3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
50 #include "rbd_types.h"
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
60 static int atomic_inc_return_safe(atomic_t *v)
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
78 counter = atomic_dec_return(v);
87 #define RBD_DRV_NAME "rbd"
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
100 #define RBD_SNAP_HEAD_NAME "-"
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
133 /* Features supported by this (client software) implementation. */
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
141 #define DEV_NAME_LEN 32
144 * block device image metadata (in-memory version)
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
153 u64 features; /* Might be changeable someday? */
155 /* The remaining fields need to be updated occasionally */
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
163 * An rbd image specification.
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
192 const char *image_id;
193 const char *image_name;
196 const char *snap_name;
202 * an instance of the client. multiple devices may share an rbd client.
205 struct ceph_client *client;
207 struct list_head node;
210 struct pending_result {
211 int result; /* first nonzero result */
215 struct rbd_img_request;
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
224 enum obj_operation_type {
231 #define RBD_OBJ_FLAG_DELETION (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
237 enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
244 * Writes go through the following state machine to deal with
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
259 * done . . . . . . . . . . . . . . . . . .
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
268 enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
277 enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
286 struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
299 struct ceph_bio_iter bio_pos;
301 struct ceph_bvec_iter bvec_pos;
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
311 struct list_head osd_reqs; /* w/ r_private_item */
313 struct mutex state_mutex;
314 struct pending_result pending;
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
330 struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
335 enum rbd_img_state state;
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
340 struct rbd_obj_request *obj_request; /* obj req initiator */
342 struct list_head lock_item;
343 struct list_head object_extents; /* obj_req.ex structs */
345 struct mutex state_mutex;
346 struct pending_result pending;
347 struct work_struct work;
351 #define for_each_obj_request(ireq, oreq) \
352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
356 enum rbd_watch_state {
357 RBD_WATCH_STATE_UNREGISTERED,
358 RBD_WATCH_STATE_REGISTERED,
359 RBD_WATCH_STATE_ERROR,
362 enum rbd_lock_state {
363 RBD_LOCK_STATE_UNLOCKED,
364 RBD_LOCK_STATE_LOCKED,
365 RBD_LOCK_STATE_RELEASING,
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
382 int dev_id; /* blkdev unique id */
384 int major; /* blkdev assigned major */
386 struct gendisk *disk; /* blkdev's gendisk and rq */
388 u32 image_format; /* Either 1 or 2 */
389 struct rbd_client *rbd_client;
391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
393 spinlock_t lock; /* queue, flags, open_count */
395 struct rbd_image_header header;
396 unsigned long flags; /* possibly lock protected */
397 struct rbd_spec *spec;
398 struct rbd_options *opts;
399 char *config_info; /* add{,_single_major} string */
401 struct ceph_object_id header_oid;
402 struct ceph_object_locator header_oloc;
404 struct ceph_file_layout layout; /* used for all rbd requests */
406 struct mutex watch_mutex;
407 enum rbd_watch_state watch_state;
408 struct ceph_osd_linger_request *watch_handle;
410 struct delayed_work watch_dwork;
412 struct rw_semaphore lock_rwsem;
413 enum rbd_lock_state lock_state;
414 char lock_cookie[32];
415 struct rbd_client_id owner_cid;
416 struct work_struct acquired_lock_work;
417 struct work_struct released_lock_work;
418 struct delayed_work lock_dwork;
419 struct work_struct unlock_work;
420 spinlock_t lock_lists_lock;
421 struct list_head acquiring_list;
422 struct list_head running_list;
423 struct completion acquire_wait;
425 struct completion releasing_wait;
427 spinlock_t object_map_lock;
429 u64 object_map_size; /* in objects */
430 u64 object_map_flags;
432 struct workqueue_struct *task_wq;
434 struct rbd_spec *parent_spec;
437 struct rbd_device *parent;
439 /* Block layer tags. */
440 struct blk_mq_tag_set tag_set;
442 /* protects updating the header */
443 struct rw_semaphore header_rwsem;
445 struct rbd_mapping mapping;
447 struct list_head node;
451 unsigned long open_count; /* protected by lock */
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
467 static LIST_HEAD(rbd_dev_list); /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
470 static LIST_HEAD(rbd_client_list); /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
473 /* Slab caches for frequently-allocated structures */
475 static struct kmem_cache *rbd_img_request_cache;
476 static struct kmem_cache *rbd_obj_request_cache;
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
481 static struct workqueue_struct *rbd_wq;
483 static struct ceph_snap_context rbd_empty_snapc = {
484 .nref = REFCOUNT_INIT(1),
488 * single-major requires >= 0.75 version of userspace rbd utility.
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
503 static int rbd_dev_id_to_minor(int dev_id)
505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
508 static int minor_to_rbd_dev_id(int minor)
510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
520 return rbd_dev->spec->snap_id != CEPH_NOSNAP;
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
525 lockdep_assert_held(&rbd_dev->lock_rwsem);
527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
535 down_read(&rbd_dev->lock_rwsem);
536 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 up_read(&rbd_dev->lock_rwsem);
538 return is_lock_owner;
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
552 static struct attribute *rbd_bus_attrs[] = {
554 &bus_attr_remove.attr,
555 &bus_attr_add_single_major.attr,
556 &bus_attr_remove_single_major.attr,
557 &bus_attr_supported_features.attr,
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 struct attribute *attr, int index)
565 (attr == &bus_attr_add_single_major.attr ||
566 attr == &bus_attr_remove_single_major.attr))
572 static const struct attribute_group rbd_bus_group = {
573 .attrs = rbd_bus_attrs,
574 .is_visible = rbd_bus_is_visible,
576 __ATTRIBUTE_GROUPS(rbd_bus);
578 static struct bus_type rbd_bus_type = {
580 .bus_groups = rbd_bus_groups,
583 static void rbd_root_dev_release(struct device *dev)
587 static struct device rbd_root_dev = {
589 .release = rbd_root_dev_release,
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
595 struct va_format vaf;
603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 else if (rbd_dev->disk)
605 printk(KERN_WARNING "%s: %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 printk(KERN_WARNING "%s: image %s: %pV\n",
609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 printk(KERN_WARNING "%s: id %s: %pV\n",
612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 RBD_DRV_NAME, rbd_dev, &vaf);
620 #define rbd_assert(expr) \
621 if (unlikely(!(expr))) { \
622 printk(KERN_ERR "\nAssertion failure in %s() " \
624 "\trbd_assert(%s);\n\n", \
625 __func__, __LINE__, #expr); \
628 #else /* !RBD_DEBUG */
629 # define rbd_assert(expr) ((void) 0)
630 #endif /* !RBD_DEBUG */
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
648 * Return true if nothing else is pending.
650 static bool pending_result_dec(struct pending_result *pending, int *result)
652 rbd_assert(pending->num_pending > 0);
654 if (*result && !pending->result)
655 pending->result = *result;
656 if (--pending->num_pending)
659 *result = pending->result;
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
665 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 bool removing = false;
668 spin_lock_irq(&rbd_dev->lock);
669 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
672 rbd_dev->open_count++;
673 spin_unlock_irq(&rbd_dev->lock);
677 (void) get_device(&rbd_dev->dev);
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
684 struct rbd_device *rbd_dev = disk->private_data;
685 unsigned long open_count_before;
687 spin_lock_irq(&rbd_dev->lock);
688 open_count_before = rbd_dev->open_count--;
689 spin_unlock_irq(&rbd_dev->lock);
690 rbd_assert(open_count_before > 0);
692 put_device(&rbd_dev->dev);
695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
699 if (get_user(ro, (int __user *)arg))
703 * Both images mapped read-only and snapshots can't be marked
707 if (rbd_is_ro(rbd_dev))
710 rbd_assert(!rbd_is_snap(rbd_dev));
713 /* Let blkdev_roset() handle it */
717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
718 unsigned int cmd, unsigned long arg)
720 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
725 ret = rbd_ioctl_set_ro(rbd_dev, arg);
735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
736 unsigned int cmd, unsigned long arg)
738 return rbd_ioctl(bdev, mode, cmd, arg);
740 #endif /* CONFIG_COMPAT */
742 static const struct block_device_operations rbd_bd_ops = {
743 .owner = THIS_MODULE,
745 .release = rbd_release,
748 .compat_ioctl = rbd_compat_ioctl,
753 * Initialize an rbd client instance. Success or not, this function
754 * consumes ceph_opts. Caller holds client_mutex.
756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
758 struct rbd_client *rbdc;
761 dout("%s:\n", __func__);
762 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
766 kref_init(&rbdc->kref);
767 INIT_LIST_HEAD(&rbdc->node);
769 rbdc->client = ceph_create_client(ceph_opts, rbdc);
770 if (IS_ERR(rbdc->client))
772 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
774 ret = ceph_open_session(rbdc->client);
778 spin_lock(&rbd_client_list_lock);
779 list_add_tail(&rbdc->node, &rbd_client_list);
780 spin_unlock(&rbd_client_list_lock);
782 dout("%s: rbdc %p\n", __func__, rbdc);
786 ceph_destroy_client(rbdc->client);
791 ceph_destroy_options(ceph_opts);
792 dout("%s: error %d\n", __func__, ret);
797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
799 kref_get(&rbdc->kref);
805 * Find a ceph client with specific addr and configuration. If
806 * found, bump its reference count.
808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
810 struct rbd_client *client_node;
813 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
816 spin_lock(&rbd_client_list_lock);
817 list_for_each_entry(client_node, &rbd_client_list, node) {
818 if (!ceph_compare_options(ceph_opts, client_node->client)) {
819 __rbd_get_client(client_node);
825 spin_unlock(&rbd_client_list_lock);
827 return found ? client_node : NULL;
831 * (Per device) rbd map options
839 Opt_compression_hint,
840 /* string args above */
849 Opt_compression_hint_none,
850 Opt_compression_hint_compressible,
851 Opt_compression_hint_incompressible,
854 static const struct constant_table rbd_param_compression_hint[] = {
855 {"none", Opt_compression_hint_none},
856 {"compressible", Opt_compression_hint_compressible},
857 {"incompressible", Opt_compression_hint_incompressible},
861 static const struct fs_parameter_spec rbd_parameters[] = {
862 fsparam_u32 ("alloc_size", Opt_alloc_size),
863 fsparam_enum ("compression_hint", Opt_compression_hint,
864 rbd_param_compression_hint),
865 fsparam_flag ("exclusive", Opt_exclusive),
866 fsparam_flag ("lock_on_read", Opt_lock_on_read),
867 fsparam_u32 ("lock_timeout", Opt_lock_timeout),
868 fsparam_flag ("notrim", Opt_notrim),
869 fsparam_string ("_pool_ns", Opt_pool_ns),
870 fsparam_u32 ("queue_depth", Opt_queue_depth),
871 fsparam_flag ("read_only", Opt_read_only),
872 fsparam_flag ("read_write", Opt_read_write),
873 fsparam_flag ("ro", Opt_read_only),
874 fsparam_flag ("rw", Opt_read_write),
881 unsigned long lock_timeout;
887 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
890 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
891 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
892 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
893 #define RBD_READ_ONLY_DEFAULT false
894 #define RBD_LOCK_ON_READ_DEFAULT false
895 #define RBD_EXCLUSIVE_DEFAULT false
896 #define RBD_TRIM_DEFAULT true
898 struct rbd_parse_opts_ctx {
899 struct rbd_spec *spec;
900 struct ceph_options *copts;
901 struct rbd_options *opts;
904 static char* obj_op_name(enum obj_operation_type op_type)
921 * Destroy ceph client
923 * Caller must hold rbd_client_list_lock.
925 static void rbd_client_release(struct kref *kref)
927 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
929 dout("%s: rbdc %p\n", __func__, rbdc);
930 spin_lock(&rbd_client_list_lock);
931 list_del(&rbdc->node);
932 spin_unlock(&rbd_client_list_lock);
934 ceph_destroy_client(rbdc->client);
939 * Drop reference to ceph client node. If it's not referenced anymore, release
942 static void rbd_put_client(struct rbd_client *rbdc)
945 kref_put(&rbdc->kref, rbd_client_release);
949 * Get a ceph client with specific addr and configuration, if one does
950 * not exist create it. Either way, ceph_opts is consumed by this
953 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
955 struct rbd_client *rbdc;
958 mutex_lock(&client_mutex);
959 rbdc = rbd_client_find(ceph_opts);
961 ceph_destroy_options(ceph_opts);
964 * Using an existing client. Make sure ->pg_pools is up to
965 * date before we look up the pool id in do_rbd_add().
967 ret = ceph_wait_for_latest_osdmap(rbdc->client,
968 rbdc->client->options->mount_timeout);
970 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
971 rbd_put_client(rbdc);
975 rbdc = rbd_client_create(ceph_opts);
977 mutex_unlock(&client_mutex);
982 static bool rbd_image_format_valid(u32 image_format)
984 return image_format == 1 || image_format == 2;
987 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
992 /* The header has to start with the magic rbd header text */
993 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
996 /* The bio layer requires at least sector-sized I/O */
998 if (ondisk->options.order < SECTOR_SHIFT)
1001 /* If we use u64 in a few spots we may be able to loosen this */
1003 if (ondisk->options.order > 8 * sizeof (int) - 1)
1007 * The size of a snapshot header has to fit in a size_t, and
1008 * that limits the number of snapshots.
1010 snap_count = le32_to_cpu(ondisk->snap_count);
1011 size = SIZE_MAX - sizeof (struct ceph_snap_context);
1012 if (snap_count > size / sizeof (__le64))
1016 * Not only that, but the size of the entire the snapshot
1017 * header must also be representable in a size_t.
1019 size -= snap_count * sizeof (__le64);
1020 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1027 * returns the size of an object in the image
1029 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1031 return 1U << header->obj_order;
1034 static void rbd_init_layout(struct rbd_device *rbd_dev)
1036 if (rbd_dev->header.stripe_unit == 0 ||
1037 rbd_dev->header.stripe_count == 0) {
1038 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1039 rbd_dev->header.stripe_count = 1;
1042 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1043 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1044 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1045 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1046 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1047 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1051 * Fill an rbd image header with information from the given format 1
1054 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1055 struct rbd_image_header_ondisk *ondisk)
1057 struct rbd_image_header *header = &rbd_dev->header;
1058 bool first_time = header->object_prefix == NULL;
1059 struct ceph_snap_context *snapc;
1060 char *object_prefix = NULL;
1061 char *snap_names = NULL;
1062 u64 *snap_sizes = NULL;
1067 /* Allocate this now to avoid having to handle failure below */
1070 object_prefix = kstrndup(ondisk->object_prefix,
1071 sizeof(ondisk->object_prefix),
1077 /* Allocate the snapshot context and fill it in */
1079 snap_count = le32_to_cpu(ondisk->snap_count);
1080 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1083 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1085 struct rbd_image_snap_ondisk *snaps;
1086 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1088 /* We'll keep a copy of the snapshot names... */
1090 if (snap_names_len > (u64)SIZE_MAX)
1092 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1096 /* ...as well as the array of their sizes. */
1097 snap_sizes = kmalloc_array(snap_count,
1098 sizeof(*header->snap_sizes),
1104 * Copy the names, and fill in each snapshot's id
1107 * Note that rbd_dev_v1_header_info() guarantees the
1108 * ondisk buffer we're working with has
1109 * snap_names_len bytes beyond the end of the
1110 * snapshot id array, this memcpy() is safe.
1112 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1113 snaps = ondisk->snaps;
1114 for (i = 0; i < snap_count; i++) {
1115 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1116 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1120 /* We won't fail any more, fill in the header */
1123 header->object_prefix = object_prefix;
1124 header->obj_order = ondisk->options.order;
1125 rbd_init_layout(rbd_dev);
1127 ceph_put_snap_context(header->snapc);
1128 kfree(header->snap_names);
1129 kfree(header->snap_sizes);
1132 /* The remaining fields always get updated (when we refresh) */
1134 header->image_size = le64_to_cpu(ondisk->image_size);
1135 header->snapc = snapc;
1136 header->snap_names = snap_names;
1137 header->snap_sizes = snap_sizes;
1145 ceph_put_snap_context(snapc);
1146 kfree(object_prefix);
1151 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1153 const char *snap_name;
1155 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1157 /* Skip over names until we find the one we are looking for */
1159 snap_name = rbd_dev->header.snap_names;
1161 snap_name += strlen(snap_name) + 1;
1163 return kstrdup(snap_name, GFP_KERNEL);
1167 * Snapshot id comparison function for use with qsort()/bsearch().
1168 * Note that result is for snapshots in *descending* order.
1170 static int snapid_compare_reverse(const void *s1, const void *s2)
1172 u64 snap_id1 = *(u64 *)s1;
1173 u64 snap_id2 = *(u64 *)s2;
1175 if (snap_id1 < snap_id2)
1177 return snap_id1 == snap_id2 ? 0 : -1;
1181 * Search a snapshot context to see if the given snapshot id is
1184 * Returns the position of the snapshot id in the array if it's found,
1185 * or BAD_SNAP_INDEX otherwise.
