1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events core code:
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
57 #include <asm/irq_regs.h>
59 typedef int (*remote_function_f)(void *);
61 struct remote_function_call {
62 struct task_struct *p;
63 remote_function_f func;
68 static void remote_function(void *data)
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
75 if (task_cpu(p) != smp_processor_id())
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
83 tfc->ret = -ESRCH; /* No such (running) process */
88 tfc->ret = tfc->func(tfc->info);
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly. This will
99 * retry due to any failures in smp_call_function_single(), such as if the
100 * task_cpu() goes offline concurrently.
102 * returns @func return value or -ESRCH when the process isn't running
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
107 struct remote_function_call data = {
116 ret = smp_call_function_single(task_cpu(p), remote_function,
118 ret = !ret ? data.ret : -EAGAIN;
130 * cpu_function_call - call a function on the cpu
131 * @func: the function to be called
132 * @info: the function call argument
134 * Calls the function @func on the remote cpu.
136 * returns: @func return value or -ENXIO when the cpu is offline
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
140 struct remote_function_call data = {
144 .ret = -ENXIO, /* No such CPU */
147 smp_call_function_single(cpu, remote_function, &data, 1);
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
155 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
161 raw_spin_lock(&cpuctx->ctx.lock);
163 raw_spin_lock(&ctx->lock);
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
174 #define TASK_TOMBSTONE ((void *)-1L)
176 static bool is_kernel_event(struct perf_event *event)
178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
182 * On task ctx scheduling...
184 * When !ctx->nr_events a task context will not be scheduled. This means
185 * we can disable the scheduler hooks (for performance) without leaving
186 * pending task ctx state.
188 * This however results in two special cases:
190 * - removing the last event from a task ctx; this is relatively straight
191 * forward and is done in __perf_remove_from_context.
193 * - adding the first event to a task ctx; this is tricky because we cannot
194 * rely on ctx->is_active and therefore cannot use event_function_call().
195 * See perf_install_in_context().
197 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201 struct perf_event_context *, void *);
203 struct event_function_struct {
204 struct perf_event *event;
209 static int event_function(void *info)
211 struct event_function_struct *efs = info;
212 struct perf_event *event = efs->event;
213 struct perf_event_context *ctx = event->ctx;
214 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215 struct perf_event_context *task_ctx = cpuctx->task_ctx;
218 lockdep_assert_irqs_disabled();
220 perf_ctx_lock(cpuctx, task_ctx);
222 * Since we do the IPI call without holding ctx->lock things can have
223 * changed, double check we hit the task we set out to hit.
226 if (ctx->task != current) {
232 * We only use event_function_call() on established contexts,
233 * and event_function() is only ever called when active (or
234 * rather, we'll have bailed in task_function_call() or the
235 * above ctx->task != current test), therefore we must have
236 * ctx->is_active here.
238 WARN_ON_ONCE(!ctx->is_active);
240 * And since we have ctx->is_active, cpuctx->task_ctx must
243 WARN_ON_ONCE(task_ctx != ctx);
245 WARN_ON_ONCE(&cpuctx->ctx != ctx);
248 efs->func(event, cpuctx, ctx, efs->data);
250 perf_ctx_unlock(cpuctx, task_ctx);
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
257 struct perf_event_context *ctx = event->ctx;
258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 struct event_function_struct efs = {
265 if (!event->parent) {
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
271 lockdep_assert_held(&ctx->mutex);
275 cpu_function_call(event->cpu, event_function, &efs);
279 if (task == TASK_TOMBSTONE)
283 if (!task_function_call(task, event_function, &efs))
286 raw_spin_lock_irq(&ctx->lock);
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
300 func(event, NULL, ctx, data);
301 raw_spin_unlock_irq(&ctx->lock);
305 * Similar to event_function_call() + event_function(), but hard assumes IRQs
306 * are already disabled and we're on the right CPU.
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
310 struct perf_event_context *ctx = event->ctx;
311 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312 struct task_struct *task = READ_ONCE(ctx->task);
313 struct perf_event_context *task_ctx = NULL;
315 lockdep_assert_irqs_disabled();
318 if (task == TASK_TOMBSTONE)
324 perf_ctx_lock(cpuctx, task_ctx);
327 if (task == TASK_TOMBSTONE)
332 * We must be either inactive or active and the right task,
333 * otherwise we're screwed, since we cannot IPI to somewhere
336 if (ctx->is_active) {
337 if (WARN_ON_ONCE(task != current))
340 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
344 WARN_ON_ONCE(&cpuctx->ctx != ctx);
347 func(event, cpuctx, ctx, data);
349 perf_ctx_unlock(cpuctx, task_ctx);
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353 PERF_FLAG_FD_OUTPUT |\
354 PERF_FLAG_PID_CGROUP |\
355 PERF_FLAG_FD_CLOEXEC)
358 * branch priv levels that need permission checks
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361 (PERF_SAMPLE_BRANCH_KERNEL |\
362 PERF_SAMPLE_BRANCH_HV)
365 EVENT_FLEXIBLE = 0x1,
368 /* see ctx_resched() for details */
370 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
374 * perf_sched_events : >0 events exist
375 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394 static atomic_t nr_ksymbol_events __read_mostly;
395 static atomic_t nr_bpf_events __read_mostly;
396 static atomic_t nr_cgroup_events __read_mostly;
398 static LIST_HEAD(pmus);
399 static DEFINE_MUTEX(pmus_lock);
400 static struct srcu_struct pmus_srcu;
401 static cpumask_var_t perf_online_mask;
404 * perf event paranoia level:
405 * -1 - not paranoid at all
406 * 0 - disallow raw tracepoint access for unpriv
407 * 1 - disallow cpu events for unpriv
408 * 2 - disallow kernel profiling for unpriv
410 int sysctl_perf_event_paranoid __read_mostly = 2;
412 /* Minimum for 512 kiB + 1 user control page */
413 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
416 * max perf event sample rate
418 #define DEFAULT_MAX_SAMPLE_RATE 100000
419 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
420 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
422 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
424 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
425 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
427 static int perf_sample_allowed_ns __read_mostly =
428 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
430 static void update_perf_cpu_limits(void)
432 u64 tmp = perf_sample_period_ns;
434 tmp *= sysctl_perf_cpu_time_max_percent;
435 tmp = div_u64(tmp, 100);
439 WRITE_ONCE(perf_sample_allowed_ns, tmp);
442 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
444 int perf_proc_update_handler(struct ctl_table *table, int write,
445 void *buffer, size_t *lenp, loff_t *ppos)
448 int perf_cpu = sysctl_perf_cpu_time_max_percent;
450 * If throttling is disabled don't allow the write:
452 if (write && (perf_cpu == 100 || perf_cpu == 0))
455 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
459 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
460 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
461 update_perf_cpu_limits();
466 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
469 void *buffer, size_t *lenp, loff_t *ppos)
471 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
476 if (sysctl_perf_cpu_time_max_percent == 100 ||
477 sysctl_perf_cpu_time_max_percent == 0) {
479 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
480 WRITE_ONCE(perf_sample_allowed_ns, 0);
482 update_perf_cpu_limits();
489 * perf samples are done in some very critical code paths (NMIs).
490 * If they take too much CPU time, the system can lock up and not
491 * get any real work done. This will drop the sample rate when
492 * we detect that events are taking too long.
494 #define NR_ACCUMULATED_SAMPLES 128
495 static DEFINE_PER_CPU(u64, running_sample_length);
497 static u64 __report_avg;
498 static u64 __report_allowed;
500 static void perf_duration_warn(struct irq_work *w)
502 printk_ratelimited(KERN_INFO
503 "perf: interrupt took too long (%lld > %lld), lowering "
504 "kernel.perf_event_max_sample_rate to %d\n",
505 __report_avg, __report_allowed,
506 sysctl_perf_event_sample_rate);
509 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
511 void perf_sample_event_took(u64 sample_len_ns)
513 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521 /* Decay the counter by 1 average sample. */
522 running_len = __this_cpu_read(running_sample_length);
523 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
524 running_len += sample_len_ns;
525 __this_cpu_write(running_sample_length, running_len);
528 * Note: this will be biased artifically low until we have
529 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
530 * from having to maintain a count.
532 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
533 if (avg_len <= max_len)
536 __report_avg = avg_len;
537 __report_allowed = max_len;
540 * Compute a throttle threshold 25% below the current duration.
542 avg_len += avg_len / 4;
543 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
549 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
550 WRITE_ONCE(max_samples_per_tick, max);
552 sysctl_perf_event_sample_rate = max * HZ;
553 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
555 if (!irq_work_queue(&perf_duration_work)) {
556 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
557 "kernel.perf_event_max_sample_rate to %d\n",
558 __report_avg, __report_allowed,
559 sysctl_perf_event_sample_rate);
563 static atomic64_t perf_event_id;
565 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
566 enum event_type_t event_type);
568 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
569 enum event_type_t event_type,
570 struct task_struct *task);
572 static void update_context_time(struct perf_event_context *ctx);
573 static u64 perf_event_time(struct perf_event *event);
575 void __weak perf_event_print_debug(void) { }
577 extern __weak const char *perf_pmu_name(void)
582 static inline u64 perf_clock(void)
584 return local_clock();
587 static inline u64 perf_event_clock(struct perf_event *event)
589 return event->clock();
593 * State based event timekeeping...
595 * The basic idea is to use event->state to determine which (if any) time
596 * fields to increment with the current delta. This means we only need to
597 * update timestamps when we change state or when they are explicitly requested
600 * Event groups make things a little more complicated, but not terribly so. The
601 * rules for a group are that if the group leader is OFF the entire group is
602 * OFF, irrespecive of what the group member states are. This results in
603 * __perf_effective_state().
605 * A futher ramification is that when a group leader flips between OFF and
606 * !OFF, we need to update all group member times.
609 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
610 * need to make sure the relevant context time is updated before we try and
611 * update our timestamps.
614 static __always_inline enum perf_event_state
615 __perf_effective_state(struct perf_event *event)
617 struct perf_event *leader = event->group_leader;
619 if (leader->state <= PERF_EVENT_STATE_OFF)
620 return leader->state;
625 static __always_inline void
626 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 enum perf_event_state state = __perf_effective_state(event);
629 u64 delta = now - event->tstamp;
631 *enabled = event->total_time_enabled;
632 if (state >= PERF_EVENT_STATE_INACTIVE)
635 *running = event->total_time_running;
636 if (state >= PERF_EVENT_STATE_ACTIVE)
640 static void perf_event_update_time(struct perf_event *event)
642 u64 now = perf_event_time(event);
644 __perf_update_times(event, now, &event->total_time_enabled,
645 &event->total_time_running);
649 static void perf_event_update_sibling_time(struct perf_event *leader)
651 struct perf_event *sibling;
653 for_each_sibling_event(sibling, leader)
654 perf_event_update_time(sibling);
658 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 if (event->state == state)
663 perf_event_update_time(event);
665 * If a group leader gets enabled/disabled all its siblings
668 if ((event->state < 0) ^ (state < 0))
669 perf_event_update_sibling_time(event);
671 WRITE_ONCE(event->state, state);
674 #ifdef CONFIG_CGROUP_PERF
677 perf_cgroup_match(struct perf_event *event)
679 struct perf_event_context *ctx = event->ctx;
680 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
682 /* @event doesn't care about cgroup */
686 /* wants specific cgroup scope but @cpuctx isn't associated with any */
691 * Cgroup scoping is recursive. An event enabled for a cgroup is
692 * also enabled for all its descendant cgroups. If @cpuctx's
693 * cgroup is a descendant of @event's (the test covers identity
694 * case), it's a match.
696 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
697 event->cgrp->css.cgroup);
700 static inline void perf_detach_cgroup(struct perf_event *event)
702 css_put(&event->cgrp->css);
706 static inline int is_cgroup_event(struct perf_event *event)
708 return event->cgrp != NULL;
711 static inline u64 perf_cgroup_event_time(struct perf_event *event)
713 struct perf_cgroup_info *t;
715 t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
721 struct perf_cgroup_info *info;
726 info = this_cpu_ptr(cgrp->info);
728 info->time += now - info->timestamp;
729 info->timestamp = now;
732 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
734 struct perf_cgroup *cgrp = cpuctx->cgrp;
735 struct cgroup_subsys_state *css;
738 for (css = &cgrp->css; css; css = css->parent) {
739 cgrp = container_of(css, struct perf_cgroup, css);
740 __update_cgrp_time(cgrp);
745 static inline void update_cgrp_time_from_event(struct perf_event *event)
747 struct perf_cgroup *cgrp;
750 * ensure we access cgroup data only when needed and
751 * when we know the cgroup is pinned (css_get)
753 if (!is_cgroup_event(event))
756 cgrp = perf_cgroup_from_task(current, event->ctx);
758 * Do not update time when cgroup is not active
760 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
761 __update_cgrp_time(event->cgrp);
765 perf_cgroup_set_timestamp(struct task_struct *task,
766 struct perf_event_context *ctx)
768 struct perf_cgroup *cgrp;
769 struct perf_cgroup_info *info;
770 struct cgroup_subsys_state *css;
773 * ctx->lock held by caller
774 * ensure we do not access cgroup data
775 * unless we have the cgroup pinned (css_get)
777 if (!task || !ctx->nr_cgroups)
780 cgrp = perf_cgroup_from_task(task, ctx);
782 for (css = &cgrp->css; css; css = css->parent) {
783 cgrp = container_of(css, struct perf_cgroup, css);
784 info = this_cpu_ptr(cgrp->info);
785 info->timestamp = ctx->timestamp;
789 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
791 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
792 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
795 * reschedule events based on the cgroup constraint of task.
797 * mode SWOUT : schedule out everything
798 * mode SWIN : schedule in based on cgroup for next
800 static void perf_cgroup_switch(struct task_struct *task, int mode)
802 struct perf_cpu_context *cpuctx;
803 struct list_head *list;
807 * Disable interrupts and preemption to avoid this CPU's
808 * cgrp_cpuctx_entry to change under us.
810 local_irq_save(flags);
812 list = this_cpu_ptr(&cgrp_cpuctx_list);
813 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
814 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
816 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
817 perf_pmu_disable(cpuctx->ctx.pmu);
819 if (mode & PERF_CGROUP_SWOUT) {
820 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
822 * must not be done before ctxswout due
823 * to event_filter_match() in event_sched_out()
828 if (mode & PERF_CGROUP_SWIN) {
829 WARN_ON_ONCE(cpuctx->cgrp);
831 * set cgrp before ctxsw in to allow
832 * event_filter_match() to not have to pass
834 * we pass the cpuctx->ctx to perf_cgroup_from_task()
835 * because cgorup events are only per-cpu
837 cpuctx->cgrp = perf_cgroup_from_task(task,
839 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
841 perf_pmu_enable(cpuctx->ctx.pmu);
842 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845 local_irq_restore(flags);
848 static inline void perf_cgroup_sched_out(struct task_struct *task,
849 struct task_struct *next)
851 struct perf_cgroup *cgrp1;
852 struct perf_cgroup *cgrp2 = NULL;
856 * we come here when we know perf_cgroup_events > 0
857 * we do not need to pass the ctx here because we know
858 * we are holding the rcu lock
860 cgrp1 = perf_cgroup_from_task(task, NULL);
861 cgrp2 = perf_cgroup_from_task(next, NULL);
864 * only schedule out current cgroup events if we know
865 * that we are switching to a different cgroup. Otherwise,
866 * do no touch the cgroup events.
869 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
874 static inline void perf_cgroup_sched_in(struct task_struct *prev,
875 struct task_struct *task)
877 struct perf_cgroup *cgrp1;
878 struct perf_cgroup *cgrp2 = NULL;
882 * we come here when we know perf_cgroup_events > 0
883 * we do not need to pass the ctx here because we know
884 * we are holding the rcu lock
886 cgrp1 = perf_cgroup_from_task(task, NULL);
887 cgrp2 = perf_cgroup_from_task(prev, NULL);
890 * only need to schedule in cgroup events if we are changing
891 * cgroup during ctxsw. Cgroup events were not scheduled
892 * out of ctxsw out if that was not the case.
895 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
900 static int perf_cgroup_ensure_storage(struct perf_event *event,
901 struct cgroup_subsys_state *css)
903 struct perf_cpu_context *cpuctx;
904 struct perf_event **storage;
905 int cpu, heap_size, ret = 0;
908 * Allow storage to have sufficent space for an iterator for each
909 * possibly nested cgroup plus an iterator for events with no cgroup.
911 for (heap_size = 1; css; css = css->parent)
914 for_each_possible_cpu(cpu) {
915 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
916 if (heap_size <= cpuctx->heap_size)
919 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
920 GFP_KERNEL, cpu_to_node(cpu));
926 raw_spin_lock_irq(&cpuctx->ctx.lock);
927 if (cpuctx->heap_size < heap_size) {
928 swap(cpuctx->heap, storage);
929 if (storage == cpuctx->heap_default)
931 cpuctx->heap_size = heap_size;
933 raw_spin_unlock_irq(&cpuctx->ctx.lock);
941 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
942 struct perf_event_attr *attr,
943 struct perf_event *group_leader)
945 struct perf_cgroup *cgrp;
946 struct cgroup_subsys_state *css;
947 struct fd f = fdget(fd);
953 css = css_tryget_online_from_dir(f.file->f_path.dentry,
954 &perf_event_cgrp_subsys);
960 ret = perf_cgroup_ensure_storage(event, css);
964 cgrp = container_of(css, struct perf_cgroup, css);
968 * all events in a group must monitor
969 * the same cgroup because a task belongs
970 * to only one perf cgroup at a time
972 if (group_leader && group_leader->cgrp != cgrp) {
973 perf_detach_cgroup(event);
982 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
984 struct perf_cgroup_info *t;
985 t = per_cpu_ptr(event->cgrp->info, event->cpu);
986 event->shadow_ctx_time = now - t->timestamp;
990 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
992 struct perf_cpu_context *cpuctx;
994 if (!is_cgroup_event(event))
998 * Because cgroup events are always per-cpu events,
999 * @ctx == &cpuctx->ctx.
1001 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1005 * matching the event's cgroup, we must do this for every new event,
1006 * because if the first would mismatch, the second would not try again
1007 * and we would leave cpuctx->cgrp unset.
1009 if (ctx->is_active && !cpuctx->cgrp) {
1010 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1013 cpuctx->cgrp = cgrp;
1016 if (ctx->nr_cgroups++)
1019 list_add(&cpuctx->cgrp_cpuctx_entry,
1020 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1026 struct perf_cpu_context *cpuctx;
1028 if (!is_cgroup_event(event))
1032 * Because cgroup events are always per-cpu events,
1033 * @ctx == &cpuctx->ctx.
1035 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037 if (--ctx->nr_cgroups)
1040 if (ctx->is_active && cpuctx->cgrp)
1041 cpuctx->cgrp = NULL;
1043 list_del(&cpuctx->cgrp_cpuctx_entry);
1046 #else /* !CONFIG_CGROUP_PERF */
1049 perf_cgroup_match(struct perf_event *event)
1054 static inline void perf_detach_cgroup(struct perf_event *event)
1057 static inline int is_cgroup_event(struct perf_event *event)
1062 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 static inline void perf_cgroup_sched_out(struct task_struct *task,
1071 struct task_struct *next)
1075 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1076 struct task_struct *task)
1080 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1081 struct perf_event_attr *attr,
1082 struct perf_event *group_leader)
1088 perf_cgroup_set_timestamp(struct task_struct *task,
1089 struct perf_event_context *ctx)
1094 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1099 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1109 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1114 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1120 * set default to be dependent on timer tick just
1121 * like original code
1123 #define PERF_CPU_HRTIMER (1000 / HZ)
1125 * function must be called with interrupts disabled
1127 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1129 struct perf_cpu_context *cpuctx;
1132 lockdep_assert_irqs_disabled();
1134 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1135 rotations = perf_rotate_context(cpuctx);
1137 raw_spin_lock(&cpuctx->hrtimer_lock);
1139 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1141 cpuctx->hrtimer_active = 0;
1142 raw_spin_unlock(&cpuctx->hrtimer_lock);
1144 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1149 struct hrtimer *timer = &cpuctx->hrtimer;
1150 struct pmu *pmu = cpuctx->ctx.pmu;
1153 /* no multiplexing needed for SW PMU */
1154 if (pmu->task_ctx_nr == perf_sw_context)
1158 * check default is sane, if not set then force to
1159 * default interval (1/tick)
1161 interval = pmu->hrtimer_interval_ms;
1163 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1165 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1167 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1168 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1169 timer->function = perf_mux_hrtimer_handler;
1172 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1174 struct hrtimer *timer = &cpuctx->hrtimer;
1175 struct pmu *pmu = cpuctx->ctx.pmu;
1176 unsigned long flags;
1178 /* not for SW PMU */
1179 if (pmu->task_ctx_nr == perf_sw_context)
1182 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1183 if (!cpuctx->hrtimer_active) {
1184 cpuctx->hrtimer_active = 1;
1185 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1186 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1188 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1193 void perf_pmu_disable(struct pmu *pmu)
1195 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1197 pmu->pmu_disable(pmu);
1200 void perf_pmu_enable(struct pmu *pmu)
1202 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1204 pmu->pmu_enable(pmu);
1207 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1210 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1211 * perf_event_task_tick() are fully serialized because they're strictly cpu
1212 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1213 * disabled, while perf_event_task_tick is called from IRQ context.
1215 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1217 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1219 lockdep_assert_irqs_disabled();
1221 WARN_ON(!list_empty(&ctx->active_ctx_list));
1223 list_add(&ctx->active_ctx_list, head);
1226 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1228 lockdep_assert_irqs_disabled();
1230 WARN_ON(list_empty(&ctx->active_ctx_list));
1232 list_del_init(&ctx->active_ctx_list);
1235 static void get_ctx(struct perf_event_context *ctx)
1237 refcount_inc(&ctx->refcount);
1240 static void free_ctx(struct rcu_head *head)
1242 struct perf_event_context *ctx;
1244 ctx = container_of(head, struct perf_event_context, rcu_head);
1245 kfree(ctx->task_ctx_data);
1249 static void put_ctx(struct perf_event_context *ctx)
1251 if (refcount_dec_and_test(&ctx->refcount)) {
1252 if (ctx->parent_ctx)
1253 put_ctx(ctx->parent_ctx);
1254 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1255 put_task_struct(ctx->task);
1256 call_rcu(&ctx->rcu_head, free_ctx);
1261 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1262 * perf_pmu_migrate_context() we need some magic.
1264 * Those places that change perf_event::ctx will hold both
1265 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1267 * Lock ordering is by mutex address. There are two other sites where
1268 * perf_event_context::mutex nests and those are:
1270 * - perf_event_exit_task_context() [ child , 0 ]
1271 * perf_event_exit_event()
1272 * put_event() [ parent, 1 ]
1274 * - perf_event_init_context() [ parent, 0 ]
1275 * inherit_task_group()
1278 * perf_event_alloc()
1280 * perf_try_init_event() [ child , 1 ]
1282 * While it appears there is an obvious deadlock here -- the parent and child
1283 * nesting levels are inverted between the two. This is in fact safe because
1284 * life-time rules separate them. That is an exiting task cannot fork, and a
1285 * spawning task cannot (yet) exit.
1287 * But remember that that these are parent<->child context relations, and
1288 * migration does not affect children, therefore these two orderings should not
1291 * The change in perf_event::ctx does not affect children (as claimed above)
1292 * because the sys_perf_event_open() case will install a new event and break
1293 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1294 * concerned with cpuctx and that doesn't have children.
1296 * The places that change perf_event::ctx will issue:
1298 * perf_remove_from_context();
1299 * synchronize_rcu();
1300 * perf_install_in_context();
1302 * to affect the change. The remove_from_context() + synchronize_rcu() should
1303 * quiesce the event, after which we can install it in the new location. This
1304 * means that only external vectors (perf_fops, prctl) can perturb the event
1305 * while in transit. Therefore all such accessors should also acquire
1306 * perf_event_context::mutex to serialize against this.
1308 * However; because event->ctx can change while we're waiting to acquire
1309 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1314 * task_struct::perf_event_mutex
1315 * perf_event_context::mutex
1316 * perf_event::child_mutex;
1317 * perf_event_context::lock
1318 * perf_event::mmap_mutex
1320 * perf_addr_filters_head::lock
1324 * cpuctx->mutex / perf_event_context::mutex
1326 static struct perf_event_context *
1327 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1329 struct perf_event_context *ctx;
1333 ctx = READ_ONCE(event->ctx);
1334 if (!refcount_inc_not_zero(&ctx->refcount)) {
1340 mutex_lock_nested(&ctx->mutex, nesting);
1341 if (event->ctx != ctx) {
1342 mutex_unlock(&ctx->mutex);
1350 static inline struct perf_event_context *
1351 perf_event_ctx_lock(struct perf_event *event)
1353 return perf_event_ctx_lock_nested(event, 0);
1356 static void perf_event_ctx_unlock(struct perf_event *event,
1357 struct perf_event_context *ctx)
1359 mutex_unlock(&ctx->mutex);
1364 * This must be done under the ctx->lock, such as to serialize against
1365 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1366 * calling scheduler related locks and ctx->lock nests inside those.
1368 static __must_check struct perf_event_context *
1369 unclone_ctx(struct perf_event_context *ctx)
1371 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1373 lockdep_assert_held(&ctx->lock);
1376 ctx->parent_ctx = NULL;
1382 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1387 * only top level events have the pid namespace they were created in
1390 event = event->parent;
1392 nr = __task_pid_nr_ns(p, type, event->ns);
1393 /* avoid -1 if it is idle thread or runs in another ns */
1394 if (!nr && !pid_alive(p))
1399 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1401 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1404 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1406 return perf_event_pid_type(event, p, PIDTYPE_PID);
1410 * If we inherit events we want to return the parent event id
1413 static u64 primary_event_id(struct perf_event *event)
1418 id = event->parent->id;
1424 * Get the perf_event_context for a task and lock it.
1426 * This has to cope with with the fact that until it is locked,
1427 * the context could get moved to another task.
1429 static struct perf_event_context *
1430 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1432 struct perf_event_context *ctx;
1436 * One of the few rules of preemptible RCU is that one cannot do
1437 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1438 * part of the read side critical section was irqs-enabled -- see
1439 * rcu_read_unlock_special().
1441 * Since ctx->lock nests under rq->lock we must ensure the entire read
1442 * side critical section has interrupts disabled.
1444 local_irq_save(*flags);
1446 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1449 * If this context is a clone of another, it might
1450 * get swapped for another underneath us by
1451 * perf_event_task_sched_out, though the
1452 * rcu_read_lock() protects us from any context
1453 * getting freed. Lock the context and check if it
1454 * got swapped before we could get the lock, and retry
1455 * if so. If we locked the right context, then it
1456 * can't get swapped on us any more.
1458 raw_spin_lock(&ctx->lock);
1459 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1460 raw_spin_unlock(&ctx->lock);
1462 local_irq_restore(*flags);
1466 if (ctx->task == TASK_TOMBSTONE ||
1467 !refcount_inc_not_zero(&ctx->refcount)) {
1468 raw_spin_unlock(&ctx->lock);
1471 WARN_ON_ONCE(ctx->task != task);
1476 local_irq_restore(*flags);
1481 * Get the context for a task and increment its pin_count so it
1482 * can't get swapped to another task. This also increments its
1483 * reference count so that the context can't get freed.
1485 static struct perf_event_context *
1486 perf_pin_task_context(struct task_struct *task, int ctxn)
1488 struct perf_event_context *ctx;
1489 unsigned long flags;
1491 ctx = perf_lock_task_context(task, ctxn, &flags);
1494 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1499 static void perf_unpin_context(struct perf_event_context *ctx)
1501 unsigned long flags;
1503 raw_spin_lock_irqsave(&ctx->lock, flags);
1505 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1509 * Update the record of the current time in a context.
1511 static void update_context_time(struct perf_event_context *ctx)
1513 u64 now = perf_clock();
1515 ctx->time += now - ctx->timestamp;
1516 ctx->timestamp = now;
1519 static u64 perf_event_time(struct perf_event *event)
1521 struct perf_event_context *ctx = event->ctx;
1523 if (is_cgroup_event(event))
1524 return perf_cgroup_event_time(event);
1526 return ctx ? ctx->time : 0;
1529 static enum event_type_t get_event_type(struct perf_event *event)
1531 struct perf_event_context *ctx = event->ctx;
1532 enum event_type_t event_type;
1534 lockdep_assert_held(&ctx->lock);
1537 * It's 'group type', really, because if our group leader is
1538 * pinned, so are we.
1540 if (event->group_leader != event)
1541 event = event->group_leader;
1543 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1545 event_type |= EVENT_CPU;
1551 * Helper function to initialize event group nodes.
1553 static void init_event_group(struct perf_event *event)
1555 RB_CLEAR_NODE(&event->group_node);
1556 event->group_index = 0;
1560 * Extract pinned or flexible groups from the context
1561 * based on event attrs bits.
1563 static struct perf_event_groups *
1564 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1566 if (event->attr.pinned)
1567 return &ctx->pinned_groups;
1569 return &ctx->flexible_groups;
1573 * Helper function to initializes perf_event_group trees.
1575 static void perf_event_groups_init(struct perf_event_groups *groups)
1577 groups->tree = RB_ROOT;
1582 * Compare function for event groups;
1584 * Implements complex key that first sorts by CPU and then by virtual index
1585 * which provides ordering when rotating groups for the same CPU.
1588 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1590 if (left->cpu < right->cpu)
1592 if (left->cpu > right->cpu)
1595 #ifdef CONFIG_CGROUP_PERF
1596 if (left->cgrp != right->cgrp) {
1597 if (!left->cgrp || !left->cgrp->css.cgroup) {
1599 * Left has no cgroup but right does, no cgroups come
1604 if (!right->cgrp || !right->cgrp->css.cgroup) {
1606 * Right has no cgroup but left does, no cgroups come
1611 /* Two dissimilar cgroups, order by id. */
1612 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1619 if (left->group_index < right->group_index)
1621 if (left->group_index > right->group_index)
1628 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1629 * key (see perf_event_groups_less). This places it last inside the CPU
1633 perf_event_groups_insert(struct perf_event_groups *groups,
1634 struct perf_event *event)
1636 struct perf_event *node_event;
1637 struct rb_node *parent;
1638 struct rb_node **node;
1640 event->group_index = ++groups->index;
1642 node = &groups->tree.rb_node;
1647 node_event = container_of(*node, struct perf_event, group_node);
1649 if (perf_event_groups_less(event, node_event))
1650 node = &parent->rb_left;
1652 node = &parent->rb_right;
1655 rb_link_node(&event->group_node, parent, node);
1656 rb_insert_color(&event->group_node, &groups->tree);
1660 * Helper function to insert event into the pinned or flexible groups.
1663 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1665 struct perf_event_groups *groups;
1667 groups = get_event_groups(event, ctx);
1668 perf_event_groups_insert(groups, event);
1672 * Delete a group from a tree.
1675 perf_event_groups_delete(struct perf_event_groups *groups,
1676 struct perf_event *event)
1678 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1679 RB_EMPTY_ROOT(&groups->tree));
1681 rb_erase(&event->group_node, &groups->tree);
1682 init_event_group(event);
1686 * Helper function to delete event from its groups.
1689 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1691 struct perf_event_groups *groups;
1693 groups = get_event_groups(event, ctx);
1694 perf_event_groups_delete(groups, event);
1698 * Get the leftmost event in the cpu/cgroup subtree.
1700 static struct perf_event *
1701 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1702 struct cgroup *cgrp)
1704 struct perf_event *node_event = NULL, *match = NULL;
1705 struct rb_node *node = groups->tree.rb_node;
1706 #ifdef CONFIG_CGROUP_PERF
1707 u64 node_cgrp_id, cgrp_id = 0;
1710 cgrp_id = cgrp->kn->id;
1714 node_event = container_of(node, struct perf_event, group_node);
1716 if (cpu < node_event->cpu) {
1717 node = node->rb_left;
1720 if (cpu > node_event->cpu) {
1721 node = node->rb_right;
1724 #ifdef CONFIG_CGROUP_PERF
1726 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1727 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1729 if (cgrp_id < node_cgrp_id) {
1730 node = node->rb_left;
1733 if (cgrp_id > node_cgrp_id) {
1734 node = node->rb_right;
1739 node = node->rb_left;
1746 * Like rb_entry_next_safe() for the @cpu subtree.
1748 static struct perf_event *
1749 perf_event_groups_next(struct perf_event *event)
1751 struct perf_event *next;
1752 #ifdef CONFIG_CGROUP_PERF
1753 u64 curr_cgrp_id = 0;
1754 u64 next_cgrp_id = 0;
1757 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1758 if (next == NULL || next->cpu != event->cpu)
1761 #ifdef CONFIG_CGROUP_PERF
1762 if (event->cgrp && event->cgrp->css.cgroup)
1763 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1765 if (next->cgrp && next->cgrp->css.cgroup)
1766 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1768 if (curr_cgrp_id != next_cgrp_id)
1775 * Iterate through the whole groups tree.
1777 #define perf_event_groups_for_each(event, groups) \
1778 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1779 typeof(*event), group_node); event; \
1780 event = rb_entry_safe(rb_next(&event->group_node), \
1781 typeof(*event), group_node))
1784 * Add an event from the lists for its context.
1785 * Must be called with ctx->mutex and ctx->lock held.
1788 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1790 lockdep_assert_held(&ctx->lock);
1792 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1793 event->attach_state |= PERF_ATTACH_CONTEXT;
1795 event->tstamp = perf_event_time(event);
1798 * If we're a stand alone event or group leader, we go to the context
1799 * list, group events are kept attached to the group so that
1800 * perf_group_detach can, at all times, locate all siblings.
1802 if (event->group_leader == event) {
1803 event->group_caps = event->event_caps;
1804 add_event_to_groups(event, ctx);
1807 list_add_rcu(&event->event_entry, &ctx->event_list);
1809 if (event->attr.inherit_stat)
1812 if (event->state > PERF_EVENT_STATE_OFF)
1813 perf_cgroup_event_enable(event, ctx);
1819 * Initialize event state based on the perf_event_attr::disabled.
