2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
34 #define DM_MSG_PREFIX "core"
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
48 #define REQ_DM_POLL_LIST REQ_DRV
50 static const char *_name = DM_NAME;
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
55 static DEFINE_IDR(_minor_idr);
57 static DEFINE_SPINLOCK(_minor_lock);
59 static void do_deferred_remove(struct work_struct *w);
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 static struct workqueue_struct *deferred_remove_workqueue;
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 void dm_issue_global_event(void)
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79 * One of these is allocated (on-stack) per original bio.
86 unsigned sector_count;
87 bool is_abnormal_io:1;
88 bool submit_as_polled:1;
91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
92 #define DM_IO_BIO_OFFSET \
93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
95 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
97 return container_of(clone, struct dm_target_io, clone);
100 void *dm_per_bio_data(struct bio *bio, size_t data_size)
102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
104 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
106 EXPORT_SYMBOL_GPL(dm_per_bio_data);
108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
110 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
111 if (io->magic == DM_IO_MAGIC)
112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
113 BUG_ON(io->magic != DM_TIO_MAGIC);
114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
124 #define MINOR_ALLOCED ((void *)-1)
126 #define DM_NUMA_NODE NUMA_NO_NODE
127 static int dm_numa_node = DM_NUMA_NODE;
129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
130 static int swap_bios = DEFAULT_SWAP_BIOS;
131 static int get_swap_bios(void)
133 int latch = READ_ONCE(swap_bios);
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
139 struct table_device {
140 struct list_head list;
142 struct dm_dev dm_dev;
146 * Bio-based DM's mempools' reserved IOs set by the user.
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
172 unsigned __dm_get_module_param(unsigned *module_param,
173 unsigned def, unsigned max)
175 unsigned param = READ_ONCE(*module_param);
176 unsigned modified_param = 0;
179 modified_param = def;
180 else if (param > max)
181 modified_param = max;
183 if (modified_param) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
191 unsigned dm_get_reserved_bio_based_ios(void)
193 return __dm_get_module_param(&reserved_bio_based_ios,
194 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
198 static unsigned dm_get_numa_node(void)
200 return __dm_get_module_param_int(&dm_numa_node,
201 DM_NUMA_NODE, num_online_nodes() - 1);
204 static int __init local_init(void)
208 r = dm_uevent_init();
212 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
213 if (!deferred_remove_workqueue) {
215 goto out_uevent_exit;
219 r = register_blkdev(_major, _name);
221 goto out_free_workqueue;
229 destroy_workqueue(deferred_remove_workqueue);
236 static void local_exit(void)
238 flush_scheduled_work();
239 destroy_workqueue(deferred_remove_workqueue);
241 unregister_blkdev(_major, _name);
246 DMINFO("cleaned up");
249 static int (*_inits[])(void) __initdata = {
260 static void (*_exits[])(void) = {
271 static int __init dm_init(void)
273 const int count = ARRAY_SIZE(_inits);
276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
277 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
278 " Duplicate IMA measurements will not be recorded in the IMA log.");
281 for (i = 0; i < count; i++) {
295 static void __exit dm_exit(void)
297 int i = ARRAY_SIZE(_exits);
303 * Should be empty by this point.
305 idr_destroy(&_minor_idr);
309 * Block device functions
311 int dm_deleting_md(struct mapped_device *md)
313 return test_bit(DMF_DELETING, &md->flags);
316 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
318 struct mapped_device *md;
320 spin_lock(&_minor_lock);
322 md = bdev->bd_disk->private_data;
326 if (test_bit(DMF_FREEING, &md->flags) ||
327 dm_deleting_md(md)) {
333 atomic_inc(&md->open_count);
335 spin_unlock(&_minor_lock);
337 return md ? 0 : -ENXIO;
340 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
342 struct mapped_device *md;
344 spin_lock(&_minor_lock);
346 md = disk->private_data;
350 if (atomic_dec_and_test(&md->open_count) &&
351 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
352 queue_work(deferred_remove_workqueue, &deferred_remove_work);
356 spin_unlock(&_minor_lock);
359 int dm_open_count(struct mapped_device *md)
361 return atomic_read(&md->open_count);
365 * Guarantees nothing is using the device before it's deleted.
