->safe_state_index;
771 cx = per_cpu(acpi_cstate[index], dev->cpu);
779 lapic_timer_state_broadcast(pr, cx, 1);
781 if (cx->type == ACPI_STATE_C3)
782 ACPI_FLUSH_CPU_CACHE();
784 acpi_idle_do_entry(cx);
786 lapic_timer_state_broadcast(pr, cx, 0);
791 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
792 struct cpuidle_driver *drv, int index)
794 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
796 if (cx->type == ACPI_STATE_C3) {
797 struct acpi_processor *pr = __this_cpu_read(processors);
802 if (pr->flags.bm_check) {
803 acpi_idle_enter_bm(pr, cx, false);
806 ACPI_FLUSH_CPU_CACHE();
809 acpi_idle_do_entry(cx);
812 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
813 struct cpuidle_device *dev)
815 int i, count = CPUIDLE_DRIVER_STATE_START;
816 struct acpi_processor_cx *cx;
821 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
822 cx = &pr->power.states[i];
827 per_cpu(acpi_cstate[count], dev->cpu) = cx;
830 if (count == CPUIDLE_STATE_MAX)
840 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
842 int i, count = CPUIDLE_DRIVER_STATE_START;
843 struct acpi_processor_cx *cx;
844 struct cpuidle_state *state;
845 struct cpuidle_driver *drv = &acpi_idle_driver;
850 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
851 cx = &pr->power.states[i];
856 state = &drv->states[count];
857 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
858 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
859 state->exit_latency = cx->latency;
860 state->target_residency = cx->latency * latency_factor;
861 state->enter = acpi_idle_enter;
864 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
865 state->enter_dead = acpi_idle_play_dead;
866 drv->safe_state_index = count;
869 * Halt-induced C1 is not good for ->enter_freeze, because it
870 * re-enables interrupts on exit. Moreover, C1 is generally not
871 * particularly interesting from the suspend-to-idle angle, so
872 * avoid C1 and the situations in which we may need to fall back
875 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
876 state->enter_freeze = acpi_idle_enter_freeze;
879 if (count == CPUIDLE_STATE_MAX)
883 drv->state_count = count;
891 static inline void acpi_processor_cstate_first_run_checks(void)
894 static int first_run;
898 dmi_check_system(processor_power_dmi_table);
899 max_cstate = acpi_processor_cstate_check(max_cstate);
900 if (max_cstate < ACPI_C_STATES_MAX)
901 pr_notice("ACPI: processor limited to max C-state %d\n",
905 if (acpi_gbl_FADT.cst_control && !nocst) {
906 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
907 acpi_gbl_FADT.cst_control, 8);
908 if (ACPI_FAILURE(status))
909 ACPI_EXCEPTION((AE_INFO, status,
910 "Notifying BIOS of _CST ability failed"));
915 static inline int disabled_by_idle_boot_param(void) { return 0; }
916 static inline void acpi_processor_cstate_first_run_checks(void) { }
917 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
922 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
923 struct cpuidle_device *dev)
928 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
933 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
935 struct acpi_lpi_states_array {
937 unsigned int composite_states_size;
938 struct acpi_lpi_state *entries;
939 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
942 static int obj_get_integer(union acpi_object *obj, u32 *value)
944 if (obj->type != ACPI_TYPE_INTEGER)
947 *value = obj->integer.value;
951 static int acpi_processor_evaluate_lpi(acpi_handle handle,
952 struct acpi_lpi_states_array *info)
956 int pkg_count, state_idx = 1, loop;
957 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
958 union acpi_object *lpi_data;
959 struct acpi_lpi_state *lpi_state;
961 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
962 if (ACPI_FAILURE(status)) {
963 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
967 lpi_data = buffer.pointer;
969 /* There must be at least 4 elements = 3 elements + 1 package */
970 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
971 lpi_data->package.count < 4) {
972 pr_debug("not enough elements in _LPI\n");
977 pkg_count = lpi_data->package.elements[2].integer.value;
979 /* Validate number of power states. */
980 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
981 pr_debug("count given by _LPI is not valid\n");
986 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
992 info->size = pkg_count;
993 info->entries = lpi_state;
995 /* LPI States start at index 3 */
996 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
997 union acpi_object *element, *pkg_elem, *obj;
999 element = &lpi_data->package.elements[loop];
1000 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1003 pkg_elem = element->package.elements;
1006 if (obj->type == ACPI_TYPE_BUFFER) {
1007 struct acpi_power_register *reg;
1009 reg = (struct acpi_power_register *)obj->buffer.pointer;
1010 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1011 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1014 lpi_state->address = reg->address;
1015 lpi_state->entry_method =
1016 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1017 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1018 } else if (obj->type == ACPI_TYPE_INTEGER) {
1019 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1020 lpi_state->address = obj->integer.value;
