2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
135 #include "net-sysfs.h"
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 static inline void rps_lock(struct softnet_data *sd)
214 spin_lock(&sd->input_pkt_queue.lock);
218 static inline void rps_unlock(struct softnet_data *sd)
221 spin_unlock(&sd->input_pkt_queue.lock);
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
228 struct net *net = dev_net(dev);
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
244 static void unlist_netdevice(struct net_device *dev)
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
260 static RAW_NOTIFIER_HEAD(netdev_chain);
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 #ifdef CONFIG_LOCKDEP
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
354 /*******************************************************************************
356 Protocol management and registration routines
358 *******************************************************************************/
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
389 void dev_add_pack(struct packet_type *pt)
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
400 spin_unlock_bh(&ptype_lock);
402 EXPORT_SYMBOL(dev_add_pack);
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
417 void __dev_remove_pack(struct packet_type *pt)
419 struct list_head *head;
420 struct packet_type *pt1;
422 spin_lock_bh(&ptype_lock);
424 if (pt->type == htons(ETH_P_ALL))
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
429 list_for_each_entry(pt1, head, list) {
431 list_del_rcu(&pt->list);
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
438 spin_unlock_bh(&ptype_lock);
440 EXPORT_SYMBOL(__dev_remove_pack);
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
451 * This call sleeps to guarantee that no CPU is looking at the packet
454 void dev_remove_pack(struct packet_type *pt)
456 __dev_remove_pack(pt);
460 EXPORT_SYMBOL(dev_remove_pack);
462 /******************************************************************************
464 Device Boot-time Settings Routines
466 *******************************************************************************/
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
482 struct netdev_boot_setup *s;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
507 int netdev_boot_setup_check(struct net_device *dev)
509 struct netdev_boot_setup *s = dev_boot_setup;
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
524 EXPORT_SYMBOL(netdev_boot_setup_check);
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
537 unsigned long netdev_boot_base(const char *prefix, int unit)
539 const struct netdev_boot_setup *s = dev_boot_setup;
543 sprintf(name, "%s%d", prefix, unit);
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
549 if (__dev_get_by_name(&init_net, name))
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
559 * Saves at boot time configured settings for any netdevice.
561 int __init netdev_boot_setup(char *str)
566 str = get_options(str, ARRAY_SIZE(ints), ints);
571 memset(&map, 0, sizeof(map));
575 map.base_addr = ints[2];
577 map.mem_start = ints[3];
579 map.mem_end = ints[4];
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
585 __setup("netdev=", netdev_boot_setup);
587 /*******************************************************************************
589 Device Interface Subroutines
591 *******************************************************************************/
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
617 EXPORT_SYMBOL(__dev_get_by_name);
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
659 struct net_device *dev;
662 dev = dev_get_by_name_rcu(net, name);
668 EXPORT_SYMBOL(dev_get_by_name);
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
694 EXPORT_SYMBOL(__dev_get_by_index);
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
735 struct net_device *dev;
738 dev = dev_get_by_index_rcu(net, ifindex);
744 EXPORT_SYMBOL(dev_get_by_index);
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
758 * If the API was consistent this would be __dev_get_by_hwaddr
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
763 struct net_device *dev;
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
774 EXPORT_SYMBOL(dev_getbyhwaddr);
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
778 struct net_device *dev;
781 for_each_netdev(net, dev)
782 if (dev->type == type)
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
791 struct net_device *dev, *ret = NULL;
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
820 struct net_device *dev, *ret;
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
834 EXPORT_SYMBOL(dev_get_by_flags);
837 * dev_valid_name - check if name is okay for network device
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
844 int dev_valid_name(const char *name)
848 if (strlen(name) >= IFNAMSIZ)
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
854 if (*name == '/' || isspace(*name))
860 EXPORT_SYMBOL(dev_valid_name);
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
885 p = strnchr(name, IFNAMSIZ-1, '%');
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
892 if (p[1] != 'd' || strchr(p + 2, '%'))
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
903 if (i < 0 || i >= max_netdevices)
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
929 * dev_alloc_name - allocate a name for a device
931 * @name: name format string
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
942 int dev_alloc_name(struct net_device *dev, const char *name)
948 BUG_ON(!dev_net(dev));
950 ret = __dev_alloc_name(net, name, buf);
952 strlcpy(dev->name, buf, IFNAMSIZ);
955 EXPORT_SYMBOL(dev_alloc_name);
957 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
960 if (!dev_valid_name(name))
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
974 * dev_change_name - change name of a device
976 * @newname: name (or format string) must be at least IFNAMSIZ
978 * Change name of a device, can pass format strings "eth%d".
981 int dev_change_name(struct net_device *dev, const char *newname)
983 char oldname[IFNAMSIZ];
989 BUG_ON(!dev_net(dev));
992 if (dev->flags & IFF_UP)
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
998 memcpy(oldname, dev->name, IFNAMSIZ);
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1005 ret = device_rename(&dev->dev, dev->name);
1007 memcpy(dev->name, oldname, IFNAMSIZ);
1011 write_lock_bh(&dev_base_lock);
1012 hlist_del(&dev->name_hlist);
1013 write_unlock_bh(&dev_base_lock);
1017 write_lock_bh(&dev_base_lock);
1018 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1019 write_unlock_bh(&dev_base_lock);
1021 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1022 ret = notifier_to_errno(ret);
1025 /* err >= 0 after dev_alloc_name() or stores the first errno */
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1032 "%s: name change rollback failed: %d.\n",
1041 * dev_set_alias - change ifalias of a device
1043 * @alias: name up to IFALIASZ
1044 * @len: limit of bytes to copy from info
1046 * Set ifalias for a device,
1048 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1052 if (len >= IFALIASZ)
1057 kfree(dev->ifalias);
1058 dev->ifalias = NULL;
1063 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1067 strlcpy(dev->ifalias, alias, len+1);
1073 * netdev_features_change - device changes features
1074 * @dev: device to cause notification
1076 * Called to indicate a device has changed features.
1078 void netdev_features_change(struct net_device *dev)
1080 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1082 EXPORT_SYMBOL(netdev_features_change);
1085 * netdev_state_change - device changes state
1086 * @dev: device to cause notification
1088 * Called to indicate a device has changed state. This function calls
1089 * the notifier chains for netdev_chain and sends a NEWLINK message
1090 * to the routing socket.
1092 void netdev_state_change(struct net_device *dev)
1094 if (dev->flags & IFF_UP) {
1095 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1096 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1099 EXPORT_SYMBOL(netdev_state_change);
1101 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1103 return call_netdevice_notifiers(event, dev);
1105 EXPORT_SYMBOL(netdev_bonding_change);
1108 * dev_load - load a network module
1109 * @net: the applicable net namespace
1110 * @name: name of interface
1112 * If a network interface is not present and the process has suitable
1113 * privileges this function loads the module. If module loading is not
1114 * available in this kernel then it becomes a nop.
1117 void dev_load(struct net *net, const char *name)
1119 struct net_device *dev;
1122 dev = dev_get_by_name_rcu(net, name);
1125 if (!dev && capable(CAP_NET_ADMIN))
1126 request_module("%s", name);
1128 EXPORT_SYMBOL(dev_load);
1130 static int __dev_open(struct net_device *dev)
1132 const struct net_device_ops *ops = dev->netdev_ops;
1138 * Is it even present?
1140 if (!netif_device_present(dev))
1143 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1144 ret = notifier_to_errno(ret);
1149 * Call device private open method
1151 set_bit(__LINK_STATE_START, &dev->state);
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1160 * If it went open OK then:
1164 clear_bit(__LINK_STATE_START, &dev->state);
1169 dev->flags |= IFF_UP;
1174 net_dmaengine_get();
1177 * Initialize multicasting status
1179 dev_set_rx_mode(dev);
1182 * Wakeup transmit queue engine
1191 * dev_open - prepare an interface for use.
1192 * @dev: device to open
1194 * Takes a device from down to up state. The device's private open
1195 * function is invoked and then the multicast lists are loaded. Finally
1196 * the device is moved into the up state and a %NETDEV_UP message is
1197 * sent to the netdev notifier chain.
1199 * Calling this function on an active interface is a nop. On a failure
1200 * a negative errno code is returned.
1202 int dev_open(struct net_device *dev)
1209 if (dev->flags & IFF_UP)
1215 ret = __dev_open(dev);
1220 * ... and announce new interface.
1222 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1223 call_netdevice_notifiers(NETDEV_UP, dev);
1227 EXPORT_SYMBOL(dev_open);
1229 static int __dev_close(struct net_device *dev)
1231 const struct net_device_ops *ops = dev->netdev_ops;
1237 * Tell people we are going down, so that they can
1238 * prepare to death, when device is still operating.
1240 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1242 clear_bit(__LINK_STATE_START, &dev->state);
1244 /* Synchronize to scheduled poll. We cannot touch poll list,
1245 * it can be even on different cpu. So just clear netif_running().
1247 * dev->stop() will invoke napi_disable() on all of it's
1248 * napi_struct instances on this device.
1250 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1252 dev_deactivate(dev);
1255 * Call the device specific close. This cannot fail.
1256 * Only if device is UP
1258 * We allow it to be called even after a DETACH hot-plug
1265 * Device is now down.
1268 dev->flags &= ~IFF_UP;
1273 net_dmaengine_put();
1279 * dev_close - shutdown an interface.
1280 * @dev: device to shutdown
1282 * This function moves an active device into down state. A
1283 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1284 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1287 int dev_close(struct net_device *dev)
1289 if (!(dev->flags & IFF_UP))
1295 * Tell people we are down
1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1298 call_netdevice_notifiers(NETDEV_DOWN, dev);
1302 EXPORT_SYMBOL(dev_close);
1306 * dev_disable_lro - disable Large Receive Offload on a device
1309 * Disable Large Receive Offload (LRO) on a net device. Must be
1310 * called under RTNL. This is needed if received packets may be
1311 * forwarded to another interface.
1313 void dev_disable_lro(struct net_device *dev)
1315 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1316 dev->ethtool_ops->set_flags) {
1317 u32 flags = dev->ethtool_ops->get_flags(dev);
1318 if (flags & ETH_FLAG_LRO) {
1319 flags &= ~ETH_FLAG_LRO;
1320 dev->ethtool_ops->set_flags(dev, flags);
1323 WARN_ON(dev->features & NETIF_F_LRO);
1325 EXPORT_SYMBOL(dev_disable_lro);
1328 static int dev_boot_phase = 1;
1331 * Device change register/unregister. These are not inline or static
1332 * as we export them to the world.
1336 * register_netdevice_notifier - register a network notifier block
1339 * Register a notifier to be called when network device events occur.
1340 * The notifier passed is linked into the kernel structures and must
1341 * not be reused until it has been unregistered. A negative errno code
1342 * is returned on a failure.
1344 * When registered all registration and up events are replayed
1345 * to the new notifier to allow device to have a race free
1346 * view of the network device list.
1349 int register_netdevice_notifier(struct notifier_block *nb)
1351 struct net_device *dev;
1352 struct net_device *last;
1357 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 for_each_netdev(net, dev) {
1364 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1365 err = notifier_to_errno(err);
1369 if (!(dev->flags & IFF_UP))
1372 nb->notifier_call(nb, NETDEV_UP, dev);
1383 for_each_netdev(net, dev) {
1387 if (dev->flags & IFF_UP) {
1388 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1389 nb->notifier_call(nb, NETDEV_DOWN, dev);
1391 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1392 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1396 raw_notifier_chain_unregister(&netdev_chain, nb);
1399 EXPORT_SYMBOL(register_netdevice_notifier);
1402 * unregister_netdevice_notifier - unregister a network notifier block
1405 * Unregister a notifier previously registered by
1406 * register_netdevice_notifier(). The notifier is unlinked into the
1407 * kernel structures and may then be reused. A negative errno code
1408 * is returned on a failure.
1411 int unregister_netdevice_notifier(struct notifier_block *nb)
1416 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1420 EXPORT_SYMBOL(unregister_netdevice_notifier);
1423 * call_netdevice_notifiers - call all network notifier blocks
1424 * @val: value passed unmodified to notifier function
1425 * @dev: net_device pointer passed unmodified to notifier function
1427 * Call all network notifier blocks. Parameters and return value
1428 * are as for raw_notifier_call_chain().
1431 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1434 return raw_notifier_call_chain(&netdev_chain, val, dev);
1437 /* When > 0 there are consumers of rx skb time stamps */
1438 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1440 void net_enable_timestamp(void)
1442 atomic_inc(&netstamp_needed);
1444 EXPORT_SYMBOL(net_enable_timestamp);
1446 void net_disable_timestamp(void)
1448 atomic_dec(&netstamp_needed);
1450 EXPORT_SYMBOL(net_disable_timestamp);
1452 static inline void net_timestamp_set(struct sk_buff *skb)
1454 if (atomic_read(&netstamp_needed))
1455 __net_timestamp(skb);
1457 skb->tstamp.tv64 = 0;
1460 static inline void net_timestamp_check(struct sk_buff *skb)
1462 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1463 __net_timestamp(skb);
1467 * dev_forward_skb - loopback an skb to another netif
1469 * @dev: destination network device
1470 * @skb: buffer to forward
1473 * NET_RX_SUCCESS (no congestion)
1474 * NET_RX_DROP (packet was dropped, but freed)
1476 * dev_forward_skb can be used for injecting an skb from the
1477 * start_xmit function of one device into the receive queue
1478 * of another device.
