1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
89 #include <uapi/linux/io_uring.h>
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
128 struct io_uring sq, cq;
130 * Bitmasks to apply to head and tail offsets (constant, equals
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
152 * Written by the kernel, shouldn't be modified by the
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
162 * Written by the application, shouldn't be modified by the
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
181 * Ring buffer of completion events.
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
190 struct io_mapped_ubuf {
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
198 struct fixed_file_table {
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
223 struct list_head list;
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
246 struct task_struct *thread;
247 struct wait_queue_head wait;
249 unsigned sq_thread_idle;
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
267 * Ring buffer of indices into array of io_uring_sqe, which is
268 * mmapped by the application using the IORING_OFF_SQES offset.
270 * This indirection could e.g. be used to assign fixed
271 * io_uring_sqe entries to operations and only submit them to
272 * the queue when needed.
274 * The kernel modifies neither the indices array nor the entries
278 unsigned cached_sq_head;
281 unsigned sq_thread_idle;
282 unsigned cached_sq_dropped;
283 unsigned cached_cq_overflow;
284 unsigned long sq_check_overflow;
286 struct list_head defer_list;
287 struct list_head timeout_list;
288 struct list_head cq_overflow_list;
290 struct io_uring_sqe *sq_sqes;
291 } ____cacheline_aligned_in_smp;
293 struct io_rings *rings;
299 * For SQPOLL usage - we hold a reference to the parent task, so we
300 * have access to the ->files
302 struct task_struct *sqo_task;
304 /* Only used for accounting purposes */
305 struct mm_struct *mm_account;
307 #ifdef CONFIG_BLK_CGROUP
308 struct cgroup_subsys_state *sqo_blkcg_css;
311 struct io_sq_data *sq_data; /* if using sq thread polling */
313 struct wait_queue_head sqo_sq_wait;
314 struct list_head sqd_list;
317 * If used, fixed file set. Writers must ensure that ->refs is dead,
318 * readers must ensure that ->refs is alive as long as the file* is
319 * used. Only updated through io_uring_register(2).
321 struct fixed_file_data *file_data;
322 unsigned nr_user_files;
324 /* if used, fixed mapped user buffers */
325 unsigned nr_user_bufs;
326 struct io_mapped_ubuf *user_bufs;
328 struct user_struct *user;
330 const struct cred *creds;
334 unsigned int sessionid;
337 struct completion ref_comp;
338 struct completion sq_thread_comp;
340 /* if all else fails... */
341 struct io_kiocb *fallback_req;
343 #if defined(CONFIG_UNIX)
344 struct socket *ring_sock;
347 struct idr io_buffer_idr;
349 struct idr personality_idr;
352 unsigned cached_cq_tail;
355 atomic_t cq_timeouts;
356 unsigned long cq_check_overflow;
357 struct wait_queue_head cq_wait;
358 struct fasync_struct *cq_fasync;
359 struct eventfd_ctx *cq_ev_fd;
360 } ____cacheline_aligned_in_smp;
363 struct mutex uring_lock;
364 wait_queue_head_t wait;
365 } ____cacheline_aligned_in_smp;
368 spinlock_t completion_lock;
371 * ->iopoll_list is protected by the ctx->uring_lock for
372 * io_uring instances that don't use IORING_SETUP_SQPOLL.
373 * For SQPOLL, only the single threaded io_sq_thread() will
374 * manipulate the list, hence no extra locking is needed there.
376 struct list_head iopoll_list;
377 struct hlist_head *cancel_hash;
378 unsigned cancel_hash_bits;
379 bool poll_multi_file;
381 spinlock_t inflight_lock;
382 struct list_head inflight_list;
383 } ____cacheline_aligned_in_smp;
385 struct delayed_work file_put_work;
386 struct llist_head file_put_llist;
388 struct work_struct exit_work;
389 struct io_restriction restrictions;
393 * First field must be the file pointer in all the
394 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
396 struct io_poll_iocb {
398 struct wait_queue_head *head;
402 struct wait_queue_entry wait;
405 struct io_poll_remove {
412 struct file *put_file;
416 struct io_timeout_data {
417 struct io_kiocb *req;
418 struct hrtimer timer;
419 struct timespec64 ts;
420 enum hrtimer_mode mode;
425 struct sockaddr __user *addr;
426 int __user *addr_len;
428 unsigned long nofile;
448 struct list_head list;
449 /* head of the link, used by linked timeouts only */
450 struct io_kiocb *head;
453 struct io_timeout_rem {
458 struct timespec64 ts;
463 /* NOTE: kiocb has the file as the first member, so don't do it here */
471 struct sockaddr __user *addr;
478 struct user_msghdr __user *umsg;
484 struct io_buffer *kbuf;
490 bool ignore_nonblock;
491 struct filename *filename;
493 unsigned long nofile;
496 struct io_files_update {
522 struct epoll_event event;
526 struct file *file_out;
527 struct file *file_in;
534 struct io_provide_buf {
548 const char __user *filename;
549 struct statx __user *buffer;
561 struct filename *oldpath;
562 struct filename *newpath;
570 struct filename *filename;
573 struct io_completion {
575 struct list_head list;
579 struct io_async_connect {
580 struct sockaddr_storage address;
583 struct io_async_msghdr {
584 struct iovec fast_iov[UIO_FASTIOV];
586 struct sockaddr __user *uaddr;
588 struct sockaddr_storage addr;
592 struct iovec fast_iov[UIO_FASTIOV];
593 const struct iovec *free_iovec;
594 struct iov_iter iter;
596 struct wait_page_queue wpq;
600 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
601 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
602 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
603 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
604 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
605 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
611 REQ_F_LINK_TIMEOUT_BIT,
613 REQ_F_NEED_CLEANUP_BIT,
615 REQ_F_BUFFER_SELECTED_BIT,
616 REQ_F_NO_FILE_TABLE_BIT,
617 REQ_F_WORK_INITIALIZED_BIT,
618 REQ_F_LTIMEOUT_ACTIVE_BIT,
620 /* not a real bit, just to check we're not overflowing the space */
626 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
627 /* drain existing IO first */
628 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
630 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
631 /* doesn't sever on completion < 0 */
632 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
634 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
635 /* IOSQE_BUFFER_SELECT */
636 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
638 /* fail rest of links */
639 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
640 /* on inflight list */
641 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
642 /* read/write uses file position */
643 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
644 /* must not punt to workers */
645 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
646 /* has or had linked timeout */
647 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
649 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
651 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
652 /* already went through poll handler */
653 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
654 /* buffer already selected */
655 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
656 /* doesn't need file table for this request */
657 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
658 /* io_wq_work is initialized */
659 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
660 /* linked timeout is active, i.e. prepared by link's head */
661 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
665 struct io_poll_iocb poll;
666 struct io_poll_iocb *double_poll;
670 * NOTE! Each of the iocb union members has the file pointer
671 * as the first entry in their struct definition. So you can
672 * access the file pointer through any of the sub-structs,
673 * or directly as just 'ki_filp' in this struct.
679 struct io_poll_iocb poll;
680 struct io_poll_remove poll_remove;
681 struct io_accept accept;
683 struct io_cancel cancel;
684 struct io_timeout timeout;
685 struct io_timeout_rem timeout_rem;
686 struct io_connect connect;
687 struct io_sr_msg sr_msg;
689 struct io_close close;
690 struct io_files_update files_update;
691 struct io_fadvise fadvise;
692 struct io_madvise madvise;
693 struct io_epoll epoll;
694 struct io_splice splice;
695 struct io_provide_buf pbuf;
696 struct io_statx statx;
697 struct io_shutdown shutdown;
698 struct io_rename rename;
699 struct io_unlink unlink;
700 /* use only after cleaning per-op data, see io_clean_op() */
701 struct io_completion compl;
704 /* opcode allocated if it needs to store data for async defer */
707 /* polled IO has completed */
713 struct io_ring_ctx *ctx;
716 struct task_struct *task;
719 struct io_kiocb *link;
720 struct percpu_ref *fixed_file_refs;
723 * 1. used with ctx->iopoll_list with reads/writes
724 * 2. to track reqs with ->files (see io_op_def::file_table)
726 struct list_head inflight_entry;
727 struct callback_head task_work;
728 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
729 struct hlist_node hash_node;
730 struct async_poll *apoll;
731 struct io_wq_work work;
734 struct io_defer_entry {
735 struct list_head list;
736 struct io_kiocb *req;
740 #define IO_IOPOLL_BATCH 8
742 struct io_comp_state {
744 struct list_head list;
745 struct io_ring_ctx *ctx;
748 struct io_submit_state {
749 struct blk_plug plug;
752 * io_kiocb alloc cache
754 void *reqs[IO_IOPOLL_BATCH];
755 unsigned int free_reqs;
760 * Batch completion logic
762 struct io_comp_state comp;
765 * File reference cache
769 unsigned int file_refs;
770 unsigned int ios_left;
774 /* needs req->file assigned */
775 unsigned needs_file : 1;
776 /* don't fail if file grab fails */
777 unsigned needs_file_no_error : 1;
778 /* hash wq insertion if file is a regular file */
779 unsigned hash_reg_file : 1;
780 /* unbound wq insertion if file is a non-regular file */
781 unsigned unbound_nonreg_file : 1;
782 /* opcode is not supported by this kernel */
783 unsigned not_supported : 1;
784 /* set if opcode supports polled "wait" */
786 unsigned pollout : 1;
787 /* op supports buffer selection */
788 unsigned buffer_select : 1;
789 /* must always have async data allocated */
790 unsigned needs_async_data : 1;
791 /* should block plug */
793 /* size of async data needed, if any */
794 unsigned short async_size;
798 static const struct io_op_def io_op_defs[] = {
799 [IORING_OP_NOP] = {},
800 [IORING_OP_READV] = {
802 .unbound_nonreg_file = 1,
805 .needs_async_data = 1,
807 .async_size = sizeof(struct io_async_rw),
808 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
810 [IORING_OP_WRITEV] = {
813 .unbound_nonreg_file = 1,
815 .needs_async_data = 1,
817 .async_size = sizeof(struct io_async_rw),
818 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
821 [IORING_OP_FSYNC] = {
823 .work_flags = IO_WQ_WORK_BLKCG,
825 [IORING_OP_READ_FIXED] = {
827 .unbound_nonreg_file = 1,
830 .async_size = sizeof(struct io_async_rw),
831 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
833 [IORING_OP_WRITE_FIXED] = {
836 .unbound_nonreg_file = 1,
839 .async_size = sizeof(struct io_async_rw),
840 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
843 [IORING_OP_POLL_ADD] = {
845 .unbound_nonreg_file = 1,
847 [IORING_OP_POLL_REMOVE] = {},
848 [IORING_OP_SYNC_FILE_RANGE] = {
850 .work_flags = IO_WQ_WORK_BLKCG,
852 [IORING_OP_SENDMSG] = {
854 .unbound_nonreg_file = 1,
856 .needs_async_data = 1,
857 .async_size = sizeof(struct io_async_msghdr),
858 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
860 [IORING_OP_RECVMSG] = {
862 .unbound_nonreg_file = 1,
865 .needs_async_data = 1,
866 .async_size = sizeof(struct io_async_msghdr),
867 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
869 [IORING_OP_TIMEOUT] = {
870 .needs_async_data = 1,
871 .async_size = sizeof(struct io_timeout_data),
872 .work_flags = IO_WQ_WORK_MM,
874 [IORING_OP_TIMEOUT_REMOVE] = {
875 /* used by timeout updates' prep() */
876 .work_flags = IO_WQ_WORK_MM,
878 [IORING_OP_ACCEPT] = {
880 .unbound_nonreg_file = 1,
882 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
884 [IORING_OP_ASYNC_CANCEL] = {},
885 [IORING_OP_LINK_TIMEOUT] = {
886 .needs_async_data = 1,
887 .async_size = sizeof(struct io_timeout_data),
888 .work_flags = IO_WQ_WORK_MM,
890 [IORING_OP_CONNECT] = {
892 .unbound_nonreg_file = 1,
894 .needs_async_data = 1,
895 .async_size = sizeof(struct io_async_connect),
896 .work_flags = IO_WQ_WORK_MM,
898 [IORING_OP_FALLOCATE] = {
900 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
902 [IORING_OP_OPENAT] = {
903 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
904 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
906 [IORING_OP_CLOSE] = {
908 .needs_file_no_error = 1,
909 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
911 [IORING_OP_FILES_UPDATE] = {
912 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
914 [IORING_OP_STATX] = {
915 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
916 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
920 .unbound_nonreg_file = 1,
924 .async_size = sizeof(struct io_async_rw),
925 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
927 [IORING_OP_WRITE] = {
929 .unbound_nonreg_file = 1,
932 .async_size = sizeof(struct io_async_rw),
933 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
936 [IORING_OP_FADVISE] = {
938 .work_flags = IO_WQ_WORK_BLKCG,
940 [IORING_OP_MADVISE] = {
941 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
945 .unbound_nonreg_file = 1,
947 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
951 .unbound_nonreg_file = 1,
954 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
956 [IORING_OP_OPENAT2] = {
957 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
958 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
960 [IORING_OP_EPOLL_CTL] = {
961 .unbound_nonreg_file = 1,
962 .work_flags = IO_WQ_WORK_FILES,
964 [IORING_OP_SPLICE] = {
967 .unbound_nonreg_file = 1,
968 .work_flags = IO_WQ_WORK_BLKCG,
970 [IORING_OP_PROVIDE_BUFFERS] = {},
971 [IORING_OP_REMOVE_BUFFERS] = {},
975 .unbound_nonreg_file = 1,
977 [IORING_OP_SHUTDOWN] = {
980 [IORING_OP_RENAMEAT] = {
981 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
982 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
984 [IORING_OP_UNLINKAT] = {
985 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
986 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
990 enum io_mem_account {
995 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
996 struct task_struct *task);
998 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
999 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1000 struct io_ring_ctx *ctx);
1002 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1003 struct io_comp_state *cs);
1004 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1005 static void io_put_req(struct io_kiocb *req);
1006 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1007 static void io_double_put_req(struct io_kiocb *req);
1008 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1009 static void __io_queue_linked_timeout(struct io_kiocb *req);
1010 static void io_queue_linked_timeout(struct io_kiocb *req);
1011 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1012 struct io_uring_files_update *ip,
1014 static void __io_clean_op(struct io_kiocb *req);
1015 static struct file *io_file_get(struct io_submit_state *state,
1016 struct io_kiocb *req, int fd, bool fixed);
1017 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1018 static void io_file_put_work(struct work_struct *work);
1020 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1021 struct iovec **iovec, struct iov_iter *iter,
1023 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1024 const struct iovec *fast_iov,
1025 struct iov_iter *iter, bool force);
1027 static struct kmem_cache *req_cachep;
1029 static const struct file_operations io_uring_fops;
1031 struct sock *io_uring_get_socket(struct file *file)
1033 #if defined(CONFIG_UNIX)
1034 if (file->f_op == &io_uring_fops) {
1035 struct io_ring_ctx *ctx = file->private_data;
1037 return ctx->ring_sock->sk;
1042 EXPORT_SYMBOL(io_uring_get_socket);
1044 #define io_for_each_link(pos, head) \
1045 for (pos = (head); pos; pos = pos->link)
1047 static inline void io_clean_op(struct io_kiocb *req)
1049 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1054 static inline void io_set_resource_node(struct io_kiocb *req)
1056 struct io_ring_ctx *ctx = req->ctx;
1058 if (!req->fixed_file_refs) {
1059 req->fixed_file_refs = &ctx->file_data->node->refs;
1060 percpu_ref_get(req->fixed_file_refs);
1064 static bool io_match_task(struct io_kiocb *head,
1065 struct task_struct *task,
1066 struct files_struct *files)
1068 struct io_kiocb *req;
1070 if (task && head->task != task)
1075 io_for_each_link(req, head) {
1076 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1077 (req->work.flags & IO_WQ_WORK_FILES) &&
1078 req->work.identity->files == files)
1084 static void io_sq_thread_drop_mm_files(void)
1086 struct files_struct *files = current->files;
1087 struct mm_struct *mm = current->mm;
1090 kthread_unuse_mm(mm);
1095 struct nsproxy *nsproxy = current->nsproxy;
1098 current->files = NULL;
1099 current->nsproxy = NULL;
1100 task_unlock(current);
1101 put_files_struct(files);
1102 put_nsproxy(nsproxy);
1106 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1108 if (!current->files) {
1109 struct files_struct *files;
1110 struct nsproxy *nsproxy;
1112 task_lock(ctx->sqo_task);
1113 files = ctx->sqo_task->files;
1115 task_unlock(ctx->sqo_task);
1118 atomic_inc(&files->count);
1119 get_nsproxy(ctx->sqo_task->nsproxy);
1120 nsproxy = ctx->sqo_task->nsproxy;
1121 task_unlock(ctx->sqo_task);
1124 current->files = files;
1125 current->nsproxy = nsproxy;
1126 task_unlock(current);
1131 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1133 struct mm_struct *mm;
1138 /* Should never happen */
1139 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1142 task_lock(ctx->sqo_task);
1143 mm = ctx->sqo_task->mm;
1144 if (unlikely(!mm || !mmget_not_zero(mm)))
1146 task_unlock(ctx->sqo_task);
1156 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1157 struct io_kiocb *req)
1159 const struct io_op_def *def = &io_op_defs[req->opcode];
1162 if (def->work_flags & IO_WQ_WORK_MM) {
1163 ret = __io_sq_thread_acquire_mm(ctx);
1168 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1169 ret = __io_sq_thread_acquire_files(ctx);
1177 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1178 struct cgroup_subsys_state **cur_css)
1181 #ifdef CONFIG_BLK_CGROUP
1182 /* puts the old one when swapping */
1183 if (*cur_css != ctx->sqo_blkcg_css) {
1184 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1185 *cur_css = ctx->sqo_blkcg_css;
1190 static void io_sq_thread_unassociate_blkcg(void)
1192 #ifdef CONFIG_BLK_CGROUP
1193 kthread_associate_blkcg(NULL);
1197 static inline void req_set_fail_links(struct io_kiocb *req)
1199 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1200 req->flags |= REQ_F_FAIL_LINK;
1204 * None of these are dereferenced, they are simply used to check if any of
1205 * them have changed. If we're under current and check they are still the
1206 * same, we're fine to grab references to them for actual out-of-line use.
1208 static void io_init_identity(struct io_identity *id)
1210 id->files = current->files;
1211 id->mm = current->mm;
1212 #ifdef CONFIG_BLK_CGROUP
1214 id->blkcg_css = blkcg_css();
1217 id->creds = current_cred();
1218 id->nsproxy = current->nsproxy;
1219 id->fs = current->fs;
1220 id->fsize = rlimit(RLIMIT_FSIZE);
1222 id->loginuid = current->loginuid;
1223 id->sessionid = current->sessionid;
1225 refcount_set(&id->count, 1);
1228 static inline void __io_req_init_async(struct io_kiocb *req)
1230 memset(&req->work, 0, sizeof(req->work));
1231 req->flags |= REQ_F_WORK_INITIALIZED;
1235 * Note: must call io_req_init_async() for the first time you
1236 * touch any members of io_wq_work.
1238 static inline void io_req_init_async(struct io_kiocb *req)
1240 struct io_uring_task *tctx = current->io_uring;
1242 if (req->flags & REQ_F_WORK_INITIALIZED)
1245 __io_req_init_async(req);
1247 /* Grab a ref if this isn't our static identity */
1248 req->work.identity = tctx->identity;
1249 if (tctx->identity != &tctx->__identity)
1250 refcount_inc(&req->work.identity->count);
1253 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1255 return ctx->flags & IORING_SETUP_SQPOLL;
1258 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1260 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1262 complete(&ctx->ref_comp);
1265 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1267 return !req->timeout.off;
1270 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1272 struct io_ring_ctx *ctx;
1275 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1279 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1280 if (!ctx->fallback_req)
1284 * Use 5 bits less than the max cq entries, that should give us around
1285 * 32 entries per hash list if totally full and uniformly spread.
1287 hash_bits = ilog2(p->cq_entries);
1291 ctx->cancel_hash_bits = hash_bits;
1292 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1294 if (!ctx->cancel_hash)
1296 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1298 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1299 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1302 ctx->flags = p->flags;
1303 init_waitqueue_head(&ctx->sqo_sq_wait);
1304 INIT_LIST_HEAD(&ctx->sqd_list);
1305 init_waitqueue_head(&ctx->cq_wait);
1306 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1307 init_completion(&ctx->ref_comp);
1308 init_completion(&ctx->sq_thread_comp);
1309 idr_init(&ctx->io_buffer_idr);
1310 idr_init(&ctx->personality_idr);
1311 mutex_init(&ctx->uring_lock);
1312 init_waitqueue_head(&ctx->wait);
1313 spin_lock_init(&ctx->completion_lock);
1314 INIT_LIST_HEAD(&ctx->iopoll_list);
1315 INIT_LIST_HEAD(&ctx->defer_list);
1316 INIT_LIST_HEAD(&ctx->timeout_list);
1317 spin_lock_init(&ctx->inflight_lock);
1318 INIT_LIST_HEAD(&ctx->inflight_list);
1319 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1320 init_llist_head(&ctx->file_put_llist);
1323 if (ctx->fallback_req)
1324 kmem_cache_free(req_cachep, ctx->fallback_req);
1325 kfree(ctx->cancel_hash);
1330 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1332 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1333 struct io_ring_ctx *ctx = req->ctx;
1335 return seq != ctx->cached_cq_tail
1336 + READ_ONCE(ctx->cached_cq_overflow);
1342 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1344 struct io_rings *rings = ctx->rings;
1346 /* order cqe stores with ring update */
1347 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1349 if (wq_has_sleeper(&ctx->cq_wait)) {
1350 wake_up_interruptible(&ctx->cq_wait);
1351 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1355 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1357 if (req->work.identity == &tctx->__identity)
1359 if (refcount_dec_and_test(&req->work.identity->count))
1360 kfree(req->work.identity);
1363 static void io_req_clean_work(struct io_kiocb *req)
1365 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1368 req->flags &= ~REQ_F_WORK_INITIALIZED;
1370 if (req->work.flags & IO_WQ_WORK_MM) {
1371 mmdrop(req->work.identity->mm);
1372 req->work.flags &= ~IO_WQ_WORK_MM;
1374 #ifdef CONFIG_BLK_CGROUP
1375 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1376 css_put(req->work.identity->blkcg_css);
1377 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1380 if (req->work.flags & IO_WQ_WORK_CREDS) {
1381 put_cred(req->work.identity->creds);
1382 req->work.flags &= ~IO_WQ_WORK_CREDS;
1384 if (req->work.flags & IO_WQ_WORK_FS) {
1385 struct fs_struct *fs = req->work.identity->fs;
1387 spin_lock(&req->work.identity->fs->lock);
1390 spin_unlock(&req->work.identity->fs->lock);
1393 req->work.flags &= ~IO_WQ_WORK_FS;
1396 io_put_identity(req->task->io_uring, req);
1400 * Create a private copy of io_identity, since some fields don't match
1401 * the current context.
1403 static bool io_identity_cow(struct io_kiocb *req)
1405 struct io_uring_task *tctx = current->io_uring;
1406 const struct cred *creds = NULL;
1407 struct io_identity *id;
1409 if (req->work.flags & IO_WQ_WORK_CREDS)
1410 creds = req->work.identity->creds;
1412 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1413 if (unlikely(!id)) {
1414 req->work.flags |= IO_WQ_WORK_CANCEL;
1419 * We can safely just re-init the creds we copied Either the field
1420 * matches the current one, or we haven't grabbed it yet. The only
1421 * exception is ->creds, through registered personalities, so handle
1422 * that one separately.
1424 io_init_identity(id);
1428 /* add one for this request */
1429 refcount_inc(&id->count);
1431 /* drop tctx and req identity references, if needed */
1432 if (tctx->identity != &tctx->__identity &&
1433 refcount_dec_and_test(&tctx->identity->count))
1434 kfree(tctx->identity);
1435 if (req->work.identity != &tctx->__identity &&
1436 refcount_dec_and_test(&req->work.identity->count))
1437 kfree(req->work.identity);
1439 req->work.identity = id;
1440 tctx->identity = id;
1444 static bool io_grab_identity(struct io_kiocb *req)
1446 const struct io_op_def *def = &io_op_defs[req->opcode];
1447 struct io_identity *id = req->work.identity;
1448 struct io_ring_ctx *ctx = req->ctx;
1450 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1451 if (id->fsize != rlimit(RLIMIT_FSIZE))
1453 req->work.flags |= IO_WQ_WORK_FSIZE;
1455 #ifdef CONFIG_BLK_CGROUP
1456 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1457 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1459 if (id->blkcg_css != blkcg_css()) {
1464 * This should be rare, either the cgroup is dying or the task
1465 * is moving cgroups. Just punt to root for the handful of ios.
