2 * Core registration and callback routines for MTD
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 #include <linux/nvmem-provider.h>
46 #include <linux/mtd/mtd.h>
47 #include <linux/mtd/partitions.h>
51 struct backing_dev_info *mtd_bdi;
53 #ifdef CONFIG_PM_SLEEP
55 static int mtd_cls_suspend(struct device *dev)
57 struct mtd_info *mtd = dev_get_drvdata(dev);
59 return mtd ? mtd_suspend(mtd) : 0;
62 static int mtd_cls_resume(struct device *dev)
64 struct mtd_info *mtd = dev_get_drvdata(dev);
71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
74 #define MTD_CLS_PM_OPS NULL
77 static struct class mtd_class = {
83 static DEFINE_IDR(mtd_idr);
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86 should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
90 struct mtd_info *__mtd_next_device(int i)
92 return idr_get_next(&mtd_idr, &i);
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
96 static LIST_HEAD(mtd_notifiers);
99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101 /* REVISIT once MTD uses the driver model better, whoever allocates
102 * the mtd_info will probably want to use the release() hook...
104 static void mtd_release(struct device *dev)
106 struct mtd_info *mtd = dev_get_drvdata(dev);
107 dev_t index = MTD_DEVT(mtd->index);
109 /* remove /dev/mtdXro node */
110 device_destroy(&mtd_class, index + 1);
113 static ssize_t mtd_type_show(struct device *dev,
114 struct device_attribute *attr, char *buf)
116 struct mtd_info *mtd = dev_get_drvdata(dev);
141 case MTD_MLCNANDFLASH:
148 return snprintf(buf, PAGE_SIZE, "%s\n", type);
150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
152 static ssize_t mtd_flags_show(struct device *dev,
153 struct device_attribute *attr, char *buf)
155 struct mtd_info *mtd = dev_get_drvdata(dev);
157 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
160 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
162 static ssize_t mtd_size_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
165 struct mtd_info *mtd = dev_get_drvdata(dev);
167 return snprintf(buf, PAGE_SIZE, "%llu\n",
168 (unsigned long long)mtd->size);
171 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
173 static ssize_t mtd_erasesize_show(struct device *dev,
174 struct device_attribute *attr, char *buf)
176 struct mtd_info *mtd = dev_get_drvdata(dev);
178 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
181 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
183 static ssize_t mtd_writesize_show(struct device *dev,
184 struct device_attribute *attr, char *buf)
186 struct mtd_info *mtd = dev_get_drvdata(dev);
188 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
191 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
193 static ssize_t mtd_subpagesize_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
196 struct mtd_info *mtd = dev_get_drvdata(dev);
197 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
199 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
202 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
204 static ssize_t mtd_oobsize_show(struct device *dev,
205 struct device_attribute *attr, char *buf)
207 struct mtd_info *mtd = dev_get_drvdata(dev);
209 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
212 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
214 static ssize_t mtd_oobavail_show(struct device *dev,
215 struct device_attribute *attr, char *buf)
217 struct mtd_info *mtd = dev_get_drvdata(dev);
219 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
221 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
223 static ssize_t mtd_numeraseregions_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
226 struct mtd_info *mtd = dev_get_drvdata(dev);
228 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
231 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
234 static ssize_t mtd_name_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct mtd_info *mtd = dev_get_drvdata(dev);
239 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
242 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
244 static ssize_t mtd_ecc_strength_show(struct device *dev,
245 struct device_attribute *attr, char *buf)
247 struct mtd_info *mtd = dev_get_drvdata(dev);
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
251 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
253 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
254 struct device_attribute *attr,
257 struct mtd_info *mtd = dev_get_drvdata(dev);
259 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
262 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
263 struct device_attribute *attr,
264 const char *buf, size_t count)
266 struct mtd_info *mtd = dev_get_drvdata(dev);
267 unsigned int bitflip_threshold;
270 retval = kstrtouint(buf, 0, &bitflip_threshold);
274 mtd->bitflip_threshold = bitflip_threshold;
277 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
278 mtd_bitflip_threshold_show,
279 mtd_bitflip_threshold_store);
281 static ssize_t mtd_ecc_step_size_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
284 struct mtd_info *mtd = dev_get_drvdata(dev);
286 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
289 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
291 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
299 static DEVICE_ATTR(corrected_bits, S_IRUGO,
300 mtd_ecc_stats_corrected_show, NULL);
302 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
310 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
312 static ssize_t mtd_badblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
320 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
322 static ssize_t mtd_bbtblocks_show(struct device *dev,
323 struct device_attribute *attr, char *buf)
325 struct mtd_info *mtd = dev_get_drvdata(dev);
326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
328 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
330 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
332 static struct attribute *mtd_attrs[] = {
334 &dev_attr_flags.attr,
336 &dev_attr_erasesize.attr,
337 &dev_attr_writesize.attr,
338 &dev_attr_subpagesize.attr,
339 &dev_attr_oobsize.attr,
340 &dev_attr_oobavail.attr,
341 &dev_attr_numeraseregions.attr,
343 &dev_attr_ecc_strength.attr,
344 &dev_attr_ecc_step_size.attr,
345 &dev_attr_corrected_bits.attr,
346 &dev_attr_ecc_failures.attr,
347 &dev_attr_bad_blocks.attr,
348 &dev_attr_bbt_blocks.attr,
349 &dev_attr_bitflip_threshold.attr,
352 ATTRIBUTE_GROUPS(mtd);
354 static const struct device_type mtd_devtype = {
356 .groups = mtd_groups,
357 .release = mtd_release,
361 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
365 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
366 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
368 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
371 return NOMMU_MAP_COPY;
374 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
377 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
380 struct mtd_info *mtd;
382 mtd = container_of(n, struct mtd_info, reboot_notifier);
389 * mtd_wunit_to_pairing_info - get pairing information of a wunit
390 * @mtd: pointer to new MTD device info structure
391 * @wunit: write unit we are interested in
392 * @info: returned pairing information
394 * Retrieve pairing information associated to the wunit.