1480 * The receiving device may be in another namespace, so
1481 * we have to clear all information in the skb that could
1482 * impact namespace isolation.
1484 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1488 if (!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len))) {
1493 skb_set_dev(skb, dev);
1494 skb->tstamp.tv64 = 0;
1495 skb->pkt_type = PACKET_HOST;
1496 skb->protocol = eth_type_trans(skb, dev);
1497 return netif_rx(skb);
1499 EXPORT_SYMBOL_GPL(dev_forward_skb);
1502 * Support routine. Sends outgoing frames to any network
1503 * taps currently in use.
1506 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508 struct packet_type *ptype;
1510 #ifdef CONFIG_NET_CLS_ACT
1511 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1512 net_timestamp_set(skb);
1514 net_timestamp_set(skb);
1518 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1519 /* Never send packets back to the socket
1522 if ((ptype->dev == dev || !ptype->dev) &&
1523 (ptype->af_packet_priv == NULL ||
1524 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1525 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1529 /* skb->nh should be correctly
1530 set by sender, so that the second statement is
1531 just protection against buggy protocols.
1533 skb_reset_mac_header(skb2);
1535 if (skb_network_header(skb2) < skb2->data ||
1536 skb2->network_header > skb2->tail) {
1537 if (net_ratelimit())
1538 printk(KERN_CRIT "protocol %04x is "
1540 skb2->protocol, dev->name);
1541 skb_reset_network_header(skb2);
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1553 static inline void __netif_reschedule(struct Qdisc *q)
1555 struct softnet_data *sd;
1556 unsigned long flags;
1558 local_irq_save(flags);
1559 sd = &__get_cpu_var(softnet_data);
1560 q->next_sched = NULL;
1561 *sd->output_queue_tailp = q;
1562 sd->output_queue_tailp = &q->next_sched;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1567 void __netif_schedule(struct Qdisc *q)
1569 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1570 __netif_reschedule(q);
1572 EXPORT_SYMBOL(__netif_schedule);
1574 void dev_kfree_skb_irq(struct sk_buff *skb)
1576 if (atomic_dec_and_test(&skb->users)) {
1577 struct softnet_data *sd;
1578 unsigned long flags;
1580 local_irq_save(flags);
1581 sd = &__get_cpu_var(softnet_data);
1582 skb->next = sd->completion_queue;
1583 sd->completion_queue = skb;
1584 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1585 local_irq_restore(flags);
1588 EXPORT_SYMBOL(dev_kfree_skb_irq);
1590 void dev_kfree_skb_any(struct sk_buff *skb)
1592 if (in_irq() || irqs_disabled())
1593 dev_kfree_skb_irq(skb);
1597 EXPORT_SYMBOL(dev_kfree_skb_any);
1601 * netif_device_detach - mark device as removed
1602 * @dev: network device
1604 * Mark device as removed from system and therefore no longer available.
1606 void netif_device_detach(struct net_device *dev)
1608 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1609 netif_running(dev)) {
1610 netif_tx_stop_all_queues(dev);
1613 EXPORT_SYMBOL(netif_device_detach);
1616 * netif_device_attach - mark device as attached
1617 * @dev: network device
1619 * Mark device as attached from system and restart if needed.
1621 void netif_device_attach(struct net_device *dev)
1623 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1624 netif_running(dev)) {
1625 netif_tx_wake_all_queues(dev);
1626 __netdev_watchdog_up(dev);
1629 EXPORT_SYMBOL(netif_device_attach);
1631 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1633 return ((features & NETIF_F_GEN_CSUM) ||
1634 ((features & NETIF_F_IP_CSUM) &&
1635 protocol == htons(ETH_P_IP)) ||
1636 ((features & NETIF_F_IPV6_CSUM) &&
1637 protocol == htons(ETH_P_IPV6)) ||
1638 ((features & NETIF_F_FCOE_CRC) &&
1639 protocol == htons(ETH_P_FCOE)));
1642 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1644 if (can_checksum_protocol(dev->features, skb->protocol))
1647 if (skb->protocol == htons(ETH_P_8021Q)) {
1648 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1649 if (can_checksum_protocol(dev->features & dev->vlan_features,
1650 veh->h_vlan_encapsulated_proto))
1658 * skb_dev_set -- assign a new device to a buffer
1659 * @skb: buffer for the new device
1660 * @dev: network device
1662 * If an skb is owned by a device already, we have to reset
1663 * all data private to the namespace a device belongs to
1664 * before assigning it a new device.
1666 #ifdef CONFIG_NET_NS
1667 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1670 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1673 skb_init_secmark(skb);
1677 skb->ipvs_property = 0;
1678 #ifdef CONFIG_NET_SCHED
1684 EXPORT_SYMBOL(skb_set_dev);
1685 #endif /* CONFIG_NET_NS */
1688 * Invalidate hardware checksum when packet is to be mangled, and
1689 * complete checksum manually on outgoing path.
1691 int skb_checksum_help(struct sk_buff *skb)
1694 int ret = 0, offset;
1696 if (skb->ip_summed == CHECKSUM_COMPLETE)
1697 goto out_set_summed;
1699 if (unlikely(skb_shinfo(skb)->gso_size)) {
1700 /* Let GSO fix up the checksum. */
1701 goto out_set_summed;
1704 offset = skb->csum_start - skb_headroom(skb);
1705 BUG_ON(offset >= skb_headlen(skb));
1706 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1708 offset += skb->csum_offset;
1709 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1711 if (skb_cloned(skb) &&
1712 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1713 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1718 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1720 skb->ip_summed = CHECKSUM_NONE;
1724 EXPORT_SYMBOL(skb_checksum_help);
1727 * skb_gso_segment - Perform segmentation on skb.
1728 * @skb: buffer to segment
1729 * @features: features for the output path (see dev->features)
1731 * This function segments the given skb and returns a list of segments.
1733 * It may return NULL if the skb requires no segmentation. This is
1734 * only possible when GSO is used for verifying header integrity.
1736 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1738 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1739 struct packet_type *ptype;
1740 __be16 type = skb->protocol;
1743 skb_reset_mac_header(skb);
1744 skb->mac_len = skb->network_header - skb->mac_header;
1745 __skb_pull(skb, skb->mac_len);
1747 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1748 struct net_device *dev = skb->dev;
1749 struct ethtool_drvinfo info = {};
1751 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1752 dev->ethtool_ops->get_drvinfo(dev, &info);
1754 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1756 info.driver, dev ? dev->features : 0L,
1757 skb->sk ? skb->sk->sk_route_caps : 0L,
1758 skb->len, skb->data_len, skb->ip_summed);
1760 if (skb_header_cloned(skb) &&
1761 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1762 return ERR_PTR(err);
1766 list_for_each_entry_rcu(ptype,
1767 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1768 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1769 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1770 err = ptype->gso_send_check(skb);
1771 segs = ERR_PTR(err);
1772 if (err || skb_gso_ok(skb, features))
1774 __skb_push(skb, (skb->data -
1775 skb_network_header(skb)));
1777 segs = ptype->gso_segment(skb, features);
1783 __skb_push(skb, skb->data - skb_mac_header(skb));
1787 EXPORT_SYMBOL(skb_gso_segment);
1789 /* Take action when hardware reception checksum errors are detected. */
1791 void netdev_rx_csum_fault(struct net_device *dev)
1793 if (net_ratelimit()) {
1794 printk(KERN_ERR "%s: hw csum failure.\n",
1795 dev ? dev->name : "<unknown>");
1799 EXPORT_SYMBOL(netdev_rx_csum_fault);
1802 /* Actually, we should eliminate this check as soon as we know, that:
1803 * 1. IOMMU is present and allows to map all the memory.
1804 * 2. No high memory really exists on this machine.
1807 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1809 #ifdef CONFIG_HIGHMEM
1811 if (!(dev->features & NETIF_F_HIGHDMA)) {
1812 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1813 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1817 if (PCI_DMA_BUS_IS_PHYS) {
1818 struct device *pdev = dev->dev.parent;
1822 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1823 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1824 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1833 void (*destructor)(struct sk_buff *skb);
1836 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1838 static void dev_gso_skb_destructor(struct sk_buff *skb)
1840 struct dev_gso_cb *cb;
1843 struct sk_buff *nskb = skb->next;
1845 skb->next = nskb->next;
1848 } while (skb->next);
1850 cb = DEV_GSO_CB(skb);
1852 cb->destructor(skb);
1856 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1857 * @skb: buffer to segment
1859 * This function segments the given skb and stores the list of segments
1862 static int dev_gso_segment(struct sk_buff *skb)
1864 struct net_device *dev = skb->dev;
1865 struct sk_buff *segs;
1866 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1869 segs = skb_gso_segment(skb, features);
1871 /* Verifying header integrity only. */
1876 return PTR_ERR(segs);
1879 DEV_GSO_CB(skb)->destructor = skb->destructor;
1880 skb->destructor = dev_gso_skb_destructor;
1886 * Try to orphan skb early, right before transmission by the device.
1887 * We cannot orphan skb if tx timestamp is requested, since
1888 * drivers need to call skb_tstamp_tx() to send the timestamp.
1890 static inline void skb_orphan_try(struct sk_buff *skb)
1892 if (!skb_tx(skb)->flags)
1896 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1897 struct netdev_queue *txq)
1899 const struct net_device_ops *ops = dev->netdev_ops;
1900 int rc = NETDEV_TX_OK;
1902 if (likely(!skb->next)) {
1903 if (!list_empty(&ptype_all))
1904 dev_queue_xmit_nit(skb, dev);
1907 * If device doesnt need skb->dst, release it right now while
1908 * its hot in this cpu cache
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1913 skb_orphan_try(skb);
1915 if (netif_needs_gso(dev, skb)) {
1916 if (unlikely(dev_gso_segment(skb)))
1922 rc = ops->ndo_start_xmit(skb, dev);
1923 if (rc == NETDEV_TX_OK)
1924 txq_trans_update(txq);
1930 struct sk_buff *nskb = skb->next;
1932 skb->next = nskb->next;
1936 * If device doesnt need nskb->dst, release it right now while
1937 * its hot in this cpu cache
1939 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1942 rc = ops->ndo_start_xmit(nskb, dev);
1943 if (unlikely(rc != NETDEV_TX_OK)) {
1944 if (rc & ~NETDEV_TX_MASK)
1945 goto out_kfree_gso_skb;
1946 nskb->next = skb->next;
1950 txq_trans_update(txq);
1951 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1952 return NETDEV_TX_BUSY;
1953 } while (skb->next);
1956 if (likely(skb->next == NULL))
1957 skb->destructor = DEV_GSO_CB(skb)->destructor;
1963 static u32 hashrnd __read_mostly;
1965 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1969 if (skb_rx_queue_recorded(skb)) {
1970 hash = skb_get_rx_queue(skb);
1971 while (unlikely(hash >= dev->real_num_tx_queues))
1972 hash -= dev->real_num_tx_queues;
1976 if (skb->sk && skb->sk->sk_hash)
1977 hash = skb->sk->sk_hash;
1979 hash = (__force u16) skb->protocol;
1981 hash = jhash_1word(hash, hashrnd);
1983 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1985 EXPORT_SYMBOL(skb_tx_hash);
1987 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1989 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1990 if (net_ratelimit()) {
1991 pr_warning("%s selects TX queue %d, but "
1992 "real number of TX queues is %d\n",
1993 dev->name, queue_index, dev->real_num_tx_queues);
2000 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2001 struct sk_buff *skb)
2004 struct sock *sk = skb->sk;
2006 if (sk_tx_queue_recorded(sk)) {
2007 queue_index = sk_tx_queue_get(sk);
2009 const struct net_device_ops *ops = dev->netdev_ops;
2011 if (ops->ndo_select_queue) {
2012 queue_index = ops->ndo_select_queue(dev, skb);
2013 queue_index = dev_cap_txqueue(dev, queue_index);
2016 if (dev->real_num_tx_queues > 1)
2017 queue_index = skb_tx_hash(dev, skb);
2020 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2022 if (dst && skb_dst(skb) == dst)
2023 sk_tx_queue_set(sk, queue_index);
2028 skb_set_queue_mapping(skb, queue_index);
2029 return netdev_get_tx_queue(dev, queue_index);
2032 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2033 struct net_device *dev,
2034 struct netdev_queue *txq)
2036 spinlock_t *root_lock = qdisc_lock(q);
2039 spin_lock(root_lock);
2040 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2043 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2044 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2046 * This is a work-conserving queue; there are no old skbs
2047 * waiting to be sent out; and the qdisc is not running -
2048 * xmit the skb directly.
2050 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2052 __qdisc_update_bstats(q, skb->len);
2053 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2056 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2058 rc = NET_XMIT_SUCCESS;
2061 rc = qdisc_enqueue_root(skb, q);
2064 spin_unlock(root_lock);
2070 * Returns true if either:
2071 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2072 * 2. skb is fragmented and the device does not support SG, or if
2073 * at least one of fragments is in highmem and device does not
2074 * support DMA from it.
2076 static inline int skb_needs_linearize(struct sk_buff *skb,
2077 struct net_device *dev)
2079 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2080 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2081 illegal_highdma(dev, skb)));
2085 * dev_queue_xmit - transmit a buffer
2086 * @skb: buffer to transmit
2088 * Queue a buffer for transmission to a network device. The caller must
2089 * have set the device and priority and built the buffer before calling
2090 * this function. The function can be called from an interrupt.