1821 static inline void perf_event__state_init(struct perf_event *event)
1823 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1824 PERF_EVENT_STATE_INACTIVE;
1827 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1829 int entry = sizeof(u64); /* value */
1833 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1834 size += sizeof(u64);
1836 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1837 size += sizeof(u64);
1839 if (event->attr.read_format & PERF_FORMAT_ID)
1840 entry += sizeof(u64);
1842 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1844 size += sizeof(u64);
1848 event->read_size = size;
1851 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 struct perf_sample_data *data;
1856 if (sample_type & PERF_SAMPLE_IP)
1857 size += sizeof(data->ip);
1859 if (sample_type & PERF_SAMPLE_ADDR)
1860 size += sizeof(data->addr);
1862 if (sample_type & PERF_SAMPLE_PERIOD)
1863 size += sizeof(data->period);
1865 if (sample_type & PERF_SAMPLE_WEIGHT)
1866 size += sizeof(data->weight);
1868 if (sample_type & PERF_SAMPLE_READ)
1869 size += event->read_size;
1871 if (sample_type & PERF_SAMPLE_DATA_SRC)
1872 size += sizeof(data->data_src.val);
1874 if (sample_type & PERF_SAMPLE_TRANSACTION)
1875 size += sizeof(data->txn);
1877 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1878 size += sizeof(data->phys_addr);
1880 if (sample_type & PERF_SAMPLE_CGROUP)
1881 size += sizeof(data->cgroup);
1883 event->header_size = size;
1887 * Called at perf_event creation and when events are attached/detached from a
1890 static void perf_event__header_size(struct perf_event *event)
1892 __perf_event_read_size(event,
1893 event->group_leader->nr_siblings);
1894 __perf_event_header_size(event, event->attr.sample_type);
1897 static void perf_event__id_header_size(struct perf_event *event)
1899 struct perf_sample_data *data;
1900 u64 sample_type = event->attr.sample_type;
1903 if (sample_type & PERF_SAMPLE_TID)
1904 size += sizeof(data->tid_entry);
1906 if (sample_type & PERF_SAMPLE_TIME)
1907 size += sizeof(data->time);
1909 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1910 size += sizeof(data->id);
1912 if (sample_type & PERF_SAMPLE_ID)
1913 size += sizeof(data->id);
1915 if (sample_type & PERF_SAMPLE_STREAM_ID)
1916 size += sizeof(data->stream_id);
1918 if (sample_type & PERF_SAMPLE_CPU)
1919 size += sizeof(data->cpu_entry);
1921 event->id_header_size = size;
1924 static bool perf_event_validate_size(struct perf_event *event)
1927 * The values computed here will be over-written when we actually
1930 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1931 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1932 perf_event__id_header_size(event);
1935 * Sum the lot; should not exceed the 64k limit we have on records.
1936 * Conservative limit to allow for callchains and other variable fields.
1938 if (event->read_size + event->header_size +
1939 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1945 static void perf_group_attach(struct perf_event *event)
1947 struct perf_event *group_leader = event->group_leader, *pos;
1949 lockdep_assert_held(&event->ctx->lock);
1952 * We can have double attach due to group movement in perf_event_open.
1954 if (event->attach_state & PERF_ATTACH_GROUP)
1957 event->attach_state |= PERF_ATTACH_GROUP;
1959 if (group_leader == event)
1962 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1964 group_leader->group_caps &= event->event_caps;
1966 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1967 group_leader->nr_siblings++;
1969 perf_event__header_size(group_leader);
1971 for_each_sibling_event(pos, group_leader)
1972 perf_event__header_size(pos);
1976 * Remove an event from the lists for its context.
1977 * Must be called with ctx->mutex and ctx->lock held.
1980 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1982 WARN_ON_ONCE(event->ctx != ctx);
1983 lockdep_assert_held(&ctx->lock);
1986 * We can have double detach due to exit/hot-unplug + close.
1988 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1991 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1994 if (event->attr.inherit_stat)
1997 list_del_rcu(&event->event_entry);
1999 if (event->group_leader == event)
2000 del_event_from_groups(event, ctx);
2003 * If event was in error state, then keep it
2004 * that way, otherwise bogus counts will be
2005 * returned on read(). The only way to get out
2006 * of error state is by explicit re-enabling
2009 if (event->state > PERF_EVENT_STATE_OFF) {
2010 perf_cgroup_event_disable(event, ctx);
2011 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2018 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2020 if (!has_aux(aux_event))
2023 if (!event->pmu->aux_output_match)
2026 return event->pmu->aux_output_match(aux_event);
2029 static void put_event(struct perf_event *event);
2030 static void event_sched_out(struct perf_event *event,
2031 struct perf_cpu_context *cpuctx,
2032 struct perf_event_context *ctx);
2034 static void perf_put_aux_event(struct perf_event *event)
2036 struct perf_event_context *ctx = event->ctx;
2037 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2038 struct perf_event *iter;
2041 * If event uses aux_event tear down the link
2043 if (event->aux_event) {
2044 iter = event->aux_event;
2045 event->aux_event = NULL;
2051 * If the event is an aux_event, tear down all links to
2052 * it from other events.
2054 for_each_sibling_event(iter, event->group_leader) {
2055 if (iter->aux_event != event)
2058 iter->aux_event = NULL;
2062 * If it's ACTIVE, schedule it out and put it into ERROR
2063 * state so that we don't try to schedule it again. Note
2064 * that perf_event_enable() will clear the ERROR status.
2066 event_sched_out(iter, cpuctx, ctx);
2067 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2071 static bool perf_need_aux_event(struct perf_event *event)
2073 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2076 static int perf_get_aux_event(struct perf_event *event,
2077 struct perf_event *group_leader)
2080 * Our group leader must be an aux event if we want to be
2081 * an aux_output. This way, the aux event will precede its
2082 * aux_output events in the group, and therefore will always
2089 * aux_output and aux_sample_size are mutually exclusive.
2091 if (event->attr.aux_output && event->attr.aux_sample_size)
2094 if (event->attr.aux_output &&
2095 !perf_aux_output_match(event, group_leader))
2098 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2101 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2105 * Link aux_outputs to their aux event; this is undone in
2106 * perf_group_detach() by perf_put_aux_event(). When the
2107 * group in torn down, the aux_output events loose their
2108 * link to the aux_event and can't schedule any more.
2110 event->aux_event = group_leader;
2115 static inline struct list_head *get_event_list(struct perf_event *event)
2117 struct perf_event_context *ctx = event->ctx;
2118 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2121 static void perf_group_detach(struct perf_event *event)
2123 struct perf_event *sibling, *tmp;
2124 struct perf_event_context *ctx = event->ctx;
2126 lockdep_assert_held(&ctx->lock);
2129 * We can have double detach due to exit/hot-unplug + close.
2131 if (!(event->attach_state & PERF_ATTACH_GROUP))
2134 event->attach_state &= ~PERF_ATTACH_GROUP;
2136 perf_put_aux_event(event);
2139 * If this is a sibling, remove it from its group.
2141 if (event->group_leader != event) {
2142 list_del_init(&event->sibling_list);
2143 event->group_leader->nr_siblings--;
2148 * If this was a group event with sibling events then
2149 * upgrade the siblings to singleton events by adding them
2150 * to whatever list we are on.
2152 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2154 sibling->group_leader = sibling;
2155 list_del_init(&sibling->sibling_list);
2157 /* Inherit group flags from the previous leader */
2158 sibling->group_caps = event->group_caps;
2160 if (!RB_EMPTY_NODE(&event->group_node)) {
2161 add_event_to_groups(sibling, event->ctx);
2163 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2164 list_add_tail(&sibling->active_list, get_event_list(sibling));
2167 WARN_ON_ONCE(sibling->ctx != event->ctx);
2171 perf_event__header_size(event->group_leader);
2173 for_each_sibling_event(tmp, event->group_leader)
2174 perf_event__header_size(tmp);
2177 static bool is_orphaned_event(struct perf_event *event)
2179 return event->state == PERF_EVENT_STATE_DEAD;
2182 static inline int __pmu_filter_match(struct perf_event *event)
2184 struct pmu *pmu = event->pmu;
2185 return pmu->filter_match ? pmu->filter_match(event) : 1;
2189 * Check whether we should attempt to schedule an event group based on
2190 * PMU-specific filtering. An event group can consist of HW and SW events,
2191 * potentially with a SW leader, so we must check all the filters, to
2192 * determine whether a group is schedulable:
2194 static inline int pmu_filter_match(struct perf_event *event)
2196 struct perf_event *sibling;
2198 if (!__pmu_filter_match(event))
2201 for_each_sibling_event(sibling, event) {
2202 if (!__pmu_filter_match(sibling))
2210 event_filter_match(struct perf_event *event)
2212 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2213 perf_cgroup_match(event) && pmu_filter_match(event);
2217 event_sched_out(struct perf_event *event,
2218 struct perf_cpu_context *cpuctx,
2219 struct perf_event_context *ctx)
2221 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2223 WARN_ON_ONCE(event->ctx != ctx);
2224 lockdep_assert_held(&ctx->lock);
2226 if (event->state != PERF_EVENT_STATE_ACTIVE)
2230 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2231 * we can schedule events _OUT_ individually through things like
2232 * __perf_remove_from_context().
2234 list_del_init(&event->active_list);
2236 perf_pmu_disable(event->pmu);
2238 event->pmu->del(event, 0);
2241 if (READ_ONCE(event->pending_disable) >= 0) {
2242 WRITE_ONCE(event->pending_disable, -1);
2243 perf_cgroup_event_disable(event, ctx);
2244 state = PERF_EVENT_STATE_OFF;
2246 perf_event_set_state(event, state);
2248 if (!is_software_event(event))
2249 cpuctx->active_oncpu--;
2250 if (!--ctx->nr_active)
2251 perf_event_ctx_deactivate(ctx);
2252 if (event->attr.freq && event->attr.sample_freq)
2254 if (event->attr.exclusive || !cpuctx->active_oncpu)
2255 cpuctx->exclusive = 0;
2257 perf_pmu_enable(event->pmu);
2261 group_sched_out(struct perf_event *group_event,
2262 struct perf_cpu_context *cpuctx,
2263 struct perf_event_context *ctx)
2265 struct perf_event *event;
2267 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2270 perf_pmu_disable(ctx->pmu);
2272 event_sched_out(group_event, cpuctx, ctx);
2275 * Schedule out siblings (if any):
2277 for_each_sibling_event(event, group_event)
2278 event_sched_out(event, cpuctx, ctx);
2280 perf_pmu_enable(ctx->pmu);
2282 if (group_event->attr.exclusive)
2283 cpuctx->exclusive = 0;
2286 #define DETACH_GROUP 0x01UL
2289 * Cross CPU call to remove a performance event
2291 * We disable the event on the hardware level first. After that we
2292 * remove it from the context list.
2295 __perf_remove_from_context(struct perf_event *event,
2296 struct perf_cpu_context *cpuctx,
2297 struct perf_event_context *ctx,
2300 unsigned long flags = (unsigned long)info;
2302 if (ctx->is_active & EVENT_TIME) {
2303 update_context_time(ctx);
2304 update_cgrp_time_from_cpuctx(cpuctx);
2307 event_sched_out(event, cpuctx, ctx);
2308 if (flags & DETACH_GROUP)
2309 perf_group_detach(event);
2310 list_del_event(event, ctx);
2312 if (!ctx->nr_events && ctx->is_active) {
2314 ctx->rotate_necessary = 0;
2316 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2317 cpuctx->task_ctx = NULL;
2323 * Remove the event from a task's (or a CPU's) list of events.
2325 * If event->ctx is a cloned context, callers must make sure that
2326 * every task struct that event->ctx->task could possibly point to
2327 * remains valid. This is OK when called from perf_release since
2328 * that only calls us on the top-level context, which can't be a clone.
2329 * When called from perf_event_exit_task, it's OK because the
2330 * context has been detached from its task.
2332 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2334 struct perf_event_context *ctx = event->ctx;
2336 lockdep_assert_held(&ctx->mutex);
2338 event_function_call(event, __perf_remove_from_context, (void *)flags);
2341 * The above event_function_call() can NO-OP when it hits
2342 * TASK_TOMBSTONE. In that case we must already have been detached
2343 * from the context (by perf_event_exit_event()) but the grouping
2344 * might still be in-tact.
2346 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2347 if ((flags & DETACH_GROUP) &&
2348 (event->attach_state & PERF_ATTACH_GROUP)) {
2350 * Since in that case we cannot possibly be scheduled, simply
2353 raw_spin_lock_irq(&ctx->lock);
2354 perf_group_detach(event);
2355 raw_spin_unlock_irq(&ctx->lock);
2360 * Cross CPU call to disable a performance event
2362 static void __perf_event_disable(struct perf_event *event,
2363 struct perf_cpu_context *cpuctx,
2364 struct perf_event_context *ctx,
2367 if (event->state < PERF_EVENT_STATE_INACTIVE)
2370 if (ctx->is_active & EVENT_TIME) {
2371 update_context_time(ctx);
2372 update_cgrp_time_from_event(event);
2375 if (event == event->group_leader)
2376 group_sched_out(event, cpuctx, ctx);
2378 event_sched_out(event, cpuctx, ctx);
2380 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2381 perf_cgroup_event_disable(event, ctx);
2387 * If event->ctx is a cloned context, callers must make sure that
2388 * every task struct that event->ctx->task could possibly point to
2389 * remains valid. This condition is satisfied when called through
2390 * perf_event_for_each_child or perf_event_for_each because they
2391 * hold the top-level event's child_mutex, so any descendant that
2392 * goes to exit will block in perf_event_exit_event().
2394 * When called from perf_pending_event it's OK because event->ctx
2395 * is the current context on this CPU and preemption is disabled,
2396 * hence we can't get into perf_event_task_sched_out for this context.
2398 static void _perf_event_disable(struct perf_event *event)
2400 struct perf_event_context *ctx = event->ctx;
2402 raw_spin_lock_irq(&ctx->lock);
2403 if (event->state <= PERF_EVENT_STATE_OFF) {
2404 raw_spin_unlock_irq(&ctx->lock);
2407 raw_spin_unlock_irq(&ctx->lock);
2409 event_function_call(event, __perf_event_disable, NULL);
2412 void perf_event_disable_local(struct perf_event *event)
2414 event_function_local(event, __perf_event_disable, NULL);
2418 * Strictly speaking kernel users cannot create groups and therefore this
2419 * interface does not need the perf_event_ctx_lock() magic.
2421 void perf_event_disable(struct perf_event *event)
2423 struct perf_event_context *ctx;
2425 ctx = perf_event_ctx_lock(event);
2426 _perf_event_disable(event);
2427 perf_event_ctx_unlock(event, ctx);
2429 EXPORT_SYMBOL_GPL(perf_event_disable);
2431 void perf_event_disable_inatomic(struct perf_event *event)
2433 WRITE_ONCE(event->pending_disable, smp_processor_id());
2434 /* can fail, see perf_pending_event_disable() */
2435 irq_work_queue(&event->pending);
2438 static void perf_set_shadow_time(struct perf_event *event,
2439 struct perf_event_context *ctx)
2442 * use the correct time source for the time snapshot
2444 * We could get by without this by leveraging the
2445 * fact that to get to this function, the caller
2446 * has most likely already called update_context_time()
2447 * and update_cgrp_time_xx() and thus both timestamp
2448 * are identical (or very close). Given that tstamp is,
2449 * already adjusted for cgroup, we could say that:
2450 * tstamp - ctx->timestamp
2452 * tstamp - cgrp->timestamp.
2454 * Then, in perf_output_read(), the calculation would
2455 * work with no changes because:
2456 * - event is guaranteed scheduled in
2457 * - no scheduled out in between
2458 * - thus the timestamp would be the same
2460 * But this is a bit hairy.
2462 * So instead, we have an explicit cgroup call to remain
2463 * within the time time source all along. We believe it
2464 * is cleaner and simpler to understand.
2466 if (is_cgroup_event(event))
2467 perf_cgroup_set_shadow_time(event, event->tstamp);
2469 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2472 #define MAX_INTERRUPTS (~0ULL)
2474 static void perf_log_throttle(struct perf_event *event, int enable);
2475 static void perf_log_itrace_start(struct perf_event *event);
2478 event_sched_in(struct perf_event *event,
2479 struct perf_cpu_context *cpuctx,
2480 struct perf_event_context *ctx)
2484 WARN_ON_ONCE(event->ctx != ctx);
2486 lockdep_assert_held(&ctx->lock);
2488 if (event->state <= PERF_EVENT_STATE_OFF)
2491 WRITE_ONCE(event->oncpu, smp_processor_id());
2493 * Order event::oncpu write to happen before the ACTIVE state is
2494 * visible. This allows perf_event_{stop,read}() to observe the correct
2495 * ->oncpu if it sees ACTIVE.
2498 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2501 * Unthrottle events, since we scheduled we might have missed several
2502 * ticks already, also for a heavily scheduling task there is little
2503 * guarantee it'll get a tick in a timely manner.
2505 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2506 perf_log_throttle(event, 1);
2507 event->hw.interrupts = 0;
2510 perf_pmu_disable(event->pmu);
2512 perf_set_shadow_time(event, ctx);
2514 perf_log_itrace_start(event);
2516 if (event->pmu->add(event, PERF_EF_START)) {
2517 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2523 if (!is_software_event(event))
2524 cpuctx->active_oncpu++;
2525 if (!ctx->nr_active++)
2526 perf_event_ctx_activate(ctx);
2527 if (event->attr.freq && event->attr.sample_freq)
2530 if (event->attr.exclusive)
2531 cpuctx->exclusive = 1;
2534 perf_pmu_enable(event->pmu);
2540 group_sched_in(struct perf_event *group_event,
2541 struct perf_cpu_context *cpuctx,
2542 struct perf_event_context *ctx)
2544 struct perf_event *event, *partial_group = NULL;
2545 struct pmu *pmu = ctx->pmu;
2547 if (group_event->state == PERF_EVENT_STATE_OFF)
2550 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2552 if (event_sched_in(group_event, cpuctx, ctx)) {
2553 pmu->cancel_txn(pmu);
2554 perf_mux_hrtimer_restart(cpuctx);
2559 * Schedule in siblings as one group (if any):
2561 for_each_sibling_event(event, group_event) {
2562 if (event_sched_in(event, cpuctx, ctx)) {
2563 partial_group = event;
2568 if (!pmu->commit_txn(pmu))
2573 * Groups can be scheduled in as one unit only, so undo any
2574 * partial group before returning:
2575 * The events up to the failed event are scheduled out normally.
2577 for_each_sibling_event(event, group_event) {
2578 if (event == partial_group)
2581 event_sched_out(event, cpuctx, ctx);
2583 event_sched_out(group_event, cpuctx, ctx);
2585 pmu->cancel_txn(pmu);
2587 perf_mux_hrtimer_restart(cpuctx);
2593 * Work out whether we can put this event group on the CPU now.
2595 static int group_can_go_on(struct perf_event *event,
2596 struct perf_cpu_context *cpuctx,
2600 * Groups consisting entirely of software events can always go on.
2602 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2605 * If an exclusive group is already on, no other hardware
2608 if (cpuctx->exclusive)
2611 * If this group is exclusive and there are already
2612 * events on the CPU, it can't go on.
2614 if (event->attr.exclusive && cpuctx->active_oncpu)
2617 * Otherwise, try to add it if all previous groups were able
2623 static void add_event_to_ctx(struct perf_event *event,
2624 struct perf_event_context *ctx)
2626 list_add_event(event, ctx);
2627 perf_group_attach(event);
2630 static void ctx_sched_out(struct perf_event_context *ctx,
2631 struct perf_cpu_context *cpuctx,
2632 enum event_type_t event_type);
2634 ctx_sched_in(struct perf_event_context *ctx,
2635 struct perf_cpu_context *cpuctx,
2636 enum event_type_t event_type,
2637 struct task_struct *task);
2639 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2640 struct perf_event_context *ctx,
2641 enum event_type_t event_type)
2643 if (!cpuctx->task_ctx)
2646 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2649 ctx_sched_out(ctx, cpuctx, event_type);
2652 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2653 struct perf_event_context *ctx,
2654 struct task_struct *task)
2656 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2658 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2659 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2661 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2665 * We want to maintain the following priority of scheduling:
2666 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2667 * - task pinned (EVENT_PINNED)
2668 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2669 * - task flexible (EVENT_FLEXIBLE).
2671 * In order to avoid unscheduling and scheduling back in everything every
2672 * time an event is added, only do it for the groups of equal priority and
2675 * This can be called after a batch operation on task events, in which case
2676 * event_type is a bit mask of the types of events involved. For CPU events,
2677 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2679 static void ctx_resched(struct perf_cpu_context *cpuctx,
2680 struct perf_event_context *task_ctx,
2681 enum event_type_t event_type)
2683 enum event_type_t ctx_event_type;
2684 bool cpu_event = !!(event_type & EVENT_CPU);
2687 * If pinned groups are involved, flexible groups also need to be
2690 if (event_type & EVENT_PINNED)
2691 event_type |= EVENT_FLEXIBLE;
2693 ctx_event_type = event_type & EVENT_ALL;
2695 perf_pmu_disable(cpuctx->ctx.pmu);
2697 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2700 * Decide which cpu ctx groups to schedule out based on the types
2701 * of events that caused rescheduling:
2702 * - EVENT_CPU: schedule out corresponding groups;
2703 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2704 * - otherwise, do nothing more.
2707 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2708 else if (ctx_event_type & EVENT_PINNED)
2709 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2711 perf_event_sched_in(cpuctx, task_ctx, current);
2712 perf_pmu_enable(cpuctx->ctx.pmu);
2715 void perf_pmu_resched(struct pmu *pmu)
2717 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2718 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2720 perf_ctx_lock(cpuctx, task_ctx);
2721 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2722 perf_ctx_unlock(cpuctx, task_ctx);
2726 * Cross CPU call to install and enable a performance event
2728 * Very similar to remote_function() + event_function() but cannot assume that
2729 * things like ctx->is_active and cpuctx->task_ctx are set.
2731 static int __perf_install_in_context(void *info)
2733 struct perf_event *event = info;
2734 struct perf_event_context *ctx = event->ctx;
2735 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2736 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2737 bool reprogram = true;
2740 raw_spin_lock(&cpuctx->ctx.lock);
2742 raw_spin_lock(&ctx->lock);
2745 reprogram = (ctx->task == current);
2748 * If the task is running, it must be running on this CPU,
2749 * otherwise we cannot reprogram things.
2751 * If its not running, we don't care, ctx->lock will
2752 * serialize against it becoming runnable.
2754 if (task_curr(ctx->task) && !reprogram) {
2759 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2760 } else if (task_ctx) {
2761 raw_spin_lock(&task_ctx->lock);
2764 #ifdef CONFIG_CGROUP_PERF
2765 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2767 * If the current cgroup doesn't match the event's
2768 * cgroup, we should not try to schedule it.
2770 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2771 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2772 event->cgrp->css.cgroup);
2777 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2778 add_event_to_ctx(event, ctx);
2779 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2781 add_event_to_ctx(event, ctx);
2785 perf_ctx_unlock(cpuctx, task_ctx);
2790 static bool exclusive_event_installable(struct perf_event *event,
2791 struct perf_event_context *ctx);
2794 * Attach a performance event to a context.
2796 * Very similar to event_function_call, see comment there.
2799 perf_install_in_context(struct perf_event_context *ctx,
2800 struct perf_event *event,
2803 struct task_struct *task = READ_ONCE(ctx->task);
2805 lockdep_assert_held(&ctx->mutex);
2807 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2809 if (event->cpu != -1)
2813 * Ensures that if we can observe event->ctx, both the event and ctx
2814 * will be 'complete'. See perf_iterate_sb_cpu().
2816 smp_store_release(&event->ctx, ctx);
2819 * perf_event_attr::disabled events will not run and can be initialized
2820 * without IPI. Except when this is the first event for the context, in
2821 * that case we need the magic of the IPI to set ctx->is_active.
2823 * The IOC_ENABLE that is sure to follow the creation of a disabled
2824 * event will issue the IPI and reprogram the hardware.
2826 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2827 raw_spin_lock_irq(&ctx->lock);
2828 if (ctx->task == TASK_TOMBSTONE) {
2829 raw_spin_unlock_irq(&ctx->lock);
2832 add_event_to_ctx(event, ctx);
2833 raw_spin_unlock_irq(&ctx->lock);
2838 cpu_function_call(cpu, __perf_install_in_context, event);
2843 * Should not happen, we validate the ctx is still alive before calling.
2845 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2849 * Installing events is tricky because we cannot rely on ctx->is_active
2850 * to be set in case this is the nr_events 0 -> 1 transition.
2852 * Instead we use task_curr(), which tells us if the task is running.
2853 * However, since we use task_curr() outside of rq::lock, we can race
2854 * against the actual state. This means the result can be wrong.
2856 * If we get a false positive, we retry, this is harmless.
2858 * If we get a false negative, things are complicated. If we are after
2859 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2860 * value must be correct. If we're before, it doesn't matter since
2861 * perf_event_context_sched_in() will program the counter.
2863 * However, this hinges on the remote context switch having observed
2864 * our task->perf_event_ctxp[] store, such that it will in fact take
2865 * ctx::lock in perf_event_context_sched_in().
2867 * We do this by task_function_call(), if the IPI fails to hit the task
2868 * we know any future context switch of task must see the
2869 * perf_event_ctpx[] store.
2873 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2874 * task_cpu() load, such that if the IPI then does not find the task
2875 * running, a future context switch of that task must observe the
2880 if (!task_function_call(task, __perf_install_in_context, event))
2883 raw_spin_lock_irq(&ctx->lock);
2885 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2887 * Cannot happen because we already checked above (which also
2888 * cannot happen), and we hold ctx->mutex, which serializes us
2889 * against perf_event_exit_task_context().
2891 raw_spin_unlock_irq(&ctx->lock);
2895 * If the task is not running, ctx->lock will avoid it becoming so,
2896 * thus we can safely install the event.
2898 if (task_curr(task)) {
2899 raw_spin_unlock_irq(&ctx->lock);
2902 add_event_to_ctx(event, ctx);
2903 raw_spin_unlock_irq(&ctx->lock);
2907 * Cross CPU call to enable a performance event
2909 static void __perf_event_enable(struct perf_event *event,
2910 struct perf_cpu_context *cpuctx,
2911 struct perf_event_context *ctx,
2914 struct perf_event *leader = event->group_leader;
2915 struct perf_event_context *task_ctx;
2917 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2918 event->state <= PERF_EVENT_STATE_ERROR)
2922 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2924 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2925 perf_cgroup_event_enable(event, ctx);
2927 if (!ctx->is_active)
2930 if (!event_filter_match(event)) {
2931 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2936 * If the event is in a group and isn't the group leader,
2937 * then don't put it on unless the group is on.
2939 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2940 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2944 task_ctx = cpuctx->task_ctx;
2946 WARN_ON_ONCE(task_ctx != ctx);
2948 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2954 * If event->ctx is a cloned context, callers must make sure that
2955 * every task struct that event->ctx->task could possibly point to
2956 * remains valid. This condition is satisfied when called through
2957 * perf_event_for_each_child or perf_event_for_each as described
2958 * for perf_event_disable.
2960 static void _perf_event_enable(struct perf_event *event)
2962 struct perf_event_context *ctx = event->ctx;
2964 raw_spin_lock_irq(&ctx->lock);
2965 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2966 event->state < PERF_EVENT_STATE_ERROR) {
2967 raw_spin_unlock_irq(&ctx->lock);
2972 * If the event is in error state, clear that first.
2974 * That way, if we see the event in error state below, we know that it
2975 * has gone back into error state, as distinct from the task having
2976 * been scheduled away before the cross-call arrived.
2978 if (event->state == PERF_EVENT_STATE_ERROR)
2979 event->state = PERF_EVENT_STATE_OFF;
2980 raw_spin_unlock_irq(&ctx->lock);
2982 event_function_call(event, __perf_event_enable, NULL);
2986 * See perf_event_disable();
2988 void perf_event_enable(struct perf_event *event)
2990 struct perf_event_context *ctx;
2992 ctx = perf_event_ctx_lock(event);
2993 _perf_event_enable(event);
2994 perf_event_ctx_unlock(event, ctx);
2996 EXPORT_SYMBOL_GPL(perf_event_enable);
2998 struct stop_event_data {
2999 struct perf_event *event;
3000 unsigned int restart;
3003 static int __perf_event_stop(void *info)
3005 struct stop_event_data *sd = info;
3006 struct perf_event *event = sd->event;
3008 /* if it's already INACTIVE, do nothing */
3009 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3012 /* matches smp_wmb() in event_sched_in() */
3016 * There is a window with interrupts enabled before we get here,
3017 * so we need to check again lest we try to stop another CPU's event.
3019 if (READ_ONCE(event->oncpu) != smp_processor_id())
3022 event->pmu->stop(event, PERF_EF_UPDATE);
3025 * May race with the actual stop (through perf_pmu_output_stop()),
3026 * but it is only used for events with AUX ring buffer, and such
3027 * events will refuse to restart because of rb::aux_mmap_count==0,
3028 * see comments in perf_aux_output_begin().
3030 * Since this is happening on an event-local CPU, no trace is lost
3034 event->pmu->start(event, 0);
3039 static int perf_event_stop(struct perf_event *event, int restart)
3041 struct stop_event_data sd = {
3048 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051 /* matches smp_wmb() in event_sched_in() */
3055 * We only want to restart ACTIVE events, so if the event goes
3056 * inactive here (event->oncpu==-1), there's nothing more to do;
3057 * fall through with ret==-ENXIO.
3059 ret = cpu_function_call(READ_ONCE(event->oncpu),
3060 __perf_event_stop, &sd);
3061 } while (ret == -EAGAIN);
3067 * In order to contain the amount of racy and tricky in the address filter
3068 * configuration management, it is a two part process:
3070 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3071 * we update the addresses of corresponding vmas in
3072 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3073 * (p2) when an event is scheduled in (pmu::add), it calls
3074 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3075 * if the generation has changed since the previous call.
3077 * If (p1) happens while the event is active, we restart it to force (p2).
3079 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3080 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3082 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3083 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3085 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3088 void perf_event_addr_filters_sync(struct perf_event *event)
3090 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3092 if (!has_addr_filter(event))
3095 raw_spin_lock(&ifh->lock);
3096 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3097 event->pmu->addr_filters_sync(event);
3098 event->hw.addr_filters_gen = event->addr_filters_gen;
3100 raw_spin_unlock(&ifh->lock);
3102 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3104 static int _perf_event_refresh(struct perf_event *event, int refresh)
3107 * not supported on inherited events
3109 if (event->attr.inherit || !is_sampling_event(event))
3112 atomic_add(refresh, &event->event_limit);
3113 _perf_event_enable(event);
3119 * See perf_event_disable()
3121 int perf_event_refresh(struct perf_event *event, int refresh)
3123 struct perf_event_context *ctx;
3126 ctx = perf_event_ctx_lock(event);
3127 ret = _perf_event_refresh(event, refresh);
3128 perf_event_ctx_unlock(event, ctx);
3132 EXPORT_SYMBOL_GPL(perf_event_refresh);
3134 static int perf_event_modify_breakpoint(struct perf_event *bp,
3135 struct perf_event_attr *attr)
3139 _perf_event_disable(bp);
3141 err = modify_user_hw_breakpoint_check(bp, attr, true);
3143 if (!bp->attr.disabled)
3144 _perf_event_enable(bp);
3149 static int perf_event_modify_attr(struct perf_event *event,
3150 struct perf_event_attr *attr)
3152 if (event->attr.type != attr->type)
3155 switch (event->attr.type) {
3156 case PERF_TYPE_BREAKPOINT:
3157 return perf_event_modify_breakpoint(event, attr);
3159 /* Place holder for future additions. */
3164 static void ctx_sched_out(struct perf_event_context *ctx,
3165 struct perf_cpu_context *cpuctx,
3166 enum event_type_t event_type)
3168 struct perf_event *event, *tmp;
3169 int is_active = ctx->is_active;
3171 lockdep_assert_held(&ctx->lock);
3173 if (likely(!ctx->nr_events)) {
3175 * See __perf_remove_from_context().
3177 WARN_ON_ONCE(ctx->is_active);
3179 WARN_ON_ONCE(cpuctx->task_ctx);
3183 ctx->is_active &= ~event_type;
3184 if (!(ctx->is_active & EVENT_ALL))
3188 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3189 if (!ctx->is_active)
3190 cpuctx->task_ctx = NULL;
3194 * Always update time if it was set; not only when it changes.
3195 * Otherwise we can 'forget' to update time for any but the last
3196 * context we sched out. For example:
3198 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3199 * ctx_sched_out(.event_type = EVENT_PINNED)
3201 * would only update time for the pinned events.
3203 if (is_active & EVENT_TIME) {
3204 /* update (and stop) ctx time */
3205 update_context_time(ctx);
3206 update_cgrp_time_from_cpuctx(cpuctx);
3209 is_active ^= ctx->is_active; /* changed bits */
3211 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3214 perf_pmu_disable(ctx->pmu);
3215 if (is_active & EVENT_PINNED) {
3216 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3217 group_sched_out(event, cpuctx, ctx);
3220 if (is_active & EVENT_FLEXIBLE) {
3221 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3222 group_sched_out(event, cpuctx, ctx);
3225 * Since we cleared EVENT_FLEXIBLE, also clear
3226 * rotate_necessary, is will be reset by
3227 * ctx_flexible_sched_in() when needed.
3229 ctx->rotate_necessary = 0;
3231 perf_pmu_enable(ctx->pmu);
3235 * Test whether two contexts are equivalent, i.e. whether they have both been
3236 * cloned from the same version of the same context.
3238 * Equivalence is measured using a generation number in the context that is
3239 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3240 * and list_del_event().