1467 if (css_tryget_online(id->blkcg_css))
1468 req->work.flags |= IO_WQ_WORK_BLKCG;
1472 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1473 if (id->creds != current_cred())
1475 get_cred(id->creds);
1476 req->work.flags |= IO_WQ_WORK_CREDS;
1479 if (!uid_eq(current->loginuid, id->loginuid) ||
1480 current->sessionid != id->sessionid)
1483 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1484 (def->work_flags & IO_WQ_WORK_FS)) {
1485 if (current->fs != id->fs)
1487 spin_lock(&id->fs->lock);
1488 if (!id->fs->in_exec) {
1490 req->work.flags |= IO_WQ_WORK_FS;
1492 req->work.flags |= IO_WQ_WORK_CANCEL;
1494 spin_unlock(¤t->fs->lock);
1496 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1497 (def->work_flags & IO_WQ_WORK_FILES) &&
1498 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1499 if (id->files != current->files ||
1500 id->nsproxy != current->nsproxy)
1502 atomic_inc(&id->files->count);
1503 get_nsproxy(id->nsproxy);
1504 req->flags |= REQ_F_INFLIGHT;
1506 spin_lock_irq(&ctx->inflight_lock);
1507 list_add(&req->inflight_entry, &ctx->inflight_list);
1508 spin_unlock_irq(&ctx->inflight_lock);
1509 req->work.flags |= IO_WQ_WORK_FILES;
1511 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1512 (def->work_flags & IO_WQ_WORK_MM)) {
1513 if (id->mm != current->mm)
1516 req->work.flags |= IO_WQ_WORK_MM;
1522 static void io_prep_async_work(struct io_kiocb *req)
1524 const struct io_op_def *def = &io_op_defs[req->opcode];
1525 struct io_ring_ctx *ctx = req->ctx;
1527 io_req_init_async(req);
1529 if (req->flags & REQ_F_FORCE_ASYNC)
1530 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1532 if (req->flags & REQ_F_ISREG) {
1533 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1534 io_wq_hash_work(&req->work, file_inode(req->file));
1536 if (def->unbound_nonreg_file)
1537 req->work.flags |= IO_WQ_WORK_UNBOUND;
1540 /* if we fail grabbing identity, we must COW, regrab, and retry */
1541 if (io_grab_identity(req))
1544 if (!io_identity_cow(req))
1547 /* can't fail at this point */
1548 if (!io_grab_identity(req))
1552 static void io_prep_async_link(struct io_kiocb *req)
1554 struct io_kiocb *cur;
1556 io_for_each_link(cur, req)
1557 io_prep_async_work(cur);
1560 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1562 struct io_ring_ctx *ctx = req->ctx;
1563 struct io_kiocb *link = io_prep_linked_timeout(req);
1565 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1566 &req->work, req->flags);
1567 io_wq_enqueue(ctx->io_wq, &req->work);
1571 static void io_queue_async_work(struct io_kiocb *req)
1573 struct io_kiocb *link;
1575 /* init ->work of the whole link before punting */
1576 io_prep_async_link(req);
1577 link = __io_queue_async_work(req);
1580 io_queue_linked_timeout(link);
1583 static void io_kill_timeout(struct io_kiocb *req)
1585 struct io_timeout_data *io = req->async_data;
1588 ret = hrtimer_try_to_cancel(&io->timer);
1590 atomic_set(&req->ctx->cq_timeouts,
1591 atomic_read(&req->ctx->cq_timeouts) + 1);
1592 list_del_init(&req->timeout.list);
1593 io_cqring_fill_event(req, 0);
1594 io_put_req_deferred(req, 1);
1599 * Returns true if we found and killed one or more timeouts
1601 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1602 struct files_struct *files)
1604 struct io_kiocb *req, *tmp;
1607 spin_lock_irq(&ctx->completion_lock);
1608 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1609 if (io_match_task(req, tsk, files)) {
1610 io_kill_timeout(req);
1614 spin_unlock_irq(&ctx->completion_lock);
1615 return canceled != 0;
1618 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1621 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1622 struct io_defer_entry, list);
1623 struct io_kiocb *link;
1625 if (req_need_defer(de->req, de->seq))
1627 list_del_init(&de->list);
1628 /* punt-init is done before queueing for defer */
1629 link = __io_queue_async_work(de->req);
1631 __io_queue_linked_timeout(link);
1632 /* drop submission reference */
1633 io_put_req_deferred(link, 1);
1636 } while (!list_empty(&ctx->defer_list));
1639 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1641 while (!list_empty(&ctx->timeout_list)) {
1642 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1643 struct io_kiocb, timeout.list);
1645 if (io_is_timeout_noseq(req))
1647 if (req->timeout.target_seq != ctx->cached_cq_tail
1648 - atomic_read(&ctx->cq_timeouts))
1651 list_del_init(&req->timeout.list);
1652 io_kill_timeout(req);
1656 static void io_commit_cqring(struct io_ring_ctx *ctx)
1658 io_flush_timeouts(ctx);
1659 __io_commit_cqring(ctx);
1661 if (unlikely(!list_empty(&ctx->defer_list)))
1662 __io_queue_deferred(ctx);
1665 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1667 struct io_rings *r = ctx->rings;
1669 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1672 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1674 struct io_rings *rings = ctx->rings;
1677 tail = ctx->cached_cq_tail;
1679 * writes to the cq entry need to come after reading head; the
1680 * control dependency is enough as we're using WRITE_ONCE to
1683 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1686 ctx->cached_cq_tail++;
1687 return &rings->cqes[tail & ctx->cq_mask];
1690 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1694 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1696 if (!ctx->eventfd_async)
1698 return io_wq_current_is_worker();
1701 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1703 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1706 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1708 if (waitqueue_active(&ctx->wait))
1709 wake_up(&ctx->wait);
1710 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1711 wake_up(&ctx->sq_data->wait);
1712 if (io_should_trigger_evfd(ctx))
1713 eventfd_signal(ctx->cq_ev_fd, 1);
1716 /* Returns true if there are no backlogged entries after the flush */
1717 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1718 struct task_struct *tsk,
1719 struct files_struct *files)
1721 struct io_rings *rings = ctx->rings;
1722 struct io_kiocb *req, *tmp;
1723 struct io_uring_cqe *cqe;
1724 unsigned long flags;
1728 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1731 spin_lock_irqsave(&ctx->completion_lock, flags);
1732 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1733 if (!io_match_task(req, tsk, files))
1736 cqe = io_get_cqring(ctx);
1740 list_move(&req->compl.list, &list);
1742 WRITE_ONCE(cqe->user_data, req->user_data);
1743 WRITE_ONCE(cqe->res, req->result);
1744 WRITE_ONCE(cqe->flags, req->compl.cflags);
1746 ctx->cached_cq_overflow++;
1747 WRITE_ONCE(ctx->rings->cq_overflow,
1748 ctx->cached_cq_overflow);
1752 all_flushed = list_empty(&ctx->cq_overflow_list);
1754 clear_bit(0, &ctx->sq_check_overflow);
1755 clear_bit(0, &ctx->cq_check_overflow);
1756 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1759 io_commit_cqring(ctx);
1760 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1761 io_cqring_ev_posted(ctx);
1763 while (!list_empty(&list)) {
1764 req = list_first_entry(&list, struct io_kiocb, compl.list);
1765 list_del(&req->compl.list);
1772 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1773 struct task_struct *tsk,
1774 struct files_struct *files)
1776 if (test_bit(0, &ctx->cq_check_overflow)) {
1777 /* iopoll syncs against uring_lock, not completion_lock */
1778 if (ctx->flags & IORING_SETUP_IOPOLL)
1779 mutex_lock(&ctx->uring_lock);
1780 __io_cqring_overflow_flush(ctx, force, tsk, files);
1781 if (ctx->flags & IORING_SETUP_IOPOLL)
1782 mutex_unlock(&ctx->uring_lock);
1786 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1788 struct io_ring_ctx *ctx = req->ctx;
1789 struct io_uring_cqe *cqe;
1791 trace_io_uring_complete(ctx, req->user_data, res);
1794 * If we can't get a cq entry, userspace overflowed the
1795 * submission (by quite a lot). Increment the overflow count in
1798 cqe = io_get_cqring(ctx);
1800 WRITE_ONCE(cqe->user_data, req->user_data);
1801 WRITE_ONCE(cqe->res, res);
1802 WRITE_ONCE(cqe->flags, cflags);
1803 } else if (ctx->cq_overflow_flushed ||
1804 atomic_read(&req->task->io_uring->in_idle)) {
1806 * If we're in ring overflow flush mode, or in task cancel mode,
1807 * then we cannot store the request for later flushing, we need
1808 * to drop it on the floor.
1810 ctx->cached_cq_overflow++;
1811 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1813 if (list_empty(&ctx->cq_overflow_list)) {
1814 set_bit(0, &ctx->sq_check_overflow);
1815 set_bit(0, &ctx->cq_check_overflow);
1816 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1820 req->compl.cflags = cflags;
1821 refcount_inc(&req->refs);
1822 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1826 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1828 __io_cqring_fill_event(req, res, 0);
1831 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1833 struct io_ring_ctx *ctx = req->ctx;
1834 unsigned long flags;
1836 spin_lock_irqsave(&ctx->completion_lock, flags);
1837 __io_cqring_fill_event(req, res, cflags);
1838 io_commit_cqring(ctx);
1839 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1841 io_cqring_ev_posted(ctx);
1844 static void io_submit_flush_completions(struct io_comp_state *cs)
1846 struct io_ring_ctx *ctx = cs->ctx;
1848 spin_lock_irq(&ctx->completion_lock);
1849 while (!list_empty(&cs->list)) {
1850 struct io_kiocb *req;
1852 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1853 list_del(&req->compl.list);
1854 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1857 * io_free_req() doesn't care about completion_lock unless one
1858 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1859 * because of a potential deadlock with req->work.fs->lock
1861 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1862 |REQ_F_WORK_INITIALIZED)) {
1863 spin_unlock_irq(&ctx->completion_lock);
1865 spin_lock_irq(&ctx->completion_lock);
1870 io_commit_cqring(ctx);
1871 spin_unlock_irq(&ctx->completion_lock);
1873 io_cqring_ev_posted(ctx);
1877 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1878 struct io_comp_state *cs)
1881 io_cqring_add_event(req, res, cflags);
1886 req->compl.cflags = cflags;
1887 list_add_tail(&req->compl.list, &cs->list);
1889 io_submit_flush_completions(cs);
1893 static void io_req_complete(struct io_kiocb *req, long res)
1895 __io_req_complete(req, res, 0, NULL);
1898 static inline bool io_is_fallback_req(struct io_kiocb *req)
1900 return req == (struct io_kiocb *)
1901 ((unsigned long) req->ctx->fallback_req & ~1UL);
1904 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1906 struct io_kiocb *req;
1908 req = ctx->fallback_req;
1909 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1915 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1916 struct io_submit_state *state)
1918 if (!state->free_reqs) {
1919 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1923 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1924 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1927 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1928 * retry single alloc to be on the safe side.
1930 if (unlikely(ret <= 0)) {
1931 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1932 if (!state->reqs[0])
1936 state->free_reqs = ret;
1940 return state->reqs[state->free_reqs];
1942 return io_get_fallback_req(ctx);
1945 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1952 static void io_dismantle_req(struct io_kiocb *req)
1956 if (req->async_data)
1957 kfree(req->async_data);
1959 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1960 if (req->fixed_file_refs)
1961 percpu_ref_put(req->fixed_file_refs);
1962 io_req_clean_work(req);
1965 static void __io_free_req(struct io_kiocb *req)
1967 struct io_uring_task *tctx = req->task->io_uring;
1968 struct io_ring_ctx *ctx = req->ctx;
1970 io_dismantle_req(req);
1972 percpu_counter_dec(&tctx->inflight);
1973 if (atomic_read(&tctx->in_idle))
1974 wake_up(&tctx->wait);
1975 put_task_struct(req->task);
1977 if (likely(!io_is_fallback_req(req)))
1978 kmem_cache_free(req_cachep, req);
1980 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1981 percpu_ref_put(&ctx->refs);
1984 static inline void io_remove_next_linked(struct io_kiocb *req)
1986 struct io_kiocb *nxt = req->link;
1988 req->link = nxt->link;
1992 static void io_kill_linked_timeout(struct io_kiocb *req)
1994 struct io_ring_ctx *ctx = req->ctx;
1995 struct io_kiocb *link;
1996 bool cancelled = false;
1997 unsigned long flags;
1999 spin_lock_irqsave(&ctx->completion_lock, flags);
2003 * Can happen if a linked timeout fired and link had been like
2004 * req -> link t-out -> link t-out [-> ...]
2006 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2007 struct io_timeout_data *io = link->async_data;
2010 io_remove_next_linked(req);
2011 link->timeout.head = NULL;
2012 ret = hrtimer_try_to_cancel(&io->timer);
2014 io_cqring_fill_event(link, -ECANCELED);
2015 io_commit_cqring(ctx);
2019 req->flags &= ~REQ_F_LINK_TIMEOUT;
2020 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2023 io_cqring_ev_posted(ctx);
2029 static void io_fail_links(struct io_kiocb *req)
2031 struct io_kiocb *link, *nxt;
2032 struct io_ring_ctx *ctx = req->ctx;
2033 unsigned long flags;
2035 spin_lock_irqsave(&ctx->completion_lock, flags);
2043 trace_io_uring_fail_link(req, link);
2044 io_cqring_fill_event(link, -ECANCELED);
2047 * It's ok to free under spinlock as they're not linked anymore,
2048 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2051 if (link->flags & REQ_F_WORK_INITIALIZED)
2052 io_put_req_deferred(link, 2);
2054 io_double_put_req(link);
2057 io_commit_cqring(ctx);
2058 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2060 io_cqring_ev_posted(ctx);
2063 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2065 if (req->flags & REQ_F_LINK_TIMEOUT)
2066 io_kill_linked_timeout(req);
2069 * If LINK is set, we have dependent requests in this chain. If we
2070 * didn't fail this request, queue the first one up, moving any other
2071 * dependencies to the next request. In case of failure, fail the rest
2074 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2075 struct io_kiocb *nxt = req->link;
2084 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2086 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2088 return __io_req_find_next(req);
2091 static int io_req_task_work_add(struct io_kiocb *req)
2093 struct task_struct *tsk = req->task;
2094 struct io_ring_ctx *ctx = req->ctx;
2095 enum task_work_notify_mode notify;
2098 if (tsk->flags & PF_EXITING)
2102 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2103 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2104 * processing task_work. There's no reliable way to tell if TWA_RESUME
2108 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2109 notify = TWA_SIGNAL;
2111 ret = task_work_add(tsk, &req->task_work, notify);
2113 wake_up_process(tsk);
2118 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2120 struct io_ring_ctx *ctx = req->ctx;
2122 spin_lock_irq(&ctx->completion_lock);
2123 io_cqring_fill_event(req, error);
2124 io_commit_cqring(ctx);
2125 spin_unlock_irq(&ctx->completion_lock);
2127 io_cqring_ev_posted(ctx);
2128 req_set_fail_links(req);
2129 io_double_put_req(req);
2132 static void io_req_task_cancel(struct callback_head *cb)
2134 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2135 struct io_ring_ctx *ctx = req->ctx;
2137 __io_req_task_cancel(req, -ECANCELED);
2138 percpu_ref_put(&ctx->refs);
2141 static void __io_req_task_submit(struct io_kiocb *req)
2143 struct io_ring_ctx *ctx = req->ctx;
2146 fail = __io_sq_thread_acquire_mm(ctx) ||
2147 __io_sq_thread_acquire_files(ctx);
2148 mutex_lock(&ctx->uring_lock);
2150 __io_queue_sqe(req, NULL);
2152 __io_req_task_cancel(req, -EFAULT);
2153 mutex_unlock(&ctx->uring_lock);
2156 static void io_req_task_submit(struct callback_head *cb)
2158 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2159 struct io_ring_ctx *ctx = req->ctx;
2161 __io_req_task_submit(req);
2162 percpu_ref_put(&ctx->refs);
2165 static void io_req_task_queue(struct io_kiocb *req)
2169 init_task_work(&req->task_work, io_req_task_submit);
2170 percpu_ref_get(&req->ctx->refs);
2172 ret = io_req_task_work_add(req);
2173 if (unlikely(ret)) {
2174 struct task_struct *tsk;
2176 init_task_work(&req->task_work, io_req_task_cancel);
2177 tsk = io_wq_get_task(req->ctx->io_wq);
2178 task_work_add(tsk, &req->task_work, TWA_NONE);
2179 wake_up_process(tsk);
2183 static inline void io_queue_next(struct io_kiocb *req)
2185 struct io_kiocb *nxt = io_req_find_next(req);
2188 io_req_task_queue(nxt);
2191 static void io_free_req(struct io_kiocb *req)
2198 void *reqs[IO_IOPOLL_BATCH];
2201 struct task_struct *task;
2205 static inline void io_init_req_batch(struct req_batch *rb)
2212 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2213 struct req_batch *rb)
2215 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2216 percpu_ref_put_many(&ctx->refs, rb->to_free);
2220 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2221 struct req_batch *rb)
2224 __io_req_free_batch_flush(ctx, rb);
2226 struct io_uring_task *tctx = rb->task->io_uring;
2228 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2229 put_task_struct_many(rb->task, rb->task_refs);
2234 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2236 if (unlikely(io_is_fallback_req(req))) {
2242 if (req->task != rb->task) {
2244 struct io_uring_task *tctx = rb->task->io_uring;
2246 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2247 put_task_struct_many(rb->task, rb->task_refs);
2249 rb->task = req->task;
2254 io_dismantle_req(req);
2255 rb->reqs[rb->to_free++] = req;
2256 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2257 __io_req_free_batch_flush(req->ctx, rb);
2261 * Drop reference to request, return next in chain (if there is one) if this
2262 * was the last reference to this request.
2264 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2266 struct io_kiocb *nxt = NULL;
2268 if (refcount_dec_and_test(&req->refs)) {
2269 nxt = io_req_find_next(req);
2275 static void io_put_req(struct io_kiocb *req)
2277 if (refcount_dec_and_test(&req->refs))
2281 static void io_put_req_deferred_cb(struct callback_head *cb)
2283 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2288 static void io_free_req_deferred(struct io_kiocb *req)
2292 init_task_work(&req->task_work, io_put_req_deferred_cb);
2293 ret = io_req_task_work_add(req);
2294 if (unlikely(ret)) {
2295 struct task_struct *tsk;
2297 tsk = io_wq_get_task(req->ctx->io_wq);
2298 task_work_add(tsk, &req->task_work, TWA_NONE);
2299 wake_up_process(tsk);
2303 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2305 if (refcount_sub_and_test(refs, &req->refs))
2306 io_free_req_deferred(req);
2309 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2311 struct io_kiocb *nxt;
2314 * A ref is owned by io-wq in which context we're. So, if that's the
2315 * last one, it's safe to steal next work. False negatives are Ok,
2316 * it just will be re-punted async in io_put_work()
2318 if (refcount_read(&req->refs) != 1)
2321 nxt = io_req_find_next(req);
2322 return nxt ? &nxt->work : NULL;
2325 static void io_double_put_req(struct io_kiocb *req)
2327 /* drop both submit and complete references */
2328 if (refcount_sub_and_test(2, &req->refs))
2332 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2334 /* See comment at the top of this file */
2336 return __io_cqring_events(ctx);
2339 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2341 struct io_rings *rings = ctx->rings;
2343 /* make sure SQ entry isn't read before tail */
2344 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2347 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2349 unsigned int cflags;
2351 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2352 cflags |= IORING_CQE_F_BUFFER;
2353 req->flags &= ~REQ_F_BUFFER_SELECTED;
2358 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2360 struct io_buffer *kbuf;
2362 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2363 return io_put_kbuf(req, kbuf);
2366 static inline bool io_run_task_work(void)
2369 * Not safe to run on exiting task, and the task_work handling will
2370 * not add work to such a task.
2372 if (unlikely(current->flags & PF_EXITING))
2374 if (current->task_works) {
2375 __set_current_state(TASK_RUNNING);
2383 static void io_iopoll_queue(struct list_head *again)
2385 struct io_kiocb *req;
2388 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2389 list_del(&req->inflight_entry);
2390 __io_complete_rw(req, -EAGAIN, 0, NULL);
2391 } while (!list_empty(again));
2395 * Find and free completed poll iocbs
2397 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2398 struct list_head *done)
2400 struct req_batch rb;
2401 struct io_kiocb *req;
2404 /* order with ->result store in io_complete_rw_iopoll() */
2407 io_init_req_batch(&rb);
2408 while (!list_empty(done)) {
2411 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2412 if (READ_ONCE(req->result) == -EAGAIN) {
2414 req->iopoll_completed = 0;
2415 list_move_tail(&req->inflight_entry, &again);
2418 list_del(&req->inflight_entry);
2420 if (req->flags & REQ_F_BUFFER_SELECTED)
2421 cflags = io_put_rw_kbuf(req);
2423 __io_cqring_fill_event(req, req->result, cflags);
2426 if (refcount_dec_and_test(&req->refs))
2427 io_req_free_batch(&rb, req);
2430 io_commit_cqring(ctx);
2431 if (ctx->flags & IORING_SETUP_SQPOLL)
2432 io_cqring_ev_posted(ctx);
2433 io_req_free_batch_finish(ctx, &rb);
2435 if (!list_empty(&again))
2436 io_iopoll_queue(&again);
2439 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2442 struct io_kiocb *req, *tmp;
2448 * Only spin for completions if we don't have multiple devices hanging
2449 * off our complete list, and we're under the requested amount.
2451 spin = !ctx->poll_multi_file && *nr_events < min;
2454 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2455 struct kiocb *kiocb = &req->rw.kiocb;
2458 * Move completed and retryable entries to our local lists.
2459 * If we find a request that requires polling, break out
2460 * and complete those lists first, if we have entries there.
2462 if (READ_ONCE(req->iopoll_completed)) {
2463 list_move_tail(&req->inflight_entry, &done);
2466 if (!list_empty(&done))
2469 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2473 /* iopoll may have completed current req */
2474 if (READ_ONCE(req->iopoll_completed))
2475 list_move_tail(&req->inflight_entry, &done);
2482 if (!list_empty(&done))
2483 io_iopoll_complete(ctx, nr_events, &done);
2489 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2490 * non-spinning poll check - we'll still enter the driver poll loop, but only
2491 * as a non-spinning completion check.
2493 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2496 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2499 ret = io_do_iopoll(ctx, nr_events, min);
2502 if (*nr_events >= min)
2510 * We can't just wait for polled events to come to us, we have to actively
2511 * find and complete them.
2513 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2515 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2518 mutex_lock(&ctx->uring_lock);
2519 while (!list_empty(&ctx->iopoll_list)) {
2520 unsigned int nr_events = 0;
2522 io_do_iopoll(ctx, &nr_events, 0);
2524 /* let it sleep and repeat later if can't complete a request */
2528 * Ensure we allow local-to-the-cpu processing to take place,
2529 * in this case we need to ensure that we reap all events.
2530 * Also let task_work, etc. to progress by releasing the mutex
2532 if (need_resched()) {
2533 mutex_unlock(&ctx->uring_lock);
2535 mutex_lock(&ctx->uring_lock);
2538 mutex_unlock(&ctx->uring_lock);
2541 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2543 unsigned int nr_events = 0;
2544 int iters = 0, ret = 0;
2547 * We disallow the app entering submit/complete with polling, but we
2548 * still need to lock the ring to prevent racing with polled issue
2549 * that got punted to a workqueue.
2551 mutex_lock(&ctx->uring_lock);
2554 * Don't enter poll loop if we already have events pending.
2555 * If we do, we can potentially be spinning for commands that
2556 * already triggered a CQE (eg in error).
2558 if (test_bit(0, &ctx->cq_check_overflow))
2559 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2560 if (io_cqring_events(ctx))
2564 * If a submit got punted to a workqueue, we can have the
2565 * application entering polling for a command before it gets
2566 * issued. That app will hold the uring_lock for the duration
2567 * of the poll right here, so we need to take a breather every
2568 * now and then to ensure that the issue has a chance to add
2569 * the poll to the issued list. Otherwise we can spin here
2570 * forever, while the workqueue is stuck trying to acquire the
2573 if (!(++iters & 7)) {
2574 mutex_unlock(&ctx->uring_lock);
2576 mutex_lock(&ctx->uring_lock);
2579 ret = io_iopoll_getevents(ctx, &nr_events, min);
2583 } while (min && !nr_events && !need_resched());
2585 mutex_unlock(&ctx->uring_lock);
2589 static void kiocb_end_write(struct io_kiocb *req)
2592 * Tell lockdep we inherited freeze protection from submission
2595 if (req->flags & REQ_F_ISREG) {
2596 struct inode *inode = file_inode(req->file);
2598 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2600 file_end_write(req->file);
2603 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2604 struct io_comp_state *cs)
2606 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2609 if (kiocb->ki_flags & IOCB_WRITE)
2610 kiocb_end_write(req);
2612 if (res != req->result)
2613 req_set_fail_links(req);
2614 if (req->flags & REQ_F_BUFFER_SELECTED)
2615 cflags = io_put_rw_kbuf(req);
2616 __io_req_complete(req, res, cflags, cs);
2620 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2622 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2623 ssize_t ret = -ECANCELED;
2624 struct iov_iter iter;
2632 switch (req->opcode) {
2633 case IORING_OP_READV:
2634 case IORING_OP_READ_FIXED:
2635 case IORING_OP_READ:
2638 case IORING_OP_WRITEV:
2639 case IORING_OP_WRITE_FIXED:
2640 case IORING_OP_WRITE:
2644 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2649 if (!req->async_data) {
2650 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2653 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2661 req_set_fail_links(req);
2666 static bool io_rw_reissue(struct io_kiocb *req, long res)
2669 umode_t mode = file_inode(req->file)->i_mode;
2672 if (!S_ISBLK(mode) && !S_ISREG(mode))
2674 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2677 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2679 if (io_resubmit_prep(req, ret)) {
2680 refcount_inc(&req->refs);
2681 io_queue_async_work(req);
2689 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2690 struct io_comp_state *cs)
2692 if (!io_rw_reissue(req, res))
2693 io_complete_rw_common(&req->rw.kiocb, res, cs);
2696 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2698 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2700 __io_complete_rw(req, res, res2, NULL);
2703 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2705 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2707 if (kiocb->ki_flags & IOCB_WRITE)
2708 kiocb_end_write(req);
2710 if (res != -EAGAIN && res != req->result)
2711 req_set_fail_links(req);
2713 WRITE_ONCE(req->result, res);
2714 /* order with io_poll_complete() checking ->result */
2716 WRITE_ONCE(req->iopoll_completed, 1);
2720 * After the iocb has been issued, it's safe to be found on the poll list.
