1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
72 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
76 static inline int stripe_hash_locks_hash(sector_t sect)
78 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
115 /* ddf always start from first device */
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
121 return sh->qd_idx + 1;
123 static inline int raid6_next_disk(int disk, int raid_disks)
126 return (disk < raid_disks) ? disk : 0;
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
150 static void print_raid5_conf (struct r5conf *conf);
152 static int stripe_operations_active(struct stripe_head *sh)
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
159 static bool stripe_is_lowprio(struct stripe_head *sh)
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
171 int i, cpu = sh->cpu;
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
216 int injournal = 0; /* number of date pages with R5_InJournal */
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
255 list_add_tail(&sh->lru,
258 raid5_wakeup_stripe_thread(sh);
262 md_wakeup_thread(conf->mddev->thread);
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
316 bool do_wakeup = false;
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
325 struct list_head *list = &temp_inactive_list[size - 1];
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
357 struct stripe_head *sh, *t;
359 struct llist_node *head;
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
382 void raid5_release_stripe(struct stripe_head *sh)
384 struct r5conf *conf = sh->raid_conf;
386 struct list_head list;
390 /* Avoid release_list until the last reference.
392 if (atomic_add_unless(&sh->count, -1, 1))
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 md_wakeup_thread(conf->mddev->thread);
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
413 static inline void remove_hash(struct stripe_head *sh)
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
418 hlist_del_init(&sh->hash);
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
428 hlist_add_head(&sh->hash, hp);
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
437 if (list_empty(conf->inactive_list + hash))
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
451 static void shrink_buffers(struct stripe_head *sh)
455 int num = sh->raid_conf->pool_size;
457 for (i = 0; i < num ; i++) {
458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
462 sh->dev[i].page = NULL;
467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
470 int num = sh->raid_conf->pool_size;
472 for (i = 0; i < num; i++) {
475 if (!(page = alloc_page(gfp))) {
478 sh->dev[i].page = page;
479 sh->dev[i].orig_page = page;
485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 struct stripe_head *sh);
488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
490 struct r5conf *conf = sh->raid_conf;
493 BUG_ON(atomic_read(&sh->count) != 0);
494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 BUG_ON(stripe_operations_active(sh));
496 BUG_ON(sh->batch_head);
498 pr_debug("init_stripe called, stripe %llu\n",
499 (unsigned long long)sector);
501 seq = read_seqcount_begin(&conf->gen_lock);
502 sh->generation = conf->generation - previous;
503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
505 stripe_set_idx(sector, conf, previous, sh);
508 for (i = sh->disks; i--; ) {
509 struct r5dev *dev = &sh->dev[i];
511 if (dev->toread || dev->read || dev->towrite || dev->written ||
512 test_bit(R5_LOCKED, &dev->flags)) {
513 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 (unsigned long long)sh->sector, i, dev->toread,
515 dev->read, dev->towrite, dev->written,
516 test_bit(R5_LOCKED, &dev->flags));
520 dev->sector = raid5_compute_blocknr(sh, i, previous);
522 if (read_seqcount_retry(&conf->gen_lock, seq))
524 sh->overwrite_disks = 0;
525 insert_hash(conf, sh);
526 sh->cpu = smp_processor_id();
527 set_bit(STRIPE_BATCH_READY, &sh->state);
530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
533 struct stripe_head *sh;
535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 if (sh->sector == sector && sh->generation == generation)
539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
544 * Need to check if array has failed when deciding whether to:
546 * - remove non-faulty devices
549 * This determination is simple when no reshape is happening.
550 * However if there is a reshape, we need to carefully check
551 * both the before and after sections.
552 * This is because some failed devices may only affect one
553 * of the two sections, and some non-in_sync devices may
554 * be insync in the section most affected by failed devices.
556 int raid5_calc_degraded(struct r5conf *conf)
558 int degraded, degraded2;
563 for (i = 0; i < conf->previous_raid_disks; i++) {
564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 if (rdev && test_bit(Faulty, &rdev->flags))
566 rdev = rcu_dereference(conf->disks[i].replacement);
567 if (!rdev || test_bit(Faulty, &rdev->flags))
569 else if (test_bit(In_sync, &rdev->flags))
572 /* not in-sync or faulty.
573 * If the reshape increases the number of devices,
574 * this is being recovered by the reshape, so
575 * this 'previous' section is not in_sync.
576 * If the number of devices is being reduced however,
577 * the device can only be part of the array if
578 * we are reverting a reshape, so this section will
581 if (conf->raid_disks >= conf->previous_raid_disks)
585 if (conf->raid_disks == conf->previous_raid_disks)
589 for (i = 0; i < conf->raid_disks; i++) {
590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 if (rdev && test_bit(Faulty, &rdev->flags))
592 rdev = rcu_dereference(conf->disks[i].replacement);
593 if (!rdev || test_bit(Faulty, &rdev->flags))
595 else if (test_bit(In_sync, &rdev->flags))
598 /* not in-sync or faulty.
599 * If reshape increases the number of devices, this
600 * section has already been recovered, else it
601 * almost certainly hasn't.
603 if (conf->raid_disks <= conf->previous_raid_disks)
607 if (degraded2 > degraded)
612 static int has_failed(struct r5conf *conf)
616 if (conf->mddev->reshape_position == MaxSector)
617 return conf->mddev->degraded > conf->max_degraded;
619 degraded = raid5_calc_degraded(conf);
620 if (degraded > conf->max_degraded)
626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 int previous, int noblock, int noquiesce)
629 struct stripe_head *sh;
630 int hash = stripe_hash_locks_hash(sector);
631 int inc_empty_inactive_list_flag;
633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
635 spin_lock_irq(conf->hash_locks + hash);
638 wait_event_lock_irq(conf->wait_for_quiescent,
639 conf->quiesce == 0 || noquiesce,
640 *(conf->hash_locks + hash));
641 sh = __find_stripe(conf, sector, conf->generation - previous);
643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 sh = get_free_stripe(conf, hash);
645 if (!sh && !test_bit(R5_DID_ALLOC,
647 set_bit(R5_ALLOC_MORE,
650 if (noblock && sh == NULL)
653 r5c_check_stripe_cache_usage(conf);
655 set_bit(R5_INACTIVE_BLOCKED,
657 r5l_wake_reclaim(conf->log, 0);
659 conf->wait_for_stripe,
660 !list_empty(conf->inactive_list + hash) &&
661 (atomic_read(&conf->active_stripes)
662 < (conf->max_nr_stripes * 3 / 4)
663 || !test_bit(R5_INACTIVE_BLOCKED,
664 &conf->cache_state)),
665 *(conf->hash_locks + hash));
666 clear_bit(R5_INACTIVE_BLOCKED,
669 init_stripe(sh, sector, previous);
670 atomic_inc(&sh->count);
672 } else if (!atomic_inc_not_zero(&sh->count)) {
673 spin_lock(&conf->device_lock);
674 if (!atomic_read(&sh->count)) {
675 if (!test_bit(STRIPE_HANDLE, &sh->state))
676 atomic_inc(&conf->active_stripes);
677 BUG_ON(list_empty(&sh->lru) &&
678 !test_bit(STRIPE_EXPANDING, &sh->state));
679 inc_empty_inactive_list_flag = 0;
680 if (!list_empty(conf->inactive_list + hash))
681 inc_empty_inactive_list_flag = 1;
682 list_del_init(&sh->lru);
683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 atomic_inc(&conf->empty_inactive_list_nr);
686 sh->group->stripes_cnt--;
690 atomic_inc(&sh->count);
691 spin_unlock(&conf->device_lock);
693 } while (sh == NULL);
695 spin_unlock_irq(conf->hash_locks + hash);
699 static bool is_full_stripe_write(struct stripe_head *sh)
701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706 __acquires(&sh1->stripe_lock)
707 __acquires(&sh2->stripe_lock)
710 spin_lock_irq(&sh2->stripe_lock);
711 spin_lock_nested(&sh1->stripe_lock, 1);
713 spin_lock_irq(&sh1->stripe_lock);
714 spin_lock_nested(&sh2->stripe_lock, 1);
718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 __releases(&sh1->stripe_lock)
720 __releases(&sh2->stripe_lock)
722 spin_unlock(&sh1->stripe_lock);
723 spin_unlock_irq(&sh2->stripe_lock);
726 /* Only freshly new full stripe normal write stripe can be added to a batch list */
727 static bool stripe_can_batch(struct stripe_head *sh)
729 struct r5conf *conf = sh->raid_conf;
731 if (raid5_has_log(conf) || raid5_has_ppl(conf))
733 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 is_full_stripe_write(sh);
738 /* we only do back search */
739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 struct stripe_head *head;
742 sector_t head_sector, tmp_sec;
745 int inc_empty_inactive_list_flag;
747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 tmp_sec = sh->sector;
749 if (!sector_div(tmp_sec, conf->chunk_sectors))
751 head_sector = sh->sector - STRIPE_SECTORS;
753 hash = stripe_hash_locks_hash(head_sector);
754 spin_lock_irq(conf->hash_locks + hash);
755 head = __find_stripe(conf, head_sector, conf->generation);
756 if (head && !atomic_inc_not_zero(&head->count)) {
757 spin_lock(&conf->device_lock);
758 if (!atomic_read(&head->count)) {
759 if (!test_bit(STRIPE_HANDLE, &head->state))
760 atomic_inc(&conf->active_stripes);
761 BUG_ON(list_empty(&head->lru) &&
762 !test_bit(STRIPE_EXPANDING, &head->state));
763 inc_empty_inactive_list_flag = 0;
764 if (!list_empty(conf->inactive_list + hash))
765 inc_empty_inactive_list_flag = 1;
766 list_del_init(&head->lru);
767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 atomic_inc(&conf->empty_inactive_list_nr);
770 head->group->stripes_cnt--;
774 atomic_inc(&head->count);
775 spin_unlock(&conf->device_lock);
777 spin_unlock_irq(conf->hash_locks + hash);
781 if (!stripe_can_batch(head))
784 lock_two_stripes(head, sh);
785 /* clear_batch_ready clear the flag */
786 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
799 if (head->batch_head) {
800 spin_lock(&head->batch_head->batch_lock);
801 /* This batch list is already running */
802 if (!stripe_can_batch(head)) {
803 spin_unlock(&head->batch_head->batch_lock);
807 * We must assign batch_head of this stripe within the
808 * batch_lock, otherwise clear_batch_ready of batch head
809 * stripe could clear BATCH_READY bit of this stripe and
810 * this stripe->batch_head doesn't get assigned, which
811 * could confuse clear_batch_ready for this stripe
813 sh->batch_head = head->batch_head;
816 * at this point, head's BATCH_READY could be cleared, but we
817 * can still add the stripe to batch list
819 list_add(&sh->batch_list, &head->batch_list);
820 spin_unlock(&head->batch_head->batch_lock);
822 head->batch_head = head;
823 sh->batch_head = head->batch_head;
824 spin_lock(&head->batch_lock);
825 list_add_tail(&sh->batch_list, &head->batch_list);
826 spin_unlock(&head->batch_lock);
829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 if (atomic_dec_return(&conf->preread_active_stripes)
832 md_wakeup_thread(conf->mddev->thread);
834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 int seq = sh->bm_seq;
836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 sh->batch_head->bm_seq > seq)
838 seq = sh->batch_head->bm_seq;
839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 sh->batch_head->bm_seq = seq;
843 atomic_inc(&sh->count);
845 unlock_two_stripes(head, sh);
847 raid5_release_stripe(head);
850 /* Determine if 'data_offset' or 'new_data_offset' should be used
851 * in this stripe_head.
853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
855 sector_t progress = conf->reshape_progress;
856 /* Need a memory barrier to make sure we see the value
857 * of conf->generation, or ->data_offset that was set before
858 * reshape_progress was updated.
861 if (progress == MaxSector)
863 if (sh->generation == conf->generation - 1)
865 /* We are in a reshape, and this is a new-generation stripe,
866 * so use new_data_offset.
871 static void dispatch_bio_list(struct bio_list *tmp)
875 while ((bio = bio_list_pop(tmp)))
876 generic_make_request(bio);
879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
881 const struct r5pending_data *da = list_entry(a,
882 struct r5pending_data, sibling);
883 const struct r5pending_data *db = list_entry(b,
884 struct r5pending_data, sibling);
885 if (da->sector > db->sector)
887 if (da->sector < db->sector)
892 static void dispatch_defer_bios(struct r5conf *conf, int target,
893 struct bio_list *list)
895 struct r5pending_data *data;
896 struct list_head *first, *next = NULL;
899 if (conf->pending_data_cnt == 0)
902 list_sort(NULL, &conf->pending_list, cmp_stripe);
904 first = conf->pending_list.next;
906 /* temporarily move the head */
907 if (conf->next_pending_data)
908 list_move_tail(&conf->pending_list,
909 &conf->next_pending_data->sibling);
911 while (!list_empty(&conf->pending_list)) {
912 data = list_first_entry(&conf->pending_list,
913 struct r5pending_data, sibling);
914 if (&data->sibling == first)
915 first = data->sibling.next;
916 next = data->sibling.next;
918 bio_list_merge(list, &data->bios);
919 list_move(&data->sibling, &conf->free_list);
924 conf->pending_data_cnt -= cnt;
925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
927 if (next != &conf->pending_list)
928 conf->next_pending_data = list_entry(next,
929 struct r5pending_data, sibling);
931 conf->next_pending_data = NULL;
932 /* list isn't empty */
933 if (first != &conf->pending_list)
934 list_move_tail(&conf->pending_list, first);
937 static void flush_deferred_bios(struct r5conf *conf)
939 struct bio_list tmp = BIO_EMPTY_LIST;
941 if (conf->pending_data_cnt == 0)
944 spin_lock(&conf->pending_bios_lock);
945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 BUG_ON(conf->pending_data_cnt != 0);
947 spin_unlock(&conf->pending_bios_lock);
949 dispatch_bio_list(&tmp);
952 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 struct bio_list *bios)
955 struct bio_list tmp = BIO_EMPTY_LIST;
956 struct r5pending_data *ent;
958 spin_lock(&conf->pending_bios_lock);
959 ent = list_first_entry(&conf->free_list, struct r5pending_data,
961 list_move_tail(&ent->sibling, &conf->pending_list);
962 ent->sector = sector;
963 bio_list_init(&ent->bios);
964 bio_list_merge(&ent->bios, bios);
965 conf->pending_data_cnt++;
966 if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
969 spin_unlock(&conf->pending_bios_lock);
971 dispatch_bio_list(&tmp);
975 raid5_end_read_request(struct bio *bi);
977 raid5_end_write_request(struct bio *bi);
979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
981 struct r5conf *conf = sh->raid_conf;
982 int i, disks = sh->disks;
983 struct stripe_head *head_sh = sh;
984 struct bio_list pending_bios = BIO_EMPTY_LIST;
989 if (log_stripe(sh, s) == 0)
992 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
994 for (i = disks; i--; ) {
995 int op, op_flags = 0;
996 int replace_only = 0;
997 struct bio *bi, *rbi;
998 struct md_rdev *rdev, *rrdev = NULL;
1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1005 if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 op = REQ_OP_DISCARD;
1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1009 else if (test_and_clear_bit(R5_WantReplace,
1010 &sh->dev[i].flags)) {
1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 op_flags |= REQ_SYNC;
1019 bi = &sh->dev[i].req;
1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1023 rrdev = rcu_dereference(conf->disks[i].replacement);
1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 rdev = rcu_dereference(conf->disks[i].rdev);
1030 if (op_is_write(op)) {
1034 /* We raced and saw duplicates */
1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1042 if (rdev && test_bit(Faulty, &rdev->flags))
1045 atomic_inc(&rdev->nr_pending);
1046 if (rrdev && test_bit(Faulty, &rrdev->flags))
1049 atomic_inc(&rrdev->nr_pending);
1052 /* We have already checked bad blocks for reads. Now
1053 * need to check for writes. We never accept write errors
1054 * on the replacement, so we don't to check rrdev.
1056 while (op_is_write(op) && rdev &&
1057 test_bit(WriteErrorSeen, &rdev->flags)) {
1060 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061 &first_bad, &bad_sectors);
1066 set_bit(BlockedBadBlocks, &rdev->flags);
1067 if (!conf->mddev->external &&
1068 conf->mddev->sb_flags) {
1069 /* It is very unlikely, but we might
1070 * still need to write out the
1071 * bad block log - better give it
1073 md_check_recovery(conf->mddev);
1076 * Because md_wait_for_blocked_rdev
1077 * will dec nr_pending, we must
1078 * increment it first.
1080 atomic_inc(&rdev->nr_pending);
1081 md_wait_for_blocked_rdev(rdev, conf->mddev);
1083 /* Acknowledged bad block - skip the write */
1084 rdev_dec_pending(rdev, conf->mddev);
1090 if (s->syncing || s->expanding || s->expanded
1092 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1094 set_bit(STRIPE_IO_STARTED, &sh->state);
1096 bio_set_dev(bi, rdev->bdev);
1097 bio_set_op_attrs(bi, op, op_flags);
1098 bi->bi_end_io = op_is_write(op)
1099 ? raid5_end_write_request
1100 : raid5_end_read_request;
1101 bi->bi_private = sh;
1103 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 __func__, (unsigned long long)sh->sector,
1106 atomic_inc(&sh->count);
1108 atomic_inc(&head_sh->count);
1109 if (use_new_offset(conf, sh))
1110 bi->bi_iter.bi_sector = (sh->sector
1111 + rdev->new_data_offset);
1113 bi->bi_iter.bi_sector = (sh->sector
1114 + rdev->data_offset);
1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 bi->bi_opf |= REQ_NOMERGE;
1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1121 if (!op_is_write(op) &&
1122 test_bit(R5_InJournal, &sh->dev[i].flags))
1124 * issuing read for a page in journal, this
1125 * must be preparing for prexor in rmw; read
1126 * the data into orig_page
1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1130 sh->dev[i].vec.bv_page = sh->dev[i].page;
1132 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133 bi->bi_io_vec[0].bv_offset = 0;
1134 bi->bi_iter.bi_size = STRIPE_SIZE;
1135 bi->bi_write_hint = sh->dev[i].write_hint;
1137 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1139 * If this is discard request, set bi_vcnt 0. We don't
1140 * want to confuse SCSI because SCSI will replace payload
1142 if (op == REQ_OP_DISCARD)
1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1147 if (conf->mddev->gendisk)
1148 trace_block_bio_remap(bi->bi_disk->queue,
1149 bi, disk_devt(conf->mddev->gendisk),
1151 if (should_defer && op_is_write(op))
1152 bio_list_add(&pending_bios, bi);
1154 generic_make_request(bi);
1157 if (s->syncing || s->expanding || s->expanded
1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1161 set_bit(STRIPE_IO_STARTED, &sh->state);
1163 bio_set_dev(rbi, rrdev->bdev);
1164 bio_set_op_attrs(rbi, op, op_flags);
1165 BUG_ON(!op_is_write(op));
1166 rbi->bi_end_io = raid5_end_write_request;
1167 rbi->bi_private = sh;
1169 pr_debug("%s: for %llu schedule op %d on "
1170 "replacement disc %d\n",
1171 __func__, (unsigned long long)sh->sector,
1173 atomic_inc(&sh->count);
1175 atomic_inc(&head_sh->count);
1176 if (use_new_offset(conf, sh))
1177 rbi->bi_iter.bi_sector = (sh->sector
1178 + rrdev->new_data_offset);
1180 rbi->bi_iter.bi_sector = (sh->sector
1181 + rrdev->data_offset);
1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 rbi->bi_io_vec[0].bv_offset = 0;
1188 rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 rbi->bi_write_hint = sh->dev[i].write_hint;
1190 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1192 * If this is discard request, set bi_vcnt 0. We don't
1193 * want to confuse SCSI because SCSI will replace payload
1195 if (op == REQ_OP_DISCARD)
1197 if (conf->mddev->gendisk)
1198 trace_block_bio_remap(rbi->bi_disk->queue,
1199 rbi, disk_devt(conf->mddev->gendisk),
1201 if (should_defer && op_is_write(op))
1202 bio_list_add(&pending_bios, rbi);
1204 generic_make_request(rbi);
1206 if (!rdev && !rrdev) {
1207 if (op_is_write(op))
1208 set_bit(STRIPE_DEGRADED, &sh->state);
1209 pr_debug("skip op %d on disc %d for sector %llu\n",
1210 bi->bi_opf, i, (unsigned long long)sh->sector);
1211 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 set_bit(STRIPE_HANDLE, &sh->state);
1215 if (!head_sh->batch_head)
1217 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1223 if (should_defer && !bio_list_empty(&pending_bios))
1224 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1227 static struct dma_async_tx_descriptor *
1228 async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 sector_t sector, struct dma_async_tx_descriptor *tx,
1230 struct stripe_head *sh, int no_skipcopy)
1233 struct bvec_iter iter;
1234 struct page *bio_page;
1236 struct async_submit_ctl submit;
1237 enum async_tx_flags flags = 0;
1239 if (bio->bi_iter.bi_sector >= sector)
1240 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1242 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1245 flags |= ASYNC_TX_FENCE;
1246 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1248 bio_for_each_segment(bvl, bio, iter) {
1249 int len = bvl.bv_len;
1253 if (page_offset < 0) {
1254 b_offset = -page_offset;
1255 page_offset += b_offset;
1259 if (len > 0 && page_offset + len > STRIPE_SIZE)
1260 clen = STRIPE_SIZE - page_offset;
1265 b_offset += bvl.bv_offset;
1266 bio_page = bvl.bv_page;
1268 if (sh->raid_conf->skip_copy &&
1269 b_offset == 0 && page_offset == 0 &&
1270 clen == STRIPE_SIZE &&
1274 tx = async_memcpy(*page, bio_page, page_offset,
1275 b_offset, clen, &submit);
1277 tx = async_memcpy(bio_page, *page, b_offset,
1278 page_offset, clen, &submit);
1280 /* chain the operations */
1281 submit.depend_tx = tx;
1283 if (clen < len) /* hit end of page */
1291 static void ops_complete_biofill(void *stripe_head_ref)
1293 struct stripe_head *sh = stripe_head_ref;
1296 pr_debug("%s: stripe %llu\n", __func__,
1297 (unsigned long long)sh->sector);
1299 /* clear completed biofills */
1300 for (i = sh->disks; i--; ) {
1301 struct r5dev *dev = &sh->dev[i];
1303 /* acknowledge completion of a biofill operation */
1304 /* and check if we need to reply to a read request,
1305 * new R5_Wantfill requests are held off until
1306 * !STRIPE_BIOFILL_RUN
1308 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309 struct bio *rbi, *rbi2;
1314 while (rbi && rbi->bi_iter.bi_sector <
1315 dev->sector + STRIPE_SECTORS) {
1316 rbi2 = r5_next_bio(rbi, dev->sector);
1322 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1324 set_bit(STRIPE_HANDLE, &sh->state);
1325 raid5_release_stripe(sh);
1328 static void ops_run_biofill(struct stripe_head *sh)
1330 struct dma_async_tx_descriptor *tx = NULL;
1331 struct async_submit_ctl submit;
1334 BUG_ON(sh->batch_head);
1335 pr_debug("%s: stripe %llu\n", __func__,
1336 (unsigned long long)sh->sector);
1338 for (i = sh->disks; i--; ) {
1339 struct r5dev *dev = &sh->dev[i];
1340 if (test_bit(R5_Wantfill, &dev->flags)) {
1342 spin_lock_irq(&sh->stripe_lock);
1343 dev->read = rbi = dev->toread;
1345 spin_unlock_irq(&sh->stripe_lock);
1346 while (rbi && rbi->bi_iter.bi_sector <
1347 dev->sector + STRIPE_SECTORS) {
1348 tx = async_copy_data(0, rbi, &dev->page,
1349 dev->sector, tx, sh, 0);
1350 rbi = r5_next_bio(rbi, dev->sector);
1355 atomic_inc(&sh->count);
1356 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357 async_trigger_callback(&submit);
1360 static void mark_target_uptodate(struct stripe_head *sh, int target)
1367 tgt = &sh->dev[target];
1368 set_bit(R5_UPTODATE, &tgt->flags);
1369 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370 clear_bit(R5_Wantcompute, &tgt->flags);
1373 static void ops_complete_compute(void *stripe_head_ref)
1375 struct stripe_head *sh = stripe_head_ref;
1377 pr_debug("%s: stripe %llu\n", __func__,
1378 (unsigned long long)sh->sector);
1380 /* mark the computed target(s) as uptodate */
1381 mark_target_uptodate(sh, sh->ops.target);
1382 mark_target_uptodate(sh, sh->ops.target2);
1384 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385 if (sh->check_state == check_state_compute_run)
1386 sh->check_state = check_state_compute_result;
1387 set_bit(STRIPE_HANDLE, &sh->state);
1388 raid5_release_stripe(sh);
1391 /* return a pointer to the address conversion region of the scribble buffer */
1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1394 return percpu->scribble + i * percpu->scribble_obj_size;
1397 /* return a pointer to the address conversion region of the scribble buffer */
1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399 struct raid5_percpu *percpu, int i)
1401 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1404 static struct dma_async_tx_descriptor *
1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1407 int disks = sh->disks;
1408 struct page **xor_srcs = to_addr_page(percpu, 0);
1409 int target = sh->ops.target;
1410 struct r5dev *tgt = &sh->dev[target];
1411 struct page *xor_dest = tgt->page;
1413 struct dma_async_tx_descriptor *tx;
1414 struct async_submit_ctl submit;
1417 BUG_ON(sh->batch_head);
1419 pr_debug("%s: stripe %llu block: %d\n",
1420 __func__, (unsigned long long)sh->sector, target);
1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1423 for (i = disks; i--; )
1425 xor_srcs[count++] = sh->dev[i].page;
1427 atomic_inc(&sh->count);
1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431 if (unlikely(count == 1))
1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1439 /* set_syndrome_sources - populate source buffers for gen_syndrome
1440 * @srcs - (struct page *) array of size sh->disks
1441 * @sh - stripe_head to parse
1443 * Populates srcs in proper layout order for the stripe and returns the
1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1445 * destination buffer is recorded in srcs[count] and the Q destination
1446 * is recorded in srcs[count+1]].