395 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
396 * paired together, and where programming a page may influence the page it is
398 * The notion of page is replaced by the term wunit (write-unit) to stay
399 * consistent with the ->writesize field.
401 * The @wunit argument can be extracted from an absolute offset using
402 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
405 * From the pairing info the MTD user can find all the wunits paired with
406 * @wunit using the following loop:
408 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
410 * mtd_pairing_info_to_wunit(mtd, &info);
414 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
415 struct mtd_pairing_info *info)
417 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
419 if (wunit < 0 || wunit >= npairs)
422 if (mtd->pairing && mtd->pairing->get_info)
423 return mtd->pairing->get_info(mtd, wunit, info);
430 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
433 * mtd_pairing_info_to_wunit - get wunit from pairing information
434 * @mtd: pointer to new MTD device info structure
435 * @info: pairing information struct
437 * Returns a positive number representing the wunit associated to the info
438 * struct, or a negative error code.
440 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
441 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
444 * It can also be used to only program the first page of each pair (i.e.
445 * page attached to group 0), which allows one to use an MLC NAND in
446 * software-emulated SLC mode:
449 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
450 * for (info.pair = 0; info.pair < npairs; info.pair++) {
451 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
452 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
453 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
456 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
457 const struct mtd_pairing_info *info)
459 int ngroups = mtd_pairing_groups(mtd);
460 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
462 if (!info || info->pair < 0 || info->pair >= npairs ||
463 info->group < 0 || info->group >= ngroups)
466 if (mtd->pairing && mtd->pairing->get_wunit)
467 return mtd->pairing->get_wunit(mtd, info);
471 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
474 * mtd_pairing_groups - get the number of pairing groups
475 * @mtd: pointer to new MTD device info structure
477 * Returns the number of pairing groups.
479 * This number is usually equal to the number of bits exposed by a single
480 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
481 * to iterate over all pages of a given pair.
483 int mtd_pairing_groups(struct mtd_info *mtd)
485 if (!mtd->pairing || !mtd->pairing->ngroups)
488 return mtd->pairing->ngroups;
490 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
492 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
493 void *val, size_t bytes)
495 struct mtd_info *mtd = priv;
499 err = mtd_read(mtd, offset, bytes, &retlen, val);
500 if (err && err != -EUCLEAN)
503 return retlen == bytes ? 0 : -EIO;
506 static int mtd_nvmem_add(struct mtd_info *mtd)
508 struct nvmem_config config = {};
510 config.dev = &mtd->dev;
511 config.name = mtd->name;
512 config.owner = THIS_MODULE;
513 config.reg_read = mtd_nvmem_reg_read;
514 config.size = mtd->size;
515 config.word_size = 1;
517 config.read_only = true;
518 config.root_only = true;
519 config.no_of_node = true;
522 mtd->nvmem = nvmem_register(&config);
523 if (IS_ERR(mtd->nvmem)) {
524 /* Just ignore if there is no NVMEM support in the kernel */
525 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
528 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
529 return PTR_ERR(mtd->nvmem);
536 static struct dentry *dfs_dir_mtd;
539 * add_mtd_device - register an MTD device
540 * @mtd: pointer to new MTD device info structure
542 * Add a device to the list of MTD devices present in the system, and
543 * notify each currently active MTD 'user' of its arrival. Returns
544 * zero on success or non-zero on failure.
