1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/kernfs/dir.c - kernfs directory implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
10 #include <linux/sched.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
18 #include "kernfs-internal.h"
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
45 return strlcpy(buf, "(null)", buflen);
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
55 while (to->parent && to != from) {
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
83 /* worst case b and a will be the same at root */
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
103 * kn_to: /n1/n2/n3/n4/n5
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
116 * [3] when @kn_to is NULL result will be "(null)"
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
128 size_t depth_from, depth_to, len = 0;
132 return strlcpy(buf, "(null)", buflen);
135 kn_from = kernfs_root(kn_to)->kn;
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
156 /* Calculate how many bytes we need for the rest */
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
179 * Fills buffer with "(null)" if @kn is NULL.
181 * This function can be called from any context.
183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
227 * This function can be called from any context.
229 void pr_cont_kernfs_name(struct kernfs_node *kn)
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
245 * This function can be called from any context.
247 void pr_cont_kernfs_path(struct kernfs_node *kn)
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
266 pr_cont("%s", kernfs_pr_cont_buf);
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
281 struct kernfs_node *parent;
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
301 unsigned long hash = init_name_hash(ns);
302 unsigned int len = strlen(name);
304 hash = partial_name_hash(*name++, hash);
305 hash = end_name_hash(hash);
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
326 return strcmp(name, kn->name);
329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
337 * @kn: kernfs_node of interest
339 * Link @kn into its sibling rbtree which starts from
340 * @kn->parent->dir.children.
343 * mutex_lock(kernfs_mutex)
346 * 0 on susccess -EEXIST on failure.
348 static int kernfs_link_sibling(struct kernfs_node *kn)
350 struct rb_node **node = &kn->parent->dir.children.rb_node;
351 struct rb_node *parent = NULL;
354 struct kernfs_node *pos;
357 pos = rb_to_kn(*node);
359 result = kernfs_sd_compare(kn, pos);
361 node = &pos->rb.rb_left;
363 node = &pos->rb.rb_right;
368 /* add new node and rebalance the tree */
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381 * @kn: kernfs_node of interest
383 * Try to unlink @kn from its sibling rbtree which starts from
384 * kn->parent->dir.children. Returns %true if @kn was actually
385 * removed, %false if @kn wasn't on the rbtree.
388 * mutex_lock(kernfs_mutex)
390 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
392 if (RB_EMPTY_NODE(&kn->rb))
395 if (kernfs_type(kn) == KERNFS_DIR)
396 kn->parent->dir.subdirs--;
398 rb_erase(&kn->rb, &kn->parent->dir.children);
399 RB_CLEAR_NODE(&kn->rb);
404 * kernfs_get_active - get an active reference to kernfs_node
405 * @kn: kernfs_node to get an active reference to
407 * Get an active reference of @kn. This function is noop if @kn
411 * Pointer to @kn on success, NULL on failure.
413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
418 if (!atomic_inc_unless_negative(&kn->active))
421 if (kernfs_lockdep(kn))
422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
427 * kernfs_put_active - put an active reference to kernfs_node
428 * @kn: kernfs_node to put an active reference to
430 * Put an active reference to @kn. This function is noop if @kn
433 void kernfs_put_active(struct kernfs_node *kn)
440 if (kernfs_lockdep(kn))
441 rwsem_release(&kn->dep_map, _RET_IP_);
442 v = atomic_dec_return(&kn->active);
443 if (likely(v != KN_DEACTIVATED_BIAS))
446 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
457 static void kernfs_drain(struct kernfs_node *kn)
458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
460 struct kernfs_root *root = kernfs_root(kn);
462 lockdep_assert_held(&kernfs_mutex);
463 WARN_ON_ONCE(kernfs_active(kn));
465 mutex_unlock(&kernfs_mutex);
467 if (kernfs_lockdep(kn)) {
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
473 /* but everyone should wait for draining */
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
477 if (kernfs_lockdep(kn)) {
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, _RET_IP_);
482 kernfs_drain_open_files(kn);
484 mutex_lock(&kernfs_mutex);
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
491 void kernfs_get(struct kernfs_node *kn)
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
498 EXPORT_SYMBOL_GPL(kernfs_get);
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
504 * Put a reference count of @kn and destroy it if it reached zero.