1448 static int set_syndrome_sources(struct page **srcs,
1449 struct stripe_head *sh,
1452 int disks = sh->disks;
1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 int d0_idx = raid6_d0(sh);
1458 for (i = 0; i < disks; i++)
1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465 struct r5dev *dev = &sh->dev[i];
1467 if (i == sh->qd_idx || i == sh->pd_idx ||
1468 (srctype == SYNDROME_SRC_ALL) ||
1469 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470 (test_bit(R5_Wantdrain, &dev->flags) ||
1471 test_bit(R5_InJournal, &dev->flags))) ||
1472 (srctype == SYNDROME_SRC_WRITTEN &&
1474 test_bit(R5_InJournal, &dev->flags)))) {
1475 if (test_bit(R5_InJournal, &dev->flags))
1476 srcs[slot] = sh->dev[i].orig_page;
1478 srcs[slot] = sh->dev[i].page;
1480 i = raid6_next_disk(i, disks);
1481 } while (i != d0_idx);
1483 return syndrome_disks;
1486 static struct dma_async_tx_descriptor *
1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1489 int disks = sh->disks;
1490 struct page **blocks = to_addr_page(percpu, 0);
1492 int qd_idx = sh->qd_idx;
1493 struct dma_async_tx_descriptor *tx;
1494 struct async_submit_ctl submit;
1500 BUG_ON(sh->batch_head);
1501 if (sh->ops.target < 0)
1502 target = sh->ops.target2;
1503 else if (sh->ops.target2 < 0)
1504 target = sh->ops.target;
1506 /* we should only have one valid target */
1509 pr_debug("%s: stripe %llu block: %d\n",
1510 __func__, (unsigned long long)sh->sector, target);
1512 tgt = &sh->dev[target];
1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1516 atomic_inc(&sh->count);
1518 if (target == qd_idx) {
1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 blocks[count] = NULL; /* regenerating p is not necessary */
1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 ops_complete_compute, sh,
1524 to_addr_conv(sh, percpu, 0));
1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1527 /* Compute any data- or p-drive using XOR */
1529 for (i = disks; i-- ; ) {
1530 if (i == target || i == qd_idx)
1532 blocks[count++] = sh->dev[i].page;
1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 NULL, ops_complete_compute, sh,
1537 to_addr_conv(sh, percpu, 0));
1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1544 static struct dma_async_tx_descriptor *
1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1547 int i, count, disks = sh->disks;
1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 int d0_idx = raid6_d0(sh);
1550 int faila = -1, failb = -1;
1551 int target = sh->ops.target;
1552 int target2 = sh->ops.target2;
1553 struct r5dev *tgt = &sh->dev[target];
1554 struct r5dev *tgt2 = &sh->dev[target2];
1555 struct dma_async_tx_descriptor *tx;
1556 struct page **blocks = to_addr_page(percpu, 0);
1557 struct async_submit_ctl submit;
1559 BUG_ON(sh->batch_head);
1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 __func__, (unsigned long long)sh->sector, target, target2);
1562 BUG_ON(target < 0 || target2 < 0);
1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1566 /* we need to open-code set_syndrome_sources to handle the
1567 * slot number conversion for 'faila' and 'failb'
1569 for (i = 0; i < disks ; i++)
1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1576 blocks[slot] = sh->dev[i].page;
1582 i = raid6_next_disk(i, disks);
1583 } while (i != d0_idx);
1585 BUG_ON(faila == failb);
1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 __func__, (unsigned long long)sh->sector, faila, failb);
1591 atomic_inc(&sh->count);
1593 if (failb == syndrome_disks+1) {
1594 /* Q disk is one of the missing disks */
1595 if (faila == syndrome_disks) {
1596 /* Missing P+Q, just recompute */
1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 ops_complete_compute, sh,
1599 to_addr_conv(sh, percpu, 0));
1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601 STRIPE_SIZE, &submit);
1605 int qd_idx = sh->qd_idx;
1607 /* Missing D+Q: recompute D from P, then recompute Q */
1608 if (target == qd_idx)
1609 data_target = target2;
1611 data_target = target;
1614 for (i = disks; i-- ; ) {
1615 if (i == data_target || i == qd_idx)
1617 blocks[count++] = sh->dev[i].page;
1619 dest = sh->dev[data_target].page;
1620 init_async_submit(&submit,
1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1623 to_addr_conv(sh, percpu, 0));
1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 ops_complete_compute, sh,
1630 to_addr_conv(sh, percpu, 0));
1631 return async_gen_syndrome(blocks, 0, count+2,
1632 STRIPE_SIZE, &submit);
1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 ops_complete_compute, sh,
1637 to_addr_conv(sh, percpu, 0));
1638 if (failb == syndrome_disks) {
1639 /* We're missing D+P. */
1640 return async_raid6_datap_recov(syndrome_disks+2,
1644 /* We're missing D+D. */
1645 return async_raid6_2data_recov(syndrome_disks+2,
1646 STRIPE_SIZE, faila, failb,
1652 static void ops_complete_prexor(void *stripe_head_ref)
1654 struct stripe_head *sh = stripe_head_ref;
1656 pr_debug("%s: stripe %llu\n", __func__,
1657 (unsigned long long)sh->sector);
1659 if (r5c_is_writeback(sh->raid_conf->log))
1661 * raid5-cache write back uses orig_page during prexor.
1662 * After prexor, it is time to free orig_page
1664 r5c_release_extra_page(sh);
1667 static struct dma_async_tx_descriptor *
1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 struct dma_async_tx_descriptor *tx)
1671 int disks = sh->disks;
1672 struct page **xor_srcs = to_addr_page(percpu, 0);
1673 int count = 0, pd_idx = sh->pd_idx, i;
1674 struct async_submit_ctl submit;
1676 /* existing parity data subtracted */
1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1679 BUG_ON(sh->batch_head);
1680 pr_debug("%s: stripe %llu\n", __func__,
1681 (unsigned long long)sh->sector);
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685 /* Only process blocks that are known to be uptodate */
1686 if (test_bit(R5_InJournal, &dev->flags))
1687 xor_srcs[count++] = dev->orig_page;
1688 else if (test_bit(R5_Wantdrain, &dev->flags))
1689 xor_srcs[count++] = dev->page;
1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1699 static struct dma_async_tx_descriptor *
1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 struct dma_async_tx_descriptor *tx)
1703 struct page **blocks = to_addr_page(percpu, 0);
1705 struct async_submit_ctl submit;
1707 pr_debug("%s: stripe %llu\n", __func__,
1708 (unsigned long long)sh->sector);
1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1719 static struct dma_async_tx_descriptor *
1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1722 struct r5conf *conf = sh->raid_conf;
1723 int disks = sh->disks;
1725 struct stripe_head *head_sh = sh;
1727 pr_debug("%s: stripe %llu\n", __func__,
1728 (unsigned long long)sh->sector);
1730 for (i = disks; i--; ) {
1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1741 * clear R5_InJournal, so when rewriting a page in
1742 * journal, it is not skipped by r5l_log_stripe()
1744 clear_bit(R5_InJournal, &dev->flags);
1745 spin_lock_irq(&sh->stripe_lock);
1746 chosen = dev->towrite;
1747 dev->towrite = NULL;
1748 sh->overwrite_disks = 0;
1749 BUG_ON(dev->written);
1750 wbi = dev->written = chosen;
1751 spin_unlock_irq(&sh->stripe_lock);
1752 WARN_ON(dev->page != dev->orig_page);
1754 while (wbi && wbi->bi_iter.bi_sector <
1755 dev->sector + STRIPE_SECTORS) {
1756 if (wbi->bi_opf & REQ_FUA)
1757 set_bit(R5_WantFUA, &dev->flags);
1758 if (wbi->bi_opf & REQ_SYNC)
1759 set_bit(R5_SyncIO, &dev->flags);
1760 if (bio_op(wbi) == REQ_OP_DISCARD)
1761 set_bit(R5_Discard, &dev->flags);
1763 tx = async_copy_data(1, wbi, &dev->page,
1764 dev->sector, tx, sh,
1765 r5c_is_writeback(conf->log));
1766 if (dev->page != dev->orig_page &&
1767 !r5c_is_writeback(conf->log)) {
1768 set_bit(R5_SkipCopy, &dev->flags);
1769 clear_bit(R5_UPTODATE, &dev->flags);
1770 clear_bit(R5_OVERWRITE, &dev->flags);
1773 wbi = r5_next_bio(wbi, dev->sector);
1776 if (head_sh->batch_head) {
1777 sh = list_first_entry(&sh->batch_list,
1790 static void ops_complete_reconstruct(void *stripe_head_ref)
1792 struct stripe_head *sh = stripe_head_ref;
1793 int disks = sh->disks;
1794 int pd_idx = sh->pd_idx;
1795 int qd_idx = sh->qd_idx;
1797 bool fua = false, sync = false, discard = false;
1799 pr_debug("%s: stripe %llu\n", __func__,
1800 (unsigned long long)sh->sector);
1802 for (i = disks; i--; ) {
1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1808 for (i = disks; i--; ) {
1809 struct r5dev *dev = &sh->dev[i];
1811 if (dev->written || i == pd_idx || i == qd_idx) {
1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813 set_bit(R5_UPTODATE, &dev->flags);
1814 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815 set_bit(R5_Expanded, &dev->flags);
1818 set_bit(R5_WantFUA, &dev->flags);
1820 set_bit(R5_SyncIO, &dev->flags);
1824 if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 sh->reconstruct_state = reconstruct_state_drain_result;
1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 sh->reconstruct_state = reconstruct_state_result;
1833 set_bit(STRIPE_HANDLE, &sh->state);
1834 raid5_release_stripe(sh);
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 struct dma_async_tx_descriptor *tx)
1841 int disks = sh->disks;
1842 struct page **xor_srcs;
1843 struct async_submit_ctl submit;
1844 int count, pd_idx = sh->pd_idx, i;
1845 struct page *xor_dest;
1847 unsigned long flags;
1849 struct stripe_head *head_sh = sh;
1852 pr_debug("%s: stripe %llu\n", __func__,
1853 (unsigned long long)sh->sector);
1855 for (i = 0; i < sh->disks; i++) {
1858 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1861 if (i >= sh->disks) {
1862 atomic_inc(&sh->count);
1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 ops_complete_reconstruct(sh);
1869 xor_srcs = to_addr_page(percpu, j);
1870 /* check if prexor is active which means only process blocks
1871 * that are part of a read-modify-write (written)
1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 for (i = disks; i--; ) {
1877 struct r5dev *dev = &sh->dev[i];
1878 if (head_sh->dev[i].written ||
1879 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 xor_srcs[count++] = dev->page;
1883 xor_dest = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1887 xor_srcs[count++] = dev->page;
1891 /* 1/ if we prexor'd then the dest is reused as a source
1892 * 2/ if we did not prexor then we are redoing the parity
1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 * for the synchronous xor case
1896 last_stripe = !head_sh->batch_head ||
1897 list_first_entry(&sh->batch_list,
1898 struct stripe_head, batch_list) == head_sh;
1900 flags = ASYNC_TX_ACK |
1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1903 atomic_inc(&head_sh->count);
1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 to_addr_conv(sh, percpu, j));
1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 init_async_submit(&submit, flags, tx, NULL, NULL,
1909 to_addr_conv(sh, percpu, j));
1912 if (unlikely(count == 1))
1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1918 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 struct dma_async_tx_descriptor *tx)
1928 struct async_submit_ctl submit;
1929 struct page **blocks;
1930 int count, i, j = 0;
1931 struct stripe_head *head_sh = sh;
1934 unsigned long txflags;
1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1938 for (i = 0; i < sh->disks; i++) {
1939 if (sh->pd_idx == i || sh->qd_idx == i)
1941 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1944 if (i >= sh->disks) {
1945 atomic_inc(&sh->count);
1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 ops_complete_reconstruct(sh);
1953 blocks = to_addr_page(percpu, j);
1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 synflags = SYNDROME_SRC_WRITTEN;
1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1959 synflags = SYNDROME_SRC_ALL;
1960 txflags = ASYNC_TX_ACK;
1963 count = set_syndrome_sources(blocks, sh, synflags);
1964 last_stripe = !head_sh->batch_head ||
1965 list_first_entry(&sh->batch_list,
1966 struct stripe_head, batch_list) == head_sh;
1969 atomic_inc(&head_sh->count);
1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 head_sh, to_addr_conv(sh, percpu, j));
1973 init_async_submit(&submit, 0, tx, NULL, NULL,
1974 to_addr_conv(sh, percpu, j));
1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1978 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1984 static void ops_complete_check(void *stripe_head_ref)
1986 struct stripe_head *sh = stripe_head_ref;
1988 pr_debug("%s: stripe %llu\n", __func__,
1989 (unsigned long long)sh->sector);
1991 sh->check_state = check_state_check_result;
1992 set_bit(STRIPE_HANDLE, &sh->state);
1993 raid5_release_stripe(sh);
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1998 int disks = sh->disks;
1999 int pd_idx = sh->pd_idx;
2000 int qd_idx = sh->qd_idx;
2001 struct page *xor_dest;
2002 struct page **xor_srcs = to_addr_page(percpu, 0);
2003 struct dma_async_tx_descriptor *tx;
2004 struct async_submit_ctl submit;
2008 pr_debug("%s: stripe %llu\n", __func__,
2009 (unsigned long long)sh->sector);
2011 BUG_ON(sh->batch_head);
2013 xor_dest = sh->dev[pd_idx].page;
2014 xor_srcs[count++] = xor_dest;
2015 for (i = disks; i--; ) {
2016 if (i == pd_idx || i == qd_idx)
2018 xor_srcs[count++] = sh->dev[i].page;
2021 init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 to_addr_conv(sh, percpu, 0));
2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 &sh->ops.zero_sum_result, &submit);
2026 atomic_inc(&sh->count);
2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 tx = async_trigger_callback(&submit);
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2033 struct page **srcs = to_addr_page(percpu, 0);
2034 struct async_submit_ctl submit;
2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 (unsigned long long)sh->sector, checkp);
2040 BUG_ON(sh->batch_head);
2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2045 atomic_inc(&sh->count);
2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 sh, to_addr_conv(sh, percpu, 0));
2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2054 int overlap_clear = 0, i, disks = sh->disks;
2055 struct dma_async_tx_descriptor *tx = NULL;
2056 struct r5conf *conf = sh->raid_conf;
2057 int level = conf->level;
2058 struct raid5_percpu *percpu;
2062 percpu = per_cpu_ptr(conf->percpu, cpu);
2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 ops_run_biofill(sh);
2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2070 tx = ops_run_compute5(sh, percpu);
2072 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 tx = ops_run_compute6_1(sh, percpu);
2075 tx = ops_run_compute6_2(sh, percpu);
2077 /* terminate the chain if reconstruct is not set to be run */
2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2084 tx = ops_run_prexor5(sh, percpu, tx);
2086 tx = ops_run_prexor6(sh, percpu, tx);
2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 tx = ops_run_partial_parity(sh, percpu, tx);
2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 tx = ops_run_biodrain(sh, tx);
2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2099 ops_run_reconstruct5(sh, percpu, tx);
2101 ops_run_reconstruct6(sh, percpu, tx);
2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 if (sh->check_state == check_state_run)
2106 ops_run_check_p(sh, percpu);
2107 else if (sh->check_state == check_state_run_q)
2108 ops_run_check_pq(sh, percpu, 0);
2109 else if (sh->check_state == check_state_run_pq)
2110 ops_run_check_pq(sh, percpu, 1);
2115 if (overlap_clear && !sh->batch_head)
2116 for (i = disks; i--; ) {
2117 struct r5dev *dev = &sh->dev[i];
2118 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 wake_up(&sh->raid_conf->wait_for_overlap);
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2127 __free_page(sh->ppl_page);
2128 kmem_cache_free(sc, sh);
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 int disks, struct r5conf *conf)
2134 struct stripe_head *sh;
2137 sh = kmem_cache_zalloc(sc, gfp);
2139 spin_lock_init(&sh->stripe_lock);
2140 spin_lock_init(&sh->batch_lock);
2141 INIT_LIST_HEAD(&sh->batch_list);
2142 INIT_LIST_HEAD(&sh->lru);
2143 INIT_LIST_HEAD(&sh->r5c);
2144 INIT_LIST_HEAD(&sh->log_list);
2145 atomic_set(&sh->count, 1);
2146 sh->raid_conf = conf;
2147 sh->log_start = MaxSector;
2148 for (i = 0; i < disks; i++) {
2149 struct r5dev *dev = &sh->dev[i];
2151 bio_init(&dev->req, &dev->vec, 1);
2152 bio_init(&dev->rreq, &dev->rvec, 1);
2155 if (raid5_has_ppl(conf)) {
2156 sh->ppl_page = alloc_page(gfp);
2157 if (!sh->ppl_page) {
2158 free_stripe(sc, sh);
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2167 struct stripe_head *sh;
2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2173 if (grow_buffers(sh, gfp)) {
2175 free_stripe(conf->slab_cache, sh);
2178 sh->hash_lock_index =
2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 /* we just created an active stripe so... */
2181 atomic_inc(&conf->active_stripes);
2183 raid5_release_stripe(sh);
2184 conf->max_nr_stripes++;
2188 static int grow_stripes(struct r5conf *conf, int num)
2190 struct kmem_cache *sc;
2191 size_t namelen = sizeof(conf->cache_name[0]);
2192 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2194 if (conf->mddev->gendisk)
2195 snprintf(conf->cache_name[0], namelen,
2196 "raid%d-%s", conf->level, mdname(conf->mddev));
2198 snprintf(conf->cache_name[0], namelen,
2199 "raid%d-%p", conf->level, conf->mddev);
2200 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2202 conf->active_name = 0;
2203 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2208 conf->slab_cache = sc;
2209 conf->pool_size = devs;
2211 if (!grow_one_stripe(conf, GFP_KERNEL))
2218 * scribble_alloc - allocate percpu scribble buffer for required size
2219 * of the scribble region
2220 * @percpu - from for_each_present_cpu() of the caller
2221 * @num - total number of disks in the array
2222 * @cnt - scribble objs count for required size of the scribble region
2224 * The scribble buffer size must be enough to contain:
2225 * 1/ a struct page pointer for each device in the array +2
2226 * 2/ room to convert each entry in (1) to its corresponding dma
2227 * (dma_map_page()) or page (page_address()) address.
2229 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2230 * calculate over all devices (not just the data blocks), using zeros in place
2231 * of the P and Q blocks.
2233 static int scribble_alloc(struct raid5_percpu *percpu,
2237 sizeof(struct page *) * (num+2) +
2238 sizeof(addr_conv_t) * (num+2);
2242 * If here is in raid array suspend context, it is in memalloc noio
2243 * context as well, there is no potential recursive memory reclaim
2244 * I/Os with the GFP_KERNEL flag.
2246 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2250 kvfree(percpu->scribble);
2252 percpu->scribble = scribble;
2253 percpu->scribble_obj_size = obj_size;
2257 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2263 * Never shrink. And mddev_suspend() could deadlock if this is called
2264 * from raid5d. In that case, scribble_disks and scribble_sectors
2265 * should equal to new_disks and new_sectors
2267 if (conf->scribble_disks >= new_disks &&
2268 conf->scribble_sectors >= new_sectors)
2270 mddev_suspend(conf->mddev);
2273 for_each_present_cpu(cpu) {
2274 struct raid5_percpu *percpu;
2276 percpu = per_cpu_ptr(conf->percpu, cpu);
2277 err = scribble_alloc(percpu, new_disks,
2278 new_sectors / STRIPE_SECTORS);
2284 mddev_resume(conf->mddev);
2286 conf->scribble_disks = new_disks;
2287 conf->scribble_sectors = new_sectors;
2292 static int resize_stripes(struct r5conf *conf, int newsize)
2294 /* Make all the stripes able to hold 'newsize' devices.
2295 * New slots in each stripe get 'page' set to a new page.
2297 * This happens in stages:
2298 * 1/ create a new kmem_cache and allocate the required number of
2300 * 2/ gather all the old stripe_heads and transfer the pages across
2301 * to the new stripe_heads. This will have the side effect of
2302 * freezing the array as once all stripe_heads have been collected,
2303 * no IO will be possible. Old stripe heads are freed once their
2304 * pages have been transferred over, and the old kmem_cache is
2305 * freed when all stripes are done.
2306 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2307 * we simple return a failure status - no need to clean anything up.
2308 * 4/ allocate new pages for the new slots in the new stripe_heads.
2309 * If this fails, we don't bother trying the shrink the
2310 * stripe_heads down again, we just leave them as they are.
2311 * As each stripe_head is processed the new one is released into
2314 * Once step2 is started, we cannot afford to wait for a write,
2315 * so we use GFP_NOIO allocations.
2317 struct stripe_head *osh, *nsh;
2318 LIST_HEAD(newstripes);
2319 struct disk_info *ndisks;
2321 struct kmem_cache *sc;
2325 md_allow_write(conf->mddev);
2328 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2329 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2334 /* Need to ensure auto-resizing doesn't interfere */
2335 mutex_lock(&conf->cache_size_mutex);
2337 for (i = conf->max_nr_stripes; i; i--) {
2338 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2342 list_add(&nsh->lru, &newstripes);
2345 /* didn't get enough, give up */
2346 while (!list_empty(&newstripes)) {
2347 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2348 list_del(&nsh->lru);
2349 free_stripe(sc, nsh);
2351 kmem_cache_destroy(sc);
2352 mutex_unlock(&conf->cache_size_mutex);
2355 /* Step 2 - Must use GFP_NOIO now.
2356 * OK, we have enough stripes, start collecting inactive
2357 * stripes and copying them over
2361 list_for_each_entry(nsh, &newstripes, lru) {
2362 lock_device_hash_lock(conf, hash);
2363 wait_event_cmd(conf->wait_for_stripe,
2364 !list_empty(conf->inactive_list + hash),
2365 unlock_device_hash_lock(conf, hash),
2366 lock_device_hash_lock(conf, hash));
2367 osh = get_free_stripe(conf, hash);
2368 unlock_device_hash_lock(conf, hash);
2370 for(i=0; i<conf->pool_size; i++) {
2371 nsh->dev[i].page = osh->dev[i].page;
2372 nsh->dev[i].orig_page = osh->dev[i].page;
2374 nsh->hash_lock_index = hash;
2375 free_stripe(conf->slab_cache, osh);
2377 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2378 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2383 kmem_cache_destroy(conf->slab_cache);
2386 * At this point, we are holding all the stripes so the array
2387 * is completely stalled, so now is a good time to resize
2388 * conf->disks and the scribble region
2390 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2392 for (i = 0; i < conf->pool_size; i++)
2393 ndisks[i] = conf->disks[i];
2395 for (i = conf->pool_size; i < newsize; i++) {
2396 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2397 if (!ndisks[i].extra_page)
2402 for (i = conf->pool_size; i < newsize; i++)
2403 if (ndisks[i].extra_page)
2404 put_page(ndisks[i].extra_page);
2408 conf->disks = ndisks;
2413 mutex_unlock(&conf->cache_size_mutex);
2415 conf->slab_cache = sc;
2416 conf->active_name = 1-conf->active_name;
2418 /* Step 4, return new stripes to service */
2419 while(!list_empty(&newstripes)) {
2420 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2421 list_del_init(&nsh->lru);
2423 for (i=conf->raid_disks; i < newsize; i++)
2424 if (nsh->dev[i].page == NULL) {
2425 struct page *p = alloc_page(GFP_NOIO);
2426 nsh->dev[i].page = p;
2427 nsh->dev[i].orig_page = p;
2431 raid5_release_stripe(nsh);
2433 /* critical section pass, GFP_NOIO no longer needed */
2436 conf->pool_size = newsize;
2440 static int drop_one_stripe(struct r5conf *conf)
2442 struct stripe_head *sh;
2443 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2445 spin_lock_irq(conf->hash_locks + hash);
2446 sh = get_free_stripe(conf, hash);
2447 spin_unlock_irq(conf->hash_locks + hash);
2450 BUG_ON(atomic_read(&sh->count));
2452 free_stripe(conf->slab_cache, sh);
2453 atomic_dec(&conf->active_stripes);
2454 conf->max_nr_stripes--;
2458 static void shrink_stripes(struct r5conf *conf)
2460 while (conf->max_nr_stripes &&
2461 drop_one_stripe(conf))
2464 kmem_cache_destroy(conf->slab_cache);
2465 conf->slab_cache = NULL;
2468 static void raid5_end_read_request(struct bio * bi)
2470 struct stripe_head *sh = bi->bi_private;
2471 struct r5conf *conf = sh->raid_conf;
2472 int disks = sh->disks, i;
2473 char b[BDEVNAME_SIZE];
2474 struct md_rdev *rdev = NULL;
2477 for (i=0 ; i<disks; i++)
2478 if (bi == &sh->dev[i].req)
2481 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2482 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2489 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2490 /* If replacement finished while this request was outstanding,
2491 * 'replacement' might be NULL already.
2492 * In that case it moved down to 'rdev'.
2493 * rdev is not removed until all requests are finished.