2721 * Adding the kiocb to the list AFTER submission ensures that we don't
2722 * find it from a io_iopoll_getevents() thread before the issuer is done
2723 * accessing the kiocb cookie.
2725 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2727 struct io_ring_ctx *ctx = req->ctx;
2730 * Track whether we have multiple files in our lists. This will impact
2731 * how we do polling eventually, not spinning if we're on potentially
2732 * different devices.
2734 if (list_empty(&ctx->iopoll_list)) {
2735 ctx->poll_multi_file = false;
2736 } else if (!ctx->poll_multi_file) {
2737 struct io_kiocb *list_req;
2739 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2741 if (list_req->file != req->file)
2742 ctx->poll_multi_file = true;
2746 * For fast devices, IO may have already completed. If it has, add
2747 * it to the front so we find it first.
2749 if (READ_ONCE(req->iopoll_completed))
2750 list_add(&req->inflight_entry, &ctx->iopoll_list);
2752 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2755 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2756 * task context or in io worker task context. If current task context is
2757 * sq thread, we don't need to check whether should wake up sq thread.
2759 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2760 wq_has_sleeper(&ctx->sq_data->wait))
2761 wake_up(&ctx->sq_data->wait);
2764 static inline void __io_state_file_put(struct io_submit_state *state)
2766 fput_many(state->file, state->file_refs);
2767 state->file_refs = 0;
2770 static inline void io_state_file_put(struct io_submit_state *state)
2772 if (state->file_refs)
2773 __io_state_file_put(state);
2777 * Get as many references to a file as we have IOs left in this submission,
2778 * assuming most submissions are for one file, or at least that each file
2779 * has more than one submission.
2781 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2786 if (state->file_refs) {
2787 if (state->fd == fd) {
2791 __io_state_file_put(state);
2793 state->file = fget_many(fd, state->ios_left);
2794 if (unlikely(!state->file))
2798 state->file_refs = state->ios_left - 1;
2802 static bool io_bdev_nowait(struct block_device *bdev)
2804 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2808 * If we tracked the file through the SCM inflight mechanism, we could support
2809 * any file. For now, just ensure that anything potentially problematic is done
2812 static bool io_file_supports_async(struct file *file, int rw)
2814 umode_t mode = file_inode(file)->i_mode;
2816 if (S_ISBLK(mode)) {
2817 if (IS_ENABLED(CONFIG_BLOCK) &&
2818 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2822 if (S_ISCHR(mode) || S_ISSOCK(mode))
2824 if (S_ISREG(mode)) {
2825 if (IS_ENABLED(CONFIG_BLOCK) &&
2826 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2827 file->f_op != &io_uring_fops)
2832 /* any ->read/write should understand O_NONBLOCK */
2833 if (file->f_flags & O_NONBLOCK)
2836 if (!(file->f_mode & FMODE_NOWAIT))
2840 return file->f_op->read_iter != NULL;
2842 return file->f_op->write_iter != NULL;
2845 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2847 struct io_ring_ctx *ctx = req->ctx;
2848 struct kiocb *kiocb = &req->rw.kiocb;
2852 if (S_ISREG(file_inode(req->file)->i_mode))
2853 req->flags |= REQ_F_ISREG;
2855 kiocb->ki_pos = READ_ONCE(sqe->off);
2856 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2857 req->flags |= REQ_F_CUR_POS;
2858 kiocb->ki_pos = req->file->f_pos;
2860 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2861 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2862 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2866 ioprio = READ_ONCE(sqe->ioprio);
2868 ret = ioprio_check_cap(ioprio);
2872 kiocb->ki_ioprio = ioprio;
2874 kiocb->ki_ioprio = get_current_ioprio();
2876 /* don't allow async punt if RWF_NOWAIT was requested */
2877 if (kiocb->ki_flags & IOCB_NOWAIT)
2878 req->flags |= REQ_F_NOWAIT;
2880 if (ctx->flags & IORING_SETUP_IOPOLL) {
2881 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2882 !kiocb->ki_filp->f_op->iopoll)
2885 kiocb->ki_flags |= IOCB_HIPRI;
2886 kiocb->ki_complete = io_complete_rw_iopoll;
2887 req->iopoll_completed = 0;
2889 if (kiocb->ki_flags & IOCB_HIPRI)
2891 kiocb->ki_complete = io_complete_rw;
2894 req->rw.addr = READ_ONCE(sqe->addr);
2895 req->rw.len = READ_ONCE(sqe->len);
2896 req->buf_index = READ_ONCE(sqe->buf_index);
2900 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2906 case -ERESTARTNOINTR:
2907 case -ERESTARTNOHAND:
2908 case -ERESTART_RESTARTBLOCK:
2910 * We can't just restart the syscall, since previously
2911 * submitted sqes may already be in progress. Just fail this
2917 kiocb->ki_complete(kiocb, ret, 0);
2921 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2922 struct io_comp_state *cs)
2924 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2925 struct io_async_rw *io = req->async_data;
2927 /* add previously done IO, if any */
2928 if (io && io->bytes_done > 0) {
2930 ret = io->bytes_done;
2932 ret += io->bytes_done;
2935 if (req->flags & REQ_F_CUR_POS)
2936 req->file->f_pos = kiocb->ki_pos;
2937 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2938 __io_complete_rw(req, ret, 0, cs);
2940 io_rw_done(kiocb, ret);
2943 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2944 struct iov_iter *iter)
2946 struct io_ring_ctx *ctx = req->ctx;
2947 size_t len = req->rw.len;
2948 struct io_mapped_ubuf *imu;
2949 u16 index, buf_index = req->buf_index;
2953 if (unlikely(buf_index >= ctx->nr_user_bufs))
2955 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2956 imu = &ctx->user_bufs[index];
2957 buf_addr = req->rw.addr;
2960 if (buf_addr + len < buf_addr)
2962 /* not inside the mapped region */
2963 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2967 * May not be a start of buffer, set size appropriately
2968 * and advance us to the beginning.
2970 offset = buf_addr - imu->ubuf;
2971 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2975 * Don't use iov_iter_advance() here, as it's really slow for
2976 * using the latter parts of a big fixed buffer - it iterates
2977 * over each segment manually. We can cheat a bit here, because
2980 * 1) it's a BVEC iter, we set it up
2981 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2982 * first and last bvec
2984 * So just find our index, and adjust the iterator afterwards.
2985 * If the offset is within the first bvec (or the whole first
2986 * bvec, just use iov_iter_advance(). This makes it easier
2987 * since we can just skip the first segment, which may not
2988 * be PAGE_SIZE aligned.
2990 const struct bio_vec *bvec = imu->bvec;
2992 if (offset <= bvec->bv_len) {
2993 iov_iter_advance(iter, offset);
2995 unsigned long seg_skip;
2997 /* skip first vec */
2998 offset -= bvec->bv_len;
2999 seg_skip = 1 + (offset >> PAGE_SHIFT);
3001 iter->bvec = bvec + seg_skip;
3002 iter->nr_segs -= seg_skip;
3003 iter->count -= bvec->bv_len + offset;
3004 iter->iov_offset = offset & ~PAGE_MASK;
3011 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3014 mutex_unlock(&ctx->uring_lock);
3017 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3020 * "Normal" inline submissions always hold the uring_lock, since we
3021 * grab it from the system call. Same is true for the SQPOLL offload.
3022 * The only exception is when we've detached the request and issue it
3023 * from an async worker thread, grab the lock for that case.
3026 mutex_lock(&ctx->uring_lock);
3029 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3030 int bgid, struct io_buffer *kbuf,
3033 struct io_buffer *head;
3035 if (req->flags & REQ_F_BUFFER_SELECTED)
3038 io_ring_submit_lock(req->ctx, needs_lock);
3040 lockdep_assert_held(&req->ctx->uring_lock);
3042 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3044 if (!list_empty(&head->list)) {
3045 kbuf = list_last_entry(&head->list, struct io_buffer,
3047 list_del(&kbuf->list);
3050 idr_remove(&req->ctx->io_buffer_idr, bgid);
3052 if (*len > kbuf->len)
3055 kbuf = ERR_PTR(-ENOBUFS);
3058 io_ring_submit_unlock(req->ctx, needs_lock);
3063 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3066 struct io_buffer *kbuf;
3069 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3070 bgid = req->buf_index;
3071 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3074 req->rw.addr = (u64) (unsigned long) kbuf;
3075 req->flags |= REQ_F_BUFFER_SELECTED;
3076 return u64_to_user_ptr(kbuf->addr);
3079 #ifdef CONFIG_COMPAT
3080 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3083 struct compat_iovec __user *uiov;
3084 compat_ssize_t clen;
3088 uiov = u64_to_user_ptr(req->rw.addr);
3089 if (!access_ok(uiov, sizeof(*uiov)))
3091 if (__get_user(clen, &uiov->iov_len))
3097 buf = io_rw_buffer_select(req, &len, needs_lock);
3099 return PTR_ERR(buf);
3100 iov[0].iov_base = buf;
3101 iov[0].iov_len = (compat_size_t) len;
3106 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3109 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3113 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3116 len = iov[0].iov_len;
3119 buf = io_rw_buffer_select(req, &len, needs_lock);
3121 return PTR_ERR(buf);
3122 iov[0].iov_base = buf;
3123 iov[0].iov_len = len;
3127 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3130 if (req->flags & REQ_F_BUFFER_SELECTED) {
3131 struct io_buffer *kbuf;
3133 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3134 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3135 iov[0].iov_len = kbuf->len;
3138 if (req->rw.len != 1)
3141 #ifdef CONFIG_COMPAT
3142 if (req->ctx->compat)
3143 return io_compat_import(req, iov, needs_lock);
3146 return __io_iov_buffer_select(req, iov, needs_lock);
3149 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3150 struct iovec **iovec, struct iov_iter *iter,
3153 void __user *buf = u64_to_user_ptr(req->rw.addr);
3154 size_t sqe_len = req->rw.len;
3158 opcode = req->opcode;
3159 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3161 return io_import_fixed(req, rw, iter);
3164 /* buffer index only valid with fixed read/write, or buffer select */
3165 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3168 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3169 if (req->flags & REQ_F_BUFFER_SELECT) {
3170 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3172 return PTR_ERR(buf);
3173 req->rw.len = sqe_len;
3176 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3181 if (req->flags & REQ_F_BUFFER_SELECT) {
3182 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3184 ret = (*iovec)->iov_len;
3185 iov_iter_init(iter, rw, *iovec, 1, ret);
3191 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3195 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3197 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3201 * For files that don't have ->read_iter() and ->write_iter(), handle them
3202 * by looping over ->read() or ->write() manually.
3204 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3206 struct kiocb *kiocb = &req->rw.kiocb;
3207 struct file *file = req->file;
3211 * Don't support polled IO through this interface, and we can't
3212 * support non-blocking either. For the latter, this just causes
3213 * the kiocb to be handled from an async context.
3215 if (kiocb->ki_flags & IOCB_HIPRI)
3217 if (kiocb->ki_flags & IOCB_NOWAIT)
3220 while (iov_iter_count(iter)) {
3224 if (!iov_iter_is_bvec(iter)) {
3225 iovec = iov_iter_iovec(iter);
3227 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3228 iovec.iov_len = req->rw.len;
3232 nr = file->f_op->read(file, iovec.iov_base,
3233 iovec.iov_len, io_kiocb_ppos(kiocb));
3235 nr = file->f_op->write(file, iovec.iov_base,
3236 iovec.iov_len, io_kiocb_ppos(kiocb));
3245 if (nr != iovec.iov_len)
3249 iov_iter_advance(iter, nr);
3255 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3256 const struct iovec *fast_iov, struct iov_iter *iter)
3258 struct io_async_rw *rw = req->async_data;
3260 memcpy(&rw->iter, iter, sizeof(*iter));
3261 rw->free_iovec = iovec;
3263 /* can only be fixed buffers, no need to do anything */
3264 if (iov_iter_is_bvec(iter))
3267 unsigned iov_off = 0;
3269 rw->iter.iov = rw->fast_iov;
3270 if (iter->iov != fast_iov) {
3271 iov_off = iter->iov - fast_iov;
3272 rw->iter.iov += iov_off;
3274 if (rw->fast_iov != fast_iov)
3275 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3276 sizeof(struct iovec) * iter->nr_segs);
3278 req->flags |= REQ_F_NEED_CLEANUP;
3282 static inline int __io_alloc_async_data(struct io_kiocb *req)
3284 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3285 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3286 return req->async_data == NULL;
3289 static int io_alloc_async_data(struct io_kiocb *req)
3291 if (!io_op_defs[req->opcode].needs_async_data)
3294 return __io_alloc_async_data(req);
3297 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3298 const struct iovec *fast_iov,
3299 struct iov_iter *iter, bool force)
3301 if (!force && !io_op_defs[req->opcode].needs_async_data)
3303 if (!req->async_data) {
3304 if (__io_alloc_async_data(req))
3307 io_req_map_rw(req, iovec, fast_iov, iter);
3312 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3314 struct io_async_rw *iorw = req->async_data;
3315 struct iovec *iov = iorw->fast_iov;
3318 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3319 if (unlikely(ret < 0))
3322 iorw->bytes_done = 0;
3323 iorw->free_iovec = iov;
3325 req->flags |= REQ_F_NEED_CLEANUP;
3329 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3333 ret = io_prep_rw(req, sqe);
3337 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3340 /* either don't need iovec imported or already have it */
3341 if (!req->async_data)
3343 return io_rw_prep_async(req, READ);
3347 * This is our waitqueue callback handler, registered through lock_page_async()
3348 * when we initially tried to do the IO with the iocb armed our waitqueue.
3349 * This gets called when the page is unlocked, and we generally expect that to
3350 * happen when the page IO is completed and the page is now uptodate. This will
3351 * queue a task_work based retry of the operation, attempting to copy the data
3352 * again. If the latter fails because the page was NOT uptodate, then we will
3353 * do a thread based blocking retry of the operation. That's the unexpected
3356 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3357 int sync, void *arg)
3359 struct wait_page_queue *wpq;
3360 struct io_kiocb *req = wait->private;
3361 struct wait_page_key *key = arg;
3364 wpq = container_of(wait, struct wait_page_queue, wait);
3366 if (!wake_page_match(wpq, key))
3369 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3370 list_del_init(&wait->entry);
3372 init_task_work(&req->task_work, io_req_task_submit);
3373 percpu_ref_get(&req->ctx->refs);
3375 /* submit ref gets dropped, acquire a new one */
3376 refcount_inc(&req->refs);
3377 ret = io_req_task_work_add(req);
3378 if (unlikely(ret)) {
3379 struct task_struct *tsk;
3381 /* queue just for cancelation */
3382 init_task_work(&req->task_work, io_req_task_cancel);
3383 tsk = io_wq_get_task(req->ctx->io_wq);
3384 task_work_add(tsk, &req->task_work, TWA_NONE);
3385 wake_up_process(tsk);
3391 * This controls whether a given IO request should be armed for async page
3392 * based retry. If we return false here, the request is handed to the async
3393 * worker threads for retry. If we're doing buffered reads on a regular file,
3394 * we prepare a private wait_page_queue entry and retry the operation. This
3395 * will either succeed because the page is now uptodate and unlocked, or it
3396 * will register a callback when the page is unlocked at IO completion. Through
3397 * that callback, io_uring uses task_work to setup a retry of the operation.
3398 * That retry will attempt the buffered read again. The retry will generally
3399 * succeed, or in rare cases where it fails, we then fall back to using the
3400 * async worker threads for a blocking retry.
3402 static bool io_rw_should_retry(struct io_kiocb *req)
3404 struct io_async_rw *rw = req->async_data;
3405 struct wait_page_queue *wait = &rw->wpq;
3406 struct kiocb *kiocb = &req->rw.kiocb;
3408 /* never retry for NOWAIT, we just complete with -EAGAIN */
3409 if (req->flags & REQ_F_NOWAIT)
3412 /* Only for buffered IO */
3413 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3417 * just use poll if we can, and don't attempt if the fs doesn't
3418 * support callback based unlocks
3420 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3423 wait->wait.func = io_async_buf_func;
3424 wait->wait.private = req;
3425 wait->wait.flags = 0;
3426 INIT_LIST_HEAD(&wait->wait.entry);
3427 kiocb->ki_flags |= IOCB_WAITQ;
3428 kiocb->ki_flags &= ~IOCB_NOWAIT;
3429 kiocb->ki_waitq = wait;
3433 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3435 if (req->file->f_op->read_iter)
3436 return call_read_iter(req->file, &req->rw.kiocb, iter);
3437 else if (req->file->f_op->read)
3438 return loop_rw_iter(READ, req, iter);
3443 static int io_read(struct io_kiocb *req, bool force_nonblock,
3444 struct io_comp_state *cs)
3446 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3447 struct kiocb *kiocb = &req->rw.kiocb;
3448 struct iov_iter __iter, *iter = &__iter;
3449 struct io_async_rw *rw = req->async_data;
3450 ssize_t io_size, ret, ret2;
3457 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3461 io_size = iov_iter_count(iter);
3462 req->result = io_size;
3465 /* Ensure we clear previously set non-block flag */
3466 if (!force_nonblock)
3467 kiocb->ki_flags &= ~IOCB_NOWAIT;
3469 kiocb->ki_flags |= IOCB_NOWAIT;
3472 /* If the file doesn't support async, just async punt */
3473 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3477 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3481 ret = io_iter_do_read(req, iter);
3485 } else if (ret == -EIOCBQUEUED) {
3488 } else if (ret == -EAGAIN) {
3489 /* IOPOLL retry should happen for io-wq threads */
3490 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3492 /* no retry on NONBLOCK marked file */
3493 if (req->file->f_flags & O_NONBLOCK)
3495 /* some cases will consume bytes even on error returns */
3496 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3499 } else if (ret < 0) {
3500 /* make sure -ERESTARTSYS -> -EINTR is done */
3504 /* read it all, or we did blocking attempt. no retry. */
3505 if (!iov_iter_count(iter) || !force_nonblock ||
3506 (req->file->f_flags & O_NONBLOCK))
3511 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3518 rw = req->async_data;
3519 /* it's copied and will be cleaned with ->io */
3521 /* now use our persistent iterator, if we aren't already */
3524 rw->bytes_done += ret;
3525 /* if we can retry, do so with the callbacks armed */
3526 if (!io_rw_should_retry(req)) {
3527 kiocb->ki_flags &= ~IOCB_WAITQ;
3532 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3533 * get -EIOCBQUEUED, then we'll get a notification when the desired
3534 * page gets unlocked. We can also get a partial read here, and if we
3535 * do, then just retry at the new offset.
3537 ret = io_iter_do_read(req, iter);
3538 if (ret == -EIOCBQUEUED) {
3541 } else if (ret > 0 && ret < io_size) {
3542 /* we got some bytes, but not all. retry. */
3546 kiocb_done(kiocb, ret, cs);
3549 /* it's reportedly faster than delegating the null check to kfree() */
3555 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3559 ret = io_prep_rw(req, sqe);
3563 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3566 /* either don't need iovec imported or already have it */
3567 if (!req->async_data)
3569 return io_rw_prep_async(req, WRITE);
3572 static int io_write(struct io_kiocb *req, bool force_nonblock,
3573 struct io_comp_state *cs)
3575 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3576 struct kiocb *kiocb = &req->rw.kiocb;
3577 struct iov_iter __iter, *iter = &__iter;
3578 struct io_async_rw *rw = req->async_data;
3579 ssize_t ret, ret2, io_size;
3585 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3589 io_size = iov_iter_count(iter);
3590 req->result = io_size;
3592 /* Ensure we clear previously set non-block flag */
3593 if (!force_nonblock)
3594 kiocb->ki_flags &= ~IOCB_NOWAIT;
3596 kiocb->ki_flags |= IOCB_NOWAIT;
3598 /* If the file doesn't support async, just async punt */
3599 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3602 /* file path doesn't support NOWAIT for non-direct_IO */
3603 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3604 (req->flags & REQ_F_ISREG))
3607 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3612 * Open-code file_start_write here to grab freeze protection,
3613 * which will be released by another thread in
3614 * io_complete_rw(). Fool lockdep by telling it the lock got
3615 * released so that it doesn't complain about the held lock when
3616 * we return to userspace.
3618 if (req->flags & REQ_F_ISREG) {
3619 sb_start_write(file_inode(req->file)->i_sb);
3620 __sb_writers_release(file_inode(req->file)->i_sb,
3623 kiocb->ki_flags |= IOCB_WRITE;
3625 if (req->file->f_op->write_iter)
3626 ret2 = call_write_iter(req->file, kiocb, iter);
3627 else if (req->file->f_op->write)
3628 ret2 = loop_rw_iter(WRITE, req, iter);
3633 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3634 * retry them without IOCB_NOWAIT.
3636 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3638 /* no retry on NONBLOCK marked file */
3639 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3641 if (!force_nonblock || ret2 != -EAGAIN) {
3642 /* IOPOLL retry should happen for io-wq threads */
3643 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3646 kiocb_done(kiocb, ret2, cs);
3649 /* some cases will consume bytes even on error returns */
3650 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3651 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3656 /* it's reportedly faster than delegating the null check to kfree() */
3662 static int io_renameat_prep(struct io_kiocb *req,
3663 const struct io_uring_sqe *sqe)
3665 struct io_rename *ren = &req->rename;
3666 const char __user *oldf, *newf;
3668 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3671 ren->old_dfd = READ_ONCE(sqe->fd);
3672 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3673 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3674 ren->new_dfd = READ_ONCE(sqe->len);
3675 ren->flags = READ_ONCE(sqe->rename_flags);
3677 ren->oldpath = getname(oldf);
3678 if (IS_ERR(ren->oldpath))
3679 return PTR_ERR(ren->oldpath);
3681 ren->newpath = getname(newf);
3682 if (IS_ERR(ren->newpath)) {
3683 putname(ren->oldpath);
3684 return PTR_ERR(ren->newpath);
3687 req->flags |= REQ_F_NEED_CLEANUP;
3691 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3693 struct io_rename *ren = &req->rename;
3699 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3700 ren->newpath, ren->flags);
3702 req->flags &= ~REQ_F_NEED_CLEANUP;
3704 req_set_fail_links(req);
3705 io_req_complete(req, ret);
3709 static int io_unlinkat_prep(struct io_kiocb *req,
3710 const struct io_uring_sqe *sqe)
3712 struct io_unlink *un = &req->unlink;
3713 const char __user *fname;
3715 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3718 un->dfd = READ_ONCE(sqe->fd);
3720 un->flags = READ_ONCE(sqe->unlink_flags);
3721 if (un->flags & ~AT_REMOVEDIR)
3724 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3725 un->filename = getname(fname);
3726 if (IS_ERR(un->filename))
3727 return PTR_ERR(un->filename);
3729 req->flags |= REQ_F_NEED_CLEANUP;
3733 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3735 struct io_unlink *un = &req->unlink;
3741 if (un->flags & AT_REMOVEDIR)
3742 ret = do_rmdir(un->dfd, un->filename);
3744 ret = do_unlinkat(un->dfd, un->filename);
3746 req->flags &= ~REQ_F_NEED_CLEANUP;
3748 req_set_fail_links(req);
3749 io_req_complete(req, ret);
3753 static int io_shutdown_prep(struct io_kiocb *req,
3754 const struct io_uring_sqe *sqe)
3756 #if defined(CONFIG_NET)
3757 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3759 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3763 req->shutdown.how = READ_ONCE(sqe->len);
3770 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3772 #if defined(CONFIG_NET)
3773 struct socket *sock;
3779 sock = sock_from_file(req->file);
3780 if (unlikely(!sock))
3783 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3785 req_set_fail_links(req);
3786 io_req_complete(req, ret);
3793 static int __io_splice_prep(struct io_kiocb *req,
3794 const struct io_uring_sqe *sqe)
3796 struct io_splice* sp = &req->splice;
3797 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3799 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3803 sp->len = READ_ONCE(sqe->len);
3804 sp->flags = READ_ONCE(sqe->splice_flags);
3806 if (unlikely(sp->flags & ~valid_flags))
3809 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3810 (sp->flags & SPLICE_F_FD_IN_FIXED));
3813 req->flags |= REQ_F_NEED_CLEANUP;
3815 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3817 * Splice operation will be punted aync, and here need to
3818 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3820 io_req_init_async(req);
3821 req->work.flags |= IO_WQ_WORK_UNBOUND;
3827 static int io_tee_prep(struct io_kiocb *req,
3828 const struct io_uring_sqe *sqe)
3830 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3832 return __io_splice_prep(req, sqe);
3835 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3837 struct io_splice *sp = &req->splice;
3838 struct file *in = sp->file_in;
3839 struct file *out = sp->file_out;
3840 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3846 ret = do_tee(in, out, sp->len, flags);
3848 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3849 req->flags &= ~REQ_F_NEED_CLEANUP;
3852 req_set_fail_links(req);
3853 io_req_complete(req, ret);
3857 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3859 struct io_splice* sp = &req->splice;
3861 sp->off_in = READ_ONCE(sqe->splice_off_in);
3862 sp->off_out = READ_ONCE(sqe->off);
3863 return __io_splice_prep(req, sqe);
3866 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3868 struct io_splice *sp = &req->splice;
3869 struct file *in = sp->file_in;
3870 struct file *out = sp->file_out;
3871 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3872 loff_t *poff_in, *poff_out;
3878 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3879 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3882 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3884 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3885 req->flags &= ~REQ_F_NEED_CLEANUP;
3888 req_set_fail_links(req);
3889 io_req_complete(req, ret);
3894 * IORING_OP_NOP just posts a completion event, nothing else.