547 int add_mtd_device(struct mtd_info *mtd)
549 struct mtd_notifier *not;
553 * May occur, for instance, on buggy drivers which call
554 * mtd_device_parse_register() multiple times on the same master MTD,
555 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
557 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
560 BUG_ON(mtd->writesize == 0);
562 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
563 !(mtd->flags & MTD_NO_ERASE)))
566 mutex_lock(&mtd_table_mutex);
568 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
577 /* default value if not set by driver */
578 if (mtd->bitflip_threshold == 0)
579 mtd->bitflip_threshold = mtd->ecc_strength;
581 if (is_power_of_2(mtd->erasesize))
582 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
584 mtd->erasesize_shift = 0;
586 if (is_power_of_2(mtd->writesize))
587 mtd->writesize_shift = ffs(mtd->writesize) - 1;
589 mtd->writesize_shift = 0;
591 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
592 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
594 /* Some chips always power up locked. Unlock them now */
595 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
596 error = mtd_unlock(mtd, 0, mtd->size);
597 if (error && error != -EOPNOTSUPP)
599 "%s: unlock failed, writes may not work\n",
601 /* Ignore unlock failures? */
605 /* Caller should have set dev.parent to match the
606 * physical device, if appropriate.
608 mtd->dev.type = &mtd_devtype;
609 mtd->dev.class = &mtd_class;
610 mtd->dev.devt = MTD_DEVT(i);
611 dev_set_name(&mtd->dev, "mtd%d", i);
612 dev_set_drvdata(&mtd->dev, mtd);
613 of_node_get(mtd_get_of_node(mtd));
614 error = device_register(&mtd->dev);
618 /* Add the nvmem provider */
619 error = mtd_nvmem_add(mtd);
623 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
624 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
625 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
626 pr_debug("mtd device %s won't show data in debugfs\n",
627 dev_name(&mtd->dev));
631 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
634 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
635 /* No need to get a refcount on the module containing
636 the notifier, since we hold the mtd_table_mutex */
637 list_for_each_entry(not, &mtd_notifiers, list)
640 mutex_unlock(&mtd_table_mutex);
641 /* We _know_ we aren't being removed, because
642 our caller is still holding us here. So none
643 of this try_ nonsense, and no bitching about it
645 __module_get(THIS_MODULE);
649 device_unregister(&mtd->dev);
651 of_node_put(mtd_get_of_node(mtd));
652 idr_remove(&mtd_idr, i);
654 mutex_unlock(&mtd_table_mutex);
659 * del_mtd_device - unregister an MTD device
660 * @mtd: pointer to MTD device info structure
662 * Remove a device from the list of MTD devices present in the system,
663 * and notify each currently active MTD 'user' of its departure.
664 * Returns zero on success or 1 on failure, which currently will happen
665 * if the requested device does not appear to be present in the list.
668 int del_mtd_device(struct mtd_info *mtd)
671 struct mtd_notifier *not;
673 mutex_lock(&mtd_table_mutex);
675 debugfs_remove_recursive(mtd->dbg.dfs_dir);
677 if (idr_find(&mtd_idr, mtd->index) != mtd) {
682 /* No need to get a refcount on the module containing
683 the notifier, since we hold the mtd_table_mutex */
684 list_for_each_entry(not, &mtd_notifiers, list)
688 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
689 mtd->index, mtd->name, mtd->usecount);
692 /* Try to remove the NVMEM provider */
694 nvmem_unregister(mtd->nvmem);
696 device_unregister(&mtd->dev);
698 idr_remove(&mtd_idr, mtd->index);
699 of_node_put(mtd_get_of_node(mtd));
701 module_put(THIS_MODULE);
706 mutex_unlock(&mtd_table_mutex);
711 * Set a few defaults based on the parent devices, if not provided by the
714 static void mtd_set_dev_defaults(struct mtd_info *mtd)
716 if (mtd->dev.parent) {
717 if (!mtd->owner && mtd->dev.parent->driver)
718 mtd->owner = mtd->dev.parent->driver->owner;
720 mtd->name = dev_name(mtd->dev.parent);
722 pr_debug("mtd device won't show a device symlink in sysfs\n");
725 mtd->orig_flags = mtd->flags;
729 * mtd_device_parse_register - parse partitions and register an MTD device.
731 * @mtd: the MTD device to register
732 * @types: the list of MTD partition probes to try, see
733 * 'parse_mtd_partitions()' for more information
734 * @parser_data: MTD partition parser-specific data
735 * @parts: fallback partition information to register, if parsing fails;
736 * only valid if %nr_parts > %0
737 * @nr_parts: the number of partitions in parts, if zero then the full
738 * MTD device is registered if no partition info is found
740 * This function aggregates MTD partitions parsing (done by
741 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
742 * basically follows the most common pattern found in many MTD drivers:
744 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
746 * * Then It tries to probe partitions on MTD device @mtd using parsers
747 * specified in @types (if @types is %NULL, then the default list of parsers
748 * is used, see 'parse_mtd_partitions()' for more information). If none are
749 * found this functions tries to fallback to information specified in
751 * * If no partitions were found this function just registers the MTD device
754 * Returns zero in case of success and a negative error code in case of failure.