3242 static int context_equiv(struct perf_event_context *ctx1,
3243 struct perf_event_context *ctx2)
3245 lockdep_assert_held(&ctx1->lock);
3246 lockdep_assert_held(&ctx2->lock);
3248 /* Pinning disables the swap optimization */
3249 if (ctx1->pin_count || ctx2->pin_count)
3252 /* If ctx1 is the parent of ctx2 */
3253 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3256 /* If ctx2 is the parent of ctx1 */
3257 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3261 * If ctx1 and ctx2 have the same parent; we flatten the parent
3262 * hierarchy, see perf_event_init_context().
3264 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3265 ctx1->parent_gen == ctx2->parent_gen)
3272 static void __perf_event_sync_stat(struct perf_event *event,
3273 struct perf_event *next_event)
3277 if (!event->attr.inherit_stat)
3281 * Update the event value, we cannot use perf_event_read()
3282 * because we're in the middle of a context switch and have IRQs
3283 * disabled, which upsets smp_call_function_single(), however
3284 * we know the event must be on the current CPU, therefore we
3285 * don't need to use it.
3287 if (event->state == PERF_EVENT_STATE_ACTIVE)
3288 event->pmu->read(event);
3290 perf_event_update_time(event);
3293 * In order to keep per-task stats reliable we need to flip the event
3294 * values when we flip the contexts.
3296 value = local64_read(&next_event->count);
3297 value = local64_xchg(&event->count, value);
3298 local64_set(&next_event->count, value);
3300 swap(event->total_time_enabled, next_event->total_time_enabled);
3301 swap(event->total_time_running, next_event->total_time_running);
3304 * Since we swizzled the values, update the user visible data too.
3306 perf_event_update_userpage(event);
3307 perf_event_update_userpage(next_event);
3310 static void perf_event_sync_stat(struct perf_event_context *ctx,
3311 struct perf_event_context *next_ctx)
3313 struct perf_event *event, *next_event;
3318 update_context_time(ctx);
3320 event = list_first_entry(&ctx->event_list,
3321 struct perf_event, event_entry);
3323 next_event = list_first_entry(&next_ctx->event_list,
3324 struct perf_event, event_entry);
3326 while (&event->event_entry != &ctx->event_list &&
3327 &next_event->event_entry != &next_ctx->event_list) {
3329 __perf_event_sync_stat(event, next_event);
3331 event = list_next_entry(event, event_entry);
3332 next_event = list_next_entry(next_event, event_entry);
3336 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3337 struct task_struct *next)
3339 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3340 struct perf_event_context *next_ctx;
3341 struct perf_event_context *parent, *next_parent;
3342 struct perf_cpu_context *cpuctx;
3348 cpuctx = __get_cpu_context(ctx);
3349 if (!cpuctx->task_ctx)
3353 next_ctx = next->perf_event_ctxp[ctxn];
3357 parent = rcu_dereference(ctx->parent_ctx);
3358 next_parent = rcu_dereference(next_ctx->parent_ctx);
3360 /* If neither context have a parent context; they cannot be clones. */
3361 if (!parent && !next_parent)
3364 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3366 * Looks like the two contexts are clones, so we might be
3367 * able to optimize the context switch. We lock both
3368 * contexts and check that they are clones under the
3369 * lock (including re-checking that neither has been
3370 * uncloned in the meantime). It doesn't matter which
3371 * order we take the locks because no other cpu could
3372 * be trying to lock both of these tasks.
3374 raw_spin_lock(&ctx->lock);
3375 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3376 if (context_equiv(ctx, next_ctx)) {
3377 struct pmu *pmu = ctx->pmu;
3379 WRITE_ONCE(ctx->task, next);
3380 WRITE_ONCE(next_ctx->task, task);
3383 * PMU specific parts of task perf context can require
3384 * additional synchronization. As an example of such
3385 * synchronization see implementation details of Intel
3386 * LBR call stack data profiling;
3388 if (pmu->swap_task_ctx)
3389 pmu->swap_task_ctx(ctx, next_ctx);
3391 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3394 * RCU_INIT_POINTER here is safe because we've not
3395 * modified the ctx and the above modification of
3396 * ctx->task and ctx->task_ctx_data are immaterial
3397 * since those values are always verified under
3398 * ctx->lock which we're now holding.
3400 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3401 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3405 perf_event_sync_stat(ctx, next_ctx);
3407 raw_spin_unlock(&next_ctx->lock);
3408 raw_spin_unlock(&ctx->lock);
3414 raw_spin_lock(&ctx->lock);
3415 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3416 raw_spin_unlock(&ctx->lock);
3420 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3422 void perf_sched_cb_dec(struct pmu *pmu)
3424 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3426 this_cpu_dec(perf_sched_cb_usages);
3428 if (!--cpuctx->sched_cb_usage)
3429 list_del(&cpuctx->sched_cb_entry);
3433 void perf_sched_cb_inc(struct pmu *pmu)
3435 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3437 if (!cpuctx->sched_cb_usage++)
3438 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3440 this_cpu_inc(perf_sched_cb_usages);
3444 * This function provides the context switch callback to the lower code
3445 * layer. It is invoked ONLY when the context switch callback is enabled.
3447 * This callback is relevant even to per-cpu events; for example multi event
3448 * PEBS requires this to provide PID/TID information. This requires we flush
3449 * all queued PEBS records before we context switch to a new task.
3451 static void perf_pmu_sched_task(struct task_struct *prev,
3452 struct task_struct *next,
3455 struct perf_cpu_context *cpuctx;
3461 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3462 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3464 if (WARN_ON_ONCE(!pmu->sched_task))
3467 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3468 perf_pmu_disable(pmu);
3470 pmu->sched_task(cpuctx->task_ctx, sched_in);
3472 perf_pmu_enable(pmu);
3473 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3477 static void perf_event_switch(struct task_struct *task,
3478 struct task_struct *next_prev, bool sched_in);
3480 #define for_each_task_context_nr(ctxn) \
3481 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3484 * Called from scheduler to remove the events of the current task,
3485 * with interrupts disabled.
3487 * We stop each event and update the event value in event->count.
3489 * This does not protect us against NMI, but disable()
3490 * sets the disabled bit in the control field of event _before_
3491 * accessing the event control register. If a NMI hits, then it will
3492 * not restart the event.
3494 void __perf_event_task_sched_out(struct task_struct *task,
3495 struct task_struct *next)
3499 if (__this_cpu_read(perf_sched_cb_usages))
3500 perf_pmu_sched_task(task, next, false);
3502 if (atomic_read(&nr_switch_events))
3503 perf_event_switch(task, next, false);
3505 for_each_task_context_nr(ctxn)
3506 perf_event_context_sched_out(task, ctxn, next);
3509 * if cgroup events exist on this CPU, then we need
3510 * to check if we have to switch out PMU state.
3511 * cgroup event are system-wide mode only
3513 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3514 perf_cgroup_sched_out(task, next);
3518 * Called with IRQs disabled
3520 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3521 enum event_type_t event_type)
3523 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3526 static bool perf_less_group_idx(const void *l, const void *r)
3528 const struct perf_event *le = *(const struct perf_event **)l;
3529 const struct perf_event *re = *(const struct perf_event **)r;
3531 return le->group_index < re->group_index;
3534 static void swap_ptr(void *l, void *r)
3536 void **lp = l, **rp = r;
3541 static const struct min_heap_callbacks perf_min_heap = {
3542 .elem_size = sizeof(struct perf_event *),
3543 .less = perf_less_group_idx,
3547 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3549 struct perf_event **itrs = heap->data;
3552 itrs[heap->nr] = event;
3557 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3558 struct perf_event_groups *groups, int cpu,
3559 int (*func)(struct perf_event *, void *),
3562 #ifdef CONFIG_CGROUP_PERF
3563 struct cgroup_subsys_state *css = NULL;
3565 /* Space for per CPU and/or any CPU event iterators. */
3566 struct perf_event *itrs[2];
3567 struct min_heap event_heap;
3568 struct perf_event **evt;
3572 event_heap = (struct min_heap){
3573 .data = cpuctx->heap,
3575 .size = cpuctx->heap_size,
3578 lockdep_assert_held(&cpuctx->ctx.lock);
3580 #ifdef CONFIG_CGROUP_PERF
3582 css = &cpuctx->cgrp->css;
3585 event_heap = (struct min_heap){
3588 .size = ARRAY_SIZE(itrs),
3590 /* Events not within a CPU context may be on any CPU. */
3591 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3593 evt = event_heap.data;
3595 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3597 #ifdef CONFIG_CGROUP_PERF
3598 for (; css; css = css->parent)
3599 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3602 min_heapify_all(&event_heap, &perf_min_heap);
3604 while (event_heap.nr) {
3605 ret = func(*evt, data);
3609 *evt = perf_event_groups_next(*evt);
3611 min_heapify(&event_heap, 0, &perf_min_heap);
3613 min_heap_pop(&event_heap, &perf_min_heap);
3619 static int merge_sched_in(struct perf_event *event, void *data)
3621 struct perf_event_context *ctx = event->ctx;
3622 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3623 int *can_add_hw = data;
3625 if (event->state <= PERF_EVENT_STATE_OFF)
3628 if (!event_filter_match(event))
3631 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3632 if (!group_sched_in(event, cpuctx, ctx))
3633 list_add_tail(&event->active_list, get_event_list(event));
3636 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3637 if (event->attr.pinned) {
3638 perf_cgroup_event_disable(event, ctx);
3639 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3643 ctx->rotate_necessary = 1;
3650 ctx_pinned_sched_in(struct perf_event_context *ctx,
3651 struct perf_cpu_context *cpuctx)
3655 if (ctx != &cpuctx->ctx)
3658 visit_groups_merge(cpuctx, &ctx->pinned_groups,
3660 merge_sched_in, &can_add_hw);
3664 ctx_flexible_sched_in(struct perf_event_context *ctx,
3665 struct perf_cpu_context *cpuctx)
3669 if (ctx != &cpuctx->ctx)
3672 visit_groups_merge(cpuctx, &ctx->flexible_groups,
3674 merge_sched_in, &can_add_hw);
3678 ctx_sched_in(struct perf_event_context *ctx,
3679 struct perf_cpu_context *cpuctx,
3680 enum event_type_t event_type,
3681 struct task_struct *task)
3683 int is_active = ctx->is_active;
3686 lockdep_assert_held(&ctx->lock);
3688 if (likely(!ctx->nr_events))
3691 ctx->is_active |= (event_type | EVENT_TIME);
3694 cpuctx->task_ctx = ctx;
3696 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3699 is_active ^= ctx->is_active; /* changed bits */
3701 if (is_active & EVENT_TIME) {
3702 /* start ctx time */
3704 ctx->timestamp = now;
3705 perf_cgroup_set_timestamp(task, ctx);
3709 * First go through the list and put on any pinned groups
3710 * in order to give them the best chance of going on.
3712 if (is_active & EVENT_PINNED)
3713 ctx_pinned_sched_in(ctx, cpuctx);
3715 /* Then walk through the lower prio flexible groups */
3716 if (is_active & EVENT_FLEXIBLE)
3717 ctx_flexible_sched_in(ctx, cpuctx);
3720 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3721 enum event_type_t event_type,
3722 struct task_struct *task)
3724 struct perf_event_context *ctx = &cpuctx->ctx;
3726 ctx_sched_in(ctx, cpuctx, event_type, task);
3729 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3730 struct task_struct *task)
3732 struct perf_cpu_context *cpuctx;
3734 cpuctx = __get_cpu_context(ctx);
3735 if (cpuctx->task_ctx == ctx)
3738 perf_ctx_lock(cpuctx, ctx);
3740 * We must check ctx->nr_events while holding ctx->lock, such
3741 * that we serialize against perf_install_in_context().
3743 if (!ctx->nr_events)
3746 perf_pmu_disable(ctx->pmu);
3748 * We want to keep the following priority order:
3749 * cpu pinned (that don't need to move), task pinned,
3750 * cpu flexible, task flexible.
3752 * However, if task's ctx is not carrying any pinned
3753 * events, no need to flip the cpuctx's events around.
3755 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3756 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3757 perf_event_sched_in(cpuctx, ctx, task);
3758 perf_pmu_enable(ctx->pmu);
3761 perf_ctx_unlock(cpuctx, ctx);
3765 * Called from scheduler to add the events of the current task
3766 * with interrupts disabled.
3768 * We restore the event value and then enable it.
3770 * This does not protect us against NMI, but enable()
3771 * sets the enabled bit in the control field of event _before_
3772 * accessing the event control register. If a NMI hits, then it will
3773 * keep the event running.
3775 void __perf_event_task_sched_in(struct task_struct *prev,
3776 struct task_struct *task)
3778 struct perf_event_context *ctx;
3782 * If cgroup events exist on this CPU, then we need to check if we have
3783 * to switch in PMU state; cgroup event are system-wide mode only.
3785 * Since cgroup events are CPU events, we must schedule these in before
3786 * we schedule in the task events.
3788 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3789 perf_cgroup_sched_in(prev, task);
3791 for_each_task_context_nr(ctxn) {
3792 ctx = task->perf_event_ctxp[ctxn];
3796 perf_event_context_sched_in(ctx, task);
3799 if (atomic_read(&nr_switch_events))
3800 perf_event_switch(task, prev, true);
3802 if (__this_cpu_read(perf_sched_cb_usages))
3803 perf_pmu_sched_task(prev, task, true);
3806 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3808 u64 frequency = event->attr.sample_freq;
3809 u64 sec = NSEC_PER_SEC;
3810 u64 divisor, dividend;
3812 int count_fls, nsec_fls, frequency_fls, sec_fls;
3814 count_fls = fls64(count);
3815 nsec_fls = fls64(nsec);
3816 frequency_fls = fls64(frequency);
3820 * We got @count in @nsec, with a target of sample_freq HZ
3821 * the target period becomes:
3824 * period = -------------------
3825 * @nsec * sample_freq
3830 * Reduce accuracy by one bit such that @a and @b converge
3831 * to a similar magnitude.
3833 #define REDUCE_FLS(a, b) \
3835 if (a##_fls > b##_fls) { \
3845 * Reduce accuracy until either term fits in a u64, then proceed with
3846 * the other, so that finally we can do a u64/u64 division.
3848 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3849 REDUCE_FLS(nsec, frequency);
3850 REDUCE_FLS(sec, count);
3853 if (count_fls + sec_fls > 64) {
3854 divisor = nsec * frequency;
3856 while (count_fls + sec_fls > 64) {
3857 REDUCE_FLS(count, sec);
3861 dividend = count * sec;
3863 dividend = count * sec;
3865 while (nsec_fls + frequency_fls > 64) {
3866 REDUCE_FLS(nsec, frequency);
3870 divisor = nsec * frequency;
3876 return div64_u64(dividend, divisor);
3879 static DEFINE_PER_CPU(int, perf_throttled_count);
3880 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3882 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3884 struct hw_perf_event *hwc = &event->hw;
3885 s64 period, sample_period;
3888 period = perf_calculate_period(event, nsec, count);
3890 delta = (s64)(period - hwc->sample_period);
3891 delta = (delta + 7) / 8; /* low pass filter */
3893 sample_period = hwc->sample_period + delta;
3898 hwc->sample_period = sample_period;
3900 if (local64_read(&hwc->period_left) > 8*sample_period) {
3902 event->pmu->stop(event, PERF_EF_UPDATE);
3904 local64_set(&hwc->period_left, 0);
3907 event->pmu->start(event, PERF_EF_RELOAD);
3912 * combine freq adjustment with unthrottling to avoid two passes over the
3913 * events. At the same time, make sure, having freq events does not change
3914 * the rate of unthrottling as that would introduce bias.
3916 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3919 struct perf_event *event;
3920 struct hw_perf_event *hwc;
3921 u64 now, period = TICK_NSEC;
3925 * only need to iterate over all events iff:
3926 * - context have events in frequency mode (needs freq adjust)
3927 * - there are events to unthrottle on this cpu
3929 if (!(ctx->nr_freq || needs_unthr))
3932 raw_spin_lock(&ctx->lock);
3933 perf_pmu_disable(ctx->pmu);
3935 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3936 if (event->state != PERF_EVENT_STATE_ACTIVE)
3939 if (!event_filter_match(event))
3942 perf_pmu_disable(event->pmu);
3946 if (hwc->interrupts == MAX_INTERRUPTS) {
3947 hwc->interrupts = 0;
3948 perf_log_throttle(event, 1);
3949 event->pmu->start(event, 0);
3952 if (!event->attr.freq || !event->attr.sample_freq)
3956 * stop the event and update event->count
3958 event->pmu->stop(event, PERF_EF_UPDATE);
3960 now = local64_read(&event->count);
3961 delta = now - hwc->freq_count_stamp;
3962 hwc->freq_count_stamp = now;
3966 * reload only if value has changed
3967 * we have stopped the event so tell that
3968 * to perf_adjust_period() to avoid stopping it
3972 perf_adjust_period(event, period, delta, false);
3974 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3976 perf_pmu_enable(event->pmu);
3979 perf_pmu_enable(ctx->pmu);
3980 raw_spin_unlock(&ctx->lock);
3984 * Move @event to the tail of the @ctx's elegible events.
3986 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3989 * Rotate the first entry last of non-pinned groups. Rotation might be
3990 * disabled by the inheritance code.
3992 if (ctx->rotate_disable)
3995 perf_event_groups_delete(&ctx->flexible_groups, event);
3996 perf_event_groups_insert(&ctx->flexible_groups, event);
3999 /* pick an event from the flexible_groups to rotate */
4000 static inline struct perf_event *
4001 ctx_event_to_rotate(struct perf_event_context *ctx)
4003 struct perf_event *event;
4005 /* pick the first active flexible event */
4006 event = list_first_entry_or_null(&ctx->flexible_active,
4007 struct perf_event, active_list);
4009 /* if no active flexible event, pick the first event */
4011 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4012 typeof(*event), group_node);
4016 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4017 * finds there are unschedulable events, it will set it again.
4019 ctx->rotate_necessary = 0;
4024 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4026 struct perf_event *cpu_event = NULL, *task_event = NULL;
4027 struct perf_event_context *task_ctx = NULL;
4028 int cpu_rotate, task_rotate;
4031 * Since we run this from IRQ context, nobody can install new
4032 * events, thus the event count values are stable.
4035 cpu_rotate = cpuctx->ctx.rotate_necessary;
4036 task_ctx = cpuctx->task_ctx;
4037 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4039 if (!(cpu_rotate || task_rotate))
4042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4043 perf_pmu_disable(cpuctx->ctx.pmu);
4046 task_event = ctx_event_to_rotate(task_ctx);
4048 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4051 * As per the order given at ctx_resched() first 'pop' task flexible
4052 * and then, if needed CPU flexible.
4054 if (task_event || (task_ctx && cpu_event))
4055 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4057 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4060 rotate_ctx(task_ctx, task_event);
4062 rotate_ctx(&cpuctx->ctx, cpu_event);
4064 perf_event_sched_in(cpuctx, task_ctx, current);
4066 perf_pmu_enable(cpuctx->ctx.pmu);
4067 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4072 void perf_event_task_tick(void)
4074 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4075 struct perf_event_context *ctx, *tmp;
4078 lockdep_assert_irqs_disabled();
4080 __this_cpu_inc(perf_throttled_seq);
4081 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4082 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4084 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4085 perf_adjust_freq_unthr_context(ctx, throttled);
4088 static int event_enable_on_exec(struct perf_event *event,
4089 struct perf_event_context *ctx)
4091 if (!event->attr.enable_on_exec)
4094 event->attr.enable_on_exec = 0;
4095 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4098 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4104 * Enable all of a task's events that have been marked enable-on-exec.
4105 * This expects task == current.
4107 static void perf_event_enable_on_exec(int ctxn)
4109 struct perf_event_context *ctx, *clone_ctx = NULL;
4110 enum event_type_t event_type = 0;
4111 struct perf_cpu_context *cpuctx;
4112 struct perf_event *event;
4113 unsigned long flags;
4116 local_irq_save(flags);
4117 ctx = current->perf_event_ctxp[ctxn];
4118 if (!ctx || !ctx->nr_events)
4121 cpuctx = __get_cpu_context(ctx);
4122 perf_ctx_lock(cpuctx, ctx);
4123 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4124 list_for_each_entry(event, &ctx->event_list, event_entry) {
4125 enabled |= event_enable_on_exec(event, ctx);
4126 event_type |= get_event_type(event);
4130 * Unclone and reschedule this context if we enabled any event.
4133 clone_ctx = unclone_ctx(ctx);
4134 ctx_resched(cpuctx, ctx, event_type);
4136 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4138 perf_ctx_unlock(cpuctx, ctx);
4141 local_irq_restore(flags);
4147 struct perf_read_data {
4148 struct perf_event *event;
4153 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4155 u16 local_pkg, event_pkg;
4157 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4158 int local_cpu = smp_processor_id();
4160 event_pkg = topology_physical_package_id(event_cpu);
4161 local_pkg = topology_physical_package_id(local_cpu);
4163 if (event_pkg == local_pkg)
4171 * Cross CPU call to read the hardware event
4173 static void __perf_event_read(void *info)
4175 struct perf_read_data *data = info;
4176 struct perf_event *sub, *event = data->event;
4177 struct perf_event_context *ctx = event->ctx;
4178 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4179 struct pmu *pmu = event->pmu;
4182 * If this is a task context, we need to check whether it is
4183 * the current task context of this cpu. If not it has been
4184 * scheduled out before the smp call arrived. In that case
4185 * event->count would have been updated to a recent sample
4186 * when the event was scheduled out.
4188 if (ctx->task && cpuctx->task_ctx != ctx)
4191 raw_spin_lock(&ctx->lock);
4192 if (ctx->is_active & EVENT_TIME) {
4193 update_context_time(ctx);
4194 update_cgrp_time_from_event(event);
4197 perf_event_update_time(event);
4199 perf_event_update_sibling_time(event);
4201 if (event->state != PERF_EVENT_STATE_ACTIVE)
4210 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4214 for_each_sibling_event(sub, event) {
4215 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4217 * Use sibling's PMU rather than @event's since
4218 * sibling could be on different (eg: software) PMU.
4220 sub->pmu->read(sub);
4224 data->ret = pmu->commit_txn(pmu);
4227 raw_spin_unlock(&ctx->lock);
4230 static inline u64 perf_event_count(struct perf_event *event)
4232 return local64_read(&event->count) + atomic64_read(&event->child_count);
4236 * NMI-safe method to read a local event, that is an event that
4238 * - either for the current task, or for this CPU
4239 * - does not have inherit set, for inherited task events
4240 * will not be local and we cannot read them atomically
4241 * - must not have a pmu::count method
4243 int perf_event_read_local(struct perf_event *event, u64 *value,
4244 u64 *enabled, u64 *running)
4246 unsigned long flags;
4250 * Disabling interrupts avoids all counter scheduling (context
4251 * switches, timer based rotation and IPIs).
4253 local_irq_save(flags);
4256 * It must not be an event with inherit set, we cannot read
4257 * all child counters from atomic context.
4259 if (event->attr.inherit) {
4264 /* If this is a per-task event, it must be for current */
4265 if ((event->attach_state & PERF_ATTACH_TASK) &&
4266 event->hw.target != current) {
4271 /* If this is a per-CPU event, it must be for this CPU */
4272 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4273 event->cpu != smp_processor_id()) {
4278 /* If this is a pinned event it must be running on this CPU */
4279 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4285 * If the event is currently on this CPU, its either a per-task event,
4286 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4289 if (event->oncpu == smp_processor_id())
4290 event->pmu->read(event);
4292 *value = local64_read(&event->count);
4293 if (enabled || running) {
4294 u64 now = event->shadow_ctx_time + perf_clock();
4295 u64 __enabled, __running;
4297 __perf_update_times(event, now, &__enabled, &__running);
4299 *enabled = __enabled;
4301 *running = __running;
4304 local_irq_restore(flags);
4309 static int perf_event_read(struct perf_event *event, bool group)
4311 enum perf_event_state state = READ_ONCE(event->state);
4312 int event_cpu, ret = 0;
4315 * If event is enabled and currently active on a CPU, update the
4316 * value in the event structure:
4319 if (state == PERF_EVENT_STATE_ACTIVE) {
4320 struct perf_read_data data;
4323 * Orders the ->state and ->oncpu loads such that if we see
4324 * ACTIVE we must also see the right ->oncpu.
4326 * Matches the smp_wmb() from event_sched_in().
4330 event_cpu = READ_ONCE(event->oncpu);
4331 if ((unsigned)event_cpu >= nr_cpu_ids)
4334 data = (struct perf_read_data){
4341 event_cpu = __perf_event_read_cpu(event, event_cpu);
4344 * Purposely ignore the smp_call_function_single() return
4347 * If event_cpu isn't a valid CPU it means the event got
4348 * scheduled out and that will have updated the event count.
4350 * Therefore, either way, we'll have an up-to-date event count
4353 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4357 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4358 struct perf_event_context *ctx = event->ctx;
4359 unsigned long flags;
4361 raw_spin_lock_irqsave(&ctx->lock, flags);
4362 state = event->state;
4363 if (state != PERF_EVENT_STATE_INACTIVE) {
4364 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4369 * May read while context is not active (e.g., thread is
4370 * blocked), in that case we cannot update context time
4372 if (ctx->is_active & EVENT_TIME) {
4373 update_context_time(ctx);
4374 update_cgrp_time_from_event(event);
4377 perf_event_update_time(event);
4379 perf_event_update_sibling_time(event);
4380 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4387 * Initialize the perf_event context in a task_struct:
4389 static void __perf_event_init_context(struct perf_event_context *ctx)
4391 raw_spin_lock_init(&ctx->lock);
4392 mutex_init(&ctx->mutex);
4393 INIT_LIST_HEAD(&ctx->active_ctx_list);
4394 perf_event_groups_init(&ctx->pinned_groups);
4395 perf_event_groups_init(&ctx->flexible_groups);
4396 INIT_LIST_HEAD(&ctx->event_list);
4397 INIT_LIST_HEAD(&ctx->pinned_active);
4398 INIT_LIST_HEAD(&ctx->flexible_active);
4399 refcount_set(&ctx->refcount, 1);
4402 static struct perf_event_context *
4403 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4405 struct perf_event_context *ctx;
4407 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4411 __perf_event_init_context(ctx);
4413 ctx->task = get_task_struct(task);
4419 static struct task_struct *
4420 find_lively_task_by_vpid(pid_t vpid)
4422 struct task_struct *task;
4428 task = find_task_by_vpid(vpid);
4430 get_task_struct(task);
4434 return ERR_PTR(-ESRCH);
4440 * Returns a matching context with refcount and pincount.
4442 static struct perf_event_context *
4443 find_get_context(struct pmu *pmu, struct task_struct *task,
4444 struct perf_event *event)
4446 struct perf_event_context *ctx, *clone_ctx = NULL;
4447 struct perf_cpu_context *cpuctx;
4448 void *task_ctx_data = NULL;
4449 unsigned long flags;
4451 int cpu = event->cpu;
4454 /* Must be root to operate on a CPU event: */
4455 err = perf_allow_cpu(&event->attr);
4457 return ERR_PTR(err);
4459 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4468 ctxn = pmu->task_ctx_nr;
4472 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4473 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4474 if (!task_ctx_data) {
4481 ctx = perf_lock_task_context(task, ctxn, &flags);
4483 clone_ctx = unclone_ctx(ctx);
4486 if (task_ctx_data && !ctx->task_ctx_data) {
4487 ctx->task_ctx_data = task_ctx_data;
4488 task_ctx_data = NULL;
4490 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4495 ctx = alloc_perf_context(pmu, task);
4500 if (task_ctx_data) {
4501 ctx->task_ctx_data = task_ctx_data;
4502 task_ctx_data = NULL;
4506 mutex_lock(&task->perf_event_mutex);
4508 * If it has already passed perf_event_exit_task().
4509 * we must see PF_EXITING, it takes this mutex too.
4511 if (task->flags & PF_EXITING)
4513 else if (task->perf_event_ctxp[ctxn])
4518 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4520 mutex_unlock(&task->perf_event_mutex);
4522 if (unlikely(err)) {
4531 kfree(task_ctx_data);
4535 kfree(task_ctx_data);
4536 return ERR_PTR(err);
4539 static void perf_event_free_filter(struct perf_event *event);
4540 static void perf_event_free_bpf_prog(struct perf_event *event);
4542 static void free_event_rcu(struct rcu_head *head)
4544 struct perf_event *event;
4546 event = container_of(head, struct perf_event, rcu_head);
4548 put_pid_ns(event->ns);
4549 perf_event_free_filter(event);
4553 static void ring_buffer_attach(struct perf_event *event,
4554 struct perf_buffer *rb);
4556 static void detach_sb_event(struct perf_event *event)
4558 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4560 raw_spin_lock(&pel->lock);
4561 list_del_rcu(&event->sb_list);
4562 raw_spin_unlock(&pel->lock);
4565 static bool is_sb_event(struct perf_event *event)
4567 struct perf_event_attr *attr = &event->attr;
4572 if (event->attach_state & PERF_ATTACH_TASK)
4575 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4576 attr->comm || attr->comm_exec ||
4577 attr->task || attr->ksymbol ||
4578 attr->context_switch ||
4584 static void unaccount_pmu_sb_event(struct perf_event *event)
4586 if (is_sb_event(event))
4587 detach_sb_event(event);
4590 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4595 if (is_cgroup_event(event))
4596 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4599 #ifdef CONFIG_NO_HZ_FULL
4600 static DEFINE_SPINLOCK(nr_freq_lock);
4603 static void unaccount_freq_event_nohz(void)
4605 #ifdef CONFIG_NO_HZ_FULL
4606 spin_lock(&nr_freq_lock);
4607 if (atomic_dec_and_test(&nr_freq_events))
4608 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4609 spin_unlock(&nr_freq_lock);
4613 static void unaccount_freq_event(void)
4615 if (tick_nohz_full_enabled())
4616 unaccount_freq_event_nohz();
4618 atomic_dec(&nr_freq_events);
4621 static void unaccount_event(struct perf_event *event)
4628 if (event->attach_state & PERF_ATTACH_TASK)
4630 if (event->attr.mmap || event->attr.mmap_data)
4631 atomic_dec(&nr_mmap_events);
4632 if (event->attr.comm)
4633 atomic_dec(&nr_comm_events);
4634 if (event->attr.namespaces)
4635 atomic_dec(&nr_namespaces_events);
4636 if (event->attr.cgroup)
4637 atomic_dec(&nr_cgroup_events);
4638 if (event->attr.task)
4639 atomic_dec(&nr_task_events);
4640 if (event->attr.freq)
4641 unaccount_freq_event();
4642 if (event->attr.context_switch) {
4644 atomic_dec(&nr_switch_events);
4646 if (is_cgroup_event(event))
4648 if (has_branch_stack(event))
4650 if (event->attr.ksymbol)
4651 atomic_dec(&nr_ksymbol_events);
4652 if (event->attr.bpf_event)
4653 atomic_dec(&nr_bpf_events);
4656 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4657 schedule_delayed_work(&perf_sched_work, HZ);
4660 unaccount_event_cpu(event, event->cpu);
4662 unaccount_pmu_sb_event(event);
4665 static void perf_sched_delayed(struct work_struct *work)
4667 mutex_lock(&perf_sched_mutex);
4668 if (atomic_dec_and_test(&perf_sched_count))
4669 static_branch_disable(&perf_sched_events);
4670 mutex_unlock(&perf_sched_mutex);
4674 * The following implement mutual exclusion of events on "exclusive" pmus
4675 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4676 * at a time, so we disallow creating events that might conflict, namely:
4678 * 1) cpu-wide events in the presence of per-task events,
4679 * 2) per-task events in the presence of cpu-wide events,
4680 * 3) two matching events on the same context.
4682 * The former two cases are handled in the allocation path (perf_event_alloc(),
4683 * _free_event()), the latter -- before the first perf_install_in_context().
4685 static int exclusive_event_init(struct perf_event *event)
4687 struct pmu *pmu = event->pmu;
4689 if (!is_exclusive_pmu(pmu))
4693 * Prevent co-existence of per-task and cpu-wide events on the
4694 * same exclusive pmu.
4696 * Negative pmu::exclusive_cnt means there are cpu-wide
4697 * events on this "exclusive" pmu, positive means there are
4700 * Since this is called in perf_event_alloc() path, event::ctx
4701 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4702 * to mean "per-task event", because unlike other attach states it
4703 * never gets cleared.
4705 if (event->attach_state & PERF_ATTACH_TASK) {
4706 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4709 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4716 static void exclusive_event_destroy(struct perf_event *event)
4718 struct pmu *pmu = event->pmu;
4720 if (!is_exclusive_pmu(pmu))
4723 /* see comment in exclusive_event_init() */
4724 if (event->attach_state & PERF_ATTACH_TASK)
4725 atomic_dec(&pmu->exclusive_cnt);
4727 atomic_inc(&pmu->exclusive_cnt);
4730 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4732 if ((e1->pmu == e2->pmu) &&
4733 (e1->cpu == e2->cpu ||
4740 static bool exclusive_event_installable(struct perf_event *event,
4741 struct perf_event_context *ctx)
4743 struct perf_event *iter_event;
4744 struct pmu *pmu = event->pmu;
4746 lockdep_assert_held(&ctx->mutex);
4748 if (!is_exclusive_pmu(pmu))
4751 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4752 if (exclusive_event_match(iter_event, event))
4759 static void perf_addr_filters_splice(struct perf_event *event,
4760 struct list_head *head);
4762 static void _free_event(struct perf_event *event)
4764 irq_work_sync(&event->pending);
4766 unaccount_event(event);
4768 security_perf_event_free(event);
4772 * Can happen when we close an event with re-directed output.
4774 * Since we have a 0 refcount, perf_mmap_close() will skip
4775 * over us; possibly making our ring_buffer_put() the last.
4777 mutex_lock(&event->mmap_mutex);
4778 ring_buffer_attach(event, NULL);
4779 mutex_unlock(&event->mmap_mutex);
4782 if (is_cgroup_event(event))
4783 perf_detach_cgroup(event);
4785 if (!event->parent) {
4786 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4787 put_callchain_buffers();
4790 perf_event_free_bpf_prog(event);
4791 perf_addr_filters_splice(event, NULL);
4792 kfree(event->addr_filter_ranges);
4795 event->destroy(event);
4798 * Must be after ->destroy(), due to uprobe_perf_close() using
4801 if (event->hw.target)
4802 put_task_struct(event->hw.target);
4805 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4806 * all task references must be cleaned up.