506 void kernfs_put(struct kernfs_node *kn)
508 struct kernfs_node *parent;
509 struct kernfs_root *root;
511 if (!kn || !atomic_dec_and_test(&kn->count))
513 root = kernfs_root(kn);
516 * Moving/renaming is always done while holding reference.
517 * kn->parent won't change beneath us.
521 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
522 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
523 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
525 if (kernfs_type(kn) == KERNFS_LINK)
526 kernfs_put(kn->symlink.target_kn);
528 kfree_const(kn->name);
531 simple_xattrs_free(&kn->iattr->xattrs);
532 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
534 spin_lock(&kernfs_idr_lock);
535 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
536 spin_unlock(&kernfs_idr_lock);
537 kmem_cache_free(kernfs_node_cache, kn);
541 if (atomic_dec_and_test(&kn->count))
544 /* just released the root kn, free @root too */
545 idr_destroy(&root->ino_idr);
549 EXPORT_SYMBOL_GPL(kernfs_put);
551 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
553 struct kernfs_node *kn;
555 if (flags & LOOKUP_RCU)
558 /* Always perform fresh lookup for negatives */
559 if (d_really_is_negative(dentry))
560 goto out_bad_unlocked;
562 kn = kernfs_dentry_node(dentry);
563 mutex_lock(&kernfs_mutex);
565 /* The kernfs node has been deactivated */
566 if (!kernfs_active(kn))
569 /* The kernfs node has been moved? */
570 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
573 /* The kernfs node has been renamed */
574 if (strcmp(dentry->d_name.name, kn->name) != 0)
577 /* The kernfs node has been moved to a different namespace */
578 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
579 kernfs_info(dentry->d_sb)->ns != kn->ns)
582 mutex_unlock(&kernfs_mutex);
585 mutex_unlock(&kernfs_mutex);
590 const struct dentry_operations kernfs_dops = {
591 .d_revalidate = kernfs_dop_revalidate,
595 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
596 * @dentry: the dentry in question
598 * Return the kernfs_node associated with @dentry. If @dentry is not a
599 * kernfs one, %NULL is returned.
601 * While the returned kernfs_node will stay accessible as long as @dentry
602 * is accessible, the returned node can be in any state and the caller is
603 * fully responsible for determining what's accessible.
605 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
607 if (dentry->d_sb->s_op == &kernfs_sops)
608 return kernfs_dentry_node(dentry);
612 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
613 struct kernfs_node *parent,
614 const char *name, umode_t mode,
615 kuid_t uid, kgid_t gid,
618 struct kernfs_node *kn;
622 name = kstrdup_const(name, GFP_KERNEL);
626 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
630 idr_preload(GFP_KERNEL);
631 spin_lock(&kernfs_idr_lock);
632 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
633 if (ret >= 0 && ret < root->last_id_lowbits)
635 id_highbits = root->id_highbits;
636 root->last_id_lowbits = ret;
637 spin_unlock(&kernfs_idr_lock);
642 kn->id = (u64)id_highbits << 32 | ret;
644 atomic_set(&kn->count, 1);
645 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
646 RB_CLEAR_NODE(&kn->rb);
652 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
653 struct iattr iattr = {
654 .ia_valid = ATTR_UID | ATTR_GID,
659 ret = __kernfs_setattr(kn, &iattr);
665 ret = security_kernfs_init_security(parent, kn);
673 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
675 kmem_cache_free(kernfs_node_cache, kn);
681 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
682 const char *name, umode_t mode,
683 kuid_t uid, kgid_t gid,
686 struct kernfs_node *kn;
688 kn = __kernfs_new_node(kernfs_root(parent), parent,
689 name, mode, uid, gid, flags);
698 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
699 * @root: the kernfs root
700 * @id: the target node id
702 * @id's lower 32bits encode ino and upper gen. If the gen portion is
703 * zero, all generations are matched.
706 * NULL on failure. Return a kernfs node with reference counter incremented
708 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
711 struct kernfs_node *kn;
712 ino_t ino = kernfs_id_ino(id);
713 u32 gen = kernfs_id_gen(id);
715 spin_lock(&kernfs_idr_lock);
717 kn = idr_find(&root->ino_idr, (u32)ino);
721 if (sizeof(ino_t) >= sizeof(u64)) {
722 /* we looked up with the low 32bits, compare the whole */
723 if (kernfs_ino(kn) != ino)
726 /* 0 matches all generations */
727 if (unlikely(gen && kernfs_gen(kn) != gen))
732 * ACTIVATED is protected with kernfs_mutex but it was clear when
733 * @kn was added to idr and we just wanna see it set. No need to
736 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
737 !atomic_inc_not_zero(&kn->count)))
740 spin_unlock(&kernfs_idr_lock);
743 spin_unlock(&kernfs_idr_lock);
748 * kernfs_add_one - add kernfs_node to parent without warning
749 * @kn: kernfs_node to be added
751 * The caller must already have initialized @kn->parent. This
752 * function increments nlink of the parent's inode if @kn is a
753 * directory and link into the children list of the parent.