367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
371 spin_lock(&_minor_lock);
373 if (dm_open_count(md)) {
376 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
377 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
380 set_bit(DMF_DELETING, &md->flags);
382 spin_unlock(&_minor_lock);
387 int dm_cancel_deferred_remove(struct mapped_device *md)
391 spin_lock(&_minor_lock);
393 if (test_bit(DMF_DELETING, &md->flags))
396 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
398 spin_unlock(&_minor_lock);
403 static void do_deferred_remove(struct work_struct *w)
405 dm_deferred_remove();
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
410 struct mapped_device *md = bdev->bd_disk->private_data;
412 return dm_get_geometry(md, geo);
415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
416 struct block_device **bdev)
418 struct dm_target *tgt;
419 struct dm_table *map;
424 map = dm_get_live_table(md, srcu_idx);
425 if (!map || !dm_table_get_size(map))
428 /* We only support devices that have a single target */
429 if (dm_table_get_num_targets(map) != 1)
432 tgt = dm_table_get_target(map, 0);
433 if (!tgt->type->prepare_ioctl)
436 if (dm_suspended_md(md))
439 r = tgt->type->prepare_ioctl(tgt, bdev);
440 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
441 dm_put_live_table(md, *srcu_idx);
449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
451 dm_put_live_table(md, srcu_idx);
454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 unsigned int cmd, unsigned long arg)
457 struct mapped_device *md = bdev->bd_disk->private_data;
460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
466 * Target determined this ioctl is being issued against a
467 * subset of the parent bdev; require extra privileges.
469 if (!capable(CAP_SYS_RAWIO)) {
471 "%s: sending ioctl %x to DM device without required privilege.",
478 if (!bdev->bd_disk->fops->ioctl)
481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
483 dm_unprepare_ioctl(md, srcu_idx);
487 u64 dm_start_time_ns_from_clone(struct bio *bio)
489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
493 static bool bio_is_flush_with_data(struct bio *bio)
495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
498 static void dm_io_acct(struct dm_io *io, bool end)
500 struct dm_stats_aux *stats_aux = &io->stats_aux;
501 unsigned long start_time = io->start_time;
502 struct mapped_device *md = io->md;
503 struct bio *bio = io->orig_bio;
504 unsigned int sectors;
507 * If REQ_PREFLUSH set, don't account payload, it will be
508 * submitted (and accounted) after this flush completes.
510 if (bio_is_flush_with_data(bio))
512 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
513 sectors = bio_sectors(bio);
515 sectors = io->sectors;
518 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
521 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
523 if (static_branch_unlikely(&stats_enabled) &&
524 unlikely(dm_stats_used(&md->stats))) {
527 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 sector = bio->bi_iter.bi_sector;
530 sector = bio_end_sector(bio) - io->sector_offset;
532 dm_stats_account_io(&md->stats, bio_data_dir(bio),
534 end, start_time, stats_aux);
538 static void __dm_start_io_acct(struct dm_io *io)
540 dm_io_acct(io, false);
543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
546 * Ensure IO accounting is only ever started once.
548 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 dm_io_set_flag(io, DM_IO_ACCOUNTED);
556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 spin_lock_irqsave(&io->lock, flags);
558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 spin_unlock_irqrestore(&io->lock, flags);
562 dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 spin_unlock_irqrestore(&io->lock, flags);
566 __dm_start_io_acct(io);
569 static void dm_end_io_acct(struct dm_io *io)
571 dm_io_acct(io, true);
574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
577 struct dm_target_io *tio;
580 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
581 /* Set default bdev, but target must bio_set_dev() before issuing IO */
582 clone->bi_bdev = md->disk->part0;
584 tio = clone_to_tio(clone);
586 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
589 io = container_of(tio, struct dm_io, tio);
590 io->magic = DM_IO_MAGIC;
591 io->status = BLK_STS_OK;
593 /* one ref is for submission, the other is for completion */
594 atomic_set(&io->io_count, 2);
595 this_cpu_inc(*md->pending_io);
597 io->split_bio = NULL;
599 spin_lock_init(&io->lock);
600 io->start_time = jiffies;
603 if (static_branch_unlikely(&stats_enabled))
604 dm_stats_record_start(&md->stats, &io->stats_aux);
609 static void free_io(struct dm_io *io)
611 bio_put(&io->tio.clone);
614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
617 struct dm_target_io *tio;
620 if (!ci->io->tio.io) {
621 /* the dm_target_io embedded in ci->io is available */
623 /* alloc_io() already initialized embedded clone */
626 struct mapped_device *md = ci->io->md;
628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
632 /* Set default bdev, but target must bio_set_dev() before issuing IO */
633 clone->bi_bdev = md->disk->part0;
635 /* REQ_DM_POLL_LIST shouldn't be inherited */
636 clone->bi_opf &= ~REQ_DM_POLL_LIST;
638 tio = clone_to_tio(clone);
639 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
642 tio->magic = DM_TIO_MAGIC;
645 tio->target_bio_nr = target_bio_nr;
650 clone->bi_iter.bi_size = to_bytes(*len);
651 if (bio_integrity(clone))
652 bio_integrity_trim(clone);
658 static void free_tio(struct bio *clone)
660 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
666 * Add the bio to the list of deferred io.
