1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
72 static void __unhash_process(struct task_struct *p, bool group_dead)
75 detach_pid(p, PIDTYPE_PID);
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
90 * This function expects the tasklist_lock write-locked.
92 static void __exit_signal(struct task_struct *tsk)
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
107 posix_cpu_timers_exit_group(tsk);
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
124 * If there is any task waiting for the group exit
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
164 flush_sigqueue(&tsk->pending);
166 spin_unlock(&sighand->siglock);
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
171 flush_sigqueue(&sig->shared_pending);
176 static void delayed_put_task_struct(struct rcu_head *rhp)
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
185 void put_task_struct_rcu_user(struct task_struct *task)
187 if (refcount_dec_and_test(&task->rcu_users))
188 call_rcu(&task->rcu, delayed_put_task_struct);
191 void release_task(struct task_struct *p)
193 struct task_struct *leader;
196 /* don't need to get the RCU readlock here - the process is dead and
197 * can't be modifying its own credentials. But shut RCU-lockdep up */
199 atomic_dec(&__task_cred(p)->user->processes);
205 write_lock_irq(&tasklist_lock);
206 ptrace_release_task(p);
210 * If we are the last non-leader member of the thread
211 * group, and the leader is zombie, then notify the
212 * group leader's parent process. (if it wants notification.)
215 leader = p->group_leader;
216 if (leader != p && thread_group_empty(leader)
217 && leader->exit_state == EXIT_ZOMBIE) {
219 * If we were the last child thread and the leader has
220 * exited already, and the leader's parent ignores SIGCHLD,
221 * then we are the one who should release the leader.
223 zap_leader = do_notify_parent(leader, leader->exit_signal);
225 leader->exit_state = EXIT_DEAD;
228 write_unlock_irq(&tasklist_lock);
230 put_task_struct_rcu_user(p);
233 if (unlikely(zap_leader))
238 * Note that if this function returns a valid task_struct pointer (!NULL)
239 * task->usage must remain >0 for the duration of the RCU critical section.
241 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
243 struct sighand_struct *sighand;
244 struct task_struct *task;
247 * We need to verify that release_task() was not called and thus
248 * delayed_put_task_struct() can't run and drop the last reference
249 * before rcu_read_unlock(). We check task->sighand != NULL,
250 * but we can read the already freed and reused memory.
253 task = rcu_dereference(*ptask);
257 probe_kernel_address(&task->sighand, sighand);
260 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
261 * was already freed we can not miss the preceding update of this
265 if (unlikely(task != READ_ONCE(*ptask)))
269 * We've re-checked that "task == *ptask", now we have two different
272 * 1. This is actually the same task/task_struct. In this case
273 * sighand != NULL tells us it is still alive.
275 * 2. This is another task which got the same memory for task_struct.
276 * We can't know this of course, and we can not trust
279 * In this case we actually return a random value, but this is
282 * If we return NULL - we can pretend that we actually noticed that
283 * *ptask was updated when the previous task has exited. Or pretend
284 * that probe_slab_address(&sighand) reads NULL.
286 * If we return the new task (because sighand is not NULL for any
287 * reason) - this is fine too. This (new) task can't go away before
290 * And note: We could even eliminate the false positive if re-read
291 * task->sighand once again to avoid the falsely NULL. But this case
292 * is very unlikely so we don't care.
300 void rcuwait_wake_up(struct rcuwait *w)
302 struct task_struct *task;
307 * Order condition vs @task, such that everything prior to the load
308 * of @task is visible. This is the condition as to why the user called
309 * rcuwait_trywake() in the first place. Pairs with set_current_state()
310 * barrier (A) in rcuwait_wait_event().
313 * [S] tsk = current [S] cond = true
320 * Avoid using task_rcu_dereference() magic as long as we are careful,
321 * see comment in rcuwait_wait_event() regarding ->exit_state.
323 task = rcu_dereference(w->task);
325 wake_up_process(task);
330 * Determine if a process group is "orphaned", according to the POSIX
331 * definition in 2.2.2.52. Orphaned process groups are not to be affected
332 * by terminal-generated stop signals. Newly orphaned process groups are
333 * to receive a SIGHUP and a SIGCONT.
335 * "I ask you, have you ever known what it is to be an orphan?"