756 * 0 on success, -EEXIST if entry with the given name already
759 int kernfs_add_one(struct kernfs_node *kn)
761 struct kernfs_node *parent = kn->parent;
762 struct kernfs_iattrs *ps_iattr;
766 mutex_lock(&kernfs_mutex);
769 has_ns = kernfs_ns_enabled(parent);
770 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
771 has_ns ? "required" : "invalid", parent->name, kn->name))
774 if (kernfs_type(parent) != KERNFS_DIR)
778 if (parent->flags & KERNFS_EMPTY_DIR)
781 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
784 kn->hash = kernfs_name_hash(kn->name, kn->ns);
786 ret = kernfs_link_sibling(kn);
790 /* Update timestamps on the parent */
791 ps_iattr = parent->iattr;
793 ktime_get_real_ts64(&ps_iattr->ia_ctime);
794 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
797 mutex_unlock(&kernfs_mutex);
800 * Activate the new node unless CREATE_DEACTIVATED is requested.
801 * If not activated here, the kernfs user is responsible for
802 * activating the node with kernfs_activate(). A node which hasn't
803 * been activated is not visible to userland and its removal won't
804 * trigger deactivation.
806 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
811 mutex_unlock(&kernfs_mutex);
816 * kernfs_find_ns - find kernfs_node with the given name
817 * @parent: kernfs_node to search under
818 * @name: name to look for
819 * @ns: the namespace tag to use
821 * Look for kernfs_node with name @name under @parent. Returns pointer to
822 * the found kernfs_node on success, %NULL on failure.
824 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
825 const unsigned char *name,
828 struct rb_node *node = parent->dir.children.rb_node;
829 bool has_ns = kernfs_ns_enabled(parent);
832 lockdep_assert_held(&kernfs_mutex);
834 if (has_ns != (bool)ns) {
835 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
836 has_ns ? "required" : "invalid", parent->name, name);
840 hash = kernfs_name_hash(name, ns);
842 struct kernfs_node *kn;
846 result = kernfs_name_compare(hash, name, ns, kn);
848 node = node->rb_left;
850 node = node->rb_right;
857 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
858 const unsigned char *path,
864 lockdep_assert_held(&kernfs_mutex);
866 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
867 spin_lock_irq(&kernfs_rename_lock);
869 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
871 if (len >= sizeof(kernfs_pr_cont_buf)) {
872 spin_unlock_irq(&kernfs_rename_lock);
876 p = kernfs_pr_cont_buf;
878 while ((name = strsep(&p, "/")) && parent) {
881 parent = kernfs_find_ns(parent, name, ns);
884 spin_unlock_irq(&kernfs_rename_lock);
890 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
891 * @parent: kernfs_node to search under
892 * @name: name to look for
893 * @ns: the namespace tag to use
895 * Look for kernfs_node with name @name under @parent and get a reference
896 * if found. This function may sleep and returns pointer to the found
897 * kernfs_node on success, %NULL on failure.
899 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
900 const char *name, const void *ns)
902 struct kernfs_node *kn;
904 mutex_lock(&kernfs_mutex);
905 kn = kernfs_find_ns(parent, name, ns);
907 mutex_unlock(&kernfs_mutex);
911 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
914 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
915 * @parent: kernfs_node to search under
916 * @path: path to look for
917 * @ns: the namespace tag to use
919 * Look for kernfs_node with path @path under @parent and get a reference
920 * if found. This function may sleep and returns pointer to the found
921 * kernfs_node on success, %NULL on failure.