2495 rdev = conf->disks[i].replacement;
2497 rdev = conf->disks[i].rdev;
2499 if (use_new_offset(conf, sh))
2500 s = sh->sector + rdev->new_data_offset;
2502 s = sh->sector + rdev->data_offset;
2503 if (!bi->bi_status) {
2504 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2505 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2506 /* Note that this cannot happen on a
2507 * replacement device. We just fail those on
2510 pr_info_ratelimited(
2511 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2512 mdname(conf->mddev), STRIPE_SECTORS,
2513 (unsigned long long)s,
2514 bdevname(rdev->bdev, b));
2515 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2516 clear_bit(R5_ReadError, &sh->dev[i].flags);
2517 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2518 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2519 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2521 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2523 * end read for a page in journal, this
2524 * must be preparing for prexor in rmw
2526 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2528 if (atomic_read(&rdev->read_errors))
2529 atomic_set(&rdev->read_errors, 0);
2531 const char *bdn = bdevname(rdev->bdev, b);
2535 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2536 if (!(bi->bi_status == BLK_STS_PROTECTION))
2537 atomic_inc(&rdev->read_errors);
2538 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2539 pr_warn_ratelimited(
2540 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2541 mdname(conf->mddev),
2542 (unsigned long long)s,
2544 else if (conf->mddev->degraded >= conf->max_degraded) {
2546 pr_warn_ratelimited(
2547 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2548 mdname(conf->mddev),
2549 (unsigned long long)s,
2551 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2554 pr_warn_ratelimited(
2555 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2556 mdname(conf->mddev),
2557 (unsigned long long)s,
2559 } else if (atomic_read(&rdev->read_errors)
2560 > conf->max_nr_stripes) {
2561 if (!test_bit(Faulty, &rdev->flags)) {
2562 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2563 mdname(conf->mddev),
2564 atomic_read(&rdev->read_errors),
2565 conf->max_nr_stripes);
2566 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2567 mdname(conf->mddev), bdn);
2571 if (set_bad && test_bit(In_sync, &rdev->flags)
2572 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2575 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2576 set_bit(R5_ReadError, &sh->dev[i].flags);
2577 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2578 set_bit(R5_ReadError, &sh->dev[i].flags);
2579 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2581 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2583 clear_bit(R5_ReadError, &sh->dev[i].flags);
2584 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2586 && test_bit(In_sync, &rdev->flags)
2587 && rdev_set_badblocks(
2588 rdev, sh->sector, STRIPE_SECTORS, 0)))
2589 md_error(conf->mddev, rdev);
2592 rdev_dec_pending(rdev, conf->mddev);
2594 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2595 set_bit(STRIPE_HANDLE, &sh->state);
2596 raid5_release_stripe(sh);
2599 static void raid5_end_write_request(struct bio *bi)
2601 struct stripe_head *sh = bi->bi_private;
2602 struct r5conf *conf = sh->raid_conf;
2603 int disks = sh->disks, i;
2604 struct md_rdev *rdev;
2607 int replacement = 0;
2609 for (i = 0 ; i < disks; i++) {
2610 if (bi == &sh->dev[i].req) {
2611 rdev = conf->disks[i].rdev;
2614 if (bi == &sh->dev[i].rreq) {
2615 rdev = conf->disks[i].replacement;
2619 /* rdev was removed and 'replacement'
2620 * replaced it. rdev is not removed
2621 * until all requests are finished.
2623 rdev = conf->disks[i].rdev;
2627 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2628 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2638 md_error(conf->mddev, rdev);
2639 else if (is_badblock(rdev, sh->sector,
2641 &first_bad, &bad_sectors))
2642 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2644 if (bi->bi_status) {
2645 set_bit(STRIPE_DEGRADED, &sh->state);
2646 set_bit(WriteErrorSeen, &rdev->flags);
2647 set_bit(R5_WriteError, &sh->dev[i].flags);
2648 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2649 set_bit(MD_RECOVERY_NEEDED,
2650 &rdev->mddev->recovery);
2651 } else if (is_badblock(rdev, sh->sector,
2653 &first_bad, &bad_sectors)) {
2654 set_bit(R5_MadeGood, &sh->dev[i].flags);
2655 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2656 /* That was a successful write so make
2657 * sure it looks like we already did
2660 set_bit(R5_ReWrite, &sh->dev[i].flags);
2663 rdev_dec_pending(rdev, conf->mddev);
2665 if (sh->batch_head && bi->bi_status && !replacement)
2666 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2669 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2670 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2671 set_bit(STRIPE_HANDLE, &sh->state);
2672 raid5_release_stripe(sh);
2674 if (sh->batch_head && sh != sh->batch_head)
2675 raid5_release_stripe(sh->batch_head);
2678 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2680 char b[BDEVNAME_SIZE];
2681 struct r5conf *conf = mddev->private;
2682 unsigned long flags;
2683 pr_debug("raid456: error called\n");
2685 spin_lock_irqsave(&conf->device_lock, flags);
2687 if (test_bit(In_sync, &rdev->flags) &&
2688 mddev->degraded == conf->max_degraded) {
2690 * Don't allow to achieve failed state
2691 * Don't try to recover this device
2693 conf->recovery_disabled = mddev->recovery_disabled;
2694 spin_unlock_irqrestore(&conf->device_lock, flags);
2698 set_bit(Faulty, &rdev->flags);
2699 clear_bit(In_sync, &rdev->flags);
2700 mddev->degraded = raid5_calc_degraded(conf);
2701 spin_unlock_irqrestore(&conf->device_lock, flags);
2702 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2704 set_bit(Blocked, &rdev->flags);
2705 set_mask_bits(&mddev->sb_flags, 0,
2706 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2707 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2708 "md/raid:%s: Operation continuing on %d devices.\n",
2710 bdevname(rdev->bdev, b),
2712 conf->raid_disks - mddev->degraded);
2713 r5c_update_on_rdev_error(mddev, rdev);
2717 * Input: a 'big' sector number,
2718 * Output: index of the data and parity disk, and the sector # in them.
2720 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2721 int previous, int *dd_idx,
2722 struct stripe_head *sh)
2724 sector_t stripe, stripe2;
2725 sector_t chunk_number;
2726 unsigned int chunk_offset;
2729 sector_t new_sector;
2730 int algorithm = previous ? conf->prev_algo
2732 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2733 : conf->chunk_sectors;
2734 int raid_disks = previous ? conf->previous_raid_disks
2736 int data_disks = raid_disks - conf->max_degraded;
2738 /* First compute the information on this sector */
2741 * Compute the chunk number and the sector offset inside the chunk
2743 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2744 chunk_number = r_sector;
2747 * Compute the stripe number
2749 stripe = chunk_number;
2750 *dd_idx = sector_div(stripe, data_disks);
2753 * Select the parity disk based on the user selected algorithm.
2755 pd_idx = qd_idx = -1;
2756 switch(conf->level) {
2758 pd_idx = data_disks;
2761 switch (algorithm) {
2762 case ALGORITHM_LEFT_ASYMMETRIC:
2763 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2764 if (*dd_idx >= pd_idx)
2767 case ALGORITHM_RIGHT_ASYMMETRIC:
2768 pd_idx = sector_div(stripe2, raid_disks);
2769 if (*dd_idx >= pd_idx)
2772 case ALGORITHM_LEFT_SYMMETRIC:
2773 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2774 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2776 case ALGORITHM_RIGHT_SYMMETRIC:
2777 pd_idx = sector_div(stripe2, raid_disks);
2778 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2780 case ALGORITHM_PARITY_0:
2784 case ALGORITHM_PARITY_N:
2785 pd_idx = data_disks;
2793 switch (algorithm) {
2794 case ALGORITHM_LEFT_ASYMMETRIC:
2795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2796 qd_idx = pd_idx + 1;
2797 if (pd_idx == raid_disks-1) {
2798 (*dd_idx)++; /* Q D D D P */
2800 } else if (*dd_idx >= pd_idx)
2801 (*dd_idx) += 2; /* D D P Q D */
2803 case ALGORITHM_RIGHT_ASYMMETRIC:
2804 pd_idx = sector_div(stripe2, raid_disks);
2805 qd_idx = pd_idx + 1;
2806 if (pd_idx == raid_disks-1) {
2807 (*dd_idx)++; /* Q D D D P */
2809 } else if (*dd_idx >= pd_idx)
2810 (*dd_idx) += 2; /* D D P Q D */
2812 case ALGORITHM_LEFT_SYMMETRIC:
2813 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2814 qd_idx = (pd_idx + 1) % raid_disks;
2815 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2817 case ALGORITHM_RIGHT_SYMMETRIC:
2818 pd_idx = sector_div(stripe2, raid_disks);
2819 qd_idx = (pd_idx + 1) % raid_disks;
2820 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2823 case ALGORITHM_PARITY_0:
2828 case ALGORITHM_PARITY_N:
2829 pd_idx = data_disks;
2830 qd_idx = data_disks + 1;
2833 case ALGORITHM_ROTATING_ZERO_RESTART:
2834 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2835 * of blocks for computing Q is different.
2837 pd_idx = sector_div(stripe2, raid_disks);
2838 qd_idx = pd_idx + 1;
2839 if (pd_idx == raid_disks-1) {
2840 (*dd_idx)++; /* Q D D D P */
2842 } else if (*dd_idx >= pd_idx)
2843 (*dd_idx) += 2; /* D D P Q D */
2847 case ALGORITHM_ROTATING_N_RESTART:
2848 /* Same a left_asymmetric, by first stripe is
2849 * D D D P Q rather than
2853 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2854 qd_idx = pd_idx + 1;
2855 if (pd_idx == raid_disks-1) {
2856 (*dd_idx)++; /* Q D D D P */
2858 } else if (*dd_idx >= pd_idx)
2859 (*dd_idx) += 2; /* D D P Q D */
2863 case ALGORITHM_ROTATING_N_CONTINUE:
2864 /* Same as left_symmetric but Q is before P */
2865 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2866 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2867 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2871 case ALGORITHM_LEFT_ASYMMETRIC_6:
2872 /* RAID5 left_asymmetric, with Q on last device */
2873 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2874 if (*dd_idx >= pd_idx)
2876 qd_idx = raid_disks - 1;
2879 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2880 pd_idx = sector_div(stripe2, raid_disks-1);
2881 if (*dd_idx >= pd_idx)
2883 qd_idx = raid_disks - 1;
2886 case ALGORITHM_LEFT_SYMMETRIC_6:
2887 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2888 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2889 qd_idx = raid_disks - 1;
2892 case ALGORITHM_RIGHT_SYMMETRIC_6:
2893 pd_idx = sector_div(stripe2, raid_disks-1);
2894 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2895 qd_idx = raid_disks - 1;
2898 case ALGORITHM_PARITY_0_6:
2901 qd_idx = raid_disks - 1;
2911 sh->pd_idx = pd_idx;
2912 sh->qd_idx = qd_idx;
2913 sh->ddf_layout = ddf_layout;
2916 * Finally, compute the new sector number
2918 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2922 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2924 struct r5conf *conf = sh->raid_conf;
2925 int raid_disks = sh->disks;
2926 int data_disks = raid_disks - conf->max_degraded;
2927 sector_t new_sector = sh->sector, check;
2928 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2929 : conf->chunk_sectors;
2930 int algorithm = previous ? conf->prev_algo
2934 sector_t chunk_number;
2935 int dummy1, dd_idx = i;
2937 struct stripe_head sh2;
2939 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2940 stripe = new_sector;
2942 if (i == sh->pd_idx)
2944 switch(conf->level) {
2947 switch (algorithm) {
2948 case ALGORITHM_LEFT_ASYMMETRIC:
2949 case ALGORITHM_RIGHT_ASYMMETRIC:
2953 case ALGORITHM_LEFT_SYMMETRIC:
2954 case ALGORITHM_RIGHT_SYMMETRIC:
2957 i -= (sh->pd_idx + 1);
2959 case ALGORITHM_PARITY_0:
2962 case ALGORITHM_PARITY_N:
2969 if (i == sh->qd_idx)
2970 return 0; /* It is the Q disk */
2971 switch (algorithm) {
2972 case ALGORITHM_LEFT_ASYMMETRIC:
2973 case ALGORITHM_RIGHT_ASYMMETRIC:
2974 case ALGORITHM_ROTATING_ZERO_RESTART:
2975 case ALGORITHM_ROTATING_N_RESTART:
2976 if (sh->pd_idx == raid_disks-1)
2977 i--; /* Q D D D P */
2978 else if (i > sh->pd_idx)
2979 i -= 2; /* D D P Q D */
2981 case ALGORITHM_LEFT_SYMMETRIC:
2982 case ALGORITHM_RIGHT_SYMMETRIC:
2983 if (sh->pd_idx == raid_disks-1)
2984 i--; /* Q D D D P */
2989 i -= (sh->pd_idx + 2);
2992 case ALGORITHM_PARITY_0:
2995 case ALGORITHM_PARITY_N:
2997 case ALGORITHM_ROTATING_N_CONTINUE:
2998 /* Like left_symmetric, but P is before Q */
2999 if (sh->pd_idx == 0)
3000 i--; /* P D D D Q */
3005 i -= (sh->pd_idx + 1);
3008 case ALGORITHM_LEFT_ASYMMETRIC_6:
3009 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3013 case ALGORITHM_LEFT_SYMMETRIC_6:
3014 case ALGORITHM_RIGHT_SYMMETRIC_6:
3016 i += data_disks + 1;
3017 i -= (sh->pd_idx + 1);
3019 case ALGORITHM_PARITY_0_6:
3028 chunk_number = stripe * data_disks + i;
3029 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3031 check = raid5_compute_sector(conf, r_sector,
3032 previous, &dummy1, &sh2);
3033 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3034 || sh2.qd_idx != sh->qd_idx) {
3035 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3036 mdname(conf->mddev));
3043 * There are cases where we want handle_stripe_dirtying() and
3044 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3046 * This function checks whether we want to delay the towrite. Specifically,
3047 * we delay the towrite when:
3049 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3050 * stripe has data in journal (for other devices).
3052 * In this case, when reading data for the non-overwrite dev, it is
3053 * necessary to handle complex rmw of write back cache (prexor with
3054 * orig_page, and xor with page). To keep read path simple, we would
3055 * like to flush data in journal to RAID disks first, so complex rmw
3056 * is handled in the write patch (handle_stripe_dirtying).
3058 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3060 * It is important to be able to flush all stripes in raid5-cache.
3061 * Therefore, we need reserve some space on the journal device for
3062 * these flushes. If flush operation includes pending writes to the
3063 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3064 * for the flush out. If we exclude these pending writes from flush
3065 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3066 * Therefore, excluding pending writes in these cases enables more
3067 * efficient use of the journal device.
3069 * Note: To make sure the stripe makes progress, we only delay
3070 * towrite for stripes with data already in journal (injournal > 0).
3071 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3072 * no_space_stripes list.
3074 * 3. during journal failure
3075 * In journal failure, we try to flush all cached data to raid disks
3076 * based on data in stripe cache. The array is read-only to upper
3077 * layers, so we would skip all pending writes.
3080 static inline bool delay_towrite(struct r5conf *conf,
3082 struct stripe_head_state *s)
3085 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3086 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3089 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3093 if (s->log_failed && s->injournal)
3099 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3100 int rcw, int expand)
3102 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3103 struct r5conf *conf = sh->raid_conf;
3104 int level = conf->level;
3108 * In some cases, handle_stripe_dirtying initially decided to
3109 * run rmw and allocates extra page for prexor. However, rcw is
3110 * cheaper later on. We need to free the extra page now,
3111 * because we won't be able to do that in ops_complete_prexor().
3113 r5c_release_extra_page(sh);
3115 for (i = disks; i--; ) {
3116 struct r5dev *dev = &sh->dev[i];
3118 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3119 set_bit(R5_LOCKED, &dev->flags);
3120 set_bit(R5_Wantdrain, &dev->flags);
3122 clear_bit(R5_UPTODATE, &dev->flags);
3124 } else if (test_bit(R5_InJournal, &dev->flags)) {
3125 set_bit(R5_LOCKED, &dev->flags);
3129 /* if we are not expanding this is a proper write request, and
3130 * there will be bios with new data to be drained into the
3135 /* False alarm, nothing to do */
3137 sh->reconstruct_state = reconstruct_state_drain_run;
3138 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3140 sh->reconstruct_state = reconstruct_state_run;
3142 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3144 if (s->locked + conf->max_degraded == disks)
3145 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3146 atomic_inc(&conf->pending_full_writes);
3148 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3149 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3150 BUG_ON(level == 6 &&
3151 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3152 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3154 for (i = disks; i--; ) {
3155 struct r5dev *dev = &sh->dev[i];
3156 if (i == pd_idx || i == qd_idx)
3160 (test_bit(R5_UPTODATE, &dev->flags) ||
3161 test_bit(R5_Wantcompute, &dev->flags))) {
3162 set_bit(R5_Wantdrain, &dev->flags);
3163 set_bit(R5_LOCKED, &dev->flags);
3164 clear_bit(R5_UPTODATE, &dev->flags);
3166 } else if (test_bit(R5_InJournal, &dev->flags)) {
3167 set_bit(R5_LOCKED, &dev->flags);
3172 /* False alarm - nothing to do */
3174 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3175 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3176 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3177 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3180 /* keep the parity disk(s) locked while asynchronous operations
3183 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3184 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3188 int qd_idx = sh->qd_idx;
3189 struct r5dev *dev = &sh->dev[qd_idx];
3191 set_bit(R5_LOCKED, &dev->flags);
3192 clear_bit(R5_UPTODATE, &dev->flags);
3196 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3197 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3198 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3199 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3200 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3202 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3203 __func__, (unsigned long long)sh->sector,
3204 s->locked, s->ops_request);
3208 * Each stripe/dev can have one or more bion attached.
3209 * toread/towrite point to the first in a chain.
3210 * The bi_next chain must be in order.
3212 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3213 int forwrite, int previous)
3216 struct r5conf *conf = sh->raid_conf;
3219 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3220 (unsigned long long)bi->bi_iter.bi_sector,
3221 (unsigned long long)sh->sector);
3223 spin_lock_irq(&sh->stripe_lock);
3224 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3225 /* Don't allow new IO added to stripes in batch list */
3229 bip = &sh->dev[dd_idx].towrite;
3233 bip = &sh->dev[dd_idx].toread;
3234 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3235 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3237 bip = & (*bip)->bi_next;
3239 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3242 if (forwrite && raid5_has_ppl(conf)) {
3244 * With PPL only writes to consecutive data chunks within a
3245 * stripe are allowed because for a single stripe_head we can
3246 * only have one PPL entry at a time, which describes one data
3247 * range. Not really an overlap, but wait_for_overlap can be
3248 * used to handle this.
3256 for (i = 0; i < sh->disks; i++) {
3257 if (i != sh->pd_idx &&
3258 (i == dd_idx || sh->dev[i].towrite)) {
3259 sector = sh->dev[i].sector;
3260 if (count == 0 || sector < first)
3268 if (first + conf->chunk_sectors * (count - 1) != last)
3272 if (!forwrite || previous)
3273 clear_bit(STRIPE_BATCH_READY, &sh->state);
3275 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3279 bio_inc_remaining(bi);
3280 md_write_inc(conf->mddev, bi);
3283 /* check if page is covered */
3284 sector_t sector = sh->dev[dd_idx].sector;
3285 for (bi=sh->dev[dd_idx].towrite;
3286 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3287 bi && bi->bi_iter.bi_sector <= sector;
3288 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3289 if (bio_end_sector(bi) >= sector)
3290 sector = bio_end_sector(bi);
3292 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3293 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3294 sh->overwrite_disks++;
3297 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3298 (unsigned long long)(*bip)->bi_iter.bi_sector,
3299 (unsigned long long)sh->sector, dd_idx);
3301 if (conf->mddev->bitmap && firstwrite) {
3302 /* Cannot hold spinlock over bitmap_startwrite,
3303 * but must ensure this isn't added to a batch until
3304 * we have added to the bitmap and set bm_seq.
3305 * So set STRIPE_BITMAP_PENDING to prevent
3307 * If multiple add_stripe_bio() calls race here they
3308 * much all set STRIPE_BITMAP_PENDING. So only the first one
3309 * to complete "bitmap_startwrite" gets to set
3310 * STRIPE_BIT_DELAY. This is important as once a stripe
3311 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3314 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3315 spin_unlock_irq(&sh->stripe_lock);
3316 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3318 spin_lock_irq(&sh->stripe_lock);
3319 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3320 if (!sh->batch_head) {
3321 sh->bm_seq = conf->seq_flush+1;
3322 set_bit(STRIPE_BIT_DELAY, &sh->state);
3325 spin_unlock_irq(&sh->stripe_lock);
3327 if (stripe_can_batch(sh))
3328 stripe_add_to_batch_list(conf, sh);
3332 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3333 spin_unlock_irq(&sh->stripe_lock);
3337 static void end_reshape(struct r5conf *conf);
3339 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3340 struct stripe_head *sh)
3342 int sectors_per_chunk =
3343 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3345 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3346 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3348 raid5_compute_sector(conf,
3349 stripe * (disks - conf->max_degraded)
3350 *sectors_per_chunk + chunk_offset,
3356 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3357 struct stripe_head_state *s, int disks)
3360 BUG_ON(sh->batch_head);
3361 for (i = disks; i--; ) {
3365 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3366 struct md_rdev *rdev;
3368 rdev = rcu_dereference(conf->disks[i].rdev);
3369 if (rdev && test_bit(In_sync, &rdev->flags) &&
3370 !test_bit(Faulty, &rdev->flags))
3371 atomic_inc(&rdev->nr_pending);
3376 if (!rdev_set_badblocks(
3380 md_error(conf->mddev, rdev);
3381 rdev_dec_pending(rdev, conf->mddev);
3384 spin_lock_irq(&sh->stripe_lock);
3385 /* fail all writes first */
3386 bi = sh->dev[i].towrite;
3387 sh->dev[i].towrite = NULL;
3388 sh->overwrite_disks = 0;
3389 spin_unlock_irq(&sh->stripe_lock);
3393 log_stripe_write_finished(sh);
3395 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3396 wake_up(&conf->wait_for_overlap);
3398 while (bi && bi->bi_iter.bi_sector <
3399 sh->dev[i].sector + STRIPE_SECTORS) {
3400 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3402 md_write_end(conf->mddev);
3407 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3408 STRIPE_SECTORS, 0, 0);
3410 /* and fail all 'written' */
3411 bi = sh->dev[i].written;
3412 sh->dev[i].written = NULL;
3413 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3414 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3415 sh->dev[i].page = sh->dev[i].orig_page;
3418 if (bi) bitmap_end = 1;
3419 while (bi && bi->bi_iter.bi_sector <
3420 sh->dev[i].sector + STRIPE_SECTORS) {
3421 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3423 md_write_end(conf->mddev);
3428 /* fail any reads if this device is non-operational and
3429 * the data has not reached the cache yet.
3431 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3432 s->failed > conf->max_degraded &&
3433 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3434 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3435 spin_lock_irq(&sh->stripe_lock);
3436 bi = sh->dev[i].toread;
3437 sh->dev[i].toread = NULL;
3438 spin_unlock_irq(&sh->stripe_lock);
3439 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3440 wake_up(&conf->wait_for_overlap);
3443 while (bi && bi->bi_iter.bi_sector <
3444 sh->dev[i].sector + STRIPE_SECTORS) {
3445 struct bio *nextbi =
3446 r5_next_bio(bi, sh->dev[i].sector);
3453 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3454 STRIPE_SECTORS, 0, 0);
3455 /* If we were in the middle of a write the parity block might
3456 * still be locked - so just clear all R5_LOCKED flags
3458 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3463 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3464 if (atomic_dec_and_test(&conf->pending_full_writes))
3465 md_wakeup_thread(conf->mddev->thread);
3469 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3470 struct stripe_head_state *s)
3475 BUG_ON(sh->batch_head);
3476 clear_bit(STRIPE_SYNCING, &sh->state);
3477 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3478 wake_up(&conf->wait_for_overlap);
3481 /* There is nothing more to do for sync/check/repair.
3482 * Don't even need to abort as that is handled elsewhere
3483 * if needed, and not always wanted e.g. if there is a known
3485 * For recover/replace we need to record a bad block on all
3486 * non-sync devices, or abort the recovery
3488 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3489 /* During recovery devices cannot be removed, so
3490 * locking and refcounting of rdevs is not needed
3493 for (i = 0; i < conf->raid_disks; i++) {
3494 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3496 && !test_bit(Faulty, &rdev->flags)
3497 && !test_bit(In_sync, &rdev->flags)
3498 && !rdev_set_badblocks(rdev, sh->sector,
3501 rdev = rcu_dereference(conf->disks[i].replacement);
3503 && !test_bit(Faulty, &rdev->flags)
3504 && !test_bit(In_sync, &rdev->flags)
3505 && !rdev_set_badblocks(rdev, sh->sector,
3511 conf->recovery_disabled =
3512 conf->mddev->recovery_disabled;
3514 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3517 static int want_replace(struct stripe_head *sh, int disk_idx)
3519 struct md_rdev *rdev;
3523 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3525 && !test_bit(Faulty, &rdev->flags)
3526 && !test_bit(In_sync, &rdev->flags)
3527 && (rdev->recovery_offset <= sh->sector
3528 || rdev->mddev->recovery_cp <= sh->sector))
3534 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3535 int disk_idx, int disks)
3537 struct r5dev *dev = &sh->dev[disk_idx];
3538 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3539 &sh->dev[s->failed_num[1]] };
3543 if (test_bit(R5_LOCKED, &dev->flags) ||
3544 test_bit(R5_UPTODATE, &dev->flags))
3545 /* No point reading this as we already have it or have
3546 * decided to get it.
3551 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3552 /* We need this block to directly satisfy a request */
3555 if (s->syncing || s->expanding ||
3556 (s->replacing && want_replace(sh, disk_idx)))
3557 /* When syncing, or expanding we read everything.
3558 * When replacing, we need the replaced block.
3562 if ((s->failed >= 1 && fdev[0]->toread) ||
3563 (s->failed >= 2 && fdev[1]->toread))
3564 /* If we want to read from a failed device, then
3565 * we need to actually read every other device.
3569 /* Sometimes neither read-modify-write nor reconstruct-write
3570 * cycles can work. In those cases we read every block we
3571 * can. Then the parity-update is certain to have enough to
3573 * This can only be a problem when we need to write something,
3574 * and some device has failed. If either of those tests
3575 * fail we need look no further.
3577 if (!s->failed || !s->to_write)
3580 if (test_bit(R5_Insync, &dev->flags) &&
3581 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3582 /* Pre-reads at not permitted until after short delay
3583 * to gather multiple requests. However if this
3584 * device is no Insync, the block could only be computed
3585 * and there is no need to delay that.