1187 * Note: The snapshot array is in kept sorted (by the osd) in
1188 * reverse order, highest snapshot id first.
1190 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1192 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1195 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1196 sizeof (snap_id), snapid_compare_reverse);
1198 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1201 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1205 const char *snap_name;
1207 which = rbd_dev_snap_index(rbd_dev, snap_id);
1208 if (which == BAD_SNAP_INDEX)
1209 return ERR_PTR(-ENOENT);
1211 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1212 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1215 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1217 if (snap_id == CEPH_NOSNAP)
1218 return RBD_SNAP_HEAD_NAME;
1220 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1221 if (rbd_dev->image_format == 1)
1222 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1224 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1227 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1230 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1231 if (snap_id == CEPH_NOSNAP) {
1232 *snap_size = rbd_dev->header.image_size;
1233 } else if (rbd_dev->image_format == 1) {
1236 which = rbd_dev_snap_index(rbd_dev, snap_id);
1237 if (which == BAD_SNAP_INDEX)
1240 *snap_size = rbd_dev->header.snap_sizes[which];
1245 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1254 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1256 u64 snap_id = rbd_dev->spec->snap_id;
1260 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1264 rbd_dev->mapping.size = size;
1268 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1270 rbd_dev->mapping.size = 0;
1273 static void zero_bvec(struct bio_vec *bv)
1276 unsigned long flags;
1278 buf = bvec_kmap_irq(bv, &flags);
1279 memset(buf, 0, bv->bv_len);
1280 flush_dcache_page(bv->bv_page);
1281 bvec_kunmap_irq(buf, &flags);
1284 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1286 struct ceph_bio_iter it = *bio_pos;
1288 ceph_bio_iter_advance(&it, off);
1289 ceph_bio_iter_advance_step(&it, bytes, ({
1294 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1296 struct ceph_bvec_iter it = *bvec_pos;
1298 ceph_bvec_iter_advance(&it, off);
1299 ceph_bvec_iter_advance_step(&it, bytes, ({
1305 * Zero a range in @obj_req data buffer defined by a bio (list) or
1306 * (private) bio_vec array.
1308 * @off is relative to the start of the data buffer.
1310 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1313 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1315 switch (obj_req->img_request->data_type) {
1316 case OBJ_REQUEST_BIO:
1317 zero_bios(&obj_req->bio_pos, off, bytes);
1319 case OBJ_REQUEST_BVECS:
1320 case OBJ_REQUEST_OWN_BVECS:
1321 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1328 static void rbd_obj_request_destroy(struct kref *kref);
1329 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1331 rbd_assert(obj_request != NULL);
1332 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1333 kref_read(&obj_request->kref));
1334 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1337 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1338 struct rbd_obj_request *obj_request)
1340 rbd_assert(obj_request->img_request == NULL);
1342 /* Image request now owns object's original reference */
1343 obj_request->img_request = img_request;
1344 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1347 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1348 struct rbd_obj_request *obj_request)
1350 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1351 list_del(&obj_request->ex.oe_item);
1352 rbd_assert(obj_request->img_request == img_request);
1353 rbd_obj_request_put(obj_request);
1356 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1358 struct rbd_obj_request *obj_req = osd_req->r_priv;
1360 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1361 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1362 obj_req->ex.oe_off, obj_req->ex.oe_len);
1363 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1367 * The default/initial value for all image request flags is 0. Each
1368 * is conditionally set to 1 at image request initialization time
1369 * and currently never change thereafter.
1371 static void img_request_layered_set(struct rbd_img_request *img_request)
1373 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1376 static bool img_request_layered_test(struct rbd_img_request *img_request)
1378 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1381 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1383 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1385 return !obj_req->ex.oe_off &&
1386 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1389 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1391 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1393 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1394 rbd_dev->layout.object_size;
1398 * Must be called after rbd_obj_calc_img_extents().
1400 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1402 if (!obj_req->num_img_extents ||
1403 (rbd_obj_is_entire(obj_req) &&
1404 !obj_req->img_request->snapc->num_snaps))
1410 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1412 return ceph_file_extents_bytes(obj_req->img_extents,
1413 obj_req->num_img_extents);
1416 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1418 switch (img_req->op_type) {
1422 case OBJ_OP_DISCARD:
1423 case OBJ_OP_ZEROOUT:
1430 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1432 struct rbd_obj_request *obj_req = osd_req->r_priv;
1435 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1436 osd_req->r_result, obj_req);
1439 * Writes aren't allowed to return a data payload. In some
1440 * guarded write cases (e.g. stat + zero on an empty object)
1441 * a stat response makes it through, but we don't care.
1443 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1446 result = osd_req->r_result;
1448 rbd_obj_handle_request(obj_req, result);
1451 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1453 struct rbd_obj_request *obj_request = osd_req->r_priv;
1454 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1455 struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1457 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1458 osd_req->r_snapid = obj_request->img_request->snap_id;
1461 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1463 struct rbd_obj_request *obj_request = osd_req->r_priv;
1465 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1466 ktime_get_real_ts64(&osd_req->r_mtime);
1467 osd_req->r_data_offset = obj_request->ex.oe_off;
1470 static struct ceph_osd_request *
1471 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1472 struct ceph_snap_context *snapc, int num_ops)
1474 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1475 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1476 struct ceph_osd_request *req;
1477 const char *name_format = rbd_dev->image_format == 1 ?
1478 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1481 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1483 return ERR_PTR(-ENOMEM);
1485 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1486 req->r_callback = rbd_osd_req_callback;
1487 req->r_priv = obj_req;
1490 * Data objects may be stored in a separate pool, but always in
1491 * the same namespace in that pool as the header in its pool.
1493 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1494 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1496 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1497 rbd_dev->header.object_prefix,
1498 obj_req->ex.oe_objno);
1500 return ERR_PTR(ret);
1505 static struct ceph_osd_request *
1506 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1508 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1512 static struct rbd_obj_request *rbd_obj_request_create(void)
1514 struct rbd_obj_request *obj_request;
1516 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1520 ceph_object_extent_init(&obj_request->ex);
1521 INIT_LIST_HEAD(&obj_request->osd_reqs);
1522 mutex_init(&obj_request->state_mutex);
1523 kref_init(&obj_request->kref);
1525 dout("%s %p\n", __func__, obj_request);
1529 static void rbd_obj_request_destroy(struct kref *kref)
1531 struct rbd_obj_request *obj_request;
1532 struct ceph_osd_request *osd_req;
1535 obj_request = container_of(kref, struct rbd_obj_request, kref);
1537 dout("%s: obj %p\n", __func__, obj_request);
1539 while (!list_empty(&obj_request->osd_reqs)) {
1540 osd_req = list_first_entry(&obj_request->osd_reqs,
1541 struct ceph_osd_request, r_private_item);
1542 list_del_init(&osd_req->r_private_item);
1543 ceph_osdc_put_request(osd_req);
1546 switch (obj_request->img_request->data_type) {
1547 case OBJ_REQUEST_NODATA:
1548 case OBJ_REQUEST_BIO:
1549 case OBJ_REQUEST_BVECS:
1550 break; /* Nothing to do */
1551 case OBJ_REQUEST_OWN_BVECS:
1552 kfree(obj_request->bvec_pos.bvecs);
1558 kfree(obj_request->img_extents);
1559 if (obj_request->copyup_bvecs) {
1560 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1561 if (obj_request->copyup_bvecs[i].bv_page)
1562 __free_page(obj_request->copyup_bvecs[i].bv_page);
1564 kfree(obj_request->copyup_bvecs);
1567 kmem_cache_free(rbd_obj_request_cache, obj_request);
1570 /* It's OK to call this for a device with no parent */
1572 static void rbd_spec_put(struct rbd_spec *spec);
1573 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1575 rbd_dev_remove_parent(rbd_dev);
1576 rbd_spec_put(rbd_dev->parent_spec);
1577 rbd_dev->parent_spec = NULL;
1578 rbd_dev->parent_overlap = 0;
1582 * Parent image reference counting is used to determine when an
1583 * image's parent fields can be safely torn down--after there are no
1584 * more in-flight requests to the parent image. When the last
1585 * reference is dropped, cleaning them up is safe.
1587 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1591 if (!rbd_dev->parent_spec)
1594 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1598 /* Last reference; clean up parent data structures */
1601 rbd_dev_unparent(rbd_dev);
1603 rbd_warn(rbd_dev, "parent reference underflow");
1607 * If an image has a non-zero parent overlap, get a reference to its
1610 * Returns true if the rbd device has a parent with a non-zero
1611 * overlap and a reference for it was successfully taken, or
1614 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1618 if (!rbd_dev->parent_spec)
1621 if (rbd_dev->parent_overlap)
1622 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1625 rbd_warn(rbd_dev, "parent reference overflow");
1630 static void rbd_img_request_init(struct rbd_img_request *img_request,
1631 struct rbd_device *rbd_dev,
1632 enum obj_operation_type op_type)
1634 memset(img_request, 0, sizeof(*img_request));
1636 img_request->rbd_dev = rbd_dev;
1637 img_request->op_type = op_type;
1639 INIT_LIST_HEAD(&img_request->lock_item);
1640 INIT_LIST_HEAD(&img_request->object_extents);
1641 mutex_init(&img_request->state_mutex);
1644 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1646 struct rbd_device *rbd_dev = img_req->rbd_dev;
1648 lockdep_assert_held(&rbd_dev->header_rwsem);
1650 if (rbd_img_is_write(img_req))
1651 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1653 img_req->snap_id = rbd_dev->spec->snap_id;
1655 if (rbd_dev_parent_get(rbd_dev))
1656 img_request_layered_set(img_req);
1659 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1661 struct rbd_obj_request *obj_request;
1662 struct rbd_obj_request *next_obj_request;
1664 dout("%s: img %p\n", __func__, img_request);
1666 WARN_ON(!list_empty(&img_request->lock_item));
1667 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1668 rbd_img_obj_request_del(img_request, obj_request);
1670 if (img_request_layered_test(img_request))
1671 rbd_dev_parent_put(img_request->rbd_dev);
1673 if (rbd_img_is_write(img_request))
1674 ceph_put_snap_context(img_request->snapc);
1676 if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1677 kmem_cache_free(rbd_img_request_cache, img_request);
1680 #define BITS_PER_OBJ 2
1681 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1682 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1684 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1685 u64 *index, u8 *shift)
1689 rbd_assert(objno < rbd_dev->object_map_size);
1690 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1691 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1694 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1699 lockdep_assert_held(&rbd_dev->object_map_lock);
1700 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1701 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1704 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1710 lockdep_assert_held(&rbd_dev->object_map_lock);
1711 rbd_assert(!(val & ~OBJ_MASK));
1713 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1714 p = &rbd_dev->object_map[index];
1715 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1718 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1722 spin_lock(&rbd_dev->object_map_lock);
1723 state = __rbd_object_map_get(rbd_dev, objno);
1724 spin_unlock(&rbd_dev->object_map_lock);
1728 static bool use_object_map(struct rbd_device *rbd_dev)
1731 * An image mapped read-only can't use the object map -- it isn't
1732 * loaded because the header lock isn't acquired. Someone else can
1733 * write to the image and update the object map behind our back.
1735 * A snapshot can't be written to, so using the object map is always
1738 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1741 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1742 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1745 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1749 /* fall back to default logic if object map is disabled or invalid */
1750 if (!use_object_map(rbd_dev))
1753 state = rbd_object_map_get(rbd_dev, objno);
1754 return state != OBJECT_NONEXISTENT;
1757 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1758 struct ceph_object_id *oid)
1760 if (snap_id == CEPH_NOSNAP)
1761 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1762 rbd_dev->spec->image_id);
1764 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1765 rbd_dev->spec->image_id, snap_id);
1768 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1770 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1771 CEPH_DEFINE_OID_ONSTACK(oid);
1774 struct ceph_locker *lockers;
1776 bool broke_lock = false;
1779 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1782 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1783 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1784 if (ret != -EBUSY || broke_lock) {
1786 ret = 0; /* already locked by myself */
1788 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1792 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1793 RBD_LOCK_NAME, &lock_type, &lock_tag,
1794 &lockers, &num_lockers);
1799 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1804 if (num_lockers == 0)
1807 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1808 ENTITY_NAME(lockers[0].id.name));
1810 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1811 RBD_LOCK_NAME, lockers[0].id.cookie,
1812 &lockers[0].id.name);
1813 ceph_free_lockers(lockers, num_lockers);
1818 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1826 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1829 CEPH_DEFINE_OID_ONSTACK(oid);
1832 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1834 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1836 if (ret && ret != -ENOENT)
1837 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1840 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1848 ceph_decode_32_safe(p, end, header_len, e_inval);
1849 header_end = *p + header_len;
1851 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1856 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1865 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1867 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1868 CEPH_DEFINE_OID_ONSTACK(oid);
1869 struct page **pages;
1873 u64 object_map_bytes;
1874 u64 object_map_size;
1878 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1880 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1881 rbd_dev->mapping.size);
1882 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1884 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1885 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1887 return PTR_ERR(pages);
1889 reply_len = num_pages * PAGE_SIZE;
1890 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1891 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1892 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1893 NULL, 0, pages, &reply_len);
1897 p = page_address(pages[0]);
1898 end = p + min(reply_len, (size_t)PAGE_SIZE);
1899 ret = decode_object_map_header(&p, end, &object_map_size);
1903 if (object_map_size != num_objects) {
1904 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1905 object_map_size, num_objects);
1910 if (offset_in_page(p) + object_map_bytes > reply_len) {
1915 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1916 if (!rbd_dev->object_map) {
1921 rbd_dev->object_map_size = object_map_size;
1922 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1923 offset_in_page(p), object_map_bytes);
1926 ceph_release_page_vector(pages, num_pages);
1930 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1932 kvfree(rbd_dev->object_map);
1933 rbd_dev->object_map = NULL;
1934 rbd_dev->object_map_size = 0;
1937 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1941 ret = __rbd_object_map_load(rbd_dev);
1945 ret = rbd_dev_v2_get_flags(rbd_dev);
1947 rbd_object_map_free(rbd_dev);
1951 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1952 rbd_warn(rbd_dev, "object map is invalid");
1957 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1961 ret = rbd_object_map_lock(rbd_dev);
1965 ret = rbd_object_map_load(rbd_dev);
1967 rbd_object_map_unlock(rbd_dev);
1974 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1976 rbd_object_map_free(rbd_dev);
1977 rbd_object_map_unlock(rbd_dev);
1981 * This function needs snap_id (or more precisely just something to
1982 * distinguish between HEAD and snapshot object maps), new_state and
1983 * current_state that were passed to rbd_object_map_update().
1985 * To avoid allocating and stashing a context we piggyback on the OSD
1986 * request. A HEAD update has two ops (assert_locked). For new_state
1987 * and current_state we decode our own object_map_update op, encoded in
1988 * rbd_cls_object_map_update().
1990 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1991 struct ceph_osd_request *osd_req)
1993 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1994 struct ceph_osd_data *osd_data;
1996 u8 state, new_state, current_state;
1997 bool has_current_state;
2000 if (osd_req->r_result)
2001 return osd_req->r_result;
2004 * Nothing to do for a snapshot object map.
2006 if (osd_req->r_num_ops == 1)
2010 * Update in-memory HEAD object map.
2012 rbd_assert(osd_req->r_num_ops == 2);
2013 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2014 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2016 p = page_address(osd_data->pages[0]);
2017 objno = ceph_decode_64(&p);
2018 rbd_assert(objno == obj_req->ex.oe_objno);
2019 rbd_assert(ceph_decode_64(&p) == objno + 1);
2020 new_state = ceph_decode_8(&p);
2021 has_current_state = ceph_decode_8(&p);
2022 if (has_current_state)
2023 current_state = ceph_decode_8(&p);
2025 spin_lock(&rbd_dev->object_map_lock);
2026 state = __rbd_object_map_get(rbd_dev, objno);
2027 if (!has_current_state || current_state == state ||
2028 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2029 __rbd_object_map_set(rbd_dev, objno, new_state);
2030 spin_unlock(&rbd_dev->object_map_lock);
2035 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2037 struct rbd_obj_request *obj_req = osd_req->r_priv;
2040 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2041 osd_req->r_result, obj_req);
2043 result = rbd_object_map_update_finish(obj_req, osd_req);
2044 rbd_obj_handle_request(obj_req, result);
2047 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2049 u8 state = rbd_object_map_get(rbd_dev, objno);
2051 if (state == new_state ||
2052 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2053 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2059 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2060 int which, u64 objno, u8 new_state,
2061 const u8 *current_state)
2063 struct page **pages;
2067 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2071 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2073 return PTR_ERR(pages);
2075 p = start = page_address(pages[0]);
2076 ceph_encode_64(&p, objno);
2077 ceph_encode_64(&p, objno + 1);
2078 ceph_encode_8(&p, new_state);
2079 if (current_state) {
2080 ceph_encode_8(&p, 1);
2081 ceph_encode_8(&p, *current_state);
2083 ceph_encode_8(&p, 0);
2086 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2093 * 0 - object map update sent
2094 * 1 - object map update isn't needed
2097 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2098 u8 new_state, const u8 *current_state)
2100 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2101 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2102 struct ceph_osd_request *req;
2107 if (snap_id == CEPH_NOSNAP) {
2108 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2111 num_ops++; /* assert_locked */
2114 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2118 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2119 req->r_callback = rbd_object_map_callback;
2120 req->r_priv = obj_req;
2122 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2123 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2124 req->r_flags = CEPH_OSD_FLAG_WRITE;
2125 ktime_get_real_ts64(&req->r_mtime);
2127 if (snap_id == CEPH_NOSNAP) {
2129 * Protect against possible race conditions during lock
2130 * ownership transitions.