1025 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1028 if (obj->type == ACPI_TYPE_STRING)
1029 strlcpy(lpi_state->desc, obj->string.pointer,
1032 lpi_state->index = state_idx;
1033 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1034 pr_debug("No min. residency found, assuming 10 us\n");
1035 lpi_state->min_residency = 10;
1038 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1039 pr_debug("No wakeup residency found, assuming 10 us\n");
1040 lpi_state->wake_latency = 10;
1043 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1044 lpi_state->flags = 0;
1046 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1047 lpi_state->arch_flags = 0;
1049 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1050 lpi_state->res_cnt_freq = 1;
1052 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1053 lpi_state->enable_parent_state = 0;
1056 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1058 kfree(buffer.pointer);
1063 * flat_state_cnt - the number of composite LPI states after the process of flattening
1065 static int flat_state_cnt;
1068 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1070 * @local: local LPI state
1071 * @parent: parent LPI state
1072 * @result: composite LPI state
1074 static bool combine_lpi_states(struct acpi_lpi_state *local,
1075 struct acpi_lpi_state *parent,
1076 struct acpi_lpi_state *result)
1078 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1079 if (!parent->address) /* 0 means autopromotable */
1081 result->address = local->address + parent->address;
1083 result->address = parent->address;
1086 result->min_residency = max(local->min_residency, parent->min_residency);
1087 result->wake_latency = local->wake_latency + parent->wake_latency;
1088 result->enable_parent_state = parent->enable_parent_state;
1089 result->entry_method = local->entry_method;
1091 result->flags = parent->flags;
1092 result->arch_flags = parent->arch_flags;
1093 result->index = parent->index;
1095 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1096 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1097 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1101 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1103 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1104 struct acpi_lpi_state *t)
1106 curr_level->composite_states[curr_level->composite_states_size++] = t;
1109 static int flatten_lpi_states(struct acpi_processor *pr,
1110 struct acpi_lpi_states_array *curr_level,
1111 struct acpi_lpi_states_array *prev_level)
1113 int i, j, state_count = curr_level->size;
1114 struct acpi_lpi_state *p, *t = curr_level->entries;
1116 curr_level->composite_states_size = 0;
1117 for (j = 0; j < state_count; j++, t++) {
1118 struct acpi_lpi_state *flpi;
1120 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1123 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1124 pr_warn("Limiting number of LPI states to max (%d)\n",
1125 ACPI_PROCESSOR_MAX_POWER);
1126 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1130 flpi = &pr->power.lpi_states[flat_state_cnt];
1132 if (!prev_level) { /* leaf/processor node */
1133 memcpy(flpi, t, sizeof(*t));
1134 stash_composite_state(curr_level, flpi);
1139 for (i = 0; i < prev_level->composite_states_size; i++) {
1140 p = prev_level->composite_states[i];
1141 if (t->index <= p->enable_parent_state &&
1142 combine_lpi_states(p, t, flpi)) {
1143 stash_composite_state(curr_level, flpi);
1150 kfree(curr_level->entries);
1154 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1158 acpi_handle handle = pr->handle, pr_ahandle;
1159 struct acpi_device *d = NULL;
1160 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1162 if (!osc_pc_lpi_support_confirmed)
1165 if (!acpi_has_method(handle, "_LPI"))
1171 handle = pr->handle;
1172 ret = acpi_processor_evaluate_lpi(handle, prev);
1175 flatten_lpi_states(pr, prev, NULL);
1177 status = acpi_get_parent(handle, &pr_ahandle);
1178 while (ACPI_SUCCESS(status)) {
1179 acpi_bus_get_device(pr_ahandle, &d);
1180 handle = pr_ahandle;
1182 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1185 /* can be optional ? */
1186 if (!acpi_has_method(handle, "_LPI"))
1189 ret = acpi_processor_evaluate_lpi(handle, curr);
1193 /* flatten all the LPI states in this level of hierarchy */
1194 flatten_lpi_states(pr, curr, prev);
1196 tmp = prev, prev = curr, curr = tmp;
1198 status = acpi_get_parent(handle, &pr_ahandle);
1201 pr->power.count = flat_state_cnt;
1202 /* reset the index after flattening */
1203 for (i = 0; i < pr->power.count; i++)
1204 pr->power.lpi_states[i].index = i;
1206 /* Tell driver that _LPI is supported. */
1207 pr->flags.has_lpi = 1;
1208 pr->flags.power = 1;
1213 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1218 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1224 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1225 * @dev: the target CPU
1226 * @drv: cpuidle driver containing cpuidle state info
1227 * @index: index of target state
1229 * Return: 0 for success or negative value for error
1231 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1232 struct cpuidle_driver *drv, int index)
1234 struct acpi_processor *pr;
1235 struct acpi_lpi_state *lpi;
1237 pr = __this_cpu_read(processors);
1242 lpi = &pr->power.lpi_states[index];
1243 if (lpi->entry_method == ACPI_CSTATE_FFH)
1244 return acpi_processor_ffh_lpi_enter(lpi);