923 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
924 const char *path, const void *ns)
926 struct kernfs_node *kn;
928 mutex_lock(&kernfs_mutex);
929 kn = kernfs_walk_ns(parent, path, ns);
931 mutex_unlock(&kernfs_mutex);
937 * kernfs_create_root - create a new kernfs hierarchy
938 * @scops: optional syscall operations for the hierarchy
939 * @flags: KERNFS_ROOT_* flags
940 * @priv: opaque data associated with the new directory
942 * Returns the root of the new hierarchy on success, ERR_PTR() value on
945 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
946 unsigned int flags, void *priv)
948 struct kernfs_root *root;
949 struct kernfs_node *kn;
951 root = kzalloc(sizeof(*root), GFP_KERNEL);
953 return ERR_PTR(-ENOMEM);
955 idr_init(&root->ino_idr);
956 INIT_LIST_HEAD(&root->supers);
959 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
960 * High bits generation. The starting value for both ino and
961 * genenration is 1. Initialize upper 32bit allocation
964 if (sizeof(ino_t) >= sizeof(u64))
965 root->id_highbits = 0;
967 root->id_highbits = 1;
969 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
970 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
973 idr_destroy(&root->ino_idr);
975 return ERR_PTR(-ENOMEM);
981 root->syscall_ops = scops;
984 init_waitqueue_head(&root->deactivate_waitq);
986 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
993 * kernfs_destroy_root - destroy a kernfs hierarchy
994 * @root: root of the hierarchy to destroy
996 * Destroy the hierarchy anchored at @root by removing all existing
997 * directories and destroying @root.
999 void kernfs_destroy_root(struct kernfs_root *root)
1001 kernfs_remove(root->kn); /* will also free @root */
1005 * kernfs_create_dir_ns - create a directory
1006 * @parent: parent in which to create a new directory
1007 * @name: name of the new directory
1008 * @mode: mode of the new directory
1009 * @uid: uid of the new directory
1010 * @gid: gid of the new directory
1011 * @priv: opaque data associated with the new directory
1012 * @ns: optional namespace tag of the directory
1014 * Returns the created node on success, ERR_PTR() value on failure.
1016 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1017 const char *name, umode_t mode,
1018 kuid_t uid, kgid_t gid,
1019 void *priv, const void *ns)
1021 struct kernfs_node *kn;
1025 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1026 uid, gid, KERNFS_DIR);
1028 return ERR_PTR(-ENOMEM);
1030 kn->dir.root = parent->dir.root;
1035 rc = kernfs_add_one(kn);
1044 * kernfs_create_empty_dir - create an always empty directory
1045 * @parent: parent in which to create a new directory
1046 * @name: name of the new directory
1048 * Returns the created node on success, ERR_PTR() value on failure.
1050 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1053 struct kernfs_node *kn;
1057 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1058 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1060 return ERR_PTR(-ENOMEM);
1062 kn->flags |= KERNFS_EMPTY_DIR;
1063 kn->dir.root = parent->dir.root;
1068 rc = kernfs_add_one(kn);
1076 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1077 struct dentry *dentry,
1081 struct kernfs_node *parent = dir->i_private;
1082 struct kernfs_node *kn;
1083 struct inode *inode;
1084 const void *ns = NULL;
1086 mutex_lock(&kernfs_mutex);
1088 if (kernfs_ns_enabled(parent))
1089 ns = kernfs_info(dir->i_sb)->ns;
1091 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1094 if (!kn || !kernfs_active(kn)) {
1099 /* attach dentry and inode */
1100 inode = kernfs_get_inode(dir->i_sb, kn);
1102 ret = ERR_PTR(-ENOMEM);
1106 /* instantiate and hash dentry */
1107 ret = d_splice_alias(inode, dentry);
1109 mutex_unlock(&kernfs_mutex);
1113 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1114 struct inode *dir, struct dentry *dentry,
1117 struct kernfs_node *parent = dir->i_private;
1118 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1121 if (!scops || !scops->mkdir)
1124 if (!kernfs_get_active(parent))
1127 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1129 kernfs_put_active(parent);
1133 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1135 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1136 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1139 if (!scops || !scops->rmdir)
1142 if (!kernfs_get_active(kn))
1145 ret = scops->rmdir(kn);
1147 kernfs_put_active(kn);
1151 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1152 struct inode *old_dir, struct dentry *old_dentry,
1153 struct inode *new_dir, struct dentry *new_dentry,
1156 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1157 struct kernfs_node *new_parent = new_dir->i_private;