4809 put_ctx(event->ctx);
4811 exclusive_event_destroy(event);
4812 module_put(event->pmu->module);
4814 call_rcu(&event->rcu_head, free_event_rcu);
4818 * Used to free events which have a known refcount of 1, such as in error paths
4819 * where the event isn't exposed yet and inherited events.
4821 static void free_event(struct perf_event *event)
4823 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4824 "unexpected event refcount: %ld; ptr=%p\n",
4825 atomic_long_read(&event->refcount), event)) {
4826 /* leak to avoid use-after-free */
4834 * Remove user event from the owner task.
4836 static void perf_remove_from_owner(struct perf_event *event)
4838 struct task_struct *owner;
4842 * Matches the smp_store_release() in perf_event_exit_task(). If we
4843 * observe !owner it means the list deletion is complete and we can
4844 * indeed free this event, otherwise we need to serialize on
4845 * owner->perf_event_mutex.
4847 owner = READ_ONCE(event->owner);
4850 * Since delayed_put_task_struct() also drops the last
4851 * task reference we can safely take a new reference
4852 * while holding the rcu_read_lock().
4854 get_task_struct(owner);
4860 * If we're here through perf_event_exit_task() we're already
4861 * holding ctx->mutex which would be an inversion wrt. the
4862 * normal lock order.
4864 * However we can safely take this lock because its the child
4867 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4870 * We have to re-check the event->owner field, if it is cleared
4871 * we raced with perf_event_exit_task(), acquiring the mutex
4872 * ensured they're done, and we can proceed with freeing the
4876 list_del_init(&event->owner_entry);
4877 smp_store_release(&event->owner, NULL);
4879 mutex_unlock(&owner->perf_event_mutex);
4880 put_task_struct(owner);
4884 static void put_event(struct perf_event *event)
4886 if (!atomic_long_dec_and_test(&event->refcount))
4893 * Kill an event dead; while event:refcount will preserve the event
4894 * object, it will not preserve its functionality. Once the last 'user'
4895 * gives up the object, we'll destroy the thing.
4897 int perf_event_release_kernel(struct perf_event *event)
4899 struct perf_event_context *ctx = event->ctx;
4900 struct perf_event *child, *tmp;
4901 LIST_HEAD(free_list);
4904 * If we got here through err_file: fput(event_file); we will not have
4905 * attached to a context yet.
4908 WARN_ON_ONCE(event->attach_state &
4909 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4913 if (!is_kernel_event(event))
4914 perf_remove_from_owner(event);
4916 ctx = perf_event_ctx_lock(event);
4917 WARN_ON_ONCE(ctx->parent_ctx);
4918 perf_remove_from_context(event, DETACH_GROUP);
4920 raw_spin_lock_irq(&ctx->lock);
4922 * Mark this event as STATE_DEAD, there is no external reference to it
4925 * Anybody acquiring event->child_mutex after the below loop _must_
4926 * also see this, most importantly inherit_event() which will avoid
4927 * placing more children on the list.
4929 * Thus this guarantees that we will in fact observe and kill _ALL_
4932 event->state = PERF_EVENT_STATE_DEAD;
4933 raw_spin_unlock_irq(&ctx->lock);
4935 perf_event_ctx_unlock(event, ctx);
4938 mutex_lock(&event->child_mutex);
4939 list_for_each_entry(child, &event->child_list, child_list) {
4942 * Cannot change, child events are not migrated, see the
4943 * comment with perf_event_ctx_lock_nested().
4945 ctx = READ_ONCE(child->ctx);
4947 * Since child_mutex nests inside ctx::mutex, we must jump
4948 * through hoops. We start by grabbing a reference on the ctx.
4950 * Since the event cannot get freed while we hold the
4951 * child_mutex, the context must also exist and have a !0
4957 * Now that we have a ctx ref, we can drop child_mutex, and
4958 * acquire ctx::mutex without fear of it going away. Then we
4959 * can re-acquire child_mutex.
4961 mutex_unlock(&event->child_mutex);
4962 mutex_lock(&ctx->mutex);
4963 mutex_lock(&event->child_mutex);
4966 * Now that we hold ctx::mutex and child_mutex, revalidate our
4967 * state, if child is still the first entry, it didn't get freed
4968 * and we can continue doing so.
4970 tmp = list_first_entry_or_null(&event->child_list,
4971 struct perf_event, child_list);
4973 perf_remove_from_context(child, DETACH_GROUP);
4974 list_move(&child->child_list, &free_list);
4976 * This matches the refcount bump in inherit_event();
4977 * this can't be the last reference.
4982 mutex_unlock(&event->child_mutex);
4983 mutex_unlock(&ctx->mutex);
4987 mutex_unlock(&event->child_mutex);
4989 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4990 void *var = &child->ctx->refcount;
4992 list_del(&child->child_list);
4996 * Wake any perf_event_free_task() waiting for this event to be
4999 smp_mb(); /* pairs with wait_var_event() */
5004 put_event(event); /* Must be the 'last' reference */
5007 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5010 * Called when the last reference to the file is gone.
5012 static int perf_release(struct inode *inode, struct file *file)
5014 perf_event_release_kernel(file->private_data);
5018 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5020 struct perf_event *child;
5026 mutex_lock(&event->child_mutex);
5028 (void)perf_event_read(event, false);
5029 total += perf_event_count(event);
5031 *enabled += event->total_time_enabled +
5032 atomic64_read(&event->child_total_time_enabled);
5033 *running += event->total_time_running +
5034 atomic64_read(&event->child_total_time_running);
5036 list_for_each_entry(child, &event->child_list, child_list) {
5037 (void)perf_event_read(child, false);
5038 total += perf_event_count(child);
5039 *enabled += child->total_time_enabled;
5040 *running += child->total_time_running;
5042 mutex_unlock(&event->child_mutex);
5047 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5049 struct perf_event_context *ctx;
5052 ctx = perf_event_ctx_lock(event);
5053 count = __perf_event_read_value(event, enabled, running);
5054 perf_event_ctx_unlock(event, ctx);
5058 EXPORT_SYMBOL_GPL(perf_event_read_value);
5060 static int __perf_read_group_add(struct perf_event *leader,
5061 u64 read_format, u64 *values)
5063 struct perf_event_context *ctx = leader->ctx;
5064 struct perf_event *sub;
5065 unsigned long flags;
5066 int n = 1; /* skip @nr */
5069 ret = perf_event_read(leader, true);
5073 raw_spin_lock_irqsave(&ctx->lock, flags);
5076 * Since we co-schedule groups, {enabled,running} times of siblings
5077 * will be identical to those of the leader, so we only publish one
5080 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5081 values[n++] += leader->total_time_enabled +
5082 atomic64_read(&leader->child_total_time_enabled);
5085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5086 values[n++] += leader->total_time_running +
5087 atomic64_read(&leader->child_total_time_running);
5091 * Write {count,id} tuples for every sibling.
5093 values[n++] += perf_event_count(leader);
5094 if (read_format & PERF_FORMAT_ID)
5095 values[n++] = primary_event_id(leader);
5097 for_each_sibling_event(sub, leader) {
5098 values[n++] += perf_event_count(sub);
5099 if (read_format & PERF_FORMAT_ID)
5100 values[n++] = primary_event_id(sub);
5103 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5107 static int perf_read_group(struct perf_event *event,
5108 u64 read_format, char __user *buf)
5110 struct perf_event *leader = event->group_leader, *child;
5111 struct perf_event_context *ctx = leader->ctx;
5115 lockdep_assert_held(&ctx->mutex);
5117 values = kzalloc(event->read_size, GFP_KERNEL);
5121 values[0] = 1 + leader->nr_siblings;
5124 * By locking the child_mutex of the leader we effectively
5125 * lock the child list of all siblings.. XXX explain how.
5127 mutex_lock(&leader->child_mutex);
5129 ret = __perf_read_group_add(leader, read_format, values);
5133 list_for_each_entry(child, &leader->child_list, child_list) {
5134 ret = __perf_read_group_add(child, read_format, values);
5139 mutex_unlock(&leader->child_mutex);
5141 ret = event->read_size;
5142 if (copy_to_user(buf, values, event->read_size))
5147 mutex_unlock(&leader->child_mutex);
5153 static int perf_read_one(struct perf_event *event,
5154 u64 read_format, char __user *buf)
5156 u64 enabled, running;
5160 values[n++] = __perf_event_read_value(event, &enabled, &running);
5161 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5162 values[n++] = enabled;
5163 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5164 values[n++] = running;
5165 if (read_format & PERF_FORMAT_ID)
5166 values[n++] = primary_event_id(event);
5168 if (copy_to_user(buf, values, n * sizeof(u64)))
5171 return n * sizeof(u64);
5174 static bool is_event_hup(struct perf_event *event)
5178 if (event->state > PERF_EVENT_STATE_EXIT)
5181 mutex_lock(&event->child_mutex);
5182 no_children = list_empty(&event->child_list);
5183 mutex_unlock(&event->child_mutex);
5188 * Read the performance event - simple non blocking version for now
5191 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5193 u64 read_format = event->attr.read_format;
5197 * Return end-of-file for a read on an event that is in
5198 * error state (i.e. because it was pinned but it couldn't be
5199 * scheduled on to the CPU at some point).
5201 if (event->state == PERF_EVENT_STATE_ERROR)
5204 if (count < event->read_size)
5207 WARN_ON_ONCE(event->ctx->parent_ctx);
5208 if (read_format & PERF_FORMAT_GROUP)
5209 ret = perf_read_group(event, read_format, buf);
5211 ret = perf_read_one(event, read_format, buf);
5217 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5219 struct perf_event *event = file->private_data;
5220 struct perf_event_context *ctx;
5223 ret = security_perf_event_read(event);
5227 ctx = perf_event_ctx_lock(event);
5228 ret = __perf_read(event, buf, count);
5229 perf_event_ctx_unlock(event, ctx);
5234 static __poll_t perf_poll(struct file *file, poll_table *wait)
5236 struct perf_event *event = file->private_data;
5237 struct perf_buffer *rb;
5238 __poll_t events = EPOLLHUP;
5240 poll_wait(file, &event->waitq, wait);
5242 if (is_event_hup(event))
5246 * Pin the event->rb by taking event->mmap_mutex; otherwise
5247 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5249 mutex_lock(&event->mmap_mutex);
5252 events = atomic_xchg(&rb->poll, 0);
5253 mutex_unlock(&event->mmap_mutex);
5257 static void _perf_event_reset(struct perf_event *event)
5259 (void)perf_event_read(event, false);
5260 local64_set(&event->count, 0);
5261 perf_event_update_userpage(event);
5264 /* Assume it's not an event with inherit set. */
5265 u64 perf_event_pause(struct perf_event *event, bool reset)
5267 struct perf_event_context *ctx;
5270 ctx = perf_event_ctx_lock(event);
5271 WARN_ON_ONCE(event->attr.inherit);
5272 _perf_event_disable(event);
5273 count = local64_read(&event->count);
5275 local64_set(&event->count, 0);
5276 perf_event_ctx_unlock(event, ctx);
5280 EXPORT_SYMBOL_GPL(perf_event_pause);
5283 * Holding the top-level event's child_mutex means that any
5284 * descendant process that has inherited this event will block
5285 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5286 * task existence requirements of perf_event_enable/disable.
5288 static void perf_event_for_each_child(struct perf_event *event,
5289 void (*func)(struct perf_event *))
5291 struct perf_event *child;
5293 WARN_ON_ONCE(event->ctx->parent_ctx);
5295 mutex_lock(&event->child_mutex);
5297 list_for_each_entry(child, &event->child_list, child_list)
5299 mutex_unlock(&event->child_mutex);
5302 static void perf_event_for_each(struct perf_event *event,
5303 void (*func)(struct perf_event *))
5305 struct perf_event_context *ctx = event->ctx;
5306 struct perf_event *sibling;
5308 lockdep_assert_held(&ctx->mutex);
5310 event = event->group_leader;
5312 perf_event_for_each_child(event, func);
5313 for_each_sibling_event(sibling, event)
5314 perf_event_for_each_child(sibling, func);
5317 static void __perf_event_period(struct perf_event *event,
5318 struct perf_cpu_context *cpuctx,
5319 struct perf_event_context *ctx,
5322 u64 value = *((u64 *)info);
5325 if (event->attr.freq) {
5326 event->attr.sample_freq = value;
5328 event->attr.sample_period = value;
5329 event->hw.sample_period = value;
5332 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5334 perf_pmu_disable(ctx->pmu);
5336 * We could be throttled; unthrottle now to avoid the tick
5337 * trying to unthrottle while we already re-started the event.
5339 if (event->hw.interrupts == MAX_INTERRUPTS) {
5340 event->hw.interrupts = 0;
5341 perf_log_throttle(event, 1);
5343 event->pmu->stop(event, PERF_EF_UPDATE);
5346 local64_set(&event->hw.period_left, 0);
5349 event->pmu->start(event, PERF_EF_RELOAD);
5350 perf_pmu_enable(ctx->pmu);
5354 static int perf_event_check_period(struct perf_event *event, u64 value)
5356 return event->pmu->check_period(event, value);
5359 static int _perf_event_period(struct perf_event *event, u64 value)
5361 if (!is_sampling_event(event))
5367 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5370 if (perf_event_check_period(event, value))
5373 if (!event->attr.freq && (value & (1ULL << 63)))
5376 event_function_call(event, __perf_event_period, &value);
5381 int perf_event_period(struct perf_event *event, u64 value)
5383 struct perf_event_context *ctx;
5386 ctx = perf_event_ctx_lock(event);
5387 ret = _perf_event_period(event, value);
5388 perf_event_ctx_unlock(event, ctx);
5392 EXPORT_SYMBOL_GPL(perf_event_period);
5394 static const struct file_operations perf_fops;
5396 static inline int perf_fget_light(int fd, struct fd *p)
5398 struct fd f = fdget(fd);
5402 if (f.file->f_op != &perf_fops) {
5410 static int perf_event_set_output(struct perf_event *event,
5411 struct perf_event *output_event);
5412 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5413 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5414 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5415 struct perf_event_attr *attr);
5417 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5419 void (*func)(struct perf_event *);
5423 case PERF_EVENT_IOC_ENABLE:
5424 func = _perf_event_enable;
5426 case PERF_EVENT_IOC_DISABLE:
5427 func = _perf_event_disable;
5429 case PERF_EVENT_IOC_RESET:
5430 func = _perf_event_reset;
5433 case PERF_EVENT_IOC_REFRESH:
5434 return _perf_event_refresh(event, arg);
5436 case PERF_EVENT_IOC_PERIOD:
5440 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5443 return _perf_event_period(event, value);
5445 case PERF_EVENT_IOC_ID:
5447 u64 id = primary_event_id(event);
5449 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5454 case PERF_EVENT_IOC_SET_OUTPUT:
5458 struct perf_event *output_event;
5460 ret = perf_fget_light(arg, &output);
5463 output_event = output.file->private_data;
5464 ret = perf_event_set_output(event, output_event);
5467 ret = perf_event_set_output(event, NULL);
5472 case PERF_EVENT_IOC_SET_FILTER:
5473 return perf_event_set_filter(event, (void __user *)arg);
5475 case PERF_EVENT_IOC_SET_BPF:
5476 return perf_event_set_bpf_prog(event, arg);
5478 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5479 struct perf_buffer *rb;
5482 rb = rcu_dereference(event->rb);
5483 if (!rb || !rb->nr_pages) {
5487 rb_toggle_paused(rb, !!arg);
5492 case PERF_EVENT_IOC_QUERY_BPF:
5493 return perf_event_query_prog_array(event, (void __user *)arg);
5495 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5496 struct perf_event_attr new_attr;
5497 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5503 return perf_event_modify_attr(event, &new_attr);
5509 if (flags & PERF_IOC_FLAG_GROUP)
5510 perf_event_for_each(event, func);
5512 perf_event_for_each_child(event, func);
5517 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5519 struct perf_event *event = file->private_data;
5520 struct perf_event_context *ctx;
5523 /* Treat ioctl like writes as it is likely a mutating operation. */
5524 ret = security_perf_event_write(event);
5528 ctx = perf_event_ctx_lock(event);
5529 ret = _perf_ioctl(event, cmd, arg);
5530 perf_event_ctx_unlock(event, ctx);
5535 #ifdef CONFIG_COMPAT
5536 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5539 switch (_IOC_NR(cmd)) {
5540 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5541 case _IOC_NR(PERF_EVENT_IOC_ID):
5542 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5543 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5544 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5545 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5546 cmd &= ~IOCSIZE_MASK;
5547 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5551 return perf_ioctl(file, cmd, arg);
5554 # define perf_compat_ioctl NULL
5557 int perf_event_task_enable(void)
5559 struct perf_event_context *ctx;
5560 struct perf_event *event;
5562 mutex_lock(¤t->perf_event_mutex);
5563 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5564 ctx = perf_event_ctx_lock(event);
5565 perf_event_for_each_child(event, _perf_event_enable);
5566 perf_event_ctx_unlock(event, ctx);
5568 mutex_unlock(¤t->perf_event_mutex);
5573 int perf_event_task_disable(void)
5575 struct perf_event_context *ctx;
5576 struct perf_event *event;
5578 mutex_lock(¤t->perf_event_mutex);
5579 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
5580 ctx = perf_event_ctx_lock(event);
5581 perf_event_for_each_child(event, _perf_event_disable);
5582 perf_event_ctx_unlock(event, ctx);
5584 mutex_unlock(¤t->perf_event_mutex);
5589 static int perf_event_index(struct perf_event *event)
5591 if (event->hw.state & PERF_HES_STOPPED)
5594 if (event->state != PERF_EVENT_STATE_ACTIVE)
5597 return event->pmu->event_idx(event);
5600 static void calc_timer_values(struct perf_event *event,
5607 *now = perf_clock();
5608 ctx_time = event->shadow_ctx_time + *now;
5609 __perf_update_times(event, ctx_time, enabled, running);
5612 static void perf_event_init_userpage(struct perf_event *event)
5614 struct perf_event_mmap_page *userpg;
5615 struct perf_buffer *rb;
5618 rb = rcu_dereference(event->rb);
5622 userpg = rb->user_page;
5624 /* Allow new userspace to detect that bit 0 is deprecated */
5625 userpg->cap_bit0_is_deprecated = 1;
5626 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5627 userpg->data_offset = PAGE_SIZE;
5628 userpg->data_size = perf_data_size(rb);
5634 void __weak arch_perf_update_userpage(
5635 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5640 * Callers need to ensure there can be no nesting of this function, otherwise
5641 * the seqlock logic goes bad. We can not serialize this because the arch
5642 * code calls this from NMI context.
5644 void perf_event_update_userpage(struct perf_event *event)
5646 struct perf_event_mmap_page *userpg;
5647 struct perf_buffer *rb;
5648 u64 enabled, running, now;
5651 rb = rcu_dereference(event->rb);
5656 * compute total_time_enabled, total_time_running
5657 * based on snapshot values taken when the event
5658 * was last scheduled in.
5660 * we cannot simply called update_context_time()
5661 * because of locking issue as we can be called in
5664 calc_timer_values(event, &now, &enabled, &running);
5666 userpg = rb->user_page;
5668 * Disable preemption to guarantee consistent time stamps are stored to
5674 userpg->index = perf_event_index(event);
5675 userpg->offset = perf_event_count(event);
5677 userpg->offset -= local64_read(&event->hw.prev_count);
5679 userpg->time_enabled = enabled +
5680 atomic64_read(&event->child_total_time_enabled);
5682 userpg->time_running = running +
5683 atomic64_read(&event->child_total_time_running);
5685 arch_perf_update_userpage(event, userpg, now);
5693 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5695 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5697 struct perf_event *event = vmf->vma->vm_file->private_data;
5698 struct perf_buffer *rb;
5699 vm_fault_t ret = VM_FAULT_SIGBUS;
5701 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5702 if (vmf->pgoff == 0)
5708 rb = rcu_dereference(event->rb);
5712 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5715 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5719 get_page(vmf->page);
5720 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5721 vmf->page->index = vmf->pgoff;
5730 static void ring_buffer_attach(struct perf_event *event,
5731 struct perf_buffer *rb)
5733 struct perf_buffer *old_rb = NULL;
5734 unsigned long flags;
5738 * Should be impossible, we set this when removing
5739 * event->rb_entry and wait/clear when adding event->rb_entry.
5741 WARN_ON_ONCE(event->rcu_pending);
5744 spin_lock_irqsave(&old_rb->event_lock, flags);
5745 list_del_rcu(&event->rb_entry);
5746 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5748 event->rcu_batches = get_state_synchronize_rcu();
5749 event->rcu_pending = 1;
5753 if (event->rcu_pending) {
5754 cond_synchronize_rcu(event->rcu_batches);
5755 event->rcu_pending = 0;
5758 spin_lock_irqsave(&rb->event_lock, flags);
5759 list_add_rcu(&event->rb_entry, &rb->event_list);
5760 spin_unlock_irqrestore(&rb->event_lock, flags);
5764 * Avoid racing with perf_mmap_close(AUX): stop the event
5765 * before swizzling the event::rb pointer; if it's getting
5766 * unmapped, its aux_mmap_count will be 0 and it won't
5767 * restart. See the comment in __perf_pmu_output_stop().
5769 * Data will inevitably be lost when set_output is done in
5770 * mid-air, but then again, whoever does it like this is
5771 * not in for the data anyway.
5774 perf_event_stop(event, 0);
5776 rcu_assign_pointer(event->rb, rb);
5779 ring_buffer_put(old_rb);
5781 * Since we detached before setting the new rb, so that we
5782 * could attach the new rb, we could have missed a wakeup.
5785 wake_up_all(&event->waitq);
5789 static void ring_buffer_wakeup(struct perf_event *event)
5791 struct perf_buffer *rb;
5794 rb = rcu_dereference(event->rb);
5796 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5797 wake_up_all(&event->waitq);
5802 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5804 struct perf_buffer *rb;
5807 rb = rcu_dereference(event->rb);
5809 if (!refcount_inc_not_zero(&rb->refcount))
5817 void ring_buffer_put(struct perf_buffer *rb)
5819 if (!refcount_dec_and_test(&rb->refcount))
5822 WARN_ON_ONCE(!list_empty(&rb->event_list));
5824 call_rcu(&rb->rcu_head, rb_free_rcu);
5827 static void perf_mmap_open(struct vm_area_struct *vma)
5829 struct perf_event *event = vma->vm_file->private_data;
5831 atomic_inc(&event->mmap_count);
5832 atomic_inc(&event->rb->mmap_count);
5835 atomic_inc(&event->rb->aux_mmap_count);
5837 if (event->pmu->event_mapped)
5838 event->pmu->event_mapped(event, vma->vm_mm);
5841 static void perf_pmu_output_stop(struct perf_event *event);
5844 * A buffer can be mmap()ed multiple times; either directly through the same
5845 * event, or through other events by use of perf_event_set_output().
5847 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5848 * the buffer here, where we still have a VM context. This means we need
5849 * to detach all events redirecting to us.
5851 static void perf_mmap_close(struct vm_area_struct *vma)
5853 struct perf_event *event = vma->vm_file->private_data;
5855 struct perf_buffer *rb = ring_buffer_get(event);
5856 struct user_struct *mmap_user = rb->mmap_user;
5857 int mmap_locked = rb->mmap_locked;
5858 unsigned long size = perf_data_size(rb);
5860 if (event->pmu->event_unmapped)
5861 event->pmu->event_unmapped(event, vma->vm_mm);
5864 * rb->aux_mmap_count will always drop before rb->mmap_count and
5865 * event->mmap_count, so it is ok to use event->mmap_mutex to
5866 * serialize with perf_mmap here.
5868 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5869 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5871 * Stop all AUX events that are writing to this buffer,
5872 * so that we can free its AUX pages and corresponding PMU
5873 * data. Note that after rb::aux_mmap_count dropped to zero,
5874 * they won't start any more (see perf_aux_output_begin()).
5876 perf_pmu_output_stop(event);
5878 /* now it's safe to free the pages */
5879 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5880 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5882 /* this has to be the last one */
5884 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5886 mutex_unlock(&event->mmap_mutex);
5889 atomic_dec(&rb->mmap_count);
5891 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5894 ring_buffer_attach(event, NULL);
5895 mutex_unlock(&event->mmap_mutex);
5897 /* If there's still other mmap()s of this buffer, we're done. */
5898 if (atomic_read(&rb->mmap_count))
5902 * No other mmap()s, detach from all other events that might redirect
5903 * into the now unreachable buffer. Somewhat complicated by the
5904 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5908 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5909 if (!atomic_long_inc_not_zero(&event->refcount)) {
5911 * This event is en-route to free_event() which will
5912 * detach it and remove it from the list.
5918 mutex_lock(&event->mmap_mutex);
5920 * Check we didn't race with perf_event_set_output() which can
5921 * swizzle the rb from under us while we were waiting to
5922 * acquire mmap_mutex.
5924 * If we find a different rb; ignore this event, a next
5925 * iteration will no longer find it on the list. We have to
5926 * still restart the iteration to make sure we're not now
5927 * iterating the wrong list.
5929 if (event->rb == rb)
5930 ring_buffer_attach(event, NULL);
5932 mutex_unlock(&event->mmap_mutex);
5936 * Restart the iteration; either we're on the wrong list or
5937 * destroyed its integrity by doing a deletion.
5944 * It could be there's still a few 0-ref events on the list; they'll
5945 * get cleaned up by free_event() -- they'll also still have their
5946 * ref on the rb and will free it whenever they are done with it.
5948 * Aside from that, this buffer is 'fully' detached and unmapped,
5949 * undo the VM accounting.
5952 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5953 &mmap_user->locked_vm);
5954 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5955 free_uid(mmap_user);
5958 ring_buffer_put(rb); /* could be last */
5961 static const struct vm_operations_struct perf_mmap_vmops = {
5962 .open = perf_mmap_open,
5963 .close = perf_mmap_close, /* non mergeable */
5964 .fault = perf_mmap_fault,
5965 .page_mkwrite = perf_mmap_fault,
5968 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5970 struct perf_event *event = file->private_data;
5971 unsigned long user_locked, user_lock_limit;
5972 struct user_struct *user = current_user();
5973 struct perf_buffer *rb = NULL;
5974 unsigned long locked, lock_limit;
5975 unsigned long vma_size;
5976 unsigned long nr_pages;
5977 long user_extra = 0, extra = 0;
5978 int ret = 0, flags = 0;
5981 * Don't allow mmap() of inherited per-task counters. This would
5982 * create a performance issue due to all children writing to the
5985 if (event->cpu == -1 && event->attr.inherit)
5988 if (!(vma->vm_flags & VM_SHARED))
5991 ret = security_perf_event_read(event);
5995 vma_size = vma->vm_end - vma->vm_start;
5997 if (vma->vm_pgoff == 0) {
5998 nr_pages = (vma_size / PAGE_SIZE) - 1;
6001 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6002 * mapped, all subsequent mappings should have the same size
6003 * and offset. Must be above the normal perf buffer.
6005 u64 aux_offset, aux_size;
6010 nr_pages = vma_size / PAGE_SIZE;
6012 mutex_lock(&event->mmap_mutex);
6019 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6020 aux_size = READ_ONCE(rb->user_page->aux_size);
6022 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6025 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6028 /* already mapped with a different offset */
6029 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6032 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6035 /* already mapped with a different size */
6036 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6039 if (!is_power_of_2(nr_pages))
6042 if (!atomic_inc_not_zero(&rb->mmap_count))
6045 if (rb_has_aux(rb)) {
6046 atomic_inc(&rb->aux_mmap_count);
6051 atomic_set(&rb->aux_mmap_count, 1);
6052 user_extra = nr_pages;
6058 * If we have rb pages ensure they're a power-of-two number, so we
6059 * can do bitmasks instead of modulo.
6061 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6064 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6067 WARN_ON_ONCE(event->ctx->parent_ctx);
6069 mutex_lock(&event->mmap_mutex);
6071 if (event->rb->nr_pages != nr_pages) {
6076 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6078 * Raced against perf_mmap_close() through
6079 * perf_event_set_output(). Try again, hope for better
6082 mutex_unlock(&event->mmap_mutex);
6089 user_extra = nr_pages + 1;
6092 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6095 * Increase the limit linearly with more CPUs:
6097 user_lock_limit *= num_online_cpus();
6099 user_locked = atomic_long_read(&user->locked_vm);
6102 * sysctl_perf_event_mlock may have changed, so that
6103 * user->locked_vm > user_lock_limit
6105 if (user_locked > user_lock_limit)
6106 user_locked = user_lock_limit;
6107 user_locked += user_extra;
6109 if (user_locked > user_lock_limit) {
6111 * charge locked_vm until it hits user_lock_limit;
6112 * charge the rest from pinned_vm
6114 extra = user_locked - user_lock_limit;
6115 user_extra -= extra;
6118 lock_limit = rlimit(RLIMIT_MEMLOCK);
6119 lock_limit >>= PAGE_SHIFT;
6120 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6122 if ((locked > lock_limit) && perf_is_paranoid() &&
6123 !capable(CAP_IPC_LOCK)) {
6128 WARN_ON(!rb && event->rb);
6130 if (vma->vm_flags & VM_WRITE)
6131 flags |= RING_BUFFER_WRITABLE;
6134 rb = rb_alloc(nr_pages,
6135 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6143 atomic_set(&rb->mmap_count, 1);
6144 rb->mmap_user = get_current_user();
6145 rb->mmap_locked = extra;
6147 ring_buffer_attach(event, rb);
6149 perf_event_init_userpage(event);
6150 perf_event_update_userpage(event);
6152 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6153 event->attr.aux_watermark, flags);
6155 rb->aux_mmap_locked = extra;
6160 atomic_long_add(user_extra, &user->locked_vm);
6161 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6163 atomic_inc(&event->mmap_count);
6165 atomic_dec(&rb->mmap_count);
6168 mutex_unlock(&event->mmap_mutex);
6171 * Since pinned accounting is per vm we cannot allow fork() to copy our
6174 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6175 vma->vm_ops = &perf_mmap_vmops;
6177 if (event->pmu->event_mapped)
6178 event->pmu->event_mapped(event, vma->vm_mm);
6183 static int perf_fasync(int fd, struct file *filp, int on)
6185 struct inode *inode = file_inode(filp);
6186 struct perf_event *event = filp->private_data;
6190 retval = fasync_helper(fd, filp, on, &event->fasync);
6191 inode_unlock(inode);
6199 static const struct file_operations perf_fops = {
6200 .llseek = no_llseek,
6201 .release = perf_release,
6204 .unlocked_ioctl = perf_ioctl,
6205 .compat_ioctl = perf_compat_ioctl,
6207 .fasync = perf_fasync,
6213 * If there's data, ensure we set the poll() state and publish everything
6214 * to user-space before waking everybody up.
6217 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6219 /* only the parent has fasync state */
6221 event = event->parent;
6222 return &event->fasync;
6225 void perf_event_wakeup(struct perf_event *event)
6227 ring_buffer_wakeup(event);
6229 if (event->pending_kill) {
6230 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6231 event->pending_kill = 0;
6235 static void perf_pending_event_disable(struct perf_event *event)
6237 int cpu = READ_ONCE(event->pending_disable);
6242 if (cpu == smp_processor_id()) {
6243 WRITE_ONCE(event->pending_disable, -1);
6244 perf_event_disable_local(event);
6251 * perf_event_disable_inatomic()
6252 * @pending_disable = CPU-A;
6256 * @pending_disable = -1;
6259 * perf_event_disable_inatomic()
6260 * @pending_disable = CPU-B;
6261 * irq_work_queue(); // FAILS
6264 * perf_pending_event()
6266 * But the event runs on CPU-B and wants disabling there.
6268 irq_work_queue_on(&event->pending, cpu);
6271 static void perf_pending_event(struct irq_work *entry)
6273 struct perf_event *event = container_of(entry, struct perf_event, pending);
6276 rctx = perf_swevent_get_recursion_context();
6278 * If we 'fail' here, that's OK, it means recursion is already disabled
6279 * and we won't recurse 'further'.
6282 perf_pending_event_disable(event);
6284 if (event->pending_wakeup) {
6285 event->pending_wakeup = 0;
6286 perf_event_wakeup(event);
6290 perf_swevent_put_recursion_context(rctx);
6294 * We assume there is only KVM supporting the callbacks.
6295 * Later on, we might change it to a list if there is
6296 * another virtualization implementation supporting the callbacks.
6298 struct perf_guest_info_callbacks *perf_guest_cbs;
6300 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6302 perf_guest_cbs = cbs;
6305 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6307 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6309 perf_guest_cbs = NULL;
6312 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6315 perf_output_sample_regs(struct perf_output_handle *handle,
6316 struct pt_regs *regs, u64 mask)
6319 DECLARE_BITMAP(_mask, 64);
6321 bitmap_from_u64(_mask, mask);
6322 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6325 val = perf_reg_value(regs, bit);
6326 perf_output_put(handle, val);
6330 static void perf_sample_regs_user(struct perf_regs *regs_user,
6331 struct pt_regs *regs,
6332 struct pt_regs *regs_user_copy)
6334 if (user_mode(regs)) {
6335 regs_user->abi = perf_reg_abi(current);
6336 regs_user->regs = regs;
6337 } else if (!(current->flags & PF_KTHREAD)) {
6338 perf_get_regs_user(regs_user, regs, regs_user_copy);
6340 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6341 regs_user->regs = NULL;
6345 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6346 struct pt_regs *regs)
6348 regs_intr->regs = regs;
6349 regs_intr->abi = perf_reg_abi(current);
6354 * Get remaining task size from user stack pointer.
6356 * It'd be better to take stack vma map and limit this more
6357 * precisely, but there's no way to get it safely under interrupt,
6358 * so using TASK_SIZE as limit.