2132 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2133 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2138 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2139 new_state, current_state);
2143 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2147 ceph_osdc_start_request(osdc, req, false);
2151 static void prune_extents(struct ceph_file_extent *img_extents,
2152 u32 *num_img_extents, u64 overlap)
2154 u32 cnt = *num_img_extents;
2156 /* drop extents completely beyond the overlap */
2157 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2161 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2163 /* trim final overlapping extent */
2164 if (ex->fe_off + ex->fe_len > overlap)
2165 ex->fe_len = overlap - ex->fe_off;
2168 *num_img_extents = cnt;
2172 * Determine the byte range(s) covered by either just the object extent
2173 * or the entire object in the parent image.
2175 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2178 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2181 if (!rbd_dev->parent_overlap)
2184 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2185 entire ? 0 : obj_req->ex.oe_off,
2186 entire ? rbd_dev->layout.object_size :
2188 &obj_req->img_extents,
2189 &obj_req->num_img_extents);
2193 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2194 rbd_dev->parent_overlap);
2198 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2200 struct rbd_obj_request *obj_req = osd_req->r_priv;
2202 switch (obj_req->img_request->data_type) {
2203 case OBJ_REQUEST_BIO:
2204 osd_req_op_extent_osd_data_bio(osd_req, which,
2206 obj_req->ex.oe_len);
2208 case OBJ_REQUEST_BVECS:
2209 case OBJ_REQUEST_OWN_BVECS:
2210 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2211 obj_req->ex.oe_len);
2212 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2213 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2214 &obj_req->bvec_pos);
2221 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2223 struct page **pages;
2226 * The response data for a STAT call consists of:
2233 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2235 return PTR_ERR(pages);
2237 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2238 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2239 8 + sizeof(struct ceph_timespec),
2244 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2247 struct rbd_obj_request *obj_req = osd_req->r_priv;
2250 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2254 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2255 obj_req->copyup_bvec_count, bytes);
2259 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2261 obj_req->read_state = RBD_OBJ_READ_START;
2265 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2268 struct rbd_obj_request *obj_req = osd_req->r_priv;
2269 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2272 if (!use_object_map(rbd_dev) ||
2273 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2274 osd_req_op_alloc_hint_init(osd_req, which++,
2275 rbd_dev->layout.object_size,
2276 rbd_dev->layout.object_size,
2277 rbd_dev->opts->alloc_hint_flags);
2280 if (rbd_obj_is_entire(obj_req))
2281 opcode = CEPH_OSD_OP_WRITEFULL;
2283 opcode = CEPH_OSD_OP_WRITE;
2285 osd_req_op_extent_init(osd_req, which, opcode,
2286 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2287 rbd_osd_setup_data(osd_req, which);
2290 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2294 /* reverse map the entire object onto the parent */
2295 ret = rbd_obj_calc_img_extents(obj_req, true);
2299 if (rbd_obj_copyup_enabled(obj_req))
2300 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2302 obj_req->write_state = RBD_OBJ_WRITE_START;
2306 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2308 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2312 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2315 struct rbd_obj_request *obj_req = osd_req->r_priv;
2317 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2318 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2319 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2321 osd_req_op_extent_init(osd_req, which,
2322 truncate_or_zero_opcode(obj_req),
2323 obj_req->ex.oe_off, obj_req->ex.oe_len,
2328 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2330 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2335 * Align the range to alloc_size boundary and punt on discards
2336 * that are too small to free up any space.
2338 * alloc_size == object_size && is_tail() is a special case for
2339 * filestore with filestore_punch_hole = false, needed to allow
2340 * truncate (in addition to delete).
2342 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2343 !rbd_obj_is_tail(obj_req)) {
2344 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2345 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2346 rbd_dev->opts->alloc_size);
2347 if (off >= next_off)
2350 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2351 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 off, next_off - off);
2353 obj_req->ex.oe_off = off;
2354 obj_req->ex.oe_len = next_off - off;
2357 /* reverse map the entire object onto the parent */
2358 ret = rbd_obj_calc_img_extents(obj_req, true);
2362 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2363 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2364 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2366 obj_req->write_state = RBD_OBJ_WRITE_START;
2370 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2373 struct rbd_obj_request *obj_req = osd_req->r_priv;
2376 if (rbd_obj_is_entire(obj_req)) {
2377 if (obj_req->num_img_extents) {
2378 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2379 osd_req_op_init(osd_req, which++,
2380 CEPH_OSD_OP_CREATE, 0);
2381 opcode = CEPH_OSD_OP_TRUNCATE;
2383 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2384 osd_req_op_init(osd_req, which++,
2385 CEPH_OSD_OP_DELETE, 0);
2389 opcode = truncate_or_zero_opcode(obj_req);
2393 osd_req_op_extent_init(osd_req, which, opcode,
2394 obj_req->ex.oe_off, obj_req->ex.oe_len,
2398 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2402 /* reverse map the entire object onto the parent */
2403 ret = rbd_obj_calc_img_extents(obj_req, true);
2407 if (rbd_obj_copyup_enabled(obj_req))
2408 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2409 if (!obj_req->num_img_extents) {
2410 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2411 if (rbd_obj_is_entire(obj_req))
2412 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2415 obj_req->write_state = RBD_OBJ_WRITE_START;
2419 static int count_write_ops(struct rbd_obj_request *obj_req)
2421 struct rbd_img_request *img_req = obj_req->img_request;
2423 switch (img_req->op_type) {
2425 if (!use_object_map(img_req->rbd_dev) ||
2426 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2427 return 2; /* setallochint + write/writefull */
2429 return 1; /* write/writefull */
2430 case OBJ_OP_DISCARD:
2431 return 1; /* delete/truncate/zero */
2432 case OBJ_OP_ZEROOUT:
2433 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2434 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2435 return 2; /* create + truncate */
2437 return 1; /* delete/truncate/zero */
2443 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2446 struct rbd_obj_request *obj_req = osd_req->r_priv;
2448 switch (obj_req->img_request->op_type) {
2450 __rbd_osd_setup_write_ops(osd_req, which);
2452 case OBJ_OP_DISCARD:
2453 __rbd_osd_setup_discard_ops(osd_req, which);
2455 case OBJ_OP_ZEROOUT:
2456 __rbd_osd_setup_zeroout_ops(osd_req, which);
2464 * Prune the list of object requests (adjust offset and/or length, drop
2465 * redundant requests). Prepare object request state machines and image
2466 * request state machine for execution.
2468 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2470 struct rbd_obj_request *obj_req, *next_obj_req;
2473 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2474 switch (img_req->op_type) {
2476 ret = rbd_obj_init_read(obj_req);
2479 ret = rbd_obj_init_write(obj_req);
2481 case OBJ_OP_DISCARD:
2482 ret = rbd_obj_init_discard(obj_req);
2484 case OBJ_OP_ZEROOUT:
2485 ret = rbd_obj_init_zeroout(obj_req);
2493 rbd_img_obj_request_del(img_req, obj_req);
2498 img_req->state = RBD_IMG_START;
2502 union rbd_img_fill_iter {
2503 struct ceph_bio_iter bio_iter;
2504 struct ceph_bvec_iter bvec_iter;
2507 struct rbd_img_fill_ctx {
2508 enum obj_request_type pos_type;
2509 union rbd_img_fill_iter *pos;
2510 union rbd_img_fill_iter iter;
2511 ceph_object_extent_fn_t set_pos_fn;
2512 ceph_object_extent_fn_t count_fn;
2513 ceph_object_extent_fn_t copy_fn;
2516 static struct ceph_object_extent *alloc_object_extent(void *arg)
2518 struct rbd_img_request *img_req = arg;
2519 struct rbd_obj_request *obj_req;
2521 obj_req = rbd_obj_request_create();
2525 rbd_img_obj_request_add(img_req, obj_req);
2526 return &obj_req->ex;
2530 * While su != os && sc == 1 is technically not fancy (it's the same
2531 * layout as su == os && sc == 1), we can't use the nocopy path for it
2532 * because ->set_pos_fn() should be called only once per object.
2533 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2534 * treat su != os && sc == 1 as fancy.
2536 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2538 return l->stripe_unit != l->object_size;
2541 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2542 struct ceph_file_extent *img_extents,
2543 u32 num_img_extents,
2544 struct rbd_img_fill_ctx *fctx)
2549 img_req->data_type = fctx->pos_type;
2552 * Create object requests and set each object request's starting
2553 * position in the provided bio (list) or bio_vec array.
2555 fctx->iter = *fctx->pos;
2556 for (i = 0; i < num_img_extents; i++) {
2557 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2558 img_extents[i].fe_off,
2559 img_extents[i].fe_len,
2560 &img_req->object_extents,
2561 alloc_object_extent, img_req,
2562 fctx->set_pos_fn, &fctx->iter);
2567 return __rbd_img_fill_request(img_req);
2571 * Map a list of image extents to a list of object extents, create the
2572 * corresponding object requests (normally each to a different object,
2573 * but not always) and add them to @img_req. For each object request,
2574 * set up its data descriptor to point to the corresponding chunk(s) of
2575 * @fctx->pos data buffer.
2577 * Because ceph_file_to_extents() will merge adjacent object extents
2578 * together, each object request's data descriptor may point to multiple
2579 * different chunks of @fctx->pos data buffer.
2581 * @fctx->pos data buffer is assumed to be large enough.
2583 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2584 struct ceph_file_extent *img_extents,
2585 u32 num_img_extents,
2586 struct rbd_img_fill_ctx *fctx)
2588 struct rbd_device *rbd_dev = img_req->rbd_dev;
2589 struct rbd_obj_request *obj_req;
2593 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2594 !rbd_layout_is_fancy(&rbd_dev->layout))
2595 return rbd_img_fill_request_nocopy(img_req, img_extents,
2596 num_img_extents, fctx);
2598 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2601 * Create object requests and determine ->bvec_count for each object
2602 * request. Note that ->bvec_count sum over all object requests may
2603 * be greater than the number of bio_vecs in the provided bio (list)
2604 * or bio_vec array because when mapped, those bio_vecs can straddle
2605 * stripe unit boundaries.
2607 fctx->iter = *fctx->pos;
2608 for (i = 0; i < num_img_extents; i++) {
2609 ret = ceph_file_to_extents(&rbd_dev->layout,
2610 img_extents[i].fe_off,
2611 img_extents[i].fe_len,
2612 &img_req->object_extents,
2613 alloc_object_extent, img_req,
2614 fctx->count_fn, &fctx->iter);
2619 for_each_obj_request(img_req, obj_req) {
2620 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2621 sizeof(*obj_req->bvec_pos.bvecs),
2623 if (!obj_req->bvec_pos.bvecs)
2628 * Fill in each object request's private bio_vec array, splitting and
2629 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2631 fctx->iter = *fctx->pos;
2632 for (i = 0; i < num_img_extents; i++) {
2633 ret = ceph_iterate_extents(&rbd_dev->layout,
2634 img_extents[i].fe_off,
2635 img_extents[i].fe_len,
2636 &img_req->object_extents,
2637 fctx->copy_fn, &fctx->iter);
2642 return __rbd_img_fill_request(img_req);
2645 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2648 struct ceph_file_extent ex = { off, len };
2649 union rbd_img_fill_iter dummy = {};
2650 struct rbd_img_fill_ctx fctx = {
2651 .pos_type = OBJ_REQUEST_NODATA,
2655 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2658 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2660 struct rbd_obj_request *obj_req =
2661 container_of(ex, struct rbd_obj_request, ex);
2662 struct ceph_bio_iter *it = arg;
2664 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2665 obj_req->bio_pos = *it;
2666 ceph_bio_iter_advance(it, bytes);
2669 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2671 struct rbd_obj_request *obj_req =
2672 container_of(ex, struct rbd_obj_request, ex);
2673 struct ceph_bio_iter *it = arg;
2675 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2676 ceph_bio_iter_advance_step(it, bytes, ({
2677 obj_req->bvec_count++;
2682 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2684 struct rbd_obj_request *obj_req =
2685 container_of(ex, struct rbd_obj_request, ex);
2686 struct ceph_bio_iter *it = arg;
2688 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2689 ceph_bio_iter_advance_step(it, bytes, ({
2690 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2691 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2695 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2696 struct ceph_file_extent *img_extents,
2697 u32 num_img_extents,
2698 struct ceph_bio_iter *bio_pos)
2700 struct rbd_img_fill_ctx fctx = {
2701 .pos_type = OBJ_REQUEST_BIO,
2702 .pos = (union rbd_img_fill_iter *)bio_pos,
2703 .set_pos_fn = set_bio_pos,
2704 .count_fn = count_bio_bvecs,
2705 .copy_fn = copy_bio_bvecs,
2708 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2712 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2713 u64 off, u64 len, struct bio *bio)
2715 struct ceph_file_extent ex = { off, len };
2716 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2718 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2721 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2723 struct rbd_obj_request *obj_req =
2724 container_of(ex, struct rbd_obj_request, ex);
2725 struct ceph_bvec_iter *it = arg;
2727 obj_req->bvec_pos = *it;
2728 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2729 ceph_bvec_iter_advance(it, bytes);
2732 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2734 struct rbd_obj_request *obj_req =
2735 container_of(ex, struct rbd_obj_request, ex);
2736 struct ceph_bvec_iter *it = arg;
2738 ceph_bvec_iter_advance_step(it, bytes, ({
2739 obj_req->bvec_count++;
2743 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2745 struct rbd_obj_request *obj_req =
2746 container_of(ex, struct rbd_obj_request, ex);
2747 struct ceph_bvec_iter *it = arg;
2749 ceph_bvec_iter_advance_step(it, bytes, ({
2750 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2751 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2755 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2756 struct ceph_file_extent *img_extents,
2757 u32 num_img_extents,
2758 struct ceph_bvec_iter *bvec_pos)
2760 struct rbd_img_fill_ctx fctx = {
2761 .pos_type = OBJ_REQUEST_BVECS,
2762 .pos = (union rbd_img_fill_iter *)bvec_pos,
2763 .set_pos_fn = set_bvec_pos,
2764 .count_fn = count_bvecs,
2765 .copy_fn = copy_bvecs,
2768 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2772 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2773 struct ceph_file_extent *img_extents,
2774 u32 num_img_extents,
2775 struct bio_vec *bvecs)
2777 struct ceph_bvec_iter it = {
2779 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2783 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2787 static void rbd_img_handle_request_work(struct work_struct *work)
2789 struct rbd_img_request *img_req =
2790 container_of(work, struct rbd_img_request, work);
2792 rbd_img_handle_request(img_req, img_req->work_result);
2795 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2797 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2798 img_req->work_result = result;
2799 queue_work(rbd_wq, &img_req->work);
2802 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2804 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2806 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2807 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2811 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2812 obj_req->ex.oe_objno);
2816 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2818 struct ceph_osd_request *osd_req;
2821 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2822 if (IS_ERR(osd_req))
2823 return PTR_ERR(osd_req);
2825 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2826 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2827 rbd_osd_setup_data(osd_req, 0);
2828 rbd_osd_format_read(osd_req);
2830 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2834 rbd_osd_submit(osd_req);
2838 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2840 struct rbd_img_request *img_req = obj_req->img_request;
2841 struct rbd_device *parent = img_req->rbd_dev->parent;
2842 struct rbd_img_request *child_img_req;
2845 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2849 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2850 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2851 child_img_req->obj_request = obj_req;
2853 down_read(&parent->header_rwsem);
2854 rbd_img_capture_header(child_img_req);
2855 up_read(&parent->header_rwsem);
2857 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2860 if (!rbd_img_is_write(img_req)) {
2861 switch (img_req->data_type) {
2862 case OBJ_REQUEST_BIO:
2863 ret = __rbd_img_fill_from_bio(child_img_req,
2864 obj_req->img_extents,
2865 obj_req->num_img_extents,
2868 case OBJ_REQUEST_BVECS:
2869 case OBJ_REQUEST_OWN_BVECS:
2870 ret = __rbd_img_fill_from_bvecs(child_img_req,
2871 obj_req->img_extents,
2872 obj_req->num_img_extents,
2873 &obj_req->bvec_pos);
2879 ret = rbd_img_fill_from_bvecs(child_img_req,
2880 obj_req->img_extents,
2881 obj_req->num_img_extents,
2882 obj_req->copyup_bvecs);
2885 rbd_img_request_destroy(child_img_req);
2889 /* avoid parent chain recursion */
2890 rbd_img_schedule(child_img_req, 0);
2894 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2896 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2900 switch (obj_req->read_state) {
2901 case RBD_OBJ_READ_START:
2902 rbd_assert(!*result);
2904 if (!rbd_obj_may_exist(obj_req)) {
2906 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2910 ret = rbd_obj_read_object(obj_req);
2915 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2917 case RBD_OBJ_READ_OBJECT:
2918 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2919 /* reverse map this object extent onto the parent */
2920 ret = rbd_obj_calc_img_extents(obj_req, false);
2925 if (obj_req->num_img_extents) {
2926 ret = rbd_obj_read_from_parent(obj_req);
2931 obj_req->read_state = RBD_OBJ_READ_PARENT;
2937 * -ENOENT means a hole in the image -- zero-fill the entire
2938 * length of the request. A short read also implies zero-fill
2939 * to the end of the request.
