1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2008
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
61 #define MODULE_PARAM_PREFIX "rcutree."
63 /* Data structures. */
66 * Steal a bit from the bottom of ->dynticks for idle entry/exit
67 * control. Initially this is for TLB flushing.
69 #define RCU_DYNTICK_CTRL_MASK 0x1
70 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
71 #ifndef rcu_eqs_special_exit
72 #define rcu_eqs_special_exit() do { } while (0)
75 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
76 .dynticks_nesting = 1,
77 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
78 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
80 struct rcu_state rcu_state = {
81 .level = { &rcu_state.node[0] },
82 .gp_state = RCU_GP_IDLE,
83 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
84 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
87 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
88 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
89 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
92 /* Dump rcu_node combining tree at boot to verify correct setup. */
93 static bool dump_tree;
94 module_param(dump_tree, bool, 0444);
95 /* Control rcu_node-tree auto-balancing at boot time. */
96 static bool rcu_fanout_exact;
97 module_param(rcu_fanout_exact, bool, 0444);
98 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
99 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
100 module_param(rcu_fanout_leaf, int, 0444);
101 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
102 /* Number of rcu_nodes at specified level. */
103 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
104 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
105 /* panic() on RCU Stall sysctl. */
106 int sysctl_panic_on_rcu_stall __read_mostly;
107 /* Commandeer a sysrq key to dump RCU's tree. */
108 static bool sysrq_rcu;
109 module_param(sysrq_rcu, bool, 0444);
112 * The rcu_scheduler_active variable is initialized to the value
113 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
114 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
115 * RCU can assume that there is but one task, allowing RCU to (for example)
116 * optimize synchronize_rcu() to a simple barrier(). When this variable
117 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
118 * to detect real grace periods. This variable is also used to suppress
119 * boot-time false positives from lockdep-RCU error checking. Finally, it
120 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
121 * is fully initialized, including all of its kthreads having been spawned.
123 int rcu_scheduler_active __read_mostly;
124 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
127 * The rcu_scheduler_fully_active variable transitions from zero to one
128 * during the early_initcall() processing, which is after the scheduler
129 * is capable of creating new tasks. So RCU processing (for example,
130 * creating tasks for RCU priority boosting) must be delayed until after
131 * rcu_scheduler_fully_active transitions from zero to one. We also
132 * currently delay invocation of any RCU callbacks until after this point.
134 * It might later prove better for people registering RCU callbacks during
135 * early boot to take responsibility for these callbacks, but one step at
138 static int rcu_scheduler_fully_active __read_mostly;
140 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
141 unsigned long gps, unsigned long flags);
142 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
143 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
144 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
145 static void invoke_rcu_core(void);
146 static void invoke_rcu_callbacks(struct rcu_data *rdp);
147 static void rcu_report_exp_rdp(struct rcu_data *rdp);
148 static void sync_sched_exp_online_cleanup(int cpu);
150 /* rcuc/rcub kthread realtime priority */
151 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
152 module_param(kthread_prio, int, 0644);
154 /* Delay in jiffies for grace-period initialization delays, debug only. */
156 static int gp_preinit_delay;
157 module_param(gp_preinit_delay, int, 0444);
158 static int gp_init_delay;
159 module_param(gp_init_delay, int, 0444);
160 static int gp_cleanup_delay;
161 module_param(gp_cleanup_delay, int, 0444);
163 /* Retrieve RCU kthreads priority for rcutorture */
164 int rcu_get_gp_kthreads_prio(void)
168 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
171 * Number of grace periods between delays, normalized by the duration of
172 * the delay. The longer the delay, the more the grace periods between
173 * each delay. The reason for this normalization is that it means that,
174 * for non-zero delays, the overall slowdown of grace periods is constant
175 * regardless of the duration of the delay. This arrangement balances
176 * the need for long delays to increase some race probabilities with the
177 * need for fast grace periods to increase other race probabilities.
179 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
182 * Compute the mask of online CPUs for the specified rcu_node structure.
183 * This will not be stable unless the rcu_node structure's ->lock is
184 * held, but the bit corresponding to the current CPU will be stable
187 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
189 return READ_ONCE(rnp->qsmaskinitnext);
193 * Return true if an RCU grace period is in progress. The READ_ONCE()s
194 * permit this function to be invoked without holding the root rcu_node
195 * structure's ->lock, but of course results can be subject to change.
197 static int rcu_gp_in_progress(void)
199 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
203 * Return the number of callbacks queued on the specified CPU.
204 * Handles both the nocbs and normal cases.
206 static long rcu_get_n_cbs_cpu(int cpu)
208 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
210 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
211 return rcu_segcblist_n_cbs(&rdp->cblist);
212 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
215 void rcu_softirq_qs(void)
218 rcu_preempt_deferred_qs(current);
222 * Record entry into an extended quiescent state. This is only to be
223 * called when not already in an extended quiescent state.
225 static void rcu_dynticks_eqs_enter(void)
227 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
231 * CPUs seeing atomic_add_return() must see prior RCU read-side
232 * critical sections, and we also must force ordering with the
235 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
236 /* Better be in an extended quiescent state! */
237 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
238 (seq & RCU_DYNTICK_CTRL_CTR));
239 /* Better not have special action (TLB flush) pending! */
240 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
241 (seq & RCU_DYNTICK_CTRL_MASK));
245 * Record exit from an extended quiescent state. This is only to be
246 * called from an extended quiescent state.
248 static void rcu_dynticks_eqs_exit(void)
250 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
254 * CPUs seeing atomic_add_return() must see prior idle sojourns,
255 * and we also must force ordering with the next RCU read-side
258 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
259 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
260 !(seq & RCU_DYNTICK_CTRL_CTR));
261 if (seq & RCU_DYNTICK_CTRL_MASK) {
262 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
263 smp_mb__after_atomic(); /* _exit after clearing mask. */
264 /* Prefer duplicate flushes to losing a flush. */
265 rcu_eqs_special_exit();
270 * Reset the current CPU's ->dynticks counter to indicate that the
271 * newly onlined CPU is no longer in an extended quiescent state.
272 * This will either leave the counter unchanged, or increment it
273 * to the next non-quiescent value.
275 * The non-atomic test/increment sequence works because the upper bits
276 * of the ->dynticks counter are manipulated only by the corresponding CPU,
277 * or when the corresponding CPU is offline.
279 static void rcu_dynticks_eqs_online(void)
281 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
283 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
285 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
289 * Is the current CPU in an extended quiescent state?
291 * No ordering, as we are sampling CPU-local information.
293 bool rcu_dynticks_curr_cpu_in_eqs(void)
295 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
297 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
301 * Snapshot the ->dynticks counter with full ordering so as to allow
302 * stable comparison of this counter with past and future snapshots.
304 int rcu_dynticks_snap(struct rcu_data *rdp)
306 int snap = atomic_add_return(0, &rdp->dynticks);
308 return snap & ~RCU_DYNTICK_CTRL_MASK;
312 * Return true if the snapshot returned from rcu_dynticks_snap()
313 * indicates that RCU is in an extended quiescent state.
315 static bool rcu_dynticks_in_eqs(int snap)
317 return !(snap & RCU_DYNTICK_CTRL_CTR);
321 * Return true if the CPU corresponding to the specified rcu_data
322 * structure has spent some time in an extended quiescent state since
323 * rcu_dynticks_snap() returned the specified snapshot.
325 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
327 return snap != rcu_dynticks_snap(rdp);
331 * Set the special (bottom) bit of the specified CPU so that it
332 * will take special action (such as flushing its TLB) on the
333 * next exit from an extended quiescent state. Returns true if
334 * the bit was successfully set, or false if the CPU was not in
335 * an extended quiescent state.
337 bool rcu_eqs_special_set(int cpu)
341 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
344 old = atomic_read(&rdp->dynticks);
345 if (old & RCU_DYNTICK_CTRL_CTR)
347 new = old | RCU_DYNTICK_CTRL_MASK;
348 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
353 * Let the RCU core know that this CPU has gone through the scheduler,
354 * which is a quiescent state. This is called when the need for a
355 * quiescent state is urgent, so we burn an atomic operation and full
356 * memory barriers to let the RCU core know about it, regardless of what
357 * this CPU might (or might not) do in the near future.
359 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
361 * The caller must have disabled interrupts and must not be idle.
363 static void __maybe_unused rcu_momentary_dyntick_idle(void)
367 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
368 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
369 &this_cpu_ptr(&rcu_data)->dynticks);
370 /* It is illegal to call this from idle state. */
371 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
372 rcu_preempt_deferred_qs(current);
376 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
378 * If the current CPU is idle or running at a first-level (not nested)
379 * interrupt from idle, return true. The caller must have at least
380 * disabled preemption.
382 static int rcu_is_cpu_rrupt_from_idle(void)
384 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
385 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
388 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
389 static long blimit = DEFAULT_RCU_BLIMIT;
390 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
391 static long qhimark = DEFAULT_RCU_QHIMARK;
392 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
393 static long qlowmark = DEFAULT_RCU_QLOMARK;
395 module_param(blimit, long, 0444);
396 module_param(qhimark, long, 0444);
397 module_param(qlowmark, long, 0444);
399 static ulong jiffies_till_first_fqs = ULONG_MAX;
400 static ulong jiffies_till_next_fqs = ULONG_MAX;
401 static bool rcu_kick_kthreads;
404 * How long the grace period must be before we start recruiting
405 * quiescent-state help from rcu_note_context_switch().
407 static ulong jiffies_till_sched_qs = ULONG_MAX;
408 module_param(jiffies_till_sched_qs, ulong, 0444);
409 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
410 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413 * Make sure that we give the grace-period kthread time to detect any
414 * idle CPUs before taking active measures to force quiescent states.
415 * However, don't go below 100 milliseconds, adjusted upwards for really
418 static void adjust_jiffies_till_sched_qs(void)
422 /* If jiffies_till_sched_qs was specified, respect the request. */
423 if (jiffies_till_sched_qs != ULONG_MAX) {
424 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 j = READ_ONCE(jiffies_till_first_fqs) +
428 2 * READ_ONCE(jiffies_till_next_fqs);
429 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
430 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
431 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
432 WRITE_ONCE(jiffies_to_sched_qs, j);
435 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
438 int ret = kstrtoul(val, 0, &j);
441 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
442 adjust_jiffies_till_sched_qs();
447 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
450 int ret = kstrtoul(val, 0, &j);
453 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
454 adjust_jiffies_till_sched_qs();
459 static struct kernel_param_ops first_fqs_jiffies_ops = {
460 .set = param_set_first_fqs_jiffies,
461 .get = param_get_ulong,
464 static struct kernel_param_ops next_fqs_jiffies_ops = {
465 .set = param_set_next_fqs_jiffies,
466 .get = param_get_ulong,
469 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
470 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
471 module_param(rcu_kick_kthreads, bool, 0644);
473 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
474 static int rcu_pending(void);
477 * Return the number of RCU GPs completed thus far for debug & stats.
479 unsigned long rcu_get_gp_seq(void)
481 return READ_ONCE(rcu_state.gp_seq);
483 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
486 * Return the number of RCU expedited batches completed thus far for
487 * debug & stats. Odd numbers mean that a batch is in progress, even
488 * numbers mean idle. The value returned will thus be roughly double
489 * the cumulative batches since boot.
491 unsigned long rcu_exp_batches_completed(void)
493 return rcu_state.expedited_sequence;
495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
498 * Return the root node of the rcu_state structure.
500 static struct rcu_node *rcu_get_root(void)
502 return &rcu_state.node[0];
506 * Convert a ->gp_state value to a character string.
508 static const char *gp_state_getname(short gs)
510 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
512 return gp_state_names[gs];
516 * Show the state of the grace-period kthreads.