1249 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1252 struct acpi_lpi_state *lpi;
1253 struct cpuidle_state *state;
1254 struct cpuidle_driver *drv = &acpi_idle_driver;
1256 if (!pr->flags.has_lpi)
1259 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1260 lpi = &pr->power.lpi_states[i];
1262 state = &drv->states[i];
1263 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1264 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1265 state->exit_latency = lpi->wake_latency;
1266 state->target_residency = lpi->min_residency;
1267 if (lpi->arch_flags)
1268 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1269 state->enter = acpi_idle_lpi_enter;
1270 drv->safe_state_index = i;
1273 drv->state_count = i;
1279 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1280 * global state data i.e. idle routines
1282 * @pr: the ACPI processor
1284 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1287 struct cpuidle_driver *drv = &acpi_idle_driver;
1289 if (!pr->flags.power_setup_done || !pr->flags.power)
1292 drv->safe_state_index = -1;
1293 for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1294 drv->states[i].name[0] = '\0';
1295 drv->states[i].desc[0] = '\0';
1298 if (pr->flags.has_lpi)
1299 return acpi_processor_setup_lpi_states(pr);
1301 return acpi_processor_setup_cstates(pr);
1305 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1306 * device i.e. per-cpu data
1308 * @pr: the ACPI processor
1309 * @dev : the cpuidle device
1311 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1312 struct cpuidle_device *dev)
1314 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1318 if (pr->flags.has_lpi)
1319 return acpi_processor_ffh_lpi_probe(pr->id);
1321 return acpi_processor_setup_cpuidle_cx(pr, dev);
1324 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1328 ret = acpi_processor_get_lpi_info(pr);
1330 ret = acpi_processor_get_cstate_info(pr);
1335 int acpi_processor_hotplug(struct acpi_processor *pr)
1338 struct cpuidle_device *dev;
1340 if (disabled_by_idle_boot_param())
1343 if (!pr->flags.power_setup_done)
1346 dev = per_cpu(acpi_cpuidle_device, pr->id);
1347 cpuidle_pause_and_lock();
1348 cpuidle_disable_device(dev);
1349 ret = acpi_processor_get_power_info(pr);
1350 if (!ret && pr->flags.power) {
1351 acpi_processor_setup_cpuidle_dev(pr, dev);
1352 ret = cpuidle_enable_device(dev);
1354 cpuidle_resume_and_unlock();
1359 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1362 struct acpi_processor *_pr;
1363 struct cpuidle_device *dev;
1365 if (disabled_by_idle_boot_param())
1368 if (!pr->flags.power_setup_done)
1372 * FIXME: Design the ACPI notification to make it once per
1373 * system instead of once per-cpu. This condition is a hack
1374 * to make the code that updates C-States be called once.
1377 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1379 /* Protect against cpu-hotplug */
1381 cpuidle_pause_and_lock();
1383 /* Disable all cpuidle devices */
1384 for_each_online_cpu(cpu) {
1385 _pr = per_cpu(processors, cpu);
1386 if (!_pr || !_pr->flags.power_setup_done)
1388 dev = per_cpu(acpi_cpuidle_device, cpu);
1389 cpuidle_disable_device(dev);
1392 /* Populate Updated C-state information */
1393 acpi_processor_get_power_info(pr);
1394 acpi_processor_setup_cpuidle_states(pr);
1396 /* Enable all cpuidle devices */
1397 for_each_online_cpu(cpu) {
1398 _pr = per_cpu(processors, cpu);
1399 if (!_pr || !_pr->flags.power_setup_done)
1401 acpi_processor_get_power_info(_pr);
1402 if (_pr->flags.power) {
1403 dev = per_cpu(acpi_cpuidle_device, cpu);
1404 acpi_processor_setup_cpuidle_dev(_pr, dev);
1405 cpuidle_enable_device(dev);
1408 cpuidle_resume_and_unlock();
1415 static int acpi_processor_registered;
1417 int acpi_processor_power_init(struct acpi_processor *pr)
1420 struct cpuidle_device *dev;
1422 if (disabled_by_idle_boot_param())
1425 acpi_processor_cstate_first_run_checks();
1427 if (!acpi_processor_get_power_info(pr))
1428 pr->flags.power_setup_done = 1;
1431 * Install the idle handler if processor power management is supported.
1432 * Note that we use previously set idle handler will be used on
1433 * platforms that only support C1.
1435 if (pr->flags.power) {
1436 /* Register acpi_idle_driver if not already registered */
1437 if (!acpi_processor_registered) {
1438 acpi_processor_setup_cpuidle_states(pr);
1439 retval = cpuidle_register_driver(&acpi_idle_driver);
1442 pr_debug("%s registered with cpuidle\n",
1443 acpi_idle_driver.name);
1446 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1449 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1451 acpi_processor_setup_cpuidle_dev(pr, dev);
1453 /* Register per-cpu cpuidle_device. Cpuidle driver
1454 * must already be registered before registering device
1456 retval = cpuidle_register_device(dev);
1458 if (acpi_processor_registered == 0)
1459 cpuidle_unregister_driver(&acpi_idle_driver);
1462 acpi_processor_registered++;
1467 int acpi_processor_power_exit(struct acpi_processor *pr)
1469 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1471 if (disabled_by_idle_boot_param())
1474 if (pr->flags.power) {
1475 cpuidle_unregister_device(dev);
1476 acpi_processor_registered--;
1477 if (acpi_processor_registered == 0)
1478 cpuidle_unregister_driver(&acpi_idle_driver);
1481 pr->flags.power_setup_done = 0;