2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_range_manager.h>
50 #include <drm/ttm/ttm_tt.h>
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_hmm.h"
62 #include "amdgpu_atomfirmware.h"
63 #include "amdgpu_res_cursor.h"
64 #include "bif/bif_4_1_d.h"
66 MODULE_IMPORT_NS(DMA_BUF);
68 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
70 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
72 struct ttm_resource *bo_mem);
73 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
76 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
78 uint64_t size_in_page)
80 return ttm_range_man_init(&adev->mman.bdev, type,
85 * amdgpu_evict_flags - Compute placement flags
87 * @bo: The buffer object to evict
88 * @placement: Possible destination(s) for evicted BO
90 * Fill in placement data when ttm_bo_evict() is called
92 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
93 struct ttm_placement *placement)
95 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
96 struct amdgpu_bo *abo;
97 static const struct ttm_place placements = {
100 .mem_type = TTM_PL_SYSTEM,
104 /* Don't handle scatter gather BOs */
105 if (bo->type == ttm_bo_type_sg) {
106 placement->num_placement = 0;
107 placement->num_busy_placement = 0;
111 /* Object isn't an AMDGPU object so ignore */
112 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
113 placement->placement = &placements;
114 placement->busy_placement = &placements;
115 placement->num_placement = 1;
116 placement->num_busy_placement = 1;
120 abo = ttm_to_amdgpu_bo(bo);
121 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
122 placement->num_placement = 0;
123 placement->num_busy_placement = 0;
127 switch (bo->resource->mem_type) {
131 placement->num_placement = 0;
132 placement->num_busy_placement = 0;
136 if (!adev->mman.buffer_funcs_enabled) {
137 /* Move to system memory */
138 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
139 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
140 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
141 amdgpu_bo_in_cpu_visible_vram(abo)) {
143 /* Try evicting to the CPU inaccessible part of VRAM
144 * first, but only set GTT as busy placement, so this
145 * BO will be evicted to GTT rather than causing other
146 * BOs to be evicted from VRAM
148 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
149 AMDGPU_GEM_DOMAIN_GTT |
150 AMDGPU_GEM_DOMAIN_CPU);
151 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152 abo->placements[0].lpfn = 0;
153 abo->placement.busy_placement = &abo->placements[1];
154 abo->placement.num_busy_placement = 1;
156 /* Move to GTT memory */
157 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
158 AMDGPU_GEM_DOMAIN_CPU);
162 case AMDGPU_PL_PREEMPT:
164 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
167 *placement = abo->placement;
171 * amdgpu_ttm_map_buffer - Map memory into the GART windows
172 * @bo: buffer object to map
173 * @mem: memory object to map
174 * @mm_cur: range to map
175 * @window: which GART window to use
176 * @ring: DMA ring to use for the copy
177 * @tmz: if we should setup a TMZ enabled mapping
178 * @size: in number of bytes to map, out number of bytes mapped
179 * @addr: resulting address inside the MC address space
181 * Setup one of the GART windows to access a specific piece of memory or return
182 * the physical address for local memory.
184 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
185 struct ttm_resource *mem,
186 struct amdgpu_res_cursor *mm_cur,
187 unsigned window, struct amdgpu_ring *ring,
188 bool tmz, uint64_t *size, uint64_t *addr)
190 struct amdgpu_device *adev = ring->adev;
191 unsigned offset, num_pages, num_dw, num_bytes;
192 uint64_t src_addr, dst_addr;
193 struct amdgpu_job *job;
199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
205 /* Map only what can't be accessed directly */
206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
214 * If start begins at an offset inside the page, then adjust the size
215 * and addr accordingly
217 offset = mm_cur->start & ~PAGE_MASK;
219 num_pages = PFN_UP(*size + offset);
220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
224 *addr = adev->gmc.gart_start;
225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 AMDGPU_GPU_PAGE_SIZE;
229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
232 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
233 AMDGPU_FENCE_OWNER_UNDEFINED,
234 num_dw * 4 + num_bytes,
235 AMDGPU_IB_POOL_DELAYED, &job);
239 src_addr = num_dw * 4;
240 src_addr += job->ibs[0].gpu_addr;
242 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
243 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
244 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
245 dst_addr, num_bytes, false);
247 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
248 WARN_ON(job->ibs[0].length_dw > num_dw);
250 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
252 flags |= AMDGPU_PTE_TMZ;
254 cpu_addr = &job->ibs[0].ptr[num_dw];
256 if (mem->mem_type == TTM_PL_TT) {
257 dma_addr_t *dma_addr;
259 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
260 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
262 dma_addr_t dma_address;
264 dma_address = mm_cur->start;
265 dma_address += adev->vm_manager.vram_base_offset;
267 for (i = 0; i < num_pages; ++i) {
268 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
270 dma_address += PAGE_SIZE;
274 dma_fence_put(amdgpu_job_submit(job));
279 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
280 * @adev: amdgpu device
281 * @src: buffer/address where to read from
282 * @dst: buffer/address where to write to
283 * @size: number of bytes to copy
284 * @tmz: if a secure copy should be used
285 * @resv: resv object to sync to
286 * @f: Returns the last fence if multiple jobs are submitted.
288 * The function copies @size bytes from {src->mem + src->offset} to
289 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
290 * move and different for a BO to BO copy.