2941 if (*result == -ENOENT) {
2942 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2944 } else if (*result >= 0) {
2945 if (*result < obj_req->ex.oe_len)
2946 rbd_obj_zero_range(obj_req, *result,
2947 obj_req->ex.oe_len - *result);
2949 rbd_assert(*result == obj_req->ex.oe_len);
2953 case RBD_OBJ_READ_PARENT:
2955 * The parent image is read only up to the overlap -- zero-fill
2956 * from the overlap to the end of the request.
2959 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2961 if (obj_overlap < obj_req->ex.oe_len)
2962 rbd_obj_zero_range(obj_req, obj_overlap,
2963 obj_req->ex.oe_len - obj_overlap);
2971 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2973 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2975 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2976 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2978 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2979 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2980 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2989 * 0 - object map update sent
2990 * 1 - object map update isn't needed
2993 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2995 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2998 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3001 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3002 new_state = OBJECT_PENDING;
3004 new_state = OBJECT_EXISTS;
3006 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3009 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3011 struct ceph_osd_request *osd_req;
3012 int num_ops = count_write_ops(obj_req);
3016 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3017 num_ops++; /* stat */
3019 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3020 if (IS_ERR(osd_req))
3021 return PTR_ERR(osd_req);
3023 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3024 ret = rbd_osd_setup_stat(osd_req, which++);
3029 rbd_osd_setup_write_ops(osd_req, which);
3030 rbd_osd_format_write(osd_req);
3032 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3036 rbd_osd_submit(osd_req);
3041 * copyup_bvecs pages are never highmem pages
3043 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3045 struct ceph_bvec_iter it = {
3047 .iter = { .bi_size = bytes },
3050 ceph_bvec_iter_advance_step(&it, bytes, ({
3051 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3058 #define MODS_ONLY U32_MAX
3060 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3063 struct ceph_osd_request *osd_req;
3066 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3067 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3069 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3070 if (IS_ERR(osd_req))
3071 return PTR_ERR(osd_req);
3073 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3077 rbd_osd_format_write(osd_req);
3079 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3083 rbd_osd_submit(osd_req);
3087 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3090 struct ceph_osd_request *osd_req;
3091 int num_ops = count_write_ops(obj_req);
3095 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3097 if (bytes != MODS_ONLY)
3098 num_ops++; /* copyup */
3100 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3101 if (IS_ERR(osd_req))
3102 return PTR_ERR(osd_req);
3104 if (bytes != MODS_ONLY) {
3105 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3110 rbd_osd_setup_write_ops(osd_req, which);
3111 rbd_osd_format_write(osd_req);
3113 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3117 rbd_osd_submit(osd_req);
3121 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3125 rbd_assert(!obj_req->copyup_bvecs);
3126 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3127 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3128 sizeof(*obj_req->copyup_bvecs),
3130 if (!obj_req->copyup_bvecs)
3133 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3134 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3136 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3137 if (!obj_req->copyup_bvecs[i].bv_page)
3140 obj_req->copyup_bvecs[i].bv_offset = 0;
3141 obj_req->copyup_bvecs[i].bv_len = len;
3145 rbd_assert(!obj_overlap);
3150 * The target object doesn't exist. Read the data for the entire
3151 * target object up to the overlap point (if any) from the parent,
3152 * so we can use it for a copyup.
3154 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3156 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3159 rbd_assert(obj_req->num_img_extents);
3160 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3161 rbd_dev->parent_overlap);
3162 if (!obj_req->num_img_extents) {
3164 * The overlap has become 0 (most likely because the
3165 * image has been flattened). Re-submit the original write
3166 * request -- pass MODS_ONLY since the copyup isn't needed
3169 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3172 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3176 return rbd_obj_read_from_parent(obj_req);
3179 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3181 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3182 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3187 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3189 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3192 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3195 for (i = 0; i < snapc->num_snaps; i++) {
3196 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3197 i + 1 < snapc->num_snaps)
3198 new_state = OBJECT_EXISTS_CLEAN;
3200 new_state = OBJECT_EXISTS;
3202 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3205 obj_req->pending.result = ret;
3210 obj_req->pending.num_pending++;
3214 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3216 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3219 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3222 * Only send non-zero copyup data to save some I/O and network
3223 * bandwidth -- zero copyup data is equivalent to the object not
3226 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3229 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3231 * Send a copyup request with an empty snapshot context to
3232 * deep-copyup the object through all existing snapshots.
3233 * A second request with the current snapshot context will be
3234 * sent for the actual modification.
3236 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3238 obj_req->pending.result = ret;
3242 obj_req->pending.num_pending++;
3246 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3248 obj_req->pending.result = ret;
3252 obj_req->pending.num_pending++;
3255 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3257 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3261 switch (obj_req->copyup_state) {
3262 case RBD_OBJ_COPYUP_START:
3263 rbd_assert(!*result);
3265 ret = rbd_obj_copyup_read_parent(obj_req);
3270 if (obj_req->num_img_extents)
3271 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3273 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3275 case RBD_OBJ_COPYUP_READ_PARENT:
3279 if (is_zero_bvecs(obj_req->copyup_bvecs,
3280 rbd_obj_img_extents_bytes(obj_req))) {
3281 dout("%s %p detected zeros\n", __func__, obj_req);
3282 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3285 rbd_obj_copyup_object_maps(obj_req);
3286 if (!obj_req->pending.num_pending) {
3287 *result = obj_req->pending.result;
3288 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3291 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3293 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3294 if (!pending_result_dec(&obj_req->pending, result))
3297 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3299 rbd_warn(rbd_dev, "snap object map update failed: %d",
3304 rbd_obj_copyup_write_object(obj_req);
3305 if (!obj_req->pending.num_pending) {
3306 *result = obj_req->pending.result;
3307 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3310 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3312 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3313 if (!pending_result_dec(&obj_req->pending, result))
3316 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3325 * 0 - object map update sent
3326 * 1 - object map update isn't needed
3329 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3332 u8 current_state = OBJECT_PENDING;
3334 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3337 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3340 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3344 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3346 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3350 switch (obj_req->write_state) {
3351 case RBD_OBJ_WRITE_START:
3352 rbd_assert(!*result);
3354 if (rbd_obj_write_is_noop(obj_req))
3357 ret = rbd_obj_write_pre_object_map(obj_req);
3362 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3366 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3368 rbd_warn(rbd_dev, "pre object map update failed: %d",
3372 ret = rbd_obj_write_object(obj_req);
3377 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3379 case RBD_OBJ_WRITE_OBJECT:
3380 if (*result == -ENOENT) {
3381 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3383 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3384 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3388 * On a non-existent object:
3389 * delete - -ENOENT, truncate/zero - 0
3391 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3397 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3399 case __RBD_OBJ_WRITE_COPYUP:
3400 if (!rbd_obj_advance_copyup(obj_req, result))
3403 case RBD_OBJ_WRITE_COPYUP:
3405 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3408 ret = rbd_obj_write_post_object_map(obj_req);
3413 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3417 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3419 rbd_warn(rbd_dev, "post object map update failed: %d",
3428 * Return true if @obj_req is completed.
3430 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3433 struct rbd_img_request *img_req = obj_req->img_request;
3434 struct rbd_device *rbd_dev = img_req->rbd_dev;
3437 mutex_lock(&obj_req->state_mutex);
3438 if (!rbd_img_is_write(img_req))
3439 done = rbd_obj_advance_read(obj_req, result);
3441 done = rbd_obj_advance_write(obj_req, result);
3442 mutex_unlock(&obj_req->state_mutex);
3444 if (done && *result) {
3445 rbd_assert(*result < 0);
3446 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3447 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3448 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3454 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3457 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3459 if (__rbd_obj_handle_request(obj_req, &result))
3460 rbd_img_handle_request(obj_req->img_request, result);
3463 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3465 struct rbd_device *rbd_dev = img_req->rbd_dev;
3467 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3470 if (rbd_is_ro(rbd_dev))
3473 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3474 if (rbd_dev->opts->lock_on_read ||
3475 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3478 return rbd_img_is_write(img_req);
3481 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3483 struct rbd_device *rbd_dev = img_req->rbd_dev;
3486 lockdep_assert_held(&rbd_dev->lock_rwsem);
3487 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3488 spin_lock(&rbd_dev->lock_lists_lock);
3489 rbd_assert(list_empty(&img_req->lock_item));
3491 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3493 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3494 spin_unlock(&rbd_dev->lock_lists_lock);
3498 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3500 struct rbd_device *rbd_dev = img_req->rbd_dev;
3503 lockdep_assert_held(&rbd_dev->lock_rwsem);
3504 spin_lock(&rbd_dev->lock_lists_lock);
3505 rbd_assert(!list_empty(&img_req->lock_item));
3506 list_del_init(&img_req->lock_item);
3507 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3508 list_empty(&rbd_dev->running_list));
3509 spin_unlock(&rbd_dev->lock_lists_lock);
3511 complete(&rbd_dev->releasing_wait);
3514 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3516 struct rbd_device *rbd_dev = img_req->rbd_dev;
3518 if (!need_exclusive_lock(img_req))
3521 if (rbd_lock_add_request(img_req))
3524 if (rbd_dev->opts->exclusive) {
3525 WARN_ON(1); /* lock got released? */
3530 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3531 * and cancel_delayed_work() in wake_lock_waiters().
3533 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3534 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3538 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3540 struct rbd_obj_request *obj_req;
3542 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3544 for_each_obj_request(img_req, obj_req) {
3547 if (__rbd_obj_handle_request(obj_req, &result)) {
3549 img_req->pending.result = result;
3553 img_req->pending.num_pending++;
3558 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3560 struct rbd_device *rbd_dev = img_req->rbd_dev;
3564 switch (img_req->state) {
3566 rbd_assert(!*result);
3568 ret = rbd_img_exclusive_lock(img_req);
3573 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3577 case RBD_IMG_EXCLUSIVE_LOCK:
3581 rbd_assert(!need_exclusive_lock(img_req) ||
3582 __rbd_is_lock_owner(rbd_dev));
3584 rbd_img_object_requests(img_req);
3585 if (!img_req->pending.num_pending) {
3586 *result = img_req->pending.result;
3587 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3590 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3592 case __RBD_IMG_OBJECT_REQUESTS:
3593 if (!pending_result_dec(&img_req->pending, result))
3596 case RBD_IMG_OBJECT_REQUESTS:
3604 * Return true if @img_req is completed.
3606 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3609 struct rbd_device *rbd_dev = img_req->rbd_dev;
3612 if (need_exclusive_lock(img_req)) {
3613 down_read(&rbd_dev->lock_rwsem);
3614 mutex_lock(&img_req->state_mutex);
3615 done = rbd_img_advance(img_req, result);
3617 rbd_lock_del_request(img_req);
3618 mutex_unlock(&img_req->state_mutex);
3619 up_read(&rbd_dev->lock_rwsem);
3621 mutex_lock(&img_req->state_mutex);
3622 done = rbd_img_advance(img_req, result);
3623 mutex_unlock(&img_req->state_mutex);
3626 if (done && *result) {
3627 rbd_assert(*result < 0);
3628 rbd_warn(rbd_dev, "%s%s result %d",
3629 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3630 obj_op_name(img_req->op_type), *result);
3635 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3638 if (!__rbd_img_handle_request(img_req, &result))
3641 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3642 struct rbd_obj_request *obj_req = img_req->obj_request;
3644 rbd_img_request_destroy(img_req);
3645 if (__rbd_obj_handle_request(obj_req, &result)) {
3646 img_req = obj_req->img_request;
3650 struct request *rq = blk_mq_rq_from_pdu(img_req);
3652 rbd_img_request_destroy(img_req);
3653 blk_mq_end_request(rq, errno_to_blk_status(result));
3657 static const struct rbd_client_id rbd_empty_cid;
3659 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3660 const struct rbd_client_id *rhs)
3662 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3665 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3667 struct rbd_client_id cid;
3669 mutex_lock(&rbd_dev->watch_mutex);
3670 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3671 cid.handle = rbd_dev->watch_cookie;
3672 mutex_unlock(&rbd_dev->watch_mutex);
3677 * lock_rwsem must be held for write
3679 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3680 const struct rbd_client_id *cid)
3682 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3683 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3684 cid->gid, cid->handle);
3685 rbd_dev->owner_cid = *cid; /* struct */
3688 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3690 mutex_lock(&rbd_dev->watch_mutex);
3691 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3692 mutex_unlock(&rbd_dev->watch_mutex);
3695 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3697 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3699 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3700 strcpy(rbd_dev->lock_cookie, cookie);
3701 rbd_set_owner_cid(rbd_dev, &cid);
3702 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3706 * lock_rwsem must be held for write
3708 static int rbd_lock(struct rbd_device *rbd_dev)
3710 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3715 rbd_dev->lock_cookie[0] != '\0');
3717 format_lock_cookie(rbd_dev, cookie);
3718 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3719 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3720 RBD_LOCK_TAG, "", 0);
3724 __rbd_lock(rbd_dev, cookie);
3729 * lock_rwsem must be held for write
3731 static void rbd_unlock(struct rbd_device *rbd_dev)
3733 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3736 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3737 rbd_dev->lock_cookie[0] == '\0');
3739 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3740 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3741 if (ret && ret != -ENOENT)
3742 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3744 /* treat errors as the image is unlocked */
3745 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3746 rbd_dev->lock_cookie[0] = '\0';
3747 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3748 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3751 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3752 enum rbd_notify_op notify_op,
3753 struct page ***preply_pages,
3756 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3757 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3758 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3759 int buf_size = sizeof(buf);
3762 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3764 /* encode *LockPayload NotifyMessage (op + ClientId) */
3765 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3766 ceph_encode_32(&p, notify_op);
3767 ceph_encode_64(&p, cid.gid);
3768 ceph_encode_64(&p, cid.handle);
3770 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3771 &rbd_dev->header_oloc, buf, buf_size,
3772 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3775 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3776 enum rbd_notify_op notify_op)
3778 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3781 static void rbd_notify_acquired_lock(struct work_struct *work)
3783 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3784 acquired_lock_work);
3786 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3789 static void rbd_notify_released_lock(struct work_struct *work)
3791 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3792 released_lock_work);
3794 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3797 static int rbd_request_lock(struct rbd_device *rbd_dev)
3799 struct page **reply_pages;
3801 bool lock_owner_responded = false;
3804 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3806 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3807 &reply_pages, &reply_len);
3808 if (ret && ret != -ETIMEDOUT) {
3809 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3813 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3814 void *p = page_address(reply_pages[0]);
3815 void *const end = p + reply_len;
3818 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3823 ceph_decode_need(&p, end, 8 + 8, e_inval);
3824 p += 8 + 8; /* skip gid and cookie */
3826 ceph_decode_32_safe(&p, end, len, e_inval);
3830 if (lock_owner_responded) {
3832 "duplicate lock owners detected");
3837 lock_owner_responded = true;
3838 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3842 "failed to decode ResponseMessage: %d",
3847 ret = ceph_decode_32(&p);
3851 if (!lock_owner_responded) {
3852 rbd_warn(rbd_dev, "no lock owners detected");
3857 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3866 * Either image request state machine(s) or rbd_add_acquire_lock()
3869 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3871 struct rbd_img_request *img_req;
3873 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3874 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3876 cancel_delayed_work(&rbd_dev->lock_dwork);
3877 if (!completion_done(&rbd_dev->acquire_wait)) {
3878 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3879 list_empty(&rbd_dev->running_list));
3880 rbd_dev->acquire_err = result;
3881 complete_all(&rbd_dev->acquire_wait);
3885 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3886 mutex_lock(&img_req->state_mutex);
3887 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3888 rbd_img_schedule(img_req, result);
3889 mutex_unlock(&img_req->state_mutex);
3892 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3895 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3896 struct ceph_locker **lockers, u32 *num_lockers)
3898 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3903 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3905 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3906 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3907 &lock_type, &lock_tag, lockers, num_lockers);
3911 if (*num_lockers == 0) {
3912 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3916 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3917 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3923 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3924 rbd_warn(rbd_dev, "shared lock type detected");
3929 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3930 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3931 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3932 (*lockers)[0].id.cookie);
3942 static int find_watcher(struct rbd_device *rbd_dev,
3943 const struct ceph_locker *locker)
3945 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3946 struct ceph_watch_item *watchers;
3952 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3953 &rbd_dev->header_oloc, &watchers,
3958 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3959 for (i = 0; i < num_watchers; i++) {
3960 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3961 sizeof(locker->info.addr)) &&
3962 watchers[i].cookie == cookie) {
3963 struct rbd_client_id cid = {
3964 .gid = le64_to_cpu(watchers[i].name.num),
3968 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3969 rbd_dev, cid.gid, cid.handle);
3970 rbd_set_owner_cid(rbd_dev, &cid);
3976 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3984 * lock_rwsem must be held for write
3986 static int rbd_try_lock(struct rbd_device *rbd_dev)
3988 struct ceph_client *client = rbd_dev->rbd_client->client;
3989 struct ceph_locker *lockers;
3994 ret = rbd_lock(rbd_dev);
3998 /* determine if the current lock holder is still alive */
3999 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4003 if (num_lockers == 0)
4006 ret = find_watcher(rbd_dev, lockers);
4008 goto out; /* request lock or error */
4010 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4011 ENTITY_NAME(lockers[0].id.name));
4013 ret = ceph_monc_blacklist_add(&client->monc,
4014 &lockers[0].info.addr);
4016 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
4017 ENTITY_NAME(lockers[0].id.name), ret);
4021 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4022 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4023 lockers[0].id.cookie,
4024 &lockers[0].id.name);
4025 if (ret && ret != -ENOENT)
4029 ceph_free_lockers(lockers, num_lockers);
4033 ceph_free_lockers(lockers, num_lockers);
4037 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4041 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4042 ret = rbd_object_map_open(rbd_dev);
4053 * 1 - caller should call rbd_request_lock()
4056 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4060 down_read(&rbd_dev->lock_rwsem);
4061 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4062 rbd_dev->lock_state);
4063 if (__rbd_is_lock_owner(rbd_dev)) {
4064 up_read(&rbd_dev->lock_rwsem);
4068 up_read(&rbd_dev->lock_rwsem);
4069 down_write(&rbd_dev->lock_rwsem);
4070 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4071 rbd_dev->lock_state);
4072 if (__rbd_is_lock_owner(rbd_dev)) {
4073 up_write(&rbd_dev->lock_rwsem);
4077 ret = rbd_try_lock(rbd_dev);
4079 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4080 if (ret == -EBLACKLISTED)
4083 ret = 1; /* request lock anyway */
4086 up_write(&rbd_dev->lock_rwsem);
4090 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4091 rbd_assert(list_empty(&rbd_dev->running_list));
4093 ret = rbd_post_acquire_action(rbd_dev);
4095 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4097 * Can't stay in RBD_LOCK_STATE_LOCKED because
4098 * rbd_lock_add_request() would let the request through,
4099 * assuming that e.g. object map is locked and loaded.
