2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
27 #include <linux/refcount.h>
29 #define DM_MSG_PREFIX "core"
32 * Cookies are numeric values sent with CHANGE and REMOVE
33 * uevents while resuming, removing or renaming the device.
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
38 static const char *_name = DM_NAME;
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
43 static DEFINE_IDR(_minor_idr);
45 static DEFINE_SPINLOCK(_minor_lock);
47 static void do_deferred_remove(struct work_struct *w);
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
51 static struct workqueue_struct *deferred_remove_workqueue;
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 void dm_issue_global_event(void)
58 atomic_inc(&dm_global_event_nr);
59 wake_up(&dm_global_eventq);
63 * One of these is allocated (on-stack) per original bio.
70 unsigned sector_count;
74 * One of these is allocated per clone bio.
76 #define DM_TIO_MAGIC 7282014
81 unsigned target_bio_nr;
88 * One of these is allocated per original bio.
89 * It contains the first clone used for that original.
91 #define DM_IO_MAGIC 5191977
94 struct mapped_device *md;
98 unsigned long start_time;
99 spinlock_t endio_lock;
100 struct dm_stats_aux stats_aux;
101 /* last member of dm_target_io is 'struct bio' */
102 struct dm_target_io tio;
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 if (!tio->inside_dm_io)
109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
116 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 if (io->magic == DM_IO_MAGIC)
118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 BUG_ON(io->magic != DM_TIO_MAGIC);
120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
130 #define MINOR_ALLOCED ((void *)-1)
133 * Bits for the md->flags field.
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
148 * For mempools pre-allocation at the table loading time.
150 struct dm_md_mempools {
152 struct bio_set io_bs;
155 struct table_device {
156 struct list_head list;
158 struct dm_dev dm_dev;
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
165 * Bio-based DM's mempools' reserved IOs set by the user.
167 #define RESERVED_BIO_BASED_IOS 16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 int param = READ_ONCE(*module_param);
173 int modified_param = 0;
174 bool modified = true;
177 modified_param = min;
178 else if (param > max)
179 modified_param = max;
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
191 unsigned __dm_get_module_param(unsigned *module_param,
192 unsigned def, unsigned max)
194 unsigned param = READ_ONCE(*module_param);
195 unsigned modified_param = 0;
198 modified_param = def;
199 else if (param > max)
200 modified_param = max;
202 if (modified_param) {
203 (void)cmpxchg(module_param, param, modified_param);
204 param = modified_param;
210 unsigned dm_get_reserved_bio_based_ios(void)
212 return __dm_get_module_param(&reserved_bio_based_ios,
213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 static unsigned dm_get_numa_node(void)
219 return __dm_get_module_param_int(&dm_numa_node,
220 DM_NUMA_NODE, num_online_nodes() - 1);
223 static int __init local_init(void)
227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 __alignof__(struct request), 0, NULL);
234 goto out_free_rq_tio_cache;
236 r = dm_uevent_init();
238 goto out_free_rq_cache;
240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 if (!deferred_remove_workqueue) {
243 goto out_uevent_exit;
247 r = register_blkdev(_major, _name);
249 goto out_free_workqueue;
257 destroy_workqueue(deferred_remove_workqueue);
261 kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 kmem_cache_destroy(_rq_tio_cache);
268 static void local_exit(void)
270 flush_scheduled_work();
271 destroy_workqueue(deferred_remove_workqueue);
273 kmem_cache_destroy(_rq_cache);
274 kmem_cache_destroy(_rq_tio_cache);
275 unregister_blkdev(_major, _name);
280 DMINFO("cleaned up");
283 static int (*_inits[])(void) __initdata = {
294 static void (*_exits[])(void) = {
305 static int __init dm_init(void)
307 const int count = ARRAY_SIZE(_inits);
311 for (i = 0; i < count; i++) {
326 static void __exit dm_exit(void)
328 int i = ARRAY_SIZE(_exits);
334 * Should be empty by this point.
336 idr_destroy(&_minor_idr);
340 * Block device functions
342 int dm_deleting_md(struct mapped_device *md)
344 return test_bit(DMF_DELETING, &md->flags);
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 struct mapped_device *md;
351 spin_lock(&_minor_lock);
353 md = bdev->bd_disk->private_data;
357 if (test_bit(DMF_FREEING, &md->flags) ||
358 dm_deleting_md(md)) {
364 atomic_inc(&md->open_count);
366 spin_unlock(&_minor_lock);
368 return md ? 0 : -ENXIO;
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 struct mapped_device *md;
375 spin_lock(&_minor_lock);
377 md = disk->private_data;
381 if (atomic_dec_and_test(&md->open_count) &&
382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 queue_work(deferred_remove_workqueue, &deferred_remove_work);
387 spin_unlock(&_minor_lock);
390 int dm_open_count(struct mapped_device *md)
392 return atomic_read(&md->open_count);
396 * Guarantees nothing is using the device before it's deleted.
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
402 spin_lock(&_minor_lock);
404 if (dm_open_count(md)) {
407 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
411 set_bit(DMF_DELETING, &md->flags);
413 spin_unlock(&_minor_lock);
418 int dm_cancel_deferred_remove(struct mapped_device *md)
422 spin_lock(&_minor_lock);
424 if (test_bit(DMF_DELETING, &md->flags))
427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 spin_unlock(&_minor_lock);
434 static void do_deferred_remove(struct work_struct *w)
436 dm_deferred_remove();
439 sector_t dm_get_size(struct mapped_device *md)
441 return get_capacity(md->disk);
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
456 struct mapped_device *md = bdev->bd_disk->private_data;
458 return dm_get_geometry(md, geo);
461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
462 struct blk_zone *zones, unsigned int *nr_zones,
465 #ifdef CONFIG_BLK_DEV_ZONED
466 struct mapped_device *md = disk->private_data;
467 struct dm_target *tgt;
468 struct dm_table *map;
471 if (dm_suspended_md(md))
474 map = dm_get_live_table(md, &srcu_idx);
478 tgt = dm_table_find_target(map, sector);
479 if (!dm_target_is_valid(tgt)) {
485 * If we are executing this, we already know that the block device
486 * is a zoned device and so each target should have support for that
487 * type of drive. A missing report_zones method means that the target
488 * driver has a problem.
490 if (WARN_ON(!tgt->type->report_zones)) {
496 * blkdev_report_zones() will loop and call this again to cover all the
497 * zones of the target, eventually moving on to the next target.
498 * So there is no need to loop here trying to fill the entire array
501 ret = tgt->type->report_zones(tgt, sector, zones,
505 dm_put_live_table(md, srcu_idx);
512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
513 struct block_device **bdev)
514 __acquires(md->io_barrier)
516 struct dm_target *tgt;
517 struct dm_table *map;
522 map = dm_get_live_table(md, srcu_idx);
523 if (!map || !dm_table_get_size(map))
526 /* We only support devices that have a single target */
527 if (dm_table_get_num_targets(map) != 1)
530 tgt = dm_table_get_target(map, 0);
531 if (!tgt->type->prepare_ioctl)
534 if (dm_suspended_md(md))
537 r = tgt->type->prepare_ioctl(tgt, bdev);
538 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
539 dm_put_live_table(md, *srcu_idx);
547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
548 __releases(md->io_barrier)
550 dm_put_live_table(md, srcu_idx);
553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
554 unsigned int cmd, unsigned long arg)
556 struct mapped_device *md = bdev->bd_disk->private_data;
559 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
565 * Target determined this ioctl is being issued against a
566 * subset of the parent bdev; require extra privileges.