756 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
757 struct mtd_part_parser_data *parser_data,
758 const struct mtd_partition *parts,
763 mtd_set_dev_defaults(mtd);
765 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
766 ret = add_mtd_device(mtd);
771 /* Prefer parsed partitions over driver-provided fallback */
772 ret = parse_mtd_partitions(mtd, types, parser_data);
776 ret = add_mtd_partitions(mtd, parts, nr_parts);
777 else if (!device_is_registered(&mtd->dev))
778 ret = add_mtd_device(mtd);
786 * FIXME: some drivers unfortunately call this function more than once.
787 * So we have to check if we've already assigned the reboot notifier.
789 * Generally, we can make multiple calls work for most cases, but it
790 * does cause problems with parse_mtd_partitions() above (e.g.,
791 * cmdlineparts will register partitions more than once).
793 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
794 "MTD already registered\n");
795 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
796 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
797 register_reboot_notifier(&mtd->reboot_notifier);
801 if (ret && device_is_registered(&mtd->dev))
806 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
809 * mtd_device_unregister - unregister an existing MTD device.
811 * @master: the MTD device to unregister. This will unregister both the master
812 * and any partitions if registered.
814 int mtd_device_unregister(struct mtd_info *master)
819 unregister_reboot_notifier(&master->reboot_notifier);
821 err = del_mtd_partitions(master);
825 if (!device_is_registered(&master->dev))
828 return del_mtd_device(master);
830 EXPORT_SYMBOL_GPL(mtd_device_unregister);
833 * register_mtd_user - register a 'user' of MTD devices.
834 * @new: pointer to notifier info structure
836 * Registers a pair of callbacks function to be called upon addition
837 * or removal of MTD devices. Causes the 'add' callback to be immediately
838 * invoked for each MTD device currently present in the system.
840 void register_mtd_user (struct mtd_notifier *new)
842 struct mtd_info *mtd;
844 mutex_lock(&mtd_table_mutex);
846 list_add(&new->list, &mtd_notifiers);
848 __module_get(THIS_MODULE);
850 mtd_for_each_device(mtd)
853 mutex_unlock(&mtd_table_mutex);
855 EXPORT_SYMBOL_GPL(register_mtd_user);
858 * unregister_mtd_user - unregister a 'user' of MTD devices.
859 * @old: pointer to notifier info structure
861 * Removes a callback function pair from the list of 'users' to be
862 * notified upon addition or removal of MTD devices. Causes the
863 * 'remove' callback to be immediately invoked for each MTD device
864 * currently present in the system.
866 int unregister_mtd_user (struct mtd_notifier *old)
868 struct mtd_info *mtd;
870 mutex_lock(&mtd_table_mutex);
872 module_put(THIS_MODULE);
874 mtd_for_each_device(mtd)
877 list_del(&old->list);
878 mutex_unlock(&mtd_table_mutex);
881 EXPORT_SYMBOL_GPL(unregister_mtd_user);
884 * get_mtd_device - obtain a validated handle for an MTD device
885 * @mtd: last known address of the required MTD device
886 * @num: internal device number of the required MTD device
888 * Given a number and NULL address, return the num'th entry in the device
889 * table, if any. Given an address and num == -1, search the device table
890 * for a device with that address and return if it's still present. Given
891 * both, return the num'th driver only if its address matches. Return
894 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
896 struct mtd_info *ret = NULL, *other;
899 mutex_lock(&mtd_table_mutex);
902 mtd_for_each_device(other) {
908 } else if (num >= 0) {
909 ret = idr_find(&mtd_idr, num);
910 if (mtd && mtd != ret)
919 err = __get_mtd_device(ret);
923 mutex_unlock(&mtd_table_mutex);
926 EXPORT_SYMBOL_GPL(get_mtd_device);
929 int __get_mtd_device(struct mtd_info *mtd)
933 if (!try_module_get(mtd->owner))
936 if (mtd->_get_device) {
937 err = mtd->_get_device(mtd);
940 module_put(mtd->owner);
947 EXPORT_SYMBOL_GPL(__get_mtd_device);
950 * get_mtd_device_nm - obtain a validated handle for an MTD device by
952 * @name: MTD device name to open
954 * This function returns MTD device description structure in case of
955 * success and an error code in case of failure.