337 static int will_become_orphaned_pgrp(struct pid *pgrp,
338 struct task_struct *ignored_task)
340 struct task_struct *p;
342 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
343 if ((p == ignored_task) ||
344 (p->exit_state && thread_group_empty(p)) ||
345 is_global_init(p->real_parent))
348 if (task_pgrp(p->real_parent) != pgrp &&
349 task_session(p->real_parent) == task_session(p))
351 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
356 int is_current_pgrp_orphaned(void)
360 read_lock(&tasklist_lock);
361 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
362 read_unlock(&tasklist_lock);
367 static bool has_stopped_jobs(struct pid *pgrp)
369 struct task_struct *p;
371 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
372 if (p->signal->flags & SIGNAL_STOP_STOPPED)
374 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
380 * Check to see if any process groups have become orphaned as
381 * a result of our exiting, and if they have any stopped jobs,
382 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
385 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
387 struct pid *pgrp = task_pgrp(tsk);
388 struct task_struct *ignored_task = tsk;
391 /* exit: our father is in a different pgrp than
392 * we are and we were the only connection outside.
394 parent = tsk->real_parent;
396 /* reparent: our child is in a different pgrp than
397 * we are, and it was the only connection outside.
401 if (task_pgrp(parent) != pgrp &&
402 task_session(parent) == task_session(tsk) &&
403 will_become_orphaned_pgrp(pgrp, ignored_task) &&
404 has_stopped_jobs(pgrp)) {
405 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
406 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
412 * A task is exiting. If it owned this mm, find a new owner for the mm.
414 void mm_update_next_owner(struct mm_struct *mm)
416 struct task_struct *c, *g, *p = current;
420 * If the exiting or execing task is not the owner, it's
421 * someone else's problem.
426 * The current owner is exiting/execing and there are no other
427 * candidates. Do not leave the mm pointing to a possibly
428 * freed task structure.
430 if (atomic_read(&mm->mm_users) <= 1) {
431 WRITE_ONCE(mm->owner, NULL);
435 read_lock(&tasklist_lock);
437 * Search in the children
439 list_for_each_entry(c, &p->children, sibling) {
441 goto assign_new_owner;
445 * Search in the siblings
447 list_for_each_entry(c, &p->real_parent->children, sibling) {
449 goto assign_new_owner;
453 * Search through everything else, we should not get here often.
455 for_each_process(g) {
456 if (g->flags & PF_KTHREAD)
458 for_each_thread(g, c) {
460 goto assign_new_owner;
465 read_unlock(&tasklist_lock);
467 * We found no owner yet mm_users > 1: this implies that we are
468 * most likely racing with swapoff (try_to_unuse()) or /proc or
469 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
471 WRITE_ONCE(mm->owner, NULL);
478 * The task_lock protects c->mm from changing.
479 * We always want mm->owner->mm == mm
483 * Delay read_unlock() till we have the task_lock()
484 * to ensure that c does not slip away underneath us
486 read_unlock(&tasklist_lock);
492 WRITE_ONCE(mm->owner, c);
496 #endif /* CONFIG_MEMCG */
499 * Turn us into a lazy TLB process if we
502 static void exit_mm(void)
504 struct mm_struct *mm = current->mm;
505 struct core_state *core_state;
507 mm_release(current, mm);
512 * Serialize with any possible pending coredump.
513 * We must hold mmap_sem around checking core_state
514 * and clearing tsk->mm. The core-inducing thread
515 * will increment ->nr_threads for each thread in the
516 * group with ->mm != NULL.
518 down_read(&mm->mmap_sem);
519 core_state = mm->core_state;
521 struct core_thread self;
523 up_read(&mm->mmap_sem);
526 self.next = xchg(&core_state->dumper.next, &self);
528 * Implies mb(), the result of xchg() must be visible
529 * to core_state->dumper.