6360 static u64 perf_ustack_task_size(struct pt_regs *regs)
6362 unsigned long addr = perf_user_stack_pointer(regs);
6364 if (!addr || addr >= TASK_SIZE)
6367 return TASK_SIZE - addr;
6371 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6372 struct pt_regs *regs)
6376 /* No regs, no stack pointer, no dump. */
6381 * Check if we fit in with the requested stack size into the:
6383 * If we don't, we limit the size to the TASK_SIZE.
6385 * - remaining sample size
6386 * If we don't, we customize the stack size to
6387 * fit in to the remaining sample size.
6390 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6391 stack_size = min(stack_size, (u16) task_size);
6393 /* Current header size plus static size and dynamic size. */
6394 header_size += 2 * sizeof(u64);
6396 /* Do we fit in with the current stack dump size? */
6397 if ((u16) (header_size + stack_size) < header_size) {
6399 * If we overflow the maximum size for the sample,
6400 * we customize the stack dump size to fit in.
6402 stack_size = USHRT_MAX - header_size - sizeof(u64);
6403 stack_size = round_up(stack_size, sizeof(u64));
6410 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6411 struct pt_regs *regs)
6413 /* Case of a kernel thread, nothing to dump */
6416 perf_output_put(handle, size);
6426 * - the size requested by user or the best one we can fit
6427 * in to the sample max size
6429 * - user stack dump data
6431 * - the actual dumped size
6435 perf_output_put(handle, dump_size);
6438 sp = perf_user_stack_pointer(regs);
6441 rem = __output_copy_user(handle, (void *) sp, dump_size);
6443 dyn_size = dump_size - rem;
6445 perf_output_skip(handle, rem);
6448 perf_output_put(handle, dyn_size);
6452 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6453 struct perf_sample_data *data,
6456 struct perf_event *sampler = event->aux_event;
6457 struct perf_buffer *rb;
6464 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6467 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6470 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6475 * If this is an NMI hit inside sampling code, don't take
6476 * the sample. See also perf_aux_sample_output().
6478 if (READ_ONCE(rb->aux_in_sampling)) {
6481 size = min_t(size_t, size, perf_aux_size(rb));
6482 data->aux_size = ALIGN(size, sizeof(u64));
6484 ring_buffer_put(rb);
6487 return data->aux_size;
6490 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6491 struct perf_event *event,
6492 struct perf_output_handle *handle,
6495 unsigned long flags;
6499 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6500 * paths. If we start calling them in NMI context, they may race with
6501 * the IRQ ones, that is, for example, re-starting an event that's just
6502 * been stopped, which is why we're using a separate callback that
6503 * doesn't change the event state.
6505 * IRQs need to be disabled to prevent IPIs from racing with us.
6507 local_irq_save(flags);
6509 * Guard against NMI hits inside the critical section;
6510 * see also perf_prepare_sample_aux().
6512 WRITE_ONCE(rb->aux_in_sampling, 1);
6515 ret = event->pmu->snapshot_aux(event, handle, size);
6518 WRITE_ONCE(rb->aux_in_sampling, 0);
6519 local_irq_restore(flags);
6524 static void perf_aux_sample_output(struct perf_event *event,
6525 struct perf_output_handle *handle,
6526 struct perf_sample_data *data)
6528 struct perf_event *sampler = event->aux_event;
6529 struct perf_buffer *rb;
6533 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6536 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6540 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6543 * An error here means that perf_output_copy() failed (returned a
6544 * non-zero surplus that it didn't copy), which in its current
6545 * enlightened implementation is not possible. If that changes, we'd
6548 if (WARN_ON_ONCE(size < 0))
6552 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6553 * perf_prepare_sample_aux(), so should not be more than that.
6555 pad = data->aux_size - size;
6556 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6561 perf_output_copy(handle, &zero, pad);
6565 ring_buffer_put(rb);
6568 static void __perf_event_header__init_id(struct perf_event_header *header,
6569 struct perf_sample_data *data,
6570 struct perf_event *event)
6572 u64 sample_type = event->attr.sample_type;
6574 data->type = sample_type;
6575 header->size += event->id_header_size;
6577 if (sample_type & PERF_SAMPLE_TID) {
6578 /* namespace issues */
6579 data->tid_entry.pid = perf_event_pid(event, current);
6580 data->tid_entry.tid = perf_event_tid(event, current);
6583 if (sample_type & PERF_SAMPLE_TIME)
6584 data->time = perf_event_clock(event);
6586 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6587 data->id = primary_event_id(event);
6589 if (sample_type & PERF_SAMPLE_STREAM_ID)
6590 data->stream_id = event->id;
6592 if (sample_type & PERF_SAMPLE_CPU) {
6593 data->cpu_entry.cpu = raw_smp_processor_id();
6594 data->cpu_entry.reserved = 0;
6598 void perf_event_header__init_id(struct perf_event_header *header,
6599 struct perf_sample_data *data,
6600 struct perf_event *event)
6602 if (event->attr.sample_id_all)
6603 __perf_event_header__init_id(header, data, event);
6606 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6607 struct perf_sample_data *data)
6609 u64 sample_type = data->type;
6611 if (sample_type & PERF_SAMPLE_TID)
6612 perf_output_put(handle, data->tid_entry);
6614 if (sample_type & PERF_SAMPLE_TIME)
6615 perf_output_put(handle, data->time);
6617 if (sample_type & PERF_SAMPLE_ID)
6618 perf_output_put(handle, data->id);
6620 if (sample_type & PERF_SAMPLE_STREAM_ID)
6621 perf_output_put(handle, data->stream_id);
6623 if (sample_type & PERF_SAMPLE_CPU)
6624 perf_output_put(handle, data->cpu_entry);
6626 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6627 perf_output_put(handle, data->id);
6630 void perf_event__output_id_sample(struct perf_event *event,
6631 struct perf_output_handle *handle,
6632 struct perf_sample_data *sample)
6634 if (event->attr.sample_id_all)
6635 __perf_event__output_id_sample(handle, sample);
6638 static void perf_output_read_one(struct perf_output_handle *handle,
6639 struct perf_event *event,
6640 u64 enabled, u64 running)
6642 u64 read_format = event->attr.read_format;
6646 values[n++] = perf_event_count(event);
6647 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6648 values[n++] = enabled +
6649 atomic64_read(&event->child_total_time_enabled);
6651 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6652 values[n++] = running +
6653 atomic64_read(&event->child_total_time_running);
6655 if (read_format & PERF_FORMAT_ID)
6656 values[n++] = primary_event_id(event);
6658 __output_copy(handle, values, n * sizeof(u64));
6661 static void perf_output_read_group(struct perf_output_handle *handle,
6662 struct perf_event *event,
6663 u64 enabled, u64 running)
6665 struct perf_event *leader = event->group_leader, *sub;
6666 u64 read_format = event->attr.read_format;
6670 values[n++] = 1 + leader->nr_siblings;
6672 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6673 values[n++] = enabled;
6675 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6676 values[n++] = running;
6678 if ((leader != event) &&
6679 (leader->state == PERF_EVENT_STATE_ACTIVE))
6680 leader->pmu->read(leader);
6682 values[n++] = perf_event_count(leader);
6683 if (read_format & PERF_FORMAT_ID)
6684 values[n++] = primary_event_id(leader);
6686 __output_copy(handle, values, n * sizeof(u64));
6688 for_each_sibling_event(sub, leader) {
6691 if ((sub != event) &&
6692 (sub->state == PERF_EVENT_STATE_ACTIVE))
6693 sub->pmu->read(sub);
6695 values[n++] = perf_event_count(sub);
6696 if (read_format & PERF_FORMAT_ID)
6697 values[n++] = primary_event_id(sub);
6699 __output_copy(handle, values, n * sizeof(u64));
6703 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6704 PERF_FORMAT_TOTAL_TIME_RUNNING)
6707 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6709 * The problem is that its both hard and excessively expensive to iterate the
6710 * child list, not to mention that its impossible to IPI the children running
6711 * on another CPU, from interrupt/NMI context.
6713 static void perf_output_read(struct perf_output_handle *handle,
6714 struct perf_event *event)
6716 u64 enabled = 0, running = 0, now;
6717 u64 read_format = event->attr.read_format;
6720 * compute total_time_enabled, total_time_running
6721 * based on snapshot values taken when the event
6722 * was last scheduled in.
6724 * we cannot simply called update_context_time()
6725 * because of locking issue as we are called in
6728 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6729 calc_timer_values(event, &now, &enabled, &running);
6731 if (event->attr.read_format & PERF_FORMAT_GROUP)
6732 perf_output_read_group(handle, event, enabled, running);
6734 perf_output_read_one(handle, event, enabled, running);
6737 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6739 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6742 void perf_output_sample(struct perf_output_handle *handle,
6743 struct perf_event_header *header,
6744 struct perf_sample_data *data,
6745 struct perf_event *event)
6747 u64 sample_type = data->type;
6749 perf_output_put(handle, *header);
6751 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6752 perf_output_put(handle, data->id);
6754 if (sample_type & PERF_SAMPLE_IP)
6755 perf_output_put(handle, data->ip);
6757 if (sample_type & PERF_SAMPLE_TID)
6758 perf_output_put(handle, data->tid_entry);
6760 if (sample_type & PERF_SAMPLE_TIME)
6761 perf_output_put(handle, data->time);
6763 if (sample_type & PERF_SAMPLE_ADDR)
6764 perf_output_put(handle, data->addr);
6766 if (sample_type & PERF_SAMPLE_ID)
6767 perf_output_put(handle, data->id);
6769 if (sample_type & PERF_SAMPLE_STREAM_ID)
6770 perf_output_put(handle, data->stream_id);
6772 if (sample_type & PERF_SAMPLE_CPU)
6773 perf_output_put(handle, data->cpu_entry);
6775 if (sample_type & PERF_SAMPLE_PERIOD)
6776 perf_output_put(handle, data->period);
6778 if (sample_type & PERF_SAMPLE_READ)
6779 perf_output_read(handle, event);
6781 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6784 size += data->callchain->nr;
6785 size *= sizeof(u64);
6786 __output_copy(handle, data->callchain, size);
6789 if (sample_type & PERF_SAMPLE_RAW) {
6790 struct perf_raw_record *raw = data->raw;
6793 struct perf_raw_frag *frag = &raw->frag;
6795 perf_output_put(handle, raw->size);
6798 __output_custom(handle, frag->copy,
6799 frag->data, frag->size);
6801 __output_copy(handle, frag->data,
6804 if (perf_raw_frag_last(frag))
6809 __output_skip(handle, NULL, frag->pad);
6815 .size = sizeof(u32),
6818 perf_output_put(handle, raw);
6822 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6823 if (data->br_stack) {
6826 size = data->br_stack->nr
6827 * sizeof(struct perf_branch_entry);
6829 perf_output_put(handle, data->br_stack->nr);
6830 if (perf_sample_save_hw_index(event))
6831 perf_output_put(handle, data->br_stack->hw_idx);
6832 perf_output_copy(handle, data->br_stack->entries, size);
6835 * we always store at least the value of nr
6838 perf_output_put(handle, nr);
6842 if (sample_type & PERF_SAMPLE_REGS_USER) {
6843 u64 abi = data->regs_user.abi;
6846 * If there are no regs to dump, notice it through
6847 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6849 perf_output_put(handle, abi);
6852 u64 mask = event->attr.sample_regs_user;
6853 perf_output_sample_regs(handle,
6854 data->regs_user.regs,
6859 if (sample_type & PERF_SAMPLE_STACK_USER) {
6860 perf_output_sample_ustack(handle,
6861 data->stack_user_size,
6862 data->regs_user.regs);
6865 if (sample_type & PERF_SAMPLE_WEIGHT)
6866 perf_output_put(handle, data->weight);
6868 if (sample_type & PERF_SAMPLE_DATA_SRC)
6869 perf_output_put(handle, data->data_src.val);
6871 if (sample_type & PERF_SAMPLE_TRANSACTION)
6872 perf_output_put(handle, data->txn);
6874 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6875 u64 abi = data->regs_intr.abi;
6877 * If there are no regs to dump, notice it through
6878 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6880 perf_output_put(handle, abi);
6883 u64 mask = event->attr.sample_regs_intr;
6885 perf_output_sample_regs(handle,
6886 data->regs_intr.regs,
6891 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6892 perf_output_put(handle, data->phys_addr);
6894 if (sample_type & PERF_SAMPLE_CGROUP)
6895 perf_output_put(handle, data->cgroup);
6897 if (sample_type & PERF_SAMPLE_AUX) {
6898 perf_output_put(handle, data->aux_size);
6901 perf_aux_sample_output(event, handle, data);
6904 if (!event->attr.watermark) {
6905 int wakeup_events = event->attr.wakeup_events;
6907 if (wakeup_events) {
6908 struct perf_buffer *rb = handle->rb;
6909 int events = local_inc_return(&rb->events);
6911 if (events >= wakeup_events) {
6912 local_sub(wakeup_events, &rb->events);
6913 local_inc(&rb->wakeup);
6919 static u64 perf_virt_to_phys(u64 virt)
6922 struct page *p = NULL;
6927 if (virt >= TASK_SIZE) {
6928 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6929 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6930 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6931 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6934 * Walking the pages tables for user address.
6935 * Interrupts are disabled, so it prevents any tear down
6936 * of the page tables.
6937 * Try IRQ-safe get_user_page_fast_only first.
6938 * If failed, leave phys_addr as 0.
6940 if (current->mm != NULL) {
6941 pagefault_disable();
6942 if (get_user_page_fast_only(virt, 0, &p))
6943 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6954 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6956 struct perf_callchain_entry *
6957 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6959 bool kernel = !event->attr.exclude_callchain_kernel;
6960 bool user = !event->attr.exclude_callchain_user;
6961 /* Disallow cross-task user callchains. */
6962 bool crosstask = event->ctx->task && event->ctx->task != current;
6963 const u32 max_stack = event->attr.sample_max_stack;
6964 struct perf_callchain_entry *callchain;
6966 if (!kernel && !user)
6967 return &__empty_callchain;
6969 callchain = get_perf_callchain(regs, 0, kernel, user,
6970 max_stack, crosstask, true);
6971 return callchain ?: &__empty_callchain;
6974 void perf_prepare_sample(struct perf_event_header *header,
6975 struct perf_sample_data *data,
6976 struct perf_event *event,
6977 struct pt_regs *regs)
6979 u64 sample_type = event->attr.sample_type;
6981 header->type = PERF_RECORD_SAMPLE;
6982 header->size = sizeof(*header) + event->header_size;
6985 header->misc |= perf_misc_flags(regs);
6987 __perf_event_header__init_id(header, data, event);
6989 if (sample_type & PERF_SAMPLE_IP)
6990 data->ip = perf_instruction_pointer(regs);
6992 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6995 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6996 data->callchain = perf_callchain(event, regs);
6998 size += data->callchain->nr;
7000 header->size += size * sizeof(u64);
7003 if (sample_type & PERF_SAMPLE_RAW) {
7004 struct perf_raw_record *raw = data->raw;
7008 struct perf_raw_frag *frag = &raw->frag;
7013 if (perf_raw_frag_last(frag))
7018 size = round_up(sum + sizeof(u32), sizeof(u64));
7019 raw->size = size - sizeof(u32);
7020 frag->pad = raw->size - sum;
7025 header->size += size;
7028 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7029 int size = sizeof(u64); /* nr */
7030 if (data->br_stack) {
7031 if (perf_sample_save_hw_index(event))
7032 size += sizeof(u64);
7034 size += data->br_stack->nr
7035 * sizeof(struct perf_branch_entry);
7037 header->size += size;
7040 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7041 perf_sample_regs_user(&data->regs_user, regs,
7042 &data->regs_user_copy);
7044 if (sample_type & PERF_SAMPLE_REGS_USER) {
7045 /* regs dump ABI info */
7046 int size = sizeof(u64);
7048 if (data->regs_user.regs) {
7049 u64 mask = event->attr.sample_regs_user;
7050 size += hweight64(mask) * sizeof(u64);
7053 header->size += size;
7056 if (sample_type & PERF_SAMPLE_STACK_USER) {
7058 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7059 * processed as the last one or have additional check added
7060 * in case new sample type is added, because we could eat
7061 * up the rest of the sample size.
7063 u16 stack_size = event->attr.sample_stack_user;
7064 u16 size = sizeof(u64);
7066 stack_size = perf_sample_ustack_size(stack_size, header->size,
7067 data->regs_user.regs);
7070 * If there is something to dump, add space for the dump
7071 * itself and for the field that tells the dynamic size,
7072 * which is how many have been actually dumped.
7075 size += sizeof(u64) + stack_size;
7077 data->stack_user_size = stack_size;
7078 header->size += size;
7081 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7082 /* regs dump ABI info */
7083 int size = sizeof(u64);
7085 perf_sample_regs_intr(&data->regs_intr, regs);
7087 if (data->regs_intr.regs) {
7088 u64 mask = event->attr.sample_regs_intr;
7090 size += hweight64(mask) * sizeof(u64);
7093 header->size += size;
7096 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7097 data->phys_addr = perf_virt_to_phys(data->addr);
7099 #ifdef CONFIG_CGROUP_PERF
7100 if (sample_type & PERF_SAMPLE_CGROUP) {
7101 struct cgroup *cgrp;
7103 /* protected by RCU */
7104 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7105 data->cgroup = cgroup_id(cgrp);
7109 if (sample_type & PERF_SAMPLE_AUX) {
7112 header->size += sizeof(u64); /* size */
7115 * Given the 16bit nature of header::size, an AUX sample can
7116 * easily overflow it, what with all the preceding sample bits.
7117 * Make sure this doesn't happen by using up to U16_MAX bytes
7118 * per sample in total (rounded down to 8 byte boundary).
7120 size = min_t(size_t, U16_MAX - header->size,
7121 event->attr.aux_sample_size);
7122 size = rounddown(size, 8);
7123 size = perf_prepare_sample_aux(event, data, size);
7125 WARN_ON_ONCE(size + header->size > U16_MAX);
7126 header->size += size;
7129 * If you're adding more sample types here, you likely need to do
7130 * something about the overflowing header::size, like repurpose the
7131 * lowest 3 bits of size, which should be always zero at the moment.
7132 * This raises a more important question, do we really need 512k sized
7133 * samples and why, so good argumentation is in order for whatever you
7136 WARN_ON_ONCE(header->size & 7);
7139 static __always_inline int
7140 __perf_event_output(struct perf_event *event,
7141 struct perf_sample_data *data,
7142 struct pt_regs *regs,
7143 int (*output_begin)(struct perf_output_handle *,
7144 struct perf_event *,
7147 struct perf_output_handle handle;
7148 struct perf_event_header header;
7151 /* protect the callchain buffers */
7154 perf_prepare_sample(&header, data, event, regs);
7156 err = output_begin(&handle, event, header.size);
7160 perf_output_sample(&handle, &header, data, event);
7162 perf_output_end(&handle);
7170 perf_event_output_forward(struct perf_event *event,
7171 struct perf_sample_data *data,
7172 struct pt_regs *regs)
7174 __perf_event_output(event, data, regs, perf_output_begin_forward);
7178 perf_event_output_backward(struct perf_event *event,
7179 struct perf_sample_data *data,
7180 struct pt_regs *regs)
7182 __perf_event_output(event, data, regs, perf_output_begin_backward);
7186 perf_event_output(struct perf_event *event,
7187 struct perf_sample_data *data,
7188 struct pt_regs *regs)
7190 return __perf_event_output(event, data, regs, perf_output_begin);
7197 struct perf_read_event {
7198 struct perf_event_header header;
7205 perf_event_read_event(struct perf_event *event,
7206 struct task_struct *task)
7208 struct perf_output_handle handle;
7209 struct perf_sample_data sample;
7210 struct perf_read_event read_event = {
7212 .type = PERF_RECORD_READ,
7214 .size = sizeof(read_event) + event->read_size,
7216 .pid = perf_event_pid(event, task),
7217 .tid = perf_event_tid(event, task),
7221 perf_event_header__init_id(&read_event.header, &sample, event);
7222 ret = perf_output_begin(&handle, event, read_event.header.size);
7226 perf_output_put(&handle, read_event);
7227 perf_output_read(&handle, event);
7228 perf_event__output_id_sample(event, &handle, &sample);
7230 perf_output_end(&handle);
7233 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7236 perf_iterate_ctx(struct perf_event_context *ctx,
7237 perf_iterate_f output,
7238 void *data, bool all)
7240 struct perf_event *event;
7242 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7244 if (event->state < PERF_EVENT_STATE_INACTIVE)
7246 if (!event_filter_match(event))
7250 output(event, data);
7254 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7256 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7257 struct perf_event *event;
7259 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7261 * Skip events that are not fully formed yet; ensure that
7262 * if we observe event->ctx, both event and ctx will be
7263 * complete enough. See perf_install_in_context().
7265 if (!smp_load_acquire(&event->ctx))
7268 if (event->state < PERF_EVENT_STATE_INACTIVE)
7270 if (!event_filter_match(event))
7272 output(event, data);
7277 * Iterate all events that need to receive side-band events.
7279 * For new callers; ensure that account_pmu_sb_event() includes
7280 * your event, otherwise it might not get delivered.
7283 perf_iterate_sb(perf_iterate_f output, void *data,
7284 struct perf_event_context *task_ctx)
7286 struct perf_event_context *ctx;
7293 * If we have task_ctx != NULL we only notify the task context itself.
7294 * The task_ctx is set only for EXIT events before releasing task
7298 perf_iterate_ctx(task_ctx, output, data, false);
7302 perf_iterate_sb_cpu(output, data);
7304 for_each_task_context_nr(ctxn) {
7305 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7307 perf_iterate_ctx(ctx, output, data, false);
7315 * Clear all file-based filters at exec, they'll have to be
7316 * re-instated when/if these objects are mmapped again.
7318 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7320 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7321 struct perf_addr_filter *filter;
7322 unsigned int restart = 0, count = 0;
7323 unsigned long flags;
7325 if (!has_addr_filter(event))
7328 raw_spin_lock_irqsave(&ifh->lock, flags);
7329 list_for_each_entry(filter, &ifh->list, entry) {
7330 if (filter->path.dentry) {
7331 event->addr_filter_ranges[count].start = 0;
7332 event->addr_filter_ranges[count].size = 0;
7340 event->addr_filters_gen++;
7341 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7344 perf_event_stop(event, 1);
7347 void perf_event_exec(void)
7349 struct perf_event_context *ctx;
7353 for_each_task_context_nr(ctxn) {
7354 ctx = current->perf_event_ctxp[ctxn];
7358 perf_event_enable_on_exec(ctxn);
7360 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7366 struct remote_output {
7367 struct perf_buffer *rb;
7371 static void __perf_event_output_stop(struct perf_event *event, void *data)
7373 struct perf_event *parent = event->parent;
7374 struct remote_output *ro = data;
7375 struct perf_buffer *rb = ro->rb;
7376 struct stop_event_data sd = {
7380 if (!has_aux(event))
7387 * In case of inheritance, it will be the parent that links to the
7388 * ring-buffer, but it will be the child that's actually using it.
7390 * We are using event::rb to determine if the event should be stopped,
7391 * however this may race with ring_buffer_attach() (through set_output),
7392 * which will make us skip the event that actually needs to be stopped.
7393 * So ring_buffer_attach() has to stop an aux event before re-assigning
7396 if (rcu_dereference(parent->rb) == rb)
7397 ro->err = __perf_event_stop(&sd);
7400 static int __perf_pmu_output_stop(void *info)
7402 struct perf_event *event = info;
7403 struct pmu *pmu = event->ctx->pmu;
7404 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7405 struct remote_output ro = {
7410 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7411 if (cpuctx->task_ctx)
7412 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7419 static void perf_pmu_output_stop(struct perf_event *event)
7421 struct perf_event *iter;
7426 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7428 * For per-CPU events, we need to make sure that neither they
7429 * nor their children are running; for cpu==-1 events it's
7430 * sufficient to stop the event itself if it's active, since
7431 * it can't have children.
7435 cpu = READ_ONCE(iter->oncpu);
7440 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7441 if (err == -EAGAIN) {
7450 * task tracking -- fork/exit
7452 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7455 struct perf_task_event {
7456 struct task_struct *task;
7457 struct perf_event_context *task_ctx;
7460 struct perf_event_header header;
7470 static int perf_event_task_match(struct perf_event *event)
7472 return event->attr.comm || event->attr.mmap ||
7473 event->attr.mmap2 || event->attr.mmap_data ||
7477 static void perf_event_task_output(struct perf_event *event,
7480 struct perf_task_event *task_event = data;
7481 struct perf_output_handle handle;
7482 struct perf_sample_data sample;
7483 struct task_struct *task = task_event->task;
7484 int ret, size = task_event->event_id.header.size;
7486 if (!perf_event_task_match(event))
7489 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7491 ret = perf_output_begin(&handle, event,
7492 task_event->event_id.header.size);
7496 task_event->event_id.pid = perf_event_pid(event, task);
7497 task_event->event_id.tid = perf_event_tid(event, task);
7499 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7500 task_event->event_id.ppid = perf_event_pid(event,
7502 task_event->event_id.ptid = perf_event_pid(event,
7504 } else { /* PERF_RECORD_FORK */
7505 task_event->event_id.ppid = perf_event_pid(event, current);
7506 task_event->event_id.ptid = perf_event_tid(event, current);
7509 task_event->event_id.time = perf_event_clock(event);
7511 perf_output_put(&handle, task_event->event_id);
7513 perf_event__output_id_sample(event, &handle, &sample);
7515 perf_output_end(&handle);
7517 task_event->event_id.header.size = size;
7520 static void perf_event_task(struct task_struct *task,
7521 struct perf_event_context *task_ctx,
7524 struct perf_task_event task_event;
7526 if (!atomic_read(&nr_comm_events) &&
7527 !atomic_read(&nr_mmap_events) &&
7528 !atomic_read(&nr_task_events))
7531 task_event = (struct perf_task_event){
7533 .task_ctx = task_ctx,
7536 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7538 .size = sizeof(task_event.event_id),
7548 perf_iterate_sb(perf_event_task_output,
7553 void perf_event_fork(struct task_struct *task)
7555 perf_event_task(task, NULL, 1);
7556 perf_event_namespaces(task);
7563 struct perf_comm_event {
7564 struct task_struct *task;
7569 struct perf_event_header header;
7576 static int perf_event_comm_match(struct perf_event *event)
7578 return event->attr.comm;
7581 static void perf_event_comm_output(struct perf_event *event,
7584 struct perf_comm_event *comm_event = data;
7585 struct perf_output_handle handle;
7586 struct perf_sample_data sample;
7587 int size = comm_event->event_id.header.size;
7590 if (!perf_event_comm_match(event))
7593 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7594 ret = perf_output_begin(&handle, event,
7595 comm_event->event_id.header.size);
7600 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7601 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7603 perf_output_put(&handle, comm_event->event_id);
7604 __output_copy(&handle, comm_event->comm,
7605 comm_event->comm_size);
7607 perf_event__output_id_sample(event, &handle, &sample);
7609 perf_output_end(&handle);
7611 comm_event->event_id.header.size = size;
7614 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7616 char comm[TASK_COMM_LEN];
7619 memset(comm, 0, sizeof(comm));
7620 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7621 size = ALIGN(strlen(comm)+1, sizeof(u64));
7623 comm_event->comm = comm;
7624 comm_event->comm_size = size;
7626 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7628 perf_iterate_sb(perf_event_comm_output,
7633 void perf_event_comm(struct task_struct *task, bool exec)
7635 struct perf_comm_event comm_event;
7637 if (!atomic_read(&nr_comm_events))
7640 comm_event = (struct perf_comm_event){
7646 .type = PERF_RECORD_COMM,
7647 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7655 perf_event_comm_event(&comm_event);
7659 * namespaces tracking
7662 struct perf_namespaces_event {
7663 struct task_struct *task;
7666 struct perf_event_header header;
7671 struct perf_ns_link_info link_info[NR_NAMESPACES];
7675 static int perf_event_namespaces_match(struct perf_event *event)
7677 return event->attr.namespaces;
7680 static void perf_event_namespaces_output(struct perf_event *event,
7683 struct perf_namespaces_event *namespaces_event = data;
7684 struct perf_output_handle handle;
7685 struct perf_sample_data sample;
7686 u16 header_size = namespaces_event->event_id.header.size;
7689 if (!perf_event_namespaces_match(event))
7692 perf_event_header__init_id(&namespaces_event->event_id.header,
7694 ret = perf_output_begin(&handle, event,
7695 namespaces_event->event_id.header.size);
7699 namespaces_event->event_id.pid = perf_event_pid(event,
7700 namespaces_event->task);
7701 namespaces_event->event_id.tid = perf_event_tid(event,
7702 namespaces_event->task);
7704 perf_output_put(&handle, namespaces_event->event_id);
7706 perf_event__output_id_sample(event, &handle, &sample);
7708 perf_output_end(&handle);
7710 namespaces_event->event_id.header.size = header_size;
7713 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7714 struct task_struct *task,
7715 const struct proc_ns_operations *ns_ops)
7717 struct path ns_path;
7718 struct inode *ns_inode;
7721 error = ns_get_path(&ns_path, task, ns_ops);
7723 ns_inode = ns_path.dentry->d_inode;
7724 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7725 ns_link_info->ino = ns_inode->i_ino;
7730 void perf_event_namespaces(struct task_struct *task)
7732 struct perf_namespaces_event namespaces_event;
7733 struct perf_ns_link_info *ns_link_info;
7735 if (!atomic_read(&nr_namespaces_events))
7738 namespaces_event = (struct perf_namespaces_event){
7742 .type = PERF_RECORD_NAMESPACES,
7744 .size = sizeof(namespaces_event.event_id),
7748 .nr_namespaces = NR_NAMESPACES,
7749 /* .link_info[NR_NAMESPACES] */
7753 ns_link_info = namespaces_event.event_id.link_info;
7755 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7756 task, &mntns_operations);
7758 #ifdef CONFIG_USER_NS
7759 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7760 task, &userns_operations);
7762 #ifdef CONFIG_NET_NS
7763 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7764 task, &netns_operations);
7766 #ifdef CONFIG_UTS_NS
7767 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7768 task, &utsns_operations);
7770 #ifdef CONFIG_IPC_NS
7771 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7772 task, &ipcns_operations);
7774 #ifdef CONFIG_PID_NS
7775 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7776 task, &pidns_operations);
7778 #ifdef CONFIG_CGROUPS
7779 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7780 task, &cgroupns_operations);
7783 perf_iterate_sb(perf_event_namespaces_output,
7791 #ifdef CONFIG_CGROUP_PERF
7793 struct perf_cgroup_event {
7797 struct perf_event_header header;
7803 static int perf_event_cgroup_match(struct perf_event *event)
7805 return event->attr.cgroup;
7808 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7810 struct perf_cgroup_event *cgroup_event = data;
7811 struct perf_output_handle handle;
7812 struct perf_sample_data sample;
7813 u16 header_size = cgroup_event->event_id.header.size;
7816 if (!perf_event_cgroup_match(event))
7819 perf_event_header__init_id(&cgroup_event->event_id.header,
7821 ret = perf_output_begin(&handle, event,
7822 cgroup_event->event_id.header.size);
7826 perf_output_put(&handle, cgroup_event->event_id);
7827 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7829 perf_event__output_id_sample(event, &handle, &sample);
7831 perf_output_end(&handle);
7833 cgroup_event->event_id.header.size = header_size;
7836 static void perf_event_cgroup(struct cgroup *cgrp)
7838 struct perf_cgroup_event cgroup_event;
7839 char path_enomem[16] = "//enomem";
7843 if (!atomic_read(&nr_cgroup_events))
7846 cgroup_event = (struct perf_cgroup_event){
7849 .type = PERF_RECORD_CGROUP,
7851 .size = sizeof(cgroup_event.event_id),
7853 .id = cgroup_id(cgrp),
7857 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7858 if (pathname == NULL) {
7859 cgroup_event.path = path_enomem;
7861 /* just to be sure to have enough space for alignment */
7862 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7863 cgroup_event.path = pathname;
7867 * Since our buffer works in 8 byte units we need to align our string
7868 * size to a multiple of 8. However, we must guarantee the tail end is
7869 * zero'd out to avoid leaking random bits to userspace.
7871 size = strlen(cgroup_event.path) + 1;
7872 while (!IS_ALIGNED(size, sizeof(u64)))
7873 cgroup_event.path[size++] = '\0';
7875 cgroup_event.event_id.header.size += size;
7876 cgroup_event.path_size = size;
7878 perf_iterate_sb(perf_event_cgroup_output,
7891 struct perf_mmap_event {
7892 struct vm_area_struct *vma;
7894 const char *file_name;
7902 struct perf_event_header header;
7912 static int perf_event_mmap_match(struct perf_event *event,
7915 struct perf_mmap_event *mmap_event = data;
7916 struct vm_area_struct *vma = mmap_event->vma;
7917 int executable = vma->vm_flags & VM_EXEC;
7919 return (!executable && event->attr.mmap_data) ||
7920 (executable && (event->attr.mmap || event->attr.mmap2));
7923 static void perf_event_mmap_output(struct perf_event *event,
7926 struct perf_mmap_event *mmap_event = data;
7927 struct perf_output_handle handle;
7928 struct perf_sample_data sample;
7929 int size = mmap_event->event_id.header.size;
7930 u32 type = mmap_event->event_id.header.type;
7933 if (!perf_event_mmap_match(event, data))
7936 if (event->attr.mmap2) {
7937 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7938 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7939 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7940 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7941 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7942 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7943 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7946 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7947 ret = perf_output_begin(&handle, event,
7948 mmap_event->event_id.header.size);
7952 mmap_event->event_id.pid = perf_event_pid(event, current);
7953 mmap_event->event_id.tid = perf_event_tid(event, current);
7955 perf_output_put(&handle, mmap_event->event_id);
7957 if (event->attr.mmap2) {
7958 perf_output_put(&handle, mmap_event->maj);
7959 perf_output_put(&handle, mmap_event->min);
7960 perf_output_put(&handle, mmap_event->ino);
7961 perf_output_put(&handle, mmap_event->ino_generation);
7962 perf_output_put(&handle, mmap_event->prot);
7963 perf_output_put(&handle, mmap_event->flags);
7966 __output_copy(&handle, mmap_event->file_name,
7967 mmap_event->file_size);
7969 perf_event__output_id_sample(event, &handle, &sample);
7971 perf_output_end(&handle);
7973 mmap_event->event_id.header.size = size;
7974 mmap_event->event_id.header.type = type;
7977 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7979 struct vm_area_struct *vma = mmap_event->vma;
7980 struct file *file = vma->vm_file;
7981 int maj = 0, min = 0;
7982 u64 ino = 0, gen = 0;
7983 u32 prot = 0, flags = 0;
7989 if (vma->vm_flags & VM_READ)
7991 if (vma->vm_flags & VM_WRITE)
7993 if (vma->vm_flags & VM_EXEC)
7996 if (vma->vm_flags & VM_MAYSHARE)
7999 flags = MAP_PRIVATE;
8001 if (vma->vm_flags & VM_DENYWRITE)
8002 flags |= MAP_DENYWRITE;
8003 if (vma->vm_flags & VM_MAYEXEC)
8004 flags |= MAP_EXECUTABLE;
8005 if (vma->vm_flags & VM_LOCKED)
8006 flags |= MAP_LOCKED;
8007 if (is_vm_hugetlb_page(vma))
8008 flags |= MAP_HUGETLB;
8011 struct inode *inode;
8014 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8020 * d_path() works from the end of the rb backwards, so we
8021 * need to add enough zero bytes after the string to handle
8022 * the 64bit alignment we do later.