957 struct mtd_info *get_mtd_device_nm(const char *name)
960 struct mtd_info *mtd = NULL, *other;
962 mutex_lock(&mtd_table_mutex);
964 mtd_for_each_device(other) {
965 if (!strcmp(name, other->name)) {
974 err = __get_mtd_device(mtd);
978 mutex_unlock(&mtd_table_mutex);
982 mutex_unlock(&mtd_table_mutex);
985 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
987 void put_mtd_device(struct mtd_info *mtd)
989 mutex_lock(&mtd_table_mutex);
990 __put_mtd_device(mtd);
991 mutex_unlock(&mtd_table_mutex);
994 EXPORT_SYMBOL_GPL(put_mtd_device);
996 void __put_mtd_device(struct mtd_info *mtd)
999 BUG_ON(mtd->usecount < 0);
1001 if (mtd->_put_device)
1002 mtd->_put_device(mtd);
1004 module_put(mtd->owner);
1006 EXPORT_SYMBOL_GPL(__put_mtd_device);
1009 * Erase is an synchronous operation. Device drivers are epected to return a
1010 * negative error code if the operation failed and update instr->fail_addr
1011 * to point the portion that was not properly erased.
1013 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1015 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1017 if (!mtd->erasesize || !mtd->_erase)
1020 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1022 if (!(mtd->flags & MTD_WRITEABLE))
1028 ledtrig_mtd_activity();
1029 return mtd->_erase(mtd, instr);
1031 EXPORT_SYMBOL_GPL(mtd_erase);
1034 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1036 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1037 void **virt, resource_size_t *phys)
1045 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1049 return mtd->_point(mtd, from, len, retlen, virt, phys);
1051 EXPORT_SYMBOL_GPL(mtd_point);
1053 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1054 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1058 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1062 return mtd->_unpoint(mtd, from, len);
1064 EXPORT_SYMBOL_GPL(mtd_unpoint);
1067 * Allow NOMMU mmap() to directly map the device (if not NULL)
1068 * - return the address to which the offset maps
1069 * - return -ENOSYS to indicate refusal to do the mapping
1071 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1072 unsigned long offset, unsigned long flags)
1078 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1081 if (retlen != len) {
1082 mtd_unpoint(mtd, offset, retlen);
1085 return (unsigned long)virt;
1087 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1089 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1094 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1099 ledtrig_mtd_activity();
1101 * In the absence of an error, drivers return a non-negative integer
1102 * representing the maximum number of bitflips that were corrected on
1103 * any one ecc region (if applicable; zero otherwise).
1106 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1107 } else if (mtd->_read_oob) {
1108 struct mtd_oob_ops ops = {
1113 ret_code = mtd->_read_oob(mtd, from, &ops);
1114 *retlen = ops.retlen;
1119 if (unlikely(ret_code < 0))
1121 if (mtd->ecc_strength == 0)
1122 return 0; /* device lacks ecc */
1123 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1125 EXPORT_SYMBOL_GPL(mtd_read);
1127 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1131 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1133 if ((!mtd->_write && !mtd->_write_oob) ||
1134 !(mtd->flags & MTD_WRITEABLE))
1138 ledtrig_mtd_activity();
1141 struct mtd_oob_ops ops = {
1143 .datbuf = (u8 *)buf,
1147 ret = mtd->_write_oob(mtd, to, &ops);
1148 *retlen = ops.retlen;
1152 return mtd->_write(mtd, to, len, retlen, buf);
1154 EXPORT_SYMBOL_GPL(mtd_write);
1157 * In blackbox flight recorder like scenarios we want to make successful writes
1158 * in interrupt context. panic_write() is only intended to be called when its
1159 * known the kernel is about to panic and we need the write to succeed. Since
1160 * the kernel is not going to be running for much longer, this function can
1161 * break locks and delay to ensure the write succeeds (but not sleep).
1163 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1167 if (!mtd->_panic_write)
1169 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1171 if (!(mtd->flags & MTD_WRITEABLE))
1175 return mtd->_panic_write(mtd, to, len, retlen, buf);
1177 EXPORT_SYMBOL_GPL(mtd_panic_write);
1179 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1180 struct mtd_oob_ops *ops)
1183 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1184 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1193 if (offs < 0 || offs + ops->len > mtd->size)
1199 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1202 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1203 mtd_div_by_ws(offs, mtd)) *
1204 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1205 if (ops->ooblen > maxooblen)
1212 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1215 ops->retlen = ops->oobretlen = 0;
1217 ret_code = mtd_check_oob_ops(mtd, from, ops);
1221 ledtrig_mtd_activity();
1223 /* Check the validity of a potential fallback on mtd->_read */
1224 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1228 ret_code = mtd->_read_oob(mtd, from, ops);
1230 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1234 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1235 * similar to mtd->_read(), returning a non-negative integer
1236 * representing max bitflips. In other cases, mtd->_read_oob() may
1237 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1239 if (unlikely(ret_code < 0))
1241 if (mtd->ecc_strength == 0)
1242 return 0; /* device lacks ecc */
1243 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1245 EXPORT_SYMBOL_GPL(mtd_read_oob);
1247 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1248 struct mtd_oob_ops *ops)
1252 ops->retlen = ops->oobretlen = 0;
1254 if (!(mtd->flags & MTD_WRITEABLE))
1257 ret = mtd_check_oob_ops(mtd, to, ops);
1261 ledtrig_mtd_activity();
1263 /* Check the validity of a potential fallback on mtd->_write */
1264 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1267 if (mtd->_write_oob)
1268 return mtd->_write_oob(mtd, to, ops);
1270 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1273 EXPORT_SYMBOL_GPL(mtd_write_oob);
1276 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1277 * @mtd: MTD device structure
1278 * @section: ECC section. Depending on the layout you may have all the ECC
1279 * bytes stored in a single contiguous section, or one section
1280 * per ECC chunk (and sometime several sections for a single ECC
1282 * @oobecc: OOB region struct filled with the appropriate ECC position
1285 * This function returns ECC section information in the OOB area. If you want
1286 * to get all the ECC bytes information, then you should call
1287 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1289 * Returns zero on success, a negative error code otherwise.