568 if (!capable(CAP_SYS_RAWIO)) {
570 "%s: sending ioctl %x to DM device without required privilege.",
577 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
579 dm_unprepare_ioctl(md, srcu_idx);
583 static void start_io_acct(struct dm_io *io);
585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
588 struct dm_target_io *tio;
591 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
595 tio = container_of(clone, struct dm_target_io, clone);
596 tio->inside_dm_io = true;
599 io = container_of(tio, struct dm_io, tio);
600 io->magic = DM_IO_MAGIC;
602 atomic_set(&io->io_count, 1);
605 spin_lock_init(&io->endio_lock);
612 static void free_io(struct mapped_device *md, struct dm_io *io)
614 bio_put(&io->tio.clone);
617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 unsigned target_bio_nr, gfp_t gfp_mask)
620 struct dm_target_io *tio;
622 if (!ci->io->tio.io) {
623 /* the dm_target_io embedded in ci->io is available */
626 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
630 tio = container_of(clone, struct dm_target_io, clone);
631 tio->inside_dm_io = false;
634 tio->magic = DM_TIO_MAGIC;
637 tio->target_bio_nr = target_bio_nr;
642 static void free_tio(struct dm_target_io *tio)
644 if (tio->inside_dm_io)
646 bio_put(&tio->clone);
649 static bool md_in_flight_bios(struct mapped_device *md)
652 struct hd_struct *part = &dm_disk(md)->part0;
655 for_each_possible_cpu(cpu) {
656 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
657 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
663 static bool md_in_flight(struct mapped_device *md)
665 if (queue_is_mq(md->queue))
666 return blk_mq_queue_inflight(md->queue);
668 return md_in_flight_bios(md);
671 static void start_io_acct(struct dm_io *io)
673 struct mapped_device *md = io->md;
674 struct bio *bio = io->orig_bio;
676 io->start_time = jiffies;
678 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
679 &dm_disk(md)->part0);
681 if (unlikely(dm_stats_used(&md->stats)))
682 dm_stats_account_io(&md->stats, bio_data_dir(bio),
683 bio->bi_iter.bi_sector, bio_sectors(bio),
684 false, 0, &io->stats_aux);
687 static void end_io_acct(struct dm_io *io)
689 struct mapped_device *md = io->md;
690 struct bio *bio = io->orig_bio;
691 unsigned long duration = jiffies - io->start_time;
693 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
696 if (unlikely(dm_stats_used(&md->stats)))
697 dm_stats_account_io(&md->stats, bio_data_dir(bio),
698 bio->bi_iter.bi_sector, bio_sectors(bio),
699 true, duration, &io->stats_aux);
701 /* nudge anyone waiting on suspend queue */
702 if (unlikely(waitqueue_active(&md->wait)))
707 * Add the bio to the list of deferred io.
709 static void queue_io(struct mapped_device *md, struct bio *bio)
713 spin_lock_irqsave(&md->deferred_lock, flags);
714 bio_list_add(&md->deferred, bio);
715 spin_unlock_irqrestore(&md->deferred_lock, flags);
716 queue_work(md->wq, &md->work);
720 * Everyone (including functions in this file), should use this
721 * function to access the md->map field, and make sure they call
722 * dm_put_live_table() when finished.
724 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
726 *srcu_idx = srcu_read_lock(&md->io_barrier);
728 return srcu_dereference(md->map, &md->io_barrier);
731 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
733 srcu_read_unlock(&md->io_barrier, srcu_idx);
736 void dm_sync_table(struct mapped_device *md)
738 synchronize_srcu(&md->io_barrier);
739 synchronize_rcu_expedited();
743 * A fast alternative to dm_get_live_table/dm_put_live_table.
744 * The caller must not block between these two functions.
746 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
749 return rcu_dereference(md->map);
752 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
757 static char *_dm_claim_ptr = "I belong to device-mapper";
760 * Open a table device so we can use it as a map destination.
762 static int open_table_device(struct table_device *td, dev_t dev,
763 struct mapped_device *md)
765 struct block_device *bdev;
769 BUG_ON(td->dm_dev.bdev);
771 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
773 return PTR_ERR(bdev);
775 r = bd_link_disk_holder(bdev, dm_disk(md));
777 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
781 td->dm_dev.bdev = bdev;
782 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
787 * Close a table device that we've been using.
789 static void close_table_device(struct table_device *td, struct mapped_device *md)
791 if (!td->dm_dev.bdev)
794 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
795 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
796 put_dax(td->dm_dev.dax_dev);
797 td->dm_dev.bdev = NULL;
798 td->dm_dev.dax_dev = NULL;
801 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
803 struct table_device *td;
805 list_for_each_entry(td, l, list)
806 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
812 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
813 struct dm_dev **result) {
815 struct table_device *td;
817 mutex_lock(&md->table_devices_lock);
818 td = find_table_device(&md->table_devices, dev, mode);
820 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
822 mutex_unlock(&md->table_devices_lock);
826 td->dm_dev.mode = mode;
827 td->dm_dev.bdev = NULL;
829 if ((r = open_table_device(td, dev, md))) {
830 mutex_unlock(&md->table_devices_lock);
835 format_dev_t(td->dm_dev.name, dev);
837 refcount_set(&td->count, 1);
838 list_add(&td->list, &md->table_devices);
840 refcount_inc(&td->count);
842 mutex_unlock(&md->table_devices_lock);
844 *result = &td->dm_dev;
847 EXPORT_SYMBOL_GPL(dm_get_table_device);
849 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
851 struct table_device *td = container_of(d, struct table_device, dm_dev);
853 mutex_lock(&md->table_devices_lock);
854 if (refcount_dec_and_test(&td->count)) {
855 close_table_device(td, md);
859 mutex_unlock(&md->table_devices_lock);
861 EXPORT_SYMBOL(dm_put_table_device);
863 static void free_table_devices(struct list_head *devices)
865 struct list_head *tmp, *next;
867 list_for_each_safe(tmp, next, devices) {
868 struct table_device *td = list_entry(tmp, struct table_device, list);
870 DMWARN("dm_destroy: %s still exists with %d references",
871 td->dm_dev.name, refcount_read(&td->count));
877 * Get the geometry associated with a dm device
879 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
887 * Set the geometry of a device.
889 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
891 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
893 if (geo->start > sz) {
894 DMWARN("Start sector is beyond the geometry limits.");
903 static int __noflush_suspending(struct mapped_device *md)
905 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
909 * Decrements the number of outstanding ios that a bio has been
910 * cloned into, completing the original io if necc.
912 static void dec_pending(struct dm_io *io, blk_status_t error)
915 blk_status_t io_error;
917 struct mapped_device *md = io->md;
919 /* Push-back supersedes any I/O errors */
920 if (unlikely(error)) {
921 spin_lock_irqsave(&io->endio_lock, flags);
922 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
924 spin_unlock_irqrestore(&io->endio_lock, flags);
927 if (atomic_dec_and_test(&io->io_count)) {
928 if (io->status == BLK_STS_DM_REQUEUE) {
930 * Target requested pushing back the I/O.
932 spin_lock_irqsave(&md->deferred_lock, flags);
933 if (__noflush_suspending(md))
934 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
935 bio_list_add_head(&md->deferred, io->orig_bio);
937 /* noflush suspend was interrupted. */
938 io->status = BLK_STS_IOERR;
939 spin_unlock_irqrestore(&md->deferred_lock, flags);
942 io_error = io->status;
947 if (io_error == BLK_STS_DM_REQUEUE)
950 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
952 * Preflush done for flush with data, reissue
953 * without REQ_PREFLUSH.