3896 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3898 struct io_ring_ctx *ctx = req->ctx;
3900 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3903 __io_req_complete(req, 0, 0, cs);
3907 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3909 struct io_ring_ctx *ctx = req->ctx;
3914 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3916 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3919 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3920 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3923 req->sync.off = READ_ONCE(sqe->off);
3924 req->sync.len = READ_ONCE(sqe->len);
3928 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3930 loff_t end = req->sync.off + req->sync.len;
3933 /* fsync always requires a blocking context */
3937 ret = vfs_fsync_range(req->file, req->sync.off,
3938 end > 0 ? end : LLONG_MAX,
3939 req->sync.flags & IORING_FSYNC_DATASYNC);
3941 req_set_fail_links(req);
3942 io_req_complete(req, ret);
3946 static int io_fallocate_prep(struct io_kiocb *req,
3947 const struct io_uring_sqe *sqe)
3949 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3951 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3954 req->sync.off = READ_ONCE(sqe->off);
3955 req->sync.len = READ_ONCE(sqe->addr);
3956 req->sync.mode = READ_ONCE(sqe->len);
3960 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3964 /* fallocate always requiring blocking context */
3967 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3970 req_set_fail_links(req);
3971 io_req_complete(req, ret);
3975 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3977 const char __user *fname;
3980 if (unlikely(sqe->ioprio || sqe->buf_index))
3982 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3985 /* open.how should be already initialised */
3986 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3987 req->open.how.flags |= O_LARGEFILE;
3989 req->open.dfd = READ_ONCE(sqe->fd);
3990 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3991 req->open.filename = getname(fname);
3992 if (IS_ERR(req->open.filename)) {
3993 ret = PTR_ERR(req->open.filename);
3994 req->open.filename = NULL;
3997 req->open.nofile = rlimit(RLIMIT_NOFILE);
3998 req->open.ignore_nonblock = false;
3999 req->flags |= REQ_F_NEED_CLEANUP;
4003 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4007 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4009 mode = READ_ONCE(sqe->len);
4010 flags = READ_ONCE(sqe->open_flags);
4011 req->open.how = build_open_how(flags, mode);
4012 return __io_openat_prep(req, sqe);
4015 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4017 struct open_how __user *how;
4021 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4023 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4024 len = READ_ONCE(sqe->len);
4025 if (len < OPEN_HOW_SIZE_VER0)
4028 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4033 return __io_openat_prep(req, sqe);
4036 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4038 struct open_flags op;
4042 if (force_nonblock && !req->open.ignore_nonblock)
4045 ret = build_open_flags(&req->open.how, &op);
4049 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4053 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4056 ret = PTR_ERR(file);
4058 * A work-around to ensure that /proc/self works that way
4059 * that it should - if we get -EOPNOTSUPP back, then assume
4060 * that proc_self_get_link() failed us because we're in async
4061 * context. We should be safe to retry this from the task
4062 * itself with force_nonblock == false set, as it should not
4063 * block on lookup. Would be nice to know this upfront and
4064 * avoid the async dance, but doesn't seem feasible.
4066 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4067 req->open.ignore_nonblock = true;
4068 refcount_inc(&req->refs);
4069 io_req_task_queue(req);
4073 fsnotify_open(file);
4074 fd_install(ret, file);
4077 putname(req->open.filename);
4078 req->flags &= ~REQ_F_NEED_CLEANUP;
4080 req_set_fail_links(req);
4081 io_req_complete(req, ret);
4085 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4087 return io_openat2(req, force_nonblock);
4090 static int io_remove_buffers_prep(struct io_kiocb *req,
4091 const struct io_uring_sqe *sqe)
4093 struct io_provide_buf *p = &req->pbuf;
4096 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4099 tmp = READ_ONCE(sqe->fd);
4100 if (!tmp || tmp > USHRT_MAX)
4103 memset(p, 0, sizeof(*p));
4105 p->bgid = READ_ONCE(sqe->buf_group);
4109 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4110 int bgid, unsigned nbufs)
4114 /* shouldn't happen */
4118 /* the head kbuf is the list itself */
4119 while (!list_empty(&buf->list)) {
4120 struct io_buffer *nxt;
4122 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4123 list_del(&nxt->list);
4130 idr_remove(&ctx->io_buffer_idr, bgid);
4135 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4136 struct io_comp_state *cs)
4138 struct io_provide_buf *p = &req->pbuf;
4139 struct io_ring_ctx *ctx = req->ctx;
4140 struct io_buffer *head;
4143 io_ring_submit_lock(ctx, !force_nonblock);
4145 lockdep_assert_held(&ctx->uring_lock);
4148 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4150 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4152 req_set_fail_links(req);
4154 /* need to hold the lock to complete IOPOLL requests */
4155 if (ctx->flags & IORING_SETUP_IOPOLL) {
4156 __io_req_complete(req, ret, 0, cs);
4157 io_ring_submit_unlock(ctx, !force_nonblock);
4159 io_ring_submit_unlock(ctx, !force_nonblock);
4160 __io_req_complete(req, ret, 0, cs);
4165 static int io_provide_buffers_prep(struct io_kiocb *req,
4166 const struct io_uring_sqe *sqe)
4168 struct io_provide_buf *p = &req->pbuf;
4171 if (sqe->ioprio || sqe->rw_flags)
4174 tmp = READ_ONCE(sqe->fd);
4175 if (!tmp || tmp > USHRT_MAX)
4178 p->addr = READ_ONCE(sqe->addr);
4179 p->len = READ_ONCE(sqe->len);
4181 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4184 p->bgid = READ_ONCE(sqe->buf_group);
4185 tmp = READ_ONCE(sqe->off);
4186 if (tmp > USHRT_MAX)
4192 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4194 struct io_buffer *buf;
4195 u64 addr = pbuf->addr;
4196 int i, bid = pbuf->bid;
4198 for (i = 0; i < pbuf->nbufs; i++) {
4199 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4204 buf->len = pbuf->len;
4209 INIT_LIST_HEAD(&buf->list);
4212 list_add_tail(&buf->list, &(*head)->list);
4216 return i ? i : -ENOMEM;
4219 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4220 struct io_comp_state *cs)
4222 struct io_provide_buf *p = &req->pbuf;
4223 struct io_ring_ctx *ctx = req->ctx;
4224 struct io_buffer *head, *list;
4227 io_ring_submit_lock(ctx, !force_nonblock);
4229 lockdep_assert_held(&ctx->uring_lock);
4231 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4233 ret = io_add_buffers(p, &head);
4238 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4241 __io_remove_buffers(ctx, head, p->bgid, -1U);
4247 req_set_fail_links(req);
4249 /* need to hold the lock to complete IOPOLL requests */
4250 if (ctx->flags & IORING_SETUP_IOPOLL) {
4251 __io_req_complete(req, ret, 0, cs);
4252 io_ring_submit_unlock(ctx, !force_nonblock);
4254 io_ring_submit_unlock(ctx, !force_nonblock);
4255 __io_req_complete(req, ret, 0, cs);
4260 static int io_epoll_ctl_prep(struct io_kiocb *req,
4261 const struct io_uring_sqe *sqe)
4263 #if defined(CONFIG_EPOLL)
4264 if (sqe->ioprio || sqe->buf_index)
4266 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4269 req->epoll.epfd = READ_ONCE(sqe->fd);
4270 req->epoll.op = READ_ONCE(sqe->len);
4271 req->epoll.fd = READ_ONCE(sqe->off);
4273 if (ep_op_has_event(req->epoll.op)) {
4274 struct epoll_event __user *ev;
4276 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4277 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4287 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4288 struct io_comp_state *cs)
4290 #if defined(CONFIG_EPOLL)
4291 struct io_epoll *ie = &req->epoll;
4294 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4295 if (force_nonblock && ret == -EAGAIN)
4299 req_set_fail_links(req);
4300 __io_req_complete(req, ret, 0, cs);
4307 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4309 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4310 if (sqe->ioprio || sqe->buf_index || sqe->off)
4312 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4315 req->madvise.addr = READ_ONCE(sqe->addr);
4316 req->madvise.len = READ_ONCE(sqe->len);
4317 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4324 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4326 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4327 struct io_madvise *ma = &req->madvise;
4333 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4335 req_set_fail_links(req);
4336 io_req_complete(req, ret);
4343 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4345 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4347 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4350 req->fadvise.offset = READ_ONCE(sqe->off);
4351 req->fadvise.len = READ_ONCE(sqe->len);
4352 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4356 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4358 struct io_fadvise *fa = &req->fadvise;
4361 if (force_nonblock) {
4362 switch (fa->advice) {
4363 case POSIX_FADV_NORMAL:
4364 case POSIX_FADV_RANDOM:
4365 case POSIX_FADV_SEQUENTIAL:
4372 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4374 req_set_fail_links(req);
4375 io_req_complete(req, ret);
4379 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4381 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4383 if (sqe->ioprio || sqe->buf_index)
4385 if (req->flags & REQ_F_FIXED_FILE)
4388 req->statx.dfd = READ_ONCE(sqe->fd);
4389 req->statx.mask = READ_ONCE(sqe->len);
4390 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4391 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4392 req->statx.flags = READ_ONCE(sqe->statx_flags);
4397 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4399 struct io_statx *ctx = &req->statx;
4402 if (force_nonblock) {
4403 /* only need file table for an actual valid fd */
4404 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4405 req->flags |= REQ_F_NO_FILE_TABLE;
4409 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4413 req_set_fail_links(req);
4414 io_req_complete(req, ret);
4418 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4421 * If we queue this for async, it must not be cancellable. That would
4422 * leave the 'file' in an undeterminate state, and here need to modify
4423 * io_wq_work.flags, so initialize io_wq_work firstly.
4425 io_req_init_async(req);
4426 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4428 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4430 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4431 sqe->rw_flags || sqe->buf_index)
4433 if (req->flags & REQ_F_FIXED_FILE)
4436 req->close.fd = READ_ONCE(sqe->fd);
4437 if ((req->file && req->file->f_op == &io_uring_fops))
4440 req->close.put_file = NULL;
4444 static int io_close(struct io_kiocb *req, bool force_nonblock,
4445 struct io_comp_state *cs)
4447 struct io_close *close = &req->close;
4450 /* might be already done during nonblock submission */
4451 if (!close->put_file) {
4452 ret = close_fd_get_file(close->fd, &close->put_file);
4454 return (ret == -ENOENT) ? -EBADF : ret;
4457 /* if the file has a flush method, be safe and punt to async */
4458 if (close->put_file->f_op->flush && force_nonblock) {
4459 /* was never set, but play safe */
4460 req->flags &= ~REQ_F_NOWAIT;
4461 /* avoid grabbing files - we don't need the files */
4462 req->flags |= REQ_F_NO_FILE_TABLE;
4466 /* No ->flush() or already async, safely close from here */
4467 ret = filp_close(close->put_file, req->work.identity->files);
4469 req_set_fail_links(req);
4470 fput(close->put_file);
4471 close->put_file = NULL;
4472 __io_req_complete(req, ret, 0, cs);
4476 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4478 struct io_ring_ctx *ctx = req->ctx;
4483 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4485 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4488 req->sync.off = READ_ONCE(sqe->off);
4489 req->sync.len = READ_ONCE(sqe->len);
4490 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4494 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4498 /* sync_file_range always requires a blocking context */
4502 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4505 req_set_fail_links(req);
4506 io_req_complete(req, ret);
4510 #if defined(CONFIG_NET)
4511 static int io_setup_async_msg(struct io_kiocb *req,
4512 struct io_async_msghdr *kmsg)
4514 struct io_async_msghdr *async_msg = req->async_data;
4518 if (io_alloc_async_data(req)) {
4519 if (kmsg->iov != kmsg->fast_iov)
4523 async_msg = req->async_data;
4524 req->flags |= REQ_F_NEED_CLEANUP;
4525 memcpy(async_msg, kmsg, sizeof(*kmsg));
4529 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4530 struct io_async_msghdr *iomsg)
4532 iomsg->iov = iomsg->fast_iov;
4533 iomsg->msg.msg_name = &iomsg->addr;
4534 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4535 req->sr_msg.msg_flags, &iomsg->iov);
4538 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4540 struct io_async_msghdr *async_msg = req->async_data;
4541 struct io_sr_msg *sr = &req->sr_msg;
4544 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4547 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4548 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4549 sr->len = READ_ONCE(sqe->len);
4551 #ifdef CONFIG_COMPAT
4552 if (req->ctx->compat)
4553 sr->msg_flags |= MSG_CMSG_COMPAT;
4556 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4558 ret = io_sendmsg_copy_hdr(req, async_msg);
4560 req->flags |= REQ_F_NEED_CLEANUP;
4564 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4565 struct io_comp_state *cs)
4567 struct io_async_msghdr iomsg, *kmsg;
4568 struct socket *sock;
4572 sock = sock_from_file(req->file);
4573 if (unlikely(!sock))
4576 if (req->async_data) {
4577 kmsg = req->async_data;
4578 kmsg->msg.msg_name = &kmsg->addr;
4579 /* if iov is set, it's allocated already */
4581 kmsg->iov = kmsg->fast_iov;
4582 kmsg->msg.msg_iter.iov = kmsg->iov;
4584 ret = io_sendmsg_copy_hdr(req, &iomsg);
4590 flags = req->sr_msg.msg_flags;
4591 if (flags & MSG_DONTWAIT)
4592 req->flags |= REQ_F_NOWAIT;
4593 else if (force_nonblock)
4594 flags |= MSG_DONTWAIT;
4596 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4597 if (force_nonblock && ret == -EAGAIN)
4598 return io_setup_async_msg(req, kmsg);
4599 if (ret == -ERESTARTSYS)
4602 if (kmsg->iov != kmsg->fast_iov)
4604 req->flags &= ~REQ_F_NEED_CLEANUP;
4606 req_set_fail_links(req);
4607 __io_req_complete(req, ret, 0, cs);
4611 static int io_send(struct io_kiocb *req, bool force_nonblock,
4612 struct io_comp_state *cs)
4614 struct io_sr_msg *sr = &req->sr_msg;
4617 struct socket *sock;
4621 sock = sock_from_file(req->file);
4622 if (unlikely(!sock))
4625 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4629 msg.msg_name = NULL;
4630 msg.msg_control = NULL;
4631 msg.msg_controllen = 0;
4632 msg.msg_namelen = 0;
4634 flags = req->sr_msg.msg_flags;
4635 if (flags & MSG_DONTWAIT)
4636 req->flags |= REQ_F_NOWAIT;
4637 else if (force_nonblock)
4638 flags |= MSG_DONTWAIT;
4640 msg.msg_flags = flags;
4641 ret = sock_sendmsg(sock, &msg);
4642 if (force_nonblock && ret == -EAGAIN)
4644 if (ret == -ERESTARTSYS)
4648 req_set_fail_links(req);
4649 __io_req_complete(req, ret, 0, cs);
4653 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4654 struct io_async_msghdr *iomsg)
4656 struct io_sr_msg *sr = &req->sr_msg;
4657 struct iovec __user *uiov;
4661 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4662 &iomsg->uaddr, &uiov, &iov_len);
4666 if (req->flags & REQ_F_BUFFER_SELECT) {
4669 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4671 sr->len = iomsg->iov[0].iov_len;
4672 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4676 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4677 &iomsg->iov, &iomsg->msg.msg_iter,
4686 #ifdef CONFIG_COMPAT
4687 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4688 struct io_async_msghdr *iomsg)
4690 struct compat_msghdr __user *msg_compat;
4691 struct io_sr_msg *sr = &req->sr_msg;
4692 struct compat_iovec __user *uiov;
4697 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4698 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4703 uiov = compat_ptr(ptr);
4704 if (req->flags & REQ_F_BUFFER_SELECT) {
4705 compat_ssize_t clen;
4709 if (!access_ok(uiov, sizeof(*uiov)))
4711 if (__get_user(clen, &uiov->iov_len))
4716 iomsg->iov[0].iov_len = clen;
4719 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4720 UIO_FASTIOV, &iomsg->iov,
4721 &iomsg->msg.msg_iter, true);
4730 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4731 struct io_async_msghdr *iomsg)
4733 iomsg->msg.msg_name = &iomsg->addr;
4734 iomsg->iov = iomsg->fast_iov;
4736 #ifdef CONFIG_COMPAT
4737 if (req->ctx->compat)
4738 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4741 return __io_recvmsg_copy_hdr(req, iomsg);
4744 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4747 struct io_sr_msg *sr = &req->sr_msg;
4748 struct io_buffer *kbuf;
4750 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4755 req->flags |= REQ_F_BUFFER_SELECTED;
4759 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4761 return io_put_kbuf(req, req->sr_msg.kbuf);
4764 static int io_recvmsg_prep(struct io_kiocb *req,
4765 const struct io_uring_sqe *sqe)
4767 struct io_async_msghdr *async_msg = req->async_data;
4768 struct io_sr_msg *sr = &req->sr_msg;
4771 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4774 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4775 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4776 sr->len = READ_ONCE(sqe->len);
4777 sr->bgid = READ_ONCE(sqe->buf_group);
4779 #ifdef CONFIG_COMPAT
4780 if (req->ctx->compat)
4781 sr->msg_flags |= MSG_CMSG_COMPAT;
4784 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4786 ret = io_recvmsg_copy_hdr(req, async_msg);
4788 req->flags |= REQ_F_NEED_CLEANUP;
4792 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4793 struct io_comp_state *cs)
4795 struct io_async_msghdr iomsg, *kmsg;
4796 struct socket *sock;
4797 struct io_buffer *kbuf;
4799 int ret, cflags = 0;
4801 sock = sock_from_file(req->file);
4802 if (unlikely(!sock))
4805 if (req->async_data) {
4806 kmsg = req->async_data;
4807 kmsg->msg.msg_name = &kmsg->addr;
4808 /* if iov is set, it's allocated already */
4810 kmsg->iov = kmsg->fast_iov;
4811 kmsg->msg.msg_iter.iov = kmsg->iov;
4813 ret = io_recvmsg_copy_hdr(req, &iomsg);
4819 if (req->flags & REQ_F_BUFFER_SELECT) {
4820 kbuf = io_recv_buffer_select(req, !force_nonblock);
4822 return PTR_ERR(kbuf);
4823 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4824 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4825 1, req->sr_msg.len);
4828 flags = req->sr_msg.msg_flags;
4829 if (flags & MSG_DONTWAIT)
4830 req->flags |= REQ_F_NOWAIT;
4831 else if (force_nonblock)
4832 flags |= MSG_DONTWAIT;
4834 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4835 kmsg->uaddr, flags);
4836 if (force_nonblock && ret == -EAGAIN)
4837 return io_setup_async_msg(req, kmsg);
4838 if (ret == -ERESTARTSYS)
4841 if (req->flags & REQ_F_BUFFER_SELECTED)
4842 cflags = io_put_recv_kbuf(req);
4843 if (kmsg->iov != kmsg->fast_iov)
4845 req->flags &= ~REQ_F_NEED_CLEANUP;
4847 req_set_fail_links(req);
4848 __io_req_complete(req, ret, cflags, cs);
4852 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4853 struct io_comp_state *cs)
4855 struct io_buffer *kbuf;
4856 struct io_sr_msg *sr = &req->sr_msg;
4858 void __user *buf = sr->buf;
4859 struct socket *sock;
4862 int ret, cflags = 0;
4864 sock = sock_from_file(req->file);
4865 if (unlikely(!sock))
4868 if (req->flags & REQ_F_BUFFER_SELECT) {
4869 kbuf = io_recv_buffer_select(req, !force_nonblock);
4871 return PTR_ERR(kbuf);
4872 buf = u64_to_user_ptr(kbuf->addr);
4875 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4879 msg.msg_name = NULL;
4880 msg.msg_control = NULL;
4881 msg.msg_controllen = 0;
4882 msg.msg_namelen = 0;
4883 msg.msg_iocb = NULL;
4886 flags = req->sr_msg.msg_flags;
4887 if (flags & MSG_DONTWAIT)
4888 req->flags |= REQ_F_NOWAIT;
4889 else if (force_nonblock)
4890 flags |= MSG_DONTWAIT;
4892 ret = sock_recvmsg(sock, &msg, flags);
4893 if (force_nonblock && ret == -EAGAIN)
4895 if (ret == -ERESTARTSYS)
4898 if (req->flags & REQ_F_BUFFER_SELECTED)
4899 cflags = io_put_recv_kbuf(req);
4901 req_set_fail_links(req);
4902 __io_req_complete(req, ret, cflags, cs);
4906 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4908 struct io_accept *accept = &req->accept;
4910 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4912 if (sqe->ioprio || sqe->len || sqe->buf_index)
4915 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4916 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4917 accept->flags = READ_ONCE(sqe->accept_flags);
4918 accept->nofile = rlimit(RLIMIT_NOFILE);
4922 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4923 struct io_comp_state *cs)
4925 struct io_accept *accept = &req->accept;
4926 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4929 if (req->file->f_flags & O_NONBLOCK)
4930 req->flags |= REQ_F_NOWAIT;
4932 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4933 accept->addr_len, accept->flags,
4935 if (ret == -EAGAIN && force_nonblock)
4938 if (ret == -ERESTARTSYS)
4940 req_set_fail_links(req);
4942 __io_req_complete(req, ret, 0, cs);
4946 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4948 struct io_connect *conn = &req->connect;
4949 struct io_async_connect *io = req->async_data;
4951 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4953 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4956 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4957 conn->addr_len = READ_ONCE(sqe->addr2);
4962 return move_addr_to_kernel(conn->addr, conn->addr_len,
4966 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4967 struct io_comp_state *cs)
4969 struct io_async_connect __io, *io;
4970 unsigned file_flags;
4973 if (req->async_data) {
4974 io = req->async_data;
4976 ret = move_addr_to_kernel(req->connect.addr,
4977 req->connect.addr_len,
4984 file_flags = force_nonblock ? O_NONBLOCK : 0;
4986 ret = __sys_connect_file(req->file, &io->address,
4987 req->connect.addr_len, file_flags);
4988 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4989 if (req->async_data)
4991 if (io_alloc_async_data(req)) {
4995 io = req->async_data;
4996 memcpy(req->async_data, &__io, sizeof(__io));
4999 if (ret == -ERESTARTSYS)
5003 req_set_fail_links(req);
5004 __io_req_complete(req, ret, 0, cs);
5007 #else /* !CONFIG_NET */
5008 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5013 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5014 struct io_comp_state *cs)
5019 static int io_send(struct io_kiocb *req, bool force_nonblock,
5020 struct io_comp_state *cs)
5025 static int io_recvmsg_prep(struct io_kiocb *req,
5026 const struct io_uring_sqe *sqe)
5031 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5032 struct io_comp_state *cs)
5037 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5038 struct io_comp_state *cs)
5043 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5048 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5049 struct io_comp_state *cs)
5054 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5059 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5060 struct io_comp_state *cs)
5064 #endif /* CONFIG_NET */
5066 struct io_poll_table {
5067 struct poll_table_struct pt;
5068 struct io_kiocb *req;
5072 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5073 __poll_t mask, task_work_func_t func)
5077 /* for instances that support it check for an event match first: */
5078 if (mask && !(mask & poll->events))
5081 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5083 list_del_init(&poll->wait.entry);
5086 init_task_work(&req->task_work, func);
5087 percpu_ref_get(&req->ctx->refs);
5090 * If this fails, then the task is exiting. When a task exits, the
5091 * work gets canceled, so just cancel this request as well instead
5092 * of executing it. We can't safely execute it anyway, as we may not
5093 * have the needed state needed for it anyway.