293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294 const struct amdgpu_copy_mem *src,
295 const struct amdgpu_copy_mem *dst,
296 uint64_t size, bool tmz,
297 struct dma_resv *resv,
298 struct dma_fence **f)
300 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
301 struct amdgpu_res_cursor src_mm, dst_mm;
302 struct dma_fence *fence = NULL;
305 if (!adev->mman.buffer_funcs_enabled) {
306 DRM_ERROR("Trying to move memory with ring turned off.\n");
310 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
311 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
313 mutex_lock(&adev->mman.gtt_window_lock);
314 while (src_mm.remaining) {
315 uint64_t from, to, cur_size;
316 struct dma_fence *next;
318 /* Never copy more than 256MiB at once to avoid a timeout */
319 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
321 /* Map src to window 0 and dst to window 1. */
322 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
323 0, ring, tmz, &cur_size, &from);
327 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
328 1, ring, tmz, &cur_size, &to);
332 r = amdgpu_copy_buffer(ring, from, to, cur_size,
333 resv, &next, false, true, tmz);
337 dma_fence_put(fence);
340 amdgpu_res_next(&src_mm, cur_size);
341 amdgpu_res_next(&dst_mm, cur_size);
344 mutex_unlock(&adev->mman.gtt_window_lock);
346 *f = dma_fence_get(fence);
347 dma_fence_put(fence);
352 * amdgpu_move_blit - Copy an entire buffer to another buffer
354 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
355 * help move buffers to and from VRAM.
357 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
359 struct ttm_resource *new_mem,
360 struct ttm_resource *old_mem)
362 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
363 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
364 struct amdgpu_copy_mem src, dst;
365 struct dma_fence *fence = NULL;
375 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
377 amdgpu_bo_encrypted(abo),
378 bo->base.resv, &fence);
382 /* clear the space being freed */
383 if (old_mem->mem_type == TTM_PL_VRAM &&
384 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
385 struct dma_fence *wipe_fence = NULL;
387 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
414 * Called by amdgpu_bo_move()
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 struct ttm_resource *mem)
419 u64 mem_size = (u64)mem->size;
420 struct amdgpu_res_cursor cursor;
423 if (mem->mem_type == TTM_PL_SYSTEM ||
424 mem->mem_type == TTM_PL_TT)
426 if (mem->mem_type != TTM_PL_VRAM)
429 amdgpu_res_first(mem, 0, mem_size, &cursor);
430 end = cursor.start + cursor.size;
431 while (cursor.remaining) {
432 amdgpu_res_next(&cursor, cursor.size);
434 if (!cursor.remaining)
437 /* ttm_resource_ioremap only supports contiguous memory */
438 if (end != cursor.start)
441 end = cursor.start + cursor.size;
444 return end <= adev->gmc.visible_vram_size;
448 * amdgpu_bo_move - Move a buffer object to a new memory location
450 * Called by ttm_bo_handle_move_mem()
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 struct ttm_operation_ctx *ctx,
454 struct ttm_resource *new_mem,
455 struct ttm_place *hop)
457 struct amdgpu_device *adev;
458 struct amdgpu_bo *abo;
459 struct ttm_resource *old_mem = bo->resource;
462 if (new_mem->mem_type == TTM_PL_TT ||
463 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
469 abo = ttm_to_amdgpu_bo(bo);
470 adev = amdgpu_ttm_adev(bo->bdev);
472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
474 ttm_bo_move_null(bo, new_mem);
477 if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 (new_mem->mem_type == TTM_PL_TT ||
479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 ttm_bo_move_null(bo, new_mem);
483 if ((old_mem->mem_type == TTM_PL_TT ||
484 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 new_mem->mem_type == TTM_PL_SYSTEM) {
486 r = ttm_bo_wait_ctx(bo, ctx);
490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 ttm_resource_free(bo, &bo->resource);
492 ttm_bo_assign_mem(bo, new_mem);
496 if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 old_mem->mem_type == AMDGPU_PL_GWS ||
498 old_mem->mem_type == AMDGPU_PL_OA ||
499 new_mem->mem_type == AMDGPU_PL_GDS ||
500 new_mem->mem_type == AMDGPU_PL_GWS ||
501 new_mem->mem_type == AMDGPU_PL_OA) {
502 /* Nothing to save here */
503 ttm_bo_move_null(bo, new_mem);
507 if (bo->type == ttm_bo_type_device &&
508 new_mem->mem_type == TTM_PL_VRAM &&
509 old_mem->mem_type != TTM_PL_VRAM) {
510 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
511 * accesses the BO after it's moved.
513 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 if (adev->mman.buffer_funcs_enabled) {
517 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
518 new_mem->mem_type == TTM_PL_VRAM) ||
519 (old_mem->mem_type == TTM_PL_VRAM &&
520 new_mem->mem_type == TTM_PL_SYSTEM))) {
523 hop->mem_type = TTM_PL_TT;
524 hop->flags = TTM_PL_FLAG_TEMPORARY;
528 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
534 /* Check that all memory is CPU accessible */
535 if (!amdgpu_mem_visible(adev, old_mem) ||
536 !amdgpu_mem_visible(adev, new_mem)) {
537 pr_err("Move buffer fallback to memcpy unavailable\n");
541 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
547 /* update statistics */
548 atomic64_add(bo->base.size, &adev->num_bytes_moved);
549 amdgpu_bo_move_notify(bo, evict, new_mem);
554 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
556 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
558 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
559 struct ttm_resource *mem)
561 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
562 size_t bus_size = (size_t)mem->size;
564 switch (mem->mem_type) {
569 case AMDGPU_PL_PREEMPT:
572 mem->bus.offset = mem->start << PAGE_SHIFT;
573 /* check if it's visible */
574 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
577 if (adev->mman.aper_base_kaddr &&
578 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
579 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
582 mem->bus.offset += adev->gmc.aper_base;
583 mem->bus.is_iomem = true;
591 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
592 unsigned long page_offset)
594 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
595 struct amdgpu_res_cursor cursor;
597 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
599 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
603 * amdgpu_ttm_domain_start - Returns GPU start address
604 * @adev: amdgpu device object
605 * @type: type of the memory
608 * GPU start address of a memory domain
611 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
615 return adev->gmc.gart_start;
617 return adev->gmc.vram_start;
624 * TTM backend functions.