8024 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8029 inode = file_inode(vma->vm_file);
8030 dev = inode->i_sb->s_dev;
8032 gen = inode->i_generation;
8038 if (vma->vm_ops && vma->vm_ops->name) {
8039 name = (char *) vma->vm_ops->name(vma);
8044 name = (char *)arch_vma_name(vma);
8048 if (vma->vm_start <= vma->vm_mm->start_brk &&
8049 vma->vm_end >= vma->vm_mm->brk) {
8053 if (vma->vm_start <= vma->vm_mm->start_stack &&
8054 vma->vm_end >= vma->vm_mm->start_stack) {
8064 strlcpy(tmp, name, sizeof(tmp));
8068 * Since our buffer works in 8 byte units we need to align our string
8069 * size to a multiple of 8. However, we must guarantee the tail end is
8070 * zero'd out to avoid leaking random bits to userspace.
8072 size = strlen(name)+1;
8073 while (!IS_ALIGNED(size, sizeof(u64)))
8074 name[size++] = '\0';
8076 mmap_event->file_name = name;
8077 mmap_event->file_size = size;
8078 mmap_event->maj = maj;
8079 mmap_event->min = min;
8080 mmap_event->ino = ino;
8081 mmap_event->ino_generation = gen;
8082 mmap_event->prot = prot;
8083 mmap_event->flags = flags;
8085 if (!(vma->vm_flags & VM_EXEC))
8086 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8088 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8090 perf_iterate_sb(perf_event_mmap_output,
8098 * Check whether inode and address range match filter criteria.
8100 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8101 struct file *file, unsigned long offset,
8104 /* d_inode(NULL) won't be equal to any mapped user-space file */
8105 if (!filter->path.dentry)
8108 if (d_inode(filter->path.dentry) != file_inode(file))
8111 if (filter->offset > offset + size)
8114 if (filter->offset + filter->size < offset)
8120 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8121 struct vm_area_struct *vma,
8122 struct perf_addr_filter_range *fr)
8124 unsigned long vma_size = vma->vm_end - vma->vm_start;
8125 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8126 struct file *file = vma->vm_file;
8128 if (!perf_addr_filter_match(filter, file, off, vma_size))
8131 if (filter->offset < off) {
8132 fr->start = vma->vm_start;
8133 fr->size = min(vma_size, filter->size - (off - filter->offset));
8135 fr->start = vma->vm_start + filter->offset - off;
8136 fr->size = min(vma->vm_end - fr->start, filter->size);
8142 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8144 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8145 struct vm_area_struct *vma = data;
8146 struct perf_addr_filter *filter;
8147 unsigned int restart = 0, count = 0;
8148 unsigned long flags;
8150 if (!has_addr_filter(event))
8156 raw_spin_lock_irqsave(&ifh->lock, flags);
8157 list_for_each_entry(filter, &ifh->list, entry) {
8158 if (perf_addr_filter_vma_adjust(filter, vma,
8159 &event->addr_filter_ranges[count]))
8166 event->addr_filters_gen++;
8167 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8170 perf_event_stop(event, 1);
8174 * Adjust all task's events' filters to the new vma
8176 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8178 struct perf_event_context *ctx;
8182 * Data tracing isn't supported yet and as such there is no need
8183 * to keep track of anything that isn't related to executable code:
8185 if (!(vma->vm_flags & VM_EXEC))
8189 for_each_task_context_nr(ctxn) {
8190 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8194 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8199 void perf_event_mmap(struct vm_area_struct *vma)
8201 struct perf_mmap_event mmap_event;
8203 if (!atomic_read(&nr_mmap_events))
8206 mmap_event = (struct perf_mmap_event){
8212 .type = PERF_RECORD_MMAP,
8213 .misc = PERF_RECORD_MISC_USER,
8218 .start = vma->vm_start,
8219 .len = vma->vm_end - vma->vm_start,
8220 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8222 /* .maj (attr_mmap2 only) */
8223 /* .min (attr_mmap2 only) */
8224 /* .ino (attr_mmap2 only) */
8225 /* .ino_generation (attr_mmap2 only) */
8226 /* .prot (attr_mmap2 only) */
8227 /* .flags (attr_mmap2 only) */
8230 perf_addr_filters_adjust(vma);
8231 perf_event_mmap_event(&mmap_event);
8234 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8235 unsigned long size, u64 flags)
8237 struct perf_output_handle handle;
8238 struct perf_sample_data sample;
8239 struct perf_aux_event {
8240 struct perf_event_header header;
8246 .type = PERF_RECORD_AUX,
8248 .size = sizeof(rec),
8256 perf_event_header__init_id(&rec.header, &sample, event);
8257 ret = perf_output_begin(&handle, event, rec.header.size);
8262 perf_output_put(&handle, rec);
8263 perf_event__output_id_sample(event, &handle, &sample);
8265 perf_output_end(&handle);
8269 * Lost/dropped samples logging
8271 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8273 struct perf_output_handle handle;
8274 struct perf_sample_data sample;
8278 struct perf_event_header header;
8280 } lost_samples_event = {
8282 .type = PERF_RECORD_LOST_SAMPLES,
8284 .size = sizeof(lost_samples_event),
8289 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8291 ret = perf_output_begin(&handle, event,
8292 lost_samples_event.header.size);
8296 perf_output_put(&handle, lost_samples_event);
8297 perf_event__output_id_sample(event, &handle, &sample);
8298 perf_output_end(&handle);
8302 * context_switch tracking
8305 struct perf_switch_event {
8306 struct task_struct *task;
8307 struct task_struct *next_prev;
8310 struct perf_event_header header;
8316 static int perf_event_switch_match(struct perf_event *event)
8318 return event->attr.context_switch;
8321 static void perf_event_switch_output(struct perf_event *event, void *data)
8323 struct perf_switch_event *se = data;
8324 struct perf_output_handle handle;
8325 struct perf_sample_data sample;
8328 if (!perf_event_switch_match(event))
8331 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8332 if (event->ctx->task) {
8333 se->event_id.header.type = PERF_RECORD_SWITCH;
8334 se->event_id.header.size = sizeof(se->event_id.header);
8336 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8337 se->event_id.header.size = sizeof(se->event_id);
8338 se->event_id.next_prev_pid =
8339 perf_event_pid(event, se->next_prev);
8340 se->event_id.next_prev_tid =
8341 perf_event_tid(event, se->next_prev);
8344 perf_event_header__init_id(&se->event_id.header, &sample, event);
8346 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8350 if (event->ctx->task)
8351 perf_output_put(&handle, se->event_id.header);
8353 perf_output_put(&handle, se->event_id);
8355 perf_event__output_id_sample(event, &handle, &sample);
8357 perf_output_end(&handle);
8360 static void perf_event_switch(struct task_struct *task,
8361 struct task_struct *next_prev, bool sched_in)
8363 struct perf_switch_event switch_event;
8365 /* N.B. caller checks nr_switch_events != 0 */
8367 switch_event = (struct perf_switch_event){
8369 .next_prev = next_prev,
8373 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8376 /* .next_prev_pid */
8377 /* .next_prev_tid */
8381 if (!sched_in && task->state == TASK_RUNNING)
8382 switch_event.event_id.header.misc |=
8383 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8385 perf_iterate_sb(perf_event_switch_output,
8391 * IRQ throttle logging
8394 static void perf_log_throttle(struct perf_event *event, int enable)
8396 struct perf_output_handle handle;
8397 struct perf_sample_data sample;
8401 struct perf_event_header header;
8405 } throttle_event = {
8407 .type = PERF_RECORD_THROTTLE,
8409 .size = sizeof(throttle_event),
8411 .time = perf_event_clock(event),
8412 .id = primary_event_id(event),
8413 .stream_id = event->id,
8417 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8419 perf_event_header__init_id(&throttle_event.header, &sample, event);
8421 ret = perf_output_begin(&handle, event,
8422 throttle_event.header.size);
8426 perf_output_put(&handle, throttle_event);
8427 perf_event__output_id_sample(event, &handle, &sample);
8428 perf_output_end(&handle);
8432 * ksymbol register/unregister tracking
8435 struct perf_ksymbol_event {
8439 struct perf_event_header header;
8447 static int perf_event_ksymbol_match(struct perf_event *event)
8449 return event->attr.ksymbol;
8452 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8454 struct perf_ksymbol_event *ksymbol_event = data;
8455 struct perf_output_handle handle;
8456 struct perf_sample_data sample;
8459 if (!perf_event_ksymbol_match(event))
8462 perf_event_header__init_id(&ksymbol_event->event_id.header,
8464 ret = perf_output_begin(&handle, event,
8465 ksymbol_event->event_id.header.size);
8469 perf_output_put(&handle, ksymbol_event->event_id);
8470 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8471 perf_event__output_id_sample(event, &handle, &sample);
8473 perf_output_end(&handle);
8476 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8479 struct perf_ksymbol_event ksymbol_event;
8480 char name[KSYM_NAME_LEN];
8484 if (!atomic_read(&nr_ksymbol_events))
8487 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8488 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8491 strlcpy(name, sym, KSYM_NAME_LEN);
8492 name_len = strlen(name) + 1;
8493 while (!IS_ALIGNED(name_len, sizeof(u64)))
8494 name[name_len++] = '\0';
8495 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8498 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8500 ksymbol_event = (struct perf_ksymbol_event){
8502 .name_len = name_len,
8505 .type = PERF_RECORD_KSYMBOL,
8506 .size = sizeof(ksymbol_event.event_id) +
8511 .ksym_type = ksym_type,
8516 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8519 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8523 * bpf program load/unload tracking
8526 struct perf_bpf_event {
8527 struct bpf_prog *prog;
8529 struct perf_event_header header;
8533 u8 tag[BPF_TAG_SIZE];
8537 static int perf_event_bpf_match(struct perf_event *event)
8539 return event->attr.bpf_event;
8542 static void perf_event_bpf_output(struct perf_event *event, void *data)
8544 struct perf_bpf_event *bpf_event = data;
8545 struct perf_output_handle handle;
8546 struct perf_sample_data sample;
8549 if (!perf_event_bpf_match(event))
8552 perf_event_header__init_id(&bpf_event->event_id.header,
8554 ret = perf_output_begin(&handle, event,
8555 bpf_event->event_id.header.size);
8559 perf_output_put(&handle, bpf_event->event_id);
8560 perf_event__output_id_sample(event, &handle, &sample);
8562 perf_output_end(&handle);
8565 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8566 enum perf_bpf_event_type type)
8568 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8571 if (prog->aux->func_cnt == 0) {
8572 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8573 (u64)(unsigned long)prog->bpf_func,
8574 prog->jited_len, unregister,
8575 prog->aux->ksym.name);
8577 for (i = 0; i < prog->aux->func_cnt; i++) {
8578 struct bpf_prog *subprog = prog->aux->func[i];
8581 PERF_RECORD_KSYMBOL_TYPE_BPF,
8582 (u64)(unsigned long)subprog->bpf_func,
8583 subprog->jited_len, unregister,
8584 prog->aux->ksym.name);
8589 void perf_event_bpf_event(struct bpf_prog *prog,
8590 enum perf_bpf_event_type type,
8593 struct perf_bpf_event bpf_event;
8595 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8596 type >= PERF_BPF_EVENT_MAX)
8600 case PERF_BPF_EVENT_PROG_LOAD:
8601 case PERF_BPF_EVENT_PROG_UNLOAD:
8602 if (atomic_read(&nr_ksymbol_events))
8603 perf_event_bpf_emit_ksymbols(prog, type);
8609 if (!atomic_read(&nr_bpf_events))
8612 bpf_event = (struct perf_bpf_event){
8616 .type = PERF_RECORD_BPF_EVENT,
8617 .size = sizeof(bpf_event.event_id),
8621 .id = prog->aux->id,
8625 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8627 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8628 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8631 void perf_event_itrace_started(struct perf_event *event)
8633 event->attach_state |= PERF_ATTACH_ITRACE;
8636 static void perf_log_itrace_start(struct perf_event *event)
8638 struct perf_output_handle handle;
8639 struct perf_sample_data sample;
8640 struct perf_aux_event {
8641 struct perf_event_header header;
8648 event = event->parent;
8650 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8651 event->attach_state & PERF_ATTACH_ITRACE)
8654 rec.header.type = PERF_RECORD_ITRACE_START;
8655 rec.header.misc = 0;
8656 rec.header.size = sizeof(rec);
8657 rec.pid = perf_event_pid(event, current);
8658 rec.tid = perf_event_tid(event, current);
8660 perf_event_header__init_id(&rec.header, &sample, event);
8661 ret = perf_output_begin(&handle, event, rec.header.size);
8666 perf_output_put(&handle, rec);
8667 perf_event__output_id_sample(event, &handle, &sample);
8669 perf_output_end(&handle);
8673 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8675 struct hw_perf_event *hwc = &event->hw;
8679 seq = __this_cpu_read(perf_throttled_seq);
8680 if (seq != hwc->interrupts_seq) {
8681 hwc->interrupts_seq = seq;
8682 hwc->interrupts = 1;
8685 if (unlikely(throttle
8686 && hwc->interrupts >= max_samples_per_tick)) {
8687 __this_cpu_inc(perf_throttled_count);
8688 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8689 hwc->interrupts = MAX_INTERRUPTS;
8690 perf_log_throttle(event, 0);
8695 if (event->attr.freq) {
8696 u64 now = perf_clock();
8697 s64 delta = now - hwc->freq_time_stamp;
8699 hwc->freq_time_stamp = now;
8701 if (delta > 0 && delta < 2*TICK_NSEC)
8702 perf_adjust_period(event, delta, hwc->last_period, true);
8708 int perf_event_account_interrupt(struct perf_event *event)
8710 return __perf_event_account_interrupt(event, 1);
8714 * Generic event overflow handling, sampling.
8717 static int __perf_event_overflow(struct perf_event *event,
8718 int throttle, struct perf_sample_data *data,
8719 struct pt_regs *regs)
8721 int events = atomic_read(&event->event_limit);
8725 * Non-sampling counters might still use the PMI to fold short
8726 * hardware counters, ignore those.
8728 if (unlikely(!is_sampling_event(event)))
8731 ret = __perf_event_account_interrupt(event, throttle);
8734 * XXX event_limit might not quite work as expected on inherited
8738 event->pending_kill = POLL_IN;
8739 if (events && atomic_dec_and_test(&event->event_limit)) {
8741 event->pending_kill = POLL_HUP;
8743 perf_event_disable_inatomic(event);
8746 READ_ONCE(event->overflow_handler)(event, data, regs);
8748 if (*perf_event_fasync(event) && event->pending_kill) {
8749 event->pending_wakeup = 1;
8750 irq_work_queue(&event->pending);
8756 int perf_event_overflow(struct perf_event *event,
8757 struct perf_sample_data *data,
8758 struct pt_regs *regs)
8760 return __perf_event_overflow(event, 1, data, regs);
8764 * Generic software event infrastructure
8767 struct swevent_htable {
8768 struct swevent_hlist *swevent_hlist;
8769 struct mutex hlist_mutex;
8772 /* Recursion avoidance in each contexts */
8773 int recursion[PERF_NR_CONTEXTS];
8776 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8779 * We directly increment event->count and keep a second value in
8780 * event->hw.period_left to count intervals. This period event
8781 * is kept in the range [-sample_period, 0] so that we can use the
8785 u64 perf_swevent_set_period(struct perf_event *event)
8787 struct hw_perf_event *hwc = &event->hw;
8788 u64 period = hwc->last_period;
8792 hwc->last_period = hwc->sample_period;
8795 old = val = local64_read(&hwc->period_left);
8799 nr = div64_u64(period + val, period);
8800 offset = nr * period;
8802 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8808 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8809 struct perf_sample_data *data,
8810 struct pt_regs *regs)
8812 struct hw_perf_event *hwc = &event->hw;
8816 overflow = perf_swevent_set_period(event);
8818 if (hwc->interrupts == MAX_INTERRUPTS)
8821 for (; overflow; overflow--) {
8822 if (__perf_event_overflow(event, throttle,
8825 * We inhibit the overflow from happening when
8826 * hwc->interrupts == MAX_INTERRUPTS.
8834 static void perf_swevent_event(struct perf_event *event, u64 nr,
8835 struct perf_sample_data *data,
8836 struct pt_regs *regs)
8838 struct hw_perf_event *hwc = &event->hw;
8840 local64_add(nr, &event->count);
8845 if (!is_sampling_event(event))
8848 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8850 return perf_swevent_overflow(event, 1, data, regs);
8852 data->period = event->hw.last_period;
8854 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8855 return perf_swevent_overflow(event, 1, data, regs);
8857 if (local64_add_negative(nr, &hwc->period_left))
8860 perf_swevent_overflow(event, 0, data, regs);
8863 static int perf_exclude_event(struct perf_event *event,
8864 struct pt_regs *regs)
8866 if (event->hw.state & PERF_HES_STOPPED)
8870 if (event->attr.exclude_user && user_mode(regs))
8873 if (event->attr.exclude_kernel && !user_mode(regs))
8880 static int perf_swevent_match(struct perf_event *event,
8881 enum perf_type_id type,
8883 struct perf_sample_data *data,
8884 struct pt_regs *regs)
8886 if (event->attr.type != type)
8889 if (event->attr.config != event_id)
8892 if (perf_exclude_event(event, regs))
8898 static inline u64 swevent_hash(u64 type, u32 event_id)
8900 u64 val = event_id | (type << 32);
8902 return hash_64(val, SWEVENT_HLIST_BITS);
8905 static inline struct hlist_head *
8906 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8908 u64 hash = swevent_hash(type, event_id);
8910 return &hlist->heads[hash];
8913 /* For the read side: events when they trigger */
8914 static inline struct hlist_head *
8915 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8917 struct swevent_hlist *hlist;
8919 hlist = rcu_dereference(swhash->swevent_hlist);
8923 return __find_swevent_head(hlist, type, event_id);
8926 /* For the event head insertion and removal in the hlist */
8927 static inline struct hlist_head *
8928 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8930 struct swevent_hlist *hlist;
8931 u32 event_id = event->attr.config;
8932 u64 type = event->attr.type;
8935 * Event scheduling is always serialized against hlist allocation
8936 * and release. Which makes the protected version suitable here.
8937 * The context lock guarantees that.
8939 hlist = rcu_dereference_protected(swhash->swevent_hlist,
8940 lockdep_is_held(&event->ctx->lock));
8944 return __find_swevent_head(hlist, type, event_id);
8947 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8949 struct perf_sample_data *data,
8950 struct pt_regs *regs)
8952 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8953 struct perf_event *event;
8954 struct hlist_head *head;
8957 head = find_swevent_head_rcu(swhash, type, event_id);
8961 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8962 if (perf_swevent_match(event, type, event_id, data, regs))
8963 perf_swevent_event(event, nr, data, regs);
8969 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8971 int perf_swevent_get_recursion_context(void)
8973 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8975 return get_recursion_context(swhash->recursion);
8977 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8979 void perf_swevent_put_recursion_context(int rctx)
8981 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8983 put_recursion_context(swhash->recursion, rctx);
8986 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8988 struct perf_sample_data data;
8990 if (WARN_ON_ONCE(!regs))
8993 perf_sample_data_init(&data, addr, 0);
8994 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8997 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9001 preempt_disable_notrace();
9002 rctx = perf_swevent_get_recursion_context();
9003 if (unlikely(rctx < 0))
9006 ___perf_sw_event(event_id, nr, regs, addr);
9008 perf_swevent_put_recursion_context(rctx);
9010 preempt_enable_notrace();
9013 static void perf_swevent_read(struct perf_event *event)
9017 static int perf_swevent_add(struct perf_event *event, int flags)
9019 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9020 struct hw_perf_event *hwc = &event->hw;
9021 struct hlist_head *head;
9023 if (is_sampling_event(event)) {
9024 hwc->last_period = hwc->sample_period;
9025 perf_swevent_set_period(event);
9028 hwc->state = !(flags & PERF_EF_START);
9030 head = find_swevent_head(swhash, event);
9031 if (WARN_ON_ONCE(!head))
9034 hlist_add_head_rcu(&event->hlist_entry, head);
9035 perf_event_update_userpage(event);
9040 static void perf_swevent_del(struct perf_event *event, int flags)
9042 hlist_del_rcu(&event->hlist_entry);
9045 static void perf_swevent_start(struct perf_event *event, int flags)
9047 event->hw.state = 0;
9050 static void perf_swevent_stop(struct perf_event *event, int flags)
9052 event->hw.state = PERF_HES_STOPPED;
9055 /* Deref the hlist from the update side */
9056 static inline struct swevent_hlist *
9057 swevent_hlist_deref(struct swevent_htable *swhash)
9059 return rcu_dereference_protected(swhash->swevent_hlist,
9060 lockdep_is_held(&swhash->hlist_mutex));
9063 static void swevent_hlist_release(struct swevent_htable *swhash)
9065 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9070 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9071 kfree_rcu(hlist, rcu_head);
9074 static void swevent_hlist_put_cpu(int cpu)
9076 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9078 mutex_lock(&swhash->hlist_mutex);
9080 if (!--swhash->hlist_refcount)
9081 swevent_hlist_release(swhash);
9083 mutex_unlock(&swhash->hlist_mutex);
9086 static void swevent_hlist_put(void)
9090 for_each_possible_cpu(cpu)
9091 swevent_hlist_put_cpu(cpu);
9094 static int swevent_hlist_get_cpu(int cpu)
9096 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9099 mutex_lock(&swhash->hlist_mutex);
9100 if (!swevent_hlist_deref(swhash) &&
9101 cpumask_test_cpu(cpu, perf_online_mask)) {
9102 struct swevent_hlist *hlist;
9104 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9109 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9111 swhash->hlist_refcount++;
9113 mutex_unlock(&swhash->hlist_mutex);
9118 static int swevent_hlist_get(void)
9120 int err, cpu, failed_cpu;
9122 mutex_lock(&pmus_lock);
9123 for_each_possible_cpu(cpu) {
9124 err = swevent_hlist_get_cpu(cpu);
9130 mutex_unlock(&pmus_lock);
9133 for_each_possible_cpu(cpu) {
9134 if (cpu == failed_cpu)
9136 swevent_hlist_put_cpu(cpu);
9138 mutex_unlock(&pmus_lock);
9142 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9144 static void sw_perf_event_destroy(struct perf_event *event)
9146 u64 event_id = event->attr.config;
9148 WARN_ON(event->parent);
9150 static_key_slow_dec(&perf_swevent_enabled[event_id]);
9151 swevent_hlist_put();
9154 static int perf_swevent_init(struct perf_event *event)
9156 u64 event_id = event->attr.config;
9158 if (event->attr.type != PERF_TYPE_SOFTWARE)
9162 * no branch sampling for software events
9164 if (has_branch_stack(event))
9168 case PERF_COUNT_SW_CPU_CLOCK:
9169 case PERF_COUNT_SW_TASK_CLOCK:
9176 if (event_id >= PERF_COUNT_SW_MAX)
9179 if (!event->parent) {
9182 err = swevent_hlist_get();
9186 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9187 event->destroy = sw_perf_event_destroy;
9193 static struct pmu perf_swevent = {
9194 .task_ctx_nr = perf_sw_context,
9196 .capabilities = PERF_PMU_CAP_NO_NMI,
9198 .event_init = perf_swevent_init,
9199 .add = perf_swevent_add,
9200 .del = perf_swevent_del,
9201 .start = perf_swevent_start,
9202 .stop = perf_swevent_stop,
9203 .read = perf_swevent_read,
9206 #ifdef CONFIG_EVENT_TRACING
9208 static int perf_tp_filter_match(struct perf_event *event,
9209 struct perf_sample_data *data)
9211 void *record = data->raw->frag.data;
9213 /* only top level events have filters set */
9215 event = event->parent;
9217 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9222 static int perf_tp_event_match(struct perf_event *event,
9223 struct perf_sample_data *data,
9224 struct pt_regs *regs)
9226 if (event->hw.state & PERF_HES_STOPPED)
9229 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9231 if (event->attr.exclude_kernel && !user_mode(regs))
9234 if (!perf_tp_filter_match(event, data))
9240 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9241 struct trace_event_call *call, u64 count,
9242 struct pt_regs *regs, struct hlist_head *head,
9243 struct task_struct *task)
9245 if (bpf_prog_array_valid(call)) {
9246 *(struct pt_regs **)raw_data = regs;
9247 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9248 perf_swevent_put_recursion_context(rctx);
9252 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9255 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9257 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9258 struct pt_regs *regs, struct hlist_head *head, int rctx,
9259 struct task_struct *task)
9261 struct perf_sample_data data;
9262 struct perf_event *event;
9264 struct perf_raw_record raw = {
9271 perf_sample_data_init(&data, 0, 0);
9274 perf_trace_buf_update(record, event_type);
9276 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9277 if (perf_tp_event_match(event, &data, regs))
9278 perf_swevent_event(event, count, &data, regs);
9282 * If we got specified a target task, also iterate its context and
9283 * deliver this event there too.
9285 if (task && task != current) {
9286 struct perf_event_context *ctx;
9287 struct trace_entry *entry = record;
9290 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9294 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9295 if (event->cpu != smp_processor_id())
9297 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9299 if (event->attr.config != entry->type)
9301 if (perf_tp_event_match(event, &data, regs))
9302 perf_swevent_event(event, count, &data, regs);
9308 perf_swevent_put_recursion_context(rctx);
9310 EXPORT_SYMBOL_GPL(perf_tp_event);
9312 static void tp_perf_event_destroy(struct perf_event *event)
9314 perf_trace_destroy(event);
9317 static int perf_tp_event_init(struct perf_event *event)
9321 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9325 * no branch sampling for tracepoint events
9327 if (has_branch_stack(event))
9330 err = perf_trace_init(event);
9334 event->destroy = tp_perf_event_destroy;
9339 static struct pmu perf_tracepoint = {
9340 .task_ctx_nr = perf_sw_context,
9342 .event_init = perf_tp_event_init,
9343 .add = perf_trace_add,
9344 .del = perf_trace_del,
9345 .start = perf_swevent_start,
9346 .stop = perf_swevent_stop,
9347 .read = perf_swevent_read,
9350 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9352 * Flags in config, used by dynamic PMU kprobe and uprobe
9353 * The flags should match following PMU_FORMAT_ATTR().
9355 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9356 * if not set, create kprobe/uprobe
9358 * The following values specify a reference counter (or semaphore in the
9359 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9360 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9362 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9363 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9365 enum perf_probe_config {
9366 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9367 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9368 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9371 PMU_FORMAT_ATTR(retprobe, "config:0");
9374 #ifdef CONFIG_KPROBE_EVENTS
9375 static struct attribute *kprobe_attrs[] = {
9376 &format_attr_retprobe.attr,
9380 static struct attribute_group kprobe_format_group = {
9382 .attrs = kprobe_attrs,
9385 static const struct attribute_group *kprobe_attr_groups[] = {
9386 &kprobe_format_group,
9390 static int perf_kprobe_event_init(struct perf_event *event);
9391 static struct pmu perf_kprobe = {
9392 .task_ctx_nr = perf_sw_context,
9393 .event_init = perf_kprobe_event_init,
9394 .add = perf_trace_add,
9395 .del = perf_trace_del,
9396 .start = perf_swevent_start,
9397 .stop = perf_swevent_stop,
9398 .read = perf_swevent_read,
9399 .attr_groups = kprobe_attr_groups,
9402 static int perf_kprobe_event_init(struct perf_event *event)
9407 if (event->attr.type != perf_kprobe.type)
9410 if (!perfmon_capable())
9414 * no branch sampling for probe events
9416 if (has_branch_stack(event))
9419 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9420 err = perf_kprobe_init(event, is_retprobe);
9424 event->destroy = perf_kprobe_destroy;
9428 #endif /* CONFIG_KPROBE_EVENTS */
9430 #ifdef CONFIG_UPROBE_EVENTS
9431 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9433 static struct attribute *uprobe_attrs[] = {
9434 &format_attr_retprobe.attr,
9435 &format_attr_ref_ctr_offset.attr,
9439 static struct attribute_group uprobe_format_group = {
9441 .attrs = uprobe_attrs,
9444 static const struct attribute_group *uprobe_attr_groups[] = {
9445 &uprobe_format_group,
9449 static int perf_uprobe_event_init(struct perf_event *event);
9450 static struct pmu perf_uprobe = {
9451 .task_ctx_nr = perf_sw_context,
9452 .event_init = perf_uprobe_event_init,
9453 .add = perf_trace_add,
9454 .del = perf_trace_del,
9455 .start = perf_swevent_start,
9456 .stop = perf_swevent_stop,
9457 .read = perf_swevent_read,
9458 .attr_groups = uprobe_attr_groups,
9461 static int perf_uprobe_event_init(struct perf_event *event)
9464 unsigned long ref_ctr_offset;
9467 if (event->attr.type != perf_uprobe.type)
9470 if (!perfmon_capable())
9474 * no branch sampling for probe events
9476 if (has_branch_stack(event))
9479 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9480 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9481 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9485 event->destroy = perf_uprobe_destroy;
9489 #endif /* CONFIG_UPROBE_EVENTS */
9491 static inline void perf_tp_register(void)
9493 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9494 #ifdef CONFIG_KPROBE_EVENTS
9495 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9497 #ifdef CONFIG_UPROBE_EVENTS
9498 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9502 static void perf_event_free_filter(struct perf_event *event)
9504 ftrace_profile_free_filter(event);
9507 #ifdef CONFIG_BPF_SYSCALL
9508 static void bpf_overflow_handler(struct perf_event *event,
9509 struct perf_sample_data *data,
9510 struct pt_regs *regs)
9512 struct bpf_perf_event_data_kern ctx = {
9518 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9519 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9522 ret = BPF_PROG_RUN(event->prog, &ctx);
9525 __this_cpu_dec(bpf_prog_active);
9529 event->orig_overflow_handler(event, data, regs);
9532 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9534 struct bpf_prog *prog;
9536 if (event->overflow_handler_context)
9537 /* hw breakpoint or kernel counter */
9543 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9545 return PTR_ERR(prog);
9548 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9549 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9553 static void perf_event_free_bpf_handler(struct perf_event *event)
9555 struct bpf_prog *prog = event->prog;
9560 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9565 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9569 static void perf_event_free_bpf_handler(struct perf_event *event)
9575 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9576 * with perf_event_open()
9578 static inline bool perf_event_is_tracing(struct perf_event *event)
9580 if (event->pmu == &perf_tracepoint)
9582 #ifdef CONFIG_KPROBE_EVENTS
9583 if (event->pmu == &perf_kprobe)
9586 #ifdef CONFIG_UPROBE_EVENTS
9587 if (event->pmu == &perf_uprobe)
9593 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9595 bool is_kprobe, is_tracepoint, is_syscall_tp;
9596 struct bpf_prog *prog;
9599 if (!perf_event_is_tracing(event))
9600 return perf_event_set_bpf_handler(event, prog_fd);
9602 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9603 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9604 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9605 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9606 /* bpf programs can only be attached to u/kprobe or tracepoint */
9609 prog = bpf_prog_get(prog_fd);
9611 return PTR_ERR(prog);
9613 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9614 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9615 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9616 /* valid fd, but invalid bpf program type */
9621 /* Kprobe override only works for kprobes, not uprobes. */
9622 if (prog->kprobe_override &&
9623 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9628 if (is_tracepoint || is_syscall_tp) {
9629 int off = trace_event_get_offsets(event->tp_event);
9631 if (prog->aux->max_ctx_offset > off) {
9637 ret = perf_event_attach_bpf_prog(event, prog);
9643 static void perf_event_free_bpf_prog(struct perf_event *event)
9645 if (!perf_event_is_tracing(event)) {
9646 perf_event_free_bpf_handler(event);
9649 perf_event_detach_bpf_prog(event);
9654 static inline void perf_tp_register(void)
9658 static void perf_event_free_filter(struct perf_event *event)
9662 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9667 static void perf_event_free_bpf_prog(struct perf_event *event)
9670 #endif /* CONFIG_EVENT_TRACING */
9672 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9673 void perf_bp_event(struct perf_event *bp, void *data)
9675 struct perf_sample_data sample;
9676 struct pt_regs *regs = data;
9678 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9680 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9681 perf_swevent_event(bp, 1, &sample, regs);
9686 * Allocate a new address filter
9688 static struct perf_addr_filter *
9689 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9691 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9692 struct perf_addr_filter *filter;
9694 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9698 INIT_LIST_HEAD(&filter->entry);
9699 list_add_tail(&filter->entry, filters);
9704 static void free_filters_list(struct list_head *filters)
9706 struct perf_addr_filter *filter, *iter;
9708 list_for_each_entry_safe(filter, iter, filters, entry) {
9709 path_put(&filter->path);
9710 list_del(&filter->entry);
9716 * Free existing address filters and optionally install new ones
9718 static void perf_addr_filters_splice(struct perf_event *event,
9719 struct list_head *head)
9721 unsigned long flags;
9724 if (!has_addr_filter(event))
9727 /* don't bother with children, they don't have their own filters */
9731 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9733 list_splice_init(&event->addr_filters.list, &list);
9735 list_splice(head, &event->addr_filters.list);
9737 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9739 free_filters_list(&list);
9743 * Scan through mm's vmas and see if one of them matches the
9744 * @filter; if so, adjust filter's address range.