4101 rbd_unlock(rbd_dev);
4105 wake_lock_waiters(rbd_dev, ret);
4106 up_write(&rbd_dev->lock_rwsem);
4110 static void rbd_acquire_lock(struct work_struct *work)
4112 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4113 struct rbd_device, lock_dwork);
4116 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4118 ret = rbd_try_acquire_lock(rbd_dev);
4120 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4124 ret = rbd_request_lock(rbd_dev);
4125 if (ret == -ETIMEDOUT) {
4126 goto again; /* treat this as a dead client */
4127 } else if (ret == -EROFS) {
4128 rbd_warn(rbd_dev, "peer will not release lock");
4129 down_write(&rbd_dev->lock_rwsem);
4130 wake_lock_waiters(rbd_dev, ret);
4131 up_write(&rbd_dev->lock_rwsem);
4132 } else if (ret < 0) {
4133 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4134 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4138 * lock owner acked, but resend if we don't see them
4141 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4143 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4144 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4148 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4152 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4153 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4155 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4159 * Ensure that all in-flight IO is flushed.
4161 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4162 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4163 need_wait = !list_empty(&rbd_dev->running_list);
4164 downgrade_write(&rbd_dev->lock_rwsem);
4166 wait_for_completion(&rbd_dev->releasing_wait);
4167 up_read(&rbd_dev->lock_rwsem);
4169 down_write(&rbd_dev->lock_rwsem);
4170 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4173 rbd_assert(list_empty(&rbd_dev->running_list));
4177 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4179 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4180 rbd_object_map_close(rbd_dev);
4183 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4185 rbd_assert(list_empty(&rbd_dev->running_list));
4187 rbd_pre_release_action(rbd_dev);
4188 rbd_unlock(rbd_dev);
4192 * lock_rwsem must be held for write
4194 static void rbd_release_lock(struct rbd_device *rbd_dev)
4196 if (!rbd_quiesce_lock(rbd_dev))
4199 __rbd_release_lock(rbd_dev);
4202 * Give others a chance to grab the lock - we would re-acquire
4203 * almost immediately if we got new IO while draining the running
4204 * list otherwise. We need to ack our own notifications, so this
4205 * lock_dwork will be requeued from rbd_handle_released_lock() by
4206 * way of maybe_kick_acquire().
4208 cancel_delayed_work(&rbd_dev->lock_dwork);
4211 static void rbd_release_lock_work(struct work_struct *work)
4213 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4216 down_write(&rbd_dev->lock_rwsem);
4217 rbd_release_lock(rbd_dev);
4218 up_write(&rbd_dev->lock_rwsem);
4221 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4225 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4226 if (__rbd_is_lock_owner(rbd_dev))
4229 spin_lock(&rbd_dev->lock_lists_lock);
4230 have_requests = !list_empty(&rbd_dev->acquiring_list);
4231 spin_unlock(&rbd_dev->lock_lists_lock);
4232 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4233 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4234 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4238 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4241 struct rbd_client_id cid = { 0 };
4243 if (struct_v >= 2) {
4244 cid.gid = ceph_decode_64(p);
4245 cid.handle = ceph_decode_64(p);
4248 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4250 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4251 down_write(&rbd_dev->lock_rwsem);
4252 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4254 * we already know that the remote client is
4257 up_write(&rbd_dev->lock_rwsem);
4261 rbd_set_owner_cid(rbd_dev, &cid);
4262 downgrade_write(&rbd_dev->lock_rwsem);
4264 down_read(&rbd_dev->lock_rwsem);
4267 maybe_kick_acquire(rbd_dev);
4268 up_read(&rbd_dev->lock_rwsem);
4271 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4274 struct rbd_client_id cid = { 0 };
4276 if (struct_v >= 2) {
4277 cid.gid = ceph_decode_64(p);
4278 cid.handle = ceph_decode_64(p);
4281 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4283 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4284 down_write(&rbd_dev->lock_rwsem);
4285 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4286 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4287 __func__, rbd_dev, cid.gid, cid.handle,
4288 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4289 up_write(&rbd_dev->lock_rwsem);
4293 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4294 downgrade_write(&rbd_dev->lock_rwsem);
4296 down_read(&rbd_dev->lock_rwsem);
4299 maybe_kick_acquire(rbd_dev);
4300 up_read(&rbd_dev->lock_rwsem);
4304 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4305 * ResponseMessage is needed.
4307 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4310 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4311 struct rbd_client_id cid = { 0 };
4314 if (struct_v >= 2) {
4315 cid.gid = ceph_decode_64(p);
4316 cid.handle = ceph_decode_64(p);
4319 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4321 if (rbd_cid_equal(&cid, &my_cid))
4324 down_read(&rbd_dev->lock_rwsem);
4325 if (__rbd_is_lock_owner(rbd_dev)) {
4326 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4327 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4331 * encode ResponseMessage(0) so the peer can detect
4336 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4337 if (!rbd_dev->opts->exclusive) {
4338 dout("%s rbd_dev %p queueing unlock_work\n",
4340 queue_work(rbd_dev->task_wq,
4341 &rbd_dev->unlock_work);
4343 /* refuse to release the lock */
4350 up_read(&rbd_dev->lock_rwsem);
4354 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4355 u64 notify_id, u64 cookie, s32 *result)
4357 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4358 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4359 int buf_size = sizeof(buf);
4365 /* encode ResponseMessage */
4366 ceph_start_encoding(&p, 1, 1,
4367 buf_size - CEPH_ENCODING_START_BLK_LEN);
4368 ceph_encode_32(&p, *result);
4373 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4374 &rbd_dev->header_oloc, notify_id, cookie,
4377 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4380 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4383 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4384 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4387 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4388 u64 notify_id, u64 cookie, s32 result)
4390 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4391 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4394 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4395 u64 notifier_id, void *data, size_t data_len)
4397 struct rbd_device *rbd_dev = arg;
4399 void *const end = p + data_len;
4405 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4406 __func__, rbd_dev, cookie, notify_id, data_len);
4408 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4411 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4416 notify_op = ceph_decode_32(&p);
4418 /* legacy notification for header updates */
4419 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4423 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4424 switch (notify_op) {
4425 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4426 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4427 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4429 case RBD_NOTIFY_OP_RELEASED_LOCK:
4430 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4431 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4433 case RBD_NOTIFY_OP_REQUEST_LOCK:
4434 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4436 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4439 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4441 case RBD_NOTIFY_OP_HEADER_UPDATE:
4442 ret = rbd_dev_refresh(rbd_dev);
4444 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4446 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4449 if (rbd_is_lock_owner(rbd_dev))
4450 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4451 cookie, -EOPNOTSUPP);
4453 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4458 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4460 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4462 struct rbd_device *rbd_dev = arg;
4464 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4466 down_write(&rbd_dev->lock_rwsem);
4467 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4468 up_write(&rbd_dev->lock_rwsem);
4470 mutex_lock(&rbd_dev->watch_mutex);
4471 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4472 __rbd_unregister_watch(rbd_dev);
4473 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4475 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4477 mutex_unlock(&rbd_dev->watch_mutex);
4481 * watch_mutex must be locked
4483 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4485 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4486 struct ceph_osd_linger_request *handle;
4488 rbd_assert(!rbd_dev->watch_handle);
4489 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4491 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4492 &rbd_dev->header_oloc, rbd_watch_cb,
4493 rbd_watch_errcb, rbd_dev);
4495 return PTR_ERR(handle);
4497 rbd_dev->watch_handle = handle;
4502 * watch_mutex must be locked
4504 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4506 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4509 rbd_assert(rbd_dev->watch_handle);
4510 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4512 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4514 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4516 rbd_dev->watch_handle = NULL;
4519 static int rbd_register_watch(struct rbd_device *rbd_dev)
4523 mutex_lock(&rbd_dev->watch_mutex);
4524 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4525 ret = __rbd_register_watch(rbd_dev);
4529 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4530 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4533 mutex_unlock(&rbd_dev->watch_mutex);
4537 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4539 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4541 cancel_work_sync(&rbd_dev->acquired_lock_work);
4542 cancel_work_sync(&rbd_dev->released_lock_work);
4543 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4544 cancel_work_sync(&rbd_dev->unlock_work);
4548 * header_rwsem must not be held to avoid a deadlock with
4549 * rbd_dev_refresh() when flushing notifies.
4551 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4553 cancel_tasks_sync(rbd_dev);
4555 mutex_lock(&rbd_dev->watch_mutex);
4556 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4557 __rbd_unregister_watch(rbd_dev);
4558 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4559 mutex_unlock(&rbd_dev->watch_mutex);
4561 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4562 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4566 * lock_rwsem must be held for write
4568 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4570 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4574 if (!rbd_quiesce_lock(rbd_dev))
4577 format_lock_cookie(rbd_dev, cookie);
4578 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4579 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4580 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4581 RBD_LOCK_TAG, cookie);
4583 if (ret != -EOPNOTSUPP)
4584 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4588 * Lock cookie cannot be updated on older OSDs, so do
4589 * a manual release and queue an acquire.
4591 __rbd_release_lock(rbd_dev);
4592 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4594 __rbd_lock(rbd_dev, cookie);
4595 wake_lock_waiters(rbd_dev, 0);
4599 static void rbd_reregister_watch(struct work_struct *work)
4601 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4602 struct rbd_device, watch_dwork);
4605 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4607 mutex_lock(&rbd_dev->watch_mutex);
4608 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4609 mutex_unlock(&rbd_dev->watch_mutex);
4613 ret = __rbd_register_watch(rbd_dev);
4615 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4616 if (ret != -EBLACKLISTED && ret != -ENOENT) {
4617 queue_delayed_work(rbd_dev->task_wq,
4618 &rbd_dev->watch_dwork,
4620 mutex_unlock(&rbd_dev->watch_mutex);
4624 mutex_unlock(&rbd_dev->watch_mutex);
4625 down_write(&rbd_dev->lock_rwsem);
4626 wake_lock_waiters(rbd_dev, ret);
4627 up_write(&rbd_dev->lock_rwsem);
4631 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4632 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4633 mutex_unlock(&rbd_dev->watch_mutex);
4635 down_write(&rbd_dev->lock_rwsem);
4636 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4637 rbd_reacquire_lock(rbd_dev);
4638 up_write(&rbd_dev->lock_rwsem);
4640 ret = rbd_dev_refresh(rbd_dev);
4642 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4646 * Synchronous osd object method call. Returns the number of bytes
4647 * returned in the outbound buffer, or a negative error code.
4649 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4650 struct ceph_object_id *oid,
4651 struct ceph_object_locator *oloc,
4652 const char *method_name,
4653 const void *outbound,
4654 size_t outbound_size,
4656 size_t inbound_size)
4658 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4659 struct page *req_page = NULL;
4660 struct page *reply_page;
4664 * Method calls are ultimately read operations. The result
4665 * should placed into the inbound buffer provided. They
4666 * also supply outbound data--parameters for the object
4667 * method. Currently if this is present it will be a
4671 if (outbound_size > PAGE_SIZE)
4674 req_page = alloc_page(GFP_KERNEL);
4678 memcpy(page_address(req_page), outbound, outbound_size);
4681 reply_page = alloc_page(GFP_KERNEL);
4684 __free_page(req_page);
4688 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4689 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4690 &reply_page, &inbound_size);
4692 memcpy(inbound, page_address(reply_page), inbound_size);
4697 __free_page(req_page);
4698 __free_page(reply_page);
4702 static void rbd_queue_workfn(struct work_struct *work)
4704 struct rbd_img_request *img_request =
4705 container_of(work, struct rbd_img_request, work);
4706 struct rbd_device *rbd_dev = img_request->rbd_dev;
4707 enum obj_operation_type op_type = img_request->op_type;
4708 struct request *rq = blk_mq_rq_from_pdu(img_request);
4709 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4710 u64 length = blk_rq_bytes(rq);
4714 /* Ignore/skip any zero-length requests */
4716 dout("%s: zero-length request\n", __func__);
4718 goto err_img_request;
4721 blk_mq_start_request(rq);
4723 down_read(&rbd_dev->header_rwsem);
4724 mapping_size = rbd_dev->mapping.size;
4725 rbd_img_capture_header(img_request);
4726 up_read(&rbd_dev->header_rwsem);
4728 if (offset + length > mapping_size) {
4729 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4730 length, mapping_size);
4732 goto err_img_request;
4735 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4736 img_request, obj_op_name(op_type), offset, length);
4738 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4739 result = rbd_img_fill_nodata(img_request, offset, length);
4741 result = rbd_img_fill_from_bio(img_request, offset, length,
4744 goto err_img_request;
4746 rbd_img_handle_request(img_request, 0);
4750 rbd_img_request_destroy(img_request);
4752 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4753 obj_op_name(op_type), length, offset, result);
4754 blk_mq_end_request(rq, errno_to_blk_status(result));
4757 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4758 const struct blk_mq_queue_data *bd)
4760 struct rbd_device *rbd_dev = hctx->queue->queuedata;
4761 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4762 enum obj_operation_type op_type;
4764 switch (req_op(bd->rq)) {
4765 case REQ_OP_DISCARD:
4766 op_type = OBJ_OP_DISCARD;
4768 case REQ_OP_WRITE_ZEROES:
4769 op_type = OBJ_OP_ZEROOUT;
4772 op_type = OBJ_OP_WRITE;
4775 op_type = OBJ_OP_READ;
4778 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4779 return BLK_STS_IOERR;
4782 rbd_img_request_init(img_req, rbd_dev, op_type);
4784 if (rbd_img_is_write(img_req)) {
4785 if (rbd_is_ro(rbd_dev)) {
4786 rbd_warn(rbd_dev, "%s on read-only mapping",
4787 obj_op_name(img_req->op_type));
4788 return BLK_STS_IOERR;
4790 rbd_assert(!rbd_is_snap(rbd_dev));
4793 INIT_WORK(&img_req->work, rbd_queue_workfn);
4794 queue_work(rbd_wq, &img_req->work);
4798 static void rbd_free_disk(struct rbd_device *rbd_dev)
4800 blk_cleanup_queue(rbd_dev->disk->queue);
4801 blk_mq_free_tag_set(&rbd_dev->tag_set);
4802 put_disk(rbd_dev->disk);
4803 rbd_dev->disk = NULL;
4806 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4807 struct ceph_object_id *oid,
4808 struct ceph_object_locator *oloc,
4809 void *buf, int buf_len)
4812 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4813 struct ceph_osd_request *req;
4814 struct page **pages;
4815 int num_pages = calc_pages_for(0, buf_len);
4818 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4822 ceph_oid_copy(&req->r_base_oid, oid);
4823 ceph_oloc_copy(&req->r_base_oloc, oloc);
4824 req->r_flags = CEPH_OSD_FLAG_READ;
4826 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4827 if (IS_ERR(pages)) {
4828 ret = PTR_ERR(pages);
4832 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4833 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4836 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4840 ceph_osdc_start_request(osdc, req, false);
4841 ret = ceph_osdc_wait_request(osdc, req);
4843 ceph_copy_from_page_vector(pages, buf, 0, ret);
4846 ceph_osdc_put_request(req);
4851 * Read the complete header for the given rbd device. On successful
4852 * return, the rbd_dev->header field will contain up-to-date
4853 * information about the image.