2092 * A negative errno code is returned on a failure. A success does not
2093 * guarantee the frame will be transmitted as it may be dropped due
2094 * to congestion or traffic shaping.
2096 * -----------------------------------------------------------------------------------
2097 * I notice this method can also return errors from the queue disciplines,
2098 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2101 * Regardless of the return value, the skb is consumed, so it is currently
2102 * difficult to retry a send to this method. (You can bump the ref count
2103 * before sending to hold a reference for retry if you are careful.)
2105 * When calling this method, interrupts MUST be enabled. This is because
2106 * the BH enable code must have IRQs enabled so that it will not deadlock.
2109 int dev_queue_xmit(struct sk_buff *skb)
2111 struct net_device *dev = skb->dev;
2112 struct netdev_queue *txq;
2116 /* GSO will handle the following emulations directly. */
2117 if (netif_needs_gso(dev, skb))
2120 /* Convert a paged skb to linear, if required */
2121 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2124 /* If packet is not checksummed and device does not support
2125 * checksumming for this protocol, complete checksumming here.
2127 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2128 skb_set_transport_header(skb, skb->csum_start -
2130 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2135 /* Disable soft irqs for various locks below. Also
2136 * stops preemption for RCU.
2140 txq = dev_pick_tx(dev, skb);
2141 q = rcu_dereference_bh(txq->qdisc);
2143 #ifdef CONFIG_NET_CLS_ACT
2144 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2147 rc = __dev_xmit_skb(skb, q, dev, txq);
2151 /* The device has no queue. Common case for software devices:
2152 loopback, all the sorts of tunnels...
2154 Really, it is unlikely that netif_tx_lock protection is necessary
2155 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2157 However, it is possible, that they rely on protection
2160 Check this and shot the lock. It is not prone from deadlocks.
2161 Either shot noqueue qdisc, it is even simpler 8)
2163 if (dev->flags & IFF_UP) {
2164 int cpu = smp_processor_id(); /* ok because BHs are off */
2166 if (txq->xmit_lock_owner != cpu) {
2168 HARD_TX_LOCK(dev, txq, cpu);
2170 if (!netif_tx_queue_stopped(txq)) {
2171 rc = dev_hard_start_xmit(skb, dev, txq);
2172 if (dev_xmit_complete(rc)) {
2173 HARD_TX_UNLOCK(dev, txq);
2177 HARD_TX_UNLOCK(dev, txq);
2178 if (net_ratelimit())
2179 printk(KERN_CRIT "Virtual device %s asks to "
2180 "queue packet!\n", dev->name);
2182 /* Recursion is detected! It is possible,
2184 if (net_ratelimit())
2185 printk(KERN_CRIT "Dead loop on virtual device "
2186 "%s, fix it urgently!\n", dev->name);
2191 rcu_read_unlock_bh();
2197 rcu_read_unlock_bh();
2200 EXPORT_SYMBOL(dev_queue_xmit);
2203 /*=======================================================================
2205 =======================================================================*/
2207 int netdev_max_backlog __read_mostly = 1000;
2208 int netdev_tstamp_prequeue __read_mostly = 1;
2209 int netdev_budget __read_mostly = 300;
2210 int weight_p __read_mostly = 64; /* old backlog weight */
2212 /* Called with irq disabled */
2213 static inline void ____napi_schedule(struct softnet_data *sd,
2214 struct napi_struct *napi)
2216 list_add_tail(&napi->poll_list, &sd->poll_list);
2217 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2222 /* One global table that all flow-based protocols share. */
2223 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2224 EXPORT_SYMBOL(rps_sock_flow_table);
2227 * get_rps_cpu is called from netif_receive_skb and returns the target
2228 * CPU from the RPS map of the receiving queue for a given skb.
2229 * rcu_read_lock must be held on entry.
2231 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2232 struct rps_dev_flow **rflowp)
2234 struct ipv6hdr *ip6;
2236 struct netdev_rx_queue *rxqueue;
2237 struct rps_map *map;
2238 struct rps_dev_flow_table *flow_table;
2239 struct rps_sock_flow_table *sock_flow_table;
2243 u32 addr1, addr2, ihl;
2249 if (skb_rx_queue_recorded(skb)) {
2250 u16 index = skb_get_rx_queue(skb);
2251 if (unlikely(index >= dev->num_rx_queues)) {
2252 if (net_ratelimit()) {
2253 pr_warning("%s received packet on queue "
2254 "%u, but number of RX queues is %u\n",
2255 dev->name, index, dev->num_rx_queues);
2259 rxqueue = dev->_rx + index;
2263 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2267 goto got_hash; /* Skip hash computation on packet header */
2269 switch (skb->protocol) {
2270 case __constant_htons(ETH_P_IP):
2271 if (!pskb_may_pull(skb, sizeof(*ip)))
2274 ip = (struct iphdr *) skb->data;
2275 ip_proto = ip->protocol;
2276 addr1 = (__force u32) ip->saddr;
2277 addr2 = (__force u32) ip->daddr;
2280 case __constant_htons(ETH_P_IPV6):
2281 if (!pskb_may_pull(skb, sizeof(*ip6)))
2284 ip6 = (struct ipv6hdr *) skb->data;
2285 ip_proto = ip6->nexthdr;
2286 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2287 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2300 case IPPROTO_UDPLITE:
2301 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2302 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2303 if (ports.v16[1] < ports.v16[0])
2304 swap(ports.v16[0], ports.v16[1]);
2312 /* get a consistent hash (same value on both flow directions) */
2315 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2320 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2321 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2322 if (flow_table && sock_flow_table) {
2324 struct rps_dev_flow *rflow;
2326 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2329 next_cpu = sock_flow_table->ents[skb->rxhash &
2330 sock_flow_table->mask];
2333 * If the desired CPU (where last recvmsg was done) is
2334 * different from current CPU (one in the rx-queue flow
2335 * table entry), switch if one of the following holds:
2336 * - Current CPU is unset (equal to RPS_NO_CPU).
2337 * - Current CPU is offline.
2338 * - The current CPU's queue tail has advanced beyond the
2339 * last packet that was enqueued using this table entry.
2340 * This guarantees that all previous packets for the flow
2341 * have been dequeued, thus preserving in order delivery.
2343 if (unlikely(tcpu != next_cpu) &&
2344 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2345 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2346 rflow->last_qtail)) >= 0)) {
2347 tcpu = rflow->cpu = next_cpu;
2348 if (tcpu != RPS_NO_CPU)
2349 rflow->last_qtail = per_cpu(softnet_data,
2350 tcpu).input_queue_head;
2352 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2359 map = rcu_dereference(rxqueue->rps_map);
2361 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2363 if (cpu_online(tcpu)) {
2373 /* Called from hardirq (IPI) context */
2374 static void rps_trigger_softirq(void *data)
2376 struct softnet_data *sd = data;
2378 ____napi_schedule(sd, &sd->backlog);
2382 #endif /* CONFIG_RPS */
2385 * Check if this softnet_data structure is another cpu one
2386 * If yes, queue it to our IPI list and return 1
2389 static int rps_ipi_queued(struct softnet_data *sd)
2392 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2395 sd->rps_ipi_next = mysd->rps_ipi_list;
2396 mysd->rps_ipi_list = sd;
2398 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2401 #endif /* CONFIG_RPS */
2406 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2407 * queue (may be a remote CPU queue).
2409 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2410 unsigned int *qtail)
2412 struct softnet_data *sd;
2413 unsigned long flags;
2415 sd = &per_cpu(softnet_data, cpu);
2417 local_irq_save(flags);
2420 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2421 if (skb_queue_len(&sd->input_pkt_queue)) {
2423 __skb_queue_tail(&sd->input_pkt_queue, skb);
2425 *qtail = sd->input_queue_head +
2426 skb_queue_len(&sd->input_pkt_queue);
2429 local_irq_restore(flags);
2430 return NET_RX_SUCCESS;
2433 /* Schedule NAPI for backlog device
2434 * We can use non atomic operation since we own the queue lock
2436 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2437 if (!rps_ipi_queued(sd))
2438 ____napi_schedule(sd, &sd->backlog);
2446 local_irq_restore(flags);
2453 * netif_rx - post buffer to the network code
2454 * @skb: buffer to post
2456 * This function receives a packet from a device driver and queues it for
2457 * the upper (protocol) levels to process. It always succeeds. The buffer
2458 * may be dropped during processing for congestion control or by the
2462 * NET_RX_SUCCESS (no congestion)
2463 * NET_RX_DROP (packet was dropped)
2467 int netif_rx(struct sk_buff *skb)
2471 /* if netpoll wants it, pretend we never saw it */
2472 if (netpoll_rx(skb))
2475 if (netdev_tstamp_prequeue)
2476 net_timestamp_check(skb);
2480 struct rps_dev_flow voidflow, *rflow = &voidflow;
2485 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2487 cpu = smp_processor_id();
2489 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2496 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2502 EXPORT_SYMBOL(netif_rx);
2504 int netif_rx_ni(struct sk_buff *skb)
2509 err = netif_rx(skb);
2510 if (local_softirq_pending())
2516 EXPORT_SYMBOL(netif_rx_ni);
2518 static void net_tx_action(struct softirq_action *h)
2520 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2522 if (sd->completion_queue) {
2523 struct sk_buff *clist;
2525 local_irq_disable();
2526 clist = sd->completion_queue;
2527 sd->completion_queue = NULL;
2531 struct sk_buff *skb = clist;
2532 clist = clist->next;
2534 WARN_ON(atomic_read(&skb->users));
2539 if (sd->output_queue) {
2542 local_irq_disable();
2543 head = sd->output_queue;
2544 sd->output_queue = NULL;
2545 sd->output_queue_tailp = &sd->output_queue;
2549 struct Qdisc *q = head;
2550 spinlock_t *root_lock;
2552 head = head->next_sched;
2554 root_lock = qdisc_lock(q);
2555 if (spin_trylock(root_lock)) {
2556 smp_mb__before_clear_bit();
2557 clear_bit(__QDISC_STATE_SCHED,
2560 spin_unlock(root_lock);
2562 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2564 __netif_reschedule(q);
2566 smp_mb__before_clear_bit();
2567 clear_bit(__QDISC_STATE_SCHED,
2575 static inline int deliver_skb(struct sk_buff *skb,
2576 struct packet_type *pt_prev,
2577 struct net_device *orig_dev)
2579 atomic_inc(&skb->users);
2580 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2583 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2585 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2586 /* This hook is defined here for ATM LANE */
2587 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2588 unsigned char *addr) __read_mostly;
2589 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2593 * If bridge module is loaded call bridging hook.
2594 * returns NULL if packet was consumed.
2596 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2597 struct sk_buff *skb) __read_mostly;
2598 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2600 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2601 struct packet_type **pt_prev, int *ret,
2602 struct net_device *orig_dev)
2604 struct net_bridge_port *port;
2606 if (skb->pkt_type == PACKET_LOOPBACK ||
2607 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2611 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2615 return br_handle_frame_hook(port, skb);
2618 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2621 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2622 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2623 struct sk_buff *skb) __read_mostly;
2624 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2626 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2627 struct packet_type **pt_prev,
2629 struct net_device *orig_dev)
2631 struct macvlan_port *port;
2633 port = rcu_dereference(skb->dev->macvlan_port);
2638 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2641 return macvlan_handle_frame_hook(port, skb);
2644 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2647 #ifdef CONFIG_NET_CLS_ACT
2648 /* TODO: Maybe we should just force sch_ingress to be compiled in
2649 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2650 * a compare and 2 stores extra right now if we dont have it on
2651 * but have CONFIG_NET_CLS_ACT
2652 * NOTE: This doesnt stop any functionality; if you dont have
2653 * the ingress scheduler, you just cant add policies on ingress.
2656 static int ing_filter(struct sk_buff *skb)
2658 struct net_device *dev = skb->dev;
2659 u32 ttl = G_TC_RTTL(skb->tc_verd);
2660 struct netdev_queue *rxq;
2661 int result = TC_ACT_OK;
2664 if (MAX_RED_LOOP < ttl++) {
2666 "Redir loop detected Dropping packet (%d->%d)\n",
2667 skb->skb_iif, dev->ifindex);
2671 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2672 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2674 rxq = &dev->rx_queue;
2677 if (q != &noop_qdisc) {
2678 spin_lock(qdisc_lock(q));
2679 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2680 result = qdisc_enqueue_root(skb, q);
2681 spin_unlock(qdisc_lock(q));
2687 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2688 struct packet_type **pt_prev,
2689 int *ret, struct net_device *orig_dev)
2691 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2695 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2698 /* Huh? Why does turning on AF_PACKET affect this? */
2699 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2702 switch (ing_filter(skb)) {
2716 * netif_nit_deliver - deliver received packets to network taps
2719 * This function is used to deliver incoming packets to network
2720 * taps. It should be used when the normal netif_receive_skb path
2721 * is bypassed, for example because of VLAN acceleration.