1158 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1164 if (!scops || !scops->rename)
1167 if (!kernfs_get_active(kn))
1170 if (!kernfs_get_active(new_parent)) {
1171 kernfs_put_active(kn);
1175 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1177 kernfs_put_active(new_parent);
1178 kernfs_put_active(kn);
1182 const struct inode_operations kernfs_dir_iops = {
1183 .lookup = kernfs_iop_lookup,
1184 .permission = kernfs_iop_permission,
1185 .setattr = kernfs_iop_setattr,
1186 .getattr = kernfs_iop_getattr,
1187 .listxattr = kernfs_iop_listxattr,
1189 .mkdir = kernfs_iop_mkdir,
1190 .rmdir = kernfs_iop_rmdir,
1191 .rename = kernfs_iop_rename,
1194 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1196 struct kernfs_node *last;
1199 struct rb_node *rbn;
1203 if (kernfs_type(pos) != KERNFS_DIR)
1206 rbn = rb_first(&pos->dir.children);
1210 pos = rb_to_kn(rbn);
1217 * kernfs_next_descendant_post - find the next descendant for post-order walk
1218 * @pos: the current position (%NULL to initiate traversal)
1219 * @root: kernfs_node whose descendants to walk
1221 * Find the next descendant to visit for post-order traversal of @root's
1222 * descendants. @root is included in the iteration and the last node to be
1225 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1226 struct kernfs_node *root)
1228 struct rb_node *rbn;
1230 lockdep_assert_held(&kernfs_mutex);
1232 /* if first iteration, visit leftmost descendant which may be root */
1234 return kernfs_leftmost_descendant(root);
1236 /* if we visited @root, we're done */
1240 /* if there's an unvisited sibling, visit its leftmost descendant */
1241 rbn = rb_next(&pos->rb);
1243 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1245 /* no sibling left, visit parent */
1250 * kernfs_activate - activate a node which started deactivated
1251 * @kn: kernfs_node whose subtree is to be activated
1253 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1254 * needs to be explicitly activated. A node which hasn't been activated
1255 * isn't visible to userland and deactivation is skipped during its
1256 * removal. This is useful to construct atomic init sequences where
1257 * creation of multiple nodes should either succeed or fail atomically.
1259 * The caller is responsible for ensuring that this function is not called
1260 * after kernfs_remove*() is invoked on @kn.
1262 void kernfs_activate(struct kernfs_node *kn)
1264 struct kernfs_node *pos;
1266 mutex_lock(&kernfs_mutex);
1269 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1270 if (pos->flags & KERNFS_ACTIVATED)
1273 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1274 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1276 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1277 pos->flags |= KERNFS_ACTIVATED;
1280 mutex_unlock(&kernfs_mutex);
1283 static void __kernfs_remove(struct kernfs_node *kn)
1285 struct kernfs_node *pos;
1287 lockdep_assert_held(&kernfs_mutex);
1290 * Short-circuit if non-root @kn has already finished removal.
1291 * This is for kernfs_remove_self() which plays with active ref
1294 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1297 pr_debug("kernfs %s: removing\n", kn->name);
1299 /* prevent any new usage under @kn by deactivating all nodes */
1301 while ((pos = kernfs_next_descendant_post(pos, kn)))
1302 if (kernfs_active(pos))
1303 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1305 /* deactivate and unlink the subtree node-by-node */
1307 pos = kernfs_leftmost_descendant(kn);
1310 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1311 * base ref could have been put by someone else by the time
1312 * the function returns. Make sure it doesn't go away
1318 * Drain iff @kn was activated. This avoids draining and
1319 * its lockdep annotations for nodes which have never been
1320 * activated and allows embedding kernfs_remove() in create
1321 * error paths without worrying about draining.
1323 if (kn->flags & KERNFS_ACTIVATED)
1326 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1329 * kernfs_unlink_sibling() succeeds once per node. Use it
1330 * to decide who's responsible for cleanups.
1332 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1333 struct kernfs_iattrs *ps_iattr =
1334 pos->parent ? pos->parent->iattr : NULL;
1336 /* update timestamps on the parent */
1338 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1339 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1346 } while (pos != kn);
1350 * kernfs_remove - remove a kernfs_node recursively
1351 * @kn: the kernfs_node to remove
1353 * Remove @kn along with all its subdirectories and files.