4855 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4857 struct rbd_image_header_ondisk *ondisk = NULL;
4864 * The complete header will include an array of its 64-bit
4865 * snapshot ids, followed by the names of those snapshots as
4866 * a contiguous block of NUL-terminated strings. Note that
4867 * the number of snapshots could change by the time we read
4868 * it in, in which case we re-read it.
4875 size = sizeof (*ondisk);
4876 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4878 ondisk = kmalloc(size, GFP_KERNEL);
4882 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4883 &rbd_dev->header_oloc, ondisk, size);
4886 if ((size_t)ret < size) {
4888 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4892 if (!rbd_dev_ondisk_valid(ondisk)) {
4894 rbd_warn(rbd_dev, "invalid header");
4898 names_size = le64_to_cpu(ondisk->snap_names_len);
4899 want_count = snap_count;
4900 snap_count = le32_to_cpu(ondisk->snap_count);
4901 } while (snap_count != want_count);
4903 ret = rbd_header_from_disk(rbd_dev, ondisk);
4910 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4915 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4916 * try to update its size. If REMOVING is set, updating size
4917 * is just useless work since the device can't be opened.
4919 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4920 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4921 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4922 dout("setting size to %llu sectors", (unsigned long long)size);
4923 set_capacity(rbd_dev->disk, size);
4924 revalidate_disk(rbd_dev->disk);
4928 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4933 down_write(&rbd_dev->header_rwsem);
4934 mapping_size = rbd_dev->mapping.size;
4936 ret = rbd_dev_header_info(rbd_dev);
4941 * If there is a parent, see if it has disappeared due to the
4942 * mapped image getting flattened.
4944 if (rbd_dev->parent) {
4945 ret = rbd_dev_v2_parent_info(rbd_dev);
4950 rbd_assert(!rbd_is_snap(rbd_dev));
4951 rbd_dev->mapping.size = rbd_dev->header.image_size;
4954 up_write(&rbd_dev->header_rwsem);
4955 if (!ret && mapping_size != rbd_dev->mapping.size)
4956 rbd_dev_update_size(rbd_dev);
4961 static const struct blk_mq_ops rbd_mq_ops = {
4962 .queue_rq = rbd_queue_rq,
4965 static int rbd_init_disk(struct rbd_device *rbd_dev)
4967 struct gendisk *disk;
4968 struct request_queue *q;
4969 unsigned int objset_bytes =
4970 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4973 /* create gendisk info */
4974 disk = alloc_disk(single_major ?
4975 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4976 RBD_MINORS_PER_MAJOR);
4980 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4982 disk->major = rbd_dev->major;
4983 disk->first_minor = rbd_dev->minor;
4985 disk->flags |= GENHD_FL_EXT_DEVT;
4986 disk->fops = &rbd_bd_ops;
4987 disk->private_data = rbd_dev;
4989 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4990 rbd_dev->tag_set.ops = &rbd_mq_ops;
4991 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4992 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4993 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4994 rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4995 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4997 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5001 q = blk_mq_init_queue(&rbd_dev->tag_set);
5007 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5008 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5010 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5011 q->limits.max_sectors = queue_max_hw_sectors(q);
5012 blk_queue_max_segments(q, USHRT_MAX);
5013 blk_queue_max_segment_size(q, UINT_MAX);
5014 blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5015 blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5017 if (rbd_dev->opts->trim) {
5018 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5019 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5020 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5021 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5024 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5025 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
5028 * disk_release() expects a queue ref from add_disk() and will
5029 * put it. Hold an extra ref until add_disk() is called.
5031 WARN_ON(!blk_get_queue(q));
5033 q->queuedata = rbd_dev;
5035 rbd_dev->disk = disk;
5039 blk_mq_free_tag_set(&rbd_dev->tag_set);
5049 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5051 return container_of(dev, struct rbd_device, dev);
5054 static ssize_t rbd_size_show(struct device *dev,
5055 struct device_attribute *attr, char *buf)
5057 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5059 return sprintf(buf, "%llu\n",
5060 (unsigned long long)rbd_dev->mapping.size);
5063 static ssize_t rbd_features_show(struct device *dev,
5064 struct device_attribute *attr, char *buf)
5066 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5068 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5071 static ssize_t rbd_major_show(struct device *dev,
5072 struct device_attribute *attr, char *buf)
5074 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5077 return sprintf(buf, "%d\n", rbd_dev->major);
5079 return sprintf(buf, "(none)\n");
5082 static ssize_t rbd_minor_show(struct device *dev,
5083 struct device_attribute *attr, char *buf)
5085 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5087 return sprintf(buf, "%d\n", rbd_dev->minor);
5090 static ssize_t rbd_client_addr_show(struct device *dev,
5091 struct device_attribute *attr, char *buf)
5093 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5094 struct ceph_entity_addr *client_addr =
5095 ceph_client_addr(rbd_dev->rbd_client->client);
5097 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5098 le32_to_cpu(client_addr->nonce));
5101 static ssize_t rbd_client_id_show(struct device *dev,
5102 struct device_attribute *attr, char *buf)
5104 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5106 return sprintf(buf, "client%lld\n",
5107 ceph_client_gid(rbd_dev->rbd_client->client));
5110 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5111 struct device_attribute *attr, char *buf)
5113 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5115 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5118 static ssize_t rbd_config_info_show(struct device *dev,
5119 struct device_attribute *attr, char *buf)
5121 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5123 return sprintf(buf, "%s\n", rbd_dev->config_info);
5126 static ssize_t rbd_pool_show(struct device *dev,
5127 struct device_attribute *attr, char *buf)
5129 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5131 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5134 static ssize_t rbd_pool_id_show(struct device *dev,
5135 struct device_attribute *attr, char *buf)
5137 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5139 return sprintf(buf, "%llu\n",
5140 (unsigned long long) rbd_dev->spec->pool_id);
5143 static ssize_t rbd_pool_ns_show(struct device *dev,
5144 struct device_attribute *attr, char *buf)
5146 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5148 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5151 static ssize_t rbd_name_show(struct device *dev,
5152 struct device_attribute *attr, char *buf)
5154 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5156 if (rbd_dev->spec->image_name)
5157 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5159 return sprintf(buf, "(unknown)\n");
5162 static ssize_t rbd_image_id_show(struct device *dev,
5163 struct device_attribute *attr, char *buf)
5165 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5167 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5171 * Shows the name of the currently-mapped snapshot (or
5172 * RBD_SNAP_HEAD_NAME for the base image).
5174 static ssize_t rbd_snap_show(struct device *dev,
5175 struct device_attribute *attr,
5178 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5180 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5183 static ssize_t rbd_snap_id_show(struct device *dev,
5184 struct device_attribute *attr, char *buf)
5186 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5188 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5192 * For a v2 image, shows the chain of parent images, separated by empty
5193 * lines. For v1 images or if there is no parent, shows "(no parent
5196 static ssize_t rbd_parent_show(struct device *dev,
5197 struct device_attribute *attr,
5200 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5203 if (!rbd_dev->parent)
5204 return sprintf(buf, "(no parent image)\n");
5206 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5207 struct rbd_spec *spec = rbd_dev->parent_spec;
5209 count += sprintf(&buf[count], "%s"
5210 "pool_id %llu\npool_name %s\n"
5212 "image_id %s\nimage_name %s\n"
5213 "snap_id %llu\nsnap_name %s\n"
5215 !count ? "" : "\n", /* first? */
5216 spec->pool_id, spec->pool_name,
5217 spec->pool_ns ?: "",
5218 spec->image_id, spec->image_name ?: "(unknown)",
5219 spec->snap_id, spec->snap_name,
5220 rbd_dev->parent_overlap);
5226 static ssize_t rbd_image_refresh(struct device *dev,
5227 struct device_attribute *attr,
5231 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5234 ret = rbd_dev_refresh(rbd_dev);
5241 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5242 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5243 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5244 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5245 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5246 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5247 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5248 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5249 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5250 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5251 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5252 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5253 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5254 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5255 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5256 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5257 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5259 static struct attribute *rbd_attrs[] = {
5260 &dev_attr_size.attr,
5261 &dev_attr_features.attr,
5262 &dev_attr_major.attr,
5263 &dev_attr_minor.attr,
5264 &dev_attr_client_addr.attr,
5265 &dev_attr_client_id.attr,
5266 &dev_attr_cluster_fsid.attr,
5267 &dev_attr_config_info.attr,
5268 &dev_attr_pool.attr,
5269 &dev_attr_pool_id.attr,
5270 &dev_attr_pool_ns.attr,
5271 &dev_attr_name.attr,
5272 &dev_attr_image_id.attr,
5273 &dev_attr_current_snap.attr,
5274 &dev_attr_snap_id.attr,
5275 &dev_attr_parent.attr,
5276 &dev_attr_refresh.attr,
5280 static struct attribute_group rbd_attr_group = {
5284 static const struct attribute_group *rbd_attr_groups[] = {
5289 static void rbd_dev_release(struct device *dev);
5291 static const struct device_type rbd_device_type = {
5293 .groups = rbd_attr_groups,
5294 .release = rbd_dev_release,
5297 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5299 kref_get(&spec->kref);
5304 static void rbd_spec_free(struct kref *kref);
5305 static void rbd_spec_put(struct rbd_spec *spec)
5308 kref_put(&spec->kref, rbd_spec_free);
5311 static struct rbd_spec *rbd_spec_alloc(void)
5313 struct rbd_spec *spec;
5315 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5319 spec->pool_id = CEPH_NOPOOL;
5320 spec->snap_id = CEPH_NOSNAP;
5321 kref_init(&spec->kref);
5326 static void rbd_spec_free(struct kref *kref)
5328 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5330 kfree(spec->pool_name);
5331 kfree(spec->pool_ns);
5332 kfree(spec->image_id);
5333 kfree(spec->image_name);
5334 kfree(spec->snap_name);
5338 static void rbd_dev_free(struct rbd_device *rbd_dev)
5340 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5341 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5343 ceph_oid_destroy(&rbd_dev->header_oid);
5344 ceph_oloc_destroy(&rbd_dev->header_oloc);
5345 kfree(rbd_dev->config_info);
5347 rbd_put_client(rbd_dev->rbd_client);
5348 rbd_spec_put(rbd_dev->spec);
5349 kfree(rbd_dev->opts);
5353 static void rbd_dev_release(struct device *dev)
5355 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5356 bool need_put = !!rbd_dev->opts;
5359 destroy_workqueue(rbd_dev->task_wq);
5360 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5363 rbd_dev_free(rbd_dev);
5366 * This is racy, but way better than putting module outside of
5367 * the release callback. The race window is pretty small, so
5368 * doing something similar to dm (dm-builtin.c) is overkill.
5371 module_put(THIS_MODULE);
5374 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5375 struct rbd_spec *spec)
5377 struct rbd_device *rbd_dev;
5379 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5383 spin_lock_init(&rbd_dev->lock);
5384 INIT_LIST_HEAD(&rbd_dev->node);
5385 init_rwsem(&rbd_dev->header_rwsem);
5387 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5388 ceph_oid_init(&rbd_dev->header_oid);
5389 rbd_dev->header_oloc.pool = spec->pool_id;
5390 if (spec->pool_ns) {
5391 WARN_ON(!*spec->pool_ns);
5392 rbd_dev->header_oloc.pool_ns =
5393 ceph_find_or_create_string(spec->pool_ns,
5394 strlen(spec->pool_ns));
5397 mutex_init(&rbd_dev->watch_mutex);
5398 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5399 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5401 init_rwsem(&rbd_dev->lock_rwsem);
5402 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5403 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5404 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5405 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5406 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5407 spin_lock_init(&rbd_dev->lock_lists_lock);
5408 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5409 INIT_LIST_HEAD(&rbd_dev->running_list);
5410 init_completion(&rbd_dev->acquire_wait);
5411 init_completion(&rbd_dev->releasing_wait);
5413 spin_lock_init(&rbd_dev->object_map_lock);
5415 rbd_dev->dev.bus = &rbd_bus_type;
5416 rbd_dev->dev.type = &rbd_device_type;
5417 rbd_dev->dev.parent = &rbd_root_dev;
5418 device_initialize(&rbd_dev->dev);
5420 rbd_dev->rbd_client = rbdc;
5421 rbd_dev->spec = spec;
5427 * Create a mapping rbd_dev.
5429 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5430 struct rbd_spec *spec,
5431 struct rbd_options *opts)
5433 struct rbd_device *rbd_dev;
5435 rbd_dev = __rbd_dev_create(rbdc, spec);
5439 rbd_dev->opts = opts;
5441 /* get an id and fill in device name */
5442 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5443 minor_to_rbd_dev_id(1 << MINORBITS),
5445 if (rbd_dev->dev_id < 0)
5448 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5449 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5451 if (!rbd_dev->task_wq)
5454 /* we have a ref from do_rbd_add() */
5455 __module_get(THIS_MODULE);
5457 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5461 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5463 rbd_dev_free(rbd_dev);
5467 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5470 put_device(&rbd_dev->dev);
5474 * Get the size and object order for an image snapshot, or if
5475 * snap_id is CEPH_NOSNAP, gets this information for the base
5478 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5479 u8 *order, u64 *snap_size)
5481 __le64 snapid = cpu_to_le64(snap_id);
5486 } __attribute__ ((packed)) size_buf = { 0 };
5488 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5489 &rbd_dev->header_oloc, "get_size",
5490 &snapid, sizeof(snapid),
5491 &size_buf, sizeof(size_buf));
5492 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5495 if (ret < sizeof (size_buf))
5499 *order = size_buf.order;
5500 dout(" order %u", (unsigned int)*order);
5502 *snap_size = le64_to_cpu(size_buf.size);
5504 dout(" snap_id 0x%016llx snap_size = %llu\n",
5505 (unsigned long long)snap_id,
5506 (unsigned long long)*snap_size);
5511 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5513 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5514 &rbd_dev->header.obj_order,
5515 &rbd_dev->header.image_size);
5518 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5525 /* Response will be an encoded string, which includes a length */
5526 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5527 reply_buf = kzalloc(size, GFP_KERNEL);
5531 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5532 &rbd_dev->header_oloc, "get_object_prefix",
5533 NULL, 0, reply_buf, size);
5534 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5539 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5540 p + ret, NULL, GFP_NOIO);
5543 if (IS_ERR(rbd_dev->header.object_prefix)) {
5544 ret = PTR_ERR(rbd_dev->header.object_prefix);
5545 rbd_dev->header.object_prefix = NULL;
5547 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
5555 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5556 bool read_only, u64 *snap_features)
5565 } __attribute__ ((packed)) features_buf = { 0 };
5569 features_in.snap_id = cpu_to_le64(snap_id);
5570 features_in.read_only = read_only;
5572 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5573 &rbd_dev->header_oloc, "get_features",
5574 &features_in, sizeof(features_in),
5575 &features_buf, sizeof(features_buf));
5576 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5579 if (ret < sizeof (features_buf))
5582 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5584 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5589 *snap_features = le64_to_cpu(features_buf.features);
5591 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5592 (unsigned long long)snap_id,
5593 (unsigned long long)*snap_features,
5594 (unsigned long long)le64_to_cpu(features_buf.incompat));
5599 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5601 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5603 &rbd_dev->header.features);
5607 * These are generic image flags, but since they are used only for
5608 * object map, store them in rbd_dev->object_map_flags.
5610 * For the same reason, this function is called only on object map
5611 * (re)load and not on header refresh.
5613 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5615 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5619 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5620 &rbd_dev->header_oloc, "get_flags",
5621 &snapid, sizeof(snapid),
5622 &flags, sizeof(flags));
5625 if (ret < sizeof(flags))
5628 rbd_dev->object_map_flags = le64_to_cpu(flags);
5632 struct parent_image_info {
5634 const char *pool_ns;
5635 const char *image_id;
5643 * The caller is responsible for @pii.