2723 void netif_nit_deliver(struct sk_buff *skb)
2725 struct packet_type *ptype;
2727 if (list_empty(&ptype_all))
2730 skb_reset_network_header(skb);
2731 skb_reset_transport_header(skb);
2732 skb->mac_len = skb->network_header - skb->mac_header;
2735 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2736 if (!ptype->dev || ptype->dev == skb->dev)
2737 deliver_skb(skb, ptype, skb->dev);
2742 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2743 struct net_device *master)
2745 if (skb->pkt_type == PACKET_HOST) {
2746 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2748 memcpy(dest, master->dev_addr, ETH_ALEN);
2752 /* On bonding slaves other than the currently active slave, suppress
2753 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2754 * ARP on active-backup slaves with arp_validate enabled.
2756 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2758 struct net_device *dev = skb->dev;
2760 if (master->priv_flags & IFF_MASTER_ARPMON)
2761 dev->last_rx = jiffies;
2763 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2764 /* Do address unmangle. The local destination address
2765 * will be always the one master has. Provides the right
2766 * functionality in a bridge.
2768 skb_bond_set_mac_by_master(skb, master);
2771 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2772 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2773 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2776 if (master->priv_flags & IFF_MASTER_ALB) {
2777 if (skb->pkt_type != PACKET_BROADCAST &&
2778 skb->pkt_type != PACKET_MULTICAST)
2781 if (master->priv_flags & IFF_MASTER_8023AD &&
2782 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2789 EXPORT_SYMBOL(__skb_bond_should_drop);
2791 static int __netif_receive_skb(struct sk_buff *skb)
2793 struct packet_type *ptype, *pt_prev;
2794 struct net_device *orig_dev;
2795 struct net_device *master;
2796 struct net_device *null_or_orig;
2797 struct net_device *null_or_bond;
2798 int ret = NET_RX_DROP;
2801 if (!netdev_tstamp_prequeue)
2802 net_timestamp_check(skb);
2804 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2805 return NET_RX_SUCCESS;
2807 /* if we've gotten here through NAPI, check netpoll */
2808 if (netpoll_receive_skb(skb))
2812 skb->skb_iif = skb->dev->ifindex;
2814 null_or_orig = NULL;
2815 orig_dev = skb->dev;
2816 master = ACCESS_ONCE(orig_dev->master);
2818 if (skb_bond_should_drop(skb, master))
2819 null_or_orig = orig_dev; /* deliver only exact match */
2824 __get_cpu_var(softnet_data).processed++;
2826 skb_reset_network_header(skb);
2827 skb_reset_transport_header(skb);
2828 skb->mac_len = skb->network_header - skb->mac_header;
2834 #ifdef CONFIG_NET_CLS_ACT
2835 if (skb->tc_verd & TC_NCLS) {
2836 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2841 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2842 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2843 ptype->dev == orig_dev) {
2845 ret = deliver_skb(skb, pt_prev, orig_dev);
2850 #ifdef CONFIG_NET_CLS_ACT
2851 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2857 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2860 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2865 * Make sure frames received on VLAN interfaces stacked on
2866 * bonding interfaces still make their way to any base bonding
2867 * device that may have registered for a specific ptype. The
2868 * handler may have to adjust skb->dev and orig_dev.
2870 null_or_bond = NULL;
2871 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2872 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2873 null_or_bond = vlan_dev_real_dev(skb->dev);
2876 type = skb->protocol;
2877 list_for_each_entry_rcu(ptype,
2878 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2879 if (ptype->type == type && (ptype->dev == null_or_orig ||
2880 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2881 ptype->dev == null_or_bond)) {
2883 ret = deliver_skb(skb, pt_prev, orig_dev);
2889 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2892 /* Jamal, now you will not able to escape explaining
2893 * me how you were going to use this. :-)
2904 * netif_receive_skb - process receive buffer from network
2905 * @skb: buffer to process
2907 * netif_receive_skb() is the main receive data processing function.
2908 * It always succeeds. The buffer may be dropped during processing
2909 * for congestion control or by the protocol layers.
2911 * This function may only be called from softirq context and interrupts
2912 * should be enabled.
2914 * Return values (usually ignored):
2915 * NET_RX_SUCCESS: no congestion
2916 * NET_RX_DROP: packet was dropped
2918 int netif_receive_skb(struct sk_buff *skb)
2920 if (netdev_tstamp_prequeue)
2921 net_timestamp_check(skb);
2925 struct rps_dev_flow voidflow, *rflow = &voidflow;
2930 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2933 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2937 ret = __netif_receive_skb(skb);
2943 return __netif_receive_skb(skb);
2946 EXPORT_SYMBOL(netif_receive_skb);
2948 /* Network device is going away, flush any packets still pending
2949 * Called with irqs disabled.
2951 static void flush_backlog(void *arg)
2953 struct net_device *dev = arg;
2954 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2955 struct sk_buff *skb, *tmp;
2958 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2959 if (skb->dev == dev) {
2960 __skb_unlink(skb, &sd->input_pkt_queue);
2962 input_queue_head_add(sd, 1);
2967 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2968 if (skb->dev == dev) {
2969 __skb_unlink(skb, &sd->process_queue);
2975 static int napi_gro_complete(struct sk_buff *skb)
2977 struct packet_type *ptype;
2978 __be16 type = skb->protocol;
2979 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2982 if (NAPI_GRO_CB(skb)->count == 1) {
2983 skb_shinfo(skb)->gso_size = 0;
2988 list_for_each_entry_rcu(ptype, head, list) {
2989 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2992 err = ptype->gro_complete(skb);
2998 WARN_ON(&ptype->list == head);
3000 return NET_RX_SUCCESS;
3004 return netif_receive_skb(skb);
3007 static void napi_gro_flush(struct napi_struct *napi)
3009 struct sk_buff *skb, *next;
3011 for (skb = napi->gro_list; skb; skb = next) {
3014 napi_gro_complete(skb);
3017 napi->gro_count = 0;
3018 napi->gro_list = NULL;
3021 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3023 struct sk_buff **pp = NULL;
3024 struct packet_type *ptype;
3025 __be16 type = skb->protocol;
3026 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3029 enum gro_result ret;
3031 if (!(skb->dev->features & NETIF_F_GRO))
3034 if (skb_is_gso(skb) || skb_has_frags(skb))
3038 list_for_each_entry_rcu(ptype, head, list) {
3039 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3042 skb_set_network_header(skb, skb_gro_offset(skb));
3043 mac_len = skb->network_header - skb->mac_header;
3044 skb->mac_len = mac_len;
3045 NAPI_GRO_CB(skb)->same_flow = 0;
3046 NAPI_GRO_CB(skb)->flush = 0;
3047 NAPI_GRO_CB(skb)->free = 0;
3049 pp = ptype->gro_receive(&napi->gro_list, skb);
3054 if (&ptype->list == head)
3057 same_flow = NAPI_GRO_CB(skb)->same_flow;
3058 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3061 struct sk_buff *nskb = *pp;
3065 napi_gro_complete(nskb);
3072 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3076 NAPI_GRO_CB(skb)->count = 1;
3077 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3078 skb->next = napi->gro_list;
3079 napi->gro_list = skb;
3083 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3084 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3086 BUG_ON(skb->end - skb->tail < grow);
3088 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3091 skb->data_len -= grow;
3093 skb_shinfo(skb)->frags[0].page_offset += grow;
3094 skb_shinfo(skb)->frags[0].size -= grow;
3096 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3097 put_page(skb_shinfo(skb)->frags[0].page);
3098 memmove(skb_shinfo(skb)->frags,
3099 skb_shinfo(skb)->frags + 1,
3100 --skb_shinfo(skb)->nr_frags);
3111 EXPORT_SYMBOL(dev_gro_receive);
3114 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3118 if (netpoll_rx_on(skb))
3121 for (p = napi->gro_list; p; p = p->next) {
3122 NAPI_GRO_CB(p)->same_flow =
3123 (p->dev == skb->dev) &&
3124 !compare_ether_header(skb_mac_header(p),
3125 skb_gro_mac_header(skb));
3126 NAPI_GRO_CB(p)->flush = 0;
3129 return dev_gro_receive(napi, skb);
3132 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3136 if (netif_receive_skb(skb))
3141 case GRO_MERGED_FREE:
3152 EXPORT_SYMBOL(napi_skb_finish);
3154 void skb_gro_reset_offset(struct sk_buff *skb)
3156 NAPI_GRO_CB(skb)->data_offset = 0;
3157 NAPI_GRO_CB(skb)->frag0 = NULL;
3158 NAPI_GRO_CB(skb)->frag0_len = 0;
3160 if (skb->mac_header == skb->tail &&
3161 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3162 NAPI_GRO_CB(skb)->frag0 =
3163 page_address(skb_shinfo(skb)->frags[0].page) +
3164 skb_shinfo(skb)->frags[0].page_offset;
3165 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3168 EXPORT_SYMBOL(skb_gro_reset_offset);
3170 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3172 skb_gro_reset_offset(skb);
3174 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3176 EXPORT_SYMBOL(napi_gro_receive);
3178 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3180 __skb_pull(skb, skb_headlen(skb));
3181 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3185 EXPORT_SYMBOL(napi_reuse_skb);
3187 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3189 struct sk_buff *skb = napi->skb;
3192 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3198 EXPORT_SYMBOL(napi_get_frags);
3200 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3206 skb->protocol = eth_type_trans(skb, skb->dev);
3208 if (ret == GRO_HELD)
3209 skb_gro_pull(skb, -ETH_HLEN);
3210 else if (netif_receive_skb(skb))
3215 case GRO_MERGED_FREE:
3216 napi_reuse_skb(napi, skb);
3225 EXPORT_SYMBOL(napi_frags_finish);
3227 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3229 struct sk_buff *skb = napi->skb;
3236 skb_reset_mac_header(skb);
3237 skb_gro_reset_offset(skb);
3239 off = skb_gro_offset(skb);
3240 hlen = off + sizeof(*eth);
3241 eth = skb_gro_header_fast(skb, off);
3242 if (skb_gro_header_hard(skb, hlen)) {
3243 eth = skb_gro_header_slow(skb, hlen, off);
3244 if (unlikely(!eth)) {
3245 napi_reuse_skb(napi, skb);
3251 skb_gro_pull(skb, sizeof(*eth));
3254 * This works because the only protocols we care about don't require
3255 * special handling. We'll fix it up properly at the end.
3257 skb->protocol = eth->h_proto;
3262 EXPORT_SYMBOL(napi_frags_skb);
3264 gro_result_t napi_gro_frags(struct napi_struct *napi)
3266 struct sk_buff *skb = napi_frags_skb(napi);
3271 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3273 EXPORT_SYMBOL(napi_gro_frags);
3276 * net_rps_action sends any pending IPI's for rps.
3277 * Note: called with local irq disabled, but exits with local irq enabled.
3279 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3282 struct softnet_data *remsd = sd->rps_ipi_list;
3285 sd->rps_ipi_list = NULL;
3289 /* Send pending IPI's to kick RPS processing on remote cpus. */
3291 struct softnet_data *next = remsd->rps_ipi_next;
3293 if (cpu_online(remsd->cpu))
3294 __smp_call_function_single(remsd->cpu,
3303 static int process_backlog(struct napi_struct *napi, int quota)
3306 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3309 /* Check if we have pending ipi, its better to send them now,
3310 * not waiting net_rx_action() end.
3312 if (sd->rps_ipi_list) {
3313 local_irq_disable();
3314 net_rps_action_and_irq_enable(sd);
3317 napi->weight = weight_p;
3318 local_irq_disable();
3319 while (work < quota) {
3320 struct sk_buff *skb;
3323 while ((skb = __skb_dequeue(&sd->process_queue))) {
3325 __netif_receive_skb(skb);
3326 if (++work >= quota)
3328 local_irq_disable();
3332 qlen = skb_queue_len(&sd->input_pkt_queue);
3334 input_queue_head_add(sd, qlen);
3335 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3336 &sd->process_queue);
3338 if (qlen < quota - work) {
3340 * Inline a custom version of __napi_complete().
3341 * only current cpu owns and manipulates this napi,
3342 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3343 * we can use a plain write instead of clear_bit(),
3344 * and we dont need an smp_mb() memory barrier.
3346 list_del(&napi->poll_list);
3349 quota = work + qlen;
3359 * __napi_schedule - schedule for receive
3360 * @n: entry to schedule
3362 * The entry's receive function will be scheduled to run
3364 void __napi_schedule(struct napi_struct *n)
3366 unsigned long flags;
3368 local_irq_save(flags);
3369 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3370 local_irq_restore(flags);
3372 EXPORT_SYMBOL(__napi_schedule);
3374 void __napi_complete(struct napi_struct *n)
3376 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3377 BUG_ON(n->gro_list);
3379 list_del(&n->poll_list);
3380 smp_mb__before_clear_bit();
3381 clear_bit(NAPI_STATE_SCHED, &n->state);
3383 EXPORT_SYMBOL(__napi_complete);
3385 void napi_complete(struct napi_struct *n)
3387 unsigned long flags;
3390 * don't let napi dequeue from the cpu poll list
3391 * just in case its running on a different cpu
3393 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3397 local_irq_save(flags);
3399 local_irq_restore(flags);
3401 EXPORT_SYMBOL(napi_complete);
3403 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3404 int (*poll)(struct napi_struct *, int), int weight)
3406 INIT_LIST_HEAD(&napi->poll_list);
3407 napi->gro_count = 0;
3408 napi->gro_list = NULL;
3411 napi->weight = weight;
3412 list_add(&napi->dev_list, &dev->napi_list);
3414 #ifdef CONFIG_NETPOLL
3415 spin_lock_init(&napi->poll_lock);
3416 napi->poll_owner = -1;
3418 set_bit(NAPI_STATE_SCHED, &napi->state);
3420 EXPORT_SYMBOL(netif_napi_add);
3422 void netif_napi_del(struct napi_struct *napi)
3424 struct sk_buff *skb, *next;
3426 list_del_init(&napi->dev_list);
3427 napi_free_frags(napi);
3429 for (skb = napi->gro_list; skb; skb = next) {
3435 napi->gro_list = NULL;
3436 napi->gro_count = 0;
3438 EXPORT_SYMBOL(netif_napi_del);
3440 static void net_rx_action(struct softirq_action *h)
3442 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3443 unsigned long time_limit = jiffies + 2;
3444 int budget = netdev_budget;
3447 local_irq_disable();
3449 while (!list_empty(&sd->poll_list)) {
3450 struct napi_struct *n;
3453 /* If softirq window is exhuasted then punt.