9745 * Called with mm::mmap_lock down for reading.
9747 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9748 struct mm_struct *mm,
9749 struct perf_addr_filter_range *fr)
9751 struct vm_area_struct *vma;
9753 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9757 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9763 * Update event's address range filters based on the
9764 * task's existing mappings, if any.
9766 static void perf_event_addr_filters_apply(struct perf_event *event)
9768 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9769 struct task_struct *task = READ_ONCE(event->ctx->task);
9770 struct perf_addr_filter *filter;
9771 struct mm_struct *mm = NULL;
9772 unsigned int count = 0;
9773 unsigned long flags;
9776 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9777 * will stop on the parent's child_mutex that our caller is also holding
9779 if (task == TASK_TOMBSTONE)
9782 if (ifh->nr_file_filters) {
9783 mm = get_task_mm(event->ctx->task);
9790 raw_spin_lock_irqsave(&ifh->lock, flags);
9791 list_for_each_entry(filter, &ifh->list, entry) {
9792 if (filter->path.dentry) {
9794 * Adjust base offset if the filter is associated to a
9795 * binary that needs to be mapped:
9797 event->addr_filter_ranges[count].start = 0;
9798 event->addr_filter_ranges[count].size = 0;
9800 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9802 event->addr_filter_ranges[count].start = filter->offset;
9803 event->addr_filter_ranges[count].size = filter->size;
9809 event->addr_filters_gen++;
9810 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9812 if (ifh->nr_file_filters) {
9813 mmap_read_unlock(mm);
9819 perf_event_stop(event, 1);
9823 * Address range filtering: limiting the data to certain
9824 * instruction address ranges. Filters are ioctl()ed to us from
9825 * userspace as ascii strings.
9827 * Filter string format:
9830 * where ACTION is one of the
9831 * * "filter": limit the trace to this region
9832 * * "start": start tracing from this address
9833 * * "stop": stop tracing at this address/region;
9835 * * for kernel addresses: <start address>[/<size>]
9836 * * for object files: <start address>[/<size>]@</path/to/object/file>
9838 * if <size> is not specified or is zero, the range is treated as a single
9839 * address; not valid for ACTION=="filter".
9853 IF_STATE_ACTION = 0,
9858 static const match_table_t if_tokens = {
9859 { IF_ACT_FILTER, "filter" },
9860 { IF_ACT_START, "start" },
9861 { IF_ACT_STOP, "stop" },
9862 { IF_SRC_FILE, "%u/%u@%s" },
9863 { IF_SRC_KERNEL, "%u/%u" },
9864 { IF_SRC_FILEADDR, "%u@%s" },
9865 { IF_SRC_KERNELADDR, "%u" },
9866 { IF_ACT_NONE, NULL },
9870 * Address filter string parser
9873 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9874 struct list_head *filters)
9876 struct perf_addr_filter *filter = NULL;
9877 char *start, *orig, *filename = NULL;
9878 substring_t args[MAX_OPT_ARGS];
9879 int state = IF_STATE_ACTION, token;
9880 unsigned int kernel = 0;
9883 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9887 while ((start = strsep(&fstr, " ,\n")) != NULL) {
9888 static const enum perf_addr_filter_action_t actions[] = {
9889 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9890 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9891 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9898 /* filter definition begins */
9899 if (state == IF_STATE_ACTION) {
9900 filter = perf_addr_filter_new(event, filters);
9905 token = match_token(start, if_tokens, args);
9910 if (state != IF_STATE_ACTION)
9913 filter->action = actions[token];
9914 state = IF_STATE_SOURCE;
9917 case IF_SRC_KERNELADDR:
9922 case IF_SRC_FILEADDR:
9924 if (state != IF_STATE_SOURCE)
9928 ret = kstrtoul(args[0].from, 0, &filter->offset);
9932 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9934 ret = kstrtoul(args[1].from, 0, &filter->size);
9939 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9940 int fpos = token == IF_SRC_FILE ? 2 : 1;
9942 filename = match_strdup(&args[fpos]);
9949 state = IF_STATE_END;
9957 * Filter definition is fully parsed, validate and install it.
9958 * Make sure that it doesn't contradict itself or the event's
9961 if (state == IF_STATE_END) {
9963 if (kernel && event->attr.exclude_kernel)
9967 * ACTION "filter" must have a non-zero length region
9970 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9979 * For now, we only support file-based filters
9980 * in per-task events; doing so for CPU-wide
9981 * events requires additional context switching
9982 * trickery, since same object code will be
9983 * mapped at different virtual addresses in
9984 * different processes.
9987 if (!event->ctx->task)
9988 goto fail_free_name;
9990 /* look up the path and grab its inode */
9991 ret = kern_path(filename, LOOKUP_FOLLOW,
9994 goto fail_free_name;
10000 if (!filter->path.dentry ||
10001 !S_ISREG(d_inode(filter->path.dentry)
10005 event->addr_filters.nr_file_filters++;
10008 /* ready to consume more filters */
10009 state = IF_STATE_ACTION;
10014 if (state != IF_STATE_ACTION)
10024 free_filters_list(filters);
10031 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10033 LIST_HEAD(filters);
10037 * Since this is called in perf_ioctl() path, we're already holding
10040 lockdep_assert_held(&event->ctx->mutex);
10042 if (WARN_ON_ONCE(event->parent))
10045 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10047 goto fail_clear_files;
10049 ret = event->pmu->addr_filters_validate(&filters);
10051 goto fail_free_filters;
10053 /* remove existing filters, if any */
10054 perf_addr_filters_splice(event, &filters);
10056 /* install new filters */
10057 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10062 free_filters_list(&filters);
10065 event->addr_filters.nr_file_filters = 0;
10070 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10075 filter_str = strndup_user(arg, PAGE_SIZE);
10076 if (IS_ERR(filter_str))
10077 return PTR_ERR(filter_str);
10079 #ifdef CONFIG_EVENT_TRACING
10080 if (perf_event_is_tracing(event)) {
10081 struct perf_event_context *ctx = event->ctx;
10084 * Beware, here be dragons!!
10086 * the tracepoint muck will deadlock against ctx->mutex, but
10087 * the tracepoint stuff does not actually need it. So
10088 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10089 * already have a reference on ctx.
10091 * This can result in event getting moved to a different ctx,
10092 * but that does not affect the tracepoint state.
10094 mutex_unlock(&ctx->mutex);
10095 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10096 mutex_lock(&ctx->mutex);
10099 if (has_addr_filter(event))
10100 ret = perf_event_set_addr_filter(event, filter_str);
10107 * hrtimer based swevent callback
10110 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10112 enum hrtimer_restart ret = HRTIMER_RESTART;
10113 struct perf_sample_data data;
10114 struct pt_regs *regs;
10115 struct perf_event *event;
10118 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10120 if (event->state != PERF_EVENT_STATE_ACTIVE)
10121 return HRTIMER_NORESTART;
10123 event->pmu->read(event);
10125 perf_sample_data_init(&data, 0, event->hw.last_period);
10126 regs = get_irq_regs();
10128 if (regs && !perf_exclude_event(event, regs)) {
10129 if (!(event->attr.exclude_idle && is_idle_task(current)))
10130 if (__perf_event_overflow(event, 1, &data, regs))
10131 ret = HRTIMER_NORESTART;
10134 period = max_t(u64, 10000, event->hw.sample_period);
10135 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10140 static void perf_swevent_start_hrtimer(struct perf_event *event)
10142 struct hw_perf_event *hwc = &event->hw;
10145 if (!is_sampling_event(event))
10148 period = local64_read(&hwc->period_left);
10153 local64_set(&hwc->period_left, 0);
10155 period = max_t(u64, 10000, hwc->sample_period);
10157 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10158 HRTIMER_MODE_REL_PINNED_HARD);
10161 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10163 struct hw_perf_event *hwc = &event->hw;
10165 if (is_sampling_event(event)) {
10166 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10167 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10169 hrtimer_cancel(&hwc->hrtimer);
10173 static void perf_swevent_init_hrtimer(struct perf_event *event)
10175 struct hw_perf_event *hwc = &event->hw;
10177 if (!is_sampling_event(event))
10180 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10181 hwc->hrtimer.function = perf_swevent_hrtimer;
10184 * Since hrtimers have a fixed rate, we can do a static freq->period
10185 * mapping and avoid the whole period adjust feedback stuff.
10187 if (event->attr.freq) {
10188 long freq = event->attr.sample_freq;
10190 event->attr.sample_period = NSEC_PER_SEC / freq;
10191 hwc->sample_period = event->attr.sample_period;
10192 local64_set(&hwc->period_left, hwc->sample_period);
10193 hwc->last_period = hwc->sample_period;
10194 event->attr.freq = 0;
10199 * Software event: cpu wall time clock
10202 static void cpu_clock_event_update(struct perf_event *event)
10207 now = local_clock();
10208 prev = local64_xchg(&event->hw.prev_count, now);
10209 local64_add(now - prev, &event->count);
10212 static void cpu_clock_event_start(struct perf_event *event, int flags)
10214 local64_set(&event->hw.prev_count, local_clock());
10215 perf_swevent_start_hrtimer(event);
10218 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10220 perf_swevent_cancel_hrtimer(event);
10221 cpu_clock_event_update(event);
10224 static int cpu_clock_event_add(struct perf_event *event, int flags)
10226 if (flags & PERF_EF_START)
10227 cpu_clock_event_start(event, flags);
10228 perf_event_update_userpage(event);
10233 static void cpu_clock_event_del(struct perf_event *event, int flags)
10235 cpu_clock_event_stop(event, flags);
10238 static void cpu_clock_event_read(struct perf_event *event)
10240 cpu_clock_event_update(event);
10243 static int cpu_clock_event_init(struct perf_event *event)
10245 if (event->attr.type != PERF_TYPE_SOFTWARE)
10248 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10252 * no branch sampling for software events
10254 if (has_branch_stack(event))
10255 return -EOPNOTSUPP;
10257 perf_swevent_init_hrtimer(event);
10262 static struct pmu perf_cpu_clock = {
10263 .task_ctx_nr = perf_sw_context,
10265 .capabilities = PERF_PMU_CAP_NO_NMI,
10267 .event_init = cpu_clock_event_init,
10268 .add = cpu_clock_event_add,
10269 .del = cpu_clock_event_del,
10270 .start = cpu_clock_event_start,
10271 .stop = cpu_clock_event_stop,
10272 .read = cpu_clock_event_read,
10276 * Software event: task time clock
10279 static void task_clock_event_update(struct perf_event *event, u64 now)
10284 prev = local64_xchg(&event->hw.prev_count, now);
10285 delta = now - prev;
10286 local64_add(delta, &event->count);
10289 static void task_clock_event_start(struct perf_event *event, int flags)
10291 local64_set(&event->hw.prev_count, event->ctx->time);
10292 perf_swevent_start_hrtimer(event);
10295 static void task_clock_event_stop(struct perf_event *event, int flags)
10297 perf_swevent_cancel_hrtimer(event);
10298 task_clock_event_update(event, event->ctx->time);
10301 static int task_clock_event_add(struct perf_event *event, int flags)
10303 if (flags & PERF_EF_START)
10304 task_clock_event_start(event, flags);
10305 perf_event_update_userpage(event);
10310 static void task_clock_event_del(struct perf_event *event, int flags)
10312 task_clock_event_stop(event, PERF_EF_UPDATE);
10315 static void task_clock_event_read(struct perf_event *event)
10317 u64 now = perf_clock();
10318 u64 delta = now - event->ctx->timestamp;
10319 u64 time = event->ctx->time + delta;
10321 task_clock_event_update(event, time);
10324 static int task_clock_event_init(struct perf_event *event)
10326 if (event->attr.type != PERF_TYPE_SOFTWARE)
10329 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10333 * no branch sampling for software events
10335 if (has_branch_stack(event))
10336 return -EOPNOTSUPP;
10338 perf_swevent_init_hrtimer(event);
10343 static struct pmu perf_task_clock = {
10344 .task_ctx_nr = perf_sw_context,
10346 .capabilities = PERF_PMU_CAP_NO_NMI,
10348 .event_init = task_clock_event_init,
10349 .add = task_clock_event_add,
10350 .del = task_clock_event_del,
10351 .start = task_clock_event_start,
10352 .stop = task_clock_event_stop,
10353 .read = task_clock_event_read,
10356 static void perf_pmu_nop_void(struct pmu *pmu)
10360 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10364 static int perf_pmu_nop_int(struct pmu *pmu)
10369 static int perf_event_nop_int(struct perf_event *event, u64 value)
10374 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10376 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10378 __this_cpu_write(nop_txn_flags, flags);
10380 if (flags & ~PERF_PMU_TXN_ADD)
10383 perf_pmu_disable(pmu);
10386 static int perf_pmu_commit_txn(struct pmu *pmu)
10388 unsigned int flags = __this_cpu_read(nop_txn_flags);
10390 __this_cpu_write(nop_txn_flags, 0);
10392 if (flags & ~PERF_PMU_TXN_ADD)
10395 perf_pmu_enable(pmu);
10399 static void perf_pmu_cancel_txn(struct pmu *pmu)
10401 unsigned int flags = __this_cpu_read(nop_txn_flags);
10403 __this_cpu_write(nop_txn_flags, 0);
10405 if (flags & ~PERF_PMU_TXN_ADD)
10408 perf_pmu_enable(pmu);
10411 static int perf_event_idx_default(struct perf_event *event)
10417 * Ensures all contexts with the same task_ctx_nr have the same
10418 * pmu_cpu_context too.
10420 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10427 list_for_each_entry(pmu, &pmus, entry) {
10428 if (pmu->task_ctx_nr == ctxn)
10429 return pmu->pmu_cpu_context;
10435 static void free_pmu_context(struct pmu *pmu)
10438 * Static contexts such as perf_sw_context have a global lifetime
10439 * and may be shared between different PMUs. Avoid freeing them
10440 * when a single PMU is going away.
10442 if (pmu->task_ctx_nr > perf_invalid_context)
10445 free_percpu(pmu->pmu_cpu_context);
10449 * Let userspace know that this PMU supports address range filtering:
10451 static ssize_t nr_addr_filters_show(struct device *dev,
10452 struct device_attribute *attr,
10455 struct pmu *pmu = dev_get_drvdata(dev);
10457 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10459 DEVICE_ATTR_RO(nr_addr_filters);
10461 static struct idr pmu_idr;
10464 type_show(struct device *dev, struct device_attribute *attr, char *page)
10466 struct pmu *pmu = dev_get_drvdata(dev);
10468 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10470 static DEVICE_ATTR_RO(type);
10473 perf_event_mux_interval_ms_show(struct device *dev,
10474 struct device_attribute *attr,
10477 struct pmu *pmu = dev_get_drvdata(dev);
10479 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10482 static DEFINE_MUTEX(mux_interval_mutex);
10485 perf_event_mux_interval_ms_store(struct device *dev,
10486 struct device_attribute *attr,
10487 const char *buf, size_t count)
10489 struct pmu *pmu = dev_get_drvdata(dev);
10490 int timer, cpu, ret;
10492 ret = kstrtoint(buf, 0, &timer);
10499 /* same value, noting to do */
10500 if (timer == pmu->hrtimer_interval_ms)
10503 mutex_lock(&mux_interval_mutex);
10504 pmu->hrtimer_interval_ms = timer;
10506 /* update all cpuctx for this PMU */
10508 for_each_online_cpu(cpu) {
10509 struct perf_cpu_context *cpuctx;
10510 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10511 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10513 cpu_function_call(cpu,
10514 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10516 cpus_read_unlock();
10517 mutex_unlock(&mux_interval_mutex);
10521 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10523 static struct attribute *pmu_dev_attrs[] = {
10524 &dev_attr_type.attr,
10525 &dev_attr_perf_event_mux_interval_ms.attr,
10528 ATTRIBUTE_GROUPS(pmu_dev);
10530 static int pmu_bus_running;
10531 static struct bus_type pmu_bus = {
10532 .name = "event_source",
10533 .dev_groups = pmu_dev_groups,
10536 static void pmu_dev_release(struct device *dev)
10541 static int pmu_dev_alloc(struct pmu *pmu)
10545 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10549 pmu->dev->groups = pmu->attr_groups;
10550 device_initialize(pmu->dev);
10551 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10555 dev_set_drvdata(pmu->dev, pmu);
10556 pmu->dev->bus = &pmu_bus;
10557 pmu->dev->release = pmu_dev_release;
10558 ret = device_add(pmu->dev);
10562 /* For PMUs with address filters, throw in an extra attribute: */
10563 if (pmu->nr_addr_filters)
10564 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10569 if (pmu->attr_update)
10570 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10579 device_del(pmu->dev);
10582 put_device(pmu->dev);
10586 static struct lock_class_key cpuctx_mutex;
10587 static struct lock_class_key cpuctx_lock;
10589 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10591 int cpu, ret, max = PERF_TYPE_MAX;
10593 mutex_lock(&pmus_lock);
10595 pmu->pmu_disable_count = alloc_percpu(int);
10596 if (!pmu->pmu_disable_count)
10604 if (type != PERF_TYPE_SOFTWARE) {
10608 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10612 WARN_ON(type >= 0 && ret != type);
10618 if (pmu_bus_running) {
10619 ret = pmu_dev_alloc(pmu);
10625 if (pmu->task_ctx_nr == perf_hw_context) {
10626 static int hw_context_taken = 0;
10629 * Other than systems with heterogeneous CPUs, it never makes
10630 * sense for two PMUs to share perf_hw_context. PMUs which are
10631 * uncore must use perf_invalid_context.
10633 if (WARN_ON_ONCE(hw_context_taken &&
10634 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10635 pmu->task_ctx_nr = perf_invalid_context;
10637 hw_context_taken = 1;
10640 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10641 if (pmu->pmu_cpu_context)
10642 goto got_cpu_context;
10645 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10646 if (!pmu->pmu_cpu_context)
10649 for_each_possible_cpu(cpu) {
10650 struct perf_cpu_context *cpuctx;
10652 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10653 __perf_event_init_context(&cpuctx->ctx);
10654 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10655 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10656 cpuctx->ctx.pmu = pmu;
10657 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10659 __perf_mux_hrtimer_init(cpuctx, cpu);
10661 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10662 cpuctx->heap = cpuctx->heap_default;
10666 if (!pmu->start_txn) {
10667 if (pmu->pmu_enable) {
10669 * If we have pmu_enable/pmu_disable calls, install
10670 * transaction stubs that use that to try and batch
10671 * hardware accesses.
10673 pmu->start_txn = perf_pmu_start_txn;
10674 pmu->commit_txn = perf_pmu_commit_txn;
10675 pmu->cancel_txn = perf_pmu_cancel_txn;
10677 pmu->start_txn = perf_pmu_nop_txn;
10678 pmu->commit_txn = perf_pmu_nop_int;
10679 pmu->cancel_txn = perf_pmu_nop_void;
10683 if (!pmu->pmu_enable) {
10684 pmu->pmu_enable = perf_pmu_nop_void;
10685 pmu->pmu_disable = perf_pmu_nop_void;
10688 if (!pmu->check_period)
10689 pmu->check_period = perf_event_nop_int;
10691 if (!pmu->event_idx)
10692 pmu->event_idx = perf_event_idx_default;
10695 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10696 * since these cannot be in the IDR. This way the linear search
10697 * is fast, provided a valid software event is provided.
10699 if (type == PERF_TYPE_SOFTWARE || !name)
10700 list_add_rcu(&pmu->entry, &pmus);
10702 list_add_tail_rcu(&pmu->entry, &pmus);
10704 atomic_set(&pmu->exclusive_cnt, 0);
10707 mutex_unlock(&pmus_lock);
10712 device_del(pmu->dev);
10713 put_device(pmu->dev);
10716 if (pmu->type != PERF_TYPE_SOFTWARE)
10717 idr_remove(&pmu_idr, pmu->type);
10720 free_percpu(pmu->pmu_disable_count);
10723 EXPORT_SYMBOL_GPL(perf_pmu_register);
10725 void perf_pmu_unregister(struct pmu *pmu)
10727 mutex_lock(&pmus_lock);
10728 list_del_rcu(&pmu->entry);
10731 * We dereference the pmu list under both SRCU and regular RCU, so
10732 * synchronize against both of those.
10734 synchronize_srcu(&pmus_srcu);
10737 free_percpu(pmu->pmu_disable_count);
10738 if (pmu->type != PERF_TYPE_SOFTWARE)
10739 idr_remove(&pmu_idr, pmu->type);
10740 if (pmu_bus_running) {
10741 if (pmu->nr_addr_filters)
10742 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10743 device_del(pmu->dev);
10744 put_device(pmu->dev);
10746 free_pmu_context(pmu);
10747 mutex_unlock(&pmus_lock);
10749 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10751 static inline bool has_extended_regs(struct perf_event *event)
10753 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10754 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10757 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10759 struct perf_event_context *ctx = NULL;
10762 if (!try_module_get(pmu->module))
10766 * A number of pmu->event_init() methods iterate the sibling_list to,
10767 * for example, validate if the group fits on the PMU. Therefore,
10768 * if this is a sibling event, acquire the ctx->mutex to protect
10769 * the sibling_list.
10771 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10773 * This ctx->mutex can nest when we're called through
10774 * inheritance. See the perf_event_ctx_lock_nested() comment.
10776 ctx = perf_event_ctx_lock_nested(event->group_leader,
10777 SINGLE_DEPTH_NESTING);
10782 ret = pmu->event_init(event);
10785 perf_event_ctx_unlock(event->group_leader, ctx);
10788 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10789 has_extended_regs(event))
10792 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10793 event_has_any_exclude_flag(event))
10796 if (ret && event->destroy)
10797 event->destroy(event);
10801 module_put(pmu->module);
10806 static struct pmu *perf_init_event(struct perf_event *event)
10808 int idx, type, ret;
10811 idx = srcu_read_lock(&pmus_srcu);
10813 /* Try parent's PMU first: */
10814 if (event->parent && event->parent->pmu) {
10815 pmu = event->parent->pmu;
10816 ret = perf_try_init_event(pmu, event);
10822 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10823 * are often aliases for PERF_TYPE_RAW.
10825 type = event->attr.type;
10826 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10827 type = PERF_TYPE_RAW;
10831 pmu = idr_find(&pmu_idr, type);
10834 ret = perf_try_init_event(pmu, event);
10835 if (ret == -ENOENT && event->attr.type != type) {
10836 type = event->attr.type;
10841 pmu = ERR_PTR(ret);
10846 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10847 ret = perf_try_init_event(pmu, event);
10851 if (ret != -ENOENT) {
10852 pmu = ERR_PTR(ret);
10856 pmu = ERR_PTR(-ENOENT);
10858 srcu_read_unlock(&pmus_srcu, idx);
10863 static void attach_sb_event(struct perf_event *event)
10865 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10867 raw_spin_lock(&pel->lock);
10868 list_add_rcu(&event->sb_list, &pel->list);
10869 raw_spin_unlock(&pel->lock);
10873 * We keep a list of all !task (and therefore per-cpu) events
10874 * that need to receive side-band records.
10876 * This avoids having to scan all the various PMU per-cpu contexts
10877 * looking for them.
10879 static void account_pmu_sb_event(struct perf_event *event)
10881 if (is_sb_event(event))
10882 attach_sb_event(event);
10885 static void account_event_cpu(struct perf_event *event, int cpu)
10890 if (is_cgroup_event(event))
10891 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10894 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10895 static void account_freq_event_nohz(void)
10897 #ifdef CONFIG_NO_HZ_FULL
10898 /* Lock so we don't race with concurrent unaccount */
10899 spin_lock(&nr_freq_lock);
10900 if (atomic_inc_return(&nr_freq_events) == 1)
10901 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10902 spin_unlock(&nr_freq_lock);
10906 static void account_freq_event(void)
10908 if (tick_nohz_full_enabled())
10909 account_freq_event_nohz();
10911 atomic_inc(&nr_freq_events);
10915 static void account_event(struct perf_event *event)
10922 if (event->attach_state & PERF_ATTACH_TASK)
10924 if (event->attr.mmap || event->attr.mmap_data)
10925 atomic_inc(&nr_mmap_events);
10926 if (event->attr.comm)
10927 atomic_inc(&nr_comm_events);
10928 if (event->attr.namespaces)
10929 atomic_inc(&nr_namespaces_events);
10930 if (event->attr.cgroup)
10931 atomic_inc(&nr_cgroup_events);
10932 if (event->attr.task)
10933 atomic_inc(&nr_task_events);
10934 if (event->attr.freq)
10935 account_freq_event();
10936 if (event->attr.context_switch) {
10937 atomic_inc(&nr_switch_events);
10940 if (has_branch_stack(event))
10942 if (is_cgroup_event(event))
10944 if (event->attr.ksymbol)
10945 atomic_inc(&nr_ksymbol_events);
10946 if (event->attr.bpf_event)
10947 atomic_inc(&nr_bpf_events);
10951 * We need the mutex here because static_branch_enable()
10952 * must complete *before* the perf_sched_count increment
10955 if (atomic_inc_not_zero(&perf_sched_count))
10958 mutex_lock(&perf_sched_mutex);
10959 if (!atomic_read(&perf_sched_count)) {
10960 static_branch_enable(&perf_sched_events);
10962 * Guarantee that all CPUs observe they key change and
10963 * call the perf scheduling hooks before proceeding to
10964 * install events that need them.
10969 * Now that we have waited for the sync_sched(), allow further
10970 * increments to by-pass the mutex.
10972 atomic_inc(&perf_sched_count);
10973 mutex_unlock(&perf_sched_mutex);
10977 account_event_cpu(event, event->cpu);
10979 account_pmu_sb_event(event);
10983 * Allocate and initialize an event structure
10985 static struct perf_event *
10986 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10987 struct task_struct *task,
10988 struct perf_event *group_leader,
10989 struct perf_event *parent_event,
10990 perf_overflow_handler_t overflow_handler,
10991 void *context, int cgroup_fd)
10994 struct perf_event *event;
10995 struct hw_perf_event *hwc;
10996 long err = -EINVAL;
10998 if ((unsigned)cpu >= nr_cpu_ids) {
10999 if (!task || cpu != -1)
11000 return ERR_PTR(-EINVAL);
11003 event = kzalloc(sizeof(*event), GFP_KERNEL);
11005 return ERR_PTR(-ENOMEM);
11008 * Single events are their own group leaders, with an
11009 * empty sibling list:
11012 group_leader = event;
11014 mutex_init(&event->child_mutex);
11015 INIT_LIST_HEAD(&event->child_list);
11017 INIT_LIST_HEAD(&event->event_entry);
11018 INIT_LIST_HEAD(&event->sibling_list);
11019 INIT_LIST_HEAD(&event->active_list);
11020 init_event_group(event);
11021 INIT_LIST_HEAD(&event->rb_entry);
11022 INIT_LIST_HEAD(&event->active_entry);
11023 INIT_LIST_HEAD(&event->addr_filters.list);
11024 INIT_HLIST_NODE(&event->hlist_entry);
11027 init_waitqueue_head(&event->waitq);
11028 event->pending_disable = -1;
11029 init_irq_work(&event->pending, perf_pending_event);
11031 mutex_init(&event->mmap_mutex);
11032 raw_spin_lock_init(&event->addr_filters.lock);
11034 atomic_long_set(&event->refcount, 1);
11036 event->attr = *attr;
11037 event->group_leader = group_leader;
11041 event->parent = parent_event;
11043 event->ns = get_pid_ns(task_active_pid_ns(current));
11044 event->id = atomic64_inc_return(&perf_event_id);
11046 event->state = PERF_EVENT_STATE_INACTIVE;
11049 event->attach_state = PERF_ATTACH_TASK;
11051 * XXX pmu::event_init needs to know what task to account to
11052 * and we cannot use the ctx information because we need the
11053 * pmu before we get a ctx.
11055 event->hw.target = get_task_struct(task);
11058 event->clock = &local_clock;
11060 event->clock = parent_event->clock;
11062 if (!overflow_handler && parent_event) {
11063 overflow_handler = parent_event->overflow_handler;
11064 context = parent_event->overflow_handler_context;
11065 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11066 if (overflow_handler == bpf_overflow_handler) {
11067 struct bpf_prog *prog = parent_event->prog;
11069 bpf_prog_inc(prog);
11070 event->prog = prog;
11071 event->orig_overflow_handler =
11072 parent_event->orig_overflow_handler;
11077 if (overflow_handler) {
11078 event->overflow_handler = overflow_handler;
11079 event->overflow_handler_context = context;
11080 } else if (is_write_backward(event)){
11081 event->overflow_handler = perf_event_output_backward;
11082 event->overflow_handler_context = NULL;
11084 event->overflow_handler = perf_event_output_forward;
11085 event->overflow_handler_context = NULL;
11088 perf_event__state_init(event);
11093 hwc->sample_period = attr->sample_period;
11094 if (attr->freq && attr->sample_freq)
11095 hwc->sample_period = 1;
11096 hwc->last_period = hwc->sample_period;
11098 local64_set(&hwc->period_left, hwc->sample_period);
11101 * We currently do not support PERF_SAMPLE_READ on inherited events.
11102 * See perf_output_read().
11104 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11107 if (!has_branch_stack(event))
11108 event->attr.branch_sample_type = 0;
11110 pmu = perf_init_event(event);
11112 err = PTR_ERR(pmu);
11117 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11118 * be different on other CPUs in the uncore mask.
11120 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11125 if (event->attr.aux_output &&
11126 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11131 if (cgroup_fd != -1) {
11132 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11137 err = exclusive_event_init(event);
11141 if (has_addr_filter(event)) {
11142 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11143 sizeof(struct perf_addr_filter_range),
11145 if (!event->addr_filter_ranges) {
11151 * Clone the parent's vma offsets: they are valid until exec()
11152 * even if the mm is not shared with the parent.
11154 if (event->parent) {
11155 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11157 raw_spin_lock_irq(&ifh->lock);
11158 memcpy(event->addr_filter_ranges,
11159 event->parent->addr_filter_ranges,
11160 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11161 raw_spin_unlock_irq(&ifh->lock);
11164 /* force hw sync on the address filters */
11165 event->addr_filters_gen = 1;
11168 if (!event->parent) {
11169 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11170 err = get_callchain_buffers(attr->sample_max_stack);
11172 goto err_addr_filters;
11176 err = security_perf_event_alloc(event);
11178 goto err_callchain_buffer;
11180 /* symmetric to unaccount_event() in _free_event() */
11181 account_event(event);
11185 err_callchain_buffer:
11186 if (!event->parent) {
11187 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11188 put_callchain_buffers();
11191 kfree(event->addr_filter_ranges);
11194 exclusive_event_destroy(event);
11197 if (is_cgroup_event(event))
11198 perf_detach_cgroup(event);
11199 if (event->destroy)
11200 event->destroy(event);
11201 module_put(pmu->module);
11204 put_pid_ns(event->ns);
11205 if (event->hw.target)
11206 put_task_struct(event->hw.target);
11209 return ERR_PTR(err);
11212 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11213 struct perf_event_attr *attr)
11218 /* Zero the full structure, so that a short copy will be nice. */
11219 memset(attr, 0, sizeof(*attr));
11221 ret = get_user(size, &uattr->size);
11225 /* ABI compatibility quirk: */
11227 size = PERF_ATTR_SIZE_VER0;
11228 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11231 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11240 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11243 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11246 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11249 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11250 u64 mask = attr->branch_sample_type;
11252 /* only using defined bits */
11253 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11256 /* at least one branch bit must be set */
11257 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11260 /* propagate priv level, when not set for branch */
11261 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11263 /* exclude_kernel checked on syscall entry */
11264 if (!attr->exclude_kernel)
11265 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11267 if (!attr->exclude_user)
11268 mask |= PERF_SAMPLE_BRANCH_USER;
11270 if (!attr->exclude_hv)
11271 mask |= PERF_SAMPLE_BRANCH_HV;
11273 * adjust user setting (for HW filter setup)
11275 attr->branch_sample_type = mask;
11277 /* privileged levels capture (kernel, hv): check permissions */
11278 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11279 ret = perf_allow_kernel(attr);
11285 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11286 ret = perf_reg_validate(attr->sample_regs_user);
11291 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11292 if (!arch_perf_have_user_stack_dump())
11296 * We have __u32 type for the size, but so far
11297 * we can only use __u16 as maximum due to the
11298 * __u16 sample size limit.
11300 if (attr->sample_stack_user >= USHRT_MAX)
11302 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11306 if (!attr->sample_max_stack)
11307 attr->sample_max_stack = sysctl_perf_event_max_stack;
11309 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11310 ret = perf_reg_validate(attr->sample_regs_intr);
11312 #ifndef CONFIG_CGROUP_PERF
11313 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11321 put_user(sizeof(*attr), &uattr->size);
11327 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11329 struct perf_buffer *rb = NULL;
11335 /* don't allow circular references */
11336 if (event == output_event)
11340 * Don't allow cross-cpu buffers
11342 if (output_event->cpu != event->cpu)
11346 * If its not a per-cpu rb, it must be the same task.
11348 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11352 * Mixing clocks in the same buffer is trouble you don't need.
11354 if (output_event->clock != event->clock)
11358 * Either writing ring buffer from beginning or from end.
11359 * Mixing is not allowed.