5095 ret = io_req_task_work_add(req);
5096 if (unlikely(ret)) {
5097 struct task_struct *tsk;
5099 WRITE_ONCE(poll->canceled, true);
5100 tsk = io_wq_get_task(req->ctx->io_wq);
5101 task_work_add(tsk, &req->task_work, TWA_NONE);
5102 wake_up_process(tsk);
5107 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5108 __acquires(&req->ctx->completion_lock)
5110 struct io_ring_ctx *ctx = req->ctx;
5112 if (!req->result && !READ_ONCE(poll->canceled)) {
5113 struct poll_table_struct pt = { ._key = poll->events };
5115 req->result = vfs_poll(req->file, &pt) & poll->events;
5118 spin_lock_irq(&ctx->completion_lock);
5119 if (!req->result && !READ_ONCE(poll->canceled)) {
5120 add_wait_queue(poll->head, &poll->wait);
5127 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5129 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5130 if (req->opcode == IORING_OP_POLL_ADD)
5131 return req->async_data;
5132 return req->apoll->double_poll;
5135 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5137 if (req->opcode == IORING_OP_POLL_ADD)
5139 return &req->apoll->poll;
5142 static void io_poll_remove_double(struct io_kiocb *req)
5144 struct io_poll_iocb *poll = io_poll_get_double(req);
5146 lockdep_assert_held(&req->ctx->completion_lock);
5148 if (poll && poll->head) {
5149 struct wait_queue_head *head = poll->head;
5151 spin_lock(&head->lock);
5152 list_del_init(&poll->wait.entry);
5153 if (poll->wait.private)
5154 refcount_dec(&req->refs);
5156 spin_unlock(&head->lock);
5160 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5162 struct io_ring_ctx *ctx = req->ctx;
5164 io_poll_remove_double(req);
5165 req->poll.done = true;
5166 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5167 io_commit_cqring(ctx);
5170 static void io_poll_task_func(struct callback_head *cb)
5172 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5173 struct io_ring_ctx *ctx = req->ctx;
5174 struct io_kiocb *nxt;
5176 if (io_poll_rewait(req, &req->poll)) {
5177 spin_unlock_irq(&ctx->completion_lock);
5179 hash_del(&req->hash_node);
5180 io_poll_complete(req, req->result, 0);
5181 spin_unlock_irq(&ctx->completion_lock);
5183 nxt = io_put_req_find_next(req);
5184 io_cqring_ev_posted(ctx);
5186 __io_req_task_submit(nxt);
5189 percpu_ref_put(&ctx->refs);
5192 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5193 int sync, void *key)
5195 struct io_kiocb *req = wait->private;
5196 struct io_poll_iocb *poll = io_poll_get_single(req);
5197 __poll_t mask = key_to_poll(key);
5199 /* for instances that support it check for an event match first: */
5200 if (mask && !(mask & poll->events))
5203 list_del_init(&wait->entry);
5205 if (poll && poll->head) {
5208 spin_lock(&poll->head->lock);
5209 done = list_empty(&poll->wait.entry);
5211 list_del_init(&poll->wait.entry);
5212 /* make sure double remove sees this as being gone */
5213 wait->private = NULL;
5214 spin_unlock(&poll->head->lock);
5216 /* use wait func handler, so it matches the rq type */
5217 poll->wait.func(&poll->wait, mode, sync, key);
5220 refcount_dec(&req->refs);
5224 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5225 wait_queue_func_t wake_func)
5229 poll->canceled = false;
5230 poll->events = events;
5231 INIT_LIST_HEAD(&poll->wait.entry);
5232 init_waitqueue_func_entry(&poll->wait, wake_func);
5235 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5236 struct wait_queue_head *head,
5237 struct io_poll_iocb **poll_ptr)
5239 struct io_kiocb *req = pt->req;
5242 * If poll->head is already set, it's because the file being polled
5243 * uses multiple waitqueues for poll handling (eg one for read, one
5244 * for write). Setup a separate io_poll_iocb if this happens.
5246 if (unlikely(poll->head)) {
5247 struct io_poll_iocb *poll_one = poll;
5249 /* already have a 2nd entry, fail a third attempt */
5251 pt->error = -EINVAL;
5254 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5256 pt->error = -ENOMEM;
5259 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5260 refcount_inc(&req->refs);
5261 poll->wait.private = req;
5268 if (poll->events & EPOLLEXCLUSIVE)
5269 add_wait_queue_exclusive(head, &poll->wait);
5271 add_wait_queue(head, &poll->wait);
5274 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5275 struct poll_table_struct *p)
5277 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5278 struct async_poll *apoll = pt->req->apoll;
5280 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5283 static void io_async_task_func(struct callback_head *cb)
5285 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5286 struct async_poll *apoll = req->apoll;
5287 struct io_ring_ctx *ctx = req->ctx;
5289 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5291 if (io_poll_rewait(req, &apoll->poll)) {
5292 spin_unlock_irq(&ctx->completion_lock);
5293 percpu_ref_put(&ctx->refs);
5297 /* If req is still hashed, it cannot have been canceled. Don't check. */
5298 if (hash_hashed(&req->hash_node))
5299 hash_del(&req->hash_node);
5301 io_poll_remove_double(req);
5302 spin_unlock_irq(&ctx->completion_lock);
5304 if (!READ_ONCE(apoll->poll.canceled))
5305 __io_req_task_submit(req);
5307 __io_req_task_cancel(req, -ECANCELED);
5309 percpu_ref_put(&ctx->refs);
5310 kfree(apoll->double_poll);
5314 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5317 struct io_kiocb *req = wait->private;
5318 struct io_poll_iocb *poll = &req->apoll->poll;
5320 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5323 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5326 static void io_poll_req_insert(struct io_kiocb *req)
5328 struct io_ring_ctx *ctx = req->ctx;
5329 struct hlist_head *list;
5331 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5332 hlist_add_head(&req->hash_node, list);
5335 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5336 struct io_poll_iocb *poll,
5337 struct io_poll_table *ipt, __poll_t mask,
5338 wait_queue_func_t wake_func)
5339 __acquires(&ctx->completion_lock)
5341 struct io_ring_ctx *ctx = req->ctx;
5342 bool cancel = false;
5344 INIT_HLIST_NODE(&req->hash_node);
5345 io_init_poll_iocb(poll, mask, wake_func);
5346 poll->file = req->file;
5347 poll->wait.private = req;
5349 ipt->pt._key = mask;
5351 ipt->error = -EINVAL;
5353 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5355 spin_lock_irq(&ctx->completion_lock);
5356 if (likely(poll->head)) {
5357 spin_lock(&poll->head->lock);
5358 if (unlikely(list_empty(&poll->wait.entry))) {
5364 if (mask || ipt->error)
5365 list_del_init(&poll->wait.entry);
5367 WRITE_ONCE(poll->canceled, true);
5368 else if (!poll->done) /* actually waiting for an event */
5369 io_poll_req_insert(req);
5370 spin_unlock(&poll->head->lock);
5376 static bool io_arm_poll_handler(struct io_kiocb *req)
5378 const struct io_op_def *def = &io_op_defs[req->opcode];
5379 struct io_ring_ctx *ctx = req->ctx;
5380 struct async_poll *apoll;
5381 struct io_poll_table ipt;
5385 if (!req->file || !file_can_poll(req->file))
5387 if (req->flags & REQ_F_POLLED)
5391 else if (def->pollout)
5395 /* if we can't nonblock try, then no point in arming a poll handler */
5396 if (!io_file_supports_async(req->file, rw))
5399 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5400 if (unlikely(!apoll))
5402 apoll->double_poll = NULL;
5404 req->flags |= REQ_F_POLLED;
5409 mask |= POLLIN | POLLRDNORM;
5411 mask |= POLLOUT | POLLWRNORM;
5413 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5414 if ((req->opcode == IORING_OP_RECVMSG) &&
5415 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5418 mask |= POLLERR | POLLPRI;
5420 ipt.pt._qproc = io_async_queue_proc;
5422 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5424 if (ret || ipt.error) {
5425 io_poll_remove_double(req);
5426 spin_unlock_irq(&ctx->completion_lock);
5427 kfree(apoll->double_poll);
5431 spin_unlock_irq(&ctx->completion_lock);
5432 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5433 apoll->poll.events);
5437 static bool __io_poll_remove_one(struct io_kiocb *req,
5438 struct io_poll_iocb *poll)
5440 bool do_complete = false;
5442 spin_lock(&poll->head->lock);
5443 WRITE_ONCE(poll->canceled, true);
5444 if (!list_empty(&poll->wait.entry)) {
5445 list_del_init(&poll->wait.entry);
5448 spin_unlock(&poll->head->lock);
5449 hash_del(&req->hash_node);
5453 static bool io_poll_remove_one(struct io_kiocb *req)
5457 io_poll_remove_double(req);
5459 if (req->opcode == IORING_OP_POLL_ADD) {
5460 do_complete = __io_poll_remove_one(req, &req->poll);
5462 struct async_poll *apoll = req->apoll;
5464 /* non-poll requests have submit ref still */
5465 do_complete = __io_poll_remove_one(req, &apoll->poll);
5468 kfree(apoll->double_poll);
5474 io_cqring_fill_event(req, -ECANCELED);
5475 io_commit_cqring(req->ctx);
5476 req_set_fail_links(req);
5477 io_put_req_deferred(req, 1);
5484 * Returns true if we found and killed one or more poll requests
5486 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5487 struct files_struct *files)
5489 struct hlist_node *tmp;
5490 struct io_kiocb *req;
5493 spin_lock_irq(&ctx->completion_lock);
5494 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5495 struct hlist_head *list;
5497 list = &ctx->cancel_hash[i];
5498 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5499 if (io_match_task(req, tsk, files))
5500 posted += io_poll_remove_one(req);
5503 spin_unlock_irq(&ctx->completion_lock);
5506 io_cqring_ev_posted(ctx);
5511 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5513 struct hlist_head *list;
5514 struct io_kiocb *req;
5516 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5517 hlist_for_each_entry(req, list, hash_node) {
5518 if (sqe_addr != req->user_data)
5520 if (io_poll_remove_one(req))
5528 static int io_poll_remove_prep(struct io_kiocb *req,
5529 const struct io_uring_sqe *sqe)
5531 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5533 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5537 req->poll_remove.addr = READ_ONCE(sqe->addr);
5542 * Find a running poll command that matches one specified in sqe->addr,
5543 * and remove it if found.
5545 static int io_poll_remove(struct io_kiocb *req)
5547 struct io_ring_ctx *ctx = req->ctx;
5550 spin_lock_irq(&ctx->completion_lock);
5551 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5552 spin_unlock_irq(&ctx->completion_lock);
5555 req_set_fail_links(req);
5556 io_req_complete(req, ret);
5560 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5563 struct io_kiocb *req = wait->private;
5564 struct io_poll_iocb *poll = &req->poll;
5566 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5569 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5570 struct poll_table_struct *p)
5572 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5574 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5577 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5579 struct io_poll_iocb *poll = &req->poll;
5582 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5584 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5587 events = READ_ONCE(sqe->poll32_events);
5589 events = swahw32(events);
5591 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5592 (events & EPOLLEXCLUSIVE);
5596 static int io_poll_add(struct io_kiocb *req)
5598 struct io_poll_iocb *poll = &req->poll;
5599 struct io_ring_ctx *ctx = req->ctx;
5600 struct io_poll_table ipt;
5603 ipt.pt._qproc = io_poll_queue_proc;
5605 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5608 if (mask) { /* no async, we'd stolen it */
5610 io_poll_complete(req, mask, 0);
5612 spin_unlock_irq(&ctx->completion_lock);
5615 io_cqring_ev_posted(ctx);
5621 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5623 struct io_timeout_data *data = container_of(timer,
5624 struct io_timeout_data, timer);
5625 struct io_kiocb *req = data->req;
5626 struct io_ring_ctx *ctx = req->ctx;
5627 unsigned long flags;
5629 spin_lock_irqsave(&ctx->completion_lock, flags);
5630 list_del_init(&req->timeout.list);
5631 atomic_set(&req->ctx->cq_timeouts,
5632 atomic_read(&req->ctx->cq_timeouts) + 1);
5634 io_cqring_fill_event(req, -ETIME);
5635 io_commit_cqring(ctx);
5636 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5638 io_cqring_ev_posted(ctx);
5639 req_set_fail_links(req);
5641 return HRTIMER_NORESTART;
5644 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5647 struct io_timeout_data *io;
5648 struct io_kiocb *req;
5651 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5652 if (user_data == req->user_data) {
5659 return ERR_PTR(ret);
5661 io = req->async_data;
5662 ret = hrtimer_try_to_cancel(&io->timer);
5664 return ERR_PTR(-EALREADY);
5665 list_del_init(&req->timeout.list);
5669 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5671 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5674 return PTR_ERR(req);
5676 req_set_fail_links(req);
5677 io_cqring_fill_event(req, -ECANCELED);
5678 io_put_req_deferred(req, 1);
5682 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5683 struct timespec64 *ts, enum hrtimer_mode mode)
5685 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5686 struct io_timeout_data *data;
5689 return PTR_ERR(req);
5691 req->timeout.off = 0; /* noseq */
5692 data = req->async_data;
5693 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5694 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5695 data->timer.function = io_timeout_fn;
5696 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5700 static int io_timeout_remove_prep(struct io_kiocb *req,
5701 const struct io_uring_sqe *sqe)
5703 struct io_timeout_rem *tr = &req->timeout_rem;
5705 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5707 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5709 if (sqe->ioprio || sqe->buf_index || sqe->len)
5712 tr->addr = READ_ONCE(sqe->addr);
5713 tr->flags = READ_ONCE(sqe->timeout_flags);
5714 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5715 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5717 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5719 } else if (tr->flags) {
5720 /* timeout removal doesn't support flags */
5728 * Remove or update an existing timeout command
5730 static int io_timeout_remove(struct io_kiocb *req)
5732 struct io_timeout_rem *tr = &req->timeout_rem;
5733 struct io_ring_ctx *ctx = req->ctx;
5736 spin_lock_irq(&ctx->completion_lock);
5737 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5738 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5739 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5741 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5743 ret = io_timeout_cancel(ctx, tr->addr);
5746 io_cqring_fill_event(req, ret);
5747 io_commit_cqring(ctx);
5748 spin_unlock_irq(&ctx->completion_lock);
5749 io_cqring_ev_posted(ctx);
5751 req_set_fail_links(req);
5756 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5757 bool is_timeout_link)
5759 struct io_timeout_data *data;
5761 u32 off = READ_ONCE(sqe->off);
5763 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5765 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5767 if (off && is_timeout_link)
5769 flags = READ_ONCE(sqe->timeout_flags);
5770 if (flags & ~IORING_TIMEOUT_ABS)
5773 req->timeout.off = off;
5775 if (!req->async_data && io_alloc_async_data(req))
5778 data = req->async_data;
5781 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5784 if (flags & IORING_TIMEOUT_ABS)
5785 data->mode = HRTIMER_MODE_ABS;
5787 data->mode = HRTIMER_MODE_REL;
5789 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5793 static int io_timeout(struct io_kiocb *req)
5795 struct io_ring_ctx *ctx = req->ctx;
5796 struct io_timeout_data *data = req->async_data;
5797 struct list_head *entry;
5798 u32 tail, off = req->timeout.off;
5800 spin_lock_irq(&ctx->completion_lock);
5803 * sqe->off holds how many events that need to occur for this
5804 * timeout event to be satisfied. If it isn't set, then this is
5805 * a pure timeout request, sequence isn't used.
5807 if (io_is_timeout_noseq(req)) {
5808 entry = ctx->timeout_list.prev;
5812 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5813 req->timeout.target_seq = tail + off;
5816 * Insertion sort, ensuring the first entry in the list is always
5817 * the one we need first.
5819 list_for_each_prev(entry, &ctx->timeout_list) {
5820 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5823 if (io_is_timeout_noseq(nxt))
5825 /* nxt.seq is behind @tail, otherwise would've been completed */
5826 if (off >= nxt->timeout.target_seq - tail)
5830 list_add(&req->timeout.list, entry);
5831 data->timer.function = io_timeout_fn;
5832 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5833 spin_unlock_irq(&ctx->completion_lock);
5837 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5839 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5841 return req->user_data == (unsigned long) data;
5844 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5846 enum io_wq_cancel cancel_ret;
5849 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5850 switch (cancel_ret) {
5851 case IO_WQ_CANCEL_OK:
5854 case IO_WQ_CANCEL_RUNNING:
5857 case IO_WQ_CANCEL_NOTFOUND:
5865 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5866 struct io_kiocb *req, __u64 sqe_addr,
5869 unsigned long flags;
5872 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5873 if (ret != -ENOENT) {
5874 spin_lock_irqsave(&ctx->completion_lock, flags);
5878 spin_lock_irqsave(&ctx->completion_lock, flags);
5879 ret = io_timeout_cancel(ctx, sqe_addr);
5882 ret = io_poll_cancel(ctx, sqe_addr);
5886 io_cqring_fill_event(req, ret);
5887 io_commit_cqring(ctx);
5888 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5889 io_cqring_ev_posted(ctx);
5892 req_set_fail_links(req);
5896 static int io_async_cancel_prep(struct io_kiocb *req,
5897 const struct io_uring_sqe *sqe)
5899 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5901 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5903 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5906 req->cancel.addr = READ_ONCE(sqe->addr);
5910 static int io_async_cancel(struct io_kiocb *req)
5912 struct io_ring_ctx *ctx = req->ctx;
5914 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5918 static int io_files_update_prep(struct io_kiocb *req,
5919 const struct io_uring_sqe *sqe)
5921 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5923 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5925 if (sqe->ioprio || sqe->rw_flags)
5928 req->files_update.offset = READ_ONCE(sqe->off);
5929 req->files_update.nr_args = READ_ONCE(sqe->len);
5930 if (!req->files_update.nr_args)
5932 req->files_update.arg = READ_ONCE(sqe->addr);
5936 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5937 struct io_comp_state *cs)
5939 struct io_ring_ctx *ctx = req->ctx;
5940 struct io_uring_files_update up;
5946 up.offset = req->files_update.offset;
5947 up.fds = req->files_update.arg;
5949 mutex_lock(&ctx->uring_lock);
5950 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5951 mutex_unlock(&ctx->uring_lock);
5954 req_set_fail_links(req);
5955 __io_req_complete(req, ret, 0, cs);
5959 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5961 switch (req->opcode) {
5964 case IORING_OP_READV:
5965 case IORING_OP_READ_FIXED:
5966 case IORING_OP_READ:
5967 return io_read_prep(req, sqe);
5968 case IORING_OP_WRITEV:
5969 case IORING_OP_WRITE_FIXED:
5970 case IORING_OP_WRITE:
5971 return io_write_prep(req, sqe);
5972 case IORING_OP_POLL_ADD:
5973 return io_poll_add_prep(req, sqe);
5974 case IORING_OP_POLL_REMOVE:
5975 return io_poll_remove_prep(req, sqe);
5976 case IORING_OP_FSYNC:
5977 return io_prep_fsync(req, sqe);
5978 case IORING_OP_SYNC_FILE_RANGE:
5979 return io_prep_sfr(req, sqe);
5980 case IORING_OP_SENDMSG:
5981 case IORING_OP_SEND:
5982 return io_sendmsg_prep(req, sqe);
5983 case IORING_OP_RECVMSG:
5984 case IORING_OP_RECV:
5985 return io_recvmsg_prep(req, sqe);
5986 case IORING_OP_CONNECT:
5987 return io_connect_prep(req, sqe);
5988 case IORING_OP_TIMEOUT:
5989 return io_timeout_prep(req, sqe, false);
5990 case IORING_OP_TIMEOUT_REMOVE:
5991 return io_timeout_remove_prep(req, sqe);
5992 case IORING_OP_ASYNC_CANCEL:
5993 return io_async_cancel_prep(req, sqe);
5994 case IORING_OP_LINK_TIMEOUT:
5995 return io_timeout_prep(req, sqe, true);
5996 case IORING_OP_ACCEPT:
5997 return io_accept_prep(req, sqe);
5998 case IORING_OP_FALLOCATE:
5999 return io_fallocate_prep(req, sqe);
6000 case IORING_OP_OPENAT:
6001 return io_openat_prep(req, sqe);
6002 case IORING_OP_CLOSE:
6003 return io_close_prep(req, sqe);
6004 case IORING_OP_FILES_UPDATE:
6005 return io_files_update_prep(req, sqe);
6006 case IORING_OP_STATX:
6007 return io_statx_prep(req, sqe);
6008 case IORING_OP_FADVISE:
6009 return io_fadvise_prep(req, sqe);
6010 case IORING_OP_MADVISE:
6011 return io_madvise_prep(req, sqe);
6012 case IORING_OP_OPENAT2:
6013 return io_openat2_prep(req, sqe);
6014 case IORING_OP_EPOLL_CTL:
6015 return io_epoll_ctl_prep(req, sqe);
6016 case IORING_OP_SPLICE:
6017 return io_splice_prep(req, sqe);
6018 case IORING_OP_PROVIDE_BUFFERS:
6019 return io_provide_buffers_prep(req, sqe);
6020 case IORING_OP_REMOVE_BUFFERS:
6021 return io_remove_buffers_prep(req, sqe);
6023 return io_tee_prep(req, sqe);
6024 case IORING_OP_SHUTDOWN:
6025 return io_shutdown_prep(req, sqe);
6026 case IORING_OP_RENAMEAT:
6027 return io_renameat_prep(req, sqe);
6028 case IORING_OP_UNLINKAT:
6029 return io_unlinkat_prep(req, sqe);
6032 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6037 static int io_req_defer_prep(struct io_kiocb *req,
6038 const struct io_uring_sqe *sqe)
6042 if (io_alloc_async_data(req))
6044 return io_req_prep(req, sqe);
6047 static u32 io_get_sequence(struct io_kiocb *req)
6049 struct io_kiocb *pos;
6050 struct io_ring_ctx *ctx = req->ctx;
6051 u32 total_submitted, nr_reqs = 0;
6053 io_for_each_link(pos, req)
6056 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6057 return total_submitted - nr_reqs;
6060 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6062 struct io_ring_ctx *ctx = req->ctx;
6063 struct io_defer_entry *de;
6067 /* Still need defer if there is pending req in defer list. */
6068 if (likely(list_empty_careful(&ctx->defer_list) &&
6069 !(req->flags & REQ_F_IO_DRAIN)))
6072 seq = io_get_sequence(req);
6073 /* Still a chance to pass the sequence check */
6074 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6077 if (!req->async_data) {
6078 ret = io_req_defer_prep(req, sqe);
6082 io_prep_async_link(req);
6083 de = kmalloc(sizeof(*de), GFP_KERNEL);
6087 spin_lock_irq(&ctx->completion_lock);
6088 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6089 spin_unlock_irq(&ctx->completion_lock);
6091 io_queue_async_work(req);
6092 return -EIOCBQUEUED;
6095 trace_io_uring_defer(ctx, req, req->user_data);
6098 list_add_tail(&de->list, &ctx->defer_list);
6099 spin_unlock_irq(&ctx->completion_lock);
6100 return -EIOCBQUEUED;
6103 static void io_req_drop_files(struct io_kiocb *req)
6105 struct io_ring_ctx *ctx = req->ctx;
6106 struct io_uring_task *tctx = req->task->io_uring;
6107 unsigned long flags;
6109 put_files_struct(req->work.identity->files);
6110 put_nsproxy(req->work.identity->nsproxy);
6111 spin_lock_irqsave(&ctx->inflight_lock, flags);
6112 list_del(&req->inflight_entry);
6113 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6114 req->flags &= ~REQ_F_INFLIGHT;
6115 req->work.flags &= ~IO_WQ_WORK_FILES;
6116 if (atomic_read(&tctx->in_idle))
6117 wake_up(&tctx->wait);
6120 static void __io_clean_op(struct io_kiocb *req)
6122 if (req->flags & REQ_F_BUFFER_SELECTED) {
6123 switch (req->opcode) {
6124 case IORING_OP_READV:
6125 case IORING_OP_READ_FIXED:
6126 case IORING_OP_READ:
6127 kfree((void *)(unsigned long)req->rw.addr);
6129 case IORING_OP_RECVMSG:
6130 case IORING_OP_RECV:
6131 kfree(req->sr_msg.kbuf);
6134 req->flags &= ~REQ_F_BUFFER_SELECTED;
6137 if (req->flags & REQ_F_NEED_CLEANUP) {
6138 switch (req->opcode) {
6139 case IORING_OP_READV:
6140 case IORING_OP_READ_FIXED:
6141 case IORING_OP_READ:
6142 case IORING_OP_WRITEV:
6143 case IORING_OP_WRITE_FIXED:
6144 case IORING_OP_WRITE: {
6145 struct io_async_rw *io = req->async_data;
6147 kfree(io->free_iovec);
6150 case IORING_OP_RECVMSG:
6151 case IORING_OP_SENDMSG: {
6152 struct io_async_msghdr *io = req->async_data;
6153 if (io->iov != io->fast_iov)
6157 case IORING_OP_SPLICE:
6159 io_put_file(req, req->splice.file_in,
6160 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6162 case IORING_OP_OPENAT:
6163 case IORING_OP_OPENAT2:
6164 if (req->open.filename)
6165 putname(req->open.filename);
6167 case IORING_OP_RENAMEAT:
6168 putname(req->rename.oldpath);
6169 putname(req->rename.newpath);
6171 case IORING_OP_UNLINKAT:
6172 putname(req->unlink.filename);
6175 req->flags &= ~REQ_F_NEED_CLEANUP;
6178 if (req->flags & REQ_F_INFLIGHT)
6179 io_req_drop_files(req);
6182 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6183 struct io_comp_state *cs)
6185 struct io_ring_ctx *ctx = req->ctx;
6188 switch (req->opcode) {
6190 ret = io_nop(req, cs);
6192 case IORING_OP_READV:
6193 case IORING_OP_READ_FIXED:
6194 case IORING_OP_READ:
6195 ret = io_read(req, force_nonblock, cs);
6197 case IORING_OP_WRITEV:
6198 case IORING_OP_WRITE_FIXED:
6199 case IORING_OP_WRITE:
6200 ret = io_write(req, force_nonblock, cs);
6202 case IORING_OP_FSYNC:
6203 ret = io_fsync(req, force_nonblock);
6205 case IORING_OP_POLL_ADD:
6206 ret = io_poll_add(req);
6208 case IORING_OP_POLL_REMOVE:
6209 ret = io_poll_remove(req);
6211 case IORING_OP_SYNC_FILE_RANGE:
6212 ret = io_sync_file_range(req, force_nonblock);
6214 case IORING_OP_SENDMSG:
6215 ret = io_sendmsg(req, force_nonblock, cs);
6217 case IORING_OP_SEND:
6218 ret = io_send(req, force_nonblock, cs);
6220 case IORING_OP_RECVMSG:
6221 ret = io_recvmsg(req, force_nonblock, cs);
6223 case IORING_OP_RECV:
6224 ret = io_recv(req, force_nonblock, cs);
6226 case IORING_OP_TIMEOUT:
6227 ret = io_timeout(req);
6229 case IORING_OP_TIMEOUT_REMOVE:
6230 ret = io_timeout_remove(req);
6232 case IORING_OP_ACCEPT:
6233 ret = io_accept(req, force_nonblock, cs);
6235 case IORING_OP_CONNECT:
6236 ret = io_connect(req, force_nonblock, cs);
6238 case IORING_OP_ASYNC_CANCEL:
6239 ret = io_async_cancel(req);
6241 case IORING_OP_FALLOCATE:
6242 ret = io_fallocate(req, force_nonblock);
6244 case IORING_OP_OPENAT:
6245 ret = io_openat(req, force_nonblock);
6247 case IORING_OP_CLOSE:
6248 ret = io_close(req, force_nonblock, cs);
6250 case IORING_OP_FILES_UPDATE:
6251 ret = io_files_update(req, force_nonblock, cs);
6253 case IORING_OP_STATX:
6254 ret = io_statx(req, force_nonblock);
6256 case IORING_OP_FADVISE:
6257 ret = io_fadvise(req, force_nonblock);
6259 case IORING_OP_MADVISE:
6260 ret = io_madvise(req, force_nonblock);
6262 case IORING_OP_OPENAT2:
6263 ret = io_openat2(req, force_nonblock);
6265 case IORING_OP_EPOLL_CTL:
6266 ret = io_epoll_ctl(req, force_nonblock, cs);
6268 case IORING_OP_SPLICE:
6269 ret = io_splice(req, force_nonblock);
6271 case IORING_OP_PROVIDE_BUFFERS:
6272 ret = io_provide_buffers(req, force_nonblock, cs);
6274 case IORING_OP_REMOVE_BUFFERS:
6275 ret = io_remove_buffers(req, force_nonblock, cs);
6278 ret = io_tee(req, force_nonblock);
6280 case IORING_OP_SHUTDOWN:
6281 ret = io_shutdown(req, force_nonblock);
6283 case IORING_OP_RENAMEAT:
6284 ret = io_renameat(req, force_nonblock);
6286 case IORING_OP_UNLINKAT:
6287 ret = io_unlinkat(req, force_nonblock);
6297 /* If the op doesn't have a file, we're not polling for it */
6298 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6299 const bool in_async = io_wq_current_is_worker();
6301 /* workqueue context doesn't hold uring_lock, grab it now */
6303 mutex_lock(&ctx->uring_lock);
6305 io_iopoll_req_issued(req, in_async);
6308 mutex_unlock(&ctx->uring_lock);
6314 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6316 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6317 struct io_kiocb *timeout;
6320 timeout = io_prep_linked_timeout(req);
6322 io_queue_linked_timeout(timeout);
6324 /* if NO_CANCEL is set, we must still run the work */
6325 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6326 IO_WQ_WORK_CANCEL) {
6332 ret = io_issue_sqe(req, false, NULL);
6334 * We can get EAGAIN for polled IO even though we're
6335 * forcing a sync submission from here, since we can't
6336 * wait for request slots on the block side.