3454 * Allow this to run for 2 jiffies since which will allow
3455 * an average latency of 1.5/HZ.
3457 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3462 /* Even though interrupts have been re-enabled, this
3463 * access is safe because interrupts can only add new
3464 * entries to the tail of this list, and only ->poll()
3465 * calls can remove this head entry from the list.
3467 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3469 have = netpoll_poll_lock(n);
3473 /* This NAPI_STATE_SCHED test is for avoiding a race
3474 * with netpoll's poll_napi(). Only the entity which
3475 * obtains the lock and sees NAPI_STATE_SCHED set will
3476 * actually make the ->poll() call. Therefore we avoid
3477 * accidently calling ->poll() when NAPI is not scheduled.
3480 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3481 work = n->poll(n, weight);
3485 WARN_ON_ONCE(work > weight);
3489 local_irq_disable();
3491 /* Drivers must not modify the NAPI state if they
3492 * consume the entire weight. In such cases this code
3493 * still "owns" the NAPI instance and therefore can
3494 * move the instance around on the list at-will.
3496 if (unlikely(work == weight)) {
3497 if (unlikely(napi_disable_pending(n))) {
3500 local_irq_disable();
3502 list_move_tail(&n->poll_list, &sd->poll_list);
3505 netpoll_poll_unlock(have);
3508 net_rps_action_and_irq_enable(sd);
3510 #ifdef CONFIG_NET_DMA
3512 * There may not be any more sk_buffs coming right now, so push
3513 * any pending DMA copies to hardware
3515 dma_issue_pending_all();
3522 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3526 static gifconf_func_t *gifconf_list[NPROTO];
3529 * register_gifconf - register a SIOCGIF handler
3530 * @family: Address family
3531 * @gifconf: Function handler
3533 * Register protocol dependent address dumping routines. The handler
3534 * that is passed must not be freed or reused until it has been replaced
3535 * by another handler.
3537 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3539 if (family >= NPROTO)
3541 gifconf_list[family] = gifconf;
3544 EXPORT_SYMBOL(register_gifconf);
3548 * Map an interface index to its name (SIOCGIFNAME)
3552 * We need this ioctl for efficient implementation of the
3553 * if_indextoname() function required by the IPv6 API. Without
3554 * it, we would have to search all the interfaces to find a
3558 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3560 struct net_device *dev;
3564 * Fetch the caller's info block.
3567 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3571 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3577 strcpy(ifr.ifr_name, dev->name);
3580 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3586 * Perform a SIOCGIFCONF call. This structure will change
3587 * size eventually, and there is nothing I can do about it.
3588 * Thus we will need a 'compatibility mode'.
3591 static int dev_ifconf(struct net *net, char __user *arg)
3594 struct net_device *dev;
3601 * Fetch the caller's info block.
3604 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3611 * Loop over the interfaces, and write an info block for each.
3615 for_each_netdev(net, dev) {
3616 for (i = 0; i < NPROTO; i++) {
3617 if (gifconf_list[i]) {
3620 done = gifconf_list[i](dev, NULL, 0);
3622 done = gifconf_list[i](dev, pos + total,
3632 * All done. Write the updated control block back to the caller.
3634 ifc.ifc_len = total;
3637 * Both BSD and Solaris return 0 here, so we do too.
3639 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3642 #ifdef CONFIG_PROC_FS
3644 * This is invoked by the /proc filesystem handler to display a device
3647 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3650 struct net *net = seq_file_net(seq);
3652 struct net_device *dev;
3656 return SEQ_START_TOKEN;
3659 for_each_netdev_rcu(net, dev)
3666 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3668 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3669 first_net_device(seq_file_net(seq)) :
3670 next_net_device((struct net_device *)v);
3673 return rcu_dereference(dev);
3676 void dev_seq_stop(struct seq_file *seq, void *v)
3682 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3684 const struct net_device_stats *stats = dev_get_stats(dev);
3686 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3687 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3688 dev->name, stats->rx_bytes, stats->rx_packets,
3690 stats->rx_dropped + stats->rx_missed_errors,
3691 stats->rx_fifo_errors,
3692 stats->rx_length_errors + stats->rx_over_errors +
3693 stats->rx_crc_errors + stats->rx_frame_errors,
3694 stats->rx_compressed, stats->multicast,
3695 stats->tx_bytes, stats->tx_packets,
3696 stats->tx_errors, stats->tx_dropped,
3697 stats->tx_fifo_errors, stats->collisions,
3698 stats->tx_carrier_errors +
3699 stats->tx_aborted_errors +
3700 stats->tx_window_errors +
3701 stats->tx_heartbeat_errors,
3702 stats->tx_compressed);
3706 * Called from the PROCfs module. This now uses the new arbitrary sized
3707 * /proc/net interface to create /proc/net/dev
3709 static int dev_seq_show(struct seq_file *seq, void *v)
3711 if (v == SEQ_START_TOKEN)
3712 seq_puts(seq, "Inter-| Receive "
3714 " face |bytes packets errs drop fifo frame "
3715 "compressed multicast|bytes packets errs "
3716 "drop fifo colls carrier compressed\n");
3718 dev_seq_printf_stats(seq, v);
3722 static struct softnet_data *softnet_get_online(loff_t *pos)
3724 struct softnet_data *sd = NULL;
3726 while (*pos < nr_cpu_ids)
3727 if (cpu_online(*pos)) {
3728 sd = &per_cpu(softnet_data, *pos);
3735 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3737 return softnet_get_online(pos);
3740 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3743 return softnet_get_online(pos);
3746 static void softnet_seq_stop(struct seq_file *seq, void *v)
3750 static int softnet_seq_show(struct seq_file *seq, void *v)
3752 struct softnet_data *sd = v;
3754 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3755 sd->processed, sd->dropped, sd->time_squeeze, 0,
3756 0, 0, 0, 0, /* was fastroute */
3757 sd->cpu_collision, sd->received_rps);
3761 static const struct seq_operations dev_seq_ops = {
3762 .start = dev_seq_start,
3763 .next = dev_seq_next,
3764 .stop = dev_seq_stop,
3765 .show = dev_seq_show,
3768 static int dev_seq_open(struct inode *inode, struct file *file)
3770 return seq_open_net(inode, file, &dev_seq_ops,
3771 sizeof(struct seq_net_private));
3774 static const struct file_operations dev_seq_fops = {
3775 .owner = THIS_MODULE,
3776 .open = dev_seq_open,
3778 .llseek = seq_lseek,
3779 .release = seq_release_net,
3782 static const struct seq_operations softnet_seq_ops = {
3783 .start = softnet_seq_start,
3784 .next = softnet_seq_next,
3785 .stop = softnet_seq_stop,
3786 .show = softnet_seq_show,
3789 static int softnet_seq_open(struct inode *inode, struct file *file)
3791 return seq_open(file, &softnet_seq_ops);
3794 static const struct file_operations softnet_seq_fops = {
3795 .owner = THIS_MODULE,
3796 .open = softnet_seq_open,
3798 .llseek = seq_lseek,
3799 .release = seq_release,
3802 static void *ptype_get_idx(loff_t pos)
3804 struct packet_type *pt = NULL;
3808 list_for_each_entry_rcu(pt, &ptype_all, list) {
3814 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3815 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3824 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3828 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3831 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3833 struct packet_type *pt;
3834 struct list_head *nxt;
3838 if (v == SEQ_START_TOKEN)
3839 return ptype_get_idx(0);
3842 nxt = pt->list.next;
3843 if (pt->type == htons(ETH_P_ALL)) {
3844 if (nxt != &ptype_all)
3847 nxt = ptype_base[0].next;
3849 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3851 while (nxt == &ptype_base[hash]) {
3852 if (++hash >= PTYPE_HASH_SIZE)
3854 nxt = ptype_base[hash].next;
3857 return list_entry(nxt, struct packet_type, list);
3860 static void ptype_seq_stop(struct seq_file *seq, void *v)
3866 static int ptype_seq_show(struct seq_file *seq, void *v)
3868 struct packet_type *pt = v;
3870 if (v == SEQ_START_TOKEN)
3871 seq_puts(seq, "Type Device Function\n");
3872 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3873 if (pt->type == htons(ETH_P_ALL))
3874 seq_puts(seq, "ALL ");
3876 seq_printf(seq, "%04x", ntohs(pt->type));
3878 seq_printf(seq, " %-8s %pF\n",
3879 pt->dev ? pt->dev->name : "", pt->func);
3885 static const struct seq_operations ptype_seq_ops = {
3886 .start = ptype_seq_start,
3887 .next = ptype_seq_next,
3888 .stop = ptype_seq_stop,
3889 .show = ptype_seq_show,
3892 static int ptype_seq_open(struct inode *inode, struct file *file)
3894 return seq_open_net(inode, file, &ptype_seq_ops,
3895 sizeof(struct seq_net_private));
3898 static const struct file_operations ptype_seq_fops = {
3899 .owner = THIS_MODULE,
3900 .open = ptype_seq_open,
3902 .llseek = seq_lseek,
3903 .release = seq_release_net,
3907 static int __net_init dev_proc_net_init(struct net *net)
3911 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3913 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3915 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3918 if (wext_proc_init(net))
3924 proc_net_remove(net, "ptype");
3926 proc_net_remove(net, "softnet_stat");
3928 proc_net_remove(net, "dev");
3932 static void __net_exit dev_proc_net_exit(struct net *net)
3934 wext_proc_exit(net);
3936 proc_net_remove(net, "ptype");
3937 proc_net_remove(net, "softnet_stat");
3938 proc_net_remove(net, "dev");
3941 static struct pernet_operations __net_initdata dev_proc_ops = {
3942 .init = dev_proc_net_init,
3943 .exit = dev_proc_net_exit,
3946 static int __init dev_proc_init(void)
3948 return register_pernet_subsys(&dev_proc_ops);
3951 #define dev_proc_init() 0
3952 #endif /* CONFIG_PROC_FS */
3956 * netdev_set_master - set up master/slave pair
3957 * @slave: slave device
3958 * @master: new master device
3960 * Changes the master device of the slave. Pass %NULL to break the
3961 * bonding. The caller must hold the RTNL semaphore. On a failure
3962 * a negative errno code is returned. On success the reference counts
3963 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3964 * function returns zero.
3966 int netdev_set_master(struct net_device *slave, struct net_device *master)
3968 struct net_device *old = slave->master;
3978 slave->master = master;
3985 slave->flags |= IFF_SLAVE;
3987 slave->flags &= ~IFF_SLAVE;
3989 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3992 EXPORT_SYMBOL(netdev_set_master);
3994 static void dev_change_rx_flags(struct net_device *dev, int flags)
3996 const struct net_device_ops *ops = dev->netdev_ops;
3998 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3999 ops->ndo_change_rx_flags(dev, flags);
4002 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4004 unsigned short old_flags = dev->flags;
4010 dev->flags |= IFF_PROMISC;
4011 dev->promiscuity += inc;
4012 if (dev->promiscuity == 0) {
4015 * If inc causes overflow, untouch promisc and return error.
4018 dev->flags &= ~IFF_PROMISC;
4020 dev->promiscuity -= inc;
4021 printk(KERN_WARNING "%s: promiscuity touches roof, "
4022 "set promiscuity failed, promiscuity feature "
4023 "of device might be broken.\n", dev->name);
4027 if (dev->flags != old_flags) {
4028 printk(KERN_INFO "device %s %s promiscuous mode\n",
4029 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4031 if (audit_enabled) {
4032 current_uid_gid(&uid, &gid);
4033 audit_log(current->audit_context, GFP_ATOMIC,
4034 AUDIT_ANOM_PROMISCUOUS,
4035 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4036 dev->name, (dev->flags & IFF_PROMISC),
4037 (old_flags & IFF_PROMISC),
4038 audit_get_loginuid(current),
4040 audit_get_sessionid(current));
4043 dev_change_rx_flags(dev, IFF_PROMISC);
4049 * dev_set_promiscuity - update promiscuity count on a device
4053 * Add or remove promiscuity from a device. While the count in the device
4054 * remains above zero the interface remains promiscuous. Once it hits zero
4055 * the device reverts back to normal filtering operation. A negative inc
4056 * value is used to drop promiscuity on the device.
4057 * Return 0 if successful or a negative errno code on error.