5645 static int decode_parent_image_spec(void **p, void *end,
5646 struct parent_image_info *pii)
5652 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5653 &struct_v, &struct_len);
5657 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5658 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5659 if (IS_ERR(pii->pool_ns)) {
5660 ret = PTR_ERR(pii->pool_ns);
5661 pii->pool_ns = NULL;
5664 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5665 if (IS_ERR(pii->image_id)) {
5666 ret = PTR_ERR(pii->image_id);
5667 pii->image_id = NULL;
5670 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5677 static int __get_parent_info(struct rbd_device *rbd_dev,
5678 struct page *req_page,
5679 struct page *reply_page,
5680 struct parent_image_info *pii)
5682 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5683 size_t reply_len = PAGE_SIZE;
5687 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5688 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5689 req_page, sizeof(u64), &reply_page, &reply_len);
5691 return ret == -EOPNOTSUPP ? 1 : ret;
5693 p = page_address(reply_page);
5694 end = p + reply_len;
5695 ret = decode_parent_image_spec(&p, end, pii);
5699 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5700 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5701 req_page, sizeof(u64), &reply_page, &reply_len);
5705 p = page_address(reply_page);
5706 end = p + reply_len;
5707 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5708 if (pii->has_overlap)
5709 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5718 * The caller is responsible for @pii.
5720 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5721 struct page *req_page,
5722 struct page *reply_page,
5723 struct parent_image_info *pii)
5725 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5726 size_t reply_len = PAGE_SIZE;
5730 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5731 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5732 req_page, sizeof(u64), &reply_page, &reply_len);
5736 p = page_address(reply_page);
5737 end = p + reply_len;
5738 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5739 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5740 if (IS_ERR(pii->image_id)) {
5741 ret = PTR_ERR(pii->image_id);
5742 pii->image_id = NULL;
5745 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5746 pii->has_overlap = true;
5747 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5755 static int get_parent_info(struct rbd_device *rbd_dev,
5756 struct parent_image_info *pii)
5758 struct page *req_page, *reply_page;
5762 req_page = alloc_page(GFP_KERNEL);
5766 reply_page = alloc_page(GFP_KERNEL);
5768 __free_page(req_page);
5772 p = page_address(req_page);
5773 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5774 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5776 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5779 __free_page(req_page);
5780 __free_page(reply_page);
5784 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5786 struct rbd_spec *parent_spec;
5787 struct parent_image_info pii = { 0 };
5790 parent_spec = rbd_spec_alloc();
5794 ret = get_parent_info(rbd_dev, &pii);
5798 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5799 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5800 pii.has_overlap, pii.overlap);
5802 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5804 * Either the parent never existed, or we have
5805 * record of it but the image got flattened so it no
5806 * longer has a parent. When the parent of a
5807 * layered image disappears we immediately set the
5808 * overlap to 0. The effect of this is that all new
5809 * requests will be treated as if the image had no
5812 * If !pii.has_overlap, the parent image spec is not
5813 * applicable. It's there to avoid duplication in each
5816 if (rbd_dev->parent_overlap) {
5817 rbd_dev->parent_overlap = 0;
5818 rbd_dev_parent_put(rbd_dev);
5819 pr_info("%s: clone image has been flattened\n",
5820 rbd_dev->disk->disk_name);
5823 goto out; /* No parent? No problem. */
5826 /* The ceph file layout needs to fit pool id in 32 bits */
5829 if (pii.pool_id > (u64)U32_MAX) {
5830 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5831 (unsigned long long)pii.pool_id, U32_MAX);
5836 * The parent won't change (except when the clone is
5837 * flattened, already handled that). So we only need to
5838 * record the parent spec we have not already done so.
5840 if (!rbd_dev->parent_spec) {
5841 parent_spec->pool_id = pii.pool_id;
5842 if (pii.pool_ns && *pii.pool_ns) {
5843 parent_spec->pool_ns = pii.pool_ns;
5846 parent_spec->image_id = pii.image_id;
5847 pii.image_id = NULL;
5848 parent_spec->snap_id = pii.snap_id;
5850 rbd_dev->parent_spec = parent_spec;
5851 parent_spec = NULL; /* rbd_dev now owns this */
5855 * We always update the parent overlap. If it's zero we issue
5856 * a warning, as we will proceed as if there was no parent.
5860 /* refresh, careful to warn just once */
5861 if (rbd_dev->parent_overlap)
5863 "clone now standalone (overlap became 0)");
5866 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5869 rbd_dev->parent_overlap = pii.overlap;
5875 kfree(pii.image_id);
5876 rbd_spec_put(parent_spec);
5880 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5884 __le64 stripe_count;
5885 } __attribute__ ((packed)) striping_info_buf = { 0 };
5886 size_t size = sizeof (striping_info_buf);
5890 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5891 &rbd_dev->header_oloc, "get_stripe_unit_count",
5892 NULL, 0, &striping_info_buf, size);
5893 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5899 p = &striping_info_buf;
5900 rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5901 rbd_dev->header.stripe_count = ceph_decode_64(&p);
5905 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5907 __le64 data_pool_id;
5910 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5911 &rbd_dev->header_oloc, "get_data_pool",
5912 NULL, 0, &data_pool_id, sizeof(data_pool_id));
5915 if (ret < sizeof(data_pool_id))
5918 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5919 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5923 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5925 CEPH_DEFINE_OID_ONSTACK(oid);
5926 size_t image_id_size;
5931 void *reply_buf = NULL;
5933 char *image_name = NULL;
5936 rbd_assert(!rbd_dev->spec->image_name);
5938 len = strlen(rbd_dev->spec->image_id);
5939 image_id_size = sizeof (__le32) + len;
5940 image_id = kmalloc(image_id_size, GFP_KERNEL);
5945 end = image_id + image_id_size;
5946 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5948 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5949 reply_buf = kmalloc(size, GFP_KERNEL);
5953 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5954 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5955 "dir_get_name", image_id, image_id_size,
5960 end = reply_buf + ret;
5962 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5963 if (IS_ERR(image_name))
5966 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5974 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5976 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5977 const char *snap_name;
5980 /* Skip over names until we find the one we are looking for */
5982 snap_name = rbd_dev->header.snap_names;
5983 while (which < snapc->num_snaps) {
5984 if (!strcmp(name, snap_name))
5985 return snapc->snaps[which];
5986 snap_name += strlen(snap_name) + 1;
5992 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5994 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5999 for (which = 0; !found && which < snapc->num_snaps; which++) {
6000 const char *snap_name;
6002 snap_id = snapc->snaps[which];
6003 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6004 if (IS_ERR(snap_name)) {
6005 /* ignore no-longer existing snapshots */
6006 if (PTR_ERR(snap_name) == -ENOENT)
6011 found = !strcmp(name, snap_name);
6014 return found ? snap_id : CEPH_NOSNAP;
6018 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6019 * no snapshot by that name is found, or if an error occurs.
6021 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6023 if (rbd_dev->image_format == 1)
6024 return rbd_v1_snap_id_by_name(rbd_dev, name);
6026 return rbd_v2_snap_id_by_name(rbd_dev, name);
6030 * An image being mapped will have everything but the snap id.
6032 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6034 struct rbd_spec *spec = rbd_dev->spec;
6036 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6037 rbd_assert(spec->image_id && spec->image_name);
6038 rbd_assert(spec->snap_name);
6040 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6043 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6044 if (snap_id == CEPH_NOSNAP)
6047 spec->snap_id = snap_id;
6049 spec->snap_id = CEPH_NOSNAP;
6056 * A parent image will have all ids but none of the names.
6058 * All names in an rbd spec are dynamically allocated. It's OK if we
6059 * can't figure out the name for an image id.
6061 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6063 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6064 struct rbd_spec *spec = rbd_dev->spec;
6065 const char *pool_name;
6066 const char *image_name;
6067 const char *snap_name;
6070 rbd_assert(spec->pool_id != CEPH_NOPOOL);
6071 rbd_assert(spec->image_id);
6072 rbd_assert(spec->snap_id != CEPH_NOSNAP);
6074 /* Get the pool name; we have to make our own copy of this */
6076 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6078 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6081 pool_name = kstrdup(pool_name, GFP_KERNEL);
6085 /* Fetch the image name; tolerate failure here */
6087 image_name = rbd_dev_image_name(rbd_dev);
6089 rbd_warn(rbd_dev, "unable to get image name");
6091 /* Fetch the snapshot name */
6093 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6094 if (IS_ERR(snap_name)) {
6095 ret = PTR_ERR(snap_name);
6099 spec->pool_name = pool_name;
6100 spec->image_name = image_name;
6101 spec->snap_name = snap_name;
6111 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6120 struct ceph_snap_context *snapc;
6124 * We'll need room for the seq value (maximum snapshot id),
6125 * snapshot count, and array of that many snapshot ids.
6126 * For now we have a fixed upper limit on the number we're
6127 * prepared to receive.
6129 size = sizeof (__le64) + sizeof (__le32) +
6130 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6131 reply_buf = kzalloc(size, GFP_KERNEL);
6135 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6136 &rbd_dev->header_oloc, "get_snapcontext",
6137 NULL, 0, reply_buf, size);
6138 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6143 end = reply_buf + ret;
6145 ceph_decode_64_safe(&p, end, seq, out);
6146 ceph_decode_32_safe(&p, end, snap_count, out);
6149 * Make sure the reported number of snapshot ids wouldn't go
6150 * beyond the end of our buffer. But before checking that,
6151 * make sure the computed size of the snapshot context we
6152 * allocate is representable in a size_t.
6154 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6159 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6163 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6169 for (i = 0; i < snap_count; i++)
6170 snapc->snaps[i] = ceph_decode_64(&p);
6172 ceph_put_snap_context(rbd_dev->header.snapc);
6173 rbd_dev->header.snapc = snapc;
6175 dout(" snap context seq = %llu, snap_count = %u\n",
6176 (unsigned long long)seq, (unsigned int)snap_count);
6183 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6194 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6195 reply_buf = kmalloc(size, GFP_KERNEL);
6197 return ERR_PTR(-ENOMEM);
6199 snapid = cpu_to_le64(snap_id);
6200 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6201 &rbd_dev->header_oloc, "get_snapshot_name",
6202 &snapid, sizeof(snapid), reply_buf, size);
6203 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6205 snap_name = ERR_PTR(ret);
6210 end = reply_buf + ret;
6211 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6212 if (IS_ERR(snap_name))
6215 dout(" snap_id 0x%016llx snap_name = %s\n",
6216 (unsigned long long)snap_id, snap_name);
6223 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6225 bool first_time = rbd_dev->header.object_prefix == NULL;
6228 ret = rbd_dev_v2_image_size(rbd_dev);
6233 ret = rbd_dev_v2_header_onetime(rbd_dev);
6238 ret = rbd_dev_v2_snap_context(rbd_dev);
6239 if (ret && first_time) {
6240 kfree(rbd_dev->header.object_prefix);
6241 rbd_dev->header.object_prefix = NULL;
6247 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6249 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6251 if (rbd_dev->image_format == 1)
6252 return rbd_dev_v1_header_info(rbd_dev);
6254 return rbd_dev_v2_header_info(rbd_dev);
6258 * Skips over white space at *buf, and updates *buf to point to the
6259 * first found non-space character (if any). Returns the length of
6260 * the token (string of non-white space characters) found. Note
6261 * that *buf must be terminated with '\0'.
6263 static inline size_t next_token(const char **buf)
6266 * These are the characters that produce nonzero for
6267 * isspace() in the "C" and "POSIX" locales.
6269 const char *spaces = " \f\n\r\t\v";
6271 *buf += strspn(*buf, spaces); /* Find start of token */
6273 return strcspn(*buf, spaces); /* Return token length */
6277 * Finds the next token in *buf, dynamically allocates a buffer big
6278 * enough to hold a copy of it, and copies the token into the new
6279 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6280 * that a duplicate buffer is created even for a zero-length token.
6282 * Returns a pointer to the newly-allocated duplicate, or a null
6283 * pointer if memory for the duplicate was not available. If
6284 * the lenp argument is a non-null pointer, the length of the token
6285 * (not including the '\0') is returned in *lenp.
6287 * If successful, the *buf pointer will be updated to point beyond
6288 * the end of the found token.
6290 * Note: uses GFP_KERNEL for allocation.
6292 static inline char *dup_token(const char **buf, size_t *lenp)
6297 len = next_token(buf);
6298 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6301 *(dup + len) = '\0';
6310 static int rbd_parse_param(struct fs_parameter *param,
6311 struct rbd_parse_opts_ctx *pctx)
6313 struct rbd_options *opt = pctx->opts;
6314 struct fs_parse_result result;
6315 struct p_log log = {.prefix = "rbd"};
6318 ret = ceph_parse_param(param, pctx->copts, NULL);
6319 if (ret != -ENOPARAM)
6322 token = __fs_parse(&log, rbd_parameters, param, &result);
6323 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6325 if (token == -ENOPARAM)
6326 return inval_plog(&log, "Unknown parameter '%s'",
6332 case Opt_queue_depth:
6333 if (result.uint_32 < 1)
6335 opt->queue_depth = result.uint_32;
6337 case Opt_alloc_size:
6338 if (result.uint_32 < SECTOR_SIZE)
6340 if (!is_power_of_2(result.uint_32))
6341 return inval_plog(&log, "alloc_size must be a power of 2");
6342 opt->alloc_size = result.uint_32;
6344 case Opt_lock_timeout:
6345 /* 0 is "wait forever" (i.e. infinite timeout) */
6346 if (result.uint_32 > INT_MAX / 1000)
6348 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6351 kfree(pctx->spec->pool_ns);
6352 pctx->spec->pool_ns = param->string;
6353 param->string = NULL;
6355 case Opt_compression_hint:
6356 switch (result.uint_32) {
6357 case Opt_compression_hint_none:
6358 opt->alloc_hint_flags &=
6359 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6360 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6362 case Opt_compression_hint_compressible:
6363 opt->alloc_hint_flags |=
6364 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6365 opt->alloc_hint_flags &=
6366 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6368 case Opt_compression_hint_incompressible:
6369 opt->alloc_hint_flags |=
6370 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6371 opt->alloc_hint_flags &=
6372 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6379 opt->read_only = true;
6381 case Opt_read_write:
6382 opt->read_only = false;
6384 case Opt_lock_on_read:
6385 opt->lock_on_read = true;
6388 opt->exclusive = true;
6400 return inval_plog(&log, "%s out of range", param->key);
6404 * This duplicates most of generic_parse_monolithic(), untying it from
6405 * fs_context and skipping standard superblock and security options.
6407 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6412 dout("%s '%s'\n", __func__, options);
6413 while ((key = strsep(&options, ",")) != NULL) {
6415 struct fs_parameter param = {
6417 .type = fs_value_is_flag,
6419 char *value = strchr(key, '=');
6426 v_len = strlen(value);
6427 param.string = kmemdup_nul(value, v_len,
6431 param.type = fs_value_is_string;
6435 ret = rbd_parse_param(¶m, pctx);
6436 kfree(param.string);
6446 * Parse the options provided for an "rbd add" (i.e., rbd image
6447 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6448 * and the data written is passed here via a NUL-terminated buffer.
6449 * Returns 0 if successful or an error code otherwise.
6451 * The information extracted from these options is recorded in
6452 * the other parameters which return dynamically-allocated
6455 * The address of a pointer that will refer to a ceph options
6456 * structure. Caller must release the returned pointer using
6457 * ceph_destroy_options() when it is no longer needed.
6459 * Address of an rbd options pointer. Fully initialized by
6460 * this function; caller must release with kfree().
6462 * Address of an rbd image specification pointer. Fully
6463 * initialized by this function based on parsed options.
6464 * Caller must release with rbd_spec_put().
6466 * The options passed take this form:
6467 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6470 * A comma-separated list of one or more monitor addresses.
6471 * A monitor address is an ip address, optionally followed
6472 * by a port number (separated by a colon).
6473 * I.e.: ip1[:port1][,ip2[:port2]...]
6475 * A comma-separated list of ceph and/or rbd options.
6477 * The name of the rados pool containing the rbd image.
6479 * The name of the image in that pool to map.
6481 * An optional snapshot id. If provided, the mapping will
6482 * present data from the image at the time that snapshot was
6483 * created. The image head is used if no snapshot id is
6484 * provided. Snapshot mappings are always read-only.
6486 static int rbd_add_parse_args(const char *buf,
6487 struct ceph_options **ceph_opts,
6488 struct rbd_options **opts,
6489 struct rbd_spec **rbd_spec)
6493 const char *mon_addrs;
6495 size_t mon_addrs_size;
6496 struct rbd_parse_opts_ctx pctx = { 0 };
6499 /* The first four tokens are required */
6501 len = next_token(&buf);
6503 rbd_warn(NULL, "no monitor address(es) provided");
6507 mon_addrs_size = len;
6511 options = dup_token(&buf, NULL);
6515 rbd_warn(NULL, "no options provided");
6519 pctx.spec = rbd_spec_alloc();
6523 pctx.spec->pool_name = dup_token(&buf, NULL);
6524 if (!pctx.spec->pool_name)
6526 if (!*pctx.spec->pool_name) {
6527 rbd_warn(NULL, "no pool name provided");
6531 pctx.spec->image_name = dup_token(&buf, NULL);
6532 if (!pctx.spec->image_name)
6534 if (!*pctx.spec->image_name) {
6535 rbd_warn(NULL, "no image name provided");
6540 * Snapshot name is optional; default is to use "-"
6541 * (indicating the head/no snapshot).