1291 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1292 struct mtd_oob_region *oobecc)
1294 memset(oobecc, 0, sizeof(*oobecc));
1296 if (!mtd || section < 0)
1299 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1302 return mtd->ooblayout->ecc(mtd, section, oobecc);
1304 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1307 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1309 * @mtd: MTD device structure
1310 * @section: Free section you are interested in. Depending on the layout
1311 * you may have all the free bytes stored in a single contiguous
1312 * section, or one section per ECC chunk plus an extra section
1313 * for the remaining bytes (or other funky layout).
1314 * @oobfree: OOB region struct filled with the appropriate free position
1317 * This function returns free bytes position in the OOB area. If you want
1318 * to get all the free bytes information, then you should call
1319 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1321 * Returns zero on success, a negative error code otherwise.
1323 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1324 struct mtd_oob_region *oobfree)
1326 memset(oobfree, 0, sizeof(*oobfree));
1328 if (!mtd || section < 0)
1331 if (!mtd->ooblayout || !mtd->ooblayout->free)
1334 return mtd->ooblayout->free(mtd, section, oobfree);
1336 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1339 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1340 * @mtd: mtd info structure
1341 * @byte: the byte we are searching for
1342 * @sectionp: pointer where the section id will be stored
1343 * @oobregion: used to retrieve the ECC position
1344 * @iter: iterator function. Should be either mtd_ooblayout_free or
1345 * mtd_ooblayout_ecc depending on the region type you're searching for
1347 * This function returns the section id and oobregion information of a
1348 * specific byte. For example, say you want to know where the 4th ECC byte is
1349 * stored, you'll use:
1351 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1353 * Returns zero on success, a negative error code otherwise.
1355 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1356 int *sectionp, struct mtd_oob_region *oobregion,
1357 int (*iter)(struct mtd_info *,
1359 struct mtd_oob_region *oobregion))
1361 int pos = 0, ret, section = 0;
1363 memset(oobregion, 0, sizeof(*oobregion));
1366 ret = iter(mtd, section, oobregion);
1370 if (pos + oobregion->length > byte)
1373 pos += oobregion->length;
1378 * Adjust region info to make it start at the beginning at the
1381 oobregion->offset += byte - pos;
1382 oobregion->length -= byte - pos;
1383 *sectionp = section;
1389 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1391 * @mtd: mtd info structure
1392 * @eccbyte: the byte we are searching for
1393 * @sectionp: pointer where the section id will be stored
1394 * @oobregion: OOB region information
1396 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1399 * Returns zero on success, a negative error code otherwise.
1401 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1403 struct mtd_oob_region *oobregion)
1405 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1408 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1411 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1412 * @mtd: mtd info structure
1413 * @buf: destination buffer to store OOB bytes
1414 * @oobbuf: OOB buffer
1415 * @start: first byte to retrieve
1416 * @nbytes: number of bytes to retrieve
1417 * @iter: section iterator
1419 * Extract bytes attached to a specific category (ECC or free)
1420 * from the OOB buffer and copy them into buf.
1422 * Returns zero on success, a negative error code otherwise.
1424 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1425 const u8 *oobbuf, int start, int nbytes,
1426 int (*iter)(struct mtd_info *,
1428 struct mtd_oob_region *oobregion))
1430 struct mtd_oob_region oobregion;
1433 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1439 cnt = min_t(int, nbytes, oobregion.length);
1440 memcpy(buf, oobbuf + oobregion.offset, cnt);
1447 ret = iter(mtd, ++section, &oobregion);
1454 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1455 * @mtd: mtd info structure
1456 * @buf: source buffer to get OOB bytes from
1457 * @oobbuf: OOB buffer
1458 * @start: first OOB byte to set
1459 * @nbytes: number of OOB bytes to set
1460 * @iter: section iterator
1462 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1463 * is selected by passing the appropriate iterator.
1465 * Returns zero on success, a negative error code otherwise.