3589 for (i = 0; i < s->failed && i < 2; i++) {
3590 if (fdev[i]->towrite &&
3591 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3592 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3593 /* If we have a partial write to a failed
3594 * device, then we will need to reconstruct
3595 * the content of that device, so all other
3596 * devices must be read.
3601 /* If we are forced to do a reconstruct-write, either because
3602 * the current RAID6 implementation only supports that, or
3603 * because parity cannot be trusted and we are currently
3604 * recovering it, there is extra need to be careful.
3605 * If one of the devices that we would need to read, because
3606 * it is not being overwritten (and maybe not written at all)
3607 * is missing/faulty, then we need to read everything we can.
3609 if (sh->raid_conf->level != 6 &&
3610 sh->sector < sh->raid_conf->mddev->recovery_cp)
3611 /* reconstruct-write isn't being forced */
3613 for (i = 0; i < s->failed && i < 2; i++) {
3614 if (s->failed_num[i] != sh->pd_idx &&
3615 s->failed_num[i] != sh->qd_idx &&
3616 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3617 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3624 /* fetch_block - checks the given member device to see if its data needs
3625 * to be read or computed to satisfy a request.
3627 * Returns 1 when no more member devices need to be checked, otherwise returns
3628 * 0 to tell the loop in handle_stripe_fill to continue
3630 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3631 int disk_idx, int disks)
3633 struct r5dev *dev = &sh->dev[disk_idx];
3635 /* is the data in this block needed, and can we get it? */
3636 if (need_this_block(sh, s, disk_idx, disks)) {
3637 /* we would like to get this block, possibly by computing it,
3638 * otherwise read it if the backing disk is insync
3640 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3641 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3642 BUG_ON(sh->batch_head);
3645 * In the raid6 case if the only non-uptodate disk is P
3646 * then we already trusted P to compute the other failed
3647 * drives. It is safe to compute rather than re-read P.
3648 * In other cases we only compute blocks from failed
3649 * devices, otherwise check/repair might fail to detect
3650 * a real inconsistency.
3653 if ((s->uptodate == disks - 1) &&
3654 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3655 (s->failed && (disk_idx == s->failed_num[0] ||
3656 disk_idx == s->failed_num[1])))) {
3657 /* have disk failed, and we're requested to fetch it;
3660 pr_debug("Computing stripe %llu block %d\n",
3661 (unsigned long long)sh->sector, disk_idx);
3662 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3663 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3664 set_bit(R5_Wantcompute, &dev->flags);
3665 sh->ops.target = disk_idx;
3666 sh->ops.target2 = -1; /* no 2nd target */
3668 /* Careful: from this point on 'uptodate' is in the eye
3669 * of raid_run_ops which services 'compute' operations
3670 * before writes. R5_Wantcompute flags a block that will
3671 * be R5_UPTODATE by the time it is needed for a
3672 * subsequent operation.
3676 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3677 /* Computing 2-failure is *very* expensive; only
3678 * do it if failed >= 2
3681 for (other = disks; other--; ) {
3682 if (other == disk_idx)
3684 if (!test_bit(R5_UPTODATE,
3685 &sh->dev[other].flags))
3689 pr_debug("Computing stripe %llu blocks %d,%d\n",
3690 (unsigned long long)sh->sector,
3692 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3693 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3694 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3695 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3696 sh->ops.target = disk_idx;
3697 sh->ops.target2 = other;
3701 } else if (test_bit(R5_Insync, &dev->flags)) {
3702 set_bit(R5_LOCKED, &dev->flags);
3703 set_bit(R5_Wantread, &dev->flags);
3705 pr_debug("Reading block %d (sync=%d)\n",
3706 disk_idx, s->syncing);
3714 * handle_stripe_fill - read or compute data to satisfy pending requests.
3716 static void handle_stripe_fill(struct stripe_head *sh,
3717 struct stripe_head_state *s,
3722 /* look for blocks to read/compute, skip this if a compute
3723 * is already in flight, or if the stripe contents are in the
3724 * midst of changing due to a write
3726 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3727 !sh->reconstruct_state) {
3730 * For degraded stripe with data in journal, do not handle
3731 * read requests yet, instead, flush the stripe to raid
3732 * disks first, this avoids handling complex rmw of write
3733 * back cache (prexor with orig_page, and then xor with
3734 * page) in the read path
3736 if (s->injournal && s->failed) {
3737 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3738 r5c_make_stripe_write_out(sh);
3742 for (i = disks; i--; )
3743 if (fetch_block(sh, s, i, disks))
3747 set_bit(STRIPE_HANDLE, &sh->state);
3750 static void break_stripe_batch_list(struct stripe_head *head_sh,
3751 unsigned long handle_flags);
3752 /* handle_stripe_clean_event
3753 * any written block on an uptodate or failed drive can be returned.
3754 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3755 * never LOCKED, so we don't need to test 'failed' directly.
3757 static void handle_stripe_clean_event(struct r5conf *conf,
3758 struct stripe_head *sh, int disks)
3762 int discard_pending = 0;
3763 struct stripe_head *head_sh = sh;
3764 bool do_endio = false;
3766 for (i = disks; i--; )
3767 if (sh->dev[i].written) {
3769 if (!test_bit(R5_LOCKED, &dev->flags) &&
3770 (test_bit(R5_UPTODATE, &dev->flags) ||
3771 test_bit(R5_Discard, &dev->flags) ||
3772 test_bit(R5_SkipCopy, &dev->flags))) {
3773 /* We can return any write requests */
3774 struct bio *wbi, *wbi2;
3775 pr_debug("Return write for disc %d\n", i);
3776 if (test_and_clear_bit(R5_Discard, &dev->flags))
3777 clear_bit(R5_UPTODATE, &dev->flags);
3778 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3779 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3784 dev->page = dev->orig_page;
3786 dev->written = NULL;
3787 while (wbi && wbi->bi_iter.bi_sector <
3788 dev->sector + STRIPE_SECTORS) {
3789 wbi2 = r5_next_bio(wbi, dev->sector);
3790 md_write_end(conf->mddev);
3794 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3796 !test_bit(STRIPE_DEGRADED, &sh->state),
3798 if (head_sh->batch_head) {
3799 sh = list_first_entry(&sh->batch_list,
3802 if (sh != head_sh) {
3809 } else if (test_bit(R5_Discard, &dev->flags))
3810 discard_pending = 1;
3813 log_stripe_write_finished(sh);
3815 if (!discard_pending &&
3816 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3818 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3819 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3820 if (sh->qd_idx >= 0) {
3821 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3822 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3824 /* now that discard is done we can proceed with any sync */
3825 clear_bit(STRIPE_DISCARD, &sh->state);
3827 * SCSI discard will change some bio fields and the stripe has
3828 * no updated data, so remove it from hash list and the stripe
3829 * will be reinitialized
3832 hash = sh->hash_lock_index;
3833 spin_lock_irq(conf->hash_locks + hash);
3835 spin_unlock_irq(conf->hash_locks + hash);
3836 if (head_sh->batch_head) {
3837 sh = list_first_entry(&sh->batch_list,
3838 struct stripe_head, batch_list);
3844 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3845 set_bit(STRIPE_HANDLE, &sh->state);
3849 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3850 if (atomic_dec_and_test(&conf->pending_full_writes))
3851 md_wakeup_thread(conf->mddev->thread);
3853 if (head_sh->batch_head && do_endio)
3854 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3858 * For RMW in write back cache, we need extra page in prexor to store the
3859 * old data. This page is stored in dev->orig_page.
3861 * This function checks whether we have data for prexor. The exact logic
3863 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3865 static inline bool uptodate_for_rmw(struct r5dev *dev)
3867 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3868 (!test_bit(R5_InJournal, &dev->flags) ||
3869 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3872 static int handle_stripe_dirtying(struct r5conf *conf,
3873 struct stripe_head *sh,
3874 struct stripe_head_state *s,
3877 int rmw = 0, rcw = 0, i;
3878 sector_t recovery_cp = conf->mddev->recovery_cp;
3880 /* Check whether resync is now happening or should start.
3881 * If yes, then the array is dirty (after unclean shutdown or
3882 * initial creation), so parity in some stripes might be inconsistent.
3883 * In this case, we need to always do reconstruct-write, to ensure
3884 * that in case of drive failure or read-error correction, we
3885 * generate correct data from the parity.
3887 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3888 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3890 /* Calculate the real rcw later - for now make it
3891 * look like rcw is cheaper
3894 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3895 conf->rmw_level, (unsigned long long)recovery_cp,
3896 (unsigned long long)sh->sector);
3897 } else for (i = disks; i--; ) {
3898 /* would I have to read this buffer for read_modify_write */
3899 struct r5dev *dev = &sh->dev[i];
3900 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3901 i == sh->pd_idx || i == sh->qd_idx ||
3902 test_bit(R5_InJournal, &dev->flags)) &&
3903 !test_bit(R5_LOCKED, &dev->flags) &&
3904 !(uptodate_for_rmw(dev) ||
3905 test_bit(R5_Wantcompute, &dev->flags))) {
3906 if (test_bit(R5_Insync, &dev->flags))
3909 rmw += 2*disks; /* cannot read it */
3911 /* Would I have to read this buffer for reconstruct_write */
3912 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3913 i != sh->pd_idx && i != sh->qd_idx &&
3914 !test_bit(R5_LOCKED, &dev->flags) &&
3915 !(test_bit(R5_UPTODATE, &dev->flags) ||
3916 test_bit(R5_Wantcompute, &dev->flags))) {
3917 if (test_bit(R5_Insync, &dev->flags))
3924 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3925 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3926 set_bit(STRIPE_HANDLE, &sh->state);
3927 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3928 /* prefer read-modify-write, but need to get some data */
3929 if (conf->mddev->queue)
3930 blk_add_trace_msg(conf->mddev->queue,
3931 "raid5 rmw %llu %d",
3932 (unsigned long long)sh->sector, rmw);
3933 for (i = disks; i--; ) {
3934 struct r5dev *dev = &sh->dev[i];
3935 if (test_bit(R5_InJournal, &dev->flags) &&
3936 dev->page == dev->orig_page &&
3937 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3938 /* alloc page for prexor */
3939 struct page *p = alloc_page(GFP_NOIO);
3947 * alloc_page() failed, try use
3948 * disk_info->extra_page
3950 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3951 &conf->cache_state)) {
3952 r5c_use_extra_page(sh);
3956 /* extra_page in use, add to delayed_list */
3957 set_bit(STRIPE_DELAYED, &sh->state);
3958 s->waiting_extra_page = 1;
3963 for (i = disks; i--; ) {
3964 struct r5dev *dev = &sh->dev[i];
3965 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3966 i == sh->pd_idx || i == sh->qd_idx ||
3967 test_bit(R5_InJournal, &dev->flags)) &&
3968 !test_bit(R5_LOCKED, &dev->flags) &&
3969 !(uptodate_for_rmw(dev) ||
3970 test_bit(R5_Wantcompute, &dev->flags)) &&
3971 test_bit(R5_Insync, &dev->flags)) {
3972 if (test_bit(STRIPE_PREREAD_ACTIVE,
3974 pr_debug("Read_old block %d for r-m-w\n",
3976 set_bit(R5_LOCKED, &dev->flags);
3977 set_bit(R5_Wantread, &dev->flags);
3980 set_bit(STRIPE_DELAYED, &sh->state);
3981 set_bit(STRIPE_HANDLE, &sh->state);
3986 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3987 /* want reconstruct write, but need to get some data */
3990 for (i = disks; i--; ) {
3991 struct r5dev *dev = &sh->dev[i];
3992 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3993 i != sh->pd_idx && i != sh->qd_idx &&
3994 !test_bit(R5_LOCKED, &dev->flags) &&
3995 !(test_bit(R5_UPTODATE, &dev->flags) ||
3996 test_bit(R5_Wantcompute, &dev->flags))) {
3998 if (test_bit(R5_Insync, &dev->flags) &&
3999 test_bit(STRIPE_PREREAD_ACTIVE,
4001 pr_debug("Read_old block "
4002 "%d for Reconstruct\n", i);
4003 set_bit(R5_LOCKED, &dev->flags);
4004 set_bit(R5_Wantread, &dev->flags);
4008 set_bit(STRIPE_DELAYED, &sh->state);
4009 set_bit(STRIPE_HANDLE, &sh->state);
4013 if (rcw && conf->mddev->queue)
4014 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4015 (unsigned long long)sh->sector,
4016 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4019 if (rcw > disks && rmw > disks &&
4020 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4021 set_bit(STRIPE_DELAYED, &sh->state);
4023 /* now if nothing is locked, and if we have enough data,
4024 * we can start a write request
4026 /* since handle_stripe can be called at any time we need to handle the
4027 * case where a compute block operation has been submitted and then a
4028 * subsequent call wants to start a write request. raid_run_ops only
4029 * handles the case where compute block and reconstruct are requested
4030 * simultaneously. If this is not the case then new writes need to be
4031 * held off until the compute completes.
4033 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4034 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4035 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4036 schedule_reconstruction(sh, s, rcw == 0, 0);
4040 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4041 struct stripe_head_state *s, int disks)
4043 struct r5dev *dev = NULL;
4045 BUG_ON(sh->batch_head);
4046 set_bit(STRIPE_HANDLE, &sh->state);
4048 switch (sh->check_state) {
4049 case check_state_idle:
4050 /* start a new check operation if there are no failures */
4051 if (s->failed == 0) {
4052 BUG_ON(s->uptodate != disks);
4053 sh->check_state = check_state_run;
4054 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4055 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4059 dev = &sh->dev[s->failed_num[0]];
4061 case check_state_compute_result:
4062 sh->check_state = check_state_idle;
4064 dev = &sh->dev[sh->pd_idx];
4066 /* check that a write has not made the stripe insync */
4067 if (test_bit(STRIPE_INSYNC, &sh->state))
4070 /* either failed parity check, or recovery is happening */
4071 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4072 BUG_ON(s->uptodate != disks);
4074 set_bit(R5_LOCKED, &dev->flags);
4076 set_bit(R5_Wantwrite, &dev->flags);
4078 clear_bit(STRIPE_DEGRADED, &sh->state);
4079 set_bit(STRIPE_INSYNC, &sh->state);
4081 case check_state_run:
4082 break; /* we will be called again upon completion */
4083 case check_state_check_result:
4084 sh->check_state = check_state_idle;
4086 /* if a failure occurred during the check operation, leave
4087 * STRIPE_INSYNC not set and let the stripe be handled again
4092 /* handle a successful check operation, if parity is correct
4093 * we are done. Otherwise update the mismatch count and repair
4094 * parity if !MD_RECOVERY_CHECK
4096 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4097 /* parity is correct (on disc,
4098 * not in buffer any more)
4100 set_bit(STRIPE_INSYNC, &sh->state);
4102 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4103 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4104 /* don't try to repair!! */
4105 set_bit(STRIPE_INSYNC, &sh->state);
4106 pr_warn_ratelimited("%s: mismatch sector in range "
4107 "%llu-%llu\n", mdname(conf->mddev),
4108 (unsigned long long) sh->sector,
4109 (unsigned long long) sh->sector +
4112 sh->check_state = check_state_compute_run;
4113 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4114 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4115 set_bit(R5_Wantcompute,
4116 &sh->dev[sh->pd_idx].flags);
4117 sh->ops.target = sh->pd_idx;
4118 sh->ops.target2 = -1;
4123 case check_state_compute_run:
4126 pr_err("%s: unknown check_state: %d sector: %llu\n",
4127 __func__, sh->check_state,
4128 (unsigned long long) sh->sector);
4133 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4134 struct stripe_head_state *s,
4137 int pd_idx = sh->pd_idx;
4138 int qd_idx = sh->qd_idx;
4141 BUG_ON(sh->batch_head);
4142 set_bit(STRIPE_HANDLE, &sh->state);
4144 BUG_ON(s->failed > 2);
4146 /* Want to check and possibly repair P and Q.
4147 * However there could be one 'failed' device, in which
4148 * case we can only check one of them, possibly using the
4149 * other to generate missing data
4152 switch (sh->check_state) {
4153 case check_state_idle:
4154 /* start a new check operation if there are < 2 failures */
4155 if (s->failed == s->q_failed) {
4156 /* The only possible failed device holds Q, so it
4157 * makes sense to check P (If anything else were failed,
4158 * we would have used P to recreate it).
4160 sh->check_state = check_state_run;
4162 if (!s->q_failed && s->failed < 2) {
4163 /* Q is not failed, and we didn't use it to generate
4164 * anything, so it makes sense to check it
4166 if (sh->check_state == check_state_run)
4167 sh->check_state = check_state_run_pq;
4169 sh->check_state = check_state_run_q;
4172 /* discard potentially stale zero_sum_result */
4173 sh->ops.zero_sum_result = 0;
4175 if (sh->check_state == check_state_run) {
4176 /* async_xor_zero_sum destroys the contents of P */
4177 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4180 if (sh->check_state >= check_state_run &&
4181 sh->check_state <= check_state_run_pq) {
4182 /* async_syndrome_zero_sum preserves P and Q, so
4183 * no need to mark them !uptodate here
4185 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4189 /* we have 2-disk failure */
4190 BUG_ON(s->failed != 2);
4192 case check_state_compute_result:
4193 sh->check_state = check_state_idle;
4195 /* check that a write has not made the stripe insync */
4196 if (test_bit(STRIPE_INSYNC, &sh->state))
4199 /* now write out any block on a failed drive,
4200 * or P or Q if they were recomputed
4203 if (s->failed == 2) {
4204 dev = &sh->dev[s->failed_num[1]];
4206 set_bit(R5_LOCKED, &dev->flags);
4207 set_bit(R5_Wantwrite, &dev->flags);
4209 if (s->failed >= 1) {
4210 dev = &sh->dev[s->failed_num[0]];
4212 set_bit(R5_LOCKED, &dev->flags);
4213 set_bit(R5_Wantwrite, &dev->flags);
4215 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4216 dev = &sh->dev[pd_idx];
4218 set_bit(R5_LOCKED, &dev->flags);
4219 set_bit(R5_Wantwrite, &dev->flags);
4221 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4222 dev = &sh->dev[qd_idx];
4224 set_bit(R5_LOCKED, &dev->flags);
4225 set_bit(R5_Wantwrite, &dev->flags);
4227 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4228 "%s: disk%td not up to date\n",
4229 mdname(conf->mddev),
4230 dev - (struct r5dev *) &sh->dev)) {
4231 clear_bit(R5_LOCKED, &dev->flags);
4232 clear_bit(R5_Wantwrite, &dev->flags);
4235 clear_bit(STRIPE_DEGRADED, &sh->state);
4237 set_bit(STRIPE_INSYNC, &sh->state);
4239 case check_state_run:
4240 case check_state_run_q:
4241 case check_state_run_pq:
4242 break; /* we will be called again upon completion */
4243 case check_state_check_result:
4244 sh->check_state = check_state_idle;
4246 /* handle a successful check operation, if parity is correct
4247 * we are done. Otherwise update the mismatch count and repair
4248 * parity if !MD_RECOVERY_CHECK
4250 if (sh->ops.zero_sum_result == 0) {
4251 /* both parities are correct */
4253 set_bit(STRIPE_INSYNC, &sh->state);
4255 /* in contrast to the raid5 case we can validate
4256 * parity, but still have a failure to write
4259 sh->check_state = check_state_compute_result;
4260 /* Returning at this point means that we may go
4261 * off and bring p and/or q uptodate again so
4262 * we make sure to check zero_sum_result again
4263 * to verify if p or q need writeback
4267 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4268 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4269 /* don't try to repair!! */
4270 set_bit(STRIPE_INSYNC, &sh->state);
4271 pr_warn_ratelimited("%s: mismatch sector in range "
4272 "%llu-%llu\n", mdname(conf->mddev),
4273 (unsigned long long) sh->sector,
4274 (unsigned long long) sh->sector +
4277 int *target = &sh->ops.target;
4279 sh->ops.target = -1;
4280 sh->ops.target2 = -1;
4281 sh->check_state = check_state_compute_run;
4282 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4283 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4284 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4285 set_bit(R5_Wantcompute,
4286 &sh->dev[pd_idx].flags);
4288 target = &sh->ops.target2;
4291 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4292 set_bit(R5_Wantcompute,
4293 &sh->dev[qd_idx].flags);
4300 case check_state_compute_run:
4303 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4304 __func__, sh->check_state,
4305 (unsigned long long) sh->sector);
4310 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4314 /* We have read all the blocks in this stripe and now we need to
4315 * copy some of them into a target stripe for expand.
4317 struct dma_async_tx_descriptor *tx = NULL;
4318 BUG_ON(sh->batch_head);
4319 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4320 for (i = 0; i < sh->disks; i++)
4321 if (i != sh->pd_idx && i != sh->qd_idx) {
4323 struct stripe_head *sh2;
4324 struct async_submit_ctl submit;
4326 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4327 sector_t s = raid5_compute_sector(conf, bn, 0,
4329 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4331 /* so far only the early blocks of this stripe
4332 * have been requested. When later blocks
4333 * get requested, we will try again
4336 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4337 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4338 /* must have already done this block */
4339 raid5_release_stripe(sh2);
4343 /* place all the copies on one channel */
4344 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4345 tx = async_memcpy(sh2->dev[dd_idx].page,
4346 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4349 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4350 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4351 for (j = 0; j < conf->raid_disks; j++)
4352 if (j != sh2->pd_idx &&
4354 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4356 if (j == conf->raid_disks) {
4357 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4358 set_bit(STRIPE_HANDLE, &sh2->state);
4360 raid5_release_stripe(sh2);
4363 /* done submitting copies, wait for them to complete */
4364 async_tx_quiesce(&tx);
4368 * handle_stripe - do things to a stripe.
4370 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4371 * state of various bits to see what needs to be done.
4373 * return some read requests which now have data
4374 * return some write requests which are safely on storage
4375 * schedule a read on some buffers
4376 * schedule a write of some buffers
4377 * return confirmation of parity correctness
4381 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4383 struct r5conf *conf = sh->raid_conf;
4384 int disks = sh->disks;
4387 int do_recovery = 0;
4389 memset(s, 0, sizeof(*s));
4391 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4392 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4393 s->failed_num[0] = -1;
4394 s->failed_num[1] = -1;
4395 s->log_failed = r5l_log_disk_error(conf);
4397 /* Now to look around and see what can be done */
4399 for (i=disks; i--; ) {
4400 struct md_rdev *rdev;
4407 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4409 dev->toread, dev->towrite, dev->written);
4410 /* maybe we can reply to a read
4412 * new wantfill requests are only permitted while
4413 * ops_complete_biofill is guaranteed to be inactive
4415 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4416 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4417 set_bit(R5_Wantfill, &dev->flags);
4419 /* now count some things */
4420 if (test_bit(R5_LOCKED, &dev->flags))
4422 if (test_bit(R5_UPTODATE, &dev->flags))
4424 if (test_bit(R5_Wantcompute, &dev->flags)) {
4426 BUG_ON(s->compute > 2);
4429 if (test_bit(R5_Wantfill, &dev->flags))
4431 else if (dev->toread)
4435 if (!test_bit(R5_OVERWRITE, &dev->flags))
4440 /* Prefer to use the replacement for reads, but only
4441 * if it is recovered enough and has no bad blocks.
4443 rdev = rcu_dereference(conf->disks[i].replacement);
4444 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4445 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4446 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4447 &first_bad, &bad_sectors))
4448 set_bit(R5_ReadRepl, &dev->flags);
4450 if (rdev && !test_bit(Faulty, &rdev->flags))
4451 set_bit(R5_NeedReplace, &dev->flags);
4453 clear_bit(R5_NeedReplace, &dev->flags);
4454 rdev = rcu_dereference(conf->disks[i].rdev);
4455 clear_bit(R5_ReadRepl, &dev->flags);
4457 if (rdev && test_bit(Faulty, &rdev->flags))
4460 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4461 &first_bad, &bad_sectors);
4462 if (s->blocked_rdev == NULL
4463 && (test_bit(Blocked, &rdev->flags)
4466 set_bit(BlockedBadBlocks,
4468 s->blocked_rdev = rdev;
4469 atomic_inc(&rdev->nr_pending);
4472 clear_bit(R5_Insync, &dev->flags);
4476 /* also not in-sync */
4477 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4478 test_bit(R5_UPTODATE, &dev->flags)) {
4479 /* treat as in-sync, but with a read error
4480 * which we can now try to correct
4482 set_bit(R5_Insync, &dev->flags);
4483 set_bit(R5_ReadError, &dev->flags);
4485 } else if (test_bit(In_sync, &rdev->flags))
4486 set_bit(R5_Insync, &dev->flags);
4487 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4488 /* in sync if before recovery_offset */
4489 set_bit(R5_Insync, &dev->flags);
4490 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4491 test_bit(R5_Expanded, &dev->flags))
4492 /* If we've reshaped into here, we assume it is Insync.