531 if (atomic_dec_and_test(&core_state->nr_threads))
532 complete(&core_state->startup);
535 set_current_state(TASK_UNINTERRUPTIBLE);
536 if (!self.task) /* see coredump_finish() */
538 freezable_schedule();
540 __set_current_state(TASK_RUNNING);
541 down_read(&mm->mmap_sem);
544 BUG_ON(mm != current->active_mm);
545 /* more a memory barrier than a real lock */
548 up_read(&mm->mmap_sem);
549 enter_lazy_tlb(mm, current);
550 task_unlock(current);
551 mm_update_next_owner(mm);
553 if (test_thread_flag(TIF_MEMDIE))
557 static struct task_struct *find_alive_thread(struct task_struct *p)
559 struct task_struct *t;
561 for_each_thread(p, t) {
562 if (!(t->flags & PF_EXITING))
568 static struct task_struct *find_child_reaper(struct task_struct *father,
569 struct list_head *dead)
570 __releases(&tasklist_lock)
571 __acquires(&tasklist_lock)
573 struct pid_namespace *pid_ns = task_active_pid_ns(father);
574 struct task_struct *reaper = pid_ns->child_reaper;
575 struct task_struct *p, *n;
577 if (likely(reaper != father))
580 reaper = find_alive_thread(father);
582 pid_ns->child_reaper = reaper;
586 write_unlock_irq(&tasklist_lock);
587 if (unlikely(pid_ns == &init_pid_ns)) {
588 panic("Attempted to kill init! exitcode=0x%08x\n",
589 father->signal->group_exit_code ?: father->exit_code);
592 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
593 list_del_init(&p->ptrace_entry);
597 zap_pid_ns_processes(pid_ns);
598 write_lock_irq(&tasklist_lock);
604 * When we die, we re-parent all our children, and try to:
605 * 1. give them to another thread in our thread group, if such a member exists
606 * 2. give it to the first ancestor process which prctl'd itself as a
607 * child_subreaper for its children (like a service manager)
608 * 3. give it to the init process (PID 1) in our pid namespace
610 static struct task_struct *find_new_reaper(struct task_struct *father,
611 struct task_struct *child_reaper)
613 struct task_struct *thread, *reaper;
615 thread = find_alive_thread(father);
619 if (father->signal->has_child_subreaper) {
620 unsigned int ns_level = task_pid(father)->level;
622 * Find the first ->is_child_subreaper ancestor in our pid_ns.
623 * We can't check reaper != child_reaper to ensure we do not
624 * cross the namespaces, the exiting parent could be injected
625 * by setns() + fork().
626 * We check pid->level, this is slightly more efficient than
627 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
629 for (reaper = father->real_parent;
630 task_pid(reaper)->level == ns_level;
631 reaper = reaper->real_parent) {
632 if (reaper == &init_task)
634 if (!reaper->signal->is_child_subreaper)
636 thread = find_alive_thread(reaper);
646 * Any that need to be release_task'd are put on the @dead list.
648 static void reparent_leader(struct task_struct *father, struct task_struct *p,
649 struct list_head *dead)
651 if (unlikely(p->exit_state == EXIT_DEAD))
654 /* We don't want people slaying init. */
655 p->exit_signal = SIGCHLD;
657 /* If it has exited notify the new parent about this child's death. */
659 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
660 if (do_notify_parent(p, p->exit_signal)) {
661 p->exit_state = EXIT_DEAD;
662 list_add(&p->ptrace_entry, dead);
666 kill_orphaned_pgrp(p, father);
670 * This does two things:
672 * A. Make init inherit all the child processes
673 * B. Check to see if any process groups have become orphaned
674 * as a result of our exiting, and if they have any stopped
675 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
677 static void forget_original_parent(struct task_struct *father,
678 struct list_head *dead)
680 struct task_struct *p, *t, *reaper;
682 if (unlikely(!list_empty(&father->ptraced)))
683 exit_ptrace(father, dead);
685 /* Can drop and reacquire tasklist_lock */
686 reaper = find_child_reaper(father, dead);
687 if (list_empty(&father->children))
690 reaper = find_new_reaper(father, reaper);
691 list_for_each_entry(p, &father->children, sibling) {
692 for_each_thread(p, t) {
693 t->real_parent = reaper;
694 BUG_ON((!t->ptrace) != (t->parent == father));
695 if (likely(!t->ptrace))
696 t->parent = t->real_parent;
697 if (t->pdeath_signal)
698 group_send_sig_info(t->pdeath_signal,
703 * If this is a threaded reparent there is no need to
704 * notify anyone anything has happened.
706 if (!same_thread_group(reaper, father))
707 reparent_leader(father, p, dead);
709 list_splice_tail_init(&father->children, &reaper->children);
713 * Send signals to all our closest relatives so that they know
714 * to properly mourn us..
716 static void exit_notify(struct task_struct *tsk, int group_dead)
719 struct task_struct *p, *n;
722 write_lock_irq(&tasklist_lock);
723 forget_original_parent(tsk, &dead);
726 kill_orphaned_pgrp(tsk->group_leader, NULL);
728 tsk->exit_state = EXIT_ZOMBIE;
729 if (unlikely(tsk->ptrace)) {
730 int sig = thread_group_leader(tsk) &&
731 thread_group_empty(tsk) &&
732 !ptrace_reparented(tsk) ?