955 bio->bi_opf &= ~REQ_PREFLUSH;
958 /* done with normal IO or empty flush */
960 bio->bi_status = io_error;
966 void disable_write_same(struct mapped_device *md)
968 struct queue_limits *limits = dm_get_queue_limits(md);
970 /* device doesn't really support WRITE SAME, disable it */
971 limits->max_write_same_sectors = 0;
974 void disable_write_zeroes(struct mapped_device *md)
976 struct queue_limits *limits = dm_get_queue_limits(md);
978 /* device doesn't really support WRITE ZEROES, disable it */
979 limits->max_write_zeroes_sectors = 0;
982 static void clone_endio(struct bio *bio)
984 blk_status_t error = bio->bi_status;
985 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
986 struct dm_io *io = tio->io;
987 struct mapped_device *md = tio->io->md;
988 dm_endio_fn endio = tio->ti->type->end_io;
990 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
991 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
992 !bio->bi_disk->queue->limits.max_write_same_sectors)
993 disable_write_same(md);
994 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
995 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
996 disable_write_zeroes(md);
1000 int r = endio(tio->ti, bio, &error);
1002 case DM_ENDIO_REQUEUE:
1003 error = BLK_STS_DM_REQUEUE;
1007 case DM_ENDIO_INCOMPLETE:
1008 /* The target will handle the io */
1011 DMWARN("unimplemented target endio return value: %d", r);
1017 dec_pending(io, error);
1021 * Return maximum size of I/O possible at the supplied sector up to the current
1024 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1026 sector_t target_offset = dm_target_offset(ti, sector);
1028 return ti->len - target_offset;
1031 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1033 sector_t len = max_io_len_target_boundary(sector, ti);
1034 sector_t offset, max_len;
1037 * Does the target need to split even further?
1039 if (ti->max_io_len) {
1040 offset = dm_target_offset(ti, sector);
1041 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1042 max_len = sector_div(offset, ti->max_io_len);
1044 max_len = offset & (ti->max_io_len - 1);
1045 max_len = ti->max_io_len - max_len;
1054 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1056 if (len > UINT_MAX) {
1057 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1058 (unsigned long long)len, UINT_MAX);
1059 ti->error = "Maximum size of target IO is too large";
1064 * BIO based queue uses its own splitting. When multipage bvecs
1065 * is switched on, size of the incoming bio may be too big to
1066 * be handled in some targets, such as crypt.
1068 * When these targets are ready for the big bio, we can remove
1071 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1075 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1077 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1078 sector_t sector, int *srcu_idx)
1079 __acquires(md->io_barrier)
1081 struct dm_table *map;
1082 struct dm_target *ti;
1084 map = dm_get_live_table(md, srcu_idx);
1088 ti = dm_table_find_target(map, sector);
1089 if (!dm_target_is_valid(ti))
1095 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1096 long nr_pages, void **kaddr, pfn_t *pfn)
1098 struct mapped_device *md = dax_get_private(dax_dev);
1099 sector_t sector = pgoff * PAGE_SECTORS;
1100 struct dm_target *ti;
1101 long len, ret = -EIO;
1104 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1108 if (!ti->type->direct_access)
1110 len = max_io_len(sector, ti) / PAGE_SECTORS;
1113 nr_pages = min(len, nr_pages);
1114 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1117 dm_put_live_table(md, srcu_idx);
1122 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1123 void *addr, size_t bytes, struct iov_iter *i)
1125 struct mapped_device *md = dax_get_private(dax_dev);
1126 sector_t sector = pgoff * PAGE_SECTORS;
1127 struct dm_target *ti;
1131 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1135 if (!ti->type->dax_copy_from_iter) {
1136 ret = copy_from_iter(addr, bytes, i);
1139 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1141 dm_put_live_table(md, srcu_idx);
1146 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1147 void *addr, size_t bytes, struct iov_iter *i)
1149 struct mapped_device *md = dax_get_private(dax_dev);
1150 sector_t sector = pgoff * PAGE_SECTORS;
1151 struct dm_target *ti;
1155 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1159 if (!ti->type->dax_copy_to_iter) {
1160 ret = copy_to_iter(addr, bytes, i);
1163 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1165 dm_put_live_table(md, srcu_idx);
1171 * A target may call dm_accept_partial_bio only from the map routine. It is
1172 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1174 * dm_accept_partial_bio informs the dm that the target only wants to process
1175 * additional n_sectors sectors of the bio and the rest of the data should be
1176 * sent in a next bio.
1178 * A diagram that explains the arithmetics:
1179 * +--------------------+---------------+-------+
1181 * +--------------------+---------------+-------+
1183 * <-------------- *tio->len_ptr --------------->
1184 * <------- bi_size ------->
1187 * Region 1 was already iterated over with bio_advance or similar function.
1188 * (it may be empty if the target doesn't use bio_advance)
1189 * Region 2 is the remaining bio size that the target wants to process.
1190 * (it may be empty if region 1 is non-empty, although there is no reason
1192 * The target requires that region 3 is to be sent in the next bio.
1194 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1195 * the partially processed part (the sum of regions 1+2) must be the same for all
1196 * copies of the bio.
1198 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1200 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1201 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1202 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1203 BUG_ON(bi_size > *tio->len_ptr);
1204 BUG_ON(n_sectors > bi_size);
1205 *tio->len_ptr -= bi_size - n_sectors;
1206 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1208 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1211 * The zone descriptors obtained with a zone report indicate
1212 * zone positions within the underlying device of the target. The zone
1213 * descriptors must be remapped to match their position within the dm device.
1214 * The caller target should obtain the zones information using
1215 * blkdev_report_zones() to ensure that remapping for partition offset is
1218 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1219 struct blk_zone *zones, unsigned int *nr_zones)
1221 #ifdef CONFIG_BLK_DEV_ZONED
1222 struct blk_zone *zone;
1223 unsigned int nrz = *nr_zones;
1227 * Remap the start sector and write pointer position of the zones in
1228 * the array. Since we may have obtained from the target underlying
1229 * device more zones that the target size, also adjust the number
1232 for (i = 0; i < nrz; i++) {
1234 if (zone->start >= start + ti->len) {
1235 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1239 zone->start = zone->start + ti->begin - start;
1240 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1243 if (zone->cond == BLK_ZONE_COND_FULL)
1244 zone->wp = zone->start + zone->len;
1245 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1246 zone->wp = zone->start;
1248 zone->wp = zone->wp + ti->begin - start;
1252 #else /* !CONFIG_BLK_DEV_ZONED */
1256 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1258 static blk_qc_t __map_bio(struct dm_target_io *tio)
1262 struct bio *clone = &tio->clone;
1263 struct dm_io *io = tio->io;
1264 struct mapped_device *md = io->md;
1265 struct dm_target *ti = tio->ti;
1266 blk_qc_t ret = BLK_QC_T_NONE;
1268 clone->bi_end_io = clone_endio;
1271 * Map the clone. If r == 0 we don't need to do
1272 * anything, the target has assumed ownership of
1275 atomic_inc(&io->io_count);
1276 sector = clone->bi_iter.bi_sector;
1278 r = ti->type->map(ti, clone);
1280 case DM_MAPIO_SUBMITTED:
1282 case DM_MAPIO_REMAPPED:
1283 /* the bio has been remapped so dispatch it */
1284 trace_block_bio_remap(clone->bi_disk->queue, clone,
1285 bio_dev(io->orig_bio), sector);
1286 if (md->type == DM_TYPE_NVME_BIO_BASED)
1287 ret = direct_make_request(clone);
1289 ret = generic_make_request(clone);
1293 dec_pending(io, BLK_STS_IOERR);
1295 case DM_MAPIO_REQUEUE:
1297 dec_pending(io, BLK_STS_DM_REQUEUE);
1300 DMWARN("unimplemented target map return value: %d", r);
1307 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1309 bio->bi_iter.bi_sector = sector;
1310 bio->bi_iter.bi_size = to_bytes(len);
1314 * Creates a bio that consists of range of complete bvecs.