4059 int dev_set_promiscuity(struct net_device *dev, int inc)
4061 unsigned short old_flags = dev->flags;
4064 err = __dev_set_promiscuity(dev, inc);
4067 if (dev->flags != old_flags)
4068 dev_set_rx_mode(dev);
4071 EXPORT_SYMBOL(dev_set_promiscuity);
4074 * dev_set_allmulti - update allmulti count on a device
4078 * Add or remove reception of all multicast frames to a device. While the
4079 * count in the device remains above zero the interface remains listening
4080 * to all interfaces. Once it hits zero the device reverts back to normal
4081 * filtering operation. A negative @inc value is used to drop the counter
4082 * when releasing a resource needing all multicasts.
4083 * Return 0 if successful or a negative errno code on error.
4086 int dev_set_allmulti(struct net_device *dev, int inc)
4088 unsigned short old_flags = dev->flags;
4092 dev->flags |= IFF_ALLMULTI;
4093 dev->allmulti += inc;
4094 if (dev->allmulti == 0) {
4097 * If inc causes overflow, untouch allmulti and return error.
4100 dev->flags &= ~IFF_ALLMULTI;
4102 dev->allmulti -= inc;
4103 printk(KERN_WARNING "%s: allmulti touches roof, "
4104 "set allmulti failed, allmulti feature of "
4105 "device might be broken.\n", dev->name);
4109 if (dev->flags ^ old_flags) {
4110 dev_change_rx_flags(dev, IFF_ALLMULTI);
4111 dev_set_rx_mode(dev);
4115 EXPORT_SYMBOL(dev_set_allmulti);
4118 * Upload unicast and multicast address lists to device and
4119 * configure RX filtering. When the device doesn't support unicast
4120 * filtering it is put in promiscuous mode while unicast addresses
4123 void __dev_set_rx_mode(struct net_device *dev)
4125 const struct net_device_ops *ops = dev->netdev_ops;
4127 /* dev_open will call this function so the list will stay sane. */
4128 if (!(dev->flags&IFF_UP))
4131 if (!netif_device_present(dev))
4134 if (ops->ndo_set_rx_mode)
4135 ops->ndo_set_rx_mode(dev);
4137 /* Unicast addresses changes may only happen under the rtnl,
4138 * therefore calling __dev_set_promiscuity here is safe.
4140 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4141 __dev_set_promiscuity(dev, 1);
4142 dev->uc_promisc = 1;
4143 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4144 __dev_set_promiscuity(dev, -1);
4145 dev->uc_promisc = 0;
4148 if (ops->ndo_set_multicast_list)
4149 ops->ndo_set_multicast_list(dev);
4153 void dev_set_rx_mode(struct net_device *dev)
4155 netif_addr_lock_bh(dev);
4156 __dev_set_rx_mode(dev);
4157 netif_addr_unlock_bh(dev);
4161 * dev_get_flags - get flags reported to userspace
4164 * Get the combination of flag bits exported through APIs to userspace.
4166 unsigned dev_get_flags(const struct net_device *dev)
4170 flags = (dev->flags & ~(IFF_PROMISC |
4175 (dev->gflags & (IFF_PROMISC |
4178 if (netif_running(dev)) {
4179 if (netif_oper_up(dev))
4180 flags |= IFF_RUNNING;
4181 if (netif_carrier_ok(dev))
4182 flags |= IFF_LOWER_UP;
4183 if (netif_dormant(dev))
4184 flags |= IFF_DORMANT;
4189 EXPORT_SYMBOL(dev_get_flags);
4191 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4193 int old_flags = dev->flags;
4199 * Set the flags on our device.
4202 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4203 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4205 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4209 * Load in the correct multicast list now the flags have changed.
4212 if ((old_flags ^ flags) & IFF_MULTICAST)
4213 dev_change_rx_flags(dev, IFF_MULTICAST);
4215 dev_set_rx_mode(dev);
4218 * Have we downed the interface. We handle IFF_UP ourselves
4219 * according to user attempts to set it, rather than blindly
4224 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4225 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4228 dev_set_rx_mode(dev);
4231 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4232 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4234 dev->gflags ^= IFF_PROMISC;
4235 dev_set_promiscuity(dev, inc);
4238 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4239 is important. Some (broken) drivers set IFF_PROMISC, when
4240 IFF_ALLMULTI is requested not asking us and not reporting.
4242 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4243 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4245 dev->gflags ^= IFF_ALLMULTI;
4246 dev_set_allmulti(dev, inc);
4252 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4254 unsigned int changes = dev->flags ^ old_flags;
4256 if (changes & IFF_UP) {
4257 if (dev->flags & IFF_UP)
4258 call_netdevice_notifiers(NETDEV_UP, dev);
4260 call_netdevice_notifiers(NETDEV_DOWN, dev);
4263 if (dev->flags & IFF_UP &&
4264 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4265 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4269 * dev_change_flags - change device settings
4271 * @flags: device state flags
4273 * Change settings on device based state flags. The flags are
4274 * in the userspace exported format.
4276 int dev_change_flags(struct net_device *dev, unsigned flags)
4279 int old_flags = dev->flags;
4281 ret = __dev_change_flags(dev, flags);
4285 changes = old_flags ^ dev->flags;
4287 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4289 __dev_notify_flags(dev, old_flags);
4292 EXPORT_SYMBOL(dev_change_flags);
4295 * dev_set_mtu - Change maximum transfer unit
4297 * @new_mtu: new transfer unit
4299 * Change the maximum transfer size of the network device.
4301 int dev_set_mtu(struct net_device *dev, int new_mtu)
4303 const struct net_device_ops *ops = dev->netdev_ops;
4306 if (new_mtu == dev->mtu)
4309 /* MTU must be positive. */
4313 if (!netif_device_present(dev))
4317 if (ops->ndo_change_mtu)
4318 err = ops->ndo_change_mtu(dev, new_mtu);
4322 if (!err && dev->flags & IFF_UP)
4323 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4326 EXPORT_SYMBOL(dev_set_mtu);
4329 * dev_set_mac_address - Change Media Access Control Address
4333 * Change the hardware (MAC) address of the device
4335 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4337 const struct net_device_ops *ops = dev->netdev_ops;
4340 if (!ops->ndo_set_mac_address)
4342 if (sa->sa_family != dev->type)
4344 if (!netif_device_present(dev))
4346 err = ops->ndo_set_mac_address(dev, sa);
4348 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4351 EXPORT_SYMBOL(dev_set_mac_address);
4354 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4356 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4359 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4365 case SIOCGIFFLAGS: /* Get interface flags */
4366 ifr->ifr_flags = (short) dev_get_flags(dev);
4369 case SIOCGIFMETRIC: /* Get the metric on the interface
4370 (currently unused) */
4371 ifr->ifr_metric = 0;
4374 case SIOCGIFMTU: /* Get the MTU of a device */
4375 ifr->ifr_mtu = dev->mtu;
4380 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4382 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4383 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4384 ifr->ifr_hwaddr.sa_family = dev->type;
4392 ifr->ifr_map.mem_start = dev->mem_start;
4393 ifr->ifr_map.mem_end = dev->mem_end;
4394 ifr->ifr_map.base_addr = dev->base_addr;
4395 ifr->ifr_map.irq = dev->irq;
4396 ifr->ifr_map.dma = dev->dma;
4397 ifr->ifr_map.port = dev->if_port;
4401 ifr->ifr_ifindex = dev->ifindex;
4405 ifr->ifr_qlen = dev->tx_queue_len;
4409 /* dev_ioctl() should ensure this case
4421 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4423 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4426 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4427 const struct net_device_ops *ops;
4432 ops = dev->netdev_ops;
4435 case SIOCSIFFLAGS: /* Set interface flags */
4436 return dev_change_flags(dev, ifr->ifr_flags);
4438 case SIOCSIFMETRIC: /* Set the metric on the interface
4439 (currently unused) */
4442 case SIOCSIFMTU: /* Set the MTU of a device */
4443 return dev_set_mtu(dev, ifr->ifr_mtu);
4446 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4448 case SIOCSIFHWBROADCAST:
4449 if (ifr->ifr_hwaddr.sa_family != dev->type)
4451 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4452 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4453 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4457 if (ops->ndo_set_config) {
4458 if (!netif_device_present(dev))
4460 return ops->ndo_set_config(dev, &ifr->ifr_map);
4465 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4466 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4468 if (!netif_device_present(dev))
4470 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4473 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4474 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4476 if (!netif_device_present(dev))
4478 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4481 if (ifr->ifr_qlen < 0)
4483 dev->tx_queue_len = ifr->ifr_qlen;
4487 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4488 return dev_change_name(dev, ifr->ifr_newname);
4491 * Unknown or private ioctl
4494 if ((cmd >= SIOCDEVPRIVATE &&
4495 cmd <= SIOCDEVPRIVATE + 15) ||
4496 cmd == SIOCBONDENSLAVE ||
4497 cmd == SIOCBONDRELEASE ||
4498 cmd == SIOCBONDSETHWADDR ||
4499 cmd == SIOCBONDSLAVEINFOQUERY ||
4500 cmd == SIOCBONDINFOQUERY ||
4501 cmd == SIOCBONDCHANGEACTIVE ||
4502 cmd == SIOCGMIIPHY ||
4503 cmd == SIOCGMIIREG ||
4504 cmd == SIOCSMIIREG ||
4505 cmd == SIOCBRADDIF ||
4506 cmd == SIOCBRDELIF ||
4507 cmd == SIOCSHWTSTAMP ||
4508 cmd == SIOCWANDEV) {
4510 if (ops->ndo_do_ioctl) {
4511 if (netif_device_present(dev))
4512 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4524 * This function handles all "interface"-type I/O control requests. The actual
4525 * 'doing' part of this is dev_ifsioc above.
4529 * dev_ioctl - network device ioctl
4530 * @net: the applicable net namespace
4531 * @cmd: command to issue
4532 * @arg: pointer to a struct ifreq in user space
4534 * Issue ioctl functions to devices. This is normally called by the
4535 * user space syscall interfaces but can sometimes be useful for
4536 * other purposes. The return value is the return from the syscall if
4537 * positive or a negative errno code on error.
4540 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4546 /* One special case: SIOCGIFCONF takes ifconf argument
4547 and requires shared lock, because it sleeps writing
4551 if (cmd == SIOCGIFCONF) {
4553 ret = dev_ifconf(net, (char __user *) arg);
4557 if (cmd == SIOCGIFNAME)
4558 return dev_ifname(net, (struct ifreq __user *)arg);
4560 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4563 ifr.ifr_name[IFNAMSIZ-1] = 0;
4565 colon = strchr(ifr.ifr_name, ':');
4570 * See which interface the caller is talking about.
4575 * These ioctl calls:
4576 * - can be done by all.
4577 * - atomic and do not require locking.
4588 dev_load(net, ifr.ifr_name);
4590 ret = dev_ifsioc_locked(net, &ifr, cmd);
4595 if (copy_to_user(arg, &ifr,
4596 sizeof(struct ifreq)))
4602 dev_load(net, ifr.ifr_name);
4604 ret = dev_ethtool(net, &ifr);
4609 if (copy_to_user(arg, &ifr,
4610 sizeof(struct ifreq)))
4616 * These ioctl calls:
4617 * - require superuser power.
4618 * - require strict serialization.
4624 if (!capable(CAP_NET_ADMIN))
4626 dev_load(net, ifr.ifr_name);
4628 ret = dev_ifsioc(net, &ifr, cmd);
4633 if (copy_to_user(arg, &ifr,
4634 sizeof(struct ifreq)))
4640 * These ioctl calls:
4641 * - require superuser power.
4642 * - require strict serialization.
4643 * - do not return a value
4653 case SIOCSIFHWBROADCAST:
4656 case SIOCBONDENSLAVE:
4657 case SIOCBONDRELEASE:
4658 case SIOCBONDSETHWADDR:
4659 case SIOCBONDCHANGEACTIVE:
4663 if (!capable(CAP_NET_ADMIN))
4666 case SIOCBONDSLAVEINFOQUERY:
4667 case SIOCBONDINFOQUERY:
4668 dev_load(net, ifr.ifr_name);
4670 ret = dev_ifsioc(net, &ifr, cmd);
4675 /* Get the per device memory space. We can add this but
4676 * currently do not support it */
4678 /* Set the per device memory buffer space.
4679 * Not applicable in our case */
4684 * Unknown or private ioctl.
4687 if (cmd == SIOCWANDEV ||
4688 (cmd >= SIOCDEVPRIVATE &&
4689 cmd <= SIOCDEVPRIVATE + 15)) {
4690 dev_load(net, ifr.ifr_name);
4692 ret = dev_ifsioc(net, &ifr, cmd);
4694 if (!ret && copy_to_user(arg, &ifr,
4695 sizeof(struct ifreq)))
4699 /* Take care of Wireless Extensions */
4700 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4701 return wext_handle_ioctl(net, &ifr, cmd, arg);
4708 * dev_new_index - allocate an ifindex
4709 * @net: the applicable net namespace
4711 * Returns a suitable unique value for a new device interface
4712 * number. The caller must hold the rtnl semaphore or the
4713 * dev_base_lock to be sure it remains unique.
4715 static int dev_new_index(struct net *net)
4721 if (!__dev_get_by_index(net, ifindex))
4726 /* Delayed registration/unregisteration */
4727 static LIST_HEAD(net_todo_list);
4729 static void net_set_todo(struct net_device *dev)
4731 list_add_tail(&dev->todo_list, &net_todo_list);
4734 static void rollback_registered_many(struct list_head *head)
4736 struct net_device *dev, *tmp;
4738 BUG_ON(dev_boot_phase);
4741 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4742 /* Some devices call without registering
4743 * for initialization unwind. Remove those
4744 * devices and proceed with the remaining.