4493 * We will shortly update recovery_offset to make
4496 set_bit(R5_Insync, &dev->flags);
4498 if (test_bit(R5_WriteError, &dev->flags)) {
4499 /* This flag does not apply to '.replacement'
4500 * only to .rdev, so make sure to check that*/
4501 struct md_rdev *rdev2 = rcu_dereference(
4502 conf->disks[i].rdev);
4504 clear_bit(R5_Insync, &dev->flags);
4505 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4506 s->handle_bad_blocks = 1;
4507 atomic_inc(&rdev2->nr_pending);
4509 clear_bit(R5_WriteError, &dev->flags);
4511 if (test_bit(R5_MadeGood, &dev->flags)) {
4512 /* This flag does not apply to '.replacement'
4513 * only to .rdev, so make sure to check that*/
4514 struct md_rdev *rdev2 = rcu_dereference(
4515 conf->disks[i].rdev);
4516 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4517 s->handle_bad_blocks = 1;
4518 atomic_inc(&rdev2->nr_pending);
4520 clear_bit(R5_MadeGood, &dev->flags);
4522 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4523 struct md_rdev *rdev2 = rcu_dereference(
4524 conf->disks[i].replacement);
4525 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4526 s->handle_bad_blocks = 1;
4527 atomic_inc(&rdev2->nr_pending);
4529 clear_bit(R5_MadeGoodRepl, &dev->flags);
4531 if (!test_bit(R5_Insync, &dev->flags)) {
4532 /* The ReadError flag will just be confusing now */
4533 clear_bit(R5_ReadError, &dev->flags);
4534 clear_bit(R5_ReWrite, &dev->flags);
4536 if (test_bit(R5_ReadError, &dev->flags))
4537 clear_bit(R5_Insync, &dev->flags);
4538 if (!test_bit(R5_Insync, &dev->flags)) {
4540 s->failed_num[s->failed] = i;
4542 if (rdev && !test_bit(Faulty, &rdev->flags))
4545 rdev = rcu_dereference(
4546 conf->disks[i].replacement);
4547 if (rdev && !test_bit(Faulty, &rdev->flags))
4552 if (test_bit(R5_InJournal, &dev->flags))
4554 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4557 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4558 /* If there is a failed device being replaced,
4559 * we must be recovering.
4560 * else if we are after recovery_cp, we must be syncing
4561 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4562 * else we can only be replacing
4563 * sync and recovery both need to read all devices, and so
4564 * use the same flag.
4567 sh->sector >= conf->mddev->recovery_cp ||
4568 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4576 static int clear_batch_ready(struct stripe_head *sh)
4578 /* Return '1' if this is a member of batch, or
4579 * '0' if it is a lone stripe or a head which can now be
4582 struct stripe_head *tmp;
4583 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4584 return (sh->batch_head && sh->batch_head != sh);
4585 spin_lock(&sh->stripe_lock);
4586 if (!sh->batch_head) {
4587 spin_unlock(&sh->stripe_lock);
4592 * this stripe could be added to a batch list before we check
4593 * BATCH_READY, skips it
4595 if (sh->batch_head != sh) {
4596 spin_unlock(&sh->stripe_lock);
4599 spin_lock(&sh->batch_lock);
4600 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4601 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4602 spin_unlock(&sh->batch_lock);
4603 spin_unlock(&sh->stripe_lock);
4606 * BATCH_READY is cleared, no new stripes can be added.
4607 * batch_list can be accessed without lock
4612 static void break_stripe_batch_list(struct stripe_head *head_sh,
4613 unsigned long handle_flags)
4615 struct stripe_head *sh, *next;
4619 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4621 list_del_init(&sh->batch_list);
4623 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4624 (1 << STRIPE_SYNCING) |
4625 (1 << STRIPE_REPLACED) |
4626 (1 << STRIPE_DELAYED) |
4627 (1 << STRIPE_BIT_DELAY) |
4628 (1 << STRIPE_FULL_WRITE) |
4629 (1 << STRIPE_BIOFILL_RUN) |
4630 (1 << STRIPE_COMPUTE_RUN) |
4631 (1 << STRIPE_DISCARD) |
4632 (1 << STRIPE_BATCH_READY) |
4633 (1 << STRIPE_BATCH_ERR) |
4634 (1 << STRIPE_BITMAP_PENDING)),
4635 "stripe state: %lx\n", sh->state);
4636 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4637 (1 << STRIPE_REPLACED)),
4638 "head stripe state: %lx\n", head_sh->state);
4640 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4641 (1 << STRIPE_PREREAD_ACTIVE) |
4642 (1 << STRIPE_DEGRADED) |
4643 (1 << STRIPE_ON_UNPLUG_LIST)),
4644 head_sh->state & (1 << STRIPE_INSYNC));
4646 sh->check_state = head_sh->check_state;
4647 sh->reconstruct_state = head_sh->reconstruct_state;
4648 spin_lock_irq(&sh->stripe_lock);
4649 sh->batch_head = NULL;
4650 spin_unlock_irq(&sh->stripe_lock);
4651 for (i = 0; i < sh->disks; i++) {
4652 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4654 sh->dev[i].flags = head_sh->dev[i].flags &
4655 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4657 if (handle_flags == 0 ||
4658 sh->state & handle_flags)
4659 set_bit(STRIPE_HANDLE, &sh->state);
4660 raid5_release_stripe(sh);
4662 spin_lock_irq(&head_sh->stripe_lock);
4663 head_sh->batch_head = NULL;
4664 spin_unlock_irq(&head_sh->stripe_lock);
4665 for (i = 0; i < head_sh->disks; i++)
4666 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4668 if (head_sh->state & handle_flags)
4669 set_bit(STRIPE_HANDLE, &head_sh->state);
4672 wake_up(&head_sh->raid_conf->wait_for_overlap);
4675 static void handle_stripe(struct stripe_head *sh)
4677 struct stripe_head_state s;
4678 struct r5conf *conf = sh->raid_conf;
4681 int disks = sh->disks;
4682 struct r5dev *pdev, *qdev;
4684 clear_bit(STRIPE_HANDLE, &sh->state);
4685 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4686 /* already being handled, ensure it gets handled
4687 * again when current action finishes */
4688 set_bit(STRIPE_HANDLE, &sh->state);
4692 if (clear_batch_ready(sh) ) {
4693 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4697 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4698 break_stripe_batch_list(sh, 0);
4700 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4701 spin_lock(&sh->stripe_lock);
4703 * Cannot process 'sync' concurrently with 'discard'.
4704 * Flush data in r5cache before 'sync'.
4706 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4707 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4708 !test_bit(STRIPE_DISCARD, &sh->state) &&
4709 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4710 set_bit(STRIPE_SYNCING, &sh->state);
4711 clear_bit(STRIPE_INSYNC, &sh->state);
4712 clear_bit(STRIPE_REPLACED, &sh->state);
4714 spin_unlock(&sh->stripe_lock);
4716 clear_bit(STRIPE_DELAYED, &sh->state);
4718 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4719 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4720 (unsigned long long)sh->sector, sh->state,
4721 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4722 sh->check_state, sh->reconstruct_state);
4724 analyse_stripe(sh, &s);
4726 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4729 if (s.handle_bad_blocks ||
4730 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4731 set_bit(STRIPE_HANDLE, &sh->state);
4735 if (unlikely(s.blocked_rdev)) {
4736 if (s.syncing || s.expanding || s.expanded ||
4737 s.replacing || s.to_write || s.written) {
4738 set_bit(STRIPE_HANDLE, &sh->state);
4741 /* There is nothing for the blocked_rdev to block */
4742 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4743 s.blocked_rdev = NULL;
4746 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4747 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4748 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4751 pr_debug("locked=%d uptodate=%d to_read=%d"
4752 " to_write=%d failed=%d failed_num=%d,%d\n",
4753 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4754 s.failed_num[0], s.failed_num[1]);
4756 * check if the array has lost more than max_degraded devices and,
4757 * if so, some requests might need to be failed.
4759 * When journal device failed (log_failed), we will only process
4760 * the stripe if there is data need write to raid disks
4762 if (s.failed > conf->max_degraded ||
4763 (s.log_failed && s.injournal == 0)) {
4764 sh->check_state = 0;
4765 sh->reconstruct_state = 0;
4766 break_stripe_batch_list(sh, 0);
4767 if (s.to_read+s.to_write+s.written)
4768 handle_failed_stripe(conf, sh, &s, disks);
4769 if (s.syncing + s.replacing)
4770 handle_failed_sync(conf, sh, &s);
4773 /* Now we check to see if any write operations have recently
4777 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4779 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4780 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4781 sh->reconstruct_state = reconstruct_state_idle;
4783 /* All the 'written' buffers and the parity block are ready to
4784 * be written back to disk
4786 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4787 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4788 BUG_ON(sh->qd_idx >= 0 &&
4789 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4790 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4791 for (i = disks; i--; ) {
4792 struct r5dev *dev = &sh->dev[i];
4793 if (test_bit(R5_LOCKED, &dev->flags) &&
4794 (i == sh->pd_idx || i == sh->qd_idx ||
4795 dev->written || test_bit(R5_InJournal,
4797 pr_debug("Writing block %d\n", i);
4798 set_bit(R5_Wantwrite, &dev->flags);
4803 if (!test_bit(R5_Insync, &dev->flags) ||
4804 ((i == sh->pd_idx || i == sh->qd_idx) &&
4806 set_bit(STRIPE_INSYNC, &sh->state);
4809 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4810 s.dec_preread_active = 1;
4814 * might be able to return some write requests if the parity blocks
4815 * are safe, or on a failed drive
4817 pdev = &sh->dev[sh->pd_idx];
4818 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4819 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4820 qdev = &sh->dev[sh->qd_idx];
4821 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4822 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4826 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4827 && !test_bit(R5_LOCKED, &pdev->flags)
4828 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4829 test_bit(R5_Discard, &pdev->flags))))) &&
4830 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4831 && !test_bit(R5_LOCKED, &qdev->flags)
4832 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4833 test_bit(R5_Discard, &qdev->flags))))))
4834 handle_stripe_clean_event(conf, sh, disks);
4837 r5c_handle_cached_data_endio(conf, sh, disks);
4838 log_stripe_write_finished(sh);
4840 /* Now we might consider reading some blocks, either to check/generate
4841 * parity, or to satisfy requests
4842 * or to load a block that is being partially written.
4844 if (s.to_read || s.non_overwrite
4845 || (conf->level == 6 && s.to_write && s.failed)
4846 || (s.syncing && (s.uptodate + s.compute < disks))
4849 handle_stripe_fill(sh, &s, disks);
4852 * When the stripe finishes full journal write cycle (write to journal
4853 * and raid disk), this is the clean up procedure so it is ready for
4856 r5c_finish_stripe_write_out(conf, sh, &s);
4859 * Now to consider new write requests, cache write back and what else,
4860 * if anything should be read. We do not handle new writes when:
4861 * 1/ A 'write' operation (copy+xor) is already in flight.
4862 * 2/ A 'check' operation is in flight, as it may clobber the parity
4864 * 3/ A r5c cache log write is in flight.
4867 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4868 if (!r5c_is_writeback(conf->log)) {
4870 handle_stripe_dirtying(conf, sh, &s, disks);
4871 } else { /* write back cache */
4874 /* First, try handle writes in caching phase */
4876 ret = r5c_try_caching_write(conf, sh, &s,
4879 * If caching phase failed: ret == -EAGAIN
4881 * stripe under reclaim: !caching && injournal
4883 * fall back to handle_stripe_dirtying()
4885 if (ret == -EAGAIN ||
4886 /* stripe under reclaim: !caching && injournal */
4887 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4889 ret = handle_stripe_dirtying(conf, sh, &s,
4897 /* maybe we need to check and possibly fix the parity for this stripe
4898 * Any reads will already have been scheduled, so we just see if enough
4899 * data is available. The parity check is held off while parity
4900 * dependent operations are in flight.
4902 if (sh->check_state ||
4903 (s.syncing && s.locked == 0 &&
4904 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4905 !test_bit(STRIPE_INSYNC, &sh->state))) {
4906 if (conf->level == 6)
4907 handle_parity_checks6(conf, sh, &s, disks);
4909 handle_parity_checks5(conf, sh, &s, disks);
4912 if ((s.replacing || s.syncing) && s.locked == 0
4913 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4914 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4915 /* Write out to replacement devices where possible */
4916 for (i = 0; i < conf->raid_disks; i++)
4917 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4918 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4919 set_bit(R5_WantReplace, &sh->dev[i].flags);
4920 set_bit(R5_LOCKED, &sh->dev[i].flags);
4924 set_bit(STRIPE_INSYNC, &sh->state);
4925 set_bit(STRIPE_REPLACED, &sh->state);
4927 if ((s.syncing || s.replacing) && s.locked == 0 &&
4928 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4929 test_bit(STRIPE_INSYNC, &sh->state)) {
4930 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4931 clear_bit(STRIPE_SYNCING, &sh->state);
4932 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4933 wake_up(&conf->wait_for_overlap);
4936 /* If the failed drives are just a ReadError, then we might need
4937 * to progress the repair/check process
4939 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4940 for (i = 0; i < s.failed; i++) {
4941 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4942 if (test_bit(R5_ReadError, &dev->flags)
4943 && !test_bit(R5_LOCKED, &dev->flags)
4944 && test_bit(R5_UPTODATE, &dev->flags)
4946 if (!test_bit(R5_ReWrite, &dev->flags)) {
4947 set_bit(R5_Wantwrite, &dev->flags);
4948 set_bit(R5_ReWrite, &dev->flags);
4949 set_bit(R5_LOCKED, &dev->flags);
4952 /* let's read it back */
4953 set_bit(R5_Wantread, &dev->flags);
4954 set_bit(R5_LOCKED, &dev->flags);
4960 /* Finish reconstruct operations initiated by the expansion process */
4961 if (sh->reconstruct_state == reconstruct_state_result) {
4962 struct stripe_head *sh_src
4963 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4964 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4965 /* sh cannot be written until sh_src has been read.
4966 * so arrange for sh to be delayed a little
4968 set_bit(STRIPE_DELAYED, &sh->state);
4969 set_bit(STRIPE_HANDLE, &sh->state);
4970 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4972 atomic_inc(&conf->preread_active_stripes);
4973 raid5_release_stripe(sh_src);
4977 raid5_release_stripe(sh_src);
4979 sh->reconstruct_state = reconstruct_state_idle;
4980 clear_bit(STRIPE_EXPANDING, &sh->state);
4981 for (i = conf->raid_disks; i--; ) {
4982 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4983 set_bit(R5_LOCKED, &sh->dev[i].flags);
4988 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4989 !sh->reconstruct_state) {
4990 /* Need to write out all blocks after computing parity */
4991 sh->disks = conf->raid_disks;
4992 stripe_set_idx(sh->sector, conf, 0, sh);
4993 schedule_reconstruction(sh, &s, 1, 1);
4994 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4995 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4996 atomic_dec(&conf->reshape_stripes);
4997 wake_up(&conf->wait_for_overlap);
4998 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
5001 if (s.expanding && s.locked == 0 &&
5002 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5003 handle_stripe_expansion(conf, sh);
5006 /* wait for this device to become unblocked */
5007 if (unlikely(s.blocked_rdev)) {
5008 if (conf->mddev->external)
5009 md_wait_for_blocked_rdev(s.blocked_rdev,
5012 /* Internal metadata will immediately
5013 * be written by raid5d, so we don't
5014 * need to wait here.
5016 rdev_dec_pending(s.blocked_rdev,
5020 if (s.handle_bad_blocks)
5021 for (i = disks; i--; ) {
5022 struct md_rdev *rdev;
5023 struct r5dev *dev = &sh->dev[i];
5024 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5025 /* We own a safe reference to the rdev */
5026 rdev = conf->disks[i].rdev;
5027 if (!rdev_set_badblocks(rdev, sh->sector,
5029 md_error(conf->mddev, rdev);
5030 rdev_dec_pending(rdev, conf->mddev);
5032 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5033 rdev = conf->disks[i].rdev;
5034 rdev_clear_badblocks(rdev, sh->sector,
5036 rdev_dec_pending(rdev, conf->mddev);
5038 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5039 rdev = conf->disks[i].replacement;
5041 /* rdev have been moved down */
5042 rdev = conf->disks[i].rdev;
5043 rdev_clear_badblocks(rdev, sh->sector,
5045 rdev_dec_pending(rdev, conf->mddev);
5050 raid_run_ops(sh, s.ops_request);
5054 if (s.dec_preread_active) {
5055 /* We delay this until after ops_run_io so that if make_request
5056 * is waiting on a flush, it won't continue until the writes
5057 * have actually been submitted.
5059 atomic_dec(&conf->preread_active_stripes);
5060 if (atomic_read(&conf->preread_active_stripes) <
5062 md_wakeup_thread(conf->mddev->thread);
5065 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5068 static void raid5_activate_delayed(struct r5conf *conf)
5070 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5071 while (!list_empty(&conf->delayed_list)) {
5072 struct list_head *l = conf->delayed_list.next;
5073 struct stripe_head *sh;
5074 sh = list_entry(l, struct stripe_head, lru);
5076 clear_bit(STRIPE_DELAYED, &sh->state);
5077 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5078 atomic_inc(&conf->preread_active_stripes);
5079 list_add_tail(&sh->lru, &conf->hold_list);
5080 raid5_wakeup_stripe_thread(sh);
5085 static void activate_bit_delay(struct r5conf *conf,
5086 struct list_head *temp_inactive_list)
5088 /* device_lock is held */
5089 struct list_head head;
5090 list_add(&head, &conf->bitmap_list);
5091 list_del_init(&conf->bitmap_list);
5092 while (!list_empty(&head)) {
5093 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5095 list_del_init(&sh->lru);
5096 atomic_inc(&sh->count);
5097 hash = sh->hash_lock_index;
5098 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5102 static int raid5_congested(struct mddev *mddev, int bits)
5104 struct r5conf *conf = mddev->private;
5106 /* No difference between reads and writes. Just check
5107 * how busy the stripe_cache is
5110 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5113 /* Also checks whether there is pressure on r5cache log space */
5114 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5118 if (atomic_read(&conf->empty_inactive_list_nr))
5124 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5126 struct r5conf *conf = mddev->private;
5127 sector_t sector = bio->bi_iter.bi_sector;
5128 unsigned int chunk_sectors;
5129 unsigned int bio_sectors = bio_sectors(bio);
5131 WARN_ON_ONCE(bio->bi_partno);
5133 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5134 return chunk_sectors >=
5135 ((sector & (chunk_sectors - 1)) + bio_sectors);
5139 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5140 * later sampled by raid5d.
5142 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5144 unsigned long flags;
5146 spin_lock_irqsave(&conf->device_lock, flags);
5148 bi->bi_next = conf->retry_read_aligned_list;
5149 conf->retry_read_aligned_list = bi;
5151 spin_unlock_irqrestore(&conf->device_lock, flags);
5152 md_wakeup_thread(conf->mddev->thread);
5155 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5156 unsigned int *offset)
5160 bi = conf->retry_read_aligned;
5162 *offset = conf->retry_read_offset;
5163 conf->retry_read_aligned = NULL;
5166 bi = conf->retry_read_aligned_list;
5168 conf->retry_read_aligned_list = bi->bi_next;
5177 * The "raid5_align_endio" should check if the read succeeded and if it
5178 * did, call bio_endio on the original bio (having bio_put the new bio
5180 * If the read failed..
5182 static void raid5_align_endio(struct bio *bi)
5184 struct bio* raid_bi = bi->bi_private;
5185 struct mddev *mddev;
5186 struct r5conf *conf;
5187 struct md_rdev *rdev;
5188 blk_status_t error = bi->bi_status;
5192 rdev = (void*)raid_bi->bi_next;
5193 raid_bi->bi_next = NULL;
5194 mddev = rdev->mddev;
5195 conf = mddev->private;
5197 rdev_dec_pending(rdev, conf->mddev);
5201 if (atomic_dec_and_test(&conf->active_aligned_reads))
5202 wake_up(&conf->wait_for_quiescent);
5206 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5208 add_bio_to_retry(raid_bi, conf);
5211 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5213 struct r5conf *conf = mddev->private;
5215 struct bio* align_bi;
5216 struct md_rdev *rdev;
5217 sector_t end_sector;
5219 if (!in_chunk_boundary(mddev, raid_bio)) {
5220 pr_debug("%s: non aligned\n", __func__);
5224 * use bio_clone_fast to make a copy of the bio
5226 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5230 * set bi_end_io to a new function, and set bi_private to the
5233 align_bi->bi_end_io = raid5_align_endio;
5234 align_bi->bi_private = raid_bio;
5238 align_bi->bi_iter.bi_sector =
5239 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5242 end_sector = bio_end_sector(align_bi);
5244 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5245 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5246 rdev->recovery_offset < end_sector) {
5247 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5249 (test_bit(Faulty, &rdev->flags) ||
5250 !(test_bit(In_sync, &rdev->flags) ||
5251 rdev->recovery_offset >= end_sector)))
5255 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5265 atomic_inc(&rdev->nr_pending);
5267 raid_bio->bi_next = (void*)rdev;
5268 bio_set_dev(align_bi, rdev->bdev);
5270 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5271 bio_sectors(align_bi),
5272 &first_bad, &bad_sectors)) {
5274 rdev_dec_pending(rdev, mddev);
5278 /* No reshape active, so we can trust rdev->data_offset */
5279 align_bi->bi_iter.bi_sector += rdev->data_offset;
5281 spin_lock_irq(&conf->device_lock);
5282 wait_event_lock_irq(conf->wait_for_quiescent,
5285 atomic_inc(&conf->active_aligned_reads);
5286 spin_unlock_irq(&conf->device_lock);
5289 trace_block_bio_remap(align_bi->bi_disk->queue,
5290 align_bi, disk_devt(mddev->gendisk),
5291 raid_bio->bi_iter.bi_sector);
5292 generic_make_request(align_bi);
5301 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5304 sector_t sector = raid_bio->bi_iter.bi_sector;
5305 unsigned chunk_sects = mddev->chunk_sectors;
5306 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5308 if (sectors < bio_sectors(raid_bio)) {
5309 struct r5conf *conf = mddev->private;
5310 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5311 bio_chain(split, raid_bio);
5312 generic_make_request(raid_bio);
5316 if (!raid5_read_one_chunk(mddev, raid_bio))
5322 /* __get_priority_stripe - get the next stripe to process
5324 * Full stripe writes are allowed to pass preread active stripes up until
5325 * the bypass_threshold is exceeded. In general the bypass_count
5326 * increments when the handle_list is handled before the hold_list; however, it
5327 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5328 * stripe with in flight i/o. The bypass_count will be reset when the
5329 * head of the hold_list has changed, i.e. the head was promoted to the
5332 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5334 struct stripe_head *sh, *tmp;
5335 struct list_head *handle_list = NULL;
5336 struct r5worker_group *wg;
5337 bool second_try = !r5c_is_writeback(conf->log) &&
5338 !r5l_log_disk_error(conf);
5339 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5340 r5l_log_disk_error(conf);
5345 if (conf->worker_cnt_per_group == 0) {
5346 handle_list = try_loprio ? &conf->loprio_list :
5348 } else if (group != ANY_GROUP) {
5349 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5350 &conf->worker_groups[group].handle_list;
5351 wg = &conf->worker_groups[group];
5354 for (i = 0; i < conf->group_cnt; i++) {
5355 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5356 &conf->worker_groups[i].handle_list;
5357 wg = &conf->worker_groups[i];
5358 if (!list_empty(handle_list))
5363 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5365 list_empty(handle_list) ? "empty" : "busy",
5366 list_empty(&conf->hold_list) ? "empty" : "busy",
5367 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5369 if (!list_empty(handle_list)) {
5370 sh = list_entry(handle_list->next, typeof(*sh), lru);
5372 if (list_empty(&conf->hold_list))
5373 conf->bypass_count = 0;
5374 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5375 if (conf->hold_list.next == conf->last_hold)
5376 conf->bypass_count++;
5378 conf->last_hold = conf->hold_list.next;
5379 conf->bypass_count -= conf->bypass_threshold;
5380 if (conf->bypass_count < 0)
5381 conf->bypass_count = 0;
5384 } else if (!list_empty(&conf->hold_list) &&
5385 ((conf->bypass_threshold &&
5386 conf->bypass_count > conf->bypass_threshold) ||
5387 atomic_read(&conf->pending_full_writes) == 0)) {
5389 list_for_each_entry(tmp, &conf->hold_list, lru) {
5390 if (conf->worker_cnt_per_group == 0 ||
5391 group == ANY_GROUP ||
5392 !cpu_online(tmp->cpu) ||
5393 cpu_to_group(tmp->cpu) == group) {
5400 conf->bypass_count -= conf->bypass_threshold;
5401 if (conf->bypass_count < 0)
5402 conf->bypass_count = 0;
5411 try_loprio = !try_loprio;
5419 list_del_init(&sh->lru);
5420 BUG_ON(atomic_inc_return(&sh->count) != 1);
5424 struct raid5_plug_cb {
5425 struct blk_plug_cb cb;
5426 struct list_head list;
5427 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5430 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5432 struct raid5_plug_cb *cb = container_of(
5433 blk_cb, struct raid5_plug_cb, cb);
5434 struct stripe_head *sh;
5435 struct mddev *mddev = cb->cb.data;
5436 struct r5conf *conf = mddev->private;
5440 if (cb->list.next && !list_empty(&cb->list)) {
5441 spin_lock_irq(&conf->device_lock);
5442 while (!list_empty(&cb->list)) {
5443 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5444 list_del_init(&sh->lru);
5446 * avoid race release_stripe_plug() sees
5447 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5448 * is still in our list
5450 smp_mb__before_atomic();
5451 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5453 * STRIPE_ON_RELEASE_LIST could be set here. In that
5454 * case, the count is always > 1 here
5456 hash = sh->hash_lock_index;
5457 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5460 spin_unlock_irq(&conf->device_lock);
5462 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5463 NR_STRIPE_HASH_LOCKS);
5465 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5469 static void release_stripe_plug(struct mddev *mddev,
5470 struct stripe_head *sh)
5472 struct blk_plug_cb *blk_cb = blk_check_plugged(
5473 raid5_unplug, mddev,
5474 sizeof(struct raid5_plug_cb));
5475 struct raid5_plug_cb *cb;
5478 raid5_release_stripe(sh);
5482 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5484 if (cb->list.next == NULL) {
5486 INIT_LIST_HEAD(&cb->list);
5487 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5488 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5491 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5492 list_add_tail(&sh->lru, &cb->list);
5494 raid5_release_stripe(sh);
5497 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5499 struct r5conf *conf = mddev->private;
5500 sector_t logical_sector, last_sector;
5501 struct stripe_head *sh;
5504 if (mddev->reshape_position != MaxSector)
5505 /* Skip discard while reshape is happening */
5508 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5509 last_sector = bio_end_sector(bi);
5513 stripe_sectors = conf->chunk_sectors *
5514 (conf->raid_disks - conf->max_degraded);
5515 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5517 sector_div(last_sector, stripe_sectors);
5519 logical_sector *= conf->chunk_sectors;
5520 last_sector *= conf->chunk_sectors;
5522 for (; logical_sector < last_sector;
5523 logical_sector += STRIPE_SECTORS) {
5527 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5528 prepare_to_wait(&conf->wait_for_overlap, &w,
5529 TASK_UNINTERRUPTIBLE);
5530 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5531 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5532 raid5_release_stripe(sh);
5536 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5537 spin_lock_irq(&sh->stripe_lock);
5538 for (d = 0; d < conf->raid_disks; d++) {
5539 if (d == sh->pd_idx || d == sh->qd_idx)
5541 if (sh->dev[d].towrite || sh->dev[d].toread) {
5542 set_bit(R5_Overlap, &sh->dev[d].flags);
5543 spin_unlock_irq(&sh->stripe_lock);
5544 raid5_release_stripe(sh);
5549 set_bit(STRIPE_DISCARD, &sh->state);
5550 finish_wait(&conf->wait_for_overlap, &w);
5551 sh->overwrite_disks = 0;
5552 for (d = 0; d < conf->raid_disks; d++) {
5553 if (d == sh->pd_idx || d == sh->qd_idx)
5555 sh->dev[d].towrite = bi;
5556 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5557 bio_inc_remaining(bi);
5558 md_write_inc(mddev, bi);
5559 sh->overwrite_disks++;
5561 spin_unlock_irq(&sh->stripe_lock);
5562 if (conf->mddev->bitmap) {
5564 d < conf->raid_disks - conf->max_degraded;
5566 md_bitmap_startwrite(mddev->bitmap,
5570 sh->bm_seq = conf->seq_flush + 1;
5571 set_bit(STRIPE_BIT_DELAY, &sh->state);
5574 set_bit(STRIPE_HANDLE, &sh->state);
5575 clear_bit(STRIPE_DELAYED, &sh->state);
5576 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5577 atomic_inc(&conf->preread_active_stripes);
5578 release_stripe_plug(mddev, sh);
5584 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5586 struct r5conf *conf = mddev->private;
5588 sector_t new_sector;
5589 sector_t logical_sector, last_sector;
5590 struct stripe_head *sh;
5591 const int rw = bio_data_dir(bi);
5594 bool do_flush = false;
5596 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5597 int ret = log_handle_flush_request(conf, bi);
5601 if (ret == -ENODEV) {
5602 if (md_flush_request(mddev, bi))
5605 /* ret == -EAGAIN, fallback */
5607 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5608 * we need to flush journal device
5610 do_flush = bi->bi_opf & REQ_PREFLUSH;
5613 if (!md_write_start(mddev, bi))
5616 * If array is degraded, better not do chunk aligned read because
5617 * later we might have to read it again in order to reconstruct
5618 * data on failed drives.
