1 // SPDX-License-Identifier: GPL-2.0
3 * fault.c: Page fault handlers for the Sparc.
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/sched.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/threads.h>
18 #include <linux/kernel.h>
19 #include <linux/signal.h>
21 #include <linux/smp.h>
22 #include <linux/perf_event.h>
23 #include <linux/interrupt.h>
24 #include <linux/kdebug.h>
25 #include <linux/uaccess.h>
26 #include <linux/extable.h>
29 #include <asm/openprom.h>
30 #include <asm/oplib.h>
31 #include <asm/setup.h>
33 #include <asm/traps.h>
37 int show_unhandled_signals = 1;
39 static void __noreturn unhandled_fault(unsigned long address,
40 struct task_struct *tsk,
43 if ((unsigned long) address < PAGE_SIZE) {
45 "Unable to handle kernel NULL pointer dereference\n");
47 printk(KERN_ALERT "Unable to handle kernel paging request at virtual address %08lx\n",
50 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %08lx\n",
51 (tsk->mm ? tsk->mm->context : tsk->active_mm->context));
52 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %08lx\n",
53 (tsk->mm ? (unsigned long) tsk->mm->pgd :
54 (unsigned long) tsk->active_mm->pgd));
55 die_if_kernel("Oops", regs);
59 show_signal_msg(struct pt_regs *regs, int sig, int code,
60 unsigned long address, struct task_struct *tsk)
62 if (!unhandled_signal(tsk, sig))
65 if (!printk_ratelimit())
68 printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x",
69 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
70 tsk->comm, task_pid_nr(tsk), address,
71 (void *)regs->pc, (void *)regs->u_regs[UREG_I7],
72 (void *)regs->u_regs[UREG_FP], code);
74 print_vma_addr(KERN_CONT " in ", regs->pc);
76 printk(KERN_CONT "\n");
79 static void __do_fault_siginfo(int code, int sig, struct pt_regs *regs,
82 if (unlikely(show_unhandled_signals))
83 show_signal_msg(regs, sig, code,
86 force_sig_fault(sig, code, (void __user *) addr);
89 static unsigned long compute_si_addr(struct pt_regs *regs, int text_fault)
96 if (regs->psr & PSR_PS)
97 insn = *(unsigned int *) regs->pc;
99 __get_user(insn, (unsigned int *) regs->pc);
101 return safe_compute_effective_address(regs, insn);
104 static noinline void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
107 unsigned long addr = compute_si_addr(regs, text_fault);
109 __do_fault_siginfo(code, sig, regs, addr);
112 asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
113 unsigned long address)
115 struct vm_area_struct *vma;
116 struct task_struct *tsk = current;
117 struct mm_struct *mm = tsk->mm;
118 int from_user = !(regs->psr & PSR_PS);
121 unsigned int flags = FAULT_FLAG_DEFAULT;
127 * We fault-in kernel-space virtual memory on-demand. The
128 * 'reference' page table is init_mm.pgd.
130 * NOTE! We MUST NOT take any locks for this case. We may
131 * be in an interrupt or a critical region, and should
132 * only copy the information from the master page table,
136 if (address >= TASK_SIZE)
140 * If we're in an interrupt or have no user
141 * context, we must not take the fault..
143 if (pagefault_disabled() || !mm)
146 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
151 if (!from_user && address >= PAGE_OFFSET)
154 vma = find_vma(mm, address);
157 if (vma->vm_start <= address)
159 if (!(vma->vm_flags & VM_GROWSDOWN))
161 if (expand_stack(vma, address))
164 * Ok, we have a good vm_area for this memory access, so
170 if (!(vma->vm_flags & VM_WRITE))
173 /* Allow reads even for write-only mappings */
174 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
179 flags |= FAULT_FLAG_USER;
181 flags |= FAULT_FLAG_WRITE;
184 * If for any reason at all we couldn't handle the fault,
185 * make sure we exit gracefully rather than endlessly redo
188 fault = handle_mm_fault(vma, address, flags, regs);
190 if (fault_signal_pending(fault, regs))
193 if (unlikely(fault & VM_FAULT_ERROR)) {
194 if (fault & VM_FAULT_OOM)
196 else if (fault & VM_FAULT_SIGSEGV)
198 else if (fault & VM_FAULT_SIGBUS)
203 if (flags & FAULT_FLAG_ALLOW_RETRY) {
204 if (fault & VM_FAULT_RETRY) {
205 flags |= FAULT_FLAG_TRIED;
207 /* No need to mmap_read_unlock(mm) as we would
208 * have already released it in __lock_page_or_retry
216 mmap_read_unlock(mm);
220 * Something tried to access memory that isn't in our memory map..