1316 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1317 sector_t sector, unsigned len)
1319 struct bio *clone = &tio->clone;
1321 __bio_clone_fast(clone, bio);
1323 if (bio_integrity(bio)) {
1326 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1327 !dm_target_passes_integrity(tio->ti->type))) {
1328 DMWARN("%s: the target %s doesn't support integrity data.",
1329 dm_device_name(tio->io->md),
1330 tio->ti->type->name);
1334 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1339 bio_trim(clone, sector - clone->bi_iter.bi_sector, len);
1344 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1345 struct dm_target *ti, unsigned num_bios)
1347 struct dm_target_io *tio;
1353 if (num_bios == 1) {
1354 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1355 bio_list_add(blist, &tio->clone);
1359 for (try = 0; try < 2; try++) {
1364 mutex_lock(&ci->io->md->table_devices_lock);
1365 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1366 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1370 bio_list_add(blist, &tio->clone);
1373 mutex_unlock(&ci->io->md->table_devices_lock);
1374 if (bio_nr == num_bios)
1377 while ((bio = bio_list_pop(blist))) {
1378 tio = container_of(bio, struct dm_target_io, clone);
1384 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1385 struct dm_target_io *tio, unsigned *len)
1387 struct bio *clone = &tio->clone;
1391 __bio_clone_fast(clone, ci->bio);
1393 bio_setup_sector(clone, ci->sector, *len);
1395 return __map_bio(tio);
1398 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1399 unsigned num_bios, unsigned *len)
1401 struct bio_list blist = BIO_EMPTY_LIST;
1403 struct dm_target_io *tio;
1405 alloc_multiple_bios(&blist, ci, ti, num_bios);
1407 while ((bio = bio_list_pop(&blist))) {
1408 tio = container_of(bio, struct dm_target_io, clone);
1409 (void) __clone_and_map_simple_bio(ci, tio, len);
1413 static int __send_empty_flush(struct clone_info *ci)
1415 unsigned target_nr = 0;
1416 struct dm_target *ti;
1419 * Empty flush uses a statically initialized bio, as the base for
1420 * cloning. However, blkg association requires that a bdev is
1421 * associated with a gendisk, which doesn't happen until the bdev is
1422 * opened. So, blkg association is done at issue time of the flush
1423 * rather than when the device is created in alloc_dev().
1425 bio_set_dev(ci->bio, ci->io->md->bdev);
1427 BUG_ON(bio_has_data(ci->bio));
1428 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1429 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1431 bio_disassociate_blkg(ci->bio);
1436 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1437 sector_t sector, unsigned *len)
1439 struct bio *bio = ci->bio;
1440 struct dm_target_io *tio;
1443 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1445 r = clone_bio(tio, bio, sector, *len);
1450 (void) __map_bio(tio);
1455 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1457 static unsigned get_num_discard_bios(struct dm_target *ti)
1459 return ti->num_discard_bios;
1462 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1464 return ti->num_secure_erase_bios;
1467 static unsigned get_num_write_same_bios(struct dm_target *ti)
1469 return ti->num_write_same_bios;
1472 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1474 return ti->num_write_zeroes_bios;
1477 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1479 static bool is_split_required_for_discard(struct dm_target *ti)
1481 return ti->split_discard_bios;
1484 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1485 unsigned num_bios, bool is_split_required)
1490 * Even though the device advertised support for this type of
1491 * request, that does not mean every target supports it, and
1492 * reconfiguration might also have changed that since the
1493 * check was performed.
1498 if (!is_split_required)
1499 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1501 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1503 __send_duplicate_bios(ci, ti, num_bios, &len);
1506 ci->sector_count -= len;
1511 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1513 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti),
1514 is_split_required_for_discard(ti));
1517 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1519 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti), false);
1522 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1524 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti), false);
1527 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1529 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti), false);
1532 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1535 struct bio *bio = ci->bio;
1537 if (bio_op(bio) == REQ_OP_DISCARD)
1538 *result = __send_discard(ci, ti);
1539 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1540 *result = __send_secure_erase(ci, ti);
1541 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1542 *result = __send_write_same(ci, ti);
1543 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1544 *result = __send_write_zeroes(ci, ti);
1552 * Select the correct strategy for processing a non-flush bio.
1554 static int __split_and_process_non_flush(struct clone_info *ci)
1556 struct dm_target *ti;
1560 ti = dm_table_find_target(ci->map, ci->sector);
1561 if (!dm_target_is_valid(ti))
1564 if (unlikely(__process_abnormal_io(ci, ti, &r)))
1567 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1569 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1574 ci->sector_count -= len;
1579 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1580 struct dm_table *map, struct bio *bio)
1583 ci->io = alloc_io(md, bio);
1584 ci->sector = bio->bi_iter.bi_sector;
1587 #define __dm_part_stat_sub(part, field, subnd) \
1588 (part_stat_get(part, field) -= (subnd))
1591 * Entry point to split a bio into clones and submit them to the targets.
1593 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1594 struct dm_table *map, struct bio *bio)
1596 struct clone_info ci;
1597 blk_qc_t ret = BLK_QC_T_NONE;
1600 if (unlikely(!map)) {
1605 blk_queue_split(md->queue, &bio);
1607 init_clone_info(&ci, md, map, bio);
1609 if (bio->bi_opf & REQ_PREFLUSH) {
1610 struct bio flush_bio;
1613 * Use an on-stack bio for this, it's safe since we don't
1614 * need to reference it after submit. It's just used as
1615 * the basis for the clone(s).
1617 bio_init(&flush_bio, NULL, 0);
1618 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1619 ci.bio = &flush_bio;
1620 ci.sector_count = 0;
1621 error = __send_empty_flush(&ci);
1622 /* dec_pending submits any data associated with flush */
1623 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1625 ci.sector_count = 0;
1626 error = __split_and_process_non_flush(&ci);
1629 ci.sector_count = bio_sectors(bio);
1630 while (ci.sector_count && !error) {
1631 error = __split_and_process_non_flush(&ci);
1632 if (current->bio_list && ci.sector_count && !error) {
1634 * Remainder must be passed to generic_make_request()
1635 * so that it gets handled *after* bios already submitted
1636 * have been completely processed.
1637 * We take a clone of the original to store in
1638 * ci.io->orig_bio to be used by end_io_acct() and
1639 * for dec_pending to use for completion handling.
1641 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1642 GFP_NOIO, &md->queue->bio_split);
1643 ci.io->orig_bio = b;
1646 * Adjust IO stats for each split, otherwise upon queue
1647 * reentry there will be redundant IO accounting.
1648 * NOTE: this is a stop-gap fix, a proper fix involves
1649 * significant refactoring of DM core's bio splitting
1650 * (by eliminating DM's splitting and just using bio_split)
1653 __dm_part_stat_sub(&dm_disk(md)->part0,
1654 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1658 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1659 ret = generic_make_request(bio);
1665 /* drop the extra reference count */
1666 dec_pending(ci.io, errno_to_blk_status(error));
1671 * Optimized variant of __split_and_process_bio that leverages the
1672 * fact that targets that use it do _not_ have a need to split bios.
1674 static blk_qc_t __process_bio(struct mapped_device *md,
1675 struct dm_table *map, struct bio *bio)
1677 struct clone_info ci;
1678 blk_qc_t ret = BLK_QC_T_NONE;
1681 if (unlikely(!map)) {
1686 init_clone_info(&ci, md, map, bio);
1688 if (bio->bi_opf & REQ_PREFLUSH) {
1689 struct bio flush_bio;
1692 * Use an on-stack bio for this, it's safe since we don't
1693 * need to reference it after submit. It's just used as
1694 * the basis for the clone(s).