518 void show_rcu_gp_kthreads(void)
525 struct rcu_data *rdp;
526 struct rcu_node *rnp;
529 ja = j - READ_ONCE(rcu_state.gp_activity);
530 jr = j - READ_ONCE(rcu_state.gp_req_activity);
531 jw = j - READ_ONCE(rcu_state.gp_wake_time);
532 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %lu ->gp_req_activity %lu ->gp_wake_time %lu ->gp_wake_seq %ld ->gp_seq %ld ->gp_seq_needed %ld ->gp_flags %#x\n",
533 rcu_state.name, gp_state_getname(rcu_state.gp_state),
535 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL,
536 ja, jr, jw, (long)READ_ONCE(rcu_state.gp_wake_seq),
537 (long)READ_ONCE(rcu_state.gp_seq),
538 (long)READ_ONCE(rcu_get_root()->gp_seq_needed),
539 READ_ONCE(rcu_state.gp_flags));
540 rcu_for_each_node_breadth_first(rnp) {
541 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
543 pr_info("\trcu_node %d:%d ->gp_seq %ld ->gp_seq_needed %ld\n",
544 rnp->grplo, rnp->grphi, (long)rnp->gp_seq,
545 (long)rnp->gp_seq_needed);
546 if (!rcu_is_leaf_node(rnp))
548 for_each_leaf_node_possible_cpu(rnp, cpu) {
549 rdp = per_cpu_ptr(&rcu_data, cpu);
551 ULONG_CMP_GE(rcu_state.gp_seq,
554 pr_info("\tcpu %d ->gp_seq_needed %ld\n",
555 cpu, (long)rdp->gp_seq_needed);
558 /* sched_show_task(rcu_state.gp_kthread); */
560 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
562 /* Dump grace-period-request information due to commandeered sysrq. */
563 static void sysrq_show_rcu(int key)
565 show_rcu_gp_kthreads();
568 static struct sysrq_key_op sysrq_rcudump_op = {
569 .handler = sysrq_show_rcu,
570 .help_msg = "show-rcu(y)",
571 .action_msg = "Show RCU tree",
572 .enable_mask = SYSRQ_ENABLE_DUMP,
575 static int __init rcu_sysrq_init(void)
578 return register_sysrq_key('y', &sysrq_rcudump_op);
581 early_initcall(rcu_sysrq_init);
584 * Send along grace-period-related data for rcutorture diagnostics.
586 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
587 unsigned long *gp_seq)
591 *flags = READ_ONCE(rcu_state.gp_flags);
592 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
598 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
601 * Enter an RCU extended quiescent state, which can be either the
602 * idle loop or adaptive-tickless usermode execution.
604 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
605 * the possibility of usermode upcalls having messed up our count
606 * of interrupt nesting level during the prior busy period.
608 static void rcu_eqs_enter(bool user)
610 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
612 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
613 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
614 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
615 rdp->dynticks_nesting == 0);
616 if (rdp->dynticks_nesting != 1) {
617 rdp->dynticks_nesting--;
621 lockdep_assert_irqs_disabled();
622 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
623 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
624 rdp = this_cpu_ptr(&rcu_data);
625 do_nocb_deferred_wakeup(rdp);
626 rcu_prepare_for_idle();
627 rcu_preempt_deferred_qs(current);
628 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
629 rcu_dynticks_eqs_enter();
630 rcu_dynticks_task_enter();
634 * rcu_idle_enter - inform RCU that current CPU is entering idle
636 * Enter idle mode, in other words, -leave- the mode in which RCU
637 * read-side critical sections can occur. (Though RCU read-side
638 * critical sections can occur in irq handlers in idle, a possibility
639 * handled by irq_enter() and irq_exit().)
641 * If you add or remove a call to rcu_idle_enter(), be sure to test with
642 * CONFIG_RCU_EQS_DEBUG=y.
644 void rcu_idle_enter(void)
646 lockdep_assert_irqs_disabled();
647 rcu_eqs_enter(false);
650 #ifdef CONFIG_NO_HZ_FULL
652 * rcu_user_enter - inform RCU that we are resuming userspace.
654 * Enter RCU idle mode right before resuming userspace. No use of RCU
655 * is permitted between this call and rcu_user_exit(). This way the
656 * CPU doesn't need to maintain the tick for RCU maintenance purposes
657 * when the CPU runs in userspace.
659 * If you add or remove a call to rcu_user_enter(), be sure to test with
660 * CONFIG_RCU_EQS_DEBUG=y.
662 void rcu_user_enter(void)
664 lockdep_assert_irqs_disabled();
667 #endif /* CONFIG_NO_HZ_FULL */
670 * If we are returning from the outermost NMI handler that interrupted an
671 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
672 * to let the RCU grace-period handling know that the CPU is back to
675 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
676 * with CONFIG_RCU_EQS_DEBUG=y.
678 static __always_inline void rcu_nmi_exit_common(bool irq)
680 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
683 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
684 * (We are exiting an NMI handler, so RCU better be paying attention
687 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
688 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
691 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
692 * leave it in non-RCU-idle state.
694 if (rdp->dynticks_nmi_nesting != 1) {
695 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
696 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
697 rdp->dynticks_nmi_nesting - 2);
701 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
702 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
703 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
706 rcu_prepare_for_idle();
708 rcu_dynticks_eqs_enter();
711 rcu_dynticks_task_enter();
715 * rcu_nmi_exit - inform RCU of exit from NMI context
717 * If you add or remove a call to rcu_nmi_exit(), be sure to test
718 * with CONFIG_RCU_EQS_DEBUG=y.
720 void rcu_nmi_exit(void)
722 rcu_nmi_exit_common(false);
726 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
728 * Exit from an interrupt handler, which might possibly result in entering
729 * idle mode, in other words, leaving the mode in which read-side critical
730 * sections can occur. The caller must have disabled interrupts.
732 * This code assumes that the idle loop never does anything that might
733 * result in unbalanced calls to irq_enter() and irq_exit(). If your
734 * architecture's idle loop violates this assumption, RCU will give you what
735 * you deserve, good and hard. But very infrequently and irreproducibly.
737 * Use things like work queues to work around this limitation.
739 * You have been warned.
741 * If you add or remove a call to rcu_irq_exit(), be sure to test with
742 * CONFIG_RCU_EQS_DEBUG=y.
744 void rcu_irq_exit(void)
746 lockdep_assert_irqs_disabled();
747 rcu_nmi_exit_common(true);
751 * Wrapper for rcu_irq_exit() where interrupts are enabled.
753 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
754 * with CONFIG_RCU_EQS_DEBUG=y.
756 void rcu_irq_exit_irqson(void)
760 local_irq_save(flags);
762 local_irq_restore(flags);
766 * Exit an RCU extended quiescent state, which can be either the
767 * idle loop or adaptive-tickless usermode execution.
769 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
770 * allow for the possibility of usermode upcalls messing up our count of
771 * interrupt nesting level during the busy period that is just now starting.
773 static void rcu_eqs_exit(bool user)
775 struct rcu_data *rdp;
778 lockdep_assert_irqs_disabled();
779 rdp = this_cpu_ptr(&rcu_data);
780 oldval = rdp->dynticks_nesting;
781 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
783 rdp->dynticks_nesting++;
786 rcu_dynticks_task_exit();
787 rcu_dynticks_eqs_exit();
788 rcu_cleanup_after_idle();
789 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
790 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
791 WRITE_ONCE(rdp->dynticks_nesting, 1);
792 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
793 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
797 * rcu_idle_exit - inform RCU that current CPU is leaving idle
799 * Exit idle mode, in other words, -enter- the mode in which RCU
800 * read-side critical sections can occur.
802 * If you add or remove a call to rcu_idle_exit(), be sure to test with
803 * CONFIG_RCU_EQS_DEBUG=y.
805 void rcu_idle_exit(void)
809 local_irq_save(flags);
811 local_irq_restore(flags);
814 #ifdef CONFIG_NO_HZ_FULL
816 * rcu_user_exit - inform RCU that we are exiting userspace.
818 * Exit RCU idle mode while entering the kernel because it can
819 * run a RCU read side critical section anytime.
821 * If you add or remove a call to rcu_user_exit(), be sure to test with
822 * CONFIG_RCU_EQS_DEBUG=y.
824 void rcu_user_exit(void)
828 #endif /* CONFIG_NO_HZ_FULL */
831 * rcu_nmi_enter_common - inform RCU of entry to NMI context
832 * @irq: Is this call from rcu_irq_enter?
834 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
835 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
836 * that the CPU is active. This implementation permits nested NMIs, as
837 * long as the nesting level does not overflow an int. (You will probably
838 * run out of stack space first.)
840 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
841 * with CONFIG_RCU_EQS_DEBUG=y.
843 static __always_inline void rcu_nmi_enter_common(bool irq)
845 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
848 /* Complain about underflow. */
849 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
852 * If idle from RCU viewpoint, atomically increment ->dynticks
853 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
854 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
855 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
856 * to be in the outermost NMI handler that interrupted an RCU-idle
857 * period (observation due to Andy Lutomirski).
859 if (rcu_dynticks_curr_cpu_in_eqs()) {
862 rcu_dynticks_task_exit();
864 rcu_dynticks_eqs_exit();
867 rcu_cleanup_after_idle();
871 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
872 rdp->dynticks_nmi_nesting,
873 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
874 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
875 rdp->dynticks_nmi_nesting + incby);
880 * rcu_nmi_enter - inform RCU of entry to NMI context
882 void rcu_nmi_enter(void)
884 rcu_nmi_enter_common(false);
886 NOKPROBE_SYMBOL(rcu_nmi_enter);
889 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
891 * Enter an interrupt handler, which might possibly result in exiting
892 * idle mode, in other words, entering the mode in which read-side critical
893 * sections can occur. The caller must have disabled interrupts.
895 * Note that the Linux kernel is fully capable of entering an interrupt
896 * handler that it never exits, for example when doing upcalls to user mode!
897 * This code assumes that the idle loop never does upcalls to user mode.
898 * If your architecture's idle loop does do upcalls to user mode (or does
899 * anything else that results in unbalanced calls to the irq_enter() and
900 * irq_exit() functions), RCU will give you what you deserve, good and hard.
901 * But very infrequently and irreproducibly.
903 * Use things like work queues to work around this limitation.
905 * You have been warned.
907 * If you add or remove a call to rcu_irq_enter(), be sure to test with
908 * CONFIG_RCU_EQS_DEBUG=y.
910 void rcu_irq_enter(void)
912 lockdep_assert_irqs_disabled();
913 rcu_nmi_enter_common(true);
917 * Wrapper for rcu_irq_enter() where interrupts are enabled.
919 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
920 * with CONFIG_RCU_EQS_DEBUG=y.
922 void rcu_irq_enter_irqson(void)
926 local_irq_save(flags);
928 local_irq_restore(flags);
932 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
934 * Return true if RCU is watching the running CPU, which means that this
935 * CPU can safely enter RCU read-side critical sections. In other words,
936 * if the current CPU is not in its idle loop or is in an interrupt or
937 * NMI handler, return true.
939 bool notrace rcu_is_watching(void)
943 preempt_disable_notrace();
944 ret = !rcu_dynticks_curr_cpu_in_eqs();
945 preempt_enable_notrace();
948 EXPORT_SYMBOL_GPL(rcu_is_watching);
951 * If a holdout task is actually running, request an urgent quiescent
952 * state from its CPU. This is unsynchronized, so migrations can cause
953 * the request to go to the wrong CPU. Which is OK, all that will happen
954 * is that the CPU's next context switch will be a bit slower and next
955 * time around this task will generate another request.
957 void rcu_request_urgent_qs_task(struct task_struct *t)
964 return; /* This task is not running on that CPU. */
965 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
968 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
971 * Is the current CPU online as far as RCU is concerned?
973 * Disable preemption to avoid false positives that could otherwise
974 * happen due to the current CPU number being sampled, this task being
975 * preempted, its old CPU being taken offline, resuming on some other CPU,
976 * then determining that its old CPU is now offline.
978 * Disable checking if in an NMI handler because we cannot safely
979 * report errors from NMI handlers anyway. In addition, it is OK to use
980 * RCU on an offline processor during initial boot, hence the check for
981 * rcu_scheduler_fully_active.
983 bool rcu_lockdep_current_cpu_online(void)
985 struct rcu_data *rdp;
986 struct rcu_node *rnp;
989 if (in_nmi() || !rcu_scheduler_fully_active)
992 rdp = this_cpu_ptr(&rcu_data);
994 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
999 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1001 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1004 * We are reporting a quiescent state on behalf of some other CPU, so
1005 * it is our responsibility to check for and handle potential overflow
1006 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1007 * After all, the CPU might be in deep idle state, and thus executing no
1010 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1012 raw_lockdep_assert_held_rcu_node(rnp);
1013 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1015 WRITE_ONCE(rdp->gpwrap, true);
1016 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1017 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1021 * Snapshot the specified CPU's dynticks counter so that we can later
1022 * credit them with an implicit quiescent state. Return 1 if this CPU
1023 * is in dynticks idle mode, which is an extended quiescent state.
1025 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1027 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1028 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1029 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1030 rcu_gpnum_ovf(rdp->mynode, rdp);
1037 * Handler for the irq_work request posted when a grace period has
1038 * gone on for too long, but not yet long enough for an RCU CPU
1039 * stall warning. Set state appropriately, but just complain if
1040 * there is unexpected state on entry.