5620 if (rw == READ && mddev->degraded == 0 &&
5621 mddev->reshape_position == MaxSector) {
5622 bi = chunk_aligned_read(mddev, bi);
5627 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5628 make_discard_request(mddev, bi);
5629 md_write_end(mddev);
5633 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5634 last_sector = bio_end_sector(bi);
5637 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5638 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5644 seq = read_seqcount_begin(&conf->gen_lock);
5647 prepare_to_wait(&conf->wait_for_overlap, &w,
5648 TASK_UNINTERRUPTIBLE);
5649 if (unlikely(conf->reshape_progress != MaxSector)) {
5650 /* spinlock is needed as reshape_progress may be
5651 * 64bit on a 32bit platform, and so it might be
5652 * possible to see a half-updated value
5653 * Of course reshape_progress could change after
5654 * the lock is dropped, so once we get a reference
5655 * to the stripe that we think it is, we will have
5658 spin_lock_irq(&conf->device_lock);
5659 if (mddev->reshape_backwards
5660 ? logical_sector < conf->reshape_progress
5661 : logical_sector >= conf->reshape_progress) {
5664 if (mddev->reshape_backwards
5665 ? logical_sector < conf->reshape_safe
5666 : logical_sector >= conf->reshape_safe) {
5667 spin_unlock_irq(&conf->device_lock);
5673 spin_unlock_irq(&conf->device_lock);
5676 new_sector = raid5_compute_sector(conf, logical_sector,
5679 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5680 (unsigned long long)new_sector,
5681 (unsigned long long)logical_sector);
5683 sh = raid5_get_active_stripe(conf, new_sector, previous,
5684 (bi->bi_opf & REQ_RAHEAD), 0);
5686 if (unlikely(previous)) {
5687 /* expansion might have moved on while waiting for a
5688 * stripe, so we must do the range check again.
5689 * Expansion could still move past after this
5690 * test, but as we are holding a reference to
5691 * 'sh', we know that if that happens,
5692 * STRIPE_EXPANDING will get set and the expansion
5693 * won't proceed until we finish with the stripe.
5696 spin_lock_irq(&conf->device_lock);
5697 if (mddev->reshape_backwards
5698 ? logical_sector >= conf->reshape_progress
5699 : logical_sector < conf->reshape_progress)
5700 /* mismatch, need to try again */
5702 spin_unlock_irq(&conf->device_lock);
5704 raid5_release_stripe(sh);
5710 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5711 /* Might have got the wrong stripe_head
5714 raid5_release_stripe(sh);
5718 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5719 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5720 /* Stripe is busy expanding or
5721 * add failed due to overlap. Flush everything
5724 md_wakeup_thread(mddev->thread);
5725 raid5_release_stripe(sh);
5731 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5732 /* we only need flush for one stripe */
5736 if (!sh->batch_head || sh == sh->batch_head)
5737 set_bit(STRIPE_HANDLE, &sh->state);
5738 clear_bit(STRIPE_DELAYED, &sh->state);
5739 if ((!sh->batch_head || sh == sh->batch_head) &&
5740 (bi->bi_opf & REQ_SYNC) &&
5741 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5742 atomic_inc(&conf->preread_active_stripes);
5743 release_stripe_plug(mddev, sh);
5745 /* cannot get stripe for read-ahead, just give-up */
5746 bi->bi_status = BLK_STS_IOERR;
5750 finish_wait(&conf->wait_for_overlap, &w);
5753 md_write_end(mddev);
5758 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5760 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5762 /* reshaping is quite different to recovery/resync so it is
5763 * handled quite separately ... here.
5765 * On each call to sync_request, we gather one chunk worth of
5766 * destination stripes and flag them as expanding.
5767 * Then we find all the source stripes and request reads.
5768 * As the reads complete, handle_stripe will copy the data
5769 * into the destination stripe and release that stripe.
5771 struct r5conf *conf = mddev->private;
5772 struct stripe_head *sh;
5773 struct md_rdev *rdev;
5774 sector_t first_sector, last_sector;
5775 int raid_disks = conf->previous_raid_disks;
5776 int data_disks = raid_disks - conf->max_degraded;
5777 int new_data_disks = conf->raid_disks - conf->max_degraded;
5780 sector_t writepos, readpos, safepos;
5781 sector_t stripe_addr;
5782 int reshape_sectors;
5783 struct list_head stripes;
5786 if (sector_nr == 0) {
5787 /* If restarting in the middle, skip the initial sectors */
5788 if (mddev->reshape_backwards &&
5789 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5790 sector_nr = raid5_size(mddev, 0, 0)
5791 - conf->reshape_progress;
5792 } else if (mddev->reshape_backwards &&
5793 conf->reshape_progress == MaxSector) {
5794 /* shouldn't happen, but just in case, finish up.*/
5795 sector_nr = MaxSector;
5796 } else if (!mddev->reshape_backwards &&
5797 conf->reshape_progress > 0)
5798 sector_nr = conf->reshape_progress;
5799 sector_div(sector_nr, new_data_disks);
5801 mddev->curr_resync_completed = sector_nr;
5802 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5809 /* We need to process a full chunk at a time.
5810 * If old and new chunk sizes differ, we need to process the
5814 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5816 /* We update the metadata at least every 10 seconds, or when
5817 * the data about to be copied would over-write the source of
5818 * the data at the front of the range. i.e. one new_stripe
5819 * along from reshape_progress new_maps to after where
5820 * reshape_safe old_maps to
5822 writepos = conf->reshape_progress;
5823 sector_div(writepos, new_data_disks);
5824 readpos = conf->reshape_progress;
5825 sector_div(readpos, data_disks);
5826 safepos = conf->reshape_safe;
5827 sector_div(safepos, data_disks);
5828 if (mddev->reshape_backwards) {
5829 BUG_ON(writepos < reshape_sectors);
5830 writepos -= reshape_sectors;
5831 readpos += reshape_sectors;
5832 safepos += reshape_sectors;
5834 writepos += reshape_sectors;
5835 /* readpos and safepos are worst-case calculations.
5836 * A negative number is overly pessimistic, and causes
5837 * obvious problems for unsigned storage. So clip to 0.
5839 readpos -= min_t(sector_t, reshape_sectors, readpos);
5840 safepos -= min_t(sector_t, reshape_sectors, safepos);
5843 /* Having calculated the 'writepos' possibly use it
5844 * to set 'stripe_addr' which is where we will write to.
5846 if (mddev->reshape_backwards) {
5847 BUG_ON(conf->reshape_progress == 0);
5848 stripe_addr = writepos;
5849 BUG_ON((mddev->dev_sectors &
5850 ~((sector_t)reshape_sectors - 1))
5851 - reshape_sectors - stripe_addr
5854 BUG_ON(writepos != sector_nr + reshape_sectors);
5855 stripe_addr = sector_nr;
5858 /* 'writepos' is the most advanced device address we might write.
5859 * 'readpos' is the least advanced device address we might read.
5860 * 'safepos' is the least address recorded in the metadata as having
5862 * If there is a min_offset_diff, these are adjusted either by
5863 * increasing the safepos/readpos if diff is negative, or
5864 * increasing writepos if diff is positive.
5865 * If 'readpos' is then behind 'writepos', there is no way that we can
5866 * ensure safety in the face of a crash - that must be done by userspace
5867 * making a backup of the data. So in that case there is no particular
5868 * rush to update metadata.
5869 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5870 * update the metadata to advance 'safepos' to match 'readpos' so that
5871 * we can be safe in the event of a crash.
5872 * So we insist on updating metadata if safepos is behind writepos and
5873 * readpos is beyond writepos.
5874 * In any case, update the metadata every 10 seconds.
5875 * Maybe that number should be configurable, but I'm not sure it is
5876 * worth it.... maybe it could be a multiple of safemode_delay???
5878 if (conf->min_offset_diff < 0) {
5879 safepos += -conf->min_offset_diff;
5880 readpos += -conf->min_offset_diff;
5882 writepos += conf->min_offset_diff;
5884 if ((mddev->reshape_backwards
5885 ? (safepos > writepos && readpos < writepos)
5886 : (safepos < writepos && readpos > writepos)) ||
5887 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5888 /* Cannot proceed until we've updated the superblock... */
5889 wait_event(conf->wait_for_overlap,
5890 atomic_read(&conf->reshape_stripes)==0
5891 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5892 if (atomic_read(&conf->reshape_stripes) != 0)
5894 mddev->reshape_position = conf->reshape_progress;
5895 mddev->curr_resync_completed = sector_nr;
5896 if (!mddev->reshape_backwards)
5897 /* Can update recovery_offset */
5898 rdev_for_each(rdev, mddev)
5899 if (rdev->raid_disk >= 0 &&
5900 !test_bit(Journal, &rdev->flags) &&
5901 !test_bit(In_sync, &rdev->flags) &&
5902 rdev->recovery_offset < sector_nr)
5903 rdev->recovery_offset = sector_nr;
5905 conf->reshape_checkpoint = jiffies;
5906 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5907 md_wakeup_thread(mddev->thread);
5908 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5909 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5910 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5912 spin_lock_irq(&conf->device_lock);
5913 conf->reshape_safe = mddev->reshape_position;
5914 spin_unlock_irq(&conf->device_lock);
5915 wake_up(&conf->wait_for_overlap);
5916 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5919 INIT_LIST_HEAD(&stripes);
5920 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5922 int skipped_disk = 0;
5923 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5924 set_bit(STRIPE_EXPANDING, &sh->state);
5925 atomic_inc(&conf->reshape_stripes);
5926 /* If any of this stripe is beyond the end of the old
5927 * array, then we need to zero those blocks
5929 for (j=sh->disks; j--;) {
5931 if (j == sh->pd_idx)
5933 if (conf->level == 6 &&
5936 s = raid5_compute_blocknr(sh, j, 0);
5937 if (s < raid5_size(mddev, 0, 0)) {
5941 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5942 set_bit(R5_Expanded, &sh->dev[j].flags);
5943 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5945 if (!skipped_disk) {
5946 set_bit(STRIPE_EXPAND_READY, &sh->state);
5947 set_bit(STRIPE_HANDLE, &sh->state);
5949 list_add(&sh->lru, &stripes);
5951 spin_lock_irq(&conf->device_lock);
5952 if (mddev->reshape_backwards)
5953 conf->reshape_progress -= reshape_sectors * new_data_disks;
5955 conf->reshape_progress += reshape_sectors * new_data_disks;
5956 spin_unlock_irq(&conf->device_lock);
5957 /* Ok, those stripe are ready. We can start scheduling
5958 * reads on the source stripes.
5959 * The source stripes are determined by mapping the first and last
5960 * block on the destination stripes.
5963 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5966 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5967 * new_data_disks - 1),
5969 if (last_sector >= mddev->dev_sectors)
5970 last_sector = mddev->dev_sectors - 1;
5971 while (first_sector <= last_sector) {
5972 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5973 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5974 set_bit(STRIPE_HANDLE, &sh->state);
5975 raid5_release_stripe(sh);
5976 first_sector += STRIPE_SECTORS;
5978 /* Now that the sources are clearly marked, we can release
5979 * the destination stripes
5981 while (!list_empty(&stripes)) {
5982 sh = list_entry(stripes.next, struct stripe_head, lru);
5983 list_del_init(&sh->lru);
5984 raid5_release_stripe(sh);
5986 /* If this takes us to the resync_max point where we have to pause,
5987 * then we need to write out the superblock.
5989 sector_nr += reshape_sectors;
5990 retn = reshape_sectors;
5992 if (mddev->curr_resync_completed > mddev->resync_max ||
5993 (sector_nr - mddev->curr_resync_completed) * 2
5994 >= mddev->resync_max - mddev->curr_resync_completed) {
5995 /* Cannot proceed until we've updated the superblock... */
5996 wait_event(conf->wait_for_overlap,
5997 atomic_read(&conf->reshape_stripes) == 0
5998 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5999 if (atomic_read(&conf->reshape_stripes) != 0)
6001 mddev->reshape_position = conf->reshape_progress;
6002 mddev->curr_resync_completed = sector_nr;
6003 if (!mddev->reshape_backwards)
6004 /* Can update recovery_offset */
6005 rdev_for_each(rdev, mddev)
6006 if (rdev->raid_disk >= 0 &&
6007 !test_bit(Journal, &rdev->flags) &&
6008 !test_bit(In_sync, &rdev->flags) &&
6009 rdev->recovery_offset < sector_nr)
6010 rdev->recovery_offset = sector_nr;
6011 conf->reshape_checkpoint = jiffies;
6012 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6013 md_wakeup_thread(mddev->thread);
6014 wait_event(mddev->sb_wait,
6015 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6016 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6017 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6019 spin_lock_irq(&conf->device_lock);
6020 conf->reshape_safe = mddev->reshape_position;
6021 spin_unlock_irq(&conf->device_lock);
6022 wake_up(&conf->wait_for_overlap);
6023 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6029 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6032 struct r5conf *conf = mddev->private;
6033 struct stripe_head *sh;
6034 sector_t max_sector = mddev->dev_sectors;
6035 sector_t sync_blocks;
6036 int still_degraded = 0;
6039 if (sector_nr >= max_sector) {
6040 /* just being told to finish up .. nothing much to do */
6042 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6047 if (mddev->curr_resync < max_sector) /* aborted */
6048 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6050 else /* completed sync */
6052 md_bitmap_close_sync(mddev->bitmap);
6057 /* Allow raid5_quiesce to complete */
6058 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6060 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6061 return reshape_request(mddev, sector_nr, skipped);
6063 /* No need to check resync_max as we never do more than one
6064 * stripe, and as resync_max will always be on a chunk boundary,
6065 * if the check in md_do_sync didn't fire, there is no chance
6066 * of overstepping resync_max here
6069 /* if there is too many failed drives and we are trying
6070 * to resync, then assert that we are finished, because there is
6071 * nothing we can do.
6073 if (mddev->degraded >= conf->max_degraded &&
6074 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6075 sector_t rv = mddev->dev_sectors - sector_nr;
6079 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6081 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6082 sync_blocks >= STRIPE_SECTORS) {
6083 /* we can skip this block, and probably more */
6084 sync_blocks /= STRIPE_SECTORS;
6086 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6089 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6091 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6093 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6094 /* make sure we don't swamp the stripe cache if someone else
6095 * is trying to get access
6097 schedule_timeout_uninterruptible(1);
6099 /* Need to check if array will still be degraded after recovery/resync
6100 * Note in case of > 1 drive failures it's possible we're rebuilding
6101 * one drive while leaving another faulty drive in array.
6104 for (i = 0; i < conf->raid_disks; i++) {
6105 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6107 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6112 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6114 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6115 set_bit(STRIPE_HANDLE, &sh->state);
6117 raid5_release_stripe(sh);
6119 return STRIPE_SECTORS;
6122 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6123 unsigned int offset)
6125 /* We may not be able to submit a whole bio at once as there
6126 * may not be enough stripe_heads available.
6127 * We cannot pre-allocate enough stripe_heads as we may need
6128 * more than exist in the cache (if we allow ever large chunks).
6129 * So we do one stripe head at a time and record in
6130 * ->bi_hw_segments how many have been done.
6132 * We *know* that this entire raid_bio is in one chunk, so
6133 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6135 struct stripe_head *sh;
6137 sector_t sector, logical_sector, last_sector;
6141 logical_sector = raid_bio->bi_iter.bi_sector &
6142 ~((sector_t)STRIPE_SECTORS-1);
6143 sector = raid5_compute_sector(conf, logical_sector,
6145 last_sector = bio_end_sector(raid_bio);
6147 for (; logical_sector < last_sector;
6148 logical_sector += STRIPE_SECTORS,
6149 sector += STRIPE_SECTORS,
6153 /* already done this stripe */
6156 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6159 /* failed to get a stripe - must wait */
6160 conf->retry_read_aligned = raid_bio;
6161 conf->retry_read_offset = scnt;
6165 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6166 raid5_release_stripe(sh);
6167 conf->retry_read_aligned = raid_bio;
6168 conf->retry_read_offset = scnt;
6172 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6174 raid5_release_stripe(sh);
6178 bio_endio(raid_bio);
6180 if (atomic_dec_and_test(&conf->active_aligned_reads))
6181 wake_up(&conf->wait_for_quiescent);
6185 static int handle_active_stripes(struct r5conf *conf, int group,
6186 struct r5worker *worker,
6187 struct list_head *temp_inactive_list)
6188 __releases(&conf->device_lock)
6189 __acquires(&conf->device_lock)
6191 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6192 int i, batch_size = 0, hash;
6193 bool release_inactive = false;
6195 while (batch_size < MAX_STRIPE_BATCH &&
6196 (sh = __get_priority_stripe(conf, group)) != NULL)
6197 batch[batch_size++] = sh;
6199 if (batch_size == 0) {
6200 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6201 if (!list_empty(temp_inactive_list + i))
6203 if (i == NR_STRIPE_HASH_LOCKS) {
6204 spin_unlock_irq(&conf->device_lock);
6205 log_flush_stripe_to_raid(conf);
6206 spin_lock_irq(&conf->device_lock);
6209 release_inactive = true;
6211 spin_unlock_irq(&conf->device_lock);
6213 release_inactive_stripe_list(conf, temp_inactive_list,
6214 NR_STRIPE_HASH_LOCKS);
6216 r5l_flush_stripe_to_raid(conf->log);
6217 if (release_inactive) {
6218 spin_lock_irq(&conf->device_lock);
6222 for (i = 0; i < batch_size; i++)
6223 handle_stripe(batch[i]);
6224 log_write_stripe_run(conf);
6228 spin_lock_irq(&conf->device_lock);
6229 for (i = 0; i < batch_size; i++) {
6230 hash = batch[i]->hash_lock_index;
6231 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6236 static void raid5_do_work(struct work_struct *work)
6238 struct r5worker *worker = container_of(work, struct r5worker, work);
6239 struct r5worker_group *group = worker->group;
6240 struct r5conf *conf = group->conf;
6241 struct mddev *mddev = conf->mddev;
6242 int group_id = group - conf->worker_groups;
6244 struct blk_plug plug;
6246 pr_debug("+++ raid5worker active\n");
6248 blk_start_plug(&plug);
6250 spin_lock_irq(&conf->device_lock);
6252 int batch_size, released;
6254 released = release_stripe_list(conf, worker->temp_inactive_list);
6256 batch_size = handle_active_stripes(conf, group_id, worker,
6257 worker->temp_inactive_list);
6258 worker->working = false;
6259 if (!batch_size && !released)
6261 handled += batch_size;
6262 wait_event_lock_irq(mddev->sb_wait,
6263 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6266 pr_debug("%d stripes handled\n", handled);
6268 spin_unlock_irq(&conf->device_lock);
6270 flush_deferred_bios(conf);
6272 r5l_flush_stripe_to_raid(conf->log);
6274 async_tx_issue_pending_all();
6275 blk_finish_plug(&plug);
6277 pr_debug("--- raid5worker inactive\n");
6281 * This is our raid5 kernel thread.
6283 * We scan the hash table for stripes which can be handled now.
6284 * During the scan, completed stripes are saved for us by the interrupt
6285 * handler, so that they will not have to wait for our next wakeup.