1355 void kernfs_remove(struct kernfs_node *kn)
1357 mutex_lock(&kernfs_mutex);
1358 __kernfs_remove(kn);
1359 mutex_unlock(&kernfs_mutex);
1363 * kernfs_break_active_protection - break out of active protection
1364 * @kn: the self kernfs_node
1366 * The caller must be running off of a kernfs operation which is invoked
1367 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1368 * this function must also be matched with an invocation of
1369 * kernfs_unbreak_active_protection().
1371 * This function releases the active reference of @kn the caller is
1372 * holding. Once this function is called, @kn may be removed at any point
1373 * and the caller is solely responsible for ensuring that the objects it
1374 * dereferences are accessible.
1376 void kernfs_break_active_protection(struct kernfs_node *kn)
1379 * Take out ourself out of the active ref dependency chain. If
1380 * we're called without an active ref, lockdep will complain.
1382 kernfs_put_active(kn);
1386 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1387 * @kn: the self kernfs_node
1389 * If kernfs_break_active_protection() was called, this function must be
1390 * invoked before finishing the kernfs operation. Note that while this
1391 * function restores the active reference, it doesn't and can't actually
1392 * restore the active protection - @kn may already or be in the process of
1393 * being removed. Once kernfs_break_active_protection() is invoked, that
1394 * protection is irreversibly gone for the kernfs operation instance.
1396 * While this function may be called at any point after
1397 * kernfs_break_active_protection() is invoked, its most useful location
1398 * would be right before the enclosing kernfs operation returns.
1400 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1403 * @kn->active could be in any state; however, the increment we do
1404 * here will be undone as soon as the enclosing kernfs operation
1405 * finishes and this temporary bump can't break anything. If @kn
1406 * is alive, nothing changes. If @kn is being deactivated, the
1407 * soon-to-follow put will either finish deactivation or restore
1408 * deactivated state. If @kn is already removed, the temporary
1409 * bump is guaranteed to be gone before @kn is released.
1411 atomic_inc(&kn->active);
1412 if (kernfs_lockdep(kn))
1413 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1417 * kernfs_remove_self - remove a kernfs_node from its own method
1418 * @kn: the self kernfs_node to remove
1420 * The caller must be running off of a kernfs operation which is invoked
1421 * with an active reference - e.g. one of kernfs_ops. This can be used to
1422 * implement a file operation which deletes itself.
1424 * For example, the "delete" file for a sysfs device directory can be
1425 * implemented by invoking kernfs_remove_self() on the "delete" file
1426 * itself. This function breaks the circular dependency of trying to
1427 * deactivate self while holding an active ref itself. It isn't necessary
1428 * to modify the usual removal path to use kernfs_remove_self(). The
1429 * "delete" implementation can simply invoke kernfs_remove_self() on self
1430 * before proceeding with the usual removal path. kernfs will ignore later
1431 * kernfs_remove() on self.
1433 * kernfs_remove_self() can be called multiple times concurrently on the
1434 * same kernfs_node. Only the first one actually performs removal and
1435 * returns %true. All others will wait until the kernfs operation which
1436 * won self-removal finishes and return %false. Note that the losers wait
1437 * for the completion of not only the winning kernfs_remove_self() but also
1438 * the whole kernfs_ops which won the arbitration. This can be used to
1439 * guarantee, for example, all concurrent writes to a "delete" file to
1440 * finish only after the whole operation is complete.
1442 bool kernfs_remove_self(struct kernfs_node *kn)
1446 mutex_lock(&kernfs_mutex);
1447 kernfs_break_active_protection(kn);
1450 * SUICIDAL is used to arbitrate among competing invocations. Only
1451 * the first one will actually perform removal. When the removal
1452 * is complete, SUICIDED is set and the active ref is restored
1453 * while holding kernfs_mutex. The ones which lost arbitration
1454 * waits for SUICDED && drained which can happen only after the
1455 * enclosing kernfs operation which executed the winning instance
1456 * of kernfs_remove_self() finished.
1458 if (!(kn->flags & KERNFS_SUICIDAL)) {
1459 kn->flags |= KERNFS_SUICIDAL;
1460 __kernfs_remove(kn);
1461 kn->flags |= KERNFS_SUICIDED;
1464 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1468 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1470 if ((kn->flags & KERNFS_SUICIDED) &&
1471 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1474 mutex_unlock(&kernfs_mutex);
1476 mutex_lock(&kernfs_mutex);
1478 finish_wait(waitq, &wait);
1479 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1484 * This must be done while holding kernfs_mutex; otherwise, waiting
1485 * for SUICIDED && deactivated could finish prematurely.