1696 bio_init(&flush_bio, NULL, 0);
1697 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1698 ci.bio = &flush_bio;
1699 ci.sector_count = 0;
1700 error = __send_empty_flush(&ci);
1701 /* dec_pending submits any data associated with flush */
1703 struct dm_target *ti = md->immutable_target;
1704 struct dm_target_io *tio;
1707 * Defend against IO still getting in during teardown
1708 * - as was seen for a time with nvme-fcloop
1710 if (WARN_ON_ONCE(!ti || !dm_target_is_valid(ti))) {
1716 ci.sector_count = bio_sectors(bio);
1717 if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1720 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1721 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1724 /* drop the extra reference count */
1725 dec_pending(ci.io, errno_to_blk_status(error));
1729 static blk_qc_t dm_process_bio(struct mapped_device *md,
1730 struct dm_table *map, struct bio *bio)
1732 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1733 return __process_bio(md, map, bio);
1735 return __split_and_process_bio(md, map, bio);
1738 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1740 struct mapped_device *md = q->queuedata;
1741 blk_qc_t ret = BLK_QC_T_NONE;
1743 struct dm_table *map;
1745 map = dm_get_live_table(md, &srcu_idx);
1747 /* if we're suspended, we have to queue this io for later */
1748 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1749 dm_put_live_table(md, srcu_idx);
1751 if (!(bio->bi_opf & REQ_RAHEAD))
1758 ret = dm_process_bio(md, map, bio);
1760 dm_put_live_table(md, srcu_idx);
1764 static int dm_any_congested(void *congested_data, int bdi_bits)
1767 struct mapped_device *md = congested_data;
1768 struct dm_table *map;
1770 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1771 if (dm_request_based(md)) {
1773 * With request-based DM we only need to check the
1774 * top-level queue for congestion.
1776 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1778 map = dm_get_live_table_fast(md);
1780 r = dm_table_any_congested(map, bdi_bits);
1781 dm_put_live_table_fast(md);
1788 /*-----------------------------------------------------------------
1789 * An IDR is used to keep track of allocated minor numbers.
1790 *---------------------------------------------------------------*/
1791 static void free_minor(int minor)
1793 spin_lock(&_minor_lock);
1794 idr_remove(&_minor_idr, minor);
1795 spin_unlock(&_minor_lock);
1799 * See if the device with a specific minor # is free.
1801 static int specific_minor(int minor)
1805 if (minor >= (1 << MINORBITS))
1808 idr_preload(GFP_KERNEL);
1809 spin_lock(&_minor_lock);
1811 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1813 spin_unlock(&_minor_lock);
1816 return r == -ENOSPC ? -EBUSY : r;
1820 static int next_free_minor(int *minor)
1824 idr_preload(GFP_KERNEL);
1825 spin_lock(&_minor_lock);
1827 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1829 spin_unlock(&_minor_lock);
1837 static const struct block_device_operations dm_blk_dops;
1838 static const struct dax_operations dm_dax_ops;
1840 static void dm_wq_work(struct work_struct *work);
1842 static void dm_init_normal_md_queue(struct mapped_device *md)
1845 * Initialize aspects of queue that aren't relevant for blk-mq
1847 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1850 static void cleanup_mapped_device(struct mapped_device *md)
1853 destroy_workqueue(md->wq);
1854 bioset_exit(&md->bs);
1855 bioset_exit(&md->io_bs);
1858 kill_dax(md->dax_dev);
1859 put_dax(md->dax_dev);
1864 spin_lock(&_minor_lock);
1865 md->disk->private_data = NULL;
1866 spin_unlock(&_minor_lock);
1867 del_gendisk(md->disk);
1872 blk_cleanup_queue(md->queue);
1874 cleanup_srcu_struct(&md->io_barrier);
1881 mutex_destroy(&md->suspend_lock);
1882 mutex_destroy(&md->type_lock);
1883 mutex_destroy(&md->table_devices_lock);
1885 dm_mq_cleanup_mapped_device(md);
1889 * Allocate and initialise a blank device with a given minor.
1891 static struct mapped_device *alloc_dev(int minor)
1893 int r, numa_node_id = dm_get_numa_node();
1894 struct dax_device *dax_dev = NULL;
1895 struct mapped_device *md;
1898 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1900 DMWARN("unable to allocate device, out of memory.");
1904 if (!try_module_get(THIS_MODULE))
1905 goto bad_module_get;
1907 /* get a minor number for the dev */
1908 if (minor == DM_ANY_MINOR)
1909 r = next_free_minor(&minor);
1911 r = specific_minor(minor);
1915 r = init_srcu_struct(&md->io_barrier);
1917 goto bad_io_barrier;
1919 md->numa_node_id = numa_node_id;
1920 md->init_tio_pdu = false;
1921 md->type = DM_TYPE_NONE;
1922 mutex_init(&md->suspend_lock);
1923 mutex_init(&md->type_lock);
1924 mutex_init(&md->table_devices_lock);
1925 spin_lock_init(&md->deferred_lock);
1926 atomic_set(&md->holders, 1);
1927 atomic_set(&md->open_count, 0);
1928 atomic_set(&md->event_nr, 0);
1929 atomic_set(&md->uevent_seq, 0);
1930 INIT_LIST_HEAD(&md->uevent_list);
1931 INIT_LIST_HEAD(&md->table_devices);
1932 spin_lock_init(&md->uevent_lock);
1934 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1937 md->queue->queuedata = md;
1938 md->queue->backing_dev_info->congested_data = md;
1940 md->disk = alloc_disk_node(1, md->numa_node_id);
1944 init_waitqueue_head(&md->wait);
1945 INIT_WORK(&md->work, dm_wq_work);
1946 init_waitqueue_head(&md->eventq);
1947 init_completion(&md->kobj_holder.completion);
1949 md->disk->major = _major;
1950 md->disk->first_minor = minor;
1951 md->disk->fops = &dm_blk_dops;
1952 md->disk->queue = md->queue;
1953 md->disk->private_data = md;
1954 sprintf(md->disk->disk_name, "dm-%d", minor);
1956 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1957 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1961 md->dax_dev = dax_dev;
1963 add_disk_no_queue_reg(md->disk);
1964 format_dev_t(md->name, MKDEV(_major, minor));
1966 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1970 md->bdev = bdget_disk(md->disk, 0);
1974 dm_stats_init(&md->stats);
1976 /* Populate the mapping, nobody knows we exist yet */
1977 spin_lock(&_minor_lock);
1978 old_md = idr_replace(&_minor_idr, md, minor);
1979 spin_unlock(&_minor_lock);
1981 BUG_ON(old_md != MINOR_ALLOCED);
1986 cleanup_mapped_device(md);
1990 module_put(THIS_MODULE);
1996 static void unlock_fs(struct mapped_device *md);
1998 static void free_dev(struct mapped_device *md)
2000 int minor = MINOR(disk_devt(md->disk));
2004 cleanup_mapped_device(md);
2006 free_table_devices(&md->table_devices);
2007 dm_stats_cleanup(&md->stats);
2010 module_put(THIS_MODULE);
2014 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2016 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2019 if (dm_table_bio_based(t)) {
2021 * The md may already have mempools that need changing.
2022 * If so, reload bioset because front_pad may have changed
2023 * because a different table was loaded.