6345 struct io_ring_ctx *lock_ctx = NULL;
6347 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6348 lock_ctx = req->ctx;
6351 * io_iopoll_complete() does not hold completion_lock to
6352 * complete polled io, so here for polled io, we can not call
6353 * io_req_complete() directly, otherwise there maybe concurrent
6354 * access to cqring, defer_list, etc, which is not safe. Given
6355 * that io_iopoll_complete() is always called under uring_lock,
6356 * so here for polled io, we also get uring_lock to complete
6360 mutex_lock(&lock_ctx->uring_lock);
6362 req_set_fail_links(req);
6363 io_req_complete(req, ret);
6366 mutex_unlock(&lock_ctx->uring_lock);
6369 return io_steal_work(req);
6372 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6375 struct fixed_file_table *table;
6377 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6378 return table->files[index & IORING_FILE_TABLE_MASK];
6381 static struct file *io_file_get(struct io_submit_state *state,
6382 struct io_kiocb *req, int fd, bool fixed)
6384 struct io_ring_ctx *ctx = req->ctx;
6388 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6390 fd = array_index_nospec(fd, ctx->nr_user_files);
6391 file = io_file_from_index(ctx, fd);
6392 io_set_resource_node(req);
6394 trace_io_uring_file_get(ctx, fd);
6395 file = __io_file_get(state, fd);
6401 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6403 struct io_timeout_data *data = container_of(timer,
6404 struct io_timeout_data, timer);
6405 struct io_kiocb *prev, *req = data->req;
6406 struct io_ring_ctx *ctx = req->ctx;
6407 unsigned long flags;
6409 spin_lock_irqsave(&ctx->completion_lock, flags);
6410 prev = req->timeout.head;
6411 req->timeout.head = NULL;
6414 * We don't expect the list to be empty, that will only happen if we
6415 * race with the completion of the linked work.
6417 if (prev && refcount_inc_not_zero(&prev->refs))
6418 io_remove_next_linked(prev);
6421 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6424 req_set_fail_links(prev);
6425 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6428 io_req_complete(req, -ETIME);
6430 return HRTIMER_NORESTART;
6433 static void __io_queue_linked_timeout(struct io_kiocb *req)
6436 * If the back reference is NULL, then our linked request finished
6437 * before we got a chance to setup the timer
6439 if (req->timeout.head) {
6440 struct io_timeout_data *data = req->async_data;
6442 data->timer.function = io_link_timeout_fn;
6443 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6448 static void io_queue_linked_timeout(struct io_kiocb *req)
6450 struct io_ring_ctx *ctx = req->ctx;
6452 spin_lock_irq(&ctx->completion_lock);
6453 __io_queue_linked_timeout(req);
6454 spin_unlock_irq(&ctx->completion_lock);
6456 /* drop submission reference */
6460 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6462 struct io_kiocb *nxt = req->link;
6464 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6465 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6468 nxt->timeout.head = req;
6469 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6470 req->flags |= REQ_F_LINK_TIMEOUT;
6474 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6476 struct io_kiocb *linked_timeout;
6477 const struct cred *old_creds = NULL;
6481 linked_timeout = io_prep_linked_timeout(req);
6483 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6484 (req->work.flags & IO_WQ_WORK_CREDS) &&
6485 req->work.identity->creds != current_cred()) {
6487 revert_creds(old_creds);
6488 if (old_creds == req->work.identity->creds)
6489 old_creds = NULL; /* restored original creds */
6491 old_creds = override_creds(req->work.identity->creds);
6494 ret = io_issue_sqe(req, true, cs);
6497 * We async punt it if the file wasn't marked NOWAIT, or if the file
6498 * doesn't support non-blocking read/write attempts
6500 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6501 if (!io_arm_poll_handler(req)) {
6503 * Queued up for async execution, worker will release
6504 * submit reference when the iocb is actually submitted.
6506 io_queue_async_work(req);
6510 io_queue_linked_timeout(linked_timeout);
6511 } else if (likely(!ret)) {
6512 /* drop submission reference */
6513 req = io_put_req_find_next(req);
6515 io_queue_linked_timeout(linked_timeout);
6518 if (!(req->flags & REQ_F_FORCE_ASYNC))
6520 io_queue_async_work(req);
6523 /* un-prep timeout, so it'll be killed as any other linked */
6524 req->flags &= ~REQ_F_LINK_TIMEOUT;
6525 req_set_fail_links(req);
6527 io_req_complete(req, ret);
6531 revert_creds(old_creds);
6534 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6535 struct io_comp_state *cs)
6539 ret = io_req_defer(req, sqe);
6541 if (ret != -EIOCBQUEUED) {
6543 req_set_fail_links(req);
6545 io_req_complete(req, ret);
6547 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6548 if (!req->async_data) {
6549 ret = io_req_defer_prep(req, sqe);
6553 io_queue_async_work(req);
6556 ret = io_req_prep(req, sqe);
6560 __io_queue_sqe(req, cs);
6564 static inline void io_queue_link_head(struct io_kiocb *req,
6565 struct io_comp_state *cs)
6567 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6569 io_req_complete(req, -ECANCELED);
6571 io_queue_sqe(req, NULL, cs);
6574 struct io_submit_link {
6575 struct io_kiocb *head;
6576 struct io_kiocb *last;
6579 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6580 struct io_submit_link *link, struct io_comp_state *cs)
6582 struct io_ring_ctx *ctx = req->ctx;
6586 * If we already have a head request, queue this one for async
6587 * submittal once the head completes. If we don't have a head but
6588 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6589 * submitted sync once the chain is complete. If none of those
6590 * conditions are true (normal request), then just queue it.
6593 struct io_kiocb *head = link->head;
6596 * Taking sequential execution of a link, draining both sides
6597 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6598 * requests in the link. So, it drains the head and the
6599 * next after the link request. The last one is done via
6600 * drain_next flag to persist the effect across calls.
6602 if (req->flags & REQ_F_IO_DRAIN) {
6603 head->flags |= REQ_F_IO_DRAIN;
6604 ctx->drain_next = 1;
6606 ret = io_req_defer_prep(req, sqe);
6607 if (unlikely(ret)) {
6608 /* fail even hard links since we don't submit */
6609 head->flags |= REQ_F_FAIL_LINK;
6612 trace_io_uring_link(ctx, req, head);
6613 link->last->link = req;
6616 /* last request of a link, enqueue the link */
6617 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6618 io_queue_link_head(head, cs);
6622 if (unlikely(ctx->drain_next)) {
6623 req->flags |= REQ_F_IO_DRAIN;
6624 ctx->drain_next = 0;
6626 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6627 ret = io_req_defer_prep(req, sqe);
6629 req->flags |= REQ_F_FAIL_LINK;
6633 io_queue_sqe(req, sqe, cs);
6641 * Batched submission is done, ensure local IO is flushed out.
6643 static void io_submit_state_end(struct io_submit_state *state)
6645 if (!list_empty(&state->comp.list))
6646 io_submit_flush_completions(&state->comp);
6647 if (state->plug_started)
6648 blk_finish_plug(&state->plug);
6649 io_state_file_put(state);
6650 if (state->free_reqs)
6651 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6655 * Start submission side cache.
6657 static void io_submit_state_start(struct io_submit_state *state,
6658 struct io_ring_ctx *ctx, unsigned int max_ios)
6660 state->plug_started = false;
6662 INIT_LIST_HEAD(&state->comp.list);
6663 state->comp.ctx = ctx;
6664 state->free_reqs = 0;
6665 state->file_refs = 0;
6666 state->ios_left = max_ios;
6669 static void io_commit_sqring(struct io_ring_ctx *ctx)
6671 struct io_rings *rings = ctx->rings;
6674 * Ensure any loads from the SQEs are done at this point,
6675 * since once we write the new head, the application could
6676 * write new data to them.
6678 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6682 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6683 * that is mapped by userspace. This means that care needs to be taken to
6684 * ensure that reads are stable, as we cannot rely on userspace always
6685 * being a good citizen. If members of the sqe are validated and then later
6686 * used, it's important that those reads are done through READ_ONCE() to
6687 * prevent a re-load down the line.
6689 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6691 u32 *sq_array = ctx->sq_array;
6695 * The cached sq head (or cq tail) serves two purposes:
6697 * 1) allows us to batch the cost of updating the user visible
6699 * 2) allows the kernel side to track the head on its own, even
6700 * though the application is the one updating it.
6702 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6703 if (likely(head < ctx->sq_entries))
6704 return &ctx->sq_sqes[head];
6706 /* drop invalid entries */
6707 ctx->cached_sq_dropped++;
6708 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6712 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6714 ctx->cached_sq_head++;
6718 * Check SQE restrictions (opcode and flags).
6720 * Returns 'true' if SQE is allowed, 'false' otherwise.
6722 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6723 struct io_kiocb *req,
6724 unsigned int sqe_flags)
6726 if (!ctx->restricted)
6729 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6732 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6733 ctx->restrictions.sqe_flags_required)
6736 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6737 ctx->restrictions.sqe_flags_required))
6743 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6744 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6745 IOSQE_BUFFER_SELECT)
6747 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6748 const struct io_uring_sqe *sqe,
6749 struct io_submit_state *state)
6751 unsigned int sqe_flags;
6754 req->opcode = READ_ONCE(sqe->opcode);
6755 req->user_data = READ_ONCE(sqe->user_data);
6756 req->async_data = NULL;
6761 req->fixed_file_refs = NULL;
6762 /* one is dropped after submission, the other at completion */
6763 refcount_set(&req->refs, 2);
6764 req->task = current;
6767 if (unlikely(req->opcode >= IORING_OP_LAST))
6770 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6773 sqe_flags = READ_ONCE(sqe->flags);
6774 /* enforce forwards compatibility on users */
6775 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6778 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6781 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6782 !io_op_defs[req->opcode].buffer_select)
6785 id = READ_ONCE(sqe->personality);
6787 struct io_identity *iod;
6789 iod = idr_find(&ctx->personality_idr, id);
6792 refcount_inc(&iod->count);
6794 __io_req_init_async(req);
6795 get_cred(iod->creds);
6796 req->work.identity = iod;
6797 req->work.flags |= IO_WQ_WORK_CREDS;
6800 /* same numerical values with corresponding REQ_F_*, safe to copy */
6801 req->flags |= sqe_flags;
6804 * Plug now if we have more than 1 IO left after this, and the target
6805 * is potentially a read/write to block based storage.
6807 if (!state->plug_started && state->ios_left > 1 &&
6808 io_op_defs[req->opcode].plug) {
6809 blk_start_plug(&state->plug);
6810 state->plug_started = true;
6814 if (io_op_defs[req->opcode].needs_file) {
6815 bool fixed = req->flags & REQ_F_FIXED_FILE;
6817 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6818 if (unlikely(!req->file &&
6819 !io_op_defs[req->opcode].needs_file_no_error))
6827 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6829 struct io_submit_state state;
6830 struct io_submit_link link;
6831 int i, submitted = 0;
6833 /* if we have a backlog and couldn't flush it all, return BUSY */
6834 if (test_bit(0, &ctx->sq_check_overflow)) {
6835 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6839 /* make sure SQ entry isn't read before tail */
6840 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6842 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6845 percpu_counter_add(¤t->io_uring->inflight, nr);
6846 refcount_add(nr, ¤t->usage);
6848 io_submit_state_start(&state, ctx, nr);
6851 for (i = 0; i < nr; i++) {
6852 const struct io_uring_sqe *sqe;
6853 struct io_kiocb *req;
6856 sqe = io_get_sqe(ctx);
6857 if (unlikely(!sqe)) {
6858 io_consume_sqe(ctx);
6861 req = io_alloc_req(ctx, &state);
6862 if (unlikely(!req)) {
6864 submitted = -EAGAIN;
6867 io_consume_sqe(ctx);
6868 /* will complete beyond this point, count as submitted */
6871 err = io_init_req(ctx, req, sqe, &state);
6872 if (unlikely(err)) {
6875 io_req_complete(req, err);
6879 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6880 true, io_async_submit(ctx));
6881 err = io_submit_sqe(req, sqe, &link, &state.comp);
6886 if (unlikely(submitted != nr)) {
6887 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6888 struct io_uring_task *tctx = current->io_uring;
6889 int unused = nr - ref_used;
6891 percpu_ref_put_many(&ctx->refs, unused);
6892 percpu_counter_sub(&tctx->inflight, unused);
6893 put_task_struct_many(current, unused);
6896 io_queue_link_head(link.head, &state.comp);
6897 io_submit_state_end(&state);
6899 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6900 io_commit_sqring(ctx);
6905 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6907 /* Tell userspace we may need a wakeup call */
6908 spin_lock_irq(&ctx->completion_lock);
6909 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6910 spin_unlock_irq(&ctx->completion_lock);
6913 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6915 spin_lock_irq(&ctx->completion_lock);
6916 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6917 spin_unlock_irq(&ctx->completion_lock);
6920 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6922 unsigned int to_submit;
6925 to_submit = io_sqring_entries(ctx);
6926 /* if we're handling multiple rings, cap submit size for fairness */
6927 if (cap_entries && to_submit > 8)
6930 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6931 unsigned nr_events = 0;
6933 mutex_lock(&ctx->uring_lock);
6934 if (!list_empty(&ctx->iopoll_list))
6935 io_do_iopoll(ctx, &nr_events, 0);
6937 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)))
6938 ret = io_submit_sqes(ctx, to_submit);
6939 mutex_unlock(&ctx->uring_lock);
6942 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6943 wake_up(&ctx->sqo_sq_wait);
6948 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6950 struct io_ring_ctx *ctx;
6951 unsigned sq_thread_idle = 0;
6953 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6954 if (sq_thread_idle < ctx->sq_thread_idle)
6955 sq_thread_idle = ctx->sq_thread_idle;
6958 sqd->sq_thread_idle = sq_thread_idle;
6961 static void io_sqd_init_new(struct io_sq_data *sqd)
6963 struct io_ring_ctx *ctx;
6965 while (!list_empty(&sqd->ctx_new_list)) {
6966 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6967 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6968 complete(&ctx->sq_thread_comp);
6971 io_sqd_update_thread_idle(sqd);
6974 static int io_sq_thread(void *data)
6976 struct cgroup_subsys_state *cur_css = NULL;
6977 struct files_struct *old_files = current->files;
6978 struct nsproxy *old_nsproxy = current->nsproxy;
6979 const struct cred *old_cred = NULL;
6980 struct io_sq_data *sqd = data;
6981 struct io_ring_ctx *ctx;
6982 unsigned long timeout = 0;
6986 current->files = NULL;
6987 current->nsproxy = NULL;
6988 task_unlock(current);
6990 while (!kthread_should_stop()) {
6992 bool cap_entries, sqt_spin, needs_sched;
6995 * Any changes to the sqd lists are synchronized through the
6996 * kthread parking. This synchronizes the thread vs users,
6997 * the users are synchronized on the sqd->ctx_lock.
6999 if (kthread_should_park()) {
7002 * When sq thread is unparked, in case the previous park operation
7003 * comes from io_put_sq_data(), which means that sq thread is going
7004 * to be stopped, so here needs to have a check.
7006 if (kthread_should_stop())
7010 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7011 io_sqd_init_new(sqd);
7012 timeout = jiffies + sqd->sq_thread_idle;
7016 cap_entries = !list_is_singular(&sqd->ctx_list);
7017 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7018 if (current->cred != ctx->creds) {
7020 revert_creds(old_cred);
7021 old_cred = override_creds(ctx->creds);
7023 io_sq_thread_associate_blkcg(ctx, &cur_css);
7025 current->loginuid = ctx->loginuid;
7026 current->sessionid = ctx->sessionid;
7029 ret = __io_sq_thread(ctx, cap_entries);
7030 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7033 io_sq_thread_drop_mm_files();
7036 if (sqt_spin || !time_after(jiffies, timeout)) {
7040 timeout = jiffies + sqd->sq_thread_idle;
7044 if (kthread_should_park())
7048 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7049 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7050 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7051 !list_empty_careful(&ctx->iopoll_list)) {
7052 needs_sched = false;
7055 if (io_sqring_entries(ctx)) {
7056 needs_sched = false;
7062 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7063 io_ring_set_wakeup_flag(ctx);
7066 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7067 io_ring_clear_wakeup_flag(ctx);
7070 finish_wait(&sqd->wait, &wait);
7071 timeout = jiffies + sqd->sq_thread_idle;
7077 io_sq_thread_unassociate_blkcg();
7079 revert_creds(old_cred);
7082 current->files = old_files;
7083 current->nsproxy = old_nsproxy;
7084 task_unlock(current);
7091 struct io_wait_queue {
7092 struct wait_queue_entry wq;
7093 struct io_ring_ctx *ctx;
7095 unsigned nr_timeouts;
7098 static inline bool io_should_wake(struct io_wait_queue *iowq)
7100 struct io_ring_ctx *ctx = iowq->ctx;
7103 * Wake up if we have enough events, or if a timeout occurred since we
7104 * started waiting. For timeouts, we always want to return to userspace,
7105 * regardless of event count.
7107 return io_cqring_events(ctx) >= iowq->to_wait ||
7108 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7111 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7112 int wake_flags, void *key)
7114 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7118 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7119 * the task, and the next invocation will do it.
7121 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7122 return autoremove_wake_function(curr, mode, wake_flags, key);
7126 static int io_run_task_work_sig(void)
7128 if (io_run_task_work())
7130 if (!signal_pending(current))
7132 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7133 return -ERESTARTSYS;
7138 * Wait until events become available, if we don't already have some. The
7139 * application must reap them itself, as they reside on the shared cq ring.
7141 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7142 const sigset_t __user *sig, size_t sigsz,
7143 struct __kernel_timespec __user *uts)
7145 struct io_wait_queue iowq = {
7148 .func = io_wake_function,
7149 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7152 .to_wait = min_events,
7154 struct io_rings *rings = ctx->rings;
7155 struct timespec64 ts;
7156 signed long timeout = 0;
7160 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7161 if (io_cqring_events(ctx) >= min_events)
7163 if (!io_run_task_work())
7168 #ifdef CONFIG_COMPAT
7169 if (in_compat_syscall())
7170 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7174 ret = set_user_sigmask(sig, sigsz);
7181 if (get_timespec64(&ts, uts))
7183 timeout = timespec64_to_jiffies(&ts);
7186 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7187 trace_io_uring_cqring_wait(ctx, min_events);
7189 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7190 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7191 TASK_INTERRUPTIBLE);
7192 /* make sure we run task_work before checking for signals */
7193 ret = io_run_task_work_sig();
7198 if (io_should_wake(&iowq))
7200 if (test_bit(0, &ctx->cq_check_overflow))
7203 timeout = schedule_timeout(timeout);
7212 finish_wait(&ctx->wait, &iowq.wq);
7214 restore_saved_sigmask_unless(ret == -EINTR);
7216 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7219 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7221 #if defined(CONFIG_UNIX)
7222 if (ctx->ring_sock) {
7223 struct sock *sock = ctx->ring_sock->sk;
7224 struct sk_buff *skb;
7226 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7232 for (i = 0; i < ctx->nr_user_files; i++) {
7235 file = io_file_from_index(ctx, i);
7242 static void io_file_ref_kill(struct percpu_ref *ref)
7244 struct fixed_file_data *data;
7246 data = container_of(ref, struct fixed_file_data, refs);
7247 complete(&data->done);
7250 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7251 struct fixed_file_ref_node *ref_node)
7253 spin_lock_bh(&file_data->lock);
7254 file_data->node = ref_node;
7255 list_add_tail(&ref_node->node, &file_data->ref_list);
7256 spin_unlock_bh(&file_data->lock);
7257 percpu_ref_get(&file_data->refs);
7260 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7262 struct fixed_file_data *data = ctx->file_data;
7263 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7264 unsigned nr_tables, i;
7269 backup_node = alloc_fixed_file_ref_node(ctx);
7273 spin_lock_bh(&data->lock);
7274 ref_node = data->node;
7275 spin_unlock_bh(&data->lock);
7277 percpu_ref_kill(&ref_node->refs);
7279 percpu_ref_kill(&data->refs);
7281 /* wait for all refs nodes to complete */
7282 flush_delayed_work(&ctx->file_put_work);
7284 ret = wait_for_completion_interruptible(&data->done);
7287 ret = io_run_task_work_sig();
7289 percpu_ref_resurrect(&data->refs);
7290 reinit_completion(&data->done);
7291 io_sqe_files_set_node(data, backup_node);
7296 __io_sqe_files_unregister(ctx);
7297 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7298 for (i = 0; i < nr_tables; i++)
7299 kfree(data->table[i].files);
7301 percpu_ref_exit(&data->refs);
7303 ctx->file_data = NULL;
7304 ctx->nr_user_files = 0;
7305 destroy_fixed_file_ref_node(backup_node);
7309 static void io_put_sq_data(struct io_sq_data *sqd)
7311 if (refcount_dec_and_test(&sqd->refs)) {
7313 * The park is a bit of a work-around, without it we get
7314 * warning spews on shutdown with SQPOLL set and affinity
7315 * set to a single CPU.
7318 kthread_park(sqd->thread);
7319 kthread_stop(sqd->thread);
7326 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7328 struct io_ring_ctx *ctx_attach;
7329 struct io_sq_data *sqd;
7332 f = fdget(p->wq_fd);
7334 return ERR_PTR(-ENXIO);
7335 if (f.file->f_op != &io_uring_fops) {
7337 return ERR_PTR(-EINVAL);
7340 ctx_attach = f.file->private_data;
7341 sqd = ctx_attach->sq_data;
7344 return ERR_PTR(-EINVAL);
7347 refcount_inc(&sqd->refs);
7352 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7354 struct io_sq_data *sqd;
7356 if (p->flags & IORING_SETUP_ATTACH_WQ)
7357 return io_attach_sq_data(p);
7359 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7361 return ERR_PTR(-ENOMEM);
7363 refcount_set(&sqd->refs, 1);
7364 INIT_LIST_HEAD(&sqd->ctx_list);
7365 INIT_LIST_HEAD(&sqd->ctx_new_list);
7366 mutex_init(&sqd->ctx_lock);
7367 mutex_init(&sqd->lock);
7368 init_waitqueue_head(&sqd->wait);
7372 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7373 __releases(&sqd->lock)
7377 kthread_unpark(sqd->thread);
7378 mutex_unlock(&sqd->lock);
7381 static void io_sq_thread_park(struct io_sq_data *sqd)
7382 __acquires(&sqd->lock)
7386 mutex_lock(&sqd->lock);
7387 kthread_park(sqd->thread);
7390 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7392 struct io_sq_data *sqd = ctx->sq_data;
7397 * We may arrive here from the error branch in
7398 * io_sq_offload_create() where the kthread is created
7399 * without being waked up, thus wake it up now to make
7400 * sure the wait will complete.