1467 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1468 u8 *oobbuf, int start, int nbytes,
1469 int (*iter)(struct mtd_info *,
1471 struct mtd_oob_region *oobregion))
1473 struct mtd_oob_region oobregion;
1476 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1482 cnt = min_t(int, nbytes, oobregion.length);
1483 memcpy(oobbuf + oobregion.offset, buf, cnt);
1490 ret = iter(mtd, ++section, &oobregion);
1497 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1498 * @mtd: mtd info structure
1499 * @iter: category iterator
1501 * Count the number of bytes in a given category.
1503 * Returns a positive value on success, a negative error code otherwise.
1505 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1506 int (*iter)(struct mtd_info *,
1508 struct mtd_oob_region *oobregion))
1510 struct mtd_oob_region oobregion;
1511 int section = 0, ret, nbytes = 0;
1514 ret = iter(mtd, section++, &oobregion);
1521 nbytes += oobregion.length;
1528 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1529 * @mtd: mtd info structure
1530 * @eccbuf: destination buffer to store ECC bytes
1531 * @oobbuf: OOB buffer
1532 * @start: first ECC byte to retrieve
1533 * @nbytes: number of ECC bytes to retrieve
1535 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1537 * Returns zero on success, a negative error code otherwise.
1539 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1540 const u8 *oobbuf, int start, int nbytes)
1542 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1545 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1548 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1549 * @mtd: mtd info structure
1550 * @eccbuf: source buffer to get ECC bytes from
1551 * @oobbuf: OOB buffer
1552 * @start: first ECC byte to set
1553 * @nbytes: number of ECC bytes to set
1555 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1557 * Returns zero on success, a negative error code otherwise.
1559 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1560 u8 *oobbuf, int start, int nbytes)
1562 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1565 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1568 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1569 * @mtd: mtd info structure
1570 * @databuf: destination buffer to store ECC bytes
1571 * @oobbuf: OOB buffer
1572 * @start: first ECC byte to retrieve
1573 * @nbytes: number of ECC bytes to retrieve
1575 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1577 * Returns zero on success, a negative error code otherwise.
1579 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1580 const u8 *oobbuf, int start, int nbytes)
1582 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1583 mtd_ooblayout_free);
1585 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1588 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1589 * @mtd: mtd info structure
1590 * @databuf: source buffer to get data bytes from
1591 * @oobbuf: OOB buffer
1592 * @start: first ECC byte to set
1593 * @nbytes: number of ECC bytes to set
1595 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1597 * Returns zero on success, a negative error code otherwise.
1599 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1600 u8 *oobbuf, int start, int nbytes)
1602 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1603 mtd_ooblayout_free);
1605 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1608 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1609 * @mtd: mtd info structure
1611 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1613 * Returns zero on success, a negative error code otherwise.
1615 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1617 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1619 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1622 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1623 * @mtd: mtd info structure
1625 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1627 * Returns zero on success, a negative error code otherwise.
1629 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1631 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1633 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1636 * Method to access the protection register area, present in some flash
1637 * devices. The user data is one time programmable but the factory data is read
1640 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1641 struct otp_info *buf)
1643 if (!mtd->_get_fact_prot_info)
1647 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1649 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1651 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1652 size_t *retlen, u_char *buf)
1655 if (!mtd->_read_fact_prot_reg)
1659 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1661 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1663 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1664 struct otp_info *buf)
1666 if (!mtd->_get_user_prot_info)
1670 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1672 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1674 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1675 size_t *retlen, u_char *buf)
1678 if (!mtd->_read_user_prot_reg)
1682 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1684 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1686 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1687 size_t *retlen, u_char *buf)
1692 if (!mtd->_write_user_prot_reg)
1696 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1701 * If no data could be written at all, we are out of memory and
1702 * must return -ENOSPC.
1704 return (*retlen) ? 0 : -ENOSPC;
1706 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1708 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1710 if (!mtd->_lock_user_prot_reg)
1714 return mtd->_lock_user_prot_reg(mtd, from, len);
1716 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1718 /* Chip-supported device locking */
1719 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1723 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1727 return mtd->_lock(mtd, ofs, len);
1729 EXPORT_SYMBOL_GPL(mtd_lock);
1731 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1735 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1739 return mtd->_unlock(mtd, ofs, len);
1741 EXPORT_SYMBOL_GPL(mtd_unlock);
1743 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1745 if (!mtd->_is_locked)
1747 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1751 return mtd->_is_locked(mtd, ofs, len);
1753 EXPORT_SYMBOL_GPL(mtd_is_locked);
1755 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1757 if (ofs < 0 || ofs >= mtd->size)
1759 if (!mtd->_block_isreserved)
1761 return mtd->_block_isreserved(mtd, ofs);
1763 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1765 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1767 if (ofs < 0 || ofs >= mtd->size)
1769 if (!mtd->_block_isbad)
1771 return mtd->_block_isbad(mtd, ofs);
1773 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1775 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1777 if (!mtd->_block_markbad)
1779 if (ofs < 0 || ofs >= mtd->size)
1781 if (!(mtd->flags & MTD_WRITEABLE))
1783 return mtd->_block_markbad(mtd, ofs);
1785 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1788 * default_mtd_writev - the default writev method
1789 * @mtd: mtd device description object pointer
1790 * @vecs: the vectors to write
1791 * @count: count of vectors in @vecs
1792 * @to: the MTD device offset to write to
1793 * @retlen: on exit contains the count of bytes written to the MTD device.