2025 bioset_exit(&md->bs);
2026 bioset_exit(&md->io_bs);
2028 } else if (bioset_initialized(&md->bs)) {
2030 * There's no need to reload with request-based dm
2031 * because the size of front_pad doesn't change.
2032 * Note for future: If you are to reload bioset,
2033 * prep-ed requests in the queue may refer
2034 * to bio from the old bioset, so you must walk
2035 * through the queue to unprep.
2041 bioset_initialized(&md->bs) ||
2042 bioset_initialized(&md->io_bs));
2044 ret = bioset_init_from_src(&md->bs, &p->bs);
2047 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2049 bioset_exit(&md->bs);
2051 /* mempool bind completed, no longer need any mempools in the table */
2052 dm_table_free_md_mempools(t);
2057 * Bind a table to the device.
2059 static void event_callback(void *context)
2061 unsigned long flags;
2063 struct mapped_device *md = (struct mapped_device *) context;
2065 spin_lock_irqsave(&md->uevent_lock, flags);
2066 list_splice_init(&md->uevent_list, &uevents);
2067 spin_unlock_irqrestore(&md->uevent_lock, flags);
2069 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2071 atomic_inc(&md->event_nr);
2072 wake_up(&md->eventq);
2073 dm_issue_global_event();
2077 * Protected by md->suspend_lock obtained by dm_swap_table().
2079 static void __set_size(struct mapped_device *md, sector_t size)
2081 lockdep_assert_held(&md->suspend_lock);
2083 set_capacity(md->disk, size);
2085 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2089 * Returns old map, which caller must destroy.
2091 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2092 struct queue_limits *limits)
2094 struct dm_table *old_map;
2095 struct request_queue *q = md->queue;
2096 bool request_based = dm_table_request_based(t);
2100 lockdep_assert_held(&md->suspend_lock);
2102 size = dm_table_get_size(t);
2105 * Wipe any geometry if the size of the table changed.
2107 if (size != dm_get_size(md))
2108 memset(&md->geometry, 0, sizeof(md->geometry));
2110 __set_size(md, size);
2112 dm_table_event_callback(t, event_callback, md);
2115 * The queue hasn't been stopped yet, if the old table type wasn't
2116 * for request-based during suspension. So stop it to prevent
2117 * I/O mapping before resume.
2118 * This must be done before setting the queue restrictions,
2119 * because request-based dm may be run just after the setting.
2124 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2126 * Leverage the fact that request-based DM targets and
2127 * NVMe bio based targets are immutable singletons
2128 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2129 * and __process_bio.
2131 md->immutable_target = dm_table_get_immutable_target(t);
2134 ret = __bind_mempools(md, t);
2136 old_map = ERR_PTR(ret);
2140 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2141 rcu_assign_pointer(md->map, (void *)t);
2142 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2144 dm_table_set_restrictions(t, q, limits);
2153 * Returns unbound table for the caller to free.
2155 static struct dm_table *__unbind(struct mapped_device *md)
2157 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2162 dm_table_event_callback(map, NULL, NULL);
2163 RCU_INIT_POINTER(md->map, NULL);
2170 * Constructor for a new device.
2172 int dm_create(int minor, struct mapped_device **result)
2175 struct mapped_device *md;
2177 md = alloc_dev(minor);
2181 r = dm_sysfs_init(md);
2192 * Functions to manage md->type.
2193 * All are required to hold md->type_lock.
2195 void dm_lock_md_type(struct mapped_device *md)
2197 mutex_lock(&md->type_lock);
2200 void dm_unlock_md_type(struct mapped_device *md)
2202 mutex_unlock(&md->type_lock);
2205 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2207 BUG_ON(!mutex_is_locked(&md->type_lock));
2211 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2216 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2218 return md->immutable_target_type;
2222 * The queue_limits are only valid as long as you have a reference
2225 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2227 BUG_ON(!atomic_read(&md->holders));
2228 return &md->queue->limits;
2230 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2233 * Setup the DM device's queue based on md's type
2235 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2238 struct queue_limits limits;
2239 enum dm_queue_mode type = dm_get_md_type(md);
2242 case DM_TYPE_REQUEST_BASED:
2243 r = dm_mq_init_request_queue(md, t);
2245 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2249 case DM_TYPE_BIO_BASED:
2250 case DM_TYPE_DAX_BIO_BASED:
2251 case DM_TYPE_NVME_BIO_BASED:
2252 dm_init_normal_md_queue(md);
2253 blk_queue_make_request(md->queue, dm_make_request);
2260 r = dm_calculate_queue_limits(t, &limits);
2262 DMERR("Cannot calculate initial queue limits");
2265 dm_table_set_restrictions(t, md->queue, &limits);
2266 blk_register_queue(md->disk);
2271 struct mapped_device *dm_get_md(dev_t dev)
2273 struct mapped_device *md;
2274 unsigned minor = MINOR(dev);
2276 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2279 spin_lock(&_minor_lock);
2281 md = idr_find(&_minor_idr, minor);
2282 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2283 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2289 spin_unlock(&_minor_lock);
2293 EXPORT_SYMBOL_GPL(dm_get_md);
2295 void *dm_get_mdptr(struct mapped_device *md)
2297 return md->interface_ptr;
2300 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2302 md->interface_ptr = ptr;
2305 void dm_get(struct mapped_device *md)
2307 atomic_inc(&md->holders);
2308 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2311 int dm_hold(struct mapped_device *md)
2313 spin_lock(&_minor_lock);
2314 if (test_bit(DMF_FREEING, &md->flags)) {
2315 spin_unlock(&_minor_lock);
2319 spin_unlock(&_minor_lock);
2322 EXPORT_SYMBOL_GPL(dm_hold);
2324 const char *dm_device_name(struct mapped_device *md)
2328 EXPORT_SYMBOL_GPL(dm_device_name);
2330 static void __dm_destroy(struct mapped_device *md, bool wait)
2332 struct dm_table *map;
2337 spin_lock(&_minor_lock);
2338 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2339 set_bit(DMF_FREEING, &md->flags);
2340 spin_unlock(&_minor_lock);
2342 blk_set_queue_dying(md->queue);
2345 * Take suspend_lock so that presuspend and postsuspend methods
2346 * do not race with internal suspend.
2348 mutex_lock(&md->suspend_lock);
2349 map = dm_get_live_table(md, &srcu_idx);
2350 if (!dm_suspended_md(md)) {
2351 dm_table_presuspend_targets(map);
2352 dm_table_postsuspend_targets(map);
2354 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2355 dm_put_live_table(md, srcu_idx);
2356 mutex_unlock(&md->suspend_lock);
2359 * Rare, but there may be I/O requests still going to complete,
2360 * for example. Wait for all references to disappear.
2361 * No one should increment the reference count of the mapped_device,
2362 * after the mapped_device state becomes DMF_FREEING.
2365 while (atomic_read(&md->holders))
2367 else if (atomic_read(&md->holders))
2368 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2369 dm_device_name(md), atomic_read(&md->holders));
2372 dm_table_destroy(__unbind(md));
2376 void dm_destroy(struct mapped_device *md)
2378 __dm_destroy(md, true);
2381 void dm_destroy_immediate(struct mapped_device *md)
2383 __dm_destroy(md, false);
2386 void dm_put(struct mapped_device *md)
2388 atomic_dec(&md->holders);
2390 EXPORT_SYMBOL_GPL(dm_put);
2392 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2398 prepare_to_wait(&md->wait, &wait, task_state);
2400 if (!md_in_flight(md))
2403 if (signal_pending_state(task_state, current)) {
2410 finish_wait(&md->wait, &wait);
2416 * Process the deferred bios
2418 static void dm_wq_work(struct work_struct *work)
2420 struct mapped_device *md = container_of(work, struct mapped_device,
2424 struct dm_table *map;
2426 map = dm_get_live_table(md, &srcu_idx);
2428 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2429 spin_lock_irq(&md->deferred_lock);
2430 c = bio_list_pop(&md->deferred);
2431 spin_unlock_irq(&md->deferred_lock);
2436 if (dm_request_based(md))
2437 (void) generic_make_request(c);
2439 (void) dm_process_bio(md, map, c);
2442 dm_put_live_table(md, srcu_idx);
2445 static void dm_queue_flush(struct mapped_device *md)
2447 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2448 smp_mb__after_atomic();
2449 queue_work(md->wq, &md->work);
2453 * Swap in a new table, returning the old one for the caller to destroy.