7402 wake_up_process(sqd->thread);
7403 wait_for_completion(&ctx->sq_thread_comp);
7405 io_sq_thread_park(sqd);
7408 mutex_lock(&sqd->ctx_lock);
7409 list_del(&ctx->sqd_list);
7410 io_sqd_update_thread_idle(sqd);
7411 mutex_unlock(&sqd->ctx_lock);
7414 io_sq_thread_unpark(sqd);
7416 io_put_sq_data(sqd);
7417 ctx->sq_data = NULL;
7421 static void io_finish_async(struct io_ring_ctx *ctx)
7423 io_sq_thread_stop(ctx);
7426 io_wq_destroy(ctx->io_wq);
7431 #if defined(CONFIG_UNIX)
7433 * Ensure the UNIX gc is aware of our file set, so we are certain that
7434 * the io_uring can be safely unregistered on process exit, even if we have
7435 * loops in the file referencing.
7437 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7439 struct sock *sk = ctx->ring_sock->sk;
7440 struct scm_fp_list *fpl;
7441 struct sk_buff *skb;
7444 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7448 skb = alloc_skb(0, GFP_KERNEL);
7457 fpl->user = get_uid(ctx->user);
7458 for (i = 0; i < nr; i++) {
7459 struct file *file = io_file_from_index(ctx, i + offset);
7463 fpl->fp[nr_files] = get_file(file);
7464 unix_inflight(fpl->user, fpl->fp[nr_files]);
7469 fpl->max = SCM_MAX_FD;
7470 fpl->count = nr_files;
7471 UNIXCB(skb).fp = fpl;
7472 skb->destructor = unix_destruct_scm;
7473 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7474 skb_queue_head(&sk->sk_receive_queue, skb);
7476 for (i = 0; i < nr_files; i++)
7487 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7488 * causes regular reference counting to break down. We rely on the UNIX
7489 * garbage collection to take care of this problem for us.
7491 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7493 unsigned left, total;
7497 left = ctx->nr_user_files;
7499 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7501 ret = __io_sqe_files_scm(ctx, this_files, total);
7505 total += this_files;
7511 while (total < ctx->nr_user_files) {
7512 struct file *file = io_file_from_index(ctx, total);
7522 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7528 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7529 unsigned nr_tables, unsigned nr_files)
7533 for (i = 0; i < nr_tables; i++) {
7534 struct fixed_file_table *table = &file_data->table[i];
7535 unsigned this_files;
7537 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7538 table->files = kcalloc(this_files, sizeof(struct file *),
7542 nr_files -= this_files;
7548 for (i = 0; i < nr_tables; i++) {
7549 struct fixed_file_table *table = &file_data->table[i];
7550 kfree(table->files);
7555 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7557 #if defined(CONFIG_UNIX)
7558 struct sock *sock = ctx->ring_sock->sk;
7559 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7560 struct sk_buff *skb;
7563 __skb_queue_head_init(&list);
7566 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7567 * remove this entry and rearrange the file array.
7569 skb = skb_dequeue(head);
7571 struct scm_fp_list *fp;
7573 fp = UNIXCB(skb).fp;
7574 for (i = 0; i < fp->count; i++) {
7577 if (fp->fp[i] != file)
7580 unix_notinflight(fp->user, fp->fp[i]);
7581 left = fp->count - 1 - i;
7583 memmove(&fp->fp[i], &fp->fp[i + 1],
7584 left * sizeof(struct file *));
7591 __skb_queue_tail(&list, skb);
7601 __skb_queue_tail(&list, skb);
7603 skb = skb_dequeue(head);
7606 if (skb_peek(&list)) {
7607 spin_lock_irq(&head->lock);
7608 while ((skb = __skb_dequeue(&list)) != NULL)
7609 __skb_queue_tail(head, skb);
7610 spin_unlock_irq(&head->lock);
7617 struct io_file_put {
7618 struct list_head list;
7622 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7624 struct fixed_file_data *file_data = ref_node->file_data;
7625 struct io_ring_ctx *ctx = file_data->ctx;
7626 struct io_file_put *pfile, *tmp;
7628 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7629 list_del(&pfile->list);
7630 io_ring_file_put(ctx, pfile->file);
7634 percpu_ref_exit(&ref_node->refs);
7636 percpu_ref_put(&file_data->refs);
7639 static void io_file_put_work(struct work_struct *work)
7641 struct io_ring_ctx *ctx;
7642 struct llist_node *node;
7644 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7645 node = llist_del_all(&ctx->file_put_llist);
7648 struct fixed_file_ref_node *ref_node;
7649 struct llist_node *next = node->next;
7651 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7652 __io_file_put_work(ref_node);
7657 static void io_file_data_ref_zero(struct percpu_ref *ref)
7659 struct fixed_file_ref_node *ref_node;
7660 struct fixed_file_data *data;
7661 struct io_ring_ctx *ctx;
7662 bool first_add = false;
7665 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7666 data = ref_node->file_data;
7669 spin_lock_bh(&data->lock);
7670 ref_node->done = true;
7672 while (!list_empty(&data->ref_list)) {
7673 ref_node = list_first_entry(&data->ref_list,
7674 struct fixed_file_ref_node, node);
7675 /* recycle ref nodes in order */
7676 if (!ref_node->done)
7678 list_del(&ref_node->node);
7679 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7681 spin_unlock_bh(&data->lock);
7683 if (percpu_ref_is_dying(&data->refs))
7687 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7689 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7692 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7693 struct io_ring_ctx *ctx)
7695 struct fixed_file_ref_node *ref_node;
7697 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7701 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7706 INIT_LIST_HEAD(&ref_node->node);
7707 INIT_LIST_HEAD(&ref_node->file_list);
7708 ref_node->file_data = ctx->file_data;
7709 ref_node->done = false;
7713 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7715 percpu_ref_exit(&ref_node->refs);
7719 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7722 __s32 __user *fds = (__s32 __user *) arg;
7723 unsigned nr_tables, i;
7725 int fd, ret = -ENOMEM;
7726 struct fixed_file_ref_node *ref_node;
7727 struct fixed_file_data *file_data;
7733 if (nr_args > IORING_MAX_FIXED_FILES)
7736 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7739 file_data->ctx = ctx;
7740 init_completion(&file_data->done);
7741 INIT_LIST_HEAD(&file_data->ref_list);
7742 spin_lock_init(&file_data->lock);
7744 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7745 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7747 if (!file_data->table)
7750 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7751 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7754 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7756 ctx->file_data = file_data;
7758 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7759 struct fixed_file_table *table;
7762 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7766 /* allow sparse sets */
7776 * Don't allow io_uring instances to be registered. If UNIX
7777 * isn't enabled, then this causes a reference cycle and this
7778 * instance can never get freed. If UNIX is enabled we'll
7779 * handle it just fine, but there's still no point in allowing
7780 * a ring fd as it doesn't support regular read/write anyway.
7782 if (file->f_op == &io_uring_fops) {
7786 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7787 index = i & IORING_FILE_TABLE_MASK;
7788 table->files[index] = file;
7791 ret = io_sqe_files_scm(ctx);
7793 io_sqe_files_unregister(ctx);
7797 ref_node = alloc_fixed_file_ref_node(ctx);
7799 io_sqe_files_unregister(ctx);
7803 io_sqe_files_set_node(file_data, ref_node);
7806 for (i = 0; i < ctx->nr_user_files; i++) {
7807 file = io_file_from_index(ctx, i);
7811 for (i = 0; i < nr_tables; i++)
7812 kfree(file_data->table[i].files);
7813 ctx->nr_user_files = 0;
7815 percpu_ref_exit(&file_data->refs);
7817 kfree(file_data->table);
7819 ctx->file_data = NULL;
7823 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7826 #if defined(CONFIG_UNIX)
7827 struct sock *sock = ctx->ring_sock->sk;
7828 struct sk_buff_head *head = &sock->sk_receive_queue;
7829 struct sk_buff *skb;
7832 * See if we can merge this file into an existing skb SCM_RIGHTS
7833 * file set. If there's no room, fall back to allocating a new skb
7834 * and filling it in.
7836 spin_lock_irq(&head->lock);
7837 skb = skb_peek(head);
7839 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7841 if (fpl->count < SCM_MAX_FD) {
7842 __skb_unlink(skb, head);
7843 spin_unlock_irq(&head->lock);
7844 fpl->fp[fpl->count] = get_file(file);
7845 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7847 spin_lock_irq(&head->lock);
7848 __skb_queue_head(head, skb);
7853 spin_unlock_irq(&head->lock);
7860 return __io_sqe_files_scm(ctx, 1, index);
7866 static int io_queue_file_removal(struct fixed_file_data *data,
7869 struct io_file_put *pfile;
7870 struct fixed_file_ref_node *ref_node = data->node;
7872 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7877 list_add(&pfile->list, &ref_node->file_list);
7882 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7883 struct io_uring_files_update *up,
7886 struct fixed_file_data *data = ctx->file_data;
7887 struct fixed_file_ref_node *ref_node;
7892 bool needs_switch = false;
7894 if (check_add_overflow(up->offset, nr_args, &done))
7896 if (done > ctx->nr_user_files)
7899 ref_node = alloc_fixed_file_ref_node(ctx);
7904 fds = u64_to_user_ptr(up->fds);
7906 struct fixed_file_table *table;
7910 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7914 i = array_index_nospec(up->offset, ctx->nr_user_files);
7915 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7916 index = i & IORING_FILE_TABLE_MASK;
7917 if (table->files[index]) {
7918 file = table->files[index];
7919 err = io_queue_file_removal(data, file);
7922 table->files[index] = NULL;
7923 needs_switch = true;
7932 * Don't allow io_uring instances to be registered. If
7933 * UNIX isn't enabled, then this causes a reference
7934 * cycle and this instance can never get freed. If UNIX
7935 * is enabled we'll handle it just fine, but there's
7936 * still no point in allowing a ring fd as it doesn't
7937 * support regular read/write anyway.
7939 if (file->f_op == &io_uring_fops) {
7944 table->files[index] = file;
7945 err = io_sqe_file_register(ctx, file, i);
7947 table->files[index] = NULL;
7958 percpu_ref_kill(&data->node->refs);
7959 io_sqe_files_set_node(data, ref_node);
7961 destroy_fixed_file_ref_node(ref_node);
7963 return done ? done : err;
7966 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7969 struct io_uring_files_update up;
7971 if (!ctx->file_data)
7975 if (copy_from_user(&up, arg, sizeof(up)))
7980 return __io_sqe_files_update(ctx, &up, nr_args);
7983 static void io_free_work(struct io_wq_work *work)
7985 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7987 /* Consider that io_steal_work() relies on this ref */
7991 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7992 struct io_uring_params *p)
7994 struct io_wq_data data;
7996 struct io_ring_ctx *ctx_attach;
7997 unsigned int concurrency;
8000 data.user = ctx->user;
8001 data.free_work = io_free_work;
8002 data.do_work = io_wq_submit_work;
8004 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8005 /* Do QD, or 4 * CPUS, whatever is smallest */
8006 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8008 ctx->io_wq = io_wq_create(concurrency, &data);
8009 if (IS_ERR(ctx->io_wq)) {
8010 ret = PTR_ERR(ctx->io_wq);
8016 f = fdget(p->wq_fd);
8020 if (f.file->f_op != &io_uring_fops) {
8025 ctx_attach = f.file->private_data;
8026 /* @io_wq is protected by holding the fd */
8027 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8032 ctx->io_wq = ctx_attach->io_wq;
8038 static int io_uring_alloc_task_context(struct task_struct *task)
8040 struct io_uring_task *tctx;
8043 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8044 if (unlikely(!tctx))
8047 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8048 if (unlikely(ret)) {
8054 init_waitqueue_head(&tctx->wait);
8056 atomic_set(&tctx->in_idle, 0);
8057 tctx->sqpoll = false;
8058 io_init_identity(&tctx->__identity);
8059 tctx->identity = &tctx->__identity;
8060 task->io_uring = tctx;
8064 void __io_uring_free(struct task_struct *tsk)
8066 struct io_uring_task *tctx = tsk->io_uring;
8068 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8069 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8070 if (tctx->identity != &tctx->__identity)
8071 kfree(tctx->identity);
8072 percpu_counter_destroy(&tctx->inflight);
8074 tsk->io_uring = NULL;
8077 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8078 struct io_uring_params *p)
8082 if (ctx->flags & IORING_SETUP_SQPOLL) {
8083 struct io_sq_data *sqd;
8086 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8089 sqd = io_get_sq_data(p);
8096 io_sq_thread_park(sqd);
8097 mutex_lock(&sqd->ctx_lock);
8098 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8099 mutex_unlock(&sqd->ctx_lock);
8100 io_sq_thread_unpark(sqd);
8102 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8103 if (!ctx->sq_thread_idle)
8104 ctx->sq_thread_idle = HZ;
8109 if (p->flags & IORING_SETUP_SQ_AFF) {
8110 int cpu = p->sq_thread_cpu;
8113 if (cpu >= nr_cpu_ids)
8115 if (!cpu_online(cpu))
8118 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8119 cpu, "io_uring-sq");
8121 sqd->thread = kthread_create(io_sq_thread, sqd,
8124 if (IS_ERR(sqd->thread)) {
8125 ret = PTR_ERR(sqd->thread);
8129 ret = io_uring_alloc_task_context(sqd->thread);
8132 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8133 /* Can't have SQ_AFF without SQPOLL */
8139 ret = io_init_wq_offload(ctx, p);
8145 io_finish_async(ctx);
8149 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8151 struct io_sq_data *sqd = ctx->sq_data;
8153 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8154 wake_up_process(sqd->thread);
8157 static inline void __io_unaccount_mem(struct user_struct *user,
8158 unsigned long nr_pages)
8160 atomic_long_sub(nr_pages, &user->locked_vm);
8163 static inline int __io_account_mem(struct user_struct *user,
8164 unsigned long nr_pages)
8166 unsigned long page_limit, cur_pages, new_pages;
8168 /* Don't allow more pages than we can safely lock */
8169 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8172 cur_pages = atomic_long_read(&user->locked_vm);
8173 new_pages = cur_pages + nr_pages;
8174 if (new_pages > page_limit)
8176 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8177 new_pages) != cur_pages);
8182 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8183 enum io_mem_account acct)
8186 __io_unaccount_mem(ctx->user, nr_pages);
8188 if (ctx->mm_account) {
8189 if (acct == ACCT_LOCKED) {
8190 mmap_write_lock(ctx->mm_account);
8191 ctx->mm_account->locked_vm -= nr_pages;
8192 mmap_write_unlock(ctx->mm_account);
8193 }else if (acct == ACCT_PINNED) {
8194 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8199 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8200 enum io_mem_account acct)
8204 if (ctx->limit_mem) {
8205 ret = __io_account_mem(ctx->user, nr_pages);
8210 if (ctx->mm_account) {
8211 if (acct == ACCT_LOCKED) {
8212 mmap_write_lock(ctx->mm_account);
8213 ctx->mm_account->locked_vm += nr_pages;
8214 mmap_write_unlock(ctx->mm_account);
8215 } else if (acct == ACCT_PINNED) {
8216 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8223 static void io_mem_free(void *ptr)
8230 page = virt_to_head_page(ptr);
8231 if (put_page_testzero(page))
8232 free_compound_page(page);
8235 static void *io_mem_alloc(size_t size)
8237 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8240 return (void *) __get_free_pages(gfp_flags, get_order(size));
8243 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8246 struct io_rings *rings;
8247 size_t off, sq_array_size;
8249 off = struct_size(rings, cqes, cq_entries);
8250 if (off == SIZE_MAX)
8254 off = ALIGN(off, SMP_CACHE_BYTES);
8262 sq_array_size = array_size(sizeof(u32), sq_entries);
8263 if (sq_array_size == SIZE_MAX)
8266 if (check_add_overflow(off, sq_array_size, &off))
8272 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8276 pages = (size_t)1 << get_order(
8277 rings_size(sq_entries, cq_entries, NULL));
8278 pages += (size_t)1 << get_order(
8279 array_size(sizeof(struct io_uring_sqe), sq_entries));
8284 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8288 if (!ctx->user_bufs)
8291 for (i = 0; i < ctx->nr_user_bufs; i++) {
8292 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8294 for (j = 0; j < imu->nr_bvecs; j++)
8295 unpin_user_page(imu->bvec[j].bv_page);
8297 if (imu->acct_pages)
8298 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8303 kfree(ctx->user_bufs);
8304 ctx->user_bufs = NULL;
8305 ctx->nr_user_bufs = 0;
8309 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8310 void __user *arg, unsigned index)
8312 struct iovec __user *src;
8314 #ifdef CONFIG_COMPAT
8316 struct compat_iovec __user *ciovs;
8317 struct compat_iovec ciov;
8319 ciovs = (struct compat_iovec __user *) arg;
8320 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8323 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8324 dst->iov_len = ciov.iov_len;
8328 src = (struct iovec __user *) arg;
8329 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8335 * Not super efficient, but this is just a registration time. And we do cache
8336 * the last compound head, so generally we'll only do a full search if we don't
8339 * We check if the given compound head page has already been accounted, to
8340 * avoid double accounting it. This allows us to account the full size of the
8341 * page, not just the constituent pages of a huge page.
8343 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8344 int nr_pages, struct page *hpage)
8348 /* check current page array */
8349 for (i = 0; i < nr_pages; i++) {
8350 if (!PageCompound(pages[i]))
8352 if (compound_head(pages[i]) == hpage)
8356 /* check previously registered pages */
8357 for (i = 0; i < ctx->nr_user_bufs; i++) {
8358 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8360 for (j = 0; j < imu->nr_bvecs; j++) {
8361 if (!PageCompound(imu->bvec[j].bv_page))
8363 if (compound_head(imu->bvec[j].bv_page) == hpage)
8371 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8372 int nr_pages, struct io_mapped_ubuf *imu,
8373 struct page **last_hpage)
8377 for (i = 0; i < nr_pages; i++) {
8378 if (!PageCompound(pages[i])) {
8383 hpage = compound_head(pages[i]);
8384 if (hpage == *last_hpage)
8386 *last_hpage = hpage;
8387 if (headpage_already_acct(ctx, pages, i, hpage))
8389 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8393 if (!imu->acct_pages)
8396 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8398 imu->acct_pages = 0;
8402 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8405 struct vm_area_struct **vmas = NULL;
8406 struct page **pages = NULL;
8407 struct page *last_hpage = NULL;
8408 int i, j, got_pages = 0;
8413 if (!nr_args || nr_args > UIO_MAXIOV)
8416 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8418 if (!ctx->user_bufs)
8421 for (i = 0; i < nr_args; i++) {
8422 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8423 unsigned long off, start, end, ubuf;
8428 ret = io_copy_iov(ctx, &iov, arg, i);
8433 * Don't impose further limits on the size and buffer
8434 * constraints here, we'll -EINVAL later when IO is
8435 * submitted if they are wrong.
8438 if (!iov.iov_base || !iov.iov_len)
8441 /* arbitrary limit, but we need something */
8442 if (iov.iov_len > SZ_1G)
8445 ubuf = (unsigned long) iov.iov_base;
8446 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8447 start = ubuf >> PAGE_SHIFT;
8448 nr_pages = end - start;
8451 if (!pages || nr_pages > got_pages) {
8454 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8456 vmas = kvmalloc_array(nr_pages,
8457 sizeof(struct vm_area_struct *),
8459 if (!pages || !vmas) {
8463 got_pages = nr_pages;
8466 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8473 mmap_read_lock(current->mm);
8474 pret = pin_user_pages(ubuf, nr_pages,
8475 FOLL_WRITE | FOLL_LONGTERM,
8477 if (pret == nr_pages) {
8478 /* don't support file backed memory */
8479 for (j = 0; j < nr_pages; j++) {
8480 struct vm_area_struct *vma = vmas[j];
8483 !is_file_hugepages(vma->vm_file)) {
8489 ret = pret < 0 ? pret : -EFAULT;
8491 mmap_read_unlock(current->mm);
8494 * if we did partial map, or found file backed vmas,
8495 * release any pages we did get
8498 unpin_user_pages(pages, pret);
8503 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8505 unpin_user_pages(pages, pret);
8510 off = ubuf & ~PAGE_MASK;
8512 for (j = 0; j < nr_pages; j++) {
8515 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8516 imu->bvec[j].bv_page = pages[j];
8517 imu->bvec[j].bv_len = vec_len;
8518 imu->bvec[j].bv_offset = off;
8522 /* store original address for later verification */
8524 imu->len = iov.iov_len;
8525 imu->nr_bvecs = nr_pages;
8527 ctx->nr_user_bufs++;
8535 io_sqe_buffer_unregister(ctx);
8539 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8541 __s32 __user *fds = arg;
8547 if (copy_from_user(&fd, fds, sizeof(*fds)))
8550 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8551 if (IS_ERR(ctx->cq_ev_fd)) {
8552 int ret = PTR_ERR(ctx->cq_ev_fd);
8553 ctx->cq_ev_fd = NULL;
8560 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8562 if (ctx->cq_ev_fd) {
8563 eventfd_ctx_put(ctx->cq_ev_fd);
8564 ctx->cq_ev_fd = NULL;
8571 static int __io_destroy_buffers(int id, void *p, void *data)
8573 struct io_ring_ctx *ctx = data;
8574 struct io_buffer *buf = p;
8576 __io_remove_buffers(ctx, buf, id, -1U);
8580 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8582 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8583 idr_destroy(&ctx->io_buffer_idr);
8586 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8588 io_finish_async(ctx);
8589 io_sqe_buffer_unregister(ctx);
8591 if (ctx->sqo_task) {
8592 put_task_struct(ctx->sqo_task);
8593 ctx->sqo_task = NULL;
8594 mmdrop(ctx->mm_account);
8595 ctx->mm_account = NULL;
8598 #ifdef CONFIG_BLK_CGROUP
8599 if (ctx->sqo_blkcg_css)
8600 css_put(ctx->sqo_blkcg_css);
8603 io_sqe_files_unregister(ctx);
8604 io_eventfd_unregister(ctx);
8605 io_destroy_buffers(ctx);
8606 idr_destroy(&ctx->personality_idr);
8608 #if defined(CONFIG_UNIX)
8609 if (ctx->ring_sock) {
8610 ctx->ring_sock->file = NULL; /* so that iput() is called */
8611 sock_release(ctx->ring_sock);
8615 io_mem_free(ctx->rings);
8616 io_mem_free(ctx->sq_sqes);
8618 percpu_ref_exit(&ctx->refs);
8619 free_uid(ctx->user);
8620 put_cred(ctx->creds);
8621 kfree(ctx->cancel_hash);
8622 kmem_cache_free(req_cachep, ctx->fallback_req);
8626 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8628 struct io_ring_ctx *ctx = file->private_data;
8631 poll_wait(file, &ctx->cq_wait, wait);
8633 * synchronizes with barrier from wq_has_sleeper call in
8637 if (!io_sqring_full(ctx))
8638 mask |= EPOLLOUT | EPOLLWRNORM;
8639 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8640 if (io_cqring_events(ctx))
8641 mask |= EPOLLIN | EPOLLRDNORM;
8646 static int io_uring_fasync(int fd, struct file *file, int on)
8648 struct io_ring_ctx *ctx = file->private_data;
8650 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8653 static int io_remove_personalities(int id, void *p, void *data)
8655 struct io_ring_ctx *ctx = data;
8656 struct io_identity *iod;
8658 iod = idr_remove(&ctx->personality_idr, id);
8660 put_cred(iod->creds);
8661 if (refcount_dec_and_test(&iod->count))
8667 static void io_ring_exit_work(struct work_struct *work)
8669 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8673 * If we're doing polled IO and end up having requests being
8674 * submitted async (out-of-line), then completions can come in while
8675 * we're waiting for refs to drop. We need to reap these manually,
8676 * as nobody else will be looking for them.
8679 __io_uring_cancel_task_requests(ctx, NULL);
8680 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8681 io_ring_ctx_free(ctx);
8684 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8686 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8688 return req->ctx == data;
8691 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8693 mutex_lock(&ctx->uring_lock);
8694 percpu_ref_kill(&ctx->refs);
8695 /* if force is set, the ring is going away. always drop after that */
8696 ctx->cq_overflow_flushed = 1;
8698 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8699 mutex_unlock(&ctx->uring_lock);
8701 io_kill_timeouts(ctx, NULL, NULL);
8702 io_poll_remove_all(ctx, NULL, NULL);
8705 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8707 /* if we failed setting up the ctx, we might not have any rings */
8708 io_iopoll_try_reap_events(ctx);
8709 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8712 * Do this upfront, so we won't have a grace period where the ring
8713 * is closed but resources aren't reaped yet. This can cause
8714 * spurious failure in setting up a new ring.
8716 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8719 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8721 * Use system_unbound_wq to avoid spawning tons of event kworkers
8722 * if we're exiting a ton of rings at the same time. It just adds
8723 * noise and overhead, there's no discernable change in runtime
8724 * over using system_wq.