1042 static void rcu_iw_handler(struct irq_work *iwp)
1044 struct rcu_data *rdp;
1045 struct rcu_node *rnp;
1047 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1049 raw_spin_lock_rcu_node(rnp);
1050 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1051 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1052 rdp->rcu_iw_pending = false;
1054 raw_spin_unlock_rcu_node(rnp);
1058 * Return true if the specified CPU has passed through a quiescent
1059 * state by virtue of being in or having passed through an dynticks
1060 * idle state since the last call to dyntick_save_progress_counter()
1061 * for this same CPU, or by virtue of having been offline.
1063 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1068 struct rcu_node *rnp = rdp->mynode;
1071 * If the CPU passed through or entered a dynticks idle phase with
1072 * no active irq/NMI handlers, then we can safely pretend that the CPU
1073 * already acknowledged the request to pass through a quiescent
1074 * state. Either way, that CPU cannot possibly be in an RCU
1075 * read-side critical section that started before the beginning
1076 * of the current RCU grace period.
1078 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1079 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1080 rcu_gpnum_ovf(rnp, rdp);
1084 /* If waiting too long on an offline CPU, complain. */
1085 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1086 time_after(jiffies, rcu_state.gp_start + HZ)) {
1088 struct rcu_node *rnp1;
1090 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1091 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1092 __func__, rnp->grplo, rnp->grphi, rnp->level,
1093 (long)rnp->gp_seq, (long)rnp->completedqs);
1094 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1095 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1096 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1097 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1098 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1099 __func__, rdp->cpu, ".o"[onl],
1100 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1101 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1102 return 1; /* Break things loose after complaining. */
1106 * A CPU running for an extended time within the kernel can
1107 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1108 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1109 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1110 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1111 * variable are safe because the assignments are repeated if this
1112 * CPU failed to pass through a quiescent state. This code
1113 * also checks .jiffies_resched in case jiffies_to_sched_qs
1116 jtsq = READ_ONCE(jiffies_to_sched_qs);
1117 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1118 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1119 if (!READ_ONCE(*rnhqp) &&
1120 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1121 time_after(jiffies, rcu_state.jiffies_resched))) {
1122 WRITE_ONCE(*rnhqp, true);
1123 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1124 smp_store_release(ruqp, true);
1125 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1126 WRITE_ONCE(*ruqp, true);
1130 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1131 * The above code handles this, but only for straight cond_resched().
1132 * And some in-kernel loops check need_resched() before calling
1133 * cond_resched(), which defeats the above code for CPUs that are
1134 * running in-kernel with scheduling-clock interrupts disabled.
1135 * So hit them over the head with the resched_cpu() hammer!
1137 if (tick_nohz_full_cpu(rdp->cpu) &&
1139 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1140 resched_cpu(rdp->cpu);
1141 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1145 * If more than halfway to RCU CPU stall-warning time, invoke
1146 * resched_cpu() more frequently to try to loosen things up a bit.
1147 * Also check to see if the CPU is getting hammered with interrupts,
1148 * but only once per grace period, just to keep the IPIs down to
1151 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1152 if (time_after(jiffies,
1153 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1154 resched_cpu(rdp->cpu);
1155 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1157 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1158 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1159 (rnp->ffmask & rdp->grpmask)) {
1160 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1161 rdp->rcu_iw_pending = true;
1162 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1163 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1170 static void record_gp_stall_check_time(void)
1172 unsigned long j = jiffies;
1175 rcu_state.gp_start = j;
1176 j1 = rcu_jiffies_till_stall_check();
1177 /* Record ->gp_start before ->jiffies_stall. */
1178 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
1179 rcu_state.jiffies_resched = j + j1 / 2;
1180 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
1184 * Complain about starvation of grace-period kthread.
1186 static void rcu_check_gp_kthread_starvation(void)
1188 struct task_struct *gpk = rcu_state.gp_kthread;
1191 j = jiffies - READ_ONCE(rcu_state.gp_activity);
1193 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1195 (long)rcu_seq_current(&rcu_state.gp_seq),
1196 READ_ONCE(rcu_state.gp_flags),
1197 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
1198 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
1200 pr_err("RCU grace-period kthread stack dump:\n");
1201 sched_show_task(gpk);
1202 wake_up_process(gpk);
1208 * Dump stacks of all tasks running on stalled CPUs. First try using
1209 * NMIs, but fall back to manual remote stack tracing on architectures
1210 * that don't support NMI-based stack dumps. The NMI-triggered stack
1211 * traces are more accurate because they are printed by the target CPU.
1213 static void rcu_dump_cpu_stacks(void)
1216 unsigned long flags;
1217 struct rcu_node *rnp;
1219 rcu_for_each_leaf_node(rnp) {
1220 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1221 for_each_leaf_node_possible_cpu(rnp, cpu)
1222 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1223 if (!trigger_single_cpu_backtrace(cpu))
1225 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1230 * If too much time has passed in the current grace period, and if
1231 * so configured, go kick the relevant kthreads.
1233 static void rcu_stall_kick_kthreads(void)
1237 if (!rcu_kick_kthreads)
1239 j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
1240 if (time_after(jiffies, j) && rcu_state.gp_kthread &&
1241 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
1242 WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1244 rcu_ftrace_dump(DUMP_ALL);
1245 wake_up_process(rcu_state.gp_kthread);
1246 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
1250 static void panic_on_rcu_stall(void)
1252 if (sysctl_panic_on_rcu_stall)
1253 panic("RCU Stall\n");
1256 static void print_other_cpu_stall(unsigned long gp_seq)
1259 unsigned long flags;
1263 struct rcu_node *rnp = rcu_get_root();
1266 /* Kick and suppress, if so configured. */
1267 rcu_stall_kick_kthreads();
1268 if (rcu_cpu_stall_suppress)
1272 * OK, time to rat on our buddy...
1273 * See Documentation/RCU/stallwarn.txt for info on how to debug
1274 * RCU CPU stall warnings.
1276 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
1277 print_cpu_stall_info_begin();
1278 rcu_for_each_leaf_node(rnp) {
1279 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1280 ndetected += rcu_print_task_stall(rnp);
1281 if (rnp->qsmask != 0) {
1282 for_each_leaf_node_possible_cpu(rnp, cpu)
1283 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1284 print_cpu_stall_info(cpu);
1288 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1291 print_cpu_stall_info_end();
1292 for_each_possible_cpu(cpu)
1293 totqlen += rcu_get_n_cbs_cpu(cpu);
1294 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1295 smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
1296 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1298 rcu_dump_cpu_stacks();
1300 /* Complain about tasks blocking the grace period. */
1301 rcu_print_detail_task_stall();
1303 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
1304 pr_err("INFO: Stall ended before state dump start\n");
1307 gpa = READ_ONCE(rcu_state.gp_activity);
1308 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1309 rcu_state.name, j - gpa, j, gpa,
1310 READ_ONCE(jiffies_till_next_fqs),
1311 rcu_get_root()->qsmask);
1312 /* In this case, the current CPU might be at fault. */
1313 sched_show_task(current);
1316 /* Rewrite if needed in case of slow consoles. */
1317 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1318 WRITE_ONCE(rcu_state.jiffies_stall,
1319 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1321 rcu_check_gp_kthread_starvation();
1323 panic_on_rcu_stall();
1325 rcu_force_quiescent_state(); /* Kick them all. */
1328 static void print_cpu_stall(void)
1331 unsigned long flags;
1332 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1333 struct rcu_node *rnp = rcu_get_root();
1336 /* Kick and suppress, if so configured. */
1337 rcu_stall_kick_kthreads();
1338 if (rcu_cpu_stall_suppress)
1342 * OK, time to rat on ourselves...
1343 * See Documentation/RCU/stallwarn.txt for info on how to debug
1344 * RCU CPU stall warnings.
1346 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
1347 print_cpu_stall_info_begin();
1348 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1349 print_cpu_stall_info(smp_processor_id());
1350 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1351 print_cpu_stall_info_end();
1352 for_each_possible_cpu(cpu)
1353 totqlen += rcu_get_n_cbs_cpu(cpu);
1354 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1355 jiffies - rcu_state.gp_start,
1356 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1358 rcu_check_gp_kthread_starvation();
1360 rcu_dump_cpu_stacks();
1362 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363 /* Rewrite if needed in case of slow consoles. */
1364 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1365 WRITE_ONCE(rcu_state.jiffies_stall,
1366 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1367 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1369 panic_on_rcu_stall();
1372 * Attempt to revive the RCU machinery by forcing a context switch.
1374 * A context switch would normally allow the RCU state machine to make
1375 * progress and it could be we're stuck in kernel space without context
1376 * switches for an entirely unreasonable amount of time.
1378 set_tsk_need_resched(current);
1379 set_preempt_need_resched();
1382 static void check_cpu_stall(struct rcu_data *rdp)
1390 struct rcu_node *rnp;
1392 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1393 !rcu_gp_in_progress())
1395 rcu_stall_kick_kthreads();
1399 * Lots of memory barriers to reject false positives.
1401 * The idea is to pick up rcu_state.gp_seq, then
1402 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1403 * another copy of rcu_state.gp_seq. These values are updated in
1404 * the opposite order with memory barriers (or equivalent) during
1405 * grace-period initialization and cleanup. Now, a false positive
1406 * can occur if we get an new value of rcu_state.gp_start and a old
1407 * value of rcu_state.jiffies_stall. But given the memory barriers,
1408 * the only way that this can happen is if one grace period ends
1409 * and another starts between these two fetches. This is detected
1410 * by comparing the second fetch of rcu_state.gp_seq with the
1411 * previous fetch from rcu_state.gp_seq.
1413 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1414 * and rcu_state.gp_start suffice to forestall false positives.
1416 gs1 = READ_ONCE(rcu_state.gp_seq);
1417 smp_rmb(); /* Pick up ->gp_seq first... */
1418 js = READ_ONCE(rcu_state.jiffies_stall);
1419 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1420 gps = READ_ONCE(rcu_state.gp_start);
1421 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1422 gs2 = READ_ONCE(rcu_state.gp_seq);
1424 ULONG_CMP_LT(j, js) ||
1425 ULONG_CMP_GE(gps, js))
1426 return; /* No stall or GP completed since entering function. */
1428 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1429 if (rcu_gp_in_progress() &&
1430 (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1431 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1433 /* We haven't checked in, so go dump stack. */
1436 } else if (rcu_gp_in_progress() &&
1437 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1438 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1440 /* They had a few time units to dump stack, so complain. */
1441 print_other_cpu_stall(gs2);
1446 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1448 * Set the stall-warning timeout way off into the future, thus preventing
1449 * any RCU CPU stall-warning messages from appearing in the current set of
1450 * RCU grace periods.
1452 * The caller must disable hard irqs.
1454 void rcu_cpu_stall_reset(void)
1456 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
1459 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1460 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1461 unsigned long gp_seq_req, const char *s)
1463 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1464 rnp->level, rnp->grplo, rnp->grphi, s);
1468 * rcu_start_this_gp - Request the start of a particular grace period
1469 * @rnp_start: The leaf node of the CPU from which to start.
1470 * @rdp: The rcu_data corresponding to the CPU from which to start.
1471 * @gp_seq_req: The gp_seq of the grace period to start.
1473 * Start the specified grace period, as needed to handle newly arrived
1474 * callbacks. The required future grace periods are recorded in each
1475 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1476 * is reason to awaken the grace-period kthread.
1478 * The caller must hold the specified rcu_node structure's ->lock, which
1479 * is why the caller is responsible for waking the grace-period kthread.
1481 * Returns true if the GP thread needs to be awakened else false.
1483 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1484 unsigned long gp_seq_req)
1487 struct rcu_node *rnp;
1490 * Use funnel locking to either acquire the root rcu_node
1491 * structure's lock or bail out if the need for this grace period
1492 * has already been recorded -- or if that grace period has in
1493 * fact already started. If there is already a grace period in
1494 * progress in a non-leaf node, no recording is needed because the
1495 * end of the grace period will scan the leaf rcu_node structures.
1496 * Note that rnp_start->lock must not be released.
1498 raw_lockdep_assert_held_rcu_node(rnp_start);
1499 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1500 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1501 if (rnp != rnp_start)
1502 raw_spin_lock_rcu_node(rnp);
1503 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1504 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1505 (rnp != rnp_start &&
1506 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1507 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1511 rnp->gp_seq_needed = gp_seq_req;
1512 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1514 * We just marked the leaf or internal node, and a
1515 * grace period is in progress, which means that
1516 * rcu_gp_cleanup() will see the marking. Bail to
1517 * reduce contention.