2455 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2457 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2458 struct queue_limits limits;
2461 mutex_lock(&md->suspend_lock);
2463 /* device must be suspended */
2464 if (!dm_suspended_md(md))
2468 * If the new table has no data devices, retain the existing limits.
2469 * This helps multipath with queue_if_no_path if all paths disappear,
2470 * then new I/O is queued based on these limits, and then some paths
2473 if (dm_table_has_no_data_devices(table)) {
2474 live_map = dm_get_live_table_fast(md);
2476 limits = md->queue->limits;
2477 dm_put_live_table_fast(md);
2481 r = dm_calculate_queue_limits(table, &limits);
2488 map = __bind(md, table, &limits);
2489 dm_issue_global_event();
2492 mutex_unlock(&md->suspend_lock);
2497 * Functions to lock and unlock any filesystem running on the
2500 static int lock_fs(struct mapped_device *md)
2504 WARN_ON(md->frozen_sb);
2506 md->frozen_sb = freeze_bdev(md->bdev);
2507 if (IS_ERR(md->frozen_sb)) {
2508 r = PTR_ERR(md->frozen_sb);
2509 md->frozen_sb = NULL;
2513 set_bit(DMF_FROZEN, &md->flags);
2518 static void unlock_fs(struct mapped_device *md)
2520 if (!test_bit(DMF_FROZEN, &md->flags))
2523 thaw_bdev(md->bdev, md->frozen_sb);
2524 md->frozen_sb = NULL;
2525 clear_bit(DMF_FROZEN, &md->flags);
2529 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2530 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2531 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2533 * If __dm_suspend returns 0, the device is completely quiescent
2534 * now. There is no request-processing activity. All new requests
2535 * are being added to md->deferred list.
2537 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2538 unsigned suspend_flags, long task_state,
2539 int dmf_suspended_flag)
2541 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2542 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2545 lockdep_assert_held(&md->suspend_lock);
2548 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2549 * This flag is cleared before dm_suspend returns.
2552 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2557 * This gets reverted if there's an error later and the targets
2558 * provide the .presuspend_undo hook.
2560 dm_table_presuspend_targets(map);
2563 * Flush I/O to the device.
2564 * Any I/O submitted after lock_fs() may not be flushed.
2565 * noflush takes precedence over do_lockfs.
2566 * (lock_fs() flushes I/Os and waits for them to complete.)
2568 if (!noflush && do_lockfs) {
2571 dm_table_presuspend_undo_targets(map);
2577 * Here we must make sure that no processes are submitting requests
2578 * to target drivers i.e. no one may be executing
2579 * __split_and_process_bio. This is called from dm_request and
2582 * To get all processes out of __split_and_process_bio in dm_request,
2583 * we take the write lock. To prevent any process from reentering
2584 * __split_and_process_bio from dm_request and quiesce the thread
2585 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2586 * flush_workqueue(md->wq).
2588 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2590 synchronize_srcu(&md->io_barrier);
2593 * Stop md->queue before flushing md->wq in case request-based
2594 * dm defers requests to md->wq from md->queue.
2596 if (dm_request_based(md))
2597 dm_stop_queue(md->queue);
2599 flush_workqueue(md->wq);
2602 * At this point no more requests are entering target request routines.
2603 * We call dm_wait_for_completion to wait for all existing requests
2606 r = dm_wait_for_completion(md, task_state);
2608 set_bit(dmf_suspended_flag, &md->flags);
2611 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2613 synchronize_srcu(&md->io_barrier);
2615 /* were we interrupted ? */
2619 if (dm_request_based(md))
2620 dm_start_queue(md->queue);
2623 dm_table_presuspend_undo_targets(map);
2624 /* pushback list is already flushed, so skip flush */
2631 * We need to be able to change a mapping table under a mounted
2632 * filesystem. For example we might want to move some data in
2633 * the background. Before the table can be swapped with
2634 * dm_bind_table, dm_suspend must be called to flush any in
2635 * flight bios and ensure that any further io gets deferred.
2638 * Suspend mechanism in request-based dm.
2640 * 1. Flush all I/Os by lock_fs() if needed.
2641 * 2. Stop dispatching any I/O by stopping the request_queue.
2642 * 3. Wait for all in-flight I/Os to be completed or requeued.
2644 * To abort suspend, start the request_queue.
2646 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2648 struct dm_table *map = NULL;
2652 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2654 if (dm_suspended_md(md)) {
2659 if (dm_suspended_internally_md(md)) {
2660 /* already internally suspended, wait for internal resume */
2661 mutex_unlock(&md->suspend_lock);
2662 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2668 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2670 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2674 dm_table_postsuspend_targets(map);
2677 mutex_unlock(&md->suspend_lock);
2681 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2684 int r = dm_table_resume_targets(map);
2692 * Flushing deferred I/Os must be done after targets are resumed
2693 * so that mapping of targets can work correctly.
2694 * Request-based dm is queueing the deferred I/Os in its request_queue.
2696 if (dm_request_based(md))
2697 dm_start_queue(md->queue);
2704 int dm_resume(struct mapped_device *md)
2707 struct dm_table *map = NULL;
2711 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2713 if (!dm_suspended_md(md))
2716 if (dm_suspended_internally_md(md)) {
2717 /* already internally suspended, wait for internal resume */
2718 mutex_unlock(&md->suspend_lock);
2719 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2725 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2726 if (!map || !dm_table_get_size(map))
2729 r = __dm_resume(md, map);
2733 clear_bit(DMF_SUSPENDED, &md->flags);
2735 mutex_unlock(&md->suspend_lock);
2741 * Internal suspend/resume works like userspace-driven suspend. It waits
2742 * until all bios finish and prevents issuing new bios to the target drivers.
2743 * It may be used only from the kernel.
2746 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2748 struct dm_table *map = NULL;
2750 lockdep_assert_held(&md->suspend_lock);
2752 if (md->internal_suspend_count++)
2753 return; /* nested internal suspend */
2755 if (dm_suspended_md(md)) {
2756 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2757 return; /* nest suspend */
2760 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2763 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2764 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2765 * would require changing .presuspend to return an error -- avoid this
2766 * until there is a need for more elaborate variants of internal suspend.
2768 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2769 DMF_SUSPENDED_INTERNALLY);
2771 dm_table_postsuspend_targets(map);
2774 static void __dm_internal_resume(struct mapped_device *md)
2776 BUG_ON(!md->internal_suspend_count);
2778 if (--md->internal_suspend_count)
2779 return; /* resume from nested internal suspend */
2781 if (dm_suspended_md(md))
2782 goto done; /* resume from nested suspend */
2785 * NOTE: existing callers don't need to call dm_table_resume_targets
2786 * (which may fail -- so best to avoid it for now by passing NULL map)
2788 (void) __dm_resume(md, NULL);
2791 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792 smp_mb__after_atomic();
2793 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2796 void dm_internal_suspend_noflush(struct mapped_device *md)
2798 mutex_lock(&md->suspend_lock);
2799 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2800 mutex_unlock(&md->suspend_lock);
2802 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2804 void dm_internal_resume(struct mapped_device *md)
2806 mutex_lock(&md->suspend_lock);
2807 __dm_internal_resume(md);
2808 mutex_unlock(&md->suspend_lock);
2810 EXPORT_SYMBOL_GPL(dm_internal_resume);
2813 * Fast variants of internal suspend/resume hold md->suspend_lock,
2814 * which prevents interaction with userspace-driven suspend.
2817 void dm_internal_suspend_fast(struct mapped_device *md)
2819 mutex_lock(&md->suspend_lock);
2820 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2823 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2824 synchronize_srcu(&md->io_barrier);
2825 flush_workqueue(md->wq);
2826 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2828 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2830 void dm_internal_resume_fast(struct mapped_device *md)
2832 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2838 mutex_unlock(&md->suspend_lock);
2840 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2842 /*-----------------------------------------------------------------
2843 * Event notification.
2844 *---------------------------------------------------------------*/
2845 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2848 char udev_cookie[DM_COOKIE_LENGTH];
2849 char *envp[] = { udev_cookie, NULL };
2852 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2854 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2855 DM_COOKIE_ENV_VAR_NAME, cookie);
2856 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2861 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2863 return atomic_add_return(1, &md->uevent_seq);
2866 uint32_t dm_get_event_nr(struct mapped_device *md)
2868 return atomic_read(&md->event_nr);
2871 int dm_wait_event(struct mapped_device *md, int event_nr)
2873 return wait_event_interruptible(md->eventq,
2874 (event_nr != atomic_read(&md->event_nr)));
2877 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2879 unsigned long flags;
2881 spin_lock_irqsave(&md->uevent_lock, flags);
2882 list_add(elist, &md->uevent_list);
2883 spin_unlock_irqrestore(&md->uevent_lock, flags);
2887 * The gendisk is only valid as long as you have a reference
2890 struct gendisk *dm_disk(struct mapped_device *md)
2894 EXPORT_SYMBOL_GPL(dm_disk);
2896 struct kobject *dm_kobject(struct mapped_device *md)
2898 return &md->kobj_holder.kobj;
2901 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2903 struct mapped_device *md;
2905 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2907 spin_lock(&_minor_lock);
2908 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2914 spin_unlock(&_minor_lock);
2919 int dm_suspended_md(struct mapped_device *md)
2921 return test_bit(DMF_SUSPENDED, &md->flags);
2924 int dm_suspended_internally_md(struct mapped_device *md)
2926 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2929 int dm_test_deferred_remove_flag(struct mapped_device *md)
2931 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2934 int dm_suspended(struct dm_target *ti)
2936 return dm_suspended_md(dm_table_get_md(ti->table));
2938 EXPORT_SYMBOL_GPL(dm_suspended);
2940 int dm_noflush_suspending(struct dm_target *ti)
2942 return __noflush_suspending(dm_table_get_md(ti->table));
2944 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2946 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2947 unsigned integrity, unsigned per_io_data_size,
2948 unsigned min_pool_size)
2950 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2951 unsigned int pool_size = 0;
2952 unsigned int front_pad, io_front_pad;
2959 case DM_TYPE_BIO_BASED:
2960 case DM_TYPE_DAX_BIO_BASED:
2961 case DM_TYPE_NVME_BIO_BASED:
2962 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2963 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2964 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2965 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2968 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2971 case DM_TYPE_REQUEST_BASED:
2972 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2973 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2974 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2980 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2984 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2990 dm_free_md_mempools(pools);
2995 void dm_free_md_mempools(struct dm_md_mempools *pools)
3000 bioset_exit(&pools->bs);
3001 bioset_exit(&pools->io_bs);
3013 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3016 struct mapped_device *md = bdev->bd_disk->private_data;
3017 struct dm_table *table;
3018 struct dm_target *ti;
3019 int ret = -ENOTTY, srcu_idx;
3021 table = dm_get_live_table(md, &srcu_idx);
3022 if (!table || !dm_table_get_size(table))
3025 /* We only support devices that have a single target */
3026 if (dm_table_get_num_targets(table) != 1)
3028 ti = dm_table_get_target(table, 0);
3031 if (!ti->type->iterate_devices)
3034 ret = ti->type->iterate_devices(ti, fn, data);
3036 dm_put_live_table(md, srcu_idx);
3041 * For register / unregister we need to manually call out to every path.
3043 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3044 sector_t start, sector_t len, void *data)
3046 struct dm_pr *pr = data;
3047 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3049 if (!ops || !ops->pr_register)
3051 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3054 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3065 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3066 if (ret && new_key) {
3067 /* unregister all paths if we failed to register any path */
3068 pr.old_key = new_key;
3071 pr.fail_early = false;
3072 dm_call_pr(bdev, __dm_pr_register, &pr);
3078 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3081 struct mapped_device *md = bdev->bd_disk->private_data;
3082 const struct pr_ops *ops;
3085 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3089 ops = bdev->bd_disk->fops->pr_ops;
3090 if (ops && ops->pr_reserve)
3091 r = ops->pr_reserve(bdev, key, type, flags);
3095 dm_unprepare_ioctl(md, srcu_idx);
3099 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3101 struct mapped_device *md = bdev->bd_disk->private_data;
3102 const struct pr_ops *ops;
3105 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3109 ops = bdev->bd_disk->fops->pr_ops;
3110 if (ops && ops->pr_release)
3111 r = ops->pr_release(bdev, key, type);
3115 dm_unprepare_ioctl(md, srcu_idx);
3119 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3120 enum pr_type type, bool abort)
3122 struct mapped_device *md = bdev->bd_disk->private_data;
3123 const struct pr_ops *ops;
3126 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3130 ops = bdev->bd_disk->fops->pr_ops;
3131 if (ops && ops->pr_preempt)
3132 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3136 dm_unprepare_ioctl(md, srcu_idx);
3140 static int dm_pr_clear(struct block_device *bdev, u64 key)
3142 struct mapped_device *md = bdev->bd_disk->private_data;
3143 const struct pr_ops *ops;
3146 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3150 ops = bdev->bd_disk->fops->pr_ops;
3151 if (ops && ops->pr_clear)
3152 r = ops->pr_clear(bdev, key);
3156 dm_unprepare_ioctl(md, srcu_idx);
3160 static const struct pr_ops dm_pr_ops = {
3161 .pr_register = dm_pr_register,
3162 .pr_reserve = dm_pr_reserve,
3163 .pr_release = dm_pr_release,
3164 .pr_preempt = dm_pr_preempt,
3165 .pr_clear = dm_pr_clear,
3168 static const struct block_device_operations dm_blk_dops = {
3169 .open = dm_blk_open,
3170 .release = dm_blk_close,
3171 .ioctl = dm_blk_ioctl,
3172 .getgeo = dm_blk_getgeo,
3173 .report_zones = dm_blk_report_zones,
3174 .pr_ops = &dm_pr_ops,
3175 .owner = THIS_MODULE
3178 static const struct dax_operations dm_dax_ops = {
3179 .direct_access = dm_dax_direct_access,
3180 .copy_from_iter = dm_dax_copy_from_iter,
3181 .copy_to_iter = dm_dax_copy_to_iter,
3187 module_init(dm_init);
3188 module_exit(dm_exit);
3190 module_param(major, uint, 0);
3191 MODULE_PARM_DESC(major, "The major number of the device mapper");
3193 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3194 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3196 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3197 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3199 MODULE_DESCRIPTION(DM_NAME " driver");
3201 MODULE_LICENSE("GPL");