8726 queue_work(system_unbound_wq, &ctx->exit_work);
8729 static int io_uring_release(struct inode *inode, struct file *file)
8731 struct io_ring_ctx *ctx = file->private_data;
8733 file->private_data = NULL;
8734 io_ring_ctx_wait_and_kill(ctx);
8738 struct io_task_cancel {
8739 struct task_struct *task;
8740 struct files_struct *files;
8743 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8745 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8746 struct io_task_cancel *cancel = data;
8749 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8750 unsigned long flags;
8751 struct io_ring_ctx *ctx = req->ctx;
8753 /* protect against races with linked timeouts */
8754 spin_lock_irqsave(&ctx->completion_lock, flags);
8755 ret = io_match_task(req, cancel->task, cancel->files);
8756 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8758 ret = io_match_task(req, cancel->task, cancel->files);
8763 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8764 struct task_struct *task,
8765 struct files_struct *files)
8767 struct io_defer_entry *de = NULL;
8770 spin_lock_irq(&ctx->completion_lock);
8771 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8772 if (io_match_task(de->req, task, files)) {
8773 list_cut_position(&list, &ctx->defer_list, &de->list);
8777 spin_unlock_irq(&ctx->completion_lock);
8779 while (!list_empty(&list)) {
8780 de = list_first_entry(&list, struct io_defer_entry, list);
8781 list_del_init(&de->list);
8782 req_set_fail_links(de->req);
8783 io_put_req(de->req);
8784 io_req_complete(de->req, -ECANCELED);
8789 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8790 struct task_struct *task,
8791 struct files_struct *files)
8793 while (!list_empty_careful(&ctx->inflight_list)) {
8794 struct io_task_cancel cancel = { .task = task, .files = files };
8795 struct io_kiocb *req;
8799 spin_lock_irq(&ctx->inflight_lock);
8800 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8801 if (req->task != task ||
8802 req->work.identity->files != files)
8808 prepare_to_wait(&task->io_uring->wait, &wait,
8809 TASK_UNINTERRUPTIBLE);
8810 spin_unlock_irq(&ctx->inflight_lock);
8812 /* We need to keep going until we don't find a matching req */
8816 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8817 io_poll_remove_all(ctx, task, files);
8818 io_kill_timeouts(ctx, task, files);
8819 /* cancellations _may_ trigger task work */
8822 finish_wait(&task->io_uring->wait, &wait);
8826 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8827 struct task_struct *task)
8830 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8831 enum io_wq_cancel cret;
8835 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8837 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8840 /* SQPOLL thread does its own polling */
8841 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8842 while (!list_empty_careful(&ctx->iopoll_list)) {
8843 io_iopoll_try_reap_events(ctx);
8848 ret |= io_poll_remove_all(ctx, task, NULL);
8849 ret |= io_kill_timeouts(ctx, task, NULL);
8850 ret |= io_run_task_work();
8858 * We need to iteratively cancel requests, in case a request has dependent
8859 * hard links. These persist even for failure of cancelations, hence keep
8860 * looping until none are found.
8862 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8863 struct files_struct *files)
8865 struct task_struct *task = current;
8867 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8868 task = ctx->sq_data->thread;
8869 atomic_inc(&task->io_uring->in_idle);
8870 io_sq_thread_park(ctx->sq_data);
8873 io_cancel_defer_files(ctx, task, files);
8874 io_cqring_overflow_flush(ctx, true, task, files);
8877 __io_uring_cancel_task_requests(ctx, task);
8879 io_uring_cancel_files(ctx, task, files);
8881 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8882 atomic_dec(&task->io_uring->in_idle);
8884 * If the files that are going away are the ones in the thread
8885 * identity, clear them out.
8887 if (task->io_uring->identity->files == files)
8888 task->io_uring->identity->files = NULL;
8889 io_sq_thread_unpark(ctx->sq_data);
8894 * Note that this task has used io_uring. We use it for cancelation purposes.
8896 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8898 struct io_uring_task *tctx = current->io_uring;
8901 if (unlikely(!tctx)) {
8902 ret = io_uring_alloc_task_context(current);
8905 tctx = current->io_uring;
8907 if (tctx->last != file) {
8908 void *old = xa_load(&tctx->xa, (unsigned long)file);
8912 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
8923 * This is race safe in that the task itself is doing this, hence it
8924 * cannot be going through the exit/cancel paths at the same time.
8925 * This cannot be modified while exit/cancel is running.
8927 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8928 tctx->sqpoll = true;
8934 * Remove this io_uring_file -> task mapping.
8936 static void io_uring_del_task_file(struct file *file)
8938 struct io_uring_task *tctx = current->io_uring;
8940 if (tctx->last == file)
8942 file = xa_erase(&tctx->xa, (unsigned long)file);
8948 * Drop task note for this file if we're the only ones that hold it after
8951 static void io_uring_attempt_task_drop(struct file *file)
8953 if (!current->io_uring)
8956 * fput() is pending, will be 2 if the only other ref is our potential
8957 * task file note. If the task is exiting, drop regardless of count.
8959 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8960 atomic_long_read(&file->f_count) == 2)
8961 io_uring_del_task_file(file);
8964 static void io_uring_remove_task_files(struct io_uring_task *tctx)
8967 unsigned long index;
8969 xa_for_each(&tctx->xa, index, file)
8970 io_uring_del_task_file(file);
8973 void __io_uring_files_cancel(struct files_struct *files)
8975 struct io_uring_task *tctx = current->io_uring;
8977 unsigned long index;
8979 /* make sure overflow events are dropped */
8980 atomic_inc(&tctx->in_idle);
8981 xa_for_each(&tctx->xa, index, file)
8982 io_uring_cancel_task_requests(file->private_data, files);
8983 atomic_dec(&tctx->in_idle);
8986 io_uring_remove_task_files(tctx);
8989 static s64 tctx_inflight(struct io_uring_task *tctx)
8991 unsigned long index;
8995 inflight = percpu_counter_sum(&tctx->inflight);
9000 * If we have SQPOLL rings, then we need to iterate and find them, and
9001 * add the pending count for those.
9003 xa_for_each(&tctx->xa, index, file) {
9004 struct io_ring_ctx *ctx = file->private_data;
9006 if (ctx->flags & IORING_SETUP_SQPOLL) {
9007 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9009 inflight += percpu_counter_sum(&__tctx->inflight);
9017 * Find any io_uring fd that this task has registered or done IO on, and cancel
9020 void __io_uring_task_cancel(void)
9022 struct io_uring_task *tctx = current->io_uring;
9026 /* make sure overflow events are dropped */
9027 atomic_inc(&tctx->in_idle);
9030 /* read completions before cancelations */
9031 inflight = tctx_inflight(tctx);
9034 __io_uring_files_cancel(NULL);
9036 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9039 * If we've seen completions, retry. This avoids a race where
9040 * a completion comes in before we did prepare_to_wait().
9042 if (inflight != tctx_inflight(tctx))
9045 finish_wait(&tctx->wait, &wait);
9048 atomic_dec(&tctx->in_idle);
9050 io_uring_remove_task_files(tctx);
9053 static int io_uring_flush(struct file *file, void *data)
9055 io_uring_attempt_task_drop(file);
9059 static void *io_uring_validate_mmap_request(struct file *file,
9060 loff_t pgoff, size_t sz)
9062 struct io_ring_ctx *ctx = file->private_data;
9063 loff_t offset = pgoff << PAGE_SHIFT;
9068 case IORING_OFF_SQ_RING:
9069 case IORING_OFF_CQ_RING:
9072 case IORING_OFF_SQES:
9076 return ERR_PTR(-EINVAL);
9079 page = virt_to_head_page(ptr);
9080 if (sz > page_size(page))
9081 return ERR_PTR(-EINVAL);
9088 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9090 size_t sz = vma->vm_end - vma->vm_start;
9094 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9096 return PTR_ERR(ptr);
9098 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9099 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9102 #else /* !CONFIG_MMU */
9104 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9106 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9109 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9111 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9114 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9115 unsigned long addr, unsigned long len,
9116 unsigned long pgoff, unsigned long flags)
9120 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9122 return PTR_ERR(ptr);
9124 return (unsigned long) ptr;
9127 #endif /* !CONFIG_MMU */
9129 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9134 if (!io_sqring_full(ctx))
9137 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9139 if (!io_sqring_full(ctx))
9143 } while (!signal_pending(current));
9145 finish_wait(&ctx->sqo_sq_wait, &wait);
9148 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9149 struct __kernel_timespec __user **ts,
9150 const sigset_t __user **sig)
9152 struct io_uring_getevents_arg arg;
9155 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9156 * is just a pointer to the sigset_t.
9158 if (!(flags & IORING_ENTER_EXT_ARG)) {
9159 *sig = (const sigset_t __user *) argp;
9165 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9166 * timespec and sigset_t pointers if good.
9168 if (*argsz != sizeof(arg))
9170 if (copy_from_user(&arg, argp, sizeof(arg)))
9172 *sig = u64_to_user_ptr(arg.sigmask);
9173 *argsz = arg.sigmask_sz;
9174 *ts = u64_to_user_ptr(arg.ts);
9178 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9179 u32, min_complete, u32, flags, const void __user *, argp,
9182 struct io_ring_ctx *ctx;
9189 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9190 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9198 if (f.file->f_op != &io_uring_fops)
9202 ctx = f.file->private_data;
9203 if (!percpu_ref_tryget(&ctx->refs))
9207 if (ctx->flags & IORING_SETUP_R_DISABLED)
9211 * For SQ polling, the thread will do all submissions and completions.
9212 * Just return the requested submit count, and wake the thread if
9216 if (ctx->flags & IORING_SETUP_SQPOLL) {
9217 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9219 if (flags & IORING_ENTER_SQ_WAKEUP)
9220 wake_up(&ctx->sq_data->wait);
9221 if (flags & IORING_ENTER_SQ_WAIT)
9222 io_sqpoll_wait_sq(ctx);
9223 submitted = to_submit;
9224 } else if (to_submit) {
9225 ret = io_uring_add_task_file(ctx, f.file);
9228 mutex_lock(&ctx->uring_lock);
9229 submitted = io_submit_sqes(ctx, to_submit);
9230 mutex_unlock(&ctx->uring_lock);
9232 if (submitted != to_submit)
9235 if (flags & IORING_ENTER_GETEVENTS) {
9236 const sigset_t __user *sig;
9237 struct __kernel_timespec __user *ts;
9239 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9243 min_complete = min(min_complete, ctx->cq_entries);
9246 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9247 * space applications don't need to do io completion events
9248 * polling again, they can rely on io_sq_thread to do polling
9249 * work, which can reduce cpu usage and uring_lock contention.
9251 if (ctx->flags & IORING_SETUP_IOPOLL &&
9252 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9253 ret = io_iopoll_check(ctx, min_complete);
9255 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9260 percpu_ref_put(&ctx->refs);
9263 return submitted ? submitted : ret;
9266 #ifdef CONFIG_PROC_FS
9267 static int io_uring_show_cred(int id, void *p, void *data)
9269 struct io_identity *iod = p;
9270 const struct cred *cred = iod->creds;
9271 struct seq_file *m = data;
9272 struct user_namespace *uns = seq_user_ns(m);
9273 struct group_info *gi;
9278 seq_printf(m, "%5d\n", id);
9279 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9280 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9281 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9282 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9283 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9284 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9285 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9286 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9287 seq_puts(m, "\n\tGroups:\t");
9288 gi = cred->group_info;
9289 for (g = 0; g < gi->ngroups; g++) {
9290 seq_put_decimal_ull(m, g ? " " : "",
9291 from_kgid_munged(uns, gi->gid[g]));
9293 seq_puts(m, "\n\tCapEff:\t");
9294 cap = cred->cap_effective;
9295 CAP_FOR_EACH_U32(__capi)
9296 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9301 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9303 struct io_sq_data *sq = NULL;
9308 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9309 * since fdinfo case grabs it in the opposite direction of normal use
9310 * cases. If we fail to get the lock, we just don't iterate any
9311 * structures that could be going away outside the io_uring mutex.
9313 has_lock = mutex_trylock(&ctx->uring_lock);
9315 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9318 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9319 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9320 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9321 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9322 struct fixed_file_table *table;
9325 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9326 f = table->files[i & IORING_FILE_TABLE_MASK];
9328 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9330 seq_printf(m, "%5u: <none>\n", i);
9332 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9333 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9334 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9336 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9337 (unsigned int) buf->len);
9339 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9340 seq_printf(m, "Personalities:\n");
9341 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9343 seq_printf(m, "PollList:\n");
9344 spin_lock_irq(&ctx->completion_lock);
9345 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9346 struct hlist_head *list = &ctx->cancel_hash[i];
9347 struct io_kiocb *req;
9349 hlist_for_each_entry(req, list, hash_node)
9350 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9351 req->task->task_works != NULL);
9353 spin_unlock_irq(&ctx->completion_lock);
9355 mutex_unlock(&ctx->uring_lock);
9358 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9360 struct io_ring_ctx *ctx = f->private_data;
9362 if (percpu_ref_tryget(&ctx->refs)) {
9363 __io_uring_show_fdinfo(ctx, m);
9364 percpu_ref_put(&ctx->refs);
9369 static const struct file_operations io_uring_fops = {
9370 .release = io_uring_release,
9371 .flush = io_uring_flush,
9372 .mmap = io_uring_mmap,
9374 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9375 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9377 .poll = io_uring_poll,
9378 .fasync = io_uring_fasync,
9379 #ifdef CONFIG_PROC_FS
9380 .show_fdinfo = io_uring_show_fdinfo,
9384 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9385 struct io_uring_params *p)
9387 struct io_rings *rings;
9388 size_t size, sq_array_offset;
9390 /* make sure these are sane, as we already accounted them */
9391 ctx->sq_entries = p->sq_entries;
9392 ctx->cq_entries = p->cq_entries;
9394 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9395 if (size == SIZE_MAX)
9398 rings = io_mem_alloc(size);
9403 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9404 rings->sq_ring_mask = p->sq_entries - 1;
9405 rings->cq_ring_mask = p->cq_entries - 1;
9406 rings->sq_ring_entries = p->sq_entries;
9407 rings->cq_ring_entries = p->cq_entries;
9408 ctx->sq_mask = rings->sq_ring_mask;
9409 ctx->cq_mask = rings->cq_ring_mask;
9411 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9412 if (size == SIZE_MAX) {
9413 io_mem_free(ctx->rings);
9418 ctx->sq_sqes = io_mem_alloc(size);
9419 if (!ctx->sq_sqes) {
9420 io_mem_free(ctx->rings);
9428 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9432 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9436 ret = io_uring_add_task_file(ctx, file);
9441 fd_install(fd, file);
9446 * Allocate an anonymous fd, this is what constitutes the application
9447 * visible backing of an io_uring instance. The application mmaps this
9448 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9449 * we have to tie this fd to a socket for file garbage collection purposes.
9451 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9454 #if defined(CONFIG_UNIX)
9457 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9460 return ERR_PTR(ret);
9463 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9464 O_RDWR | O_CLOEXEC);
9465 #if defined(CONFIG_UNIX)
9467 sock_release(ctx->ring_sock);
9468 ctx->ring_sock = NULL;
9470 ctx->ring_sock->file = file;
9476 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9477 struct io_uring_params __user *params)
9479 struct user_struct *user = NULL;
9480 struct io_ring_ctx *ctx;
9487 if (entries > IORING_MAX_ENTRIES) {
9488 if (!(p->flags & IORING_SETUP_CLAMP))
9490 entries = IORING_MAX_ENTRIES;
9494 * Use twice as many entries for the CQ ring. It's possible for the
9495 * application to drive a higher depth than the size of the SQ ring,
9496 * since the sqes are only used at submission time. This allows for
9497 * some flexibility in overcommitting a bit. If the application has
9498 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9499 * of CQ ring entries manually.
9501 p->sq_entries = roundup_pow_of_two(entries);
9502 if (p->flags & IORING_SETUP_CQSIZE) {
9504 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9505 * to a power-of-two, if it isn't already. We do NOT impose
9506 * any cq vs sq ring sizing.
9510 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9511 if (!(p->flags & IORING_SETUP_CLAMP))
9513 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9515 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9516 if (p->cq_entries < p->sq_entries)
9519 p->cq_entries = 2 * p->sq_entries;
9522 user = get_uid(current_user());
9523 limit_mem = !capable(CAP_IPC_LOCK);
9526 ret = __io_account_mem(user,
9527 ring_pages(p->sq_entries, p->cq_entries));
9534 ctx = io_ring_ctx_alloc(p);
9537 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9542 ctx->compat = in_compat_syscall();
9544 ctx->creds = get_current_cred();
9546 ctx->loginuid = current->loginuid;
9547 ctx->sessionid = current->sessionid;
9549 ctx->sqo_task = get_task_struct(current);
9552 * This is just grabbed for accounting purposes. When a process exits,
9553 * the mm is exited and dropped before the files, hence we need to hang
9554 * on to this mm purely for the purposes of being able to unaccount
9555 * memory (locked/pinned vm). It's not used for anything else.
9557 mmgrab(current->mm);
9558 ctx->mm_account = current->mm;
9560 #ifdef CONFIG_BLK_CGROUP
9562 * The sq thread will belong to the original cgroup it was inited in.
9563 * If the cgroup goes offline (e.g. disabling the io controller), then
9564 * issued bios will be associated with the closest cgroup later in the
9568 ctx->sqo_blkcg_css = blkcg_css();
9569 ret = css_tryget_online(ctx->sqo_blkcg_css);
9572 /* don't init against a dying cgroup, have the user try again */
9573 ctx->sqo_blkcg_css = NULL;
9580 * Account memory _before_ installing the file descriptor. Once
9581 * the descriptor is installed, it can get closed at any time. Also
9582 * do this before hitting the general error path, as ring freeing
9583 * will un-account as well.
9585 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9587 ctx->limit_mem = limit_mem;
9589 ret = io_allocate_scq_urings(ctx, p);
9593 ret = io_sq_offload_create(ctx, p);
9597 if (!(p->flags & IORING_SETUP_R_DISABLED))
9598 io_sq_offload_start(ctx);
9600 memset(&p->sq_off, 0, sizeof(p->sq_off));
9601 p->sq_off.head = offsetof(struct io_rings, sq.head);
9602 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9603 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9604 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9605 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9606 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9607 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9609 memset(&p->cq_off, 0, sizeof(p->cq_off));
9610 p->cq_off.head = offsetof(struct io_rings, cq.head);
9611 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9612 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9613 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9614 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9615 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9616 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9618 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9619 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9620 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9621 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9622 IORING_FEAT_EXT_ARG;
9624 if (copy_to_user(params, p, sizeof(*p))) {
9629 file = io_uring_get_file(ctx);
9631 ret = PTR_ERR(file);
9636 * Install ring fd as the very last thing, so we don't risk someone
9637 * having closed it before we finish setup
9639 ret = io_uring_install_fd(ctx, file);
9641 /* fput will clean it up */
9646 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9649 io_ring_ctx_wait_and_kill(ctx);
9654 * Sets up an aio uring context, and returns the fd. Applications asks for a
9655 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9656 * params structure passed in.
9658 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9660 struct io_uring_params p;
9663 if (copy_from_user(&p, params, sizeof(p)))
9665 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9670 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9671 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9672 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9673 IORING_SETUP_R_DISABLED))
9676 return io_uring_create(entries, &p, params);
9679 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9680 struct io_uring_params __user *, params)
9682 return io_uring_setup(entries, params);
9685 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9687 struct io_uring_probe *p;
9691 size = struct_size(p, ops, nr_args);
9692 if (size == SIZE_MAX)
9694 p = kzalloc(size, GFP_KERNEL);
9699 if (copy_from_user(p, arg, size))
9702 if (memchr_inv(p, 0, size))
9705 p->last_op = IORING_OP_LAST - 1;
9706 if (nr_args > IORING_OP_LAST)
9707 nr_args = IORING_OP_LAST;
9709 for (i = 0; i < nr_args; i++) {
9711 if (!io_op_defs[i].not_supported)
9712 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9717 if (copy_to_user(arg, p, size))
9724 static int io_register_personality(struct io_ring_ctx *ctx)
9726 struct io_identity *id;
9729 id = kmalloc(sizeof(*id), GFP_KERNEL);
9733 io_init_identity(id);
9734 id->creds = get_current_cred();
9736 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9738 put_cred(id->creds);
9744 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9746 struct io_identity *iod;
9748 iod = idr_remove(&ctx->personality_idr, id);
9750 put_cred(iod->creds);
9751 if (refcount_dec_and_test(&iod->count))
9759 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9760 unsigned int nr_args)
9762 struct io_uring_restriction *res;
9766 /* Restrictions allowed only if rings started disabled */
9767 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9770 /* We allow only a single restrictions registration */
9771 if (ctx->restrictions.registered)
9774 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9777 size = array_size(nr_args, sizeof(*res));
9778 if (size == SIZE_MAX)
9781 res = memdup_user(arg, size);
9783 return PTR_ERR(res);
9787 for (i = 0; i < nr_args; i++) {
9788 switch (res[i].opcode) {
9789 case IORING_RESTRICTION_REGISTER_OP:
9790 if (res[i].register_op >= IORING_REGISTER_LAST) {
9795 __set_bit(res[i].register_op,
9796 ctx->restrictions.register_op);
9798 case IORING_RESTRICTION_SQE_OP:
9799 if (res[i].sqe_op >= IORING_OP_LAST) {
9804 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9806 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9807 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9809 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9810 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9819 /* Reset all restrictions if an error happened */
9821 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9823 ctx->restrictions.registered = true;
9829 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9831 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9834 if (ctx->restrictions.registered)
9835 ctx->restricted = 1;
9837 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9839 io_sq_offload_start(ctx);
9844 static bool io_register_op_must_quiesce(int op)
9847 case IORING_UNREGISTER_FILES:
9848 case IORING_REGISTER_FILES_UPDATE:
9849 case IORING_REGISTER_PROBE:
9850 case IORING_REGISTER_PERSONALITY:
9851 case IORING_UNREGISTER_PERSONALITY:
9858 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9859 void __user *arg, unsigned nr_args)
9860 __releases(ctx->uring_lock)
9861 __acquires(ctx->uring_lock)
9866 * We're inside the ring mutex, if the ref is already dying, then
9867 * someone else killed the ctx or is already going through
9868 * io_uring_register().
9870 if (percpu_ref_is_dying(&ctx->refs))
9873 if (io_register_op_must_quiesce(opcode)) {
9874 percpu_ref_kill(&ctx->refs);
9877 * Drop uring mutex before waiting for references to exit. If
9878 * another thread is currently inside io_uring_enter() it might
9879 * need to grab the uring_lock to make progress. If we hold it
9880 * here across the drain wait, then we can deadlock. It's safe
9881 * to drop the mutex here, since no new references will come in
9882 * after we've killed the percpu ref.
9884 mutex_unlock(&ctx->uring_lock);
9886 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9889 ret = io_run_task_work_sig();
9894 mutex_lock(&ctx->uring_lock);
9897 percpu_ref_resurrect(&ctx->refs);
9902 if (ctx->restricted) {
9903 if (opcode >= IORING_REGISTER_LAST) {
9908 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9915 case IORING_REGISTER_BUFFERS:
9916 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9918 case IORING_UNREGISTER_BUFFERS:
9922 ret = io_sqe_buffer_unregister(ctx);
9924 case IORING_REGISTER_FILES:
9925 ret = io_sqe_files_register(ctx, arg, nr_args);
9927 case IORING_UNREGISTER_FILES:
9931 ret = io_sqe_files_unregister(ctx);
9933 case IORING_REGISTER_FILES_UPDATE:
9934 ret = io_sqe_files_update(ctx, arg, nr_args);
9936 case IORING_REGISTER_EVENTFD:
9937 case IORING_REGISTER_EVENTFD_ASYNC:
9941 ret = io_eventfd_register(ctx, arg);
9944 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9945 ctx->eventfd_async = 1;
9947 ctx->eventfd_async = 0;
9949 case IORING_UNREGISTER_EVENTFD:
9953 ret = io_eventfd_unregister(ctx);
9955 case IORING_REGISTER_PROBE:
9957 if (!arg || nr_args > 256)
9959 ret = io_probe(ctx, arg, nr_args);
9961 case IORING_REGISTER_PERSONALITY:
9965 ret = io_register_personality(ctx);
9967 case IORING_UNREGISTER_PERSONALITY:
9971 ret = io_unregister_personality(ctx, nr_args);
9973 case IORING_REGISTER_ENABLE_RINGS:
9977 ret = io_register_enable_rings(ctx);
9979 case IORING_REGISTER_RESTRICTIONS:
9980 ret = io_register_restrictions(ctx, arg, nr_args);
9988 if (io_register_op_must_quiesce(opcode)) {
9989 /* bring the ctx back to life */
9990 percpu_ref_reinit(&ctx->refs);
9992 reinit_completion(&ctx->ref_comp);
9997 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9998 void __user *, arg, unsigned int, nr_args)
10000 struct io_ring_ctx *ctx;
10009 if (f.file->f_op != &io_uring_fops)
10012 ctx = f.file->private_data;
10014 mutex_lock(&ctx->uring_lock);
10015 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10016 mutex_unlock(&ctx->uring_lock);
10017 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10018 ctx->cq_ev_fd != NULL, ret);
10024 static int __init io_uring_init(void)
10026 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10027 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10028 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10031 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10032 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10033 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10034 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10035 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10036 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10037 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10038 BUILD_BUG_SQE_ELEM(8, __u64, off);
10039 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10040 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10041 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10042 BUILD_BUG_SQE_ELEM(24, __u32, len);
10043 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10044 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10045 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10046 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10047 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10048 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10049 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10050 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10051 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10052 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10053 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10054 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10055 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10056 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10057 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10058 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10059 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10060 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10061 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10063 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10064 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10065 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10068 __initcall(io_uring_init);