1519 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1520 TPS("Startedleaf"));
1523 if (rnp != rnp_start && rnp->parent != NULL)
1524 raw_spin_unlock_rcu_node(rnp);
1526 break; /* At root, and perhaps also leaf. */
1529 /* If GP already in progress, just leave, otherwise start one. */
1530 if (rcu_gp_in_progress()) {
1531 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1534 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1535 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1536 rcu_state.gp_req_activity = jiffies;
1537 if (!rcu_state.gp_kthread) {
1538 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1541 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1542 ret = true; /* Caller must wake GP kthread. */
1544 /* Push furthest requested GP to leaf node and rcu_data structure. */
1545 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1546 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1547 rdp->gp_seq_needed = rnp->gp_seq_needed;
1549 if (rnp != rnp_start)
1550 raw_spin_unlock_rcu_node(rnp);
1555 * Clean up any old requests for the just-ended grace period. Also return
1556 * whether any additional grace periods have been requested.
1558 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1561 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1563 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1565 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1566 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1567 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1572 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1573 * an interrupt or softirq handler), and don't bother awakening when there
1574 * is nothing for the grace-period kthread to do (as in several CPUs raced
1575 * to awaken, and we lost), and finally don't try to awaken a kthread that
1576 * has not yet been created. If all those checks are passed, track some
1577 * debug information and awaken.
1579 * So why do the self-wakeup when in an interrupt or softirq handler
1580 * in the grace-period kthread's context? Because the kthread might have
1581 * been interrupted just as it was going to sleep, and just after the final
1582 * pre-sleep check of the awaken condition. In this case, a wakeup really
1583 * is required, and is therefore supplied.
1585 static void rcu_gp_kthread_wake(void)
1587 if ((current == rcu_state.gp_kthread &&
1588 !in_interrupt() && !in_serving_softirq()) ||
1589 !READ_ONCE(rcu_state.gp_flags) ||
1590 !rcu_state.gp_kthread)
1592 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1593 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1594 swake_up_one(&rcu_state.gp_wq);
1598 * If there is room, assign a ->gp_seq number to any callbacks on this
1599 * CPU that have not already been assigned. Also accelerate any callbacks
1600 * that were previously assigned a ->gp_seq number that has since proven
1601 * to be too conservative, which can happen if callbacks get assigned a
1602 * ->gp_seq number while RCU is idle, but with reference to a non-root
1603 * rcu_node structure. This function is idempotent, so it does not hurt
1604 * to call it repeatedly. Returns an flag saying that we should awaken
1605 * the RCU grace-period kthread.
1607 * The caller must hold rnp->lock with interrupts disabled.
1609 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1611 unsigned long gp_seq_req;
1614 raw_lockdep_assert_held_rcu_node(rnp);
1616 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1617 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1621 * Callbacks are often registered with incomplete grace-period
1622 * information. Something about the fact that getting exact
1623 * information requires acquiring a global lock... RCU therefore
1624 * makes a conservative estimate of the grace period number at which
1625 * a given callback will become ready to invoke. The following
1626 * code checks this estimate and improves it when possible, thus
1627 * accelerating callback invocation to an earlier grace-period
1630 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1631 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1632 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1634 /* Trace depending on how much we were able to accelerate. */
1635 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1636 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1638 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1643 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1644 * rcu_node structure's ->lock be held. It consults the cached value
1645 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1646 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1647 * while holding the leaf rcu_node structure's ->lock.
1649 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1650 struct rcu_data *rdp)
1655 lockdep_assert_irqs_disabled();
1656 c = rcu_seq_snap(&rcu_state.gp_seq);
1657 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1658 /* Old request still live, so mark recent callbacks. */
1659 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1662 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1663 needwake = rcu_accelerate_cbs(rnp, rdp);
1664 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1666 rcu_gp_kthread_wake();
1670 * Move any callbacks whose grace period has completed to the
1671 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1672 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1673 * sublist. This function is idempotent, so it does not hurt to
1674 * invoke it repeatedly. As long as it is not invoked -too- often...
1675 * Returns true if the RCU grace-period kthread needs to be awakened.
1677 * The caller must hold rnp->lock with interrupts disabled.
1679 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1681 raw_lockdep_assert_held_rcu_node(rnp);
1683 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1684 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1688 * Find all callbacks whose ->gp_seq numbers indicate that they
1689 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1691 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1693 /* Classify any remaining callbacks. */
1694 return rcu_accelerate_cbs(rnp, rdp);
1698 * Update CPU-local rcu_data state to record the beginnings and ends of
1699 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1700 * structure corresponding to the current CPU, and must have irqs disabled.
1701 * Returns true if the grace-period kthread needs to be awakened.
1703 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1708 raw_lockdep_assert_held_rcu_node(rnp);
1710 if (rdp->gp_seq == rnp->gp_seq)
1711 return false; /* Nothing to do. */
1713 /* Handle the ends of any preceding grace periods first. */
1714 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1715 unlikely(READ_ONCE(rdp->gpwrap))) {
1716 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1717 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1719 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1722 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1723 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1724 unlikely(READ_ONCE(rdp->gpwrap))) {
1726 * If the current grace period is waiting for this CPU,
1727 * set up to detect a quiescent state, otherwise don't
1728 * go looking for one.
1730 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1731 need_gp = !!(rnp->qsmask & rdp->grpmask);
1732 rdp->cpu_no_qs.b.norm = need_gp;
1733 rdp->core_needs_qs = need_gp;
1734 zero_cpu_stall_ticks(rdp);
1736 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1737 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1738 rdp->gp_seq_needed = rnp->gp_seq_needed;
1739 WRITE_ONCE(rdp->gpwrap, false);
1740 rcu_gpnum_ovf(rnp, rdp);
1744 static void note_gp_changes(struct rcu_data *rdp)
1746 unsigned long flags;
1748 struct rcu_node *rnp;
1750 local_irq_save(flags);
1752 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1753 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1754 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1755 local_irq_restore(flags);
1758 needwake = __note_gp_changes(rnp, rdp);
1759 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1761 rcu_gp_kthread_wake();
1764 static void rcu_gp_slow(int delay)
1767 !(rcu_seq_ctr(rcu_state.gp_seq) %
1768 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1769 schedule_timeout_uninterruptible(delay);
1773 * Initialize a new grace period. Return false if no grace period required.
1775 static bool rcu_gp_init(void)
1777 unsigned long flags;
1778 unsigned long oldmask;
1780 struct rcu_data *rdp;
1781 struct rcu_node *rnp = rcu_get_root();
1783 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1784 raw_spin_lock_irq_rcu_node(rnp);
1785 if (!READ_ONCE(rcu_state.gp_flags)) {
1786 /* Spurious wakeup, tell caller to go back to sleep. */
1787 raw_spin_unlock_irq_rcu_node(rnp);
1790 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1792 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1794 * Grace period already in progress, don't start another.
1795 * Not supposed to be able to happen.
1797 raw_spin_unlock_irq_rcu_node(rnp);
1801 /* Advance to a new grace period and initialize state. */
1802 record_gp_stall_check_time();
1803 /* Record GP times before starting GP, hence rcu_seq_start(). */
1804 rcu_seq_start(&rcu_state.gp_seq);
1805 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1806 raw_spin_unlock_irq_rcu_node(rnp);
1809 * Apply per-leaf buffered online and offline operations to the
1810 * rcu_node tree. Note that this new grace period need not wait
1811 * for subsequent online CPUs, and that quiescent-state forcing
1812 * will handle subsequent offline CPUs.
1814 rcu_state.gp_state = RCU_GP_ONOFF;
1815 rcu_for_each_leaf_node(rnp) {
1816 raw_spin_lock(&rcu_state.ofl_lock);
1817 raw_spin_lock_irq_rcu_node(rnp);
1818 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1819 !rnp->wait_blkd_tasks) {
1820 /* Nothing to do on this leaf rcu_node structure. */
1821 raw_spin_unlock_irq_rcu_node(rnp);
1822 raw_spin_unlock(&rcu_state.ofl_lock);
1826 /* Record old state, apply changes to ->qsmaskinit field. */
1827 oldmask = rnp->qsmaskinit;
1828 rnp->qsmaskinit = rnp->qsmaskinitnext;
1830 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1831 if (!oldmask != !rnp->qsmaskinit) {
1832 if (!oldmask) { /* First online CPU for rcu_node. */
1833 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1834 rcu_init_new_rnp(rnp);
1835 } else if (rcu_preempt_has_tasks(rnp)) {
1836 rnp->wait_blkd_tasks = true; /* blocked tasks */
1837 } else { /* Last offline CPU and can propagate. */
1838 rcu_cleanup_dead_rnp(rnp);
1843 * If all waited-on tasks from prior grace period are
1844 * done, and if all this rcu_node structure's CPUs are
1845 * still offline, propagate up the rcu_node tree and
1846 * clear ->wait_blkd_tasks. Otherwise, if one of this
1847 * rcu_node structure's CPUs has since come back online,
1848 * simply clear ->wait_blkd_tasks.
1850 if (rnp->wait_blkd_tasks &&
1851 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1852 rnp->wait_blkd_tasks = false;
1853 if (!rnp->qsmaskinit)
1854 rcu_cleanup_dead_rnp(rnp);
1857 raw_spin_unlock_irq_rcu_node(rnp);
1858 raw_spin_unlock(&rcu_state.ofl_lock);
1860 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1863 * Set the quiescent-state-needed bits in all the rcu_node
1864 * structures for all currently online CPUs in breadth-first
1865 * order, starting from the root rcu_node structure, relying on the
1866 * layout of the tree within the rcu_state.node[] array. Note that
1867 * other CPUs will access only the leaves of the hierarchy, thus
1868 * seeing that no grace period is in progress, at least until the
1869 * corresponding leaf node has been initialized.
1871 * The grace period cannot complete until the initialization
1872 * process finishes, because this kthread handles both.
1874 rcu_state.gp_state = RCU_GP_INIT;
1875 rcu_for_each_node_breadth_first(rnp) {
1876 rcu_gp_slow(gp_init_delay);
1877 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1878 rdp = this_cpu_ptr(&rcu_data);
1879 rcu_preempt_check_blocked_tasks(rnp);
1880 rnp->qsmask = rnp->qsmaskinit;
1881 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1882 if (rnp == rdp->mynode)
1883 (void)__note_gp_changes(rnp, rdp);
1884 rcu_preempt_boost_start_gp(rnp);
1885 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1886 rnp->level, rnp->grplo,
1887 rnp->grphi, rnp->qsmask);
1888 /* Quiescent states for tasks on any now-offline CPUs. */
1889 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1890 rnp->rcu_gp_init_mask = mask;
1891 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1892 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1894 raw_spin_unlock_irq_rcu_node(rnp);
1895 cond_resched_tasks_rcu_qs();
1896 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1903 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1906 static bool rcu_gp_fqs_check_wake(int *gfp)
1908 struct rcu_node *rnp = rcu_get_root();
1910 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1911 *gfp = READ_ONCE(rcu_state.gp_flags);
1912 if (*gfp & RCU_GP_FLAG_FQS)
1915 /* The current grace period has completed. */
1916 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1923 * Do one round of quiescent-state forcing.
1925 static void rcu_gp_fqs(bool first_time)
1927 struct rcu_node *rnp = rcu_get_root();
1929 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1930 rcu_state.n_force_qs++;
1932 /* Collect dyntick-idle snapshots. */
1933 force_qs_rnp(dyntick_save_progress_counter);
1935 /* Handle dyntick-idle and offline CPUs. */
1936 force_qs_rnp(rcu_implicit_dynticks_qs);
1938 /* Clear flag to prevent immediate re-entry. */
1939 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1940 raw_spin_lock_irq_rcu_node(rnp);
1941 WRITE_ONCE(rcu_state.gp_flags,
1942 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1943 raw_spin_unlock_irq_rcu_node(rnp);
1948 * Loop doing repeated quiescent-state forcing until the grace period ends.