1487 kernfs_unbreak_active_protection(kn);
1489 mutex_unlock(&kernfs_mutex);
1494 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1495 * @parent: parent of the target
1496 * @name: name of the kernfs_node to remove
1497 * @ns: namespace tag of the kernfs_node to remove
1499 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1500 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1502 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1505 struct kernfs_node *kn;
1508 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1513 mutex_lock(&kernfs_mutex);
1515 kn = kernfs_find_ns(parent, name, ns);
1517 __kernfs_remove(kn);
1519 mutex_unlock(&kernfs_mutex);
1528 * kernfs_rename_ns - move and rename a kernfs_node
1530 * @new_parent: new parent to put @sd under
1531 * @new_name: new name
1532 * @new_ns: new namespace tag
1534 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1535 const char *new_name, const void *new_ns)
1537 struct kernfs_node *old_parent;
1538 const char *old_name = NULL;
1541 /* can't move or rename root */
1545 mutex_lock(&kernfs_mutex);
1548 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1549 (new_parent->flags & KERNFS_EMPTY_DIR))
1553 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1554 (strcmp(kn->name, new_name) == 0))
1555 goto out; /* nothing to rename */
1558 if (kernfs_find_ns(new_parent, new_name, new_ns))
1561 /* rename kernfs_node */
1562 if (strcmp(kn->name, new_name) != 0) {
1564 new_name = kstrdup_const(new_name, GFP_KERNEL);
1572 * Move to the appropriate place in the appropriate directories rbtree.
1574 kernfs_unlink_sibling(kn);
1575 kernfs_get(new_parent);
1577 /* rename_lock protects ->parent and ->name accessors */
1578 spin_lock_irq(&kernfs_rename_lock);
1580 old_parent = kn->parent;
1581 kn->parent = new_parent;
1585 old_name = kn->name;
1586 kn->name = new_name;
1589 spin_unlock_irq(&kernfs_rename_lock);
1591 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1592 kernfs_link_sibling(kn);
1594 kernfs_put(old_parent);
1595 kfree_const(old_name);
1599 mutex_unlock(&kernfs_mutex);
1603 /* Relationship between mode and the DT_xxx types */
1604 static inline unsigned char dt_type(struct kernfs_node *kn)
1606 return (kn->mode >> 12) & 15;
1609 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1611 kernfs_put(filp->private_data);
1615 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1616 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1619 int valid = kernfs_active(pos) &&
1620 pos->parent == parent && hash == pos->hash;
1625 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1626 struct rb_node *node = parent->dir.children.rb_node;
1628 pos = rb_to_kn(node);
1630 if (hash < pos->hash)
1631 node = node->rb_left;
1632 else if (hash > pos->hash)
1633 node = node->rb_right;
1638 /* Skip over entries which are dying/dead or in the wrong namespace */
1639 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1640 struct rb_node *node = rb_next(&pos->rb);
1644 pos = rb_to_kn(node);
1649 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1650 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1652 pos = kernfs_dir_pos(ns, parent, ino, pos);
1655 struct rb_node *node = rb_next(&pos->rb);
1659 pos = rb_to_kn(node);
1660 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1665 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1667 struct dentry *dentry = file->f_path.dentry;
1668 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1669 struct kernfs_node *pos = file->private_data;
1670 const void *ns = NULL;
1672 if (!dir_emit_dots(file, ctx))
1674 mutex_lock(&kernfs_mutex);
1676 if (kernfs_ns_enabled(parent))
1677 ns = kernfs_info(dentry->d_sb)->ns;
1679 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1681 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1682 const char *name = pos->name;
1683 unsigned int type = dt_type(pos);
1684 int len = strlen(name);
1685 ino_t ino = kernfs_ino(pos);
1687 ctx->pos = pos->hash;
1688 file->private_data = pos;
1691 mutex_unlock(&kernfs_mutex);
1692 if (!dir_emit(ctx, name, len, ino, type))
1694 mutex_lock(&kernfs_mutex);
1696 mutex_unlock(&kernfs_mutex);
1697 file->private_data = NULL;
1702 const struct file_operations kernfs_dir_fops = {
1703 .read = generic_read_dir,
1704 .iterate_shared = kernfs_fop_readdir,
1705 .release = kernfs_dir_fop_release,
1706 .llseek = generic_file_llseek,