626 struct amdgpu_ttm_tt {
628 struct drm_gem_object *gobj;
631 struct task_struct *usertask;
637 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
639 #ifdef CONFIG_DRM_AMDGPU_USERPTR
641 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
642 * memory and start HMM tracking CPU page table update
644 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
645 * once afterwards to stop HMM tracking
647 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
648 struct hmm_range **range)
650 struct ttm_tt *ttm = bo->tbo.ttm;
651 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
652 unsigned long start = gtt->userptr;
653 struct vm_area_struct *vma;
654 struct mm_struct *mm;
658 /* Make sure get_user_pages_done() can cleanup gracefully */
661 mm = bo->notifier.mm;
663 DRM_DEBUG_DRIVER("BO is not registered?\n");
667 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
671 vma = vma_lookup(mm, start);
672 if (unlikely(!vma)) {
676 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
682 readonly = amdgpu_ttm_tt_is_readonly(ttm);
683 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
684 readonly, NULL, pages, range);
686 mmap_read_unlock(mm);
688 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
695 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
697 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
698 struct hmm_range *range)
700 struct amdgpu_ttm_tt *gtt = (void *)ttm;
702 if (gtt && gtt->userptr && range)
703 amdgpu_hmm_range_get_pages_done(range);
707 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
708 * Check if the pages backing this ttm range have been invalidated
710 * Returns: true if pages are still valid
712 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
713 struct hmm_range *range)
715 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
717 if (!gtt || !gtt->userptr || !range)
720 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
721 gtt->userptr, ttm->num_pages);
723 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
725 return !amdgpu_hmm_range_get_pages_done(range);
730 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
732 * Called by amdgpu_cs_list_validate(). This creates the page list
733 * that backs user memory and will ultimately be mapped into the device
736 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740 for (i = 0; i < ttm->num_pages; ++i)
741 ttm->pages[i] = pages ? pages[i] : NULL;
745 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
747 * Called by amdgpu_ttm_backend_bind()
749 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
752 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
753 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
754 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
755 enum dma_data_direction direction = write ?
756 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
759 /* Allocate an SG array and squash pages into it */
760 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
761 (u64)ttm->num_pages << PAGE_SHIFT,
766 /* Map SG to device */
767 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771 /* convert SG to linear array of pages and dma addresses */
772 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
784 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
786 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
789 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
790 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
791 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
792 enum dma_data_direction direction = write ?
793 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
795 /* double check that we don't free the table twice */
796 if (!ttm->sg || !ttm->sg->sgl)
799 /* unmap the pages mapped to the device */
800 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
801 sg_free_table(ttm->sg);
805 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
806 * MQDn+CtrlStackn where n is the number of XCCs per partition.
807 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
808 * and uses memory type default, UC. The rest of pages_per_xcc are
809 * Ctrl stack and modify their memory type to NC.
811 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
812 struct ttm_tt *ttm, uint64_t flags)
814 struct amdgpu_ttm_tt *gtt = (void *)ttm;
815 uint64_t total_pages = ttm->num_pages;
816 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
817 uint64_t page_idx, pages_per_xcc = total_pages / num_xcc;
819 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
820 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
822 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
823 /* MQD page: use default flags */
824 amdgpu_gart_bind(adev,
825 gtt->offset + (page_idx << PAGE_SHIFT),
826 1, >t->ttm.dma_address[page_idx], flags);
828 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
829 * the second page of the BO onward.
831 amdgpu_gart_bind(adev,
832 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
834 >t->ttm.dma_address[page_idx + 1],
839 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
840 struct ttm_buffer_object *tbo,
843 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
844 struct ttm_tt *ttm = tbo->ttm;
845 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
847 if (amdgpu_bo_encrypted(abo))
848 flags |= AMDGPU_PTE_TMZ;
850 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
851 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
853 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
854 gtt->ttm.dma_address, flags);
859 * amdgpu_ttm_backend_bind - Bind GTT memory
861 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
862 * This handles binding GTT memory to the device address space.
864 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
866 struct ttm_resource *bo_mem)
868 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
869 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
880 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
882 DRM_ERROR("failed to pin userptr\n");
885 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
887 struct dma_buf_attachment *attach;
888 struct sg_table *sgt;
890 attach = gtt->gobj->import_attach;
891 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
898 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
902 if (!ttm->num_pages) {
903 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
904 ttm->num_pages, bo_mem, ttm);
907 if (bo_mem->mem_type != TTM_PL_TT ||
908 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
909 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
913 /* compute PTE flags relevant to this BO memory */
914 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
916 /* bind pages into GART page tables */
917 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
918 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
919 gtt->ttm.dma_address, flags);
925 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
926 * through AGP or GART aperture.
928 * If bo is accessible through AGP aperture, then use AGP aperture
929 * to access bo; otherwise allocate logical space in GART aperture
930 * and map bo to GART aperture.