6287 static void raid5d(struct md_thread *thread)
6289 struct mddev *mddev = thread->mddev;
6290 struct r5conf *conf = mddev->private;
6292 struct blk_plug plug;
6294 pr_debug("+++ raid5d active\n");
6296 md_check_recovery(mddev);
6298 blk_start_plug(&plug);
6300 spin_lock_irq(&conf->device_lock);
6303 int batch_size, released;
6304 unsigned int offset;
6306 released = release_stripe_list(conf, conf->temp_inactive_list);
6308 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6311 !list_empty(&conf->bitmap_list)) {
6312 /* Now is a good time to flush some bitmap updates */
6314 spin_unlock_irq(&conf->device_lock);
6315 md_bitmap_unplug(mddev->bitmap);
6316 spin_lock_irq(&conf->device_lock);
6317 conf->seq_write = conf->seq_flush;
6318 activate_bit_delay(conf, conf->temp_inactive_list);
6320 raid5_activate_delayed(conf);
6322 while ((bio = remove_bio_from_retry(conf, &offset))) {
6324 spin_unlock_irq(&conf->device_lock);
6325 ok = retry_aligned_read(conf, bio, offset);
6326 spin_lock_irq(&conf->device_lock);
6332 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6333 conf->temp_inactive_list);
6334 if (!batch_size && !released)
6336 handled += batch_size;
6338 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6339 spin_unlock_irq(&conf->device_lock);
6340 md_check_recovery(mddev);
6341 spin_lock_irq(&conf->device_lock);
6344 pr_debug("%d stripes handled\n", handled);
6346 spin_unlock_irq(&conf->device_lock);
6347 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6348 mutex_trylock(&conf->cache_size_mutex)) {
6349 grow_one_stripe(conf, __GFP_NOWARN);
6350 /* Set flag even if allocation failed. This helps
6351 * slow down allocation requests when mem is short
6353 set_bit(R5_DID_ALLOC, &conf->cache_state);
6354 mutex_unlock(&conf->cache_size_mutex);
6357 flush_deferred_bios(conf);
6359 r5l_flush_stripe_to_raid(conf->log);
6361 async_tx_issue_pending_all();
6362 blk_finish_plug(&plug);
6364 pr_debug("--- raid5d inactive\n");
6368 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6370 struct r5conf *conf;
6372 spin_lock(&mddev->lock);
6373 conf = mddev->private;
6375 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6376 spin_unlock(&mddev->lock);
6381 raid5_set_cache_size(struct mddev *mddev, int size)
6384 struct r5conf *conf = mddev->private;
6386 if (size <= 16 || size > 32768)
6389 conf->min_nr_stripes = size;
6390 mutex_lock(&conf->cache_size_mutex);
6391 while (size < conf->max_nr_stripes &&
6392 drop_one_stripe(conf))
6394 mutex_unlock(&conf->cache_size_mutex);
6396 md_allow_write(mddev);
6398 mutex_lock(&conf->cache_size_mutex);
6399 while (size > conf->max_nr_stripes)
6400 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6401 conf->min_nr_stripes = conf->max_nr_stripes;
6405 mutex_unlock(&conf->cache_size_mutex);
6409 EXPORT_SYMBOL(raid5_set_cache_size);
6412 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6414 struct r5conf *conf;
6418 if (len >= PAGE_SIZE)
6420 if (kstrtoul(page, 10, &new))
6422 err = mddev_lock(mddev);
6425 conf = mddev->private;
6429 err = raid5_set_cache_size(mddev, new);
6430 mddev_unlock(mddev);
6435 static struct md_sysfs_entry
6436 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6437 raid5_show_stripe_cache_size,
6438 raid5_store_stripe_cache_size);
6441 raid5_show_rmw_level(struct mddev *mddev, char *page)
6443 struct r5conf *conf = mddev->private;
6445 return sprintf(page, "%d\n", conf->rmw_level);
6451 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6453 struct r5conf *conf = mddev->private;
6459 if (len >= PAGE_SIZE)
6462 if (kstrtoul(page, 10, &new))
6465 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6468 if (new != PARITY_DISABLE_RMW &&
6469 new != PARITY_ENABLE_RMW &&
6470 new != PARITY_PREFER_RMW)
6473 conf->rmw_level = new;
6477 static struct md_sysfs_entry
6478 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6479 raid5_show_rmw_level,
6480 raid5_store_rmw_level);
6484 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6486 struct r5conf *conf;
6488 spin_lock(&mddev->lock);
6489 conf = mddev->private;
6491 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6492 spin_unlock(&mddev->lock);
6497 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6499 struct r5conf *conf;
6503 if (len >= PAGE_SIZE)
6505 if (kstrtoul(page, 10, &new))
6508 err = mddev_lock(mddev);
6511 conf = mddev->private;
6514 else if (new > conf->min_nr_stripes)
6517 conf->bypass_threshold = new;
6518 mddev_unlock(mddev);
6522 static struct md_sysfs_entry
6523 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6525 raid5_show_preread_threshold,
6526 raid5_store_preread_threshold);
6529 raid5_show_skip_copy(struct mddev *mddev, char *page)
6531 struct r5conf *conf;
6533 spin_lock(&mddev->lock);
6534 conf = mddev->private;
6536 ret = sprintf(page, "%d\n", conf->skip_copy);
6537 spin_unlock(&mddev->lock);
6542 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6544 struct r5conf *conf;
6548 if (len >= PAGE_SIZE)
6550 if (kstrtoul(page, 10, &new))
6554 err = mddev_lock(mddev);
6557 conf = mddev->private;
6560 else if (new != conf->skip_copy) {
6561 mddev_suspend(mddev);
6562 conf->skip_copy = new;
6564 mddev->queue->backing_dev_info->capabilities |=
6565 BDI_CAP_STABLE_WRITES;
6567 mddev->queue->backing_dev_info->capabilities &=
6568 ~BDI_CAP_STABLE_WRITES;
6569 mddev_resume(mddev);
6571 mddev_unlock(mddev);
6575 static struct md_sysfs_entry
6576 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6577 raid5_show_skip_copy,
6578 raid5_store_skip_copy);
6581 stripe_cache_active_show(struct mddev *mddev, char *page)
6583 struct r5conf *conf = mddev->private;
6585 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6590 static struct md_sysfs_entry
6591 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6594 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6596 struct r5conf *conf;
6598 spin_lock(&mddev->lock);
6599 conf = mddev->private;
6601 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6602 spin_unlock(&mddev->lock);
6606 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6608 struct r5worker_group **worker_groups);
6610 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6612 struct r5conf *conf;
6615 struct r5worker_group *new_groups, *old_groups;
6618 if (len >= PAGE_SIZE)
6620 if (kstrtouint(page, 10, &new))
6622 /* 8192 should be big enough */
6626 err = mddev_lock(mddev);
6629 conf = mddev->private;
6632 else if (new != conf->worker_cnt_per_group) {
6633 mddev_suspend(mddev);
6635 old_groups = conf->worker_groups;
6637 flush_workqueue(raid5_wq);
6639 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6641 spin_lock_irq(&conf->device_lock);
6642 conf->group_cnt = group_cnt;
6643 conf->worker_cnt_per_group = new;
6644 conf->worker_groups = new_groups;
6645 spin_unlock_irq(&conf->device_lock);
6648 kfree(old_groups[0].workers);
6651 mddev_resume(mddev);
6653 mddev_unlock(mddev);
6658 static struct md_sysfs_entry
6659 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6660 raid5_show_group_thread_cnt,
6661 raid5_store_group_thread_cnt);
6663 static struct attribute *raid5_attrs[] = {
6664 &raid5_stripecache_size.attr,
6665 &raid5_stripecache_active.attr,
6666 &raid5_preread_bypass_threshold.attr,
6667 &raid5_group_thread_cnt.attr,
6668 &raid5_skip_copy.attr,
6669 &raid5_rmw_level.attr,
6670 &r5c_journal_mode.attr,
6671 &ppl_write_hint.attr,
6674 static struct attribute_group raid5_attrs_group = {
6676 .attrs = raid5_attrs,
6679 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6680 struct r5worker_group **worker_groups)
6684 struct r5worker *workers;
6688 *worker_groups = NULL;
6691 *group_cnt = num_possible_nodes();
6692 size = sizeof(struct r5worker) * cnt;
6693 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6694 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6696 if (!*worker_groups || !workers) {
6698 kfree(*worker_groups);
6702 for (i = 0; i < *group_cnt; i++) {
6703 struct r5worker_group *group;
6705 group = &(*worker_groups)[i];
6706 INIT_LIST_HEAD(&group->handle_list);
6707 INIT_LIST_HEAD(&group->loprio_list);
6709 group->workers = workers + i * cnt;
6711 for (j = 0; j < cnt; j++) {
6712 struct r5worker *worker = group->workers + j;
6713 worker->group = group;
6714 INIT_WORK(&worker->work, raid5_do_work);
6716 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6717 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6724 static void free_thread_groups(struct r5conf *conf)
6726 if (conf->worker_groups)
6727 kfree(conf->worker_groups[0].workers);
6728 kfree(conf->worker_groups);
6729 conf->worker_groups = NULL;
6733 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6735 struct r5conf *conf = mddev->private;
6738 sectors = mddev->dev_sectors;
6740 /* size is defined by the smallest of previous and new size */
6741 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6743 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6744 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6745 return sectors * (raid_disks - conf->max_degraded);
6748 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6750 safe_put_page(percpu->spare_page);
6751 percpu->spare_page = NULL;
6752 kvfree(percpu->scribble);
6753 percpu->scribble = NULL;
6756 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6758 if (conf->level == 6 && !percpu->spare_page) {
6759 percpu->spare_page = alloc_page(GFP_KERNEL);
6760 if (!percpu->spare_page)
6764 if (scribble_alloc(percpu,
6765 max(conf->raid_disks,
6766 conf->previous_raid_disks),
6767 max(conf->chunk_sectors,
6768 conf->prev_chunk_sectors)
6769 / STRIPE_SECTORS)) {
6770 free_scratch_buffer(conf, percpu);
6777 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6779 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6781 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6785 static void raid5_free_percpu(struct r5conf *conf)
6790 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6791 free_percpu(conf->percpu);
6794 static void free_conf(struct r5conf *conf)
6800 unregister_shrinker(&conf->shrinker);
6801 free_thread_groups(conf);
6802 shrink_stripes(conf);
6803 raid5_free_percpu(conf);
6804 for (i = 0; i < conf->pool_size; i++)
6805 if (conf->disks[i].extra_page)
6806 put_page(conf->disks[i].extra_page);
6808 bioset_exit(&conf->bio_split);
6809 kfree(conf->stripe_hashtbl);
6810 kfree(conf->pending_data);
6814 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6816 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6817 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6819 if (alloc_scratch_buffer(conf, percpu)) {
6820 pr_warn("%s: failed memory allocation for cpu%u\n",
6827 static int raid5_alloc_percpu(struct r5conf *conf)
6831 conf->percpu = alloc_percpu(struct raid5_percpu);
6835 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6837 conf->scribble_disks = max(conf->raid_disks,
6838 conf->previous_raid_disks);
6839 conf->scribble_sectors = max(conf->chunk_sectors,
6840 conf->prev_chunk_sectors);
6845 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6846 struct shrink_control *sc)
6848 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6849 unsigned long ret = SHRINK_STOP;
6851 if (mutex_trylock(&conf->cache_size_mutex)) {
6853 while (ret < sc->nr_to_scan &&
6854 conf->max_nr_stripes > conf->min_nr_stripes) {
6855 if (drop_one_stripe(conf) == 0) {
6861 mutex_unlock(&conf->cache_size_mutex);
6866 static unsigned long raid5_cache_count(struct shrinker *shrink,
6867 struct shrink_control *sc)
6869 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6871 if (conf->max_nr_stripes < conf->min_nr_stripes)
6872 /* unlikely, but not impossible */
6874 return conf->max_nr_stripes - conf->min_nr_stripes;
6877 static struct r5conf *setup_conf(struct mddev *mddev)
6879 struct r5conf *conf;
6880 int raid_disk, memory, max_disks;
6881 struct md_rdev *rdev;
6882 struct disk_info *disk;
6886 struct r5worker_group *new_group;
6889 if (mddev->new_level != 5
6890 && mddev->new_level != 4
6891 && mddev->new_level != 6) {
6892 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6893 mdname(mddev), mddev->new_level);
6894 return ERR_PTR(-EIO);
6896 if ((mddev->new_level == 5
6897 && !algorithm_valid_raid5(mddev->new_layout)) ||
6898 (mddev->new_level == 6
6899 && !algorithm_valid_raid6(mddev->new_layout))) {
6900 pr_warn("md/raid:%s: layout %d not supported\n",
6901 mdname(mddev), mddev->new_layout);
6902 return ERR_PTR(-EIO);
6904 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6905 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6906 mdname(mddev), mddev->raid_disks);
6907 return ERR_PTR(-EINVAL);
6910 if (!mddev->new_chunk_sectors ||
6911 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6912 !is_power_of_2(mddev->new_chunk_sectors)) {
6913 pr_warn("md/raid:%s: invalid chunk size %d\n",
6914 mdname(mddev), mddev->new_chunk_sectors << 9);
6915 return ERR_PTR(-EINVAL);
6918 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6921 INIT_LIST_HEAD(&conf->free_list);
6922 INIT_LIST_HEAD(&conf->pending_list);
6923 conf->pending_data = kcalloc(PENDING_IO_MAX,
6924 sizeof(struct r5pending_data),
6926 if (!conf->pending_data)
6928 for (i = 0; i < PENDING_IO_MAX; i++)
6929 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6930 /* Don't enable multi-threading by default*/
6931 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
6932 conf->group_cnt = group_cnt;
6933 conf->worker_cnt_per_group = 0;
6934 conf->worker_groups = new_group;
6937 spin_lock_init(&conf->device_lock);
6938 seqcount_init(&conf->gen_lock);
6939 mutex_init(&conf->cache_size_mutex);
6940 init_waitqueue_head(&conf->wait_for_quiescent);
6941 init_waitqueue_head(&conf->wait_for_stripe);
6942 init_waitqueue_head(&conf->wait_for_overlap);
6943 INIT_LIST_HEAD(&conf->handle_list);
6944 INIT_LIST_HEAD(&conf->loprio_list);
6945 INIT_LIST_HEAD(&conf->hold_list);
6946 INIT_LIST_HEAD(&conf->delayed_list);
6947 INIT_LIST_HEAD(&conf->bitmap_list);
6948 init_llist_head(&conf->released_stripes);
6949 atomic_set(&conf->active_stripes, 0);
6950 atomic_set(&conf->preread_active_stripes, 0);
6951 atomic_set(&conf->active_aligned_reads, 0);
6952 spin_lock_init(&conf->pending_bios_lock);
6953 conf->batch_bio_dispatch = true;
6954 rdev_for_each(rdev, mddev) {
6955 if (test_bit(Journal, &rdev->flags))
6957 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6958 conf->batch_bio_dispatch = false;
6963 conf->bypass_threshold = BYPASS_THRESHOLD;
6964 conf->recovery_disabled = mddev->recovery_disabled - 1;
6966 conf->raid_disks = mddev->raid_disks;
6967 if (mddev->reshape_position == MaxSector)
6968 conf->previous_raid_disks = mddev->raid_disks;
6970 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6971 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6973 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6979 for (i = 0; i < max_disks; i++) {
6980 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6981 if (!conf->disks[i].extra_page)
6985 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6988 conf->mddev = mddev;
6990 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6993 /* We init hash_locks[0] separately to that it can be used
6994 * as the reference lock in the spin_lock_nest_lock() call
6995 * in lock_all_device_hash_locks_irq in order to convince
6996 * lockdep that we know what we are doing.
6998 spin_lock_init(conf->hash_locks);
6999 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7000 spin_lock_init(conf->hash_locks + i);
7002 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7003 INIT_LIST_HEAD(conf->inactive_list + i);
7005 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7006 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7008 atomic_set(&conf->r5c_cached_full_stripes, 0);
7009 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7010 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7011 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7012 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7013 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7015 conf->level = mddev->new_level;
7016 conf->chunk_sectors = mddev->new_chunk_sectors;
7017 if (raid5_alloc_percpu(conf) != 0)
7020 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7022 rdev_for_each(rdev, mddev) {
7023 raid_disk = rdev->raid_disk;
7024 if (raid_disk >= max_disks
7025 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7027 disk = conf->disks + raid_disk;
7029 if (test_bit(Replacement, &rdev->flags)) {
7030 if (disk->replacement)
7032 disk->replacement = rdev;
7039 if (test_bit(In_sync, &rdev->flags)) {
7040 char b[BDEVNAME_SIZE];
7041 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7042 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7043 } else if (rdev->saved_raid_disk != raid_disk)
7044 /* Cannot rely on bitmap to complete recovery */
7048 conf->level = mddev->new_level;
7049 if (conf->level == 6) {
7050 conf->max_degraded = 2;
7051 if (raid6_call.xor_syndrome)
7052 conf->rmw_level = PARITY_ENABLE_RMW;
7054 conf->rmw_level = PARITY_DISABLE_RMW;
7056 conf->max_degraded = 1;
7057 conf->rmw_level = PARITY_ENABLE_RMW;
7059 conf->algorithm = mddev->new_layout;
7060 conf->reshape_progress = mddev->reshape_position;
7061 if (conf->reshape_progress != MaxSector) {
7062 conf->prev_chunk_sectors = mddev->chunk_sectors;
7063 conf->prev_algo = mddev->layout;
7065 conf->prev_chunk_sectors = conf->chunk_sectors;
7066 conf->prev_algo = conf->algorithm;
7069 conf->min_nr_stripes = NR_STRIPES;
7070 if (mddev->reshape_position != MaxSector) {
7071 int stripes = max_t(int,
7072 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7073 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7074 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7075 if (conf->min_nr_stripes != NR_STRIPES)
7076 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7077 mdname(mddev), conf->min_nr_stripes);
7079 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7080 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7081 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7082 if (grow_stripes(conf, conf->min_nr_stripes)) {
7083 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7084 mdname(mddev), memory);
7087 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7089 * Losing a stripe head costs more than the time to refill it,
7090 * it reduces the queue depth and so can hurt throughput.
7091 * So set it rather large, scaled by number of devices.
7093 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7094 conf->shrinker.scan_objects = raid5_cache_scan;
7095 conf->shrinker.count_objects = raid5_cache_count;
7096 conf->shrinker.batch = 128;
7097 conf->shrinker.flags = 0;
7098 if (register_shrinker(&conf->shrinker)) {
7099 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7104 sprintf(pers_name, "raid%d", mddev->new_level);
7105 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7106 if (!conf->thread) {
7107 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7117 return ERR_PTR(-EIO);
7119 return ERR_PTR(-ENOMEM);
7122 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7125 case ALGORITHM_PARITY_0:
7126 if (raid_disk < max_degraded)
7129 case ALGORITHM_PARITY_N:
7130 if (raid_disk >= raid_disks - max_degraded)
7133 case ALGORITHM_PARITY_0_6:
7134 if (raid_disk == 0 ||
7135 raid_disk == raid_disks - 1)
7138 case ALGORITHM_LEFT_ASYMMETRIC_6:
7139 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7140 case ALGORITHM_LEFT_SYMMETRIC_6:
7141 case ALGORITHM_RIGHT_SYMMETRIC_6:
7142 if (raid_disk == raid_disks - 1)
7148 static int raid5_run(struct mddev *mddev)
7150 struct r5conf *conf;
7151 int working_disks = 0;
7152 int dirty_parity_disks = 0;
7153 struct md_rdev *rdev;
7154 struct md_rdev *journal_dev = NULL;
7155 sector_t reshape_offset = 0;
7157 long long min_offset_diff = 0;
7160 if (mddev_init_writes_pending(mddev) < 0)
7163 if (mddev->recovery_cp != MaxSector)
7164 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7167 rdev_for_each(rdev, mddev) {
7170 if (test_bit(Journal, &rdev->flags)) {
7174 if (rdev->raid_disk < 0)
7176 diff = (rdev->new_data_offset - rdev->data_offset);
7178 min_offset_diff = diff;
7180 } else if (mddev->reshape_backwards &&
7181 diff < min_offset_diff)
7182 min_offset_diff = diff;
7183 else if (!mddev->reshape_backwards &&
7184 diff > min_offset_diff)
7185 min_offset_diff = diff;
7188 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7189 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7190 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7195 if (mddev->reshape_position != MaxSector) {
7196 /* Check that we can continue the reshape.
7197 * Difficulties arise if the stripe we would write to
7198 * next is at or after the stripe we would read from next.
7199 * For a reshape that changes the number of devices, this
7200 * is only possible for a very short time, and mdadm makes
7201 * sure that time appears to have past before assembling
7202 * the array. So we fail if that time hasn't passed.
7203 * For a reshape that keeps the number of devices the same
7204 * mdadm must be monitoring the reshape can keeping the
7205 * critical areas read-only and backed up. It will start
7206 * the array in read-only mode, so we check for that.
7208 sector_t here_new, here_old;
7210 int max_degraded = (mddev->level == 6 ? 2 : 1);
7215 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7220 if (mddev->new_level != mddev->level) {
7221 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7225 old_disks = mddev->raid_disks - mddev->delta_disks;
7226 /* reshape_position must be on a new-stripe boundary, and one
7227 * further up in new geometry must map after here in old
7229 * If the chunk sizes are different, then as we perform reshape
7230 * in units of the largest of the two, reshape_position needs
7231 * be a multiple of the largest chunk size times new data disks.
7233 here_new = mddev->reshape_position;
7234 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7235 new_data_disks = mddev->raid_disks - max_degraded;
7236 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7237 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7241 reshape_offset = here_new * chunk_sectors;
7242 /* here_new is the stripe we will write to */
7243 here_old = mddev->reshape_position;
7244 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7245 /* here_old is the first stripe that we might need to read
7247 if (mddev->delta_disks == 0) {
7248 /* We cannot be sure it is safe to start an in-place
7249 * reshape. It is only safe if user-space is monitoring
7250 * and taking constant backups.
7251 * mdadm always starts a situation like this in
7252 * readonly mode so it can take control before
7253 * allowing any writes. So just check for that.
7255 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7256 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7257 /* not really in-place - so OK */;
7258 else if (mddev->ro == 0) {
7259 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7263 } else if (mddev->reshape_backwards
7264 ? (here_new * chunk_sectors + min_offset_diff <=
7265 here_old * chunk_sectors)
7266 : (here_new * chunk_sectors >=
7267 here_old * chunk_sectors + (-min_offset_diff))) {
7268 /* Reading from the same stripe as writing to - bad */
7269 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7273 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7274 /* OK, we should be able to continue; */
7276 BUG_ON(mddev->level != mddev->new_level);
7277 BUG_ON(mddev->layout != mddev->new_layout);
7278 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7279 BUG_ON(mddev->delta_disks != 0);
7282 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7283 test_bit(MD_HAS_PPL, &mddev->flags)) {
7284 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7286 clear_bit(MD_HAS_PPL, &mddev->flags);
7287 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7290 if (mddev->private == NULL)
7291 conf = setup_conf(mddev);
7293 conf = mddev->private;
7296 return PTR_ERR(conf);
7298 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7300 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7303 set_disk_ro(mddev->gendisk, 1);
7304 } else if (mddev->recovery_cp == MaxSector)
7305 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7308 conf->min_offset_diff = min_offset_diff;
7309 mddev->thread = conf->thread;
7310 conf->thread = NULL;
7311 mddev->private = conf;
7313 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7315 rdev = conf->disks[i].rdev;
7316 if (!rdev && conf->disks[i].replacement) {
7317 /* The replacement is all we have yet */
7318 rdev = conf->disks[i].replacement;
7319 conf->disks[i].replacement = NULL;
7320 clear_bit(Replacement, &rdev->flags);
7321 conf->disks[i].rdev = rdev;
7325 if (conf->disks[i].replacement &&
7326 conf->reshape_progress != MaxSector) {
7327 /* replacements and reshape simply do not mix. */
7328 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7331 if (test_bit(In_sync, &rdev->flags)) {
7335 /* This disc is not fully in-sync. However if it
7336 * just stored parity (beyond the recovery_offset),
7337 * when we don't need to be concerned about the
7338 * array being dirty.
7339 * When reshape goes 'backwards', we never have
7340 * partially completed devices, so we only need
7341 * to worry about reshape going forwards.
7343 /* Hack because v0.91 doesn't store recovery_offset properly. */
7344 if (mddev->major_version == 0 &&
7345 mddev->minor_version > 90)
7346 rdev->recovery_offset = reshape_offset;
7348 if (rdev->recovery_offset < reshape_offset) {
7349 /* We need to check old and new layout */
7350 if (!only_parity(rdev->raid_disk,
7353 conf->max_degraded))
7356 if (!only_parity(rdev->raid_disk,
7358 conf->previous_raid_disks,
7359 conf->max_degraded))
7361 dirty_parity_disks++;
7365 * 0 for a fully functional array, 1 or 2 for a degraded array.
7367 mddev->degraded = raid5_calc_degraded(conf);
7369 if (has_failed(conf)) {
7370 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7371 mdname(mddev), mddev->degraded, conf->raid_disks);
7375 /* device size must be a multiple of chunk size */
7376 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7377 mddev->resync_max_sectors = mddev->dev_sectors;
7379 if (mddev->degraded > dirty_parity_disks &&
7380 mddev->recovery_cp != MaxSector) {
7381 if (test_bit(MD_HAS_PPL, &mddev->flags))
7382 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7384 else if (mddev->ok_start_degraded)
7385 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7388 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7394 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7395 mdname(mddev), conf->level,
7396 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7399 print_raid5_conf(conf);
7401 if (conf->reshape_progress != MaxSector) {
7402 conf->reshape_safe = conf->reshape_progress;
7403 atomic_set(&conf->reshape_stripes, 0);
7404 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7405 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7406 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7407 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7408 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7410 if (!mddev->sync_thread)
7414 /* Ok, everything is just fine now */
7415 if (mddev->to_remove == &raid5_attrs_group)
7416 mddev->to_remove = NULL;
7417 else if (mddev->kobj.sd &&
7418 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7419 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7421 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7425 /* read-ahead size must cover two whole stripes, which
7426 * is 2 * (datadisks) * chunksize where 'n' is the
7427 * number of raid devices
7429 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7430 int stripe = data_disks *
7431 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7432 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7433 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7435 chunk_size = mddev->chunk_sectors << 9;
7436 blk_queue_io_min(mddev->queue, chunk_size);
7437 blk_queue_io_opt(mddev->queue, chunk_size *
7438 (conf->raid_disks - conf->max_degraded));
7439 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7441 * We can only discard a whole stripe. It doesn't make sense to
7442 * discard data disk but write parity disk
7444 stripe = stripe * PAGE_SIZE;
7445 /* Round up to power of 2, as discard handling
7446 * currently assumes that */
7447 while ((stripe-1) & stripe)
7448 stripe = (stripe | (stripe-1)) + 1;
7449 mddev->queue->limits.discard_alignment = stripe;
7450 mddev->queue->limits.discard_granularity = stripe;
7452 blk_queue_max_write_same_sectors(mddev->queue, 0);
7453 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7455 rdev_for_each(rdev, mddev) {
7456 disk_stack_limits(mddev->gendisk, rdev->bdev,
7457 rdev->data_offset << 9);
7458 disk_stack_limits(mddev->gendisk, rdev->bdev,
7459 rdev->new_data_offset << 9);
7463 * zeroing is required, otherwise data
7464 * could be lost. Consider a scenario: discard a stripe
7465 * (the stripe could be inconsistent if
7466 * discard_zeroes_data is 0); write one disk of the
7467 * stripe (the stripe could be inconsistent again
7468 * depending on which disks are used to calculate
7469 * parity); the disk is broken; The stripe data of this
7472 * We only allow DISCARD if the sysadmin has confirmed that
7473 * only safe devices are in use by setting a module parameter.
7474 * A better idea might be to turn DISCARD into WRITE_ZEROES
7475 * requests, as that is required to be safe.
7477 if (devices_handle_discard_safely &&
7478 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7479 mddev->queue->limits.discard_granularity >= stripe)
7480 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7483 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7486 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7489 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7494 md_unregister_thread(&mddev->thread);
7495 print_raid5_conf(conf);
7497 mddev->private = NULL;
7498 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7502 static void raid5_free(struct mddev *mddev, void *priv)
7504 struct r5conf *conf = priv;
7507 mddev->to_remove = &raid5_attrs_group;
7510 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7512 struct r5conf *conf = mddev->private;
7515 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7516 conf->chunk_sectors / 2, mddev->layout);
7517 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7519 for (i = 0; i < conf->raid_disks; i++) {
7520 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7521 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7524 seq_printf (seq, "]");
7527 static void print_raid5_conf (struct r5conf *conf)
7530 struct disk_info *tmp;
7532 pr_debug("RAID conf printout:\n");
7534 pr_debug("(conf==NULL)\n");
7537 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7539 conf->raid_disks - conf->mddev->degraded);
7541 for (i = 0; i < conf->raid_disks; i++) {
7542 char b[BDEVNAME_SIZE];
7543 tmp = conf->disks + i;
7545 pr_debug(" disk %d, o:%d, dev:%s\n",
7546 i, !test_bit(Faulty, &tmp->rdev->flags),
7547 bdevname(tmp->rdev->bdev, b));
7551 static int raid5_spare_active(struct mddev *mddev)
7554 struct r5conf *conf = mddev->private;
7555 struct disk_info *tmp;
7557 unsigned long flags;
7559 for (i = 0; i < conf->raid_disks; i++) {
7560 tmp = conf->disks + i;
7561 if (tmp->replacement
7562 && tmp->replacement->recovery_offset == MaxSector
7563 && !test_bit(Faulty, &tmp->replacement->flags)
7564 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7565 /* Replacement has just become active. */
7567 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7570 /* Replaced device not technically faulty,
7571 * but we need to be sure it gets removed
7572 * and never re-added.