1795 * This function returns zero in case of success and a negative error code in
1798 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1799 unsigned long count, loff_t to, size_t *retlen)
1802 size_t totlen = 0, thislen;
1805 for (i = 0; i < count; i++) {
1806 if (!vecs[i].iov_len)
1808 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1811 if (ret || thislen != vecs[i].iov_len)
1813 to += vecs[i].iov_len;
1820 * mtd_writev - the vector-based MTD write method
1821 * @mtd: mtd device description object pointer
1822 * @vecs: the vectors to write
1823 * @count: count of vectors in @vecs
1824 * @to: the MTD device offset to write to
1825 * @retlen: on exit contains the count of bytes written to the MTD device.
1827 * This function returns zero in case of success and a negative error code in
1830 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1831 unsigned long count, loff_t to, size_t *retlen)
1834 if (!(mtd->flags & MTD_WRITEABLE))
1837 return default_mtd_writev(mtd, vecs, count, to, retlen);
1838 return mtd->_writev(mtd, vecs, count, to, retlen);
1840 EXPORT_SYMBOL_GPL(mtd_writev);
1843 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1844 * @mtd: mtd device description object pointer
1845 * @size: a pointer to the ideal or maximum size of the allocation, points
1846 * to the actual allocation size on success.
1848 * This routine attempts to allocate a contiguous kernel buffer up to
1849 * the specified size, backing off the size of the request exponentially
1850 * until the request succeeds or until the allocation size falls below
1851 * the system page size. This attempts to make sure it does not adversely
1852 * impact system performance, so when allocating more than one page, we
1853 * ask the memory allocator to avoid re-trying, swapping, writing back
1854 * or performing I/O.
1856 * Note, this function also makes sure that the allocated buffer is aligned to
1857 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1859 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1860 * to handle smaller (i.e. degraded) buffer allocations under low- or
1861 * fragmented-memory situations where such reduced allocations, from a
1862 * requested ideal, are allowed.
1864 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1866 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1868 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1869 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1872 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1874 while (*size > min_alloc) {
1875 kbuf = kmalloc(*size, flags);
1880 *size = ALIGN(*size, mtd->writesize);
1884 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1885 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1887 return kmalloc(*size, GFP_KERNEL);
1889 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1891 #ifdef CONFIG_PROC_FS
1893 /*====================================================================*/
1894 /* Support for /proc/mtd */
1896 static int mtd_proc_show(struct seq_file *m, void *v)
1898 struct mtd_info *mtd;
1900 seq_puts(m, "dev: size erasesize name\n");
1901 mutex_lock(&mtd_table_mutex);
1902 mtd_for_each_device(mtd) {
1903 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1904 mtd->index, (unsigned long long)mtd->size,
1905 mtd->erasesize, mtd->name);
1907 mutex_unlock(&mtd_table_mutex);
1910 #endif /* CONFIG_PROC_FS */
1912 /*====================================================================*/
1915 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1917 struct backing_dev_info *bdi;
1920 bdi = bdi_alloc(GFP_KERNEL);
1922 return ERR_PTR(-ENOMEM);
1926 * We put '-0' suffix to the name to get the same name format as we
1927 * used to get. Since this is called only once, we get a unique name.
1929 ret = bdi_register(bdi, "%.28s-0", name);
1933 return ret ? ERR_PTR(ret) : bdi;
1936 static struct proc_dir_entry *proc_mtd;
1938 static int __init init_mtd(void)
1942 ret = class_register(&mtd_class);
1946 mtd_bdi = mtd_bdi_init("mtd");
1947 if (IS_ERR(mtd_bdi)) {
1948 ret = PTR_ERR(mtd_bdi);
1952 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1954 ret = init_mtdchar();
1958 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1964 remove_proc_entry("mtd", NULL);
1967 class_unregister(&mtd_class);
1969 pr_err("Error registering mtd class or bdi: %d\n", ret);
1973 static void __exit cleanup_mtd(void)
1975 debugfs_remove_recursive(dfs_dir_mtd);
1978 remove_proc_entry("mtd", NULL);
1979 class_unregister(&mtd_class);
1981 idr_destroy(&mtd_idr);
1984 module_init(init_mtd);
1985 module_exit(cleanup_mtd);
1987 MODULE_LICENSE("GPL");
1989 MODULE_DESCRIPTION("Core MTD registration and access routines");