4746 if (dev->reg_state == NETREG_UNINITIALIZED) {
4747 pr_debug("unregister_netdevice: device %s/%p never "
4748 "was registered\n", dev->name, dev);
4751 list_del(&dev->unreg_list);
4755 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4757 /* If device is running, close it first. */
4760 /* And unlink it from device chain. */
4761 unlist_netdevice(dev);
4763 dev->reg_state = NETREG_UNREGISTERING;
4768 list_for_each_entry(dev, head, unreg_list) {
4769 /* Shutdown queueing discipline. */
4773 /* Notify protocols, that we are about to destroy
4774 this device. They should clean all the things.
4776 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4778 if (!dev->rtnl_link_ops ||
4779 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4780 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4783 * Flush the unicast and multicast chains
4788 if (dev->netdev_ops->ndo_uninit)
4789 dev->netdev_ops->ndo_uninit(dev);
4791 /* Notifier chain MUST detach us from master device. */
4792 WARN_ON(dev->master);
4794 /* Remove entries from kobject tree */
4795 netdev_unregister_kobject(dev);
4798 /* Process any work delayed until the end of the batch */
4799 dev = list_first_entry(head, struct net_device, unreg_list);
4800 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4804 list_for_each_entry(dev, head, unreg_list)
4808 static void rollback_registered(struct net_device *dev)
4812 list_add(&dev->unreg_list, &single);
4813 rollback_registered_many(&single);
4816 static void __netdev_init_queue_locks_one(struct net_device *dev,
4817 struct netdev_queue *dev_queue,
4820 spin_lock_init(&dev_queue->_xmit_lock);
4821 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4822 dev_queue->xmit_lock_owner = -1;
4825 static void netdev_init_queue_locks(struct net_device *dev)
4827 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4828 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4831 unsigned long netdev_fix_features(unsigned long features, const char *name)
4833 /* Fix illegal SG+CSUM combinations. */
4834 if ((features & NETIF_F_SG) &&
4835 !(features & NETIF_F_ALL_CSUM)) {
4837 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4838 "checksum feature.\n", name);
4839 features &= ~NETIF_F_SG;
4842 /* TSO requires that SG is present as well. */
4843 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4845 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4846 "SG feature.\n", name);
4847 features &= ~NETIF_F_TSO;
4850 if (features & NETIF_F_UFO) {
4851 if (!(features & NETIF_F_GEN_CSUM)) {
4853 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4854 "since no NETIF_F_HW_CSUM feature.\n",
4856 features &= ~NETIF_F_UFO;
4859 if (!(features & NETIF_F_SG)) {
4861 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4862 "since no NETIF_F_SG feature.\n", name);
4863 features &= ~NETIF_F_UFO;
4869 EXPORT_SYMBOL(netdev_fix_features);
4872 * netif_stacked_transfer_operstate - transfer operstate
4873 * @rootdev: the root or lower level device to transfer state from
4874 * @dev: the device to transfer operstate to
4876 * Transfer operational state from root to device. This is normally
4877 * called when a stacking relationship exists between the root
4878 * device and the device(a leaf device).
4880 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4881 struct net_device *dev)
4883 if (rootdev->operstate == IF_OPER_DORMANT)
4884 netif_dormant_on(dev);
4886 netif_dormant_off(dev);
4888 if (netif_carrier_ok(rootdev)) {
4889 if (!netif_carrier_ok(dev))
4890 netif_carrier_on(dev);
4892 if (netif_carrier_ok(dev))
4893 netif_carrier_off(dev);
4896 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4899 * register_netdevice - register a network device
4900 * @dev: device to register
4902 * Take a completed network device structure and add it to the kernel
4903 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4904 * chain. 0 is returned on success. A negative errno code is returned
4905 * on a failure to set up the device, or if the name is a duplicate.
4907 * Callers must hold the rtnl semaphore. You may want
4908 * register_netdev() instead of this.
4911 * The locking appears insufficient to guarantee two parallel registers
4912 * will not get the same name.
4915 int register_netdevice(struct net_device *dev)
4918 struct net *net = dev_net(dev);
4920 BUG_ON(dev_boot_phase);
4925 /* When net_device's are persistent, this will be fatal. */
4926 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4929 spin_lock_init(&dev->addr_list_lock);
4930 netdev_set_addr_lockdep_class(dev);
4931 netdev_init_queue_locks(dev);
4936 if (!dev->num_rx_queues) {
4938 * Allocate a single RX queue if driver never called
4942 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4948 dev->_rx->first = dev->_rx;
4949 atomic_set(&dev->_rx->count, 1);
4950 dev->num_rx_queues = 1;
4953 /* Init, if this function is available */
4954 if (dev->netdev_ops->ndo_init) {
4955 ret = dev->netdev_ops->ndo_init(dev);
4963 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4967 dev->ifindex = dev_new_index(net);
4968 if (dev->iflink == -1)
4969 dev->iflink = dev->ifindex;
4971 /* Fix illegal checksum combinations */
4972 if ((dev->features & NETIF_F_HW_CSUM) &&
4973 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4974 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4976 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4979 if ((dev->features & NETIF_F_NO_CSUM) &&
4980 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4981 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4983 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4986 dev->features = netdev_fix_features(dev->features, dev->name);
4988 /* Enable software GSO if SG is supported. */
4989 if (dev->features & NETIF_F_SG)
4990 dev->features |= NETIF_F_GSO;
4992 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4993 ret = notifier_to_errno(ret);
4997 ret = netdev_register_kobject(dev);
5000 dev->reg_state = NETREG_REGISTERED;
5003 * Default initial state at registry is that the
5004 * device is present.
5007 set_bit(__LINK_STATE_PRESENT, &dev->state);
5009 dev_init_scheduler(dev);
5011 list_netdevice(dev);
5013 /* Notify protocols, that a new device appeared. */
5014 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5015 ret = notifier_to_errno(ret);
5017 rollback_registered(dev);
5018 dev->reg_state = NETREG_UNREGISTERED;
5021 * Prevent userspace races by waiting until the network
5022 * device is fully setup before sending notifications.
5024 if (!dev->rtnl_link_ops ||
5025 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5026 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5032 if (dev->netdev_ops->ndo_uninit)
5033 dev->netdev_ops->ndo_uninit(dev);
5036 EXPORT_SYMBOL(register_netdevice);
5039 * init_dummy_netdev - init a dummy network device for NAPI
5040 * @dev: device to init
5042 * This takes a network device structure and initialize the minimum
5043 * amount of fields so it can be used to schedule NAPI polls without
5044 * registering a full blown interface. This is to be used by drivers
5045 * that need to tie several hardware interfaces to a single NAPI
5046 * poll scheduler due to HW limitations.
5048 int init_dummy_netdev(struct net_device *dev)
5050 /* Clear everything. Note we don't initialize spinlocks
5051 * are they aren't supposed to be taken by any of the
5052 * NAPI code and this dummy netdev is supposed to be
5053 * only ever used for NAPI polls
5055 memset(dev, 0, sizeof(struct net_device));
5057 /* make sure we BUG if trying to hit standard
5058 * register/unregister code path
5060 dev->reg_state = NETREG_DUMMY;
5062 /* initialize the ref count */
5063 atomic_set(&dev->refcnt, 1);
5065 /* NAPI wants this */
5066 INIT_LIST_HEAD(&dev->napi_list);
5068 /* a dummy interface is started by default */
5069 set_bit(__LINK_STATE_PRESENT, &dev->state);
5070 set_bit(__LINK_STATE_START, &dev->state);
5074 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5078 * register_netdev - register a network device
5079 * @dev: device to register
5081 * Take a completed network device structure and add it to the kernel
5082 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5083 * chain. 0 is returned on success. A negative errno code is returned
5084 * on a failure to set up the device, or if the name is a duplicate.
5086 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5087 * and expands the device name if you passed a format string to
5090 int register_netdev(struct net_device *dev)
5097 * If the name is a format string the caller wants us to do a
5100 if (strchr(dev->name, '%')) {
5101 err = dev_alloc_name(dev, dev->name);
5106 err = register_netdevice(dev);
5111 EXPORT_SYMBOL(register_netdev);
5114 * netdev_wait_allrefs - wait until all references are gone.
5116 * This is called when unregistering network devices.
5118 * Any protocol or device that holds a reference should register
5119 * for netdevice notification, and cleanup and put back the
5120 * reference if they receive an UNREGISTER event.
5121 * We can get stuck here if buggy protocols don't correctly
5124 static void netdev_wait_allrefs(struct net_device *dev)
5126 unsigned long rebroadcast_time, warning_time;
5128 linkwatch_forget_dev(dev);
5130 rebroadcast_time = warning_time = jiffies;
5131 while (atomic_read(&dev->refcnt) != 0) {
5132 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5135 /* Rebroadcast unregister notification */
5136 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5137 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5138 * should have already handle it the first time */
5140 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5142 /* We must not have linkwatch events
5143 * pending on unregister. If this
5144 * happens, we simply run the queue
5145 * unscheduled, resulting in a noop
5148 linkwatch_run_queue();
5153 rebroadcast_time = jiffies;
5158 if (time_after(jiffies, warning_time + 10 * HZ)) {
5159 printk(KERN_EMERG "unregister_netdevice: "
5160 "waiting for %s to become free. Usage "
5162 dev->name, atomic_read(&dev->refcnt));
5163 warning_time = jiffies;
5172 * register_netdevice(x1);
5173 * register_netdevice(x2);
5175 * unregister_netdevice(y1);
5176 * unregister_netdevice(y2);
5182 * We are invoked by rtnl_unlock().
5183 * This allows us to deal with problems:
5184 * 1) We can delete sysfs objects which invoke hotplug
5185 * without deadlocking with linkwatch via keventd.
5186 * 2) Since we run with the RTNL semaphore not held, we can sleep
5187 * safely in order to wait for the netdev refcnt to drop to zero.
5189 * We must not return until all unregister events added during
5190 * the interval the lock was held have been completed.
5192 void netdev_run_todo(void)
5194 struct list_head list;
5196 /* Snapshot list, allow later requests */
5197 list_replace_init(&net_todo_list, &list);
5201 while (!list_empty(&list)) {
5202 struct net_device *dev
5203 = list_first_entry(&list, struct net_device, todo_list);
5204 list_del(&dev->todo_list);
5206 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5207 printk(KERN_ERR "network todo '%s' but state %d\n",
5208 dev->name, dev->reg_state);
5213 dev->reg_state = NETREG_UNREGISTERED;
5215 on_each_cpu(flush_backlog, dev, 1);
5217 netdev_wait_allrefs(dev);
5220 BUG_ON(atomic_read(&dev->refcnt));
5221 WARN_ON(dev->ip_ptr);
5222 WARN_ON(dev->ip6_ptr);
5223 WARN_ON(dev->dn_ptr);
5225 if (dev->destructor)
5226 dev->destructor(dev);
5228 /* Free network device */
5229 kobject_put(&dev->dev.kobj);
5234 * dev_txq_stats_fold - fold tx_queues stats
5235 * @dev: device to get statistics from
5236 * @stats: struct net_device_stats to hold results
5238 void dev_txq_stats_fold(const struct net_device *dev,
5239 struct net_device_stats *stats)
5241 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5243 struct netdev_queue *txq;
5245 for (i = 0; i < dev->num_tx_queues; i++) {
5246 txq = netdev_get_tx_queue(dev, i);
5247 tx_bytes += txq->tx_bytes;
5248 tx_packets += txq->tx_packets;
5249 tx_dropped += txq->tx_dropped;
5251 if (tx_bytes || tx_packets || tx_dropped) {
5252 stats->tx_bytes = tx_bytes;
5253 stats->tx_packets = tx_packets;
5254 stats->tx_dropped = tx_dropped;
5257 EXPORT_SYMBOL(dev_txq_stats_fold);
5260 * dev_get_stats - get network device statistics
5261 * @dev: device to get statistics from
5263 * Get network statistics from device. The device driver may provide
5264 * its own method by setting dev->netdev_ops->get_stats; otherwise
5265 * the internal statistics structure is used.
5267 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5269 const struct net_device_ops *ops = dev->netdev_ops;
5271 if (ops->ndo_get_stats)
5272 return ops->ndo_get_stats(dev);
5274 dev_txq_stats_fold(dev, &dev->stats);
5277 EXPORT_SYMBOL(dev_get_stats);
5279 static void netdev_init_one_queue(struct net_device *dev,
5280 struct netdev_queue *queue,
5286 static void netdev_init_queues(struct net_device *dev)
5288 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5289 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5290 spin_lock_init(&dev->tx_global_lock);
5294 * alloc_netdev_mq - allocate network device
5295 * @sizeof_priv: size of private data to allocate space for
5296 * @name: device name format string
5297 * @setup: callback to initialize device
5298 * @queue_count: the number of subqueues to allocate
5300 * Allocates a struct net_device with private data area for driver use
5301 * and performs basic initialization. Also allocates subquue structs
5302 * for each queue on the device at the end of the netdevice.