932 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
934 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
935 struct ttm_operation_ctx ctx = { false, false };
936 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
937 struct ttm_placement placement;
938 struct ttm_place placements;
939 struct ttm_resource *tmp;
940 uint64_t addr, flags;
943 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
946 addr = amdgpu_gmc_agp_addr(bo);
947 if (addr != AMDGPU_BO_INVALID_OFFSET) {
948 bo->resource->start = addr >> PAGE_SHIFT;
952 /* allocate GART space */
953 placement.num_placement = 1;
954 placement.placement = &placements;
955 placement.num_busy_placement = 1;
956 placement.busy_placement = &placements;
958 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
959 placements.mem_type = TTM_PL_TT;
960 placements.flags = bo->resource->placement;
962 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
966 /* compute PTE flags for this buffer object */
967 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
970 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
971 amdgpu_ttm_gart_bind(adev, bo, flags);
972 amdgpu_gart_invalidate_tlb(adev);
973 ttm_resource_free(bo, &bo->resource);
974 ttm_bo_assign_mem(bo, tmp);
980 * amdgpu_ttm_recover_gart - Rebind GTT pages
982 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
983 * rebind GTT pages during a GPU reset.
985 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
987 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
993 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
994 amdgpu_ttm_gart_bind(adev, tbo, flags);
998 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1000 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1003 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1006 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1007 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1009 /* if the pages have userptr pinning then clear that first */
1011 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1012 } else if (ttm->sg && gtt->gobj->import_attach) {
1013 struct dma_buf_attachment *attach;
1015 attach = gtt->gobj->import_attach;
1016 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1023 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1026 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1027 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1031 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1034 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1037 put_task_struct(gtt->usertask);
1039 ttm_tt_fini(>t->ttm);
1044 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1046 * @bo: The buffer object to create a GTT ttm_tt object around
1047 * @page_flags: Page flags to be added to the ttm_tt object
1049 * Called by ttm_tt_create().
1051 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1052 uint32_t page_flags)
1054 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1055 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1056 struct amdgpu_ttm_tt *gtt;
1057 enum ttm_caching caching;
1059 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1063 gtt->gobj = &bo->base;
1064 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1065 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1067 gtt->pool_id = abo->xcp_id;
1069 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1070 caching = ttm_write_combined;
1072 caching = ttm_cached;
1074 /* allocate space for the uninitialized page entries */
1075 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1083 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1085 * Map the pages of a ttm_tt object to an address space visible
1086 * to the underlying device.
1088 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1090 struct ttm_operation_ctx *ctx)
1092 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1093 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1094 struct ttm_pool *pool;
1098 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1100 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1106 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1109 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1110 pool = &adev->mman.ttm_pools[gtt->pool_id];
1112 pool = &adev->mman.bdev.pool;
1113 ret = ttm_pool_alloc(pool, ttm, ctx);
1117 for (i = 0; i < ttm->num_pages; ++i)
1118 ttm->pages[i]->mapping = bdev->dev_mapping;
1124 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1126 * Unmaps pages of a ttm_tt object from the device address space and
1127 * unpopulates the page array backing it.
1129 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1132 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1133 struct amdgpu_device *adev;
1134 struct ttm_pool *pool;
1137 amdgpu_ttm_backend_unbind(bdev, ttm);
1140 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1146 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1149 for (i = 0; i < ttm->num_pages; ++i)
1150 ttm->pages[i]->mapping = NULL;
1152 adev = amdgpu_ttm_adev(bdev);
1154 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1155 pool = &adev->mman.ttm_pools[gtt->pool_id];
1157 pool = &adev->mman.bdev.pool;
1159 return ttm_pool_free(pool, ttm);
1163 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1166 * @tbo: The ttm_buffer_object that contains the userptr
1167 * @user_addr: The returned value
1169 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1170 uint64_t *user_addr)
1172 struct amdgpu_ttm_tt *gtt;
1177 gtt = (void *)tbo->ttm;
1178 *user_addr = gtt->userptr;
1183 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1186 * @bo: The ttm_buffer_object to bind this userptr to
1187 * @addr: The address in the current tasks VM space to use
1188 * @flags: Requirements of userptr object.
1190 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1191 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1192 * initialize GPU VM for a KFD process.
1194 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1195 uint64_t addr, uint32_t flags)
1197 struct amdgpu_ttm_tt *gtt;
1200 /* TODO: We want a separate TTM object type for userptrs */
1201 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1202 if (bo->ttm == NULL)
1206 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1207 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1209 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1210 gtt->userptr = addr;
1211 gtt->userflags = flags;
1214 put_task_struct(gtt->usertask);
1215 gtt->usertask = current->group_leader;
1216 get_task_struct(gtt->usertask);
1222 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1224 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1226 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1231 if (gtt->usertask == NULL)
1234 return gtt->usertask->mm;
1238 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1239 * address range for the current task.
1242 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1243 unsigned long end, unsigned long *userptr)
1245 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1248 if (gtt == NULL || !gtt->userptr)
1251 /* Return false if no part of the ttm_tt object lies within
1254 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1255 if (gtt->userptr > end || gtt->userptr + size <= start)
1259 *userptr = gtt->userptr;
1264 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1266 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1268 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1270 if (gtt == NULL || !gtt->userptr)
1277 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1279 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1281 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1286 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1290 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1292 * @ttm: The ttm_tt object to compute the flags for
1293 * @mem: The memory registry backing this ttm_tt object
1295 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1297 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1301 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1302 flags |= AMDGPU_PTE_VALID;
1304 if (mem && (mem->mem_type == TTM_PL_TT ||
1305 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1306 flags |= AMDGPU_PTE_SYSTEM;
1308 if (ttm->caching == ttm_cached)
1309 flags |= AMDGPU_PTE_SNOOPED;
1312 if (mem && mem->mem_type == TTM_PL_VRAM &&
1313 mem->bus.caching == ttm_cached)
1314 flags |= AMDGPU_PTE_SNOOPED;
1320 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1322 * @adev: amdgpu_device pointer
1323 * @ttm: The ttm_tt object to compute the flags for
1324 * @mem: The memory registry backing this ttm_tt object
1326 * Figure out the flags to use for a VM PTE (Page Table Entry).