1950 static void rcu_gp_fqs_loop(void)
1956 struct rcu_node *rnp = rcu_get_root();
1958 first_gp_fqs = true;
1959 j = READ_ONCE(jiffies_till_first_fqs);
1963 rcu_state.jiffies_force_qs = jiffies + j;
1964 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1965 jiffies + (j ? 3 * j : 2));
1967 trace_rcu_grace_period(rcu_state.name,
1968 READ_ONCE(rcu_state.gp_seq),
1970 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1971 ret = swait_event_idle_timeout_exclusive(
1972 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1973 rcu_state.gp_state = RCU_GP_DOING_FQS;
1974 /* Locking provides needed memory barriers. */
1975 /* If grace period done, leave loop. */
1976 if (!READ_ONCE(rnp->qsmask) &&
1977 !rcu_preempt_blocked_readers_cgp(rnp))
1979 /* If time for quiescent-state forcing, do it. */
1980 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1981 (gf & RCU_GP_FLAG_FQS)) {
1982 trace_rcu_grace_period(rcu_state.name,
1983 READ_ONCE(rcu_state.gp_seq),
1985 rcu_gp_fqs(first_gp_fqs);
1986 first_gp_fqs = false;
1987 trace_rcu_grace_period(rcu_state.name,
1988 READ_ONCE(rcu_state.gp_seq),
1990 cond_resched_tasks_rcu_qs();
1991 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1992 ret = 0; /* Force full wait till next FQS. */
1993 j = READ_ONCE(jiffies_till_next_fqs);
1995 /* Deal with stray signal. */
1996 cond_resched_tasks_rcu_qs();
1997 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1998 WARN_ON(signal_pending(current));
1999 trace_rcu_grace_period(rcu_state.name,
2000 READ_ONCE(rcu_state.gp_seq),
2002 ret = 1; /* Keep old FQS timing. */
2004 if (time_after(jiffies, rcu_state.jiffies_force_qs))
2007 j = rcu_state.jiffies_force_qs - j;
2013 * Clean up after the old grace period.
2015 static void rcu_gp_cleanup(void)
2017 unsigned long gp_duration;
2018 bool needgp = false;
2019 unsigned long new_gp_seq;
2020 struct rcu_data *rdp;
2021 struct rcu_node *rnp = rcu_get_root();
2022 struct swait_queue_head *sq;
2024 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2025 raw_spin_lock_irq_rcu_node(rnp);
2026 rcu_state.gp_end = jiffies;
2027 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2028 if (gp_duration > rcu_state.gp_max)
2029 rcu_state.gp_max = gp_duration;
2032 * We know the grace period is complete, but to everyone else
2033 * it appears to still be ongoing. But it is also the case
2034 * that to everyone else it looks like there is nothing that
2035 * they can do to advance the grace period. It is therefore
2036 * safe for us to drop the lock in order to mark the grace
2037 * period as completed in all of the rcu_node structures.
2039 raw_spin_unlock_irq_rcu_node(rnp);
2042 * Propagate new ->gp_seq value to rcu_node structures so that
2043 * other CPUs don't have to wait until the start of the next grace
2044 * period to process their callbacks. This also avoids some nasty
2045 * RCU grace-period initialization races by forcing the end of
2046 * the current grace period to be completely recorded in all of
2047 * the rcu_node structures before the beginning of the next grace
2048 * period is recorded in any of the rcu_node structures.
2050 new_gp_seq = rcu_state.gp_seq;
2051 rcu_seq_end(&new_gp_seq);
2052 rcu_for_each_node_breadth_first(rnp) {
2053 raw_spin_lock_irq_rcu_node(rnp);
2054 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2055 dump_blkd_tasks(rnp, 10);
2056 WARN_ON_ONCE(rnp->qsmask);
2057 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2058 rdp = this_cpu_ptr(&rcu_data);
2059 if (rnp == rdp->mynode)
2060 needgp = __note_gp_changes(rnp, rdp) || needgp;
2061 /* smp_mb() provided by prior unlock-lock pair. */
2062 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2063 sq = rcu_nocb_gp_get(rnp);
2064 raw_spin_unlock_irq_rcu_node(rnp);
2065 rcu_nocb_gp_cleanup(sq);
2066 cond_resched_tasks_rcu_qs();
2067 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2068 rcu_gp_slow(gp_cleanup_delay);
2070 rnp = rcu_get_root();
2071 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2073 /* Declare grace period done, trace first to use old GP number. */
2074 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2075 rcu_seq_end(&rcu_state.gp_seq);
2076 rcu_state.gp_state = RCU_GP_IDLE;
2077 /* Check for GP requests since above loop. */
2078 rdp = this_cpu_ptr(&rcu_data);
2079 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2080 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2081 TPS("CleanupMore"));
2084 /* Advance CBs to reduce false positives below. */
2085 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
2086 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2087 rcu_state.gp_req_activity = jiffies;
2088 trace_rcu_grace_period(rcu_state.name,
2089 READ_ONCE(rcu_state.gp_seq),
2092 WRITE_ONCE(rcu_state.gp_flags,
2093 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2095 raw_spin_unlock_irq_rcu_node(rnp);
2099 * Body of kthread that handles grace periods.
2101 static int __noreturn rcu_gp_kthread(void *unused)
2103 rcu_bind_gp_kthread();
2106 /* Handle grace-period start. */
2108 trace_rcu_grace_period(rcu_state.name,
2109 READ_ONCE(rcu_state.gp_seq),
2111 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2112 swait_event_idle_exclusive(rcu_state.gp_wq,
2113 READ_ONCE(rcu_state.gp_flags) &
2115 rcu_state.gp_state = RCU_GP_DONE_GPS;
2116 /* Locking provides needed memory barrier. */
2119 cond_resched_tasks_rcu_qs();
2120 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2121 WARN_ON(signal_pending(current));
2122 trace_rcu_grace_period(rcu_state.name,
2123 READ_ONCE(rcu_state.gp_seq),
2127 /* Handle quiescent-state forcing. */
2130 /* Handle grace-period end. */
2131 rcu_state.gp_state = RCU_GP_CLEANUP;
2133 rcu_state.gp_state = RCU_GP_CLEANED;
2138 * Report a full set of quiescent states to the rcu_state data structure.
2139 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2140 * another grace period is required. Whether we wake the grace-period
2141 * kthread or it awakens itself for the next round of quiescent-state
2142 * forcing, that kthread will clean up after the just-completed grace
2143 * period. Note that the caller must hold rnp->lock, which is released
2146 static void rcu_report_qs_rsp(unsigned long flags)
2147 __releases(rcu_get_root()->lock)
2149 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2150 WARN_ON_ONCE(!rcu_gp_in_progress());
2151 WRITE_ONCE(rcu_state.gp_flags,
2152 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2153 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2154 rcu_gp_kthread_wake();
2158 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2159 * Allows quiescent states for a group of CPUs to be reported at one go
2160 * to the specified rcu_node structure, though all the CPUs in the group
2161 * must be represented by the same rcu_node structure (which need not be a
2162 * leaf rcu_node structure, though it often will be). The gps parameter
2163 * is the grace-period snapshot, which means that the quiescent states
2164 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2165 * must be held upon entry, and it is released before return.
2167 * As a special case, if mask is zero, the bit-already-cleared check is
2168 * disabled. This allows propagating quiescent state due to resumed tasks
2169 * during grace-period initialization.
2171 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2172 unsigned long gps, unsigned long flags)
2173 __releases(rnp->lock)
2175 unsigned long oldmask = 0;
2176 struct rcu_node *rnp_c;
2178 raw_lockdep_assert_held_rcu_node(rnp);
2180 /* Walk up the rcu_node hierarchy. */
2182 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2185 * Our bit has already been cleared, or the
2186 * relevant grace period is already over, so done.
2188 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2191 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2192 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2193 rcu_preempt_blocked_readers_cgp(rnp));
2194 rnp->qsmask &= ~mask;
2195 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2196 mask, rnp->qsmask, rnp->level,
2197 rnp->grplo, rnp->grphi,
2199 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2201 /* Other bits still set at this level, so done. */
2202 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2205 rnp->completedqs = rnp->gp_seq;
2206 mask = rnp->grpmask;
2207 if (rnp->parent == NULL) {
2209 /* No more levels. Exit loop holding root lock. */
2213 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2216 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2217 oldmask = rnp_c->qsmask;
2221 * Get here if we are the last CPU to pass through a quiescent
2222 * state for this grace period. Invoke rcu_report_qs_rsp()
2223 * to clean up and start the next grace period if one is needed.
2225 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2229 * Record a quiescent state for all tasks that were previously queued
2230 * on the specified rcu_node structure and that were blocking the current
2231 * RCU grace period. The caller must hold the corresponding rnp->lock with
2232 * irqs disabled, and this lock is released upon return, but irqs remain
2235 static void __maybe_unused
2236 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2237 __releases(rnp->lock)
2241 struct rcu_node *rnp_p;
2243 raw_lockdep_assert_held_rcu_node(rnp);
2244 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
2245 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2247 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2248 return; /* Still need more quiescent states! */
2251 rnp->completedqs = rnp->gp_seq;
2252 rnp_p = rnp->parent;
2253 if (rnp_p == NULL) {
2255 * Only one rcu_node structure in the tree, so don't
2256 * try to report up to its nonexistent parent!
2258 rcu_report_qs_rsp(flags);
2262 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2264 mask = rnp->grpmask;
2265 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2266 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2267 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2271 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2272 * structure. This must be called from the specified CPU.
2275 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2277 unsigned long flags;
2280 struct rcu_node *rnp;
2283 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2284 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2288 * The grace period in which this quiescent state was
2289 * recorded has ended, so don't report it upwards.
2290 * We will instead need a new quiescent state that lies
2291 * within the current grace period.
2293 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2294 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2297 mask = rdp->grpmask;
2298 if ((rnp->qsmask & mask) == 0) {
2299 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2301 rdp->core_needs_qs = false;
2304 * This GP can't end until cpu checks in, so all of our
2305 * callbacks can be processed during the next GP.
2307 needwake = rcu_accelerate_cbs(rnp, rdp);
2309 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2310 /* ^^^ Released rnp->lock */
2312 rcu_gp_kthread_wake();
2317 * Check to see if there is a new grace period of which this CPU
2318 * is not yet aware, and if so, set up local rcu_data state for it.
2319 * Otherwise, see if this CPU has just passed through its first
2320 * quiescent state for this grace period, and record that fact if so.
2323 rcu_check_quiescent_state(struct rcu_data *rdp)
2325 /* Check for grace-period ends and beginnings. */
2326 note_gp_changes(rdp);
2329 * Does this CPU still need to do its part for current grace period?
2330 * If no, return and let the other CPUs do their part as well.
2332 if (!rdp->core_needs_qs)
2336 * Was there a quiescent state since the beginning of the grace
2337 * period? If no, then exit and wait for the next call.
2339 if (rdp->cpu_no_qs.b.norm)
2343 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2346 rcu_report_qs_rdp(rdp->cpu, rdp);
2350 * Near the end of the offline process. Trace the fact that this CPU
2353 int rcutree_dying_cpu(unsigned int cpu)
2355 RCU_TRACE(bool blkd;)
2356 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
2357 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2359 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2362 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2363 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2364 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2369 * All CPUs for the specified rcu_node structure have gone offline,
2370 * and all tasks that were preempted within an RCU read-side critical
2371 * section while running on one of those CPUs have since exited their RCU
2372 * read-side critical section. Some other CPU is reporting this fact with
2373 * the specified rcu_node structure's ->lock held and interrupts disabled.
2374 * This function therefore goes up the tree of rcu_node structures,
2375 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2376 * the leaf rcu_node structure's ->qsmaskinit field has already been
2379 * This function does check that the specified rcu_node structure has
2380 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2381 * prematurely. That said, invoking it after the fact will cost you
2382 * a needless lock acquisition. So once it has done its work, don't
2385 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2388 struct rcu_node *rnp = rnp_leaf;
2390 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2391 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2392 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2393 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2396 mask = rnp->grpmask;
2400 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2401 rnp->qsmaskinit &= ~mask;
2402 /* Between grace periods, so better already be zero! */
2403 WARN_ON_ONCE(rnp->qsmask);
2404 if (rnp->qsmaskinit) {
2405 raw_spin_unlock_rcu_node(rnp);
2406 /* irqs remain disabled. */
2409 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2414 * The CPU has been completely removed, and some other CPU is reporting
2415 * this fact from process context. Do the remainder of the cleanup.
2416 * There can only be one CPU hotplug operation at a time, so no need for
2419 int rcutree_dead_cpu(unsigned int cpu)
2421 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2422 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2424 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2427 /* Adjust any no-longer-needed kthreads. */
2428 rcu_boost_kthread_setaffinity(rnp, -1);
2429 /* Do any needed no-CB deferred wakeups from this CPU. */
2430 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2435 * Invoke any RCU callbacks that have made it to the end of their grace
2436 * period. Thottle as specified by rdp->blimit.
2438 static void rcu_do_batch(struct rcu_data *rdp)
2440 unsigned long flags;
2441 struct rcu_head *rhp;
2442 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2445 /* If no callbacks are ready, just return. */
2446 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2447 trace_rcu_batch_start(rcu_state.name,
2448 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2449 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2450 trace_rcu_batch_end(rcu_state.name, 0,
2451 !rcu_segcblist_empty(&rdp->cblist),
2452 need_resched(), is_idle_task(current),
2453 rcu_is_callbacks_kthread());
2458 * Extract the list of ready callbacks, disabling to prevent
2459 * races with call_rcu() from interrupt handlers. Leave the
2460 * callback counts, as rcu_barrier() needs to be conservative.