5304 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5305 void (*setup)(struct net_device *), unsigned int queue_count)
5307 struct netdev_queue *tx;
5308 struct net_device *dev;
5310 struct net_device *p;
5312 struct netdev_rx_queue *rx;
5316 BUG_ON(strlen(name) >= sizeof(dev->name));
5318 alloc_size = sizeof(struct net_device);
5320 /* ensure 32-byte alignment of private area */
5321 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5322 alloc_size += sizeof_priv;
5324 /* ensure 32-byte alignment of whole construct */
5325 alloc_size += NETDEV_ALIGN - 1;
5327 p = kzalloc(alloc_size, GFP_KERNEL);
5329 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5333 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5335 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5341 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5343 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5348 atomic_set(&rx->count, queue_count);
5351 * Set a pointer to first element in the array which holds the
5354 for (i = 0; i < queue_count; i++)
5358 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5359 dev->padded = (char *)dev - (char *)p;
5361 if (dev_addr_init(dev))
5367 dev_net_set(dev, &init_net);
5370 dev->num_tx_queues = queue_count;
5371 dev->real_num_tx_queues = queue_count;
5375 dev->num_rx_queues = queue_count;
5378 dev->gso_max_size = GSO_MAX_SIZE;
5380 netdev_init_queues(dev);
5382 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5383 dev->ethtool_ntuple_list.count = 0;
5384 INIT_LIST_HEAD(&dev->napi_list);
5385 INIT_LIST_HEAD(&dev->unreg_list);
5386 INIT_LIST_HEAD(&dev->link_watch_list);
5387 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5389 strcpy(dev->name, name);
5402 EXPORT_SYMBOL(alloc_netdev_mq);
5405 * free_netdev - free network device
5408 * This function does the last stage of destroying an allocated device
5409 * interface. The reference to the device object is released.
5410 * If this is the last reference then it will be freed.
5412 void free_netdev(struct net_device *dev)
5414 struct napi_struct *p, *n;
5416 release_net(dev_net(dev));
5420 /* Flush device addresses */
5421 dev_addr_flush(dev);
5423 /* Clear ethtool n-tuple list */
5424 ethtool_ntuple_flush(dev);
5426 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5429 /* Compatibility with error handling in drivers */
5430 if (dev->reg_state == NETREG_UNINITIALIZED) {
5431 kfree((char *)dev - dev->padded);
5435 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5436 dev->reg_state = NETREG_RELEASED;
5438 /* will free via device release */
5439 put_device(&dev->dev);
5441 EXPORT_SYMBOL(free_netdev);
5444 * synchronize_net - Synchronize with packet receive processing
5446 * Wait for packets currently being received to be done.
5447 * Does not block later packets from starting.
5449 void synchronize_net(void)
5454 EXPORT_SYMBOL(synchronize_net);
5457 * unregister_netdevice_queue - remove device from the kernel
5461 * This function shuts down a device interface and removes it
5462 * from the kernel tables.
5463 * If head not NULL, device is queued to be unregistered later.
5465 * Callers must hold the rtnl semaphore. You may want
5466 * unregister_netdev() instead of this.
5469 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5474 list_move_tail(&dev->unreg_list, head);
5476 rollback_registered(dev);
5477 /* Finish processing unregister after unlock */
5481 EXPORT_SYMBOL(unregister_netdevice_queue);
5484 * unregister_netdevice_many - unregister many devices
5485 * @head: list of devices
5487 void unregister_netdevice_many(struct list_head *head)
5489 struct net_device *dev;
5491 if (!list_empty(head)) {
5492 rollback_registered_many(head);
5493 list_for_each_entry(dev, head, unreg_list)
5497 EXPORT_SYMBOL(unregister_netdevice_many);
5500 * unregister_netdev - remove device from the kernel
5503 * This function shuts down a device interface and removes it
5504 * from the kernel tables.
5506 * This is just a wrapper for unregister_netdevice that takes
5507 * the rtnl semaphore. In general you want to use this and not
5508 * unregister_netdevice.
5510 void unregister_netdev(struct net_device *dev)
5513 unregister_netdevice(dev);
5516 EXPORT_SYMBOL(unregister_netdev);
5519 * dev_change_net_namespace - move device to different nethost namespace
5521 * @net: network namespace
5522 * @pat: If not NULL name pattern to try if the current device name
5523 * is already taken in the destination network namespace.
5525 * This function shuts down a device interface and moves it
5526 * to a new network namespace. On success 0 is returned, on
5527 * a failure a netagive errno code is returned.
5529 * Callers must hold the rtnl semaphore.
5532 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5538 /* Don't allow namespace local devices to be moved. */
5540 if (dev->features & NETIF_F_NETNS_LOCAL)
5543 /* Ensure the device has been registrered */
5545 if (dev->reg_state != NETREG_REGISTERED)
5548 /* Get out if there is nothing todo */
5550 if (net_eq(dev_net(dev), net))
5553 /* Pick the destination device name, and ensure
5554 * we can use it in the destination network namespace.
5557 if (__dev_get_by_name(net, dev->name)) {
5558 /* We get here if we can't use the current device name */
5561 if (dev_get_valid_name(net, pat, dev->name, 1))
5566 * And now a mini version of register_netdevice unregister_netdevice.
5569 /* If device is running close it first. */
5572 /* And unlink it from device chain */
5574 unlist_netdevice(dev);
5578 /* Shutdown queueing discipline. */
5581 /* Notify protocols, that we are about to destroy
5582 this device. They should clean all the things.
5584 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5585 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5588 * Flush the unicast and multicast chains
5593 /* Actually switch the network namespace */
5594 dev_net_set(dev, net);
5596 /* If there is an ifindex conflict assign a new one */
5597 if (__dev_get_by_index(net, dev->ifindex)) {
5598 int iflink = (dev->iflink == dev->ifindex);
5599 dev->ifindex = dev_new_index(net);
5601 dev->iflink = dev->ifindex;
5604 /* Fixup kobjects */
5605 err = device_rename(&dev->dev, dev->name);
5608 /* Add the device back in the hashes */
5609 list_netdevice(dev);
5611 /* Notify protocols, that a new device appeared. */
5612 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5615 * Prevent userspace races by waiting until the network
5616 * device is fully setup before sending notifications.
5618 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5625 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5627 static int dev_cpu_callback(struct notifier_block *nfb,
5628 unsigned long action,
5631 struct sk_buff **list_skb;
5632 struct sk_buff *skb;
5633 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5634 struct softnet_data *sd, *oldsd;
5636 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5639 local_irq_disable();
5640 cpu = smp_processor_id();
5641 sd = &per_cpu(softnet_data, cpu);
5642 oldsd = &per_cpu(softnet_data, oldcpu);
5644 /* Find end of our completion_queue. */
5645 list_skb = &sd->completion_queue;
5647 list_skb = &(*list_skb)->next;
5648 /* Append completion queue from offline CPU. */
5649 *list_skb = oldsd->completion_queue;
5650 oldsd->completion_queue = NULL;
5652 /* Append output queue from offline CPU. */
5653 if (oldsd->output_queue) {
5654 *sd->output_queue_tailp = oldsd->output_queue;
5655 sd->output_queue_tailp = oldsd->output_queue_tailp;
5656 oldsd->output_queue = NULL;
5657 oldsd->output_queue_tailp = &oldsd->output_queue;
5660 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5663 /* Process offline CPU's input_pkt_queue */
5664 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5666 input_queue_head_add(oldsd, 1);
5668 while ((skb = __skb_dequeue(&oldsd->process_queue)))
5676 * netdev_increment_features - increment feature set by one
5677 * @all: current feature set
5678 * @one: new feature set
5679 * @mask: mask feature set
5681 * Computes a new feature set after adding a device with feature set
5682 * @one to the master device with current feature set @all. Will not
5683 * enable anything that is off in @mask. Returns the new feature set.
5685 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5688 /* If device needs checksumming, downgrade to it. */
5689 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5690 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5691 else if (mask & NETIF_F_ALL_CSUM) {
5692 /* If one device supports v4/v6 checksumming, set for all. */
5693 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5694 !(all & NETIF_F_GEN_CSUM)) {
5695 all &= ~NETIF_F_ALL_CSUM;
5696 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5699 /* If one device supports hw checksumming, set for all. */
5700 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5701 all &= ~NETIF_F_ALL_CSUM;
5702 all |= NETIF_F_HW_CSUM;
5706 one |= NETIF_F_ALL_CSUM;
5708 one |= all & NETIF_F_ONE_FOR_ALL;
5709 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5710 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5714 EXPORT_SYMBOL(netdev_increment_features);
5716 static struct hlist_head *netdev_create_hash(void)
5719 struct hlist_head *hash;
5721 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5723 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5724 INIT_HLIST_HEAD(&hash[i]);
5729 /* Initialize per network namespace state */
5730 static int __net_init netdev_init(struct net *net)
5732 INIT_LIST_HEAD(&net->dev_base_head);
5734 net->dev_name_head = netdev_create_hash();
5735 if (net->dev_name_head == NULL)
5738 net->dev_index_head = netdev_create_hash();
5739 if (net->dev_index_head == NULL)
5745 kfree(net->dev_name_head);
5751 * netdev_drivername - network driver for the device
5752 * @dev: network device
5753 * @buffer: buffer for resulting name
5754 * @len: size of buffer
5756 * Determine network driver for device.
5758 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5760 const struct device_driver *driver;
5761 const struct device *parent;
5763 if (len <= 0 || !buffer)
5767 parent = dev->dev.parent;
5772 driver = parent->driver;
5773 if (driver && driver->name)
5774 strlcpy(buffer, driver->name, len);
5778 static void __net_exit netdev_exit(struct net *net)
5780 kfree(net->dev_name_head);
5781 kfree(net->dev_index_head);
5784 static struct pernet_operations __net_initdata netdev_net_ops = {
5785 .init = netdev_init,
5786 .exit = netdev_exit,
5789 static void __net_exit default_device_exit(struct net *net)
5791 struct net_device *dev, *aux;
5793 * Push all migratable network devices back to the
5794 * initial network namespace
5797 for_each_netdev_safe(net, dev, aux) {
5799 char fb_name[IFNAMSIZ];
5801 /* Ignore unmoveable devices (i.e. loopback) */
5802 if (dev->features & NETIF_F_NETNS_LOCAL)
5805 /* Leave virtual devices for the generic cleanup */
5806 if (dev->rtnl_link_ops)
5809 /* Push remaing network devices to init_net */
5810 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5811 err = dev_change_net_namespace(dev, &init_net, fb_name);
5813 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5814 __func__, dev->name, err);
5821 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5823 /* At exit all network devices most be removed from a network
5824 * namespace. Do this in the reverse order of registeration.
5825 * Do this across as many network namespaces as possible to
5826 * improve batching efficiency.
5828 struct net_device *dev;
5830 LIST_HEAD(dev_kill_list);
5833 list_for_each_entry(net, net_list, exit_list) {
5834 for_each_netdev_reverse(net, dev) {
5835 if (dev->rtnl_link_ops)
5836 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5838 unregister_netdevice_queue(dev, &dev_kill_list);
5841 unregister_netdevice_many(&dev_kill_list);
5845 static struct pernet_operations __net_initdata default_device_ops = {
5846 .exit = default_device_exit,
5847 .exit_batch = default_device_exit_batch,
5851 * Initialize the DEV module. At boot time this walks the device list and
5852 * unhooks any devices that fail to initialise (normally hardware not
5853 * present) and leaves us with a valid list of present and active devices.
5858 * This is called single threaded during boot, so no need
5859 * to take the rtnl semaphore.
5861 static int __init net_dev_init(void)
5863 int i, rc = -ENOMEM;
5865 BUG_ON(!dev_boot_phase);
5867 if (dev_proc_init())
5870 if (netdev_kobject_init())
5873 INIT_LIST_HEAD(&ptype_all);
5874 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5875 INIT_LIST_HEAD(&ptype_base[i]);
5877 if (register_pernet_subsys(&netdev_net_ops))
5881 * Initialise the packet receive queues.
5884 for_each_possible_cpu(i) {
5885 struct softnet_data *sd = &per_cpu(softnet_data, i);
5887 memset(sd, 0, sizeof(*sd));
5888 skb_queue_head_init(&sd->input_pkt_queue);
5889 skb_queue_head_init(&sd->process_queue);
5890 sd->completion_queue = NULL;
5891 INIT_LIST_HEAD(&sd->poll_list);
5892 sd->output_queue = NULL;
5893 sd->output_queue_tailp = &sd->output_queue;
5895 sd->csd.func = rps_trigger_softirq;
5901 sd->backlog.poll = process_backlog;
5902 sd->backlog.weight = weight_p;
5903 sd->backlog.gro_list = NULL;
5904 sd->backlog.gro_count = 0;
5909 /* The loopback device is special if any other network devices
5910 * is present in a network namespace the loopback device must
5911 * be present. Since we now dynamically allocate and free the
5912 * loopback device ensure this invariant is maintained by
5913 * keeping the loopback device as the first device on the
5914 * list of network devices. Ensuring the loopback devices
5915 * is the first device that appears and the last network device
5918 if (register_pernet_device(&loopback_net_ops))
5921 if (register_pernet_device(&default_device_ops))
5924 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5925 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5927 hotcpu_notifier(dev_cpu_callback, 0);
5935 subsys_initcall(net_dev_init);
5937 static int __init initialize_hashrnd(void)
5939 get_random_bytes(&hashrnd, sizeof(hashrnd));
5943 late_initcall_sync(initialize_hashrnd);