1328 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1329 struct ttm_resource *mem)
1331 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1333 flags |= adev->gart.gart_pte_flags;
1334 flags |= AMDGPU_PTE_READABLE;
1336 if (!amdgpu_ttm_tt_is_readonly(ttm))
1337 flags |= AMDGPU_PTE_WRITEABLE;
1343 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1346 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1347 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1348 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1349 * used to clean out a memory space.
1351 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1352 const struct ttm_place *place)
1354 struct dma_resv_iter resv_cursor;
1355 struct dma_fence *f;
1357 if (!amdgpu_bo_is_amdgpu_bo(bo))
1358 return ttm_bo_eviction_valuable(bo, place);
1361 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1364 if (bo->type == ttm_bo_type_kernel &&
1365 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1368 /* If bo is a KFD BO, check if the bo belongs to the current process.
1369 * If true, then return false as any KFD process needs all its BOs to
1370 * be resident to run successfully
1372 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1373 DMA_RESV_USAGE_BOOKKEEP, f) {
1374 if (amdkfd_fence_check_mm(f, current->mm))
1378 /* Preemptible BOs don't own system resources managed by the
1379 * driver (pages, VRAM, GART space). They point to resources
1380 * owned by someone else (e.g. pageable memory in user mode
1381 * or a DMABuf). They are used in a preemptible context so we
1382 * can guarantee no deadlocks and good QoS in case of MMU
1383 * notifiers or DMABuf move notifiers from the resource owner.
1385 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1388 if (bo->resource->mem_type == TTM_PL_TT &&
1389 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1392 return ttm_bo_eviction_valuable(bo, place);
1395 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1396 void *buf, size_t size, bool write)
1399 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1400 uint64_t bytes = 4 - (pos & 0x3);
1401 uint32_t shift = (pos & 0x3) * 8;
1402 uint32_t mask = 0xffffffff << shift;
1406 mask &= 0xffffffff >> (bytes - size) * 8;
1410 if (mask != 0xffffffff) {
1411 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1414 value |= (*(uint32_t *)buf << shift) & mask;
1415 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1417 value = (value & mask) >> shift;
1418 memcpy(buf, &value, bytes);
1421 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1430 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1431 unsigned long offset, void *buf,
1434 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1435 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1436 struct amdgpu_res_cursor src_mm;
1437 struct amdgpu_job *job;
1438 struct dma_fence *fence;
1439 uint64_t src_addr, dst_addr;
1440 unsigned int num_dw;
1443 if (len != PAGE_SIZE)
1446 if (!adev->mman.sdma_access_ptr)
1449 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1453 memcpy(adev->mman.sdma_access_ptr, buf, len);
1455 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1456 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1457 AMDGPU_FENCE_OWNER_UNDEFINED,
1458 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1463 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1464 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1466 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1468 swap(src_addr, dst_addr);
1470 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1473 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1474 WARN_ON(job->ibs[0].length_dw > num_dw);
1476 fence = amdgpu_job_submit(job);
1478 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1480 dma_fence_put(fence);
1483 memcpy(buf, adev->mman.sdma_access_ptr, len);
1490 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1492 * @bo: The buffer object to read/write
1493 * @offset: Offset into buffer object
1494 * @buf: Secondary buffer to write/read from
1495 * @len: Length in bytes of access
1496 * @write: true if writing
1498 * This is used to access VRAM that backs a buffer object via MMIO
1499 * access for debugging purposes.
1501 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1502 unsigned long offset, void *buf, int len,
1505 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1506 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1507 struct amdgpu_res_cursor cursor;
1510 if (bo->resource->mem_type != TTM_PL_VRAM)
1513 if (amdgpu_device_has_timeouts_enabled(adev) &&
1514 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1517 amdgpu_res_first(bo->resource, offset, len, &cursor);
1518 while (cursor.remaining) {
1519 size_t count, size = cursor.size;
1520 loff_t pos = cursor.start;
1522 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1525 /* using MM to access rest vram and handle un-aligned address */
1528 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1533 amdgpu_res_next(&cursor, cursor.size);
1540 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1542 amdgpu_bo_move_notify(bo, false, NULL);
1545 static struct ttm_device_funcs amdgpu_bo_driver = {
1546 .ttm_tt_create = &amdgpu_ttm_tt_create,
1547 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1548 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1549 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1550 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1551 .evict_flags = &amdgpu_evict_flags,
1552 .move = &amdgpu_bo_move,
1553 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1554 .release_notify = &amdgpu_bo_release_notify,
1555 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1556 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1557 .access_memory = &amdgpu_ttm_access_memory,
1561 * Firmware Reservation functions
1564 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1566 * @adev: amdgpu_device pointer
1568 * free fw reserved vram if it has been reserved.
1570 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1572 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1573 NULL, &adev->mman.fw_vram_usage_va);
1577 * Driver Reservation functions
1580 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1582 * @adev: amdgpu_device pointer
1584 * free drv reserved vram if it has been reserved.
1586 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1588 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1590 &adev->mman.drv_vram_usage_va);
1594 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1596 * @adev: amdgpu_device pointer
1598 * create bo vram reservation from fw.
1600 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1602 uint64_t vram_size = adev->gmc.visible_vram_size;
1604 adev->mman.fw_vram_usage_va = NULL;
1605 adev->mman.fw_vram_usage_reserved_bo = NULL;
1607 if (adev->mman.fw_vram_usage_size == 0 ||
1608 adev->mman.fw_vram_usage_size > vram_size)
1611 return amdgpu_bo_create_kernel_at(adev,
1612 adev->mman.fw_vram_usage_start_offset,
1613 adev->mman.fw_vram_usage_size,
1614 &adev->mman.fw_vram_usage_reserved_bo,
1615 &adev->mman.fw_vram_usage_va);
1619 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1621 * @adev: amdgpu_device pointer
1623 * create bo vram reservation from drv.