11361 if (is_write_backward(output_event) != is_write_backward(event))
11365 * If both events generate aux data, they must be on the same PMU
11367 if (has_aux(event) && has_aux(output_event) &&
11368 event->pmu != output_event->pmu)
11372 mutex_lock(&event->mmap_mutex);
11373 /* Can't redirect output if we've got an active mmap() */
11374 if (atomic_read(&event->mmap_count))
11377 if (output_event) {
11378 /* get the rb we want to redirect to */
11379 rb = ring_buffer_get(output_event);
11384 ring_buffer_attach(event, rb);
11388 mutex_unlock(&event->mmap_mutex);
11394 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11400 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11403 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11405 bool nmi_safe = false;
11408 case CLOCK_MONOTONIC:
11409 event->clock = &ktime_get_mono_fast_ns;
11413 case CLOCK_MONOTONIC_RAW:
11414 event->clock = &ktime_get_raw_fast_ns;
11418 case CLOCK_REALTIME:
11419 event->clock = &ktime_get_real_ns;
11422 case CLOCK_BOOTTIME:
11423 event->clock = &ktime_get_boottime_ns;
11427 event->clock = &ktime_get_clocktai_ns;
11434 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11441 * Variation on perf_event_ctx_lock_nested(), except we take two context
11444 static struct perf_event_context *
11445 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11446 struct perf_event_context *ctx)
11448 struct perf_event_context *gctx;
11452 gctx = READ_ONCE(group_leader->ctx);
11453 if (!refcount_inc_not_zero(&gctx->refcount)) {
11459 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11461 if (group_leader->ctx != gctx) {
11462 mutex_unlock(&ctx->mutex);
11463 mutex_unlock(&gctx->mutex);
11472 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11474 * @attr_uptr: event_id type attributes for monitoring/sampling
11477 * @group_fd: group leader event fd
11479 SYSCALL_DEFINE5(perf_event_open,
11480 struct perf_event_attr __user *, attr_uptr,
11481 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11483 struct perf_event *group_leader = NULL, *output_event = NULL;
11484 struct perf_event *event, *sibling;
11485 struct perf_event_attr attr;
11486 struct perf_event_context *ctx, *gctx;
11487 struct file *event_file = NULL;
11488 struct fd group = {NULL, 0};
11489 struct task_struct *task = NULL;
11492 int move_group = 0;
11494 int f_flags = O_RDWR;
11495 int cgroup_fd = -1;
11497 /* for future expandability... */
11498 if (flags & ~PERF_FLAG_ALL)
11501 /* Do we allow access to perf_event_open(2) ? */
11502 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11506 err = perf_copy_attr(attr_uptr, &attr);
11510 if (!attr.exclude_kernel) {
11511 err = perf_allow_kernel(&attr);
11516 if (attr.namespaces) {
11517 if (!perfmon_capable())
11522 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11525 if (attr.sample_period & (1ULL << 63))
11529 /* Only privileged users can get physical addresses */
11530 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11531 err = perf_allow_kernel(&attr);
11536 err = security_locked_down(LOCKDOWN_PERF);
11537 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11538 /* REGS_INTR can leak data, lockdown must prevent this */
11544 * In cgroup mode, the pid argument is used to pass the fd
11545 * opened to the cgroup directory in cgroupfs. The cpu argument
11546 * designates the cpu on which to monitor threads from that
11549 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11552 if (flags & PERF_FLAG_FD_CLOEXEC)
11553 f_flags |= O_CLOEXEC;
11555 event_fd = get_unused_fd_flags(f_flags);
11559 if (group_fd != -1) {
11560 err = perf_fget_light(group_fd, &group);
11563 group_leader = group.file->private_data;
11564 if (flags & PERF_FLAG_FD_OUTPUT)
11565 output_event = group_leader;
11566 if (flags & PERF_FLAG_FD_NO_GROUP)
11567 group_leader = NULL;
11570 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11571 task = find_lively_task_by_vpid(pid);
11572 if (IS_ERR(task)) {
11573 err = PTR_ERR(task);
11578 if (task && group_leader &&
11579 group_leader->attr.inherit != attr.inherit) {
11585 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11590 * Reuse ptrace permission checks for now.
11592 * We must hold exec_update_mutex across this and any potential
11593 * perf_install_in_context() call for this new event to
11594 * serialize against exec() altering our credentials (and the
11595 * perf_event_exit_task() that could imply).
11598 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11602 if (flags & PERF_FLAG_PID_CGROUP)
11605 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11606 NULL, NULL, cgroup_fd);
11607 if (IS_ERR(event)) {
11608 err = PTR_ERR(event);
11612 if (is_sampling_event(event)) {
11613 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11620 * Special case software events and allow them to be part of
11621 * any hardware group.
11625 if (attr.use_clockid) {
11626 err = perf_event_set_clock(event, attr.clockid);
11631 if (pmu->task_ctx_nr == perf_sw_context)
11632 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11634 if (group_leader) {
11635 if (is_software_event(event) &&
11636 !in_software_context(group_leader)) {
11638 * If the event is a sw event, but the group_leader
11639 * is on hw context.
11641 * Allow the addition of software events to hw
11642 * groups, this is safe because software events
11643 * never fail to schedule.
11645 pmu = group_leader->ctx->pmu;
11646 } else if (!is_software_event(event) &&
11647 is_software_event(group_leader) &&
11648 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11650 * In case the group is a pure software group, and we
11651 * try to add a hardware event, move the whole group to
11652 * the hardware context.
11659 * Get the target context (task or percpu):
11661 ctx = find_get_context(pmu, task, event);
11663 err = PTR_ERR(ctx);
11668 * Look up the group leader (we will attach this event to it):
11670 if (group_leader) {
11674 * Do not allow a recursive hierarchy (this new sibling
11675 * becoming part of another group-sibling):
11677 if (group_leader->group_leader != group_leader)
11680 /* All events in a group should have the same clock */
11681 if (group_leader->clock != event->clock)
11685 * Make sure we're both events for the same CPU;
11686 * grouping events for different CPUs is broken; since
11687 * you can never concurrently schedule them anyhow.
11689 if (group_leader->cpu != event->cpu)
11693 * Make sure we're both on the same task, or both
11696 if (group_leader->ctx->task != ctx->task)
11700 * Do not allow to attach to a group in a different task
11701 * or CPU context. If we're moving SW events, we'll fix
11702 * this up later, so allow that.
11704 if (!move_group && group_leader->ctx != ctx)
11708 * Only a group leader can be exclusive or pinned
11710 if (attr.exclusive || attr.pinned)
11714 if (output_event) {
11715 err = perf_event_set_output(event, output_event);
11720 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11722 if (IS_ERR(event_file)) {
11723 err = PTR_ERR(event_file);
11729 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11731 if (gctx->task == TASK_TOMBSTONE) {
11737 * Check if we raced against another sys_perf_event_open() call
11738 * moving the software group underneath us.
11740 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11742 * If someone moved the group out from under us, check
11743 * if this new event wound up on the same ctx, if so
11744 * its the regular !move_group case, otherwise fail.
11750 perf_event_ctx_unlock(group_leader, gctx);
11756 * Failure to create exclusive events returns -EBUSY.
11759 if (!exclusive_event_installable(group_leader, ctx))
11762 for_each_sibling_event(sibling, group_leader) {
11763 if (!exclusive_event_installable(sibling, ctx))
11767 mutex_lock(&ctx->mutex);
11770 if (ctx->task == TASK_TOMBSTONE) {
11775 if (!perf_event_validate_size(event)) {
11782 * Check if the @cpu we're creating an event for is online.
11784 * We use the perf_cpu_context::ctx::mutex to serialize against
11785 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11787 struct perf_cpu_context *cpuctx =
11788 container_of(ctx, struct perf_cpu_context, ctx);
11790 if (!cpuctx->online) {
11796 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11802 * Must be under the same ctx::mutex as perf_install_in_context(),
11803 * because we need to serialize with concurrent event creation.
11805 if (!exclusive_event_installable(event, ctx)) {
11810 WARN_ON_ONCE(ctx->parent_ctx);
11813 * This is the point on no return; we cannot fail hereafter. This is
11814 * where we start modifying current state.
11819 * See perf_event_ctx_lock() for comments on the details
11820 * of swizzling perf_event::ctx.
11822 perf_remove_from_context(group_leader, 0);
11825 for_each_sibling_event(sibling, group_leader) {
11826 perf_remove_from_context(sibling, 0);
11831 * Wait for everybody to stop referencing the events through
11832 * the old lists, before installing it on new lists.
11837 * Install the group siblings before the group leader.
11839 * Because a group leader will try and install the entire group
11840 * (through the sibling list, which is still in-tact), we can
11841 * end up with siblings installed in the wrong context.
11843 * By installing siblings first we NO-OP because they're not
11844 * reachable through the group lists.
11846 for_each_sibling_event(sibling, group_leader) {
11847 perf_event__state_init(sibling);
11848 perf_install_in_context(ctx, sibling, sibling->cpu);
11853 * Removing from the context ends up with disabled
11854 * event. What we want here is event in the initial
11855 * startup state, ready to be add into new context.
11857 perf_event__state_init(group_leader);
11858 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11863 * Precalculate sample_data sizes; do while holding ctx::mutex such
11864 * that we're serialized against further additions and before
11865 * perf_install_in_context() which is the point the event is active and
11866 * can use these values.
11868 perf_event__header_size(event);
11869 perf_event__id_header_size(event);
11871 event->owner = current;
11873 perf_install_in_context(ctx, event, event->cpu);
11874 perf_unpin_context(ctx);
11877 perf_event_ctx_unlock(group_leader, gctx);
11878 mutex_unlock(&ctx->mutex);
11881 mutex_unlock(&task->signal->exec_update_mutex);
11882 put_task_struct(task);
11885 mutex_lock(¤t->perf_event_mutex);
11886 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
11887 mutex_unlock(¤t->perf_event_mutex);
11890 * Drop the reference on the group_event after placing the
11891 * new event on the sibling_list. This ensures destruction
11892 * of the group leader will find the pointer to itself in
11893 * perf_group_detach().
11896 fd_install(event_fd, event_file);
11901 perf_event_ctx_unlock(group_leader, gctx);
11902 mutex_unlock(&ctx->mutex);
11906 perf_unpin_context(ctx);
11910 * If event_file is set, the fput() above will have called ->release()
11911 * and that will take care of freeing the event.
11917 mutex_unlock(&task->signal->exec_update_mutex);
11920 put_task_struct(task);
11924 put_unused_fd(event_fd);
11929 * perf_event_create_kernel_counter
11931 * @attr: attributes of the counter to create
11932 * @cpu: cpu in which the counter is bound
11933 * @task: task to profile (NULL for percpu)
11935 struct perf_event *
11936 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11937 struct task_struct *task,
11938 perf_overflow_handler_t overflow_handler,
11941 struct perf_event_context *ctx;
11942 struct perf_event *event;
11946 * Grouping is not supported for kernel events, neither is 'AUX',
11947 * make sure the caller's intentions are adjusted.
11949 if (attr->aux_output)
11950 return ERR_PTR(-EINVAL);
11952 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11953 overflow_handler, context, -1);
11954 if (IS_ERR(event)) {
11955 err = PTR_ERR(event);
11959 /* Mark owner so we could distinguish it from user events. */
11960 event->owner = TASK_TOMBSTONE;
11963 * Get the target context (task or percpu):
11965 ctx = find_get_context(event->pmu, task, event);
11967 err = PTR_ERR(ctx);
11971 WARN_ON_ONCE(ctx->parent_ctx);
11972 mutex_lock(&ctx->mutex);
11973 if (ctx->task == TASK_TOMBSTONE) {
11980 * Check if the @cpu we're creating an event for is online.
11982 * We use the perf_cpu_context::ctx::mutex to serialize against
11983 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11985 struct perf_cpu_context *cpuctx =
11986 container_of(ctx, struct perf_cpu_context, ctx);
11987 if (!cpuctx->online) {
11993 if (!exclusive_event_installable(event, ctx)) {
11998 perf_install_in_context(ctx, event, event->cpu);
11999 perf_unpin_context(ctx);
12000 mutex_unlock(&ctx->mutex);
12005 mutex_unlock(&ctx->mutex);
12006 perf_unpin_context(ctx);
12011 return ERR_PTR(err);
12013 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12015 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12017 struct perf_event_context *src_ctx;
12018 struct perf_event_context *dst_ctx;
12019 struct perf_event *event, *tmp;
12022 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12023 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12026 * See perf_event_ctx_lock() for comments on the details
12027 * of swizzling perf_event::ctx.
12029 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12030 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12032 perf_remove_from_context(event, 0);
12033 unaccount_event_cpu(event, src_cpu);
12035 list_add(&event->migrate_entry, &events);
12039 * Wait for the events to quiesce before re-instating them.
12044 * Re-instate events in 2 passes.
12046 * Skip over group leaders and only install siblings on this first
12047 * pass, siblings will not get enabled without a leader, however a
12048 * leader will enable its siblings, even if those are still on the old
12051 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12052 if (event->group_leader == event)
12055 list_del(&event->migrate_entry);
12056 if (event->state >= PERF_EVENT_STATE_OFF)
12057 event->state = PERF_EVENT_STATE_INACTIVE;
12058 account_event_cpu(event, dst_cpu);
12059 perf_install_in_context(dst_ctx, event, dst_cpu);
12064 * Once all the siblings are setup properly, install the group leaders
12067 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12068 list_del(&event->migrate_entry);
12069 if (event->state >= PERF_EVENT_STATE_OFF)
12070 event->state = PERF_EVENT_STATE_INACTIVE;
12071 account_event_cpu(event, dst_cpu);
12072 perf_install_in_context(dst_ctx, event, dst_cpu);
12075 mutex_unlock(&dst_ctx->mutex);
12076 mutex_unlock(&src_ctx->mutex);
12078 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12080 static void sync_child_event(struct perf_event *child_event,
12081 struct task_struct *child)
12083 struct perf_event *parent_event = child_event->parent;
12086 if (child_event->attr.inherit_stat)
12087 perf_event_read_event(child_event, child);
12089 child_val = perf_event_count(child_event);
12092 * Add back the child's count to the parent's count:
12094 atomic64_add(child_val, &parent_event->child_count);
12095 atomic64_add(child_event->total_time_enabled,
12096 &parent_event->child_total_time_enabled);
12097 atomic64_add(child_event->total_time_running,
12098 &parent_event->child_total_time_running);
12102 perf_event_exit_event(struct perf_event *child_event,
12103 struct perf_event_context *child_ctx,
12104 struct task_struct *child)
12106 struct perf_event *parent_event = child_event->parent;
12109 * Do not destroy the 'original' grouping; because of the context
12110 * switch optimization the original events could've ended up in a
12111 * random child task.
12113 * If we were to destroy the original group, all group related
12114 * operations would cease to function properly after this random
12117 * Do destroy all inherited groups, we don't care about those
12118 * and being thorough is better.
12120 raw_spin_lock_irq(&child_ctx->lock);
12121 WARN_ON_ONCE(child_ctx->is_active);
12124 perf_group_detach(child_event);
12125 list_del_event(child_event, child_ctx);
12126 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12127 raw_spin_unlock_irq(&child_ctx->lock);
12130 * Parent events are governed by their filedesc, retain them.
12132 if (!parent_event) {
12133 perf_event_wakeup(child_event);
12137 * Child events can be cleaned up.
12140 sync_child_event(child_event, child);
12143 * Remove this event from the parent's list
12145 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12146 mutex_lock(&parent_event->child_mutex);
12147 list_del_init(&child_event->child_list);
12148 mutex_unlock(&parent_event->child_mutex);
12151 * Kick perf_poll() for is_event_hup().
12153 perf_event_wakeup(parent_event);
12154 free_event(child_event);
12155 put_event(parent_event);
12158 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12160 struct perf_event_context *child_ctx, *clone_ctx = NULL;
12161 struct perf_event *child_event, *next;
12163 WARN_ON_ONCE(child != current);
12165 child_ctx = perf_pin_task_context(child, ctxn);
12170 * In order to reduce the amount of tricky in ctx tear-down, we hold
12171 * ctx::mutex over the entire thing. This serializes against almost
12172 * everything that wants to access the ctx.
12174 * The exception is sys_perf_event_open() /
12175 * perf_event_create_kernel_count() which does find_get_context()
12176 * without ctx::mutex (it cannot because of the move_group double mutex
12177 * lock thing). See the comments in perf_install_in_context().
12179 mutex_lock(&child_ctx->mutex);
12182 * In a single ctx::lock section, de-schedule the events and detach the
12183 * context from the task such that we cannot ever get it scheduled back
12186 raw_spin_lock_irq(&child_ctx->lock);
12187 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12190 * Now that the context is inactive, destroy the task <-> ctx relation
12191 * and mark the context dead.
12193 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12194 put_ctx(child_ctx); /* cannot be last */
12195 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12196 put_task_struct(current); /* cannot be last */
12198 clone_ctx = unclone_ctx(child_ctx);
12199 raw_spin_unlock_irq(&child_ctx->lock);
12202 put_ctx(clone_ctx);
12205 * Report the task dead after unscheduling the events so that we
12206 * won't get any samples after PERF_RECORD_EXIT. We can however still
12207 * get a few PERF_RECORD_READ events.
12209 perf_event_task(child, child_ctx, 0);
12211 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12212 perf_event_exit_event(child_event, child_ctx, child);
12214 mutex_unlock(&child_ctx->mutex);
12216 put_ctx(child_ctx);
12220 * When a child task exits, feed back event values to parent events.
12222 * Can be called with exec_update_mutex held when called from
12223 * setup_new_exec().
12225 void perf_event_exit_task(struct task_struct *child)
12227 struct perf_event *event, *tmp;
12230 mutex_lock(&child->perf_event_mutex);
12231 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12233 list_del_init(&event->owner_entry);
12236 * Ensure the list deletion is visible before we clear
12237 * the owner, closes a race against perf_release() where
12238 * we need to serialize on the owner->perf_event_mutex.
12240 smp_store_release(&event->owner, NULL);
12242 mutex_unlock(&child->perf_event_mutex);
12244 for_each_task_context_nr(ctxn)
12245 perf_event_exit_task_context(child, ctxn);
12248 * The perf_event_exit_task_context calls perf_event_task
12249 * with child's task_ctx, which generates EXIT events for
12250 * child contexts and sets child->perf_event_ctxp[] to NULL.
12251 * At this point we need to send EXIT events to cpu contexts.
12253 perf_event_task(child, NULL, 0);
12256 static void perf_free_event(struct perf_event *event,
12257 struct perf_event_context *ctx)
12259 struct perf_event *parent = event->parent;
12261 if (WARN_ON_ONCE(!parent))
12264 mutex_lock(&parent->child_mutex);
12265 list_del_init(&event->child_list);
12266 mutex_unlock(&parent->child_mutex);
12270 raw_spin_lock_irq(&ctx->lock);
12271 perf_group_detach(event);
12272 list_del_event(event, ctx);
12273 raw_spin_unlock_irq(&ctx->lock);
12278 * Free a context as created by inheritance by perf_event_init_task() below,
12279 * used by fork() in case of fail.
12281 * Even though the task has never lived, the context and events have been
12282 * exposed through the child_list, so we must take care tearing it all down.
12284 void perf_event_free_task(struct task_struct *task)
12286 struct perf_event_context *ctx;
12287 struct perf_event *event, *tmp;
12290 for_each_task_context_nr(ctxn) {
12291 ctx = task->perf_event_ctxp[ctxn];
12295 mutex_lock(&ctx->mutex);
12296 raw_spin_lock_irq(&ctx->lock);
12298 * Destroy the task <-> ctx relation and mark the context dead.
12300 * This is important because even though the task hasn't been
12301 * exposed yet the context has been (through child_list).
12303 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12304 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12305 put_task_struct(task); /* cannot be last */
12306 raw_spin_unlock_irq(&ctx->lock);
12308 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12309 perf_free_event(event, ctx);
12311 mutex_unlock(&ctx->mutex);
12314 * perf_event_release_kernel() could've stolen some of our
12315 * child events and still have them on its free_list. In that
12316 * case we must wait for these events to have been freed (in
12317 * particular all their references to this task must've been
12320 * Without this copy_process() will unconditionally free this
12321 * task (irrespective of its reference count) and
12322 * _free_event()'s put_task_struct(event->hw.target) will be a
12325 * Wait for all events to drop their context reference.
12327 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12328 put_ctx(ctx); /* must be last */
12332 void perf_event_delayed_put(struct task_struct *task)
12336 for_each_task_context_nr(ctxn)
12337 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12340 struct file *perf_event_get(unsigned int fd)
12342 struct file *file = fget(fd);
12344 return ERR_PTR(-EBADF);
12346 if (file->f_op != &perf_fops) {
12348 return ERR_PTR(-EBADF);
12354 const struct perf_event *perf_get_event(struct file *file)
12356 if (file->f_op != &perf_fops)
12357 return ERR_PTR(-EINVAL);
12359 return file->private_data;
12362 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12365 return ERR_PTR(-EINVAL);
12367 return &event->attr;
12371 * Inherit an event from parent task to child task.
12374 * - valid pointer on success
12375 * - NULL for orphaned events
12376 * - IS_ERR() on error
12378 static struct perf_event *
12379 inherit_event(struct perf_event *parent_event,
12380 struct task_struct *parent,
12381 struct perf_event_context *parent_ctx,
12382 struct task_struct *child,
12383 struct perf_event *group_leader,
12384 struct perf_event_context *child_ctx)
12386 enum perf_event_state parent_state = parent_event->state;
12387 struct perf_event *child_event;
12388 unsigned long flags;
12391 * Instead of creating recursive hierarchies of events,
12392 * we link inherited events back to the original parent,
12393 * which has a filp for sure, which we use as the reference
12396 if (parent_event->parent)
12397 parent_event = parent_event->parent;
12399 child_event = perf_event_alloc(&parent_event->attr,
12402 group_leader, parent_event,
12404 if (IS_ERR(child_event))
12405 return child_event;
12408 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12409 !child_ctx->task_ctx_data) {
12410 struct pmu *pmu = child_event->pmu;
12412 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12414 if (!child_ctx->task_ctx_data) {
12415 free_event(child_event);
12416 return ERR_PTR(-ENOMEM);
12421 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12422 * must be under the same lock in order to serialize against
12423 * perf_event_release_kernel(), such that either we must observe
12424 * is_orphaned_event() or they will observe us on the child_list.
12426 mutex_lock(&parent_event->child_mutex);
12427 if (is_orphaned_event(parent_event) ||
12428 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12429 mutex_unlock(&parent_event->child_mutex);
12430 /* task_ctx_data is freed with child_ctx */
12431 free_event(child_event);
12435 get_ctx(child_ctx);
12438 * Make the child state follow the state of the parent event,
12439 * not its attr.disabled bit. We hold the parent's mutex,
12440 * so we won't race with perf_event_{en, dis}able_family.
12442 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12443 child_event->state = PERF_EVENT_STATE_INACTIVE;
12445 child_event->state = PERF_EVENT_STATE_OFF;
12447 if (parent_event->attr.freq) {
12448 u64 sample_period = parent_event->hw.sample_period;
12449 struct hw_perf_event *hwc = &child_event->hw;
12451 hwc->sample_period = sample_period;
12452 hwc->last_period = sample_period;
12454 local64_set(&hwc->period_left, sample_period);
12457 child_event->ctx = child_ctx;
12458 child_event->overflow_handler = parent_event->overflow_handler;
12459 child_event->overflow_handler_context
12460 = parent_event->overflow_handler_context;
12463 * Precalculate sample_data sizes
12465 perf_event__header_size(child_event);
12466 perf_event__id_header_size(child_event);
12469 * Link it up in the child's context:
12471 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12472 add_event_to_ctx(child_event, child_ctx);
12473 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12476 * Link this into the parent event's child list
12478 list_add_tail(&child_event->child_list, &parent_event->child_list);
12479 mutex_unlock(&parent_event->child_mutex);
12481 return child_event;
12485 * Inherits an event group.
12487 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12488 * This matches with perf_event_release_kernel() removing all child events.
12494 static int inherit_group(struct perf_event *parent_event,
12495 struct task_struct *parent,
12496 struct perf_event_context *parent_ctx,
12497 struct task_struct *child,
12498 struct perf_event_context *child_ctx)
12500 struct perf_event *leader;
12501 struct perf_event *sub;
12502 struct perf_event *child_ctr;
12504 leader = inherit_event(parent_event, parent, parent_ctx,
12505 child, NULL, child_ctx);
12506 if (IS_ERR(leader))
12507 return PTR_ERR(leader);
12509 * @leader can be NULL here because of is_orphaned_event(). In this
12510 * case inherit_event() will create individual events, similar to what
12511 * perf_group_detach() would do anyway.
12513 for_each_sibling_event(sub, parent_event) {
12514 child_ctr = inherit_event(sub, parent, parent_ctx,
12515 child, leader, child_ctx);
12516 if (IS_ERR(child_ctr))
12517 return PTR_ERR(child_ctr);
12519 if (sub->aux_event == parent_event && child_ctr &&
12520 !perf_get_aux_event(child_ctr, leader))
12527 * Creates the child task context and tries to inherit the event-group.
12529 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12530 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12531 * consistent with perf_event_release_kernel() removing all child events.
12538 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12539 struct perf_event_context *parent_ctx,
12540 struct task_struct *child, int ctxn,
12541 int *inherited_all)
12544 struct perf_event_context *child_ctx;
12546 if (!event->attr.inherit) {
12547 *inherited_all = 0;
12551 child_ctx = child->perf_event_ctxp[ctxn];
12554 * This is executed from the parent task context, so
12555 * inherit events that have been marked for cloning.
12556 * First allocate and initialize a context for the
12559 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12563 child->perf_event_ctxp[ctxn] = child_ctx;
12566 ret = inherit_group(event, parent, parent_ctx,
12570 *inherited_all = 0;
12576 * Initialize the perf_event context in task_struct
12578 static int perf_event_init_context(struct task_struct *child, int ctxn)
12580 struct perf_event_context *child_ctx, *parent_ctx;
12581 struct perf_event_context *cloned_ctx;
12582 struct perf_event *event;
12583 struct task_struct *parent = current;
12584 int inherited_all = 1;
12585 unsigned long flags;
12588 if (likely(!parent->perf_event_ctxp[ctxn]))
12592 * If the parent's context is a clone, pin it so it won't get
12593 * swapped under us.
12595 parent_ctx = perf_pin_task_context(parent, ctxn);
12600 * No need to check if parent_ctx != NULL here; since we saw
12601 * it non-NULL earlier, the only reason for it to become NULL
12602 * is if we exit, and since we're currently in the middle of
12603 * a fork we can't be exiting at the same time.
12607 * Lock the parent list. No need to lock the child - not PID
12608 * hashed yet and not running, so nobody can access it.
12610 mutex_lock(&parent_ctx->mutex);
12613 * We dont have to disable NMIs - we are only looking at
12614 * the list, not manipulating it:
12616 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12617 ret = inherit_task_group(event, parent, parent_ctx,
12618 child, ctxn, &inherited_all);
12624 * We can't hold ctx->lock when iterating the ->flexible_group list due
12625 * to allocations, but we need to prevent rotation because
12626 * rotate_ctx() will change the list from interrupt context.
12628 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12629 parent_ctx->rotate_disable = 1;
12630 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12632 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12633 ret = inherit_task_group(event, parent, parent_ctx,
12634 child, ctxn, &inherited_all);
12639 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12640 parent_ctx->rotate_disable = 0;
12642 child_ctx = child->perf_event_ctxp[ctxn];
12644 if (child_ctx && inherited_all) {
12646 * Mark the child context as a clone of the parent
12647 * context, or of whatever the parent is a clone of.
12649 * Note that if the parent is a clone, the holding of
12650 * parent_ctx->lock avoids it from being uncloned.
12652 cloned_ctx = parent_ctx->parent_ctx;
12654 child_ctx->parent_ctx = cloned_ctx;
12655 child_ctx->parent_gen = parent_ctx->parent_gen;
12657 child_ctx->parent_ctx = parent_ctx;
12658 child_ctx->parent_gen = parent_ctx->generation;
12660 get_ctx(child_ctx->parent_ctx);
12663 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12665 mutex_unlock(&parent_ctx->mutex);
12667 perf_unpin_context(parent_ctx);
12668 put_ctx(parent_ctx);
12674 * Initialize the perf_event context in task_struct
12676 int perf_event_init_task(struct task_struct *child)
12680 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12681 mutex_init(&child->perf_event_mutex);
12682 INIT_LIST_HEAD(&child->perf_event_list);
12684 for_each_task_context_nr(ctxn) {
12685 ret = perf_event_init_context(child, ctxn);
12687 perf_event_free_task(child);
12695 static void __init perf_event_init_all_cpus(void)
12697 struct swevent_htable *swhash;
12700 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12702 for_each_possible_cpu(cpu) {
12703 swhash = &per_cpu(swevent_htable, cpu);
12704 mutex_init(&swhash->hlist_mutex);
12705 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12707 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12708 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12710 #ifdef CONFIG_CGROUP_PERF
12711 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12713 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12717 static void perf_swevent_init_cpu(unsigned int cpu)
12719 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12721 mutex_lock(&swhash->hlist_mutex);
12722 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12723 struct swevent_hlist *hlist;
12725 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12727 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12729 mutex_unlock(&swhash->hlist_mutex);
12732 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12733 static void __perf_event_exit_context(void *__info)
12735 struct perf_event_context *ctx = __info;
12736 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12737 struct perf_event *event;
12739 raw_spin_lock(&ctx->lock);
12740 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12741 list_for_each_entry(event, &ctx->event_list, event_entry)
12742 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12743 raw_spin_unlock(&ctx->lock);
12746 static void perf_event_exit_cpu_context(int cpu)
12748 struct perf_cpu_context *cpuctx;
12749 struct perf_event_context *ctx;
12752 mutex_lock(&pmus_lock);
12753 list_for_each_entry(pmu, &pmus, entry) {
12754 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12755 ctx = &cpuctx->ctx;
12757 mutex_lock(&ctx->mutex);
12758 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12759 cpuctx->online = 0;
12760 mutex_unlock(&ctx->mutex);
12762 cpumask_clear_cpu(cpu, perf_online_mask);
12763 mutex_unlock(&pmus_lock);
12767 static void perf_event_exit_cpu_context(int cpu) { }
12771 int perf_event_init_cpu(unsigned int cpu)
12773 struct perf_cpu_context *cpuctx;
12774 struct perf_event_context *ctx;
12777 perf_swevent_init_cpu(cpu);
12779 mutex_lock(&pmus_lock);
12780 cpumask_set_cpu(cpu, perf_online_mask);
12781 list_for_each_entry(pmu, &pmus, entry) {
12782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12783 ctx = &cpuctx->ctx;
12785 mutex_lock(&ctx->mutex);
12786 cpuctx->online = 1;
12787 mutex_unlock(&ctx->mutex);
12789 mutex_unlock(&pmus_lock);
12794 int perf_event_exit_cpu(unsigned int cpu)
12796 perf_event_exit_cpu_context(cpu);
12801 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12805 for_each_online_cpu(cpu)
12806 perf_event_exit_cpu(cpu);
12812 * Run the perf reboot notifier at the very last possible moment so that
12813 * the generic watchdog code runs as long as possible.
12815 static struct notifier_block perf_reboot_notifier = {
12816 .notifier_call = perf_reboot,
12817 .priority = INT_MIN,
12820 void __init perf_event_init(void)
12824 idr_init(&pmu_idr);
12826 perf_event_init_all_cpus();
12827 init_srcu_struct(&pmus_srcu);
12828 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12829 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12830 perf_pmu_register(&perf_task_clock, NULL, -1);
12831 perf_tp_register();
12832 perf_event_init_cpu(smp_processor_id());
12833 register_reboot_notifier(&perf_reboot_notifier);
12835 ret = init_hw_breakpoint();
12836 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12839 * Build time assertion that we keep the data_head at the intended
12840 * location. IOW, validation we got the __reserved[] size right.
12842 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12846 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12849 struct perf_pmu_events_attr *pmu_attr =
12850 container_of(attr, struct perf_pmu_events_attr, attr);
12852 if (pmu_attr->event_str)
12853 return sprintf(page, "%s\n", pmu_attr->event_str);
12857 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12859 static int __init perf_event_sysfs_init(void)
12864 mutex_lock(&pmus_lock);
12866 ret = bus_register(&pmu_bus);
12870 list_for_each_entry(pmu, &pmus, entry) {
12871 if (!pmu->name || pmu->type < 0)
12874 ret = pmu_dev_alloc(pmu);
12875 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12877 pmu_bus_running = 1;
12881 mutex_unlock(&pmus_lock);
12885 device_initcall(perf_event_sysfs_init);
12887 #ifdef CONFIG_CGROUP_PERF
12888 static struct cgroup_subsys_state *
12889 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12891 struct perf_cgroup *jc;
12893 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12895 return ERR_PTR(-ENOMEM);
12897 jc->info = alloc_percpu(struct perf_cgroup_info);
12900 return ERR_PTR(-ENOMEM);
12906 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12908 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12910 free_percpu(jc->info);
12914 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
12916 perf_event_cgroup(css->cgroup);
12920 static int __perf_cgroup_move(void *info)
12922 struct task_struct *task = info;
12924 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12929 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12931 struct task_struct *task;
12932 struct cgroup_subsys_state *css;
12934 cgroup_taskset_for_each(task, css, tset)
12935 task_function_call(task, __perf_cgroup_move, task);
12938 struct cgroup_subsys perf_event_cgrp_subsys = {
12939 .css_alloc = perf_cgroup_css_alloc,
12940 .css_free = perf_cgroup_css_free,
12941 .css_online = perf_cgroup_css_online,
12942 .attach = perf_cgroup_attach,
12944 * Implicitly enable on dfl hierarchy so that perf events can
12945 * always be filtered by cgroup2 path as long as perf_event
12946 * controller is not mounted on a legacy hierarchy.
12948 .implicit_on_dfl = true,
12951 #endif /* CONFIG_CGROUP_PERF */