2462 local_irq_save(flags);
2463 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2465 trace_rcu_batch_start(rcu_state.name,
2466 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2467 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2468 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2469 local_irq_restore(flags);
2471 /* Invoke callbacks. */
2472 rhp = rcu_cblist_dequeue(&rcl);
2473 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2474 debug_rcu_head_unqueue(rhp);
2475 if (__rcu_reclaim(rcu_state.name, rhp))
2476 rcu_cblist_dequeued_lazy(&rcl);
2478 * Stop only if limit reached and CPU has something to do.
2479 * Note: The rcl structure counts down from zero.
2481 if (-rcl.len >= bl &&
2483 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2487 local_irq_save(flags);
2489 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2490 is_idle_task(current), rcu_is_callbacks_kthread());
2492 /* Update counts and requeue any remaining callbacks. */
2493 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2494 smp_mb(); /* List handling before counting for rcu_barrier(). */
2495 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2497 /* Reinstate batch limit if we have worked down the excess. */
2498 count = rcu_segcblist_n_cbs(&rdp->cblist);
2499 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2500 rdp->blimit = blimit;
2502 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2503 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2504 rdp->qlen_last_fqs_check = 0;
2505 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2506 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2507 rdp->qlen_last_fqs_check = count;
2510 * The following usually indicates a double call_rcu(). To track
2511 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2513 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2515 local_irq_restore(flags);
2517 /* Re-invoke RCU core processing if there are callbacks remaining. */
2518 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2523 * This function is invoked from each scheduling-clock interrupt,
2524 * and checks to see if this CPU is in a non-context-switch quiescent
2525 * state, for example, user mode or idle loop. It also schedules RCU
2526 * core processing. If the current grace period has gone on too long,
2527 * it will ask the scheduler to manufacture a context switch for the sole
2528 * purpose of providing a providing the needed quiescent state.
2530 void rcu_sched_clock_irq(int user)
2532 trace_rcu_utilization(TPS("Start scheduler-tick"));
2533 raw_cpu_inc(rcu_data.ticks_this_gp);
2534 /* The load-acquire pairs with the store-release setting to true. */
2535 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2536 /* Idle and userspace execution already are quiescent states. */
2537 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2538 set_tsk_need_resched(current);
2539 set_preempt_need_resched();
2541 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2543 rcu_flavor_sched_clock_irq(user);
2547 trace_rcu_utilization(TPS("End scheduler-tick"));
2551 * Scan the leaf rcu_node structures, processing dyntick state for any that
2552 * have not yet encountered a quiescent state, using the function specified.
2553 * Also initiate boosting for any threads blocked on the root rcu_node.
2555 * The caller must have suppressed start of new grace periods.
2557 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2560 unsigned long flags;
2562 struct rcu_node *rnp;
2564 rcu_for_each_leaf_node(rnp) {
2565 cond_resched_tasks_rcu_qs();
2567 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2568 if (rnp->qsmask == 0) {
2569 if (!IS_ENABLED(CONFIG_PREEMPT) ||
2570 rcu_preempt_blocked_readers_cgp(rnp)) {
2572 * No point in scanning bits because they
2573 * are all zero. But we might need to
2574 * priority-boost blocked readers.
2576 rcu_initiate_boost(rnp, flags);
2577 /* rcu_initiate_boost() releases rnp->lock */
2580 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2583 for_each_leaf_node_possible_cpu(rnp, cpu) {
2584 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2585 if ((rnp->qsmask & bit) != 0) {
2586 if (f(per_cpu_ptr(&rcu_data, cpu)))
2591 /* Idle/offline CPUs, report (releases rnp->lock). */
2592 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2594 /* Nothing to do here, so just drop the lock. */
2595 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2601 * Force quiescent states on reluctant CPUs, and also detect which
2602 * CPUs are in dyntick-idle mode.
2604 void rcu_force_quiescent_state(void)
2606 unsigned long flags;
2608 struct rcu_node *rnp;
2609 struct rcu_node *rnp_old = NULL;
2611 /* Funnel through hierarchy to reduce memory contention. */
2612 rnp = __this_cpu_read(rcu_data.mynode);
2613 for (; rnp != NULL; rnp = rnp->parent) {
2614 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2615 !raw_spin_trylock(&rnp->fqslock);
2616 if (rnp_old != NULL)
2617 raw_spin_unlock(&rnp_old->fqslock);
2622 /* rnp_old == rcu_get_root(), rnp == NULL. */
2624 /* Reached the root of the rcu_node tree, acquire lock. */
2625 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2626 raw_spin_unlock(&rnp_old->fqslock);
2627 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2628 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2629 return; /* Someone beat us to it. */
2631 WRITE_ONCE(rcu_state.gp_flags,
2632 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2633 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2634 rcu_gp_kthread_wake();
2636 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2639 * This function checks for grace-period requests that fail to motivate
2640 * RCU to come out of its idle mode.
2643 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp,
2644 const unsigned long gpssdelay)
2646 unsigned long flags;
2648 struct rcu_node *rnp_root = rcu_get_root();
2649 static atomic_t warned = ATOMIC_INIT(0);
2651 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
2652 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2654 j = jiffies; /* Expensive access, and in common case don't get here. */
2655 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2656 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2657 atomic_read(&warned))
2660 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2662 if (rcu_gp_in_progress() ||
2663 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2664 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2665 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2666 atomic_read(&warned)) {
2667 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2670 /* Hold onto the leaf lock to make others see warned==1. */
2672 if (rnp_root != rnp)
2673 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2675 if (rcu_gp_in_progress() ||
2676 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2677 time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2678 time_before(j, rcu_state.gp_activity + gpssdelay) ||
2679 atomic_xchg(&warned, 1)) {
2680 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2681 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2685 if (rnp_root != rnp)
2686 raw_spin_unlock_rcu_node(rnp_root);
2687 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2688 show_rcu_gp_kthreads();
2692 * Do a forward-progress check for rcutorture. This is normally invoked
2693 * due to an OOM event. The argument "j" gives the time period during
2694 * which rcutorture would like progress to have been made.
2696 void rcu_fwd_progress_check(unsigned long j)
2700 unsigned long max_cbs = 0;
2702 struct rcu_data *rdp;
2704 if (rcu_gp_in_progress()) {
2705 pr_info("%s: GP age %lu jiffies\n",
2706 __func__, jiffies - rcu_state.gp_start);
2707 show_rcu_gp_kthreads();
2709 pr_info("%s: Last GP end %lu jiffies ago\n",
2710 __func__, jiffies - rcu_state.gp_end);
2712 rdp = this_cpu_ptr(&rcu_data);
2713 rcu_check_gp_start_stall(rdp->mynode, rdp, j);
2716 for_each_possible_cpu(cpu) {
2717 cbs = rcu_get_n_cbs_cpu(cpu);
2721 pr_info("%s: callbacks", __func__);
2722 pr_cont(" %d: %lu", cpu, cbs);
2731 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check);
2733 /* Perform RCU core processing work for the current CPU. */
2734 static __latent_entropy void rcu_core(struct softirq_action *unused)
2736 unsigned long flags;
2737 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2738 struct rcu_node *rnp = rdp->mynode;
2740 if (cpu_is_offline(smp_processor_id()))
2742 trace_rcu_utilization(TPS("Start RCU core"));
2743 WARN_ON_ONCE(!rdp->beenonline);
2745 /* Report any deferred quiescent states if preemption enabled. */
2746 if (!(preempt_count() & PREEMPT_MASK)) {
2747 rcu_preempt_deferred_qs(current);
2748 } else if (rcu_preempt_need_deferred_qs(current)) {
2749 set_tsk_need_resched(current);
2750 set_preempt_need_resched();
2753 /* Update RCU state based on any recent quiescent states. */
2754 rcu_check_quiescent_state(rdp);
2756 /* No grace period and unregistered callbacks? */
2757 if (!rcu_gp_in_progress() &&
2758 rcu_segcblist_is_enabled(&rdp->cblist)) {
2759 local_irq_save(flags);
2760 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2761 rcu_accelerate_cbs_unlocked(rnp, rdp);
2762 local_irq_restore(flags);
2765 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2767 /* If there are callbacks ready, invoke them. */
2768 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2769 invoke_rcu_callbacks(rdp);
2771 /* Do any needed deferred wakeups of rcuo kthreads. */
2772 do_nocb_deferred_wakeup(rdp);
2773 trace_rcu_utilization(TPS("End RCU core"));
2777 * Schedule RCU callback invocation. If the running implementation of RCU
2778 * does not support RCU priority boosting, just do a direct call, otherwise
2779 * wake up the per-CPU kernel kthread. Note that because we are running
2780 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2781 * cannot disappear out from under us.
2783 static void invoke_rcu_callbacks(struct rcu_data *rdp)
2785 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2787 if (likely(!rcu_state.boost)) {
2791 invoke_rcu_callbacks_kthread();
2794 static void invoke_rcu_core(void)
2796 if (cpu_online(smp_processor_id()))
2797 raise_softirq(RCU_SOFTIRQ);
2801 * Handle any core-RCU processing required by a call_rcu() invocation.
2803 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2804 unsigned long flags)
2807 * If called from an extended quiescent state, invoke the RCU
2808 * core in order to force a re-evaluation of RCU's idleness.
2810 if (!rcu_is_watching())
2813 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2814 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2818 * Force the grace period if too many callbacks or too long waiting.
2819 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2820 * if some other CPU has recently done so. Also, don't bother
2821 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2822 * is the only one waiting for a grace period to complete.
2824 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2825 rdp->qlen_last_fqs_check + qhimark)) {
2827 /* Are we ignoring a completed grace period? */
2828 note_gp_changes(rdp);
2830 /* Start a new grace period if one not already started. */
2831 if (!rcu_gp_in_progress()) {
2832 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2834 /* Give the grace period a kick. */
2835 rdp->blimit = LONG_MAX;
2836 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2837 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2838 rcu_force_quiescent_state();
2839 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2840 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2846 * RCU callback function to leak a callback.
2848 static void rcu_leak_callback(struct rcu_head *rhp)
2853 * Helper function for call_rcu() and friends. The cpu argument will
2854 * normally be -1, indicating "currently running CPU". It may specify
2855 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
2856 * is expected to specify a CPU.
2859 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2861 unsigned long flags;
2862 struct rcu_data *rdp;
2864 /* Misaligned rcu_head! */
2865 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2867 if (debug_rcu_head_queue(head)) {
2869 * Probable double call_rcu(), so leak the callback.
2870 * Use rcu:rcu_callback trace event to find the previous
2871 * time callback was passed to __call_rcu().
2873 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2875 WRITE_ONCE(head->func, rcu_leak_callback);
2880 local_irq_save(flags);
2881 rdp = this_cpu_ptr(&rcu_data);
2883 /* Add the callback to our list. */
2884 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2888 rdp = per_cpu_ptr(&rcu_data, cpu);
2889 if (likely(rdp->mynode)) {
2890 /* Post-boot, so this should be for a no-CBs CPU. */
2891 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2892 WARN_ON_ONCE(offline);
2893 /* Offline CPU, _call_rcu() illegal, leak callback. */
2894 local_irq_restore(flags);
2898 * Very early boot, before rcu_init(). Initialize if needed
2899 * and then drop through to queue the callback.
2901 WARN_ON_ONCE(cpu != -1);
2902 WARN_ON_ONCE(!rcu_is_watching());
2903 if (rcu_segcblist_empty(&rdp->cblist))
2904 rcu_segcblist_init(&rdp->cblist);
2906 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2907 if (__is_kfree_rcu_offset((unsigned long)func))
2908 trace_rcu_kfree_callback(rcu_state.name, head,
2909 (unsigned long)func,
2910 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2911 rcu_segcblist_n_cbs(&rdp->cblist));
2913 trace_rcu_callback(rcu_state.name, head,
2914 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2915 rcu_segcblist_n_cbs(&rdp->cblist));
2917 /* Go handle any RCU core processing required. */
2918 __call_rcu_core(rdp, head, flags);
2919 local_irq_restore(flags);
2923 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2924 * @head: structure to be used for queueing the RCU updates.