1625 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1627 u64 vram_size = adev->gmc.visible_vram_size;
1629 adev->mman.drv_vram_usage_va = NULL;
1630 adev->mman.drv_vram_usage_reserved_bo = NULL;
1632 if (adev->mman.drv_vram_usage_size == 0 ||
1633 adev->mman.drv_vram_usage_size > vram_size)
1636 return amdgpu_bo_create_kernel_at(adev,
1637 adev->mman.drv_vram_usage_start_offset,
1638 adev->mman.drv_vram_usage_size,
1639 &adev->mman.drv_vram_usage_reserved_bo,
1640 &adev->mman.drv_vram_usage_va);
1644 * Memoy training reservation functions
1648 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1650 * @adev: amdgpu_device pointer
1652 * free memory training reserved vram if it has been reserved.
1654 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1656 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1658 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1659 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1665 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1666 uint32_t reserve_size)
1668 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1670 memset(ctx, 0, sizeof(*ctx));
1672 ctx->c2p_train_data_offset =
1673 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1674 ctx->p2c_train_data_offset =
1675 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1676 ctx->train_data_size =
1677 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1679 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1680 ctx->train_data_size,
1681 ctx->p2c_train_data_offset,
1682 ctx->c2p_train_data_offset);
1686 * reserve TMR memory at the top of VRAM which holds
1687 * IP Discovery data and is protected by PSP.
1689 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1691 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1692 bool mem_train_support = false;
1693 uint32_t reserve_size = 0;
1696 if (!amdgpu_sriov_vf(adev)) {
1697 if (amdgpu_atomfirmware_mem_training_supported(adev))
1698 mem_train_support = true;
1700 DRM_DEBUG("memory training does not support!\n");
1704 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1705 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1707 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1708 * discovery data and G6 memory training data respectively
1712 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1714 reserve_size = DISCOVERY_TMR_OFFSET;
1716 if (mem_train_support) {
1717 /* reserve vram for mem train according to TMR location */
1718 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1719 ret = amdgpu_bo_create_kernel_at(adev,
1720 ctx->c2p_train_data_offset,
1721 ctx->train_data_size,
1725 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1726 amdgpu_ttm_training_reserve_vram_fini(adev);
1729 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1732 if (!adev->gmc.is_app_apu) {
1733 ret = amdgpu_bo_create_kernel_at(
1734 adev, adev->gmc.real_vram_size - reserve_size,
1735 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1737 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1738 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1743 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1749 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1753 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1756 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1757 sizeof(*adev->mman.ttm_pools),
1759 if (!adev->mman.ttm_pools)
1762 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1763 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1764 adev->gmc.mem_partitions[i].numa.node,
1770 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1774 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1777 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1778 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1780 kfree(adev->mman.ttm_pools);
1781 adev->mman.ttm_pools = NULL;
1785 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1786 * gtt/vram related fields.
1788 * This initializes all of the memory space pools that the TTM layer
1789 * will need such as the GTT space (system memory mapped to the device),
1790 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1791 * can be mapped per VMID.
1793 int amdgpu_ttm_init(struct amdgpu_device *adev)
1798 mutex_init(&adev->mman.gtt_window_lock);
1800 /* No others user of address space so set it to 0 */
1801 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1802 adev_to_drm(adev)->anon_inode->i_mapping,
1803 adev_to_drm(adev)->vma_offset_manager,
1805 dma_addressing_limited(adev->dev));
1807 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1811 r = amdgpu_ttm_pools_init(adev);
1813 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1816 adev->mman.initialized = true;
1818 /* Initialize VRAM pool with all of VRAM divided into pages */
1819 r = amdgpu_vram_mgr_init(adev);
1821 DRM_ERROR("Failed initializing VRAM heap.\n");
1825 /* Change the size here instead of the init above so only lpfn is affected */
1826 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1829 if (adev->gmc.xgmi.connected_to_cpu)
1830 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1831 adev->gmc.visible_vram_size);
1833 else if (adev->gmc.is_app_apu)
1835 "No need to ioremap when real vram size is 0\n");
1838 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1839 adev->gmc.visible_vram_size);
1843 *The reserved vram for firmware must be pinned to the specified
1844 *place on the VRAM, so reserve it early.
1846 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1852 *The reserved vram for driver must be pinned to the specified
1853 *place on the VRAM, so reserve it early.
1855 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1860 * only NAVI10 and onwards ASIC support for IP discovery.
1861 * If IP discovery enabled, a block of memory should be
1862 * reserved for IP discovey.
1864 if (adev->mman.discovery_bin) {
1865 r = amdgpu_ttm_reserve_tmr(adev);
1870 /* allocate memory as required for VGA
1871 * This is used for VGA emulation and pre-OS scanout buffers to
1872 * avoid display artifacts while transitioning between pre-OS
1874 if (!adev->gmc.is_app_apu) {
1875 r = amdgpu_bo_create_kernel_at(adev, 0,
1876 adev->mman.stolen_vga_size,
1877 &adev->mman.stolen_vga_memory,
1882 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1883 adev->mman.stolen_extended_size,
1884 &adev->mman.stolen_extended_memory,
1890 r = amdgpu_bo_create_kernel_at(adev,
1891 adev->mman.stolen_reserved_offset,
1892 adev->mman.stolen_reserved_size,
1893 &adev->mman.stolen_reserved_memory,
1898 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1901 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1902 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1904 /* Compute GTT size, either based on TTM limit
1905 * or whatever the user passed on module init.