7574 set_bit(Faulty, &tmp->rdev->flags);
7575 sysfs_notify_dirent_safe(
7576 tmp->rdev->sysfs_state);
7578 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7579 } else if (tmp->rdev
7580 && tmp->rdev->recovery_offset == MaxSector
7581 && !test_bit(Faulty, &tmp->rdev->flags)
7582 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7584 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7587 spin_lock_irqsave(&conf->device_lock, flags);
7588 mddev->degraded = raid5_calc_degraded(conf);
7589 spin_unlock_irqrestore(&conf->device_lock, flags);
7590 print_raid5_conf(conf);
7594 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7596 struct r5conf *conf = mddev->private;
7598 int number = rdev->raid_disk;
7599 struct md_rdev **rdevp;
7600 struct disk_info *p = conf->disks + number;
7602 print_raid5_conf(conf);
7603 if (test_bit(Journal, &rdev->flags) && conf->log) {
7605 * we can't wait pending write here, as this is called in
7606 * raid5d, wait will deadlock.
7607 * neilb: there is no locking about new writes here,
7608 * so this cannot be safe.
7610 if (atomic_read(&conf->active_stripes) ||
7611 atomic_read(&conf->r5c_cached_full_stripes) ||
7612 atomic_read(&conf->r5c_cached_partial_stripes)) {
7618 if (rdev == p->rdev)
7620 else if (rdev == p->replacement)
7621 rdevp = &p->replacement;
7625 if (number >= conf->raid_disks &&
7626 conf->reshape_progress == MaxSector)
7627 clear_bit(In_sync, &rdev->flags);
7629 if (test_bit(In_sync, &rdev->flags) ||
7630 atomic_read(&rdev->nr_pending)) {
7634 /* Only remove non-faulty devices if recovery
7637 if (!test_bit(Faulty, &rdev->flags) &&
7638 mddev->recovery_disabled != conf->recovery_disabled &&
7639 !has_failed(conf) &&
7640 (!p->replacement || p->replacement == rdev) &&
7641 number < conf->raid_disks) {
7646 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7648 if (atomic_read(&rdev->nr_pending)) {
7649 /* lost the race, try later */
7655 err = log_modify(conf, rdev, false);
7659 if (p->replacement) {
7660 /* We must have just cleared 'rdev' */
7661 p->rdev = p->replacement;
7662 clear_bit(Replacement, &p->replacement->flags);
7663 smp_mb(); /* Make sure other CPUs may see both as identical
7664 * but will never see neither - if they are careful
7666 p->replacement = NULL;
7669 err = log_modify(conf, p->rdev, true);
7672 clear_bit(WantReplacement, &rdev->flags);
7675 print_raid5_conf(conf);
7679 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7681 struct r5conf *conf = mddev->private;
7682 int ret, err = -EEXIST;
7684 struct disk_info *p;
7686 int last = conf->raid_disks - 1;
7688 if (test_bit(Journal, &rdev->flags)) {
7692 rdev->raid_disk = 0;
7694 * The array is in readonly mode if journal is missing, so no
7695 * write requests running. We should be safe
7697 ret = log_init(conf, rdev, false);
7701 ret = r5l_start(conf->log);
7707 if (mddev->recovery_disabled == conf->recovery_disabled)
7710 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7711 /* no point adding a device */
7714 if (rdev->raid_disk >= 0)
7715 first = last = rdev->raid_disk;
7718 * find the disk ... but prefer rdev->saved_raid_disk
7721 if (rdev->saved_raid_disk >= 0 &&
7722 rdev->saved_raid_disk >= first &&
7723 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7724 first = rdev->saved_raid_disk;
7726 for (disk = first; disk <= last; disk++) {
7727 p = conf->disks + disk;
7728 if (p->rdev == NULL) {
7729 clear_bit(In_sync, &rdev->flags);
7730 rdev->raid_disk = disk;
7731 if (rdev->saved_raid_disk != disk)
7733 rcu_assign_pointer(p->rdev, rdev);
7735 err = log_modify(conf, rdev, true);
7740 for (disk = first; disk <= last; disk++) {
7741 p = conf->disks + disk;
7742 if (test_bit(WantReplacement, &p->rdev->flags) &&
7743 p->replacement == NULL) {
7744 clear_bit(In_sync, &rdev->flags);
7745 set_bit(Replacement, &rdev->flags);
7746 rdev->raid_disk = disk;
7749 rcu_assign_pointer(p->replacement, rdev);
7754 print_raid5_conf(conf);
7758 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7760 /* no resync is happening, and there is enough space
7761 * on all devices, so we can resize.
7762 * We need to make sure resync covers any new space.
7763 * If the array is shrinking we should possibly wait until
7764 * any io in the removed space completes, but it hardly seems
7768 struct r5conf *conf = mddev->private;
7770 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7772 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7773 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7774 if (mddev->external_size &&
7775 mddev->array_sectors > newsize)
7777 if (mddev->bitmap) {
7778 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7782 md_set_array_sectors(mddev, newsize);
7783 if (sectors > mddev->dev_sectors &&
7784 mddev->recovery_cp > mddev->dev_sectors) {
7785 mddev->recovery_cp = mddev->dev_sectors;
7786 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7788 mddev->dev_sectors = sectors;
7789 mddev->resync_max_sectors = sectors;
7793 static int check_stripe_cache(struct mddev *mddev)
7795 /* Can only proceed if there are plenty of stripe_heads.
7796 * We need a minimum of one full stripe,, and for sensible progress
7797 * it is best to have about 4 times that.
7798 * If we require 4 times, then the default 256 4K stripe_heads will
7799 * allow for chunk sizes up to 256K, which is probably OK.
7800 * If the chunk size is greater, user-space should request more
7801 * stripe_heads first.
7803 struct r5conf *conf = mddev->private;
7804 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7805 > conf->min_nr_stripes ||
7806 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7807 > conf->min_nr_stripes) {
7808 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7810 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7817 static int check_reshape(struct mddev *mddev)
7819 struct r5conf *conf = mddev->private;
7821 if (raid5_has_log(conf) || raid5_has_ppl(conf))
7823 if (mddev->delta_disks == 0 &&
7824 mddev->new_layout == mddev->layout &&
7825 mddev->new_chunk_sectors == mddev->chunk_sectors)
7826 return 0; /* nothing to do */
7827 if (has_failed(conf))
7829 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7830 /* We might be able to shrink, but the devices must
7831 * be made bigger first.
7832 * For raid6, 4 is the minimum size.
7833 * Otherwise 2 is the minimum
7836 if (mddev->level == 6)
7838 if (mddev->raid_disks + mddev->delta_disks < min)
7842 if (!check_stripe_cache(mddev))
7845 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7846 mddev->delta_disks > 0)
7847 if (resize_chunks(conf,
7848 conf->previous_raid_disks
7849 + max(0, mddev->delta_disks),
7850 max(mddev->new_chunk_sectors,
7851 mddev->chunk_sectors)
7855 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7856 return 0; /* never bother to shrink */
7857 return resize_stripes(conf, (conf->previous_raid_disks
7858 + mddev->delta_disks));
7861 static int raid5_start_reshape(struct mddev *mddev)
7863 struct r5conf *conf = mddev->private;
7864 struct md_rdev *rdev;
7866 unsigned long flags;
7868 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7871 if (!check_stripe_cache(mddev))
7874 if (has_failed(conf))
7877 rdev_for_each(rdev, mddev) {
7878 if (!test_bit(In_sync, &rdev->flags)
7879 && !test_bit(Faulty, &rdev->flags))
7883 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7884 /* Not enough devices even to make a degraded array
7889 /* Refuse to reduce size of the array. Any reductions in
7890 * array size must be through explicit setting of array_size
7893 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7894 < mddev->array_sectors) {
7895 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7900 atomic_set(&conf->reshape_stripes, 0);
7901 spin_lock_irq(&conf->device_lock);
7902 write_seqcount_begin(&conf->gen_lock);
7903 conf->previous_raid_disks = conf->raid_disks;
7904 conf->raid_disks += mddev->delta_disks;
7905 conf->prev_chunk_sectors = conf->chunk_sectors;
7906 conf->chunk_sectors = mddev->new_chunk_sectors;
7907 conf->prev_algo = conf->algorithm;
7908 conf->algorithm = mddev->new_layout;
7910 /* Code that selects data_offset needs to see the generation update
7911 * if reshape_progress has been set - so a memory barrier needed.
7914 if (mddev->reshape_backwards)
7915 conf->reshape_progress = raid5_size(mddev, 0, 0);
7917 conf->reshape_progress = 0;
7918 conf->reshape_safe = conf->reshape_progress;
7919 write_seqcount_end(&conf->gen_lock);
7920 spin_unlock_irq(&conf->device_lock);
7922 /* Now make sure any requests that proceeded on the assumption
7923 * the reshape wasn't running - like Discard or Read - have
7926 mddev_suspend(mddev);
7927 mddev_resume(mddev);
7929 /* Add some new drives, as many as will fit.
7930 * We know there are enough to make the newly sized array work.
7931 * Don't add devices if we are reducing the number of
7932 * devices in the array. This is because it is not possible
7933 * to correctly record the "partially reconstructed" state of
7934 * such devices during the reshape and confusion could result.
7936 if (mddev->delta_disks >= 0) {
7937 rdev_for_each(rdev, mddev)
7938 if (rdev->raid_disk < 0 &&
7939 !test_bit(Faulty, &rdev->flags)) {
7940 if (raid5_add_disk(mddev, rdev) == 0) {
7942 >= conf->previous_raid_disks)
7943 set_bit(In_sync, &rdev->flags);
7945 rdev->recovery_offset = 0;
7947 if (sysfs_link_rdev(mddev, rdev))
7948 /* Failure here is OK */;
7950 } else if (rdev->raid_disk >= conf->previous_raid_disks
7951 && !test_bit(Faulty, &rdev->flags)) {
7952 /* This is a spare that was manually added */
7953 set_bit(In_sync, &rdev->flags);
7956 /* When a reshape changes the number of devices,
7957 * ->degraded is measured against the larger of the
7958 * pre and post number of devices.
7960 spin_lock_irqsave(&conf->device_lock, flags);
7961 mddev->degraded = raid5_calc_degraded(conf);
7962 spin_unlock_irqrestore(&conf->device_lock, flags);
7964 mddev->raid_disks = conf->raid_disks;
7965 mddev->reshape_position = conf->reshape_progress;
7966 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7968 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7969 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7970 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7971 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7972 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7973 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7975 if (!mddev->sync_thread) {
7976 mddev->recovery = 0;
7977 spin_lock_irq(&conf->device_lock);
7978 write_seqcount_begin(&conf->gen_lock);
7979 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7980 mddev->new_chunk_sectors =
7981 conf->chunk_sectors = conf->prev_chunk_sectors;
7982 mddev->new_layout = conf->algorithm = conf->prev_algo;
7983 rdev_for_each(rdev, mddev)
7984 rdev->new_data_offset = rdev->data_offset;
7986 conf->generation --;
7987 conf->reshape_progress = MaxSector;
7988 mddev->reshape_position = MaxSector;
7989 write_seqcount_end(&conf->gen_lock);
7990 spin_unlock_irq(&conf->device_lock);
7993 conf->reshape_checkpoint = jiffies;
7994 md_wakeup_thread(mddev->sync_thread);
7995 md_new_event(mddev);
7999 /* This is called from the reshape thread and should make any
8000 * changes needed in 'conf'
8002 static void end_reshape(struct r5conf *conf)
8005 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8006 struct md_rdev *rdev;
8008 spin_lock_irq(&conf->device_lock);
8009 conf->previous_raid_disks = conf->raid_disks;
8010 md_finish_reshape(conf->mddev);
8012 conf->reshape_progress = MaxSector;
8013 conf->mddev->reshape_position = MaxSector;
8014 rdev_for_each(rdev, conf->mddev)
8015 if (rdev->raid_disk >= 0 &&
8016 !test_bit(Journal, &rdev->flags) &&
8017 !test_bit(In_sync, &rdev->flags))
8018 rdev->recovery_offset = MaxSector;
8019 spin_unlock_irq(&conf->device_lock);
8020 wake_up(&conf->wait_for_overlap);
8022 /* read-ahead size must cover two whole stripes, which is
8023 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8025 if (conf->mddev->queue) {
8026 int data_disks = conf->raid_disks - conf->max_degraded;
8027 int stripe = data_disks * ((conf->chunk_sectors << 9)
8029 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8030 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8035 /* This is called from the raid5d thread with mddev_lock held.
8036 * It makes config changes to the device.
8038 static void raid5_finish_reshape(struct mddev *mddev)
8040 struct r5conf *conf = mddev->private;
8042 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8044 if (mddev->delta_disks <= 0) {
8046 spin_lock_irq(&conf->device_lock);
8047 mddev->degraded = raid5_calc_degraded(conf);
8048 spin_unlock_irq(&conf->device_lock);
8049 for (d = conf->raid_disks ;
8050 d < conf->raid_disks - mddev->delta_disks;
8052 struct md_rdev *rdev = conf->disks[d].rdev;
8054 clear_bit(In_sync, &rdev->flags);
8055 rdev = conf->disks[d].replacement;
8057 clear_bit(In_sync, &rdev->flags);
8060 mddev->layout = conf->algorithm;
8061 mddev->chunk_sectors = conf->chunk_sectors;
8062 mddev->reshape_position = MaxSector;
8063 mddev->delta_disks = 0;
8064 mddev->reshape_backwards = 0;
8068 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8070 struct r5conf *conf = mddev->private;
8073 /* stop all writes */
8074 lock_all_device_hash_locks_irq(conf);
8075 /* '2' tells resync/reshape to pause so that all
8076 * active stripes can drain
8078 r5c_flush_cache(conf, INT_MAX);
8080 wait_event_cmd(conf->wait_for_quiescent,
8081 atomic_read(&conf->active_stripes) == 0 &&
8082 atomic_read(&conf->active_aligned_reads) == 0,
8083 unlock_all_device_hash_locks_irq(conf),
8084 lock_all_device_hash_locks_irq(conf));
8086 unlock_all_device_hash_locks_irq(conf);
8087 /* allow reshape to continue */
8088 wake_up(&conf->wait_for_overlap);
8090 /* re-enable writes */
8091 lock_all_device_hash_locks_irq(conf);
8093 wake_up(&conf->wait_for_quiescent);
8094 wake_up(&conf->wait_for_overlap);
8095 unlock_all_device_hash_locks_irq(conf);
8097 log_quiesce(conf, quiesce);
8100 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8102 struct r0conf *raid0_conf = mddev->private;
8105 /* for raid0 takeover only one zone is supported */
8106 if (raid0_conf->nr_strip_zones > 1) {
8107 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8109 return ERR_PTR(-EINVAL);
8112 sectors = raid0_conf->strip_zone[0].zone_end;
8113 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8114 mddev->dev_sectors = sectors;
8115 mddev->new_level = level;
8116 mddev->new_layout = ALGORITHM_PARITY_N;
8117 mddev->new_chunk_sectors = mddev->chunk_sectors;
8118 mddev->raid_disks += 1;
8119 mddev->delta_disks = 1;
8120 /* make sure it will be not marked as dirty */
8121 mddev->recovery_cp = MaxSector;
8123 return setup_conf(mddev);
8126 static void *raid5_takeover_raid1(struct mddev *mddev)
8131 if (mddev->raid_disks != 2 ||
8132 mddev->degraded > 1)
8133 return ERR_PTR(-EINVAL);
8135 /* Should check if there are write-behind devices? */
8137 chunksect = 64*2; /* 64K by default */
8139 /* The array must be an exact multiple of chunksize */
8140 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8143 if ((chunksect<<9) < STRIPE_SIZE)
8144 /* array size does not allow a suitable chunk size */
8145 return ERR_PTR(-EINVAL);
8147 mddev->new_level = 5;
8148 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8149 mddev->new_chunk_sectors = chunksect;
8151 ret = setup_conf(mddev);
8153 mddev_clear_unsupported_flags(mddev,
8154 UNSUPPORTED_MDDEV_FLAGS);
8158 static void *raid5_takeover_raid6(struct mddev *mddev)
8162 switch (mddev->layout) {
8163 case ALGORITHM_LEFT_ASYMMETRIC_6:
8164 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8166 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8167 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8169 case ALGORITHM_LEFT_SYMMETRIC_6:
8170 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8172 case ALGORITHM_RIGHT_SYMMETRIC_6:
8173 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8175 case ALGORITHM_PARITY_0_6:
8176 new_layout = ALGORITHM_PARITY_0;
8178 case ALGORITHM_PARITY_N:
8179 new_layout = ALGORITHM_PARITY_N;
8182 return ERR_PTR(-EINVAL);
8184 mddev->new_level = 5;
8185 mddev->new_layout = new_layout;
8186 mddev->delta_disks = -1;
8187 mddev->raid_disks -= 1;
8188 return setup_conf(mddev);
8191 static int raid5_check_reshape(struct mddev *mddev)
8193 /* For a 2-drive array, the layout and chunk size can be changed
8194 * immediately as not restriping is needed.
8195 * For larger arrays we record the new value - after validation
8196 * to be used by a reshape pass.
8198 struct r5conf *conf = mddev->private;
8199 int new_chunk = mddev->new_chunk_sectors;
8201 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8203 if (new_chunk > 0) {
8204 if (!is_power_of_2(new_chunk))
8206 if (new_chunk < (PAGE_SIZE>>9))
8208 if (mddev->array_sectors & (new_chunk-1))
8209 /* not factor of array size */
8213 /* They look valid */
8215 if (mddev->raid_disks == 2) {
8216 /* can make the change immediately */
8217 if (mddev->new_layout >= 0) {
8218 conf->algorithm = mddev->new_layout;
8219 mddev->layout = mddev->new_layout;
8221 if (new_chunk > 0) {
8222 conf->chunk_sectors = new_chunk ;
8223 mddev->chunk_sectors = new_chunk;
8225 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8226 md_wakeup_thread(mddev->thread);
8228 return check_reshape(mddev);
8231 static int raid6_check_reshape(struct mddev *mddev)
8233 int new_chunk = mddev->new_chunk_sectors;
8235 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8237 if (new_chunk > 0) {
8238 if (!is_power_of_2(new_chunk))
8240 if (new_chunk < (PAGE_SIZE >> 9))
8242 if (mddev->array_sectors & (new_chunk-1))
8243 /* not factor of array size */
8247 /* They look valid */
8248 return check_reshape(mddev);
8251 static void *raid5_takeover(struct mddev *mddev)
8253 /* raid5 can take over:
8254 * raid0 - if there is only one strip zone - make it a raid4 layout
8255 * raid1 - if there are two drives. We need to know the chunk size
8256 * raid4 - trivial - just use a raid4 layout.
8257 * raid6 - Providing it is a *_6 layout
8259 if (mddev->level == 0)
8260 return raid45_takeover_raid0(mddev, 5);
8261 if (mddev->level == 1)
8262 return raid5_takeover_raid1(mddev);
8263 if (mddev->level == 4) {
8264 mddev->new_layout = ALGORITHM_PARITY_N;
8265 mddev->new_level = 5;
8266 return setup_conf(mddev);
8268 if (mddev->level == 6)
8269 return raid5_takeover_raid6(mddev);
8271 return ERR_PTR(-EINVAL);
8274 static void *raid4_takeover(struct mddev *mddev)
8276 /* raid4 can take over:
8277 * raid0 - if there is only one strip zone
8278 * raid5 - if layout is right
8280 if (mddev->level == 0)
8281 return raid45_takeover_raid0(mddev, 4);
8282 if (mddev->level == 5 &&
8283 mddev->layout == ALGORITHM_PARITY_N) {
8284 mddev->new_layout = 0;
8285 mddev->new_level = 4;
8286 return setup_conf(mddev);
8288 return ERR_PTR(-EINVAL);
8291 static struct md_personality raid5_personality;
8293 static void *raid6_takeover(struct mddev *mddev)
8295 /* Currently can only take over a raid5. We map the
8296 * personality to an equivalent raid6 personality
8297 * with the Q block at the end.
8301 if (mddev->pers != &raid5_personality)
8302 return ERR_PTR(-EINVAL);
8303 if (mddev->degraded > 1)
8304 return ERR_PTR(-EINVAL);
8305 if (mddev->raid_disks > 253)
8306 return ERR_PTR(-EINVAL);
8307 if (mddev->raid_disks < 3)
8308 return ERR_PTR(-EINVAL);
8310 switch (mddev->layout) {
8311 case ALGORITHM_LEFT_ASYMMETRIC:
8312 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8314 case ALGORITHM_RIGHT_ASYMMETRIC:
8315 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8317 case ALGORITHM_LEFT_SYMMETRIC:
8318 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8320 case ALGORITHM_RIGHT_SYMMETRIC:
8321 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8323 case ALGORITHM_PARITY_0:
8324 new_layout = ALGORITHM_PARITY_0_6;
8326 case ALGORITHM_PARITY_N:
8327 new_layout = ALGORITHM_PARITY_N;
8330 return ERR_PTR(-EINVAL);
8332 mddev->new_level = 6;
8333 mddev->new_layout = new_layout;
8334 mddev->delta_disks = 1;
8335 mddev->raid_disks += 1;
8336 return setup_conf(mddev);
8339 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8341 struct r5conf *conf;
8344 err = mddev_lock(mddev);
8347 conf = mddev->private;
8349 mddev_unlock(mddev);
8353 if (strncmp(buf, "ppl", 3) == 0) {
8354 /* ppl only works with RAID 5 */
8355 if (!raid5_has_ppl(conf) && conf->level == 5) {
8356 err = log_init(conf, NULL, true);
8358 err = resize_stripes(conf, conf->pool_size);
8364 } else if (strncmp(buf, "resync", 6) == 0) {
8365 if (raid5_has_ppl(conf)) {
8366 mddev_suspend(mddev);
8368 mddev_resume(mddev);
8369 err = resize_stripes(conf, conf->pool_size);
8370 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8371 r5l_log_disk_error(conf)) {
8372 bool journal_dev_exists = false;
8373 struct md_rdev *rdev;
8375 rdev_for_each(rdev, mddev)
8376 if (test_bit(Journal, &rdev->flags)) {
8377 journal_dev_exists = true;
8381 if (!journal_dev_exists) {
8382 mddev_suspend(mddev);
8383 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8384 mddev_resume(mddev);
8385 } else /* need remove journal device first */
8394 md_update_sb(mddev, 1);
8396 mddev_unlock(mddev);
8401 static int raid5_start(struct mddev *mddev)
8403 struct r5conf *conf = mddev->private;
8405 return r5l_start(conf->log);
8408 static struct md_personality raid6_personality =
8412 .owner = THIS_MODULE,
8413 .make_request = raid5_make_request,
8415 .start = raid5_start,
8417 .status = raid5_status,
8418 .error_handler = raid5_error,
8419 .hot_add_disk = raid5_add_disk,
8420 .hot_remove_disk= raid5_remove_disk,
8421 .spare_active = raid5_spare_active,
8422 .sync_request = raid5_sync_request,
8423 .resize = raid5_resize,
8425 .check_reshape = raid6_check_reshape,
8426 .start_reshape = raid5_start_reshape,
8427 .finish_reshape = raid5_finish_reshape,
8428 .quiesce = raid5_quiesce,
8429 .takeover = raid6_takeover,
8430 .congested = raid5_congested,
8431 .change_consistency_policy = raid5_change_consistency_policy,
8433 static struct md_personality raid5_personality =
8437 .owner = THIS_MODULE,
8438 .make_request = raid5_make_request,
8440 .start = raid5_start,
8442 .status = raid5_status,
8443 .error_handler = raid5_error,
8444 .hot_add_disk = raid5_add_disk,
8445 .hot_remove_disk= raid5_remove_disk,
8446 .spare_active = raid5_spare_active,
8447 .sync_request = raid5_sync_request,
8448 .resize = raid5_resize,
8450 .check_reshape = raid5_check_reshape,
8451 .start_reshape = raid5_start_reshape,
8452 .finish_reshape = raid5_finish_reshape,
8453 .quiesce = raid5_quiesce,
8454 .takeover = raid5_takeover,
8455 .congested = raid5_congested,
8456 .change_consistency_policy = raid5_change_consistency_policy,
8459 static struct md_personality raid4_personality =
8463 .owner = THIS_MODULE,
8464 .make_request = raid5_make_request,
8466 .start = raid5_start,
8468 .status = raid5_status,
8469 .error_handler = raid5_error,
8470 .hot_add_disk = raid5_add_disk,
8471 .hot_remove_disk= raid5_remove_disk,
8472 .spare_active = raid5_spare_active,
8473 .sync_request = raid5_sync_request,
8474 .resize = raid5_resize,
8476 .check_reshape = raid5_check_reshape,
8477 .start_reshape = raid5_start_reshape,
8478 .finish_reshape = raid5_finish_reshape,
8479 .quiesce = raid5_quiesce,
8480 .takeover = raid4_takeover,
8481 .congested = raid5_congested,
8482 .change_consistency_policy = raid5_change_consistency_policy,
8485 static int __init raid5_init(void)
8489 raid5_wq = alloc_workqueue("raid5wq",
8490 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8494 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8496 raid456_cpu_up_prepare,
8499 destroy_workqueue(raid5_wq);
8502 register_md_personality(&raid6_personality);
8503 register_md_personality(&raid5_personality);
8504 register_md_personality(&raid4_personality);
8508 static void raid5_exit(void)
8510 unregister_md_personality(&raid6_personality);
8511 unregister_md_personality(&raid5_personality);
8512 unregister_md_personality(&raid4_personality);
8513 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8514 destroy_workqueue(raid5_wq);
8517 module_init(raid5_init);
8518 module_exit(raid5_exit);
8519 MODULE_LICENSE("GPL");
8520 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8521 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8522 MODULE_ALIAS("md-raid5");
8523 MODULE_ALIAS("md-raid4");
8524 MODULE_ALIAS("md-level-5");
8525 MODULE_ALIAS("md-level-4");
8526 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8527 MODULE_ALIAS("md-raid6");
8528 MODULE_ALIAS("md-level-6");
8530 /* This used to be two separate modules, they were: */
8531 MODULE_ALIAS("raid5");
8532 MODULE_ALIAS("raid6");