2925 * @func: actual callback function to be invoked after the grace period
2927 * The callback function will be invoked some time after a full grace
2928 * period elapses, in other words after all pre-existing RCU read-side
2929 * critical sections have completed. However, the callback function
2930 * might well execute concurrently with RCU read-side critical sections
2931 * that started after call_rcu() was invoked. RCU read-side critical
2932 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2933 * may be nested. In addition, regions of code across which interrupts,
2934 * preemption, or softirqs have been disabled also serve as RCU read-side
2935 * critical sections. This includes hardware interrupt handlers, softirq
2936 * handlers, and NMI handlers.
2938 * Note that all CPUs must agree that the grace period extended beyond
2939 * all pre-existing RCU read-side critical section. On systems with more
2940 * than one CPU, this means that when "func()" is invoked, each CPU is
2941 * guaranteed to have executed a full memory barrier since the end of its
2942 * last RCU read-side critical section whose beginning preceded the call
2943 * to call_rcu(). It also means that each CPU executing an RCU read-side
2944 * critical section that continues beyond the start of "func()" must have
2945 * executed a memory barrier after the call_rcu() but before the beginning
2946 * of that RCU read-side critical section. Note that these guarantees
2947 * include CPUs that are offline, idle, or executing in user mode, as
2948 * well as CPUs that are executing in the kernel.
2950 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2951 * resulting RCU callback function "func()", then both CPU A and CPU B are
2952 * guaranteed to execute a full memory barrier during the time interval
2953 * between the call to call_rcu() and the invocation of "func()" -- even
2954 * if CPU A and CPU B are the same CPU (but again only if the system has
2955 * more than one CPU).
2957 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2959 __call_rcu(head, func, -1, 0);
2961 EXPORT_SYMBOL_GPL(call_rcu);
2964 * Queue an RCU callback for lazy invocation after a grace period.
2965 * This will likely be later named something like "call_rcu_lazy()",
2966 * but this change will require some way of tagging the lazy RCU
2967 * callbacks in the list of pending callbacks. Until then, this
2968 * function may only be called from __kfree_rcu().
2970 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2972 __call_rcu(head, func, -1, 1);
2974 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2977 * During early boot, any blocking grace-period wait automatically
2978 * implies a grace period. Later on, this is never the case for PREEMPT.
2980 * Howevr, because a context switch is a grace period for !PREEMPT, any
2981 * blocking grace-period wait automatically implies a grace period if
2982 * there is only one CPU online at any point time during execution of
2983 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2984 * occasionally incorrectly indicate that there are multiple CPUs online
2985 * when there was in fact only one the whole time, as this just adds some
2986 * overhead: RCU still operates correctly.
2988 static int rcu_blocking_is_gp(void)
2992 if (IS_ENABLED(CONFIG_PREEMPT))
2993 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2994 might_sleep(); /* Check for RCU read-side critical section. */
2996 ret = num_online_cpus() <= 1;
3002 * synchronize_rcu - wait until a grace period has elapsed.
3004 * Control will return to the caller some time after a full grace
3005 * period has elapsed, in other words after all currently executing RCU
3006 * read-side critical sections have completed. Note, however, that
3007 * upon return from synchronize_rcu(), the caller might well be executing
3008 * concurrently with new RCU read-side critical sections that began while
3009 * synchronize_rcu() was waiting. RCU read-side critical sections are
3010 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3011 * In addition, regions of code across which interrupts, preemption, or
3012 * softirqs have been disabled also serve as RCU read-side critical
3013 * sections. This includes hardware interrupt handlers, softirq handlers,
3016 * Note that this guarantee implies further memory-ordering guarantees.
3017 * On systems with more than one CPU, when synchronize_rcu() returns,
3018 * each CPU is guaranteed to have executed a full memory barrier since
3019 * the end of its last RCU read-side critical section whose beginning
3020 * preceded the call to synchronize_rcu(). In addition, each CPU having
3021 * an RCU read-side critical section that extends beyond the return from
3022 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3023 * after the beginning of synchronize_rcu() and before the beginning of
3024 * that RCU read-side critical section. Note that these guarantees include
3025 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3026 * that are executing in the kernel.
3028 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3029 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3030 * to have executed a full memory barrier during the execution of
3031 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3032 * again only if the system has more than one CPU).
3034 void synchronize_rcu(void)
3036 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3037 lock_is_held(&rcu_lock_map) ||
3038 lock_is_held(&rcu_sched_lock_map),
3039 "Illegal synchronize_rcu() in RCU read-side critical section");
3040 if (rcu_blocking_is_gp())
3042 if (rcu_gp_is_expedited())
3043 synchronize_rcu_expedited();
3045 wait_rcu_gp(call_rcu);
3047 EXPORT_SYMBOL_GPL(synchronize_rcu);
3050 * get_state_synchronize_rcu - Snapshot current RCU state
3052 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3053 * to determine whether or not a full grace period has elapsed in the
3056 unsigned long get_state_synchronize_rcu(void)
3059 * Any prior manipulation of RCU-protected data must happen
3060 * before the load from ->gp_seq.
3063 return rcu_seq_snap(&rcu_state.gp_seq);
3065 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3068 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3070 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3072 * If a full RCU grace period has elapsed since the earlier call to
3073 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3074 * synchronize_rcu() to wait for a full grace period.
3076 * Yes, this function does not take counter wrap into account. But
3077 * counter wrap is harmless. If the counter wraps, we have waited for
3078 * more than 2 billion grace periods (and way more on a 64-bit system!),
3079 * so waiting for one additional grace period should be just fine.
3081 void cond_synchronize_rcu(unsigned long oldstate)
3083 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3086 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3088 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3091 * Check to see if there is any immediate RCU-related work to be done by
3092 * the current CPU, returning 1 if so and zero otherwise. The checks are
3093 * in order of increasing expense: checks that can be carried out against
3094 * CPU-local state are performed first. However, we must check for CPU
3095 * stalls first, else we might not get a chance.
3097 static int rcu_pending(void)
3099 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3100 struct rcu_node *rnp = rdp->mynode;
3102 /* Check for CPU stalls, if enabled. */
3103 check_cpu_stall(rdp);
3105 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3106 if (rcu_nohz_full_cpu())
3109 /* Is the RCU core waiting for a quiescent state from this CPU? */
3110 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3113 /* Does this CPU have callbacks ready to invoke? */
3114 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3117 /* Has RCU gone idle with this CPU needing another grace period? */
3118 if (!rcu_gp_in_progress() &&
3119 rcu_segcblist_is_enabled(&rdp->cblist) &&
3120 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3123 /* Have RCU grace period completed or started? */
3124 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3125 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3128 /* Does this CPU need a deferred NOCB wakeup? */
3129 if (rcu_nocb_need_deferred_wakeup(rdp))
3137 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3138 * the compiler is expected to optimize this away.
3140 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3142 trace_rcu_barrier(rcu_state.name, s, cpu,
3143 atomic_read(&rcu_state.barrier_cpu_count), done);
3147 * RCU callback function for rcu_barrier(). If we are last, wake
3148 * up the task executing rcu_barrier().
3150 static void rcu_barrier_callback(struct rcu_head *rhp)
3152 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3153 rcu_barrier_trace(TPS("LastCB"), -1,
3154 rcu_state.barrier_sequence);
3155 complete(&rcu_state.barrier_completion);
3157 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
3162 * Called with preemption disabled, and from cross-cpu IRQ context.
3164 static void rcu_barrier_func(void *unused)
3166 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
3168 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3169 rdp->barrier_head.func = rcu_barrier_callback;
3170 debug_rcu_head_queue(&rdp->barrier_head);
3171 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3172 atomic_inc(&rcu_state.barrier_cpu_count);
3174 debug_rcu_head_unqueue(&rdp->barrier_head);
3175 rcu_barrier_trace(TPS("IRQNQ"), -1,
3176 rcu_state.barrier_sequence);
3181 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3183 * Note that this primitive does not necessarily wait for an RCU grace period
3184 * to complete. For example, if there are no RCU callbacks queued anywhere
3185 * in the system, then rcu_barrier() is within its rights to return
3186 * immediately, without waiting for anything, much less an RCU grace period.
3188 void rcu_barrier(void)
3191 struct rcu_data *rdp;
3192 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3194 rcu_barrier_trace(TPS("Begin"), -1, s);
3196 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3197 mutex_lock(&rcu_state.barrier_mutex);
3199 /* Did someone else do our work for us? */
3200 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3201 rcu_barrier_trace(TPS("EarlyExit"), -1,
3202 rcu_state.barrier_sequence);
3203 smp_mb(); /* caller's subsequent code after above check. */
3204 mutex_unlock(&rcu_state.barrier_mutex);
3208 /* Mark the start of the barrier operation. */
3209 rcu_seq_start(&rcu_state.barrier_sequence);
3210 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3213 * Initialize the count to one rather than to zero in order to
3214 * avoid a too-soon return to zero in case of a short grace period
3215 * (or preemption of this task). Exclude CPU-hotplug operations
3216 * to ensure that no offline CPU has callbacks queued.
3218 init_completion(&rcu_state.barrier_completion);
3219 atomic_set(&rcu_state.barrier_cpu_count, 1);
3223 * Force each CPU with callbacks to register a new callback.
3224 * When that callback is invoked, we will know that all of the
3225 * corresponding CPU's preceding callbacks have been invoked.
3227 for_each_possible_cpu(cpu) {
3228 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3230 rdp = per_cpu_ptr(&rcu_data, cpu);
3231 if (rcu_is_nocb_cpu(cpu)) {
3232 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
3233 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
3234 rcu_state.barrier_sequence);
3236 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
3237 rcu_state.barrier_sequence);
3238 smp_mb__before_atomic();
3239 atomic_inc(&rcu_state.barrier_cpu_count);
3240 __call_rcu(&rdp->barrier_head,
3241 rcu_barrier_callback, cpu, 0);
3243 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3244 rcu_barrier_trace(TPS("OnlineQ"), cpu,
3245 rcu_state.barrier_sequence);
3246 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
3248 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3249 rcu_state.barrier_sequence);
3255 * Now that we have an rcu_barrier_callback() callback on each
3256 * CPU, and thus each counted, remove the initial count.
3258 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3259 complete(&rcu_state.barrier_completion);
3261 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3262 wait_for_completion(&rcu_state.barrier_completion);
3264 /* Mark the end of the barrier operation. */
3265 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3266 rcu_seq_end(&rcu_state.barrier_sequence);
3268 /* Other rcu_barrier() invocations can now safely proceed. */
3269 mutex_unlock(&rcu_state.barrier_mutex);
3271 EXPORT_SYMBOL_GPL(rcu_barrier);
3274 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3275 * first CPU in a given leaf rcu_node structure coming online. The caller
3276 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3279 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3283 struct rcu_node *rnp = rnp_leaf;
3285 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3286 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3288 mask = rnp->grpmask;
3292 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3293 oldmask = rnp->qsmaskinit;
3294 rnp->qsmaskinit |= mask;
3295 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3302 * Do boot-time initialization of a CPU's per-CPU RCU data.
3305 rcu_boot_init_percpu_data(int cpu)
3307 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3309 /* Set up local state, ensuring consistent view of global state. */
3310 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3311 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3312 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3313 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3314 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3315 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3316 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3318 rcu_boot_init_nocb_percpu_data(rdp);
3322 * Invoked early in the CPU-online process, when pretty much all services
3323 * are available. The incoming CPU is not present.
3325 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3326 * offline event can be happening at a given time. Note also that we can
3327 * accept some slop in the rsp->gp_seq access due to the fact that this
3328 * CPU cannot possibly have any RCU callbacks in flight yet.
3330 int rcutree_prepare_cpu(unsigned int cpu)
3332 unsigned long flags;
3333 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3334 struct rcu_node *rnp = rcu_get_root();
3336 /* Set up local state, ensuring consistent view of global state. */
3337 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3338 rdp->qlen_last_fqs_check = 0;
3339 rdp->n_force_qs_snap = rcu_state.n_force_qs;
3340 rdp->blimit = blimit;
3341 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3342 !init_nocb_callback_list(rdp))
3343 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3344 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
3345 rcu_dynticks_eqs_online();
3346 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3349 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3350 * propagation up the rcu_node tree will happen at the beginning
3351 * of the next grace period.
3354 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3355 rdp->beenonline = true; /* We have now been online. */
3356 rdp->gp_seq = rnp->gp_seq;
3357 rdp->gp_seq_needed = rnp->gp_seq;
3358 rdp->cpu_no_qs.b.norm = true;
3359 rdp->core_needs_qs = false;
3360 rdp->rcu_iw_pending = false;
3361 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3362 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3363 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3364 rcu_prepare_kthreads(cpu);
3365 rcu_spawn_cpu_nocb_kthread(cpu);
3371 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3373 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3375 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3377 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3381 * Near the end of the CPU-online process. Pretty much all services
3382 * enabled, and the CPU is now very much alive.