1907 if (amdgpu_gtt_size == -1)
1908 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1910 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1912 /* Initialize GTT memory pool */
1913 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1915 DRM_ERROR("Failed initializing GTT heap.\n");
1918 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1919 (unsigned)(gtt_size / (1024 * 1024)));
1921 /* Initialize preemptible memory pool */
1922 r = amdgpu_preempt_mgr_init(adev);
1924 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1928 /* Initialize various on-chip memory pools */
1929 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1931 DRM_ERROR("Failed initializing GDS heap.\n");
1935 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1937 DRM_ERROR("Failed initializing gws heap.\n");
1941 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1943 DRM_ERROR("Failed initializing oa heap.\n");
1946 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1947 AMDGPU_GEM_DOMAIN_GTT,
1948 &adev->mman.sdma_access_bo, NULL,
1949 &adev->mman.sdma_access_ptr))
1950 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1956 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1958 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1961 if (!adev->mman.initialized)
1964 amdgpu_ttm_pools_fini(adev);
1966 amdgpu_ttm_training_reserve_vram_fini(adev);
1967 /* return the stolen vga memory back to VRAM */
1968 if (!adev->gmc.is_app_apu) {
1969 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1970 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1971 /* return the FW reserved memory back to VRAM */
1972 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
1974 if (adev->mman.stolen_reserved_size)
1975 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1978 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1979 &adev->mman.sdma_access_ptr);
1980 amdgpu_ttm_fw_reserve_vram_fini(adev);
1981 amdgpu_ttm_drv_reserve_vram_fini(adev);
1983 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1985 if (adev->mman.aper_base_kaddr)
1986 iounmap(adev->mman.aper_base_kaddr);
1987 adev->mman.aper_base_kaddr = NULL;
1992 amdgpu_vram_mgr_fini(adev);
1993 amdgpu_gtt_mgr_fini(adev);
1994 amdgpu_preempt_mgr_fini(adev);
1995 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1996 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1997 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1998 ttm_device_fini(&adev->mman.bdev);
1999 adev->mman.initialized = false;
2000 DRM_INFO("amdgpu: ttm finalized\n");
2004 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2006 * @adev: amdgpu_device pointer
2007 * @enable: true when we can use buffer functions.
2009 * Enable/disable use of buffer functions during suspend/resume. This should
2010 * only be called at bootup or when userspace isn't running.
2012 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2014 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2018 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2019 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2023 struct amdgpu_ring *ring;
2024 struct drm_gpu_scheduler *sched;
2026 ring = adev->mman.buffer_funcs_ring;
2027 sched = &ring->sched;
2028 r = drm_sched_entity_init(&adev->mman.entity,
2029 DRM_SCHED_PRIORITY_KERNEL, &sched,
2032 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2037 drm_sched_entity_destroy(&adev->mman.entity);
2038 dma_fence_put(man->move);
2042 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2044 size = adev->gmc.real_vram_size;
2046 size = adev->gmc.visible_vram_size;
2048 adev->mman.buffer_funcs_enabled = enable;
2051 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2053 unsigned int num_dw,
2054 struct dma_resv *resv,
2055 bool vm_needs_flush,
2056 struct amdgpu_job **job)
2058 enum amdgpu_ib_pool_type pool = direct_submit ?
2059 AMDGPU_IB_POOL_DIRECT :
2060 AMDGPU_IB_POOL_DELAYED;
2063 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
2064 AMDGPU_FENCE_OWNER_UNDEFINED,
2065 num_dw * 4, pool, job);
2069 if (vm_needs_flush) {
2070 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2073 (*job)->vm_needs_flush = true;
2078 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2079 DMA_RESV_USAGE_BOOKKEEP);
2082 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2083 uint64_t dst_offset, uint32_t byte_count,
2084 struct dma_resv *resv,
2085 struct dma_fence **fence, bool direct_submit,
2086 bool vm_needs_flush, bool tmz)
2088 struct amdgpu_device *adev = ring->adev;
2089 unsigned num_loops, num_dw;
2090 struct amdgpu_job *job;
2095 if (!direct_submit && !ring->sched.ready) {
2096 DRM_ERROR("Trying to move memory with ring turned off.\n");
2100 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2101 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2102 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2103 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2104 resv, vm_needs_flush, &job);
2108 for (i = 0; i < num_loops; i++) {
2109 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2111 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2112 dst_offset, cur_size_in_bytes, tmz);
2114 src_offset += cur_size_in_bytes;
2115 dst_offset += cur_size_in_bytes;
2116 byte_count -= cur_size_in_bytes;
2119 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2120 WARN_ON(job->ibs[0].length_dw > num_dw);
2122 r = amdgpu_job_submit_direct(job, ring, fence);
2124 *fence = amdgpu_job_submit(job);
2131 amdgpu_job_free(job);
2132 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2136 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2137 uint64_t dst_addr, uint32_t byte_count,
2138 struct dma_resv *resv,
2139 struct dma_fence **fence,
2140 bool vm_needs_flush)
2142 struct amdgpu_device *adev = ring->adev;
2143 unsigned int num_loops, num_dw;
2144 struct amdgpu_job *job;
2149 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2150 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2151 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2152 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2157 for (i = 0; i < num_loops; i++) {
2158 uint32_t cur_size = min(byte_count, max_bytes);
2160 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2163 dst_addr += cur_size;
2164 byte_count -= cur_size;
2167 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2168 WARN_ON(job->ibs[0].length_dw > num_dw);
2169 *fence = amdgpu_job_submit(job);
2173 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2175 struct dma_resv *resv,
2176 struct dma_fence **f)
2178 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2179 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2180 struct dma_fence *fence = NULL;
2181 struct amdgpu_res_cursor dst;
2184 if (!adev->mman.buffer_funcs_enabled) {
2185 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2189 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2191 mutex_lock(&adev->mman.gtt_window_lock);
2192 while (dst.remaining) {
2193 struct dma_fence *next;
2194 uint64_t cur_size, to;
2196 /* Never fill more than 256MiB at once to avoid timeouts */
2197 cur_size = min(dst.size, 256ULL << 20);
2199 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2200 1, ring, false, &cur_size, &to);
2204 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2209 dma_fence_put(fence);
2212 amdgpu_res_next(&dst, cur_size);
2215 mutex_unlock(&adev->mman.gtt_window_lock);
2217 *f = dma_fence_get(fence);
2218 dma_fence_put(fence);
2223 * amdgpu_ttm_evict_resources - evict memory buffers
2224 * @adev: amdgpu device object
2225 * @mem_type: evicted BO's memory type
2227 * Evicts all @mem_type buffers on the lru list of the memory type.