668 static void queue_io(struct mapped_device *md, struct bio *bio)
672 spin_lock_irqsave(&md->deferred_lock, flags);
673 bio_list_add(&md->deferred, bio);
674 spin_unlock_irqrestore(&md->deferred_lock, flags);
675 queue_work(md->wq, &md->work);
679 * Everyone (including functions in this file), should use this
680 * function to access the md->map field, and make sure they call
681 * dm_put_live_table() when finished.
683 struct dm_table *dm_get_live_table(struct mapped_device *md,
684 int *srcu_idx) __acquires(md->io_barrier)
686 *srcu_idx = srcu_read_lock(&md->io_barrier);
688 return srcu_dereference(md->map, &md->io_barrier);
691 void dm_put_live_table(struct mapped_device *md,
692 int srcu_idx) __releases(md->io_barrier)
694 srcu_read_unlock(&md->io_barrier, srcu_idx);
697 void dm_sync_table(struct mapped_device *md)
699 synchronize_srcu(&md->io_barrier);
700 synchronize_rcu_expedited();
704 * A fast alternative to dm_get_live_table/dm_put_live_table.
705 * The caller must not block between these two functions.
707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710 return rcu_dereference(md->map);
713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
718 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
719 int *srcu_idx, unsigned bio_opf)
721 if (bio_opf & REQ_NOWAIT)
722 return dm_get_live_table_fast(md);
724 return dm_get_live_table(md, srcu_idx);
727 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
730 if (bio_opf & REQ_NOWAIT)
731 dm_put_live_table_fast(md);
733 dm_put_live_table(md, srcu_idx);
736 static char *_dm_claim_ptr = "I belong to device-mapper";
739 * Open a table device so we can use it as a map destination.
741 static int open_table_device(struct table_device *td, dev_t dev,
742 struct mapped_device *md)
744 struct block_device *bdev;
748 BUG_ON(td->dm_dev.bdev);
750 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
752 return PTR_ERR(bdev);
754 r = bd_link_disk_holder(bdev, dm_disk(md));
756 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
760 td->dm_dev.bdev = bdev;
761 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
766 * Close a table device that we've been using.
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
770 if (!td->dm_dev.bdev)
773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 put_dax(td->dm_dev.dax_dev);
776 td->dm_dev.bdev = NULL;
777 td->dm_dev.dax_dev = NULL;
780 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
783 struct table_device *td;
785 list_for_each_entry(td, l, list)
786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
793 struct dm_dev **result)
796 struct table_device *td;
798 mutex_lock(&md->table_devices_lock);
799 td = find_table_device(&md->table_devices, dev, mode);
801 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
803 mutex_unlock(&md->table_devices_lock);
807 td->dm_dev.mode = mode;
808 td->dm_dev.bdev = NULL;
810 if ((r = open_table_device(td, dev, md))) {
811 mutex_unlock(&md->table_devices_lock);
816 format_dev_t(td->dm_dev.name, dev);
818 refcount_set(&td->count, 1);
819 list_add(&td->list, &md->table_devices);
821 refcount_inc(&td->count);
823 mutex_unlock(&md->table_devices_lock);
825 *result = &td->dm_dev;
829 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
831 struct table_device *td = container_of(d, struct table_device, dm_dev);
833 mutex_lock(&md->table_devices_lock);
834 if (refcount_dec_and_test(&td->count)) {
835 close_table_device(td, md);
839 mutex_unlock(&md->table_devices_lock);
842 static void free_table_devices(struct list_head *devices)
844 struct list_head *tmp, *next;
846 list_for_each_safe(tmp, next, devices) {
847 struct table_device *td = list_entry(tmp, struct table_device, list);
849 DMWARN("dm_destroy: %s still exists with %d references",
850 td->dm_dev.name, refcount_read(&td->count));
856 * Get the geometry associated with a dm device
858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 * Set the geometry of a device.