6543 len = next_token(&buf);
6545 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6546 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6547 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6548 ret = -ENAMETOOLONG;
6551 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6554 *(snap_name + len) = '\0';
6555 pctx.spec->snap_name = snap_name;
6557 pctx.copts = ceph_alloc_options();
6561 /* Initialize all rbd options to the defaults */
6563 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6567 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6568 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6569 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6570 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6571 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6572 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6573 pctx.opts->trim = RBD_TRIM_DEFAULT;
6575 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6579 ret = rbd_parse_options(options, &pctx);
6583 *ceph_opts = pctx.copts;
6585 *rbd_spec = pctx.spec;
6593 ceph_destroy_options(pctx.copts);
6594 rbd_spec_put(pctx.spec);
6599 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6601 down_write(&rbd_dev->lock_rwsem);
6602 if (__rbd_is_lock_owner(rbd_dev))
6603 __rbd_release_lock(rbd_dev);
6604 up_write(&rbd_dev->lock_rwsem);
6608 * If the wait is interrupted, an error is returned even if the lock
6609 * was successfully acquired. rbd_dev_image_unlock() will release it
6612 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6616 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6617 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6620 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6624 if (rbd_is_ro(rbd_dev))
6627 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6628 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6629 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6630 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6632 ret = rbd_dev->acquire_err;
6634 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6640 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6645 * The lock may have been released by now, unless automatic lock
6646 * transitions are disabled.
6648 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6653 * An rbd format 2 image has a unique identifier, distinct from the
6654 * name given to it by the user. Internally, that identifier is
6655 * what's used to specify the names of objects related to the image.
6657 * A special "rbd id" object is used to map an rbd image name to its
6658 * id. If that object doesn't exist, then there is no v2 rbd image
6659 * with the supplied name.
6661 * This function will record the given rbd_dev's image_id field if
6662 * it can be determined, and in that case will return 0. If any
6663 * errors occur a negative errno will be returned and the rbd_dev's
6664 * image_id field will be unchanged (and should be NULL).
6666 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6670 CEPH_DEFINE_OID_ONSTACK(oid);
6675 * When probing a parent image, the image id is already
6676 * known (and the image name likely is not). There's no
6677 * need to fetch the image id again in this case. We
6678 * do still need to set the image format though.
6680 if (rbd_dev->spec->image_id) {
6681 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6687 * First, see if the format 2 image id file exists, and if
6688 * so, get the image's persistent id from it.
6690 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6691 rbd_dev->spec->image_name);
6695 dout("rbd id object name is %s\n", oid.name);
6697 /* Response will be an encoded string, which includes a length */
6698 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6699 response = kzalloc(size, GFP_NOIO);
6705 /* If it doesn't exist we'll assume it's a format 1 image */
6707 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6710 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6711 if (ret == -ENOENT) {
6712 image_id = kstrdup("", GFP_KERNEL);
6713 ret = image_id ? 0 : -ENOMEM;
6715 rbd_dev->image_format = 1;
6716 } else if (ret >= 0) {
6719 image_id = ceph_extract_encoded_string(&p, p + ret,
6721 ret = PTR_ERR_OR_ZERO(image_id);
6723 rbd_dev->image_format = 2;
6727 rbd_dev->spec->image_id = image_id;
6728 dout("image_id is %s\n", image_id);
6732 ceph_oid_destroy(&oid);
6737 * Undo whatever state changes are made by v1 or v2 header info
6740 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6742 struct rbd_image_header *header;
6744 rbd_dev_parent_put(rbd_dev);
6745 rbd_object_map_free(rbd_dev);
6746 rbd_dev_mapping_clear(rbd_dev);
6748 /* Free dynamic fields from the header, then zero it out */
6750 header = &rbd_dev->header;
6751 ceph_put_snap_context(header->snapc);
6752 kfree(header->snap_sizes);
6753 kfree(header->snap_names);
6754 kfree(header->object_prefix);
6755 memset(header, 0, sizeof (*header));
6758 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6762 ret = rbd_dev_v2_object_prefix(rbd_dev);
6767 * Get the and check features for the image. Currently the
6768 * features are assumed to never change.
6770 ret = rbd_dev_v2_features(rbd_dev);
6774 /* If the image supports fancy striping, get its parameters */
6776 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6777 ret = rbd_dev_v2_striping_info(rbd_dev);
6782 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6783 ret = rbd_dev_v2_data_pool(rbd_dev);
6788 rbd_init_layout(rbd_dev);
6792 rbd_dev->header.features = 0;
6793 kfree(rbd_dev->header.object_prefix);
6794 rbd_dev->header.object_prefix = NULL;
6799 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6800 * rbd_dev_image_probe() recursion depth, which means it's also the
6801 * length of the already discovered part of the parent chain.
6803 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6805 struct rbd_device *parent = NULL;
6808 if (!rbd_dev->parent_spec)
6811 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6812 pr_info("parent chain is too long (%d)\n", depth);
6817 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6824 * Images related by parent/child relationships always share
6825 * rbd_client and spec/parent_spec, so bump their refcounts.
6827 __rbd_get_client(rbd_dev->rbd_client);
6828 rbd_spec_get(rbd_dev->parent_spec);
6830 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6832 ret = rbd_dev_image_probe(parent, depth);
6836 rbd_dev->parent = parent;
6837 atomic_set(&rbd_dev->parent_ref, 1);
6841 rbd_dev_unparent(rbd_dev);
6842 rbd_dev_destroy(parent);
6846 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6848 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6849 rbd_free_disk(rbd_dev);
6851 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6855 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6858 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6862 /* Record our major and minor device numbers. */
6864 if (!single_major) {
6865 ret = register_blkdev(0, rbd_dev->name);
6867 goto err_out_unlock;
6869 rbd_dev->major = ret;
6872 rbd_dev->major = rbd_major;
6873 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6876 /* Set up the blkdev mapping. */
6878 ret = rbd_init_disk(rbd_dev);
6880 goto err_out_blkdev;
6882 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6883 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6885 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6889 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6890 up_write(&rbd_dev->header_rwsem);
6894 rbd_free_disk(rbd_dev);
6897 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6899 up_write(&rbd_dev->header_rwsem);
6903 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6905 struct rbd_spec *spec = rbd_dev->spec;
6908 /* Record the header object name for this rbd image. */
6910 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6911 if (rbd_dev->image_format == 1)
6912 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6913 spec->image_name, RBD_SUFFIX);
6915 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6916 RBD_HEADER_PREFIX, spec->image_id);
6921 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6924 pr_info("image %s/%s%s%s does not exist\n",
6925 rbd_dev->spec->pool_name,
6926 rbd_dev->spec->pool_ns ?: "",
6927 rbd_dev->spec->pool_ns ? "/" : "",
6928 rbd_dev->spec->image_name);
6930 pr_info("snap %s/%s%s%s@%s does not exist\n",
6931 rbd_dev->spec->pool_name,
6932 rbd_dev->spec->pool_ns ?: "",
6933 rbd_dev->spec->pool_ns ? "/" : "",
6934 rbd_dev->spec->image_name,
6935 rbd_dev->spec->snap_name);
6939 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6941 if (!rbd_is_ro(rbd_dev))
6942 rbd_unregister_watch(rbd_dev);
6944 rbd_dev_unprobe(rbd_dev);
6945 rbd_dev->image_format = 0;
6946 kfree(rbd_dev->spec->image_id);
6947 rbd_dev->spec->image_id = NULL;
6951 * Probe for the existence of the header object for the given rbd
6952 * device. If this image is the one being mapped (i.e., not a
6953 * parent), initiate a watch on its header object before using that
6954 * object to get detailed information about the rbd image.
6956 * On success, returns with header_rwsem held for write if called
6959 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6961 bool need_watch = !rbd_is_ro(rbd_dev);
6965 * Get the id from the image id object. Unless there's an
6966 * error, rbd_dev->spec->image_id will be filled in with
6967 * a dynamically-allocated string, and rbd_dev->image_format
6968 * will be set to either 1 or 2.
6970 ret = rbd_dev_image_id(rbd_dev);
6974 ret = rbd_dev_header_name(rbd_dev);
6976 goto err_out_format;
6979 ret = rbd_register_watch(rbd_dev);
6982 rbd_print_dne(rbd_dev, false);
6983 goto err_out_format;
6988 down_write(&rbd_dev->header_rwsem);
6990 ret = rbd_dev_header_info(rbd_dev);
6992 if (ret == -ENOENT && !need_watch)
6993 rbd_print_dne(rbd_dev, false);
6998 * If this image is the one being mapped, we have pool name and
6999 * id, image name and id, and snap name - need to fill snap id.
7000 * Otherwise this is a parent image, identified by pool, image
7001 * and snap ids - need to fill in names for those ids.
7004 ret = rbd_spec_fill_snap_id(rbd_dev);
7006 ret = rbd_spec_fill_names(rbd_dev);
7009 rbd_print_dne(rbd_dev, true);
7013 ret = rbd_dev_mapping_set(rbd_dev);
7017 if (rbd_is_snap(rbd_dev) &&
7018 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7019 ret = rbd_object_map_load(rbd_dev);
7024 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7025 ret = rbd_dev_v2_parent_info(rbd_dev);
7030 ret = rbd_dev_probe_parent(rbd_dev, depth);
7034 dout("discovered format %u image, header name is %s\n",
7035 rbd_dev->image_format, rbd_dev->header_oid.name);
7040 up_write(&rbd_dev->header_rwsem);
7042 rbd_unregister_watch(rbd_dev);
7043 rbd_dev_unprobe(rbd_dev);
7045 rbd_dev->image_format = 0;
7046 kfree(rbd_dev->spec->image_id);
7047 rbd_dev->spec->image_id = NULL;
7051 static ssize_t do_rbd_add(struct bus_type *bus,
7055 struct rbd_device *rbd_dev = NULL;
7056 struct ceph_options *ceph_opts = NULL;
7057 struct rbd_options *rbd_opts = NULL;
7058 struct rbd_spec *spec = NULL;
7059 struct rbd_client *rbdc;
7062 if (!try_module_get(THIS_MODULE))
7065 /* parse add command */
7066 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7070 rbdc = rbd_get_client(ceph_opts);
7077 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7080 pr_info("pool %s does not exist\n", spec->pool_name);
7081 goto err_out_client;
7083 spec->pool_id = (u64)rc;
7085 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7088 goto err_out_client;
7090 rbdc = NULL; /* rbd_dev now owns this */
7091 spec = NULL; /* rbd_dev now owns this */
7092 rbd_opts = NULL; /* rbd_dev now owns this */
7094 /* if we are mapping a snapshot it will be a read-only mapping */
7095 if (rbd_dev->opts->read_only ||
7096 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7097 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7099 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7100 if (!rbd_dev->config_info) {
7102 goto err_out_rbd_dev;
7105 rc = rbd_dev_image_probe(rbd_dev, 0);
7107 goto err_out_rbd_dev;
7109 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7110 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7111 rbd_dev->layout.object_size);
7112 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7115 rc = rbd_dev_device_setup(rbd_dev);
7117 goto err_out_image_probe;
7119 rc = rbd_add_acquire_lock(rbd_dev);
7121 goto err_out_image_lock;
7123 /* Everything's ready. Announce the disk to the world. */
7125 rc = device_add(&rbd_dev->dev);
7127 goto err_out_image_lock;
7129 device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7130 /* see rbd_init_disk() */
7131 blk_put_queue(rbd_dev->disk->queue);
7133 spin_lock(&rbd_dev_list_lock);
7134 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7135 spin_unlock(&rbd_dev_list_lock);
7137 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7138 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7139 rbd_dev->header.features);
7142 module_put(THIS_MODULE);
7146 rbd_dev_image_unlock(rbd_dev);
7147 rbd_dev_device_release(rbd_dev);
7148 err_out_image_probe:
7149 rbd_dev_image_release(rbd_dev);
7151 rbd_dev_destroy(rbd_dev);
7153 rbd_put_client(rbdc);
7160 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7165 return do_rbd_add(bus, buf, count);
7168 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7171 return do_rbd_add(bus, buf, count);
7174 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7176 while (rbd_dev->parent) {
7177 struct rbd_device *first = rbd_dev;
7178 struct rbd_device *second = first->parent;
7179 struct rbd_device *third;
7182 * Follow to the parent with no grandparent and
7185 while (second && (third = second->parent)) {
7190 rbd_dev_image_release(second);
7191 rbd_dev_destroy(second);
7192 first->parent = NULL;
7193 first->parent_overlap = 0;
7195 rbd_assert(first->parent_spec);
7196 rbd_spec_put(first->parent_spec);
7197 first->parent_spec = NULL;
7201 static ssize_t do_rbd_remove(struct bus_type *bus,
7205 struct rbd_device *rbd_dev = NULL;
7206 struct list_head *tmp;
7214 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7216 pr_err("dev_id out of range\n");
7219 if (opt_buf[0] != '\0') {
7220 if (!strcmp(opt_buf, "force")) {
7223 pr_err("bad remove option at '%s'\n", opt_buf);
7229 spin_lock(&rbd_dev_list_lock);
7230 list_for_each(tmp, &rbd_dev_list) {
7231 rbd_dev = list_entry(tmp, struct rbd_device, node);
7232 if (rbd_dev->dev_id == dev_id) {
7238 spin_lock_irq(&rbd_dev->lock);
7239 if (rbd_dev->open_count && !force)
7241 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7244 spin_unlock_irq(&rbd_dev->lock);
7246 spin_unlock(&rbd_dev_list_lock);
7252 * Prevent new IO from being queued and wait for existing
7253 * IO to complete/fail.
7255 blk_mq_freeze_queue(rbd_dev->disk->queue);
7256 blk_set_queue_dying(rbd_dev->disk->queue);
7259 del_gendisk(rbd_dev->disk);
7260 spin_lock(&rbd_dev_list_lock);
7261 list_del_init(&rbd_dev->node);
7262 spin_unlock(&rbd_dev_list_lock);
7263 device_del(&rbd_dev->dev);
7265 rbd_dev_image_unlock(rbd_dev);
7266 rbd_dev_device_release(rbd_dev);
7267 rbd_dev_image_release(rbd_dev);
7268 rbd_dev_destroy(rbd_dev);
7272 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7277 return do_rbd_remove(bus, buf, count);
7280 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7283 return do_rbd_remove(bus, buf, count);
7287 * create control files in sysfs
7290 static int __init rbd_sysfs_init(void)
7294 ret = device_register(&rbd_root_dev);
7298 ret = bus_register(&rbd_bus_type);
7300 device_unregister(&rbd_root_dev);
7305 static void __exit rbd_sysfs_cleanup(void)
7307 bus_unregister(&rbd_bus_type);
7308 device_unregister(&rbd_root_dev);
7311 static int __init rbd_slab_init(void)
7313 rbd_assert(!rbd_img_request_cache);
7314 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7315 if (!rbd_img_request_cache)
7318 rbd_assert(!rbd_obj_request_cache);
7319 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7320 if (!rbd_obj_request_cache)
7326 kmem_cache_destroy(rbd_img_request_cache);
7327 rbd_img_request_cache = NULL;
7331 static void rbd_slab_exit(void)
7333 rbd_assert(rbd_obj_request_cache);
7334 kmem_cache_destroy(rbd_obj_request_cache);
7335 rbd_obj_request_cache = NULL;
7337 rbd_assert(rbd_img_request_cache);
7338 kmem_cache_destroy(rbd_img_request_cache);
7339 rbd_img_request_cache = NULL;
7342 static int __init rbd_init(void)
7346 if (!libceph_compatible(NULL)) {
7347 rbd_warn(NULL, "libceph incompatibility (quitting)");
7351 rc = rbd_slab_init();
7356 * The number of active work items is limited by the number of
7357 * rbd devices * queue depth, so leave @max_active at default.
7359 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7366 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7367 if (rbd_major < 0) {
7373 rc = rbd_sysfs_init();
7375 goto err_out_blkdev;
7378 pr_info("loaded (major %d)\n", rbd_major);
7380 pr_info("loaded\n");
7386 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7388 destroy_workqueue(rbd_wq);
7394 static void __exit rbd_exit(void)
7396 ida_destroy(&rbd_dev_id_ida);
7397 rbd_sysfs_cleanup();
7399 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7400 destroy_workqueue(rbd_wq);
7404 module_init(rbd_init);
7405 module_exit(rbd_exit);
7410 /* following authorship retained from original osdblk.c */
7413 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7414 MODULE_LICENSE("GPL");