2230 * 0 for success or a negative error code on failure.
2232 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2234 struct ttm_resource_manager *man;
2242 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2245 DRM_ERROR("Trying to evict invalid memory type\n");
2249 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2252 #if defined(CONFIG_DEBUG_FS)
2254 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2256 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2258 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2261 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2264 * amdgpu_ttm_vram_read - Linear read access to VRAM
2266 * Accesses VRAM via MMIO for debugging purposes.
2268 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2269 size_t size, loff_t *pos)
2271 struct amdgpu_device *adev = file_inode(f)->i_private;
2274 if (size & 0x3 || *pos & 0x3)
2277 if (*pos >= adev->gmc.mc_vram_size)
2280 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2282 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2283 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2285 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2286 if (copy_to_user(buf, value, bytes))
2299 * amdgpu_ttm_vram_write - Linear write access to VRAM
2301 * Accesses VRAM via MMIO for debugging purposes.
2303 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2304 size_t size, loff_t *pos)
2306 struct amdgpu_device *adev = file_inode(f)->i_private;
2310 if (size & 0x3 || *pos & 0x3)
2313 if (*pos >= adev->gmc.mc_vram_size)
2319 if (*pos >= adev->gmc.mc_vram_size)
2322 r = get_user(value, (uint32_t *)buf);
2326 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2337 static const struct file_operations amdgpu_ttm_vram_fops = {
2338 .owner = THIS_MODULE,
2339 .read = amdgpu_ttm_vram_read,
2340 .write = amdgpu_ttm_vram_write,
2341 .llseek = default_llseek,
2345 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2347 * This function is used to read memory that has been mapped to the
2348 * GPU and the known addresses are not physical addresses but instead
2349 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2351 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2352 size_t size, loff_t *pos)
2354 struct amdgpu_device *adev = file_inode(f)->i_private;
2355 struct iommu_domain *dom;
2359 /* retrieve the IOMMU domain if any for this device */
2360 dom = iommu_get_domain_for_dev(adev->dev);
2363 phys_addr_t addr = *pos & PAGE_MASK;
2364 loff_t off = *pos & ~PAGE_MASK;
2365 size_t bytes = PAGE_SIZE - off;
2370 bytes = bytes < size ? bytes : size;
2372 /* Translate the bus address to a physical address. If
2373 * the domain is NULL it means there is no IOMMU active
2374 * and the address translation is the identity
2376 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2378 pfn = addr >> PAGE_SHIFT;
2379 if (!pfn_valid(pfn))
2382 p = pfn_to_page(pfn);
2383 if (p->mapping != adev->mman.bdev.dev_mapping)
2386 ptr = kmap_local_page(p);
2387 r = copy_to_user(buf, ptr + off, bytes);
2401 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2403 * This function is used to write memory that has been mapped to the
2404 * GPU and the known addresses are not physical addresses but instead
2405 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2407 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2408 size_t size, loff_t *pos)
2410 struct amdgpu_device *adev = file_inode(f)->i_private;
2411 struct iommu_domain *dom;
2415 dom = iommu_get_domain_for_dev(adev->dev);
2418 phys_addr_t addr = *pos & PAGE_MASK;
2419 loff_t off = *pos & ~PAGE_MASK;
2420 size_t bytes = PAGE_SIZE - off;
2425 bytes = bytes < size ? bytes : size;
2427 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429 pfn = addr >> PAGE_SHIFT;
2430 if (!pfn_valid(pfn))
2433 p = pfn_to_page(pfn);
2434 if (p->mapping != adev->mman.bdev.dev_mapping)
2437 ptr = kmap_local_page(p);
2438 r = copy_from_user(ptr + off, buf, bytes);
2451 static const struct file_operations amdgpu_ttm_iomem_fops = {
2452 .owner = THIS_MODULE,
2453 .read = amdgpu_iomem_read,
2454 .write = amdgpu_iomem_write,
2455 .llseek = default_llseek
2460 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2462 #if defined(CONFIG_DEBUG_FS)
2463 struct drm_minor *minor = adev_to_drm(adev)->primary;
2464 struct dentry *root = minor->debugfs_root;
2466 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2467 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2468 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2469 &amdgpu_ttm_iomem_fops);
2470 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2471 &amdgpu_ttm_page_pool_fops);
2472 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2474 root, "amdgpu_vram_mm");
2475 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2477 root, "amdgpu_gtt_mm");
2478 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2480 root, "amdgpu_gds_mm");
2481 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2483 root, "amdgpu_gws_mm");
2484 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2486 root, "amdgpu_oa_mm");