868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
870 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
872 if (geo->start > sz) {
873 DMWARN("Start sector is beyond the geometry limits.");
882 static int __noflush_suspending(struct mapped_device *md)
884 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
887 static void dm_io_complete(struct dm_io *io)
889 blk_status_t io_error;
890 struct mapped_device *md = io->md;
891 struct bio *bio = io->split_bio ? io->split_bio : io->orig_bio;
893 if (io->status == BLK_STS_DM_REQUEUE) {
896 * Target requested pushing back the I/O.
898 spin_lock_irqsave(&md->deferred_lock, flags);
899 if (__noflush_suspending(md) &&
900 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
901 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
902 bio_list_add_head(&md->deferred, bio);
905 * noflush suspend was interrupted or this is
906 * a write to a zoned target.
908 io->status = BLK_STS_IOERR;
910 spin_unlock_irqrestore(&md->deferred_lock, flags);
913 io_error = io->status;
914 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
916 else if (!io_error) {
918 * Must handle target that DM_MAPIO_SUBMITTED only to
919 * then bio_endio() rather than dm_submit_bio_remap()
921 __dm_start_io_acct(io);
926 this_cpu_dec(*md->pending_io);
928 /* nudge anyone waiting on suspend queue */
929 if (unlikely(wq_has_sleeper(&md->wait)))
932 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
933 if (bio->bi_opf & REQ_POLLED) {
935 * Upper layer won't help us poll split bio (io->orig_bio
936 * may only reflect a subset of the pre-split original)
937 * so clear REQ_POLLED in case of requeue.
939 bio_clear_polled(bio);
940 if (io_error == BLK_STS_AGAIN) {
941 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */
946 if (io_error == BLK_STS_DM_REQUEUE)
950 if (bio_is_flush_with_data(bio)) {
952 * Preflush done for flush with data, reissue
953 * without REQ_PREFLUSH.
955 bio->bi_opf &= ~REQ_PREFLUSH;
958 /* done with normal IO or empty flush */
960 bio->bi_status = io_error;
966 * Decrements the number of outstanding ios that a bio has been
967 * cloned into, completing the original io if necc.
969 static inline void __dm_io_dec_pending(struct dm_io *io)
971 if (atomic_dec_and_test(&io->io_count))
975 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
979 /* Push-back supersedes any I/O errors */
980 spin_lock_irqsave(&io->lock, flags);
981 if (!(io->status == BLK_STS_DM_REQUEUE &&
982 __noflush_suspending(io->md))) {
985 spin_unlock_irqrestore(&io->lock, flags);
988 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
991 dm_io_set_error(io, error);
993 __dm_io_dec_pending(io);
996 void disable_discard(struct mapped_device *md)
998 struct queue_limits *limits = dm_get_queue_limits(md);
1000 /* device doesn't really support DISCARD, disable it */
1001 limits->max_discard_sectors = 0;
1004 void disable_write_zeroes(struct mapped_device *md)
1006 struct queue_limits *limits = dm_get_queue_limits(md);
1008 /* device doesn't really support WRITE ZEROES, disable it */
1009 limits->max_write_zeroes_sectors = 0;
1012 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1014 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1017 static void clone_endio(struct bio *bio)
1019 blk_status_t error = bio->bi_status;
1020 struct dm_target_io *tio = clone_to_tio(bio);
1021 struct dm_target *ti = tio->ti;
1022 dm_endio_fn endio = ti->type->end_io;
1023 struct dm_io *io = tio->io;
1024 struct mapped_device *md = io->md;
1026 if (unlikely(error == BLK_STS_TARGET)) {
1027 if (bio_op(bio) == REQ_OP_DISCARD &&
1028 !bdev_max_discard_sectors(bio->bi_bdev))
1029 disable_discard(md);
1030 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1031 !bdev_write_zeroes_sectors(bio->bi_bdev))
1032 disable_write_zeroes(md);
1035 if (static_branch_unlikely(&zoned_enabled) &&
1036 unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev))))