733 tsk->exit_signal : SIGCHLD;
734 autoreap = do_notify_parent(tsk, sig);
735 } else if (thread_group_leader(tsk)) {
736 autoreap = thread_group_empty(tsk) &&
737 do_notify_parent(tsk, tsk->exit_signal);
743 tsk->exit_state = EXIT_DEAD;
744 list_add(&tsk->ptrace_entry, &dead);
747 /* mt-exec, de_thread() is waiting for group leader */
748 if (unlikely(tsk->signal->notify_count < 0))
749 wake_up_process(tsk->signal->group_exit_task);
750 write_unlock_irq(&tasklist_lock);
752 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
753 list_del_init(&p->ptrace_entry);
758 #ifdef CONFIG_DEBUG_STACK_USAGE
759 static void check_stack_usage(void)
761 static DEFINE_SPINLOCK(low_water_lock);
762 static int lowest_to_date = THREAD_SIZE;
765 free = stack_not_used(current);
767 if (free >= lowest_to_date)
770 spin_lock(&low_water_lock);
771 if (free < lowest_to_date) {
772 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
773 current->comm, task_pid_nr(current), free);
774 lowest_to_date = free;
776 spin_unlock(&low_water_lock);
779 static inline void check_stack_usage(void) {}
782 void __noreturn do_exit(long code)
784 struct task_struct *tsk = current;
787 profile_task_exit(tsk);
790 WARN_ON(blk_needs_flush_plug(tsk));
792 if (unlikely(in_interrupt()))
793 panic("Aiee, killing interrupt handler!");
794 if (unlikely(!tsk->pid))
795 panic("Attempted to kill the idle task!");
798 * If do_exit is called because this processes oopsed, it's possible
799 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
800 * continuing. Amongst other possible reasons, this is to prevent
801 * mm_release()->clear_child_tid() from writing to a user-controlled
806 ptrace_event(PTRACE_EVENT_EXIT, code);
808 validate_creds_for_do_exit(tsk);
811 * We're taking recursive faults here in do_exit. Safest is to just
812 * leave this task alone and wait for reboot.
814 if (unlikely(tsk->flags & PF_EXITING)) {
815 pr_alert("Fixing recursive fault but reboot is needed!\n");
817 * We can do this unlocked here. The futex code uses
818 * this flag just to verify whether the pi state
819 * cleanup has been done or not. In the worst case it
820 * loops once more. We pretend that the cleanup was
821 * done as there is no way to return. Either the
822 * OWNER_DIED bit is set by now or we push the blocked
823 * task into the wait for ever nirwana as well.
825 tsk->flags |= PF_EXITPIDONE;
826 set_current_state(TASK_UNINTERRUPTIBLE);
830 exit_signals(tsk); /* sets PF_EXITING */
832 * Ensure that all new tsk->pi_lock acquisitions must observe
833 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
837 * Ensure that we must observe the pi_state in exit_mm() ->
838 * mm_release() -> exit_pi_state_list().
840 raw_spin_lock_irq(&tsk->pi_lock);
841 raw_spin_unlock_irq(&tsk->pi_lock);
843 if (unlikely(in_atomic())) {
844 pr_info("note: %s[%d] exited with preempt_count %d\n",
845 current->comm, task_pid_nr(current),
847 preempt_count_set(PREEMPT_ENABLED);
850 /* sync mm's RSS info before statistics gathering */
852 sync_mm_rss(tsk->mm);
853 acct_update_integrals(tsk);
854 group_dead = atomic_dec_and_test(&tsk->signal->live);
856 #ifdef CONFIG_POSIX_TIMERS
857 hrtimer_cancel(&tsk->signal->real_timer);
858 exit_itimers(tsk->signal);
861 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
863 acct_collect(code, group_dead);
868 tsk->exit_code = code;
869 taskstats_exit(tsk, group_dead);
875 trace_sched_process_exit(tsk);
882 disassociate_ctty(1);
883 exit_task_namespaces(tsk);
889 * Flush inherited counters to the parent - before the parent
890 * gets woken up by child-exit notifications.
892 * because of cgroup mode, must be called before cgroup_exit()
894 perf_event_exit_task(tsk);
896 sched_autogroup_exit_task(tsk);
900 * FIXME: do that only when needed, using sched_exit tracepoint
902 flush_ptrace_hw_breakpoint(tsk);
904 exit_tasks_rcu_start();
905 exit_notify(tsk, group_dead);
906 proc_exit_connector(tsk);
907 mpol_put_task_policy(tsk);
909 if (unlikely(current->pi_state_cache))
910 kfree(current->pi_state_cache);
913 * Make sure we are holding no locks:
915 debug_check_no_locks_held();
917 * We can do this unlocked here. The futex code uses this flag
918 * just to verify whether the pi state cleanup has been done
919 * or not. In the worst case it loops once more.
921 tsk->flags |= PF_EXITPIDONE;
924 exit_io_context(tsk);
926 if (tsk->splice_pipe)
927 free_pipe_info(tsk->splice_pipe);
929 if (tsk->task_frag.page)
930 put_page(tsk->task_frag.page);
932 validate_creds_for_do_exit(tsk);
937 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
939 exit_tasks_rcu_finish();
941 lockdep_free_task(tsk);
944 EXPORT_SYMBOL_GPL(do_exit);
946 void complete_and_exit(struct completion *comp, long code)
953 EXPORT_SYMBOL(complete_and_exit);
955 SYSCALL_DEFINE1(exit, int, error_code)
957 do_exit((error_code&0xff)<<8);
961 * Take down every thread in the group. This is called by fatal signals
962 * as well as by sys_exit_group (below).
965 do_group_exit(int exit_code)
967 struct signal_struct *sig = current->signal;
969 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
971 if (signal_group_exit(sig))
972 exit_code = sig->group_exit_code;
973 else if (!thread_group_empty(current)) {
974 struct sighand_struct *const sighand = current->sighand;
976 spin_lock_irq(&sighand->siglock);
977 if (signal_group_exit(sig))
978 /* Another thread got here before we took the lock. */
979 exit_code = sig->group_exit_code;
981 sig->group_exit_code = exit_code;
982 sig->flags = SIGNAL_GROUP_EXIT;
983 zap_other_threads(current);
985 spin_unlock_irq(&sighand->siglock);
993 * this kills every thread in the thread group. Note that any externally
994 * wait4()-ing process will get the correct exit code - even if this
995 * thread is not the thread group leader.
997 SYSCALL_DEFINE1(exit_group, int, error_code)
999 do_group_exit((error_code & 0xff) << 8);
1004 struct waitid_info {
1012 enum pid_type wo_type;
1016 struct waitid_info *wo_info;
1018 struct rusage *wo_rusage;
1020 wait_queue_entry_t child_wait;
1024 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1026 return wo->wo_type == PIDTYPE_MAX ||
1027 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1031 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1033 if (!eligible_pid(wo, p))
1037 * Wait for all children (clone and not) if __WALL is set or
1038 * if it is traced by us.
1040 if (ptrace || (wo->wo_flags & __WALL))
1044 * Otherwise, wait for clone children *only* if __WCLONE is set;
1045 * otherwise, wait for non-clone children *only*.
1047 * Note: a "clone" child here is one that reports to its parent
1048 * using a signal other than SIGCHLD, or a non-leader thread which
1049 * we can only see if it is traced by us.
1051 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1058 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1059 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1060 * the lock and this task is uninteresting. If we return nonzero, we have
1061 * released the lock and the system call should return.
1063 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1066 pid_t pid = task_pid_vnr(p);
1067 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1068 struct waitid_info *infop;
1070 if (!likely(wo->wo_flags & WEXITED))
1073 if (unlikely(wo->wo_flags & WNOWAIT)) {
1074 status = p->exit_code;
1076 read_unlock(&tasklist_lock);
1077 sched_annotate_sleep();
1079 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1084 * Move the task's state to DEAD/TRACE, only one thread can do this.
1086 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1087 EXIT_TRACE : EXIT_DEAD;
1088 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1091 * We own this thread, nobody else can reap it.
1093 read_unlock(&tasklist_lock);
1094 sched_annotate_sleep();
1097 * Check thread_group_leader() to exclude the traced sub-threads.
1099 if (state == EXIT_DEAD && thread_group_leader(p)) {
1100 struct signal_struct *sig = p->signal;
1101 struct signal_struct *psig = current->signal;
1102 unsigned long maxrss;
1103 u64 tgutime, tgstime;
1106 * The resource counters for the group leader are in its
1107 * own task_struct. Those for dead threads in the group
1108 * are in its signal_struct, as are those for the child
1109 * processes it has previously reaped. All these
1110 * accumulate in the parent's signal_struct c* fields.
1112 * We don't bother to take a lock here to protect these
1113 * p->signal fields because the whole thread group is dead
1114 * and nobody can change them.
1116 * psig->stats_lock also protects us from our sub-theads
1117 * which can reap other children at the same time. Until
1118 * we change k_getrusage()-like users to rely on this lock
1119 * we have to take ->siglock as well.
1121 * We use thread_group_cputime_adjusted() to get times for
1122 * the thread group, which consolidates times for all threads
1123 * in the group including the group leader.
1125 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1126 spin_lock_irq(¤t->sighand->siglock);
1127 write_seqlock(&psig->stats_lock);
1128 psig->cutime += tgutime + sig->cutime;
1129 psig->cstime += tgstime + sig->cstime;
1130 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1132 p->min_flt + sig->min_flt + sig->cmin_flt;
1134 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1136 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1138 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1140 task_io_get_inblock(p) +
1141 sig->inblock + sig->cinblock;
1143 task_io_get_oublock(p) +
1144 sig->oublock + sig->coublock;
1145 maxrss = max(sig->maxrss, sig->cmaxrss);
1146 if (psig->cmaxrss < maxrss)
1147 psig->cmaxrss = maxrss;
1148 task_io_accounting_add(&psig->ioac, &p->ioac);
1149 task_io_accounting_add(&psig->ioac, &sig->ioac);
1150 write_sequnlock(&psig->stats_lock);
1151 spin_unlock_irq(¤t->sighand->siglock);
1155 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1156 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1157 ? p->signal->group_exit_code : p->exit_code;
1158 wo->wo_stat = status;
1160 if (state == EXIT_TRACE) {
1161 write_lock_irq(&tasklist_lock);
1162 /* We dropped tasklist, ptracer could die and untrace */
1165 /* If parent wants a zombie, don't release it now */
1166 state = EXIT_ZOMBIE;
1167 if (do_notify_parent(p, p->exit_signal))
1169 p->exit_state = state;
1170 write_unlock_irq(&tasklist_lock);
1172 if (state == EXIT_DEAD)
1176 infop = wo->wo_info;
1178 if ((status & 0x7f) == 0) {
1179 infop->cause = CLD_EXITED;
1180 infop->status = status >> 8;
1182 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1183 infop->status = status & 0x7f;
1192 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1195 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1196 return &p->exit_code;
1198 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1199 return &p->signal->group_exit_code;
1205 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1207 * @ptrace: is the wait for ptrace
1208 * @p: task to wait for
1210 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1213 * read_lock(&tasklist_lock), which is released if return value is
1214 * non-zero. Also, grabs and releases @p->sighand->siglock.
1217 * 0 if wait condition didn't exist and search for other wait conditions
1218 * should continue. Non-zero return, -errno on failure and @p's pid on
1219 * success, implies that tasklist_lock is released and wait condition
1220 * search should terminate.
1222 static int wait_task_stopped(struct wait_opts *wo,
1223 int ptrace, struct task_struct *p)
1225 struct waitid_info *infop;
1226 int exit_code, *p_code, why;
1227 uid_t uid = 0; /* unneeded, required by compiler */
1231 * Traditionally we see ptrace'd stopped tasks regardless of options.
1233 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1236 if (!task_stopped_code(p, ptrace))
1240 spin_lock_irq(&p->sighand->siglock);
1242 p_code = task_stopped_code(p, ptrace);
1243 if (unlikely(!p_code))
1246 exit_code = *p_code;
1250 if (!unlikely(wo->wo_flags & WNOWAIT))
1253 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1255 spin_unlock_irq(&p->sighand->siglock);
1260 * Now we are pretty sure this task is interesting.
1261 * Make sure it doesn't get reaped out from under us while we
1262 * give up the lock and then examine it below. We don't want to
1263 * keep holding onto the tasklist_lock while we call getrusage and
1264 * possibly take page faults for user memory.
1267 pid = task_pid_vnr(p);
1268 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1269 read_unlock(&tasklist_lock);
1270 sched_annotate_sleep();
1272 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1275 if (likely(!(wo->wo_flags & WNOWAIT)))
1276 wo->wo_stat = (exit_code << 8) | 0x7f;
1278 infop = wo->wo_info;
1281 infop->status = exit_code;
1289 * Handle do_wait work for one task in a live, non-stopped state.
1290 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1291 * the lock and this task is uninteresting. If we return nonzero, we have
1292 * released the lock and the system call should return.
1294 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1296 struct waitid_info *infop;
1300 if (!unlikely(wo->wo_flags & WCONTINUED))
1303 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1306 spin_lock_irq(&p->sighand->siglock);
1307 /* Re-check with the lock held. */
1308 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1309 spin_unlock_irq(&p->sighand->siglock);
1312 if (!unlikely(wo->wo_flags & WNOWAIT))
1313 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1314 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1315 spin_unlock_irq(&p->sighand->siglock);
1317 pid = task_pid_vnr(p);
1319 read_unlock(&tasklist_lock);
1320 sched_annotate_sleep();
1322 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1325 infop = wo->wo_info;
1327 wo->wo_stat = 0xffff;
1329 infop->cause = CLD_CONTINUED;
1332 infop->status = SIGCONT;
1338 * Consider @p for a wait by @parent.
1340 * -ECHILD should be in ->notask_error before the first call.
1341 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1342 * Returns zero if the search for a child should continue;
1343 * then ->notask_error is 0 if @p is an eligible child,
1346 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1347 struct task_struct *p)
1350 * We can race with wait_task_zombie() from another thread.
1351 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1352 * can't confuse the checks below.
1354 int exit_state = READ_ONCE(p->exit_state);
1357 if (unlikely(exit_state == EXIT_DEAD))
1360 ret = eligible_child(wo, ptrace, p);
1364 if (unlikely(exit_state == EXIT_TRACE)) {
1366 * ptrace == 0 means we are the natural parent. In this case
1367 * we should clear notask_error, debugger will notify us.
1369 if (likely(!ptrace))
1370 wo->notask_error = 0;
1374 if (likely(!ptrace) && unlikely(p->ptrace)) {
1376 * If it is traced by its real parent's group, just pretend
1377 * the caller is ptrace_do_wait() and reap this child if it
1380 * This also hides group stop state from real parent; otherwise
1381 * a single stop can be reported twice as group and ptrace stop.
1382 * If a ptracer wants to distinguish these two events for its
1383 * own children it should create a separate process which takes
1384 * the role of real parent.
1386 if (!ptrace_reparented(p))
1391 if (exit_state == EXIT_ZOMBIE) {
1392 /* we don't reap group leaders with subthreads */
1393 if (!delay_group_leader(p)) {
1395 * A zombie ptracee is only visible to its ptracer.
1396 * Notification and reaping will be cascaded to the
1397 * real parent when the ptracer detaches.
1399 if (unlikely(ptrace) || likely(!p->ptrace))
1400 return wait_task_zombie(wo, p);
1404 * Allow access to stopped/continued state via zombie by
1405 * falling through. Clearing of notask_error is complex.
1409 * If WEXITED is set, notask_error should naturally be
1410 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1411 * so, if there are live subthreads, there are events to
1412 * wait for. If all subthreads are dead, it's still safe
1413 * to clear - this function will be called again in finite
1414 * amount time once all the subthreads are released and
1415 * will then return without clearing.
1419 * Stopped state is per-task and thus can't change once the
1420 * target task dies. Only continued and exited can happen.
1421 * Clear notask_error if WCONTINUED | WEXITED.
1423 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1424 wo->notask_error = 0;
1427 * @p is alive and it's gonna stop, continue or exit, so
1428 * there always is something to wait for.
1430 wo->notask_error = 0;
1434 * Wait for stopped. Depending on @ptrace, different stopped state
1435 * is used and the two don't interact with each other.
1437 ret = wait_task_stopped(wo, ptrace, p);
1442 * Wait for continued. There's only one continued state and the
1443 * ptracer can consume it which can confuse the real parent. Don't
1444 * use WCONTINUED from ptracer. You don't need or want it.
1446 return wait_task_continued(wo, p);
1450 * Do the work of do_wait() for one thread in the group, @tsk.
1452 * -ECHILD should be in ->notask_error before the first call.
1453 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1454 * Returns zero if the search for a child should continue; then
1455 * ->notask_error is 0 if there were any eligible children,
1458 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1460 struct task_struct *p;
1462 list_for_each_entry(p, &tsk->children, sibling) {
1463 int ret = wait_consider_task(wo, 0, p);
1472 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1474 struct task_struct *p;
1476 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1477 int ret = wait_consider_task(wo, 1, p);
1486 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1487 int sync, void *key)
1489 struct wait_opts *wo = container_of(wait, struct wait_opts,
1491 struct task_struct *p = key;
1493 if (!eligible_pid(wo, p))
1496 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1499 return default_wake_function(wait, mode, sync, key);
1502 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1504 __wake_up_sync_key(&parent->signal->wait_chldexit,
1505 TASK_INTERRUPTIBLE, 1, p);
1508 static long do_wait(struct wait_opts *wo)
1510 struct task_struct *tsk;
1513 trace_sched_process_wait(wo->wo_pid);
1515 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1516 wo->child_wait.private = current;
1517 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1520 * If there is nothing that can match our criteria, just get out.
1521 * We will clear ->notask_error to zero if we see any child that
1522 * might later match our criteria, even if we are not able to reap
1525 wo->notask_error = -ECHILD;
1526 if ((wo->wo_type < PIDTYPE_MAX) &&
1527 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1530 set_current_state(TASK_INTERRUPTIBLE);
1531 read_lock(&tasklist_lock);
1534 retval = do_wait_thread(wo, tsk);
1538 retval = ptrace_do_wait(wo, tsk);
1542 if (wo->wo_flags & __WNOTHREAD)
1544 } while_each_thread(current, tsk);
1545 read_unlock(&tasklist_lock);
1548 retval = wo->notask_error;
1549 if (!retval && !(wo->wo_flags & WNOHANG)) {
1550 retval = -ERESTARTSYS;
1551 if (!signal_pending(current)) {
1557 __set_current_state(TASK_RUNNING);
1558 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1562 static struct pid *pidfd_get_pid(unsigned int fd)
1569 return ERR_PTR(-EBADF);
1571 pid = pidfd_pid(f.file);
1579 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1580 int options, struct rusage *ru)
1582 struct wait_opts wo;
1583 struct pid *pid = NULL;
1587 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1588 __WNOTHREAD|__WCLONE|__WALL))
1590 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1602 pid = find_get_pid(upid);
1605 type = PIDTYPE_PGID;
1610 pid = find_get_pid(upid);
1612 pid = get_task_pid(current, PIDTYPE_PGID);
1619 pid = pidfd_get_pid(upid);
1621 return PTR_ERR(pid);
1629 wo.wo_flags = options;
1638 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1639 infop, int, options, struct rusage __user *, ru)
1642 struct waitid_info info = {.status = 0};
1643 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1649 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1655 if (!user_access_begin(infop, sizeof(*infop)))
1658 unsafe_put_user(signo, &infop->si_signo, Efault);
1659 unsafe_put_user(0, &infop->si_errno, Efault);
1660 unsafe_put_user(info.cause, &infop->si_code, Efault);
1661 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1662 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1663 unsafe_put_user(info.status, &infop->si_status, Efault);
1671 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1674 struct wait_opts wo;
1675 struct pid *pid = NULL;
1679 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1680 __WNOTHREAD|__WCLONE|__WALL))
1683 /* -INT_MIN is not defined */
1684 if (upid == INT_MIN)
1689 else if (upid < 0) {
1690 type = PIDTYPE_PGID;
1691 pid = find_get_pid(-upid);
1692 } else if (upid == 0) {
1693 type = PIDTYPE_PGID;
1694 pid = get_task_pid(current, PIDTYPE_PGID);
1695 } else /* upid > 0 */ {
1697 pid = find_get_pid(upid);
1702 wo.wo_flags = options | WEXITED;
1708 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1714 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1715 int, options, struct rusage __user *, ru)
1718 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1721 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1727 #ifdef __ARCH_WANT_SYS_WAITPID
1730 * sys_waitpid() remains for compatibility. waitpid() should be
1731 * implemented by calling sys_wait4() from libc.a.
1733 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1735 return kernel_wait4(pid, stat_addr, options, NULL);
1740 #ifdef CONFIG_COMPAT
1741 COMPAT_SYSCALL_DEFINE4(wait4,
1743 compat_uint_t __user *, stat_addr,
1745 struct compat_rusage __user *, ru)
1748 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1750 if (ru && put_compat_rusage(&r, ru))
1756 COMPAT_SYSCALL_DEFINE5(waitid,
1757 int, which, compat_pid_t, pid,
1758 struct compat_siginfo __user *, infop, int, options,
1759 struct compat_rusage __user *, uru)
1762 struct waitid_info info = {.status = 0};
1763 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1769 /* kernel_waitid() overwrites everything in ru */
1770 if (COMPAT_USE_64BIT_TIME)
1771 err = copy_to_user(uru, &ru, sizeof(ru));
1773 err = put_compat_rusage(&ru, uru);
1782 if (!user_access_begin(infop, sizeof(*infop)))
1785 unsafe_put_user(signo, &infop->si_signo, Efault);
1786 unsafe_put_user(0, &infop->si_errno, Efault);
1787 unsafe_put_user(info.cause, &infop->si_code, Efault);
1788 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1789 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1790 unsafe_put_user(info.status, &infop->si_status, Efault);
1799 __weak void abort(void)
1803 /* if that doesn't kill us, halt */
1804 panic("Oops failed to kill thread");
1806 EXPORT_SYMBOL(abort);