221 * Fix it, but check if it's kernel or user first..
224 mmap_read_unlock(mm);
226 bad_area_nosemaphore:
227 /* User mode accesses just cause a SIGSEGV */
229 do_fault_siginfo(code, SIGSEGV, regs, text_fault);
233 /* Is this in ex_table? */
236 const struct exception_table_entry *entry;
238 entry = search_exception_tables(regs->pc);
239 #ifdef DEBUG_EXCEPTIONS
240 printk("Exception: PC<%08lx> faddr<%08lx>\n",
242 printk("EX_TABLE: insn<%08lx> fixup<%08x>\n",
243 regs->pc, entry->fixup);
245 regs->pc = entry->fixup;
246 regs->npc = regs->pc + 4;
250 unhandled_fault(address, tsk, regs);
253 * We ran out of memory, or some other thing happened to us that made
254 * us unable to handle the page fault gracefully.
257 mmap_read_unlock(mm);
259 pagefault_out_of_memory();
265 mmap_read_unlock(mm);
266 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault);
273 * Synchronize this task's top level page-table
274 * with the 'reference' page table.
276 int offset = pgd_index(address);
282 pgd = tsk->active_mm->pgd + offset;
283 pgd_k = init_mm.pgd + offset;
285 if (!pgd_present(*pgd)) {
286 if (!pgd_present(*pgd_k))
287 goto bad_area_nosemaphore;
288 pgd_val(*pgd) = pgd_val(*pgd_k);
292 p4d = p4d_offset(pgd, address);
293 pud = pud_offset(p4d, address);
294 pmd = pmd_offset(pud, address);
296 p4d_k = p4d_offset(pgd_k, address);
297 pud_k = pud_offset(p4d_k, address);
298 pmd_k = pmd_offset(pud_k, address);
300 if (pmd_present(*pmd) || !pmd_present(*pmd_k))
301 goto bad_area_nosemaphore;
308 /* This always deals with user addresses. */
309 static void force_user_fault(unsigned long address, int write)
311 struct vm_area_struct *vma;
312 struct task_struct *tsk = current;
313 struct mm_struct *mm = tsk->mm;
314 unsigned int flags = FAULT_FLAG_USER;
320 vma = find_vma(mm, address);
323 if (vma->vm_start <= address)
325 if (!(vma->vm_flags & VM_GROWSDOWN))
327 if (expand_stack(vma, address))
332 if (!(vma->vm_flags & VM_WRITE))
334 flags |= FAULT_FLAG_WRITE;
336 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
339 switch (handle_mm_fault(vma, address, flags, NULL)) {
340 case VM_FAULT_SIGBUS:
344 mmap_read_unlock(mm);
347 mmap_read_unlock(mm);
348 __do_fault_siginfo(code, SIGSEGV, tsk->thread.kregs, address);
352 mmap_read_unlock(mm);
353 __do_fault_siginfo(BUS_ADRERR, SIGBUS, tsk->thread.kregs, address);
356 static void check_stack_aligned(unsigned long sp)
362 void window_overflow_fault(void)
366 sp = current_thread_info()->rwbuf_stkptrs[0];
367 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
368 force_user_fault(sp + 0x38, 1);
369 force_user_fault(sp, 1);
371 check_stack_aligned(sp);
374 void window_underflow_fault(unsigned long sp)
376 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
377 force_user_fault(sp + 0x38, 0);
378 force_user_fault(sp, 0);
380 check_stack_aligned(sp);
383 void window_ret_fault(struct pt_regs *regs)
387 sp = regs->u_regs[UREG_FP];
388 if (((sp + 0x38) & PAGE_MASK) != (sp & PAGE_MASK))
389 force_user_fault(sp + 0x38, 0);
390 force_user_fault(sp, 0);
392 check_stack_aligned(sp);