1037 dm_zone_endio(io, bio);
1040 int r = endio(ti, bio, &error);
1042 case DM_ENDIO_REQUEUE:
1043 if (static_branch_unlikely(&zoned_enabled)) {
1045 * Requeuing writes to a sequential zone of a zoned
1046 * target will break the sequential write pattern:
1049 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1050 error = BLK_STS_IOERR;
1052 error = BLK_STS_DM_REQUEUE;
1054 error = BLK_STS_DM_REQUEUE;
1058 case DM_ENDIO_INCOMPLETE:
1059 /* The target will handle the io */
1062 DMWARN("unimplemented target endio return value: %d", r);
1067 if (static_branch_unlikely(&swap_bios_enabled) &&
1068 unlikely(swap_bios_limit(ti, bio)))
1069 up(&md->swap_bios_semaphore);
1072 dm_io_dec_pending(io, error);
1076 * Return maximum size of I/O possible at the supplied sector up to the current
1079 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1080 sector_t target_offset)
1082 return ti->len - target_offset;
1085 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1087 sector_t target_offset = dm_target_offset(ti, sector);
1088 sector_t len = max_io_len_target_boundary(ti, target_offset);
1092 * Does the target need to split IO even further?
1093 * - varied (per target) IO splitting is a tenet of DM; this
1094 * explains why stacked chunk_sectors based splitting via
1095 * blk_max_size_offset() isn't possible here. So pass in
1096 * ti->max_io_len to override stacked chunk_sectors.
1098 if (ti->max_io_len) {
1099 max_len = blk_max_size_offset(ti->table->md->queue,
1100 target_offset, ti->max_io_len);
1108 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1110 if (len > UINT_MAX) {
1111 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1112 (unsigned long long)len, UINT_MAX);
1113 ti->error = "Maximum size of target IO is too large";
1117 ti->max_io_len = (uint32_t) len;
1121 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1123 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1124 sector_t sector, int *srcu_idx)
1125 __acquires(md->io_barrier)
1127 struct dm_table *map;
1128 struct dm_target *ti;
1130 map = dm_get_live_table(md, srcu_idx);
1134 ti = dm_table_find_target(map, sector);
1141 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1142 long nr_pages, enum dax_access_mode mode, void **kaddr,
1145 struct mapped_device *md = dax_get_private(dax_dev);
1146 sector_t sector = pgoff * PAGE_SECTORS;
1147 struct dm_target *ti;
1148 long len, ret = -EIO;
1151 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1155 if (!ti->type->direct_access)
1157 len = max_io_len(ti, sector) / PAGE_SECTORS;
1160 nr_pages = min(len, nr_pages);
1161 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1164 dm_put_live_table(md, srcu_idx);
1169 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1172 struct mapped_device *md = dax_get_private(dax_dev);
1173 sector_t sector = pgoff * PAGE_SECTORS;
1174 struct dm_target *ti;
1178 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1182 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1184 * ->zero_page_range() is mandatory dax operation. If we are
1185 * here, something is wrong.
1189 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1191 dm_put_live_table(md, srcu_idx);
1196 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1197 void *addr, size_t bytes, struct iov_iter *i)
1199 struct mapped_device *md = dax_get_private(dax_dev);
1200 sector_t sector = pgoff * PAGE_SECTORS;
1201 struct dm_target *ti;
1205 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1206 if (!ti || !ti->type->dax_recovery_write)
1209 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1211 dm_put_live_table(md, srcu_idx);
1216 * A target may call dm_accept_partial_bio only from the map routine. It is
1217 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1218 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1219 * __send_duplicate_bios().
1221 * dm_accept_partial_bio informs