3384 int rcutree_online_cpu(unsigned int cpu)
3386 unsigned long flags;
3387 struct rcu_data *rdp;
3388 struct rcu_node *rnp;
3390 rdp = per_cpu_ptr(&rcu_data, cpu);
3392 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3393 rnp->ffmask |= rdp->grpmask;
3394 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3395 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3396 return 0; /* Too early in boot for scheduler work. */
3397 sync_sched_exp_online_cleanup(cpu);
3398 rcutree_affinity_setting(cpu, -1);
3403 * Near the beginning of the process. The CPU is still very much alive
3404 * with pretty much all services enabled.
3406 int rcutree_offline_cpu(unsigned int cpu)
3408 unsigned long flags;
3409 struct rcu_data *rdp;
3410 struct rcu_node *rnp;
3412 rdp = per_cpu_ptr(&rcu_data, cpu);
3414 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3415 rnp->ffmask &= ~rdp->grpmask;
3416 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3418 rcutree_affinity_setting(cpu, cpu);
3422 static DEFINE_PER_CPU(int, rcu_cpu_started);
3425 * Mark the specified CPU as being online so that subsequent grace periods
3426 * (both expedited and normal) will wait on it. Note that this means that
3427 * incoming CPUs are not allowed to use RCU read-side critical sections
3428 * until this function is called. Failing to observe this restriction
3429 * will result in lockdep splats.
3431 * Note that this function is special in that it is invoked directly
3432 * from the incoming CPU rather than from the cpuhp_step mechanism.
3433 * This is because this function must be invoked at a precise location.
3435 void rcu_cpu_starting(unsigned int cpu)
3437 unsigned long flags;
3440 unsigned long oldmask;
3441 struct rcu_data *rdp;
3442 struct rcu_node *rnp;
3444 if (per_cpu(rcu_cpu_started, cpu))
3447 per_cpu(rcu_cpu_started, cpu) = 1;
3449 rdp = per_cpu_ptr(&rcu_data, cpu);
3451 mask = rdp->grpmask;
3452 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3453 rnp->qsmaskinitnext |= mask;
3454 oldmask = rnp->expmaskinitnext;
3455 rnp->expmaskinitnext |= mask;
3456 oldmask ^= rnp->expmaskinitnext;
3457 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3458 /* Allow lockless access for expedited grace periods. */
3459 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3460 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3461 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3462 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3463 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3464 /* Report QS -after- changing ->qsmaskinitnext! */
3465 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3467 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3469 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3472 #ifdef CONFIG_HOTPLUG_CPU
3474 * The outgoing function has no further need of RCU, so remove it from
3475 * the rcu_node tree's ->qsmaskinitnext bit masks.
3477 * Note that this function is special in that it is invoked directly
3478 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3479 * This is because this function must be invoked at a precise location.
3481 void rcu_report_dead(unsigned int cpu)
3483 unsigned long flags;
3485 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3486 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3488 /* QS for any half-done expedited grace period. */
3490 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3492 rcu_preempt_deferred_qs(current);
3494 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3495 mask = rdp->grpmask;
3496 raw_spin_lock(&rcu_state.ofl_lock);
3497 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3498 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3499 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3500 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3501 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3502 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3503 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3505 rnp->qsmaskinitnext &= ~mask;
3506 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3507 raw_spin_unlock(&rcu_state.ofl_lock);
3509 per_cpu(rcu_cpu_started, cpu) = 0;
3513 * The outgoing CPU has just passed through the dying-idle state, and we
3514 * are being invoked from the CPU that was IPIed to continue the offline
3515 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3517 void rcutree_migrate_callbacks(int cpu)
3519 unsigned long flags;
3520 struct rcu_data *my_rdp;
3521 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3522 struct rcu_node *rnp_root = rcu_get_root();
3525 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3526 return; /* No callbacks to migrate. */
3528 local_irq_save(flags);
3529 my_rdp = this_cpu_ptr(&rcu_data);
3530 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3531 local_irq_restore(flags);
3534 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3535 /* Leverage recent GPs and set GP for new callbacks. */
3536 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3537 rcu_advance_cbs(rnp_root, my_rdp);
3538 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3539 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3540 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3541 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3543 rcu_gp_kthread_wake();
3544 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3545 !rcu_segcblist_empty(&rdp->cblist),
3546 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3547 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3548 rcu_segcblist_first_cb(&rdp->cblist));
3553 * On non-huge systems, use expedited RCU grace periods to make suspend
3554 * and hibernation run faster.
3556 static int rcu_pm_notify(struct notifier_block *self,
3557 unsigned long action, void *hcpu)
3560 case PM_HIBERNATION_PREPARE:
3561 case PM_SUSPEND_PREPARE:
3562 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3565 case PM_POST_HIBERNATION:
3566 case PM_POST_SUSPEND:
3567 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3568 rcu_unexpedite_gp();
3577 * Spawn the kthreads that handle RCU's grace periods.
3579 static int __init rcu_spawn_gp_kthread(void)
3581 unsigned long flags;
3582 int kthread_prio_in = kthread_prio;
3583 struct rcu_node *rnp;
3584 struct sched_param sp;
3585 struct task_struct *t;
3587 /* Force priority into range. */
3588 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3589 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3591 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3593 else if (kthread_prio < 0)
3595 else if (kthread_prio > 99)
3598 if (kthread_prio != kthread_prio_in)
3599 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3600 kthread_prio, kthread_prio_in);
3602 rcu_scheduler_fully_active = 1;
3603 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3604 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3606 rnp = rcu_get_root();
3607 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3608 rcu_state.gp_kthread = t;
3610 sp.sched_priority = kthread_prio;
3611 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3613 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3615 rcu_spawn_nocb_kthreads();
3616 rcu_spawn_boost_kthreads();
3619 early_initcall(rcu_spawn_gp_kthread);
3622 * This function is invoked towards the end of the scheduler's
3623 * initialization process. Before this is called, the idle task might
3624 * contain synchronous grace-period primitives (during which time, this idle
3625 * task is booting the system, and such primitives are no-ops). After this
3626 * function is called, any synchronous grace-period primitives are run as
3627 * expedited, with the requesting task driving the grace period forward.
3628 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3629 * runtime RCU functionality.
3631 void rcu_scheduler_starting(void)
3633 WARN_ON(num_online_cpus() != 1);
3634 WARN_ON(nr_context_switches() > 0);
3635 rcu_test_sync_prims();
3636 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3637 rcu_test_sync_prims();
3641 * Helper function for rcu_init() that initializes the rcu_state structure.
3643 static void __init rcu_init_one(void)
3645 static const char * const buf[] = RCU_NODE_NAME_INIT;
3646 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3647 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3648 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3650 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3654 struct rcu_node *rnp;
3656 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3658 /* Silence gcc 4.8 false positive about array index out of range. */
3659 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3660 panic("rcu_init_one: rcu_num_lvls out of range");
3662 /* Initialize the level-tracking arrays. */
3664 for (i = 1; i < rcu_num_lvls; i++)
3665 rcu_state.level[i] =
3666 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3667 rcu_init_levelspread(levelspread, num_rcu_lvl);
3669 /* Initialize the elements themselves, starting from the leaves. */
3671 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3672 cpustride *= levelspread[i];
3673 rnp = rcu_state.level[i];
3674 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3675 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3676 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3677 &rcu_node_class[i], buf[i]);
3678 raw_spin_lock_init(&rnp->fqslock);
3679 lockdep_set_class_and_name(&rnp->fqslock,
3680 &rcu_fqs_class[i], fqs[i]);
3681 rnp->gp_seq = rcu_state.gp_seq;
3682 rnp->gp_seq_needed = rcu_state.gp_seq;
3683 rnp->completedqs = rcu_state.gp_seq;
3685 rnp->qsmaskinit = 0;
3686 rnp->grplo = j * cpustride;
3687 rnp->grphi = (j + 1) * cpustride - 1;
3688 if (rnp->grphi >= nr_cpu_ids)
3689 rnp->grphi = nr_cpu_ids - 1;
3695 rnp->grpnum = j % levelspread[i - 1];
3696 rnp->grpmask = BIT(rnp->grpnum);
3697 rnp->parent = rcu_state.level[i - 1] +
3698 j / levelspread[i - 1];
3701 INIT_LIST_HEAD(&rnp->blkd_tasks);
3702 rcu_init_one_nocb(rnp);
3703 init_waitqueue_head(&rnp->exp_wq[0]);
3704 init_waitqueue_head(&rnp->exp_wq[1]);
3705 init_waitqueue_head(&rnp->exp_wq[2]);
3706 init_waitqueue_head(&rnp->exp_wq[3]);
3707 spin_lock_init(&rnp->exp_lock);
3711 init_swait_queue_head(&rcu_state.gp_wq);
3712 init_swait_queue_head(&rcu_state.expedited_wq);
3713 rnp = rcu_first_leaf_node();
3714 for_each_possible_cpu(i) {
3715 while (i > rnp->grphi)
3717 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3718 rcu_boot_init_percpu_data(i);
3723 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3724 * replace the definitions in tree.h because those are needed to size
3725 * the ->node array in the rcu_state structure.
3727 static void __init rcu_init_geometry(void)
3731 int rcu_capacity[RCU_NUM_LVLS];
3734 * Initialize any unspecified boot parameters.
3735 * The default values of jiffies_till_first_fqs and
3736 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3737 * value, which is a function of HZ, then adding one for each
3738 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3740 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3741 if (jiffies_till_first_fqs == ULONG_MAX)
3742 jiffies_till_first_fqs = d;
3743 if (jiffies_till_next_fqs == ULONG_MAX)
3744 jiffies_till_next_fqs = d;
3745 if (jiffies_till_sched_qs == ULONG_MAX)
3746 adjust_jiffies_till_sched_qs();
3748 /* If the compile-time values are accurate, just leave. */
3749 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3750 nr_cpu_ids == NR_CPUS)
3752 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3753 rcu_fanout_leaf, nr_cpu_ids);
3756 * The boot-time rcu_fanout_leaf parameter must be at least two
3757 * and cannot exceed the number of bits in the rcu_node masks.
3758 * Complain and fall back to the compile-time values if this
3759 * limit is exceeded.
3761 if (rcu_fanout_leaf < 2 ||
3762 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3763 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3769 * Compute number of nodes that can be handled an rcu_node tree
3770 * with the given number of levels.
3772 rcu_capacity[0] = rcu_fanout_leaf;
3773 for (i = 1; i < RCU_NUM_LVLS; i++)
3774 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3777 * The tree must be able to accommodate the configured number of CPUs.
3778 * If this limit is exceeded, fall back to the compile-time values.
3780 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3781 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3786 /* Calculate the number of levels in the tree. */
3787 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3789 rcu_num_lvls = i + 1;
3791 /* Calculate the number of rcu_nodes at each level of the tree. */
3792 for (i = 0; i < rcu_num_lvls; i++) {
3793 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3794 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3797 /* Calculate the total number of rcu_node structures. */
3799 for (i = 0; i < rcu_num_lvls; i++)
3800 rcu_num_nodes += num_rcu_lvl[i];
3804 * Dump out the structure of the rcu_node combining tree associated
3805 * with the rcu_state structure.
3807 static void __init rcu_dump_rcu_node_tree(void)
3810 struct rcu_node *rnp;
3812 pr_info("rcu_node tree layout dump\n");
3814 rcu_for_each_node_breadth_first(rnp) {
3815 if (rnp->level != level) {
3820 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3825 struct workqueue_struct *rcu_gp_wq;
3826 struct workqueue_struct *rcu_par_gp_wq;
3828 void __init rcu_init(void)
3832 rcu_early_boot_tests();
3834 rcu_bootup_announce();
3835 rcu_init_geometry();
3838 rcu_dump_rcu_node_tree();
3839 open_softirq(RCU_SOFTIRQ, rcu_core);
3842 * We don't need protection against CPU-hotplug here because
3843 * this is called early in boot, before either interrupts
3844 * or the scheduler are operational.
3846 pm_notifier(rcu_pm_notify, 0);
3847 for_each_online_cpu(cpu) {
3848 rcutree_prepare_cpu(cpu);
3849 rcu_cpu_starting(cpu);
3850 rcutree_online_cpu(cpu);
3853 /* Create workqueue for expedited GPs and for Tree SRCU. */
3854 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3855 WARN_ON(!rcu_gp_wq);
3856 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3857 WARN_ON(!rcu_par_gp_wq);
3861 #include "tree_exp.h"
3862 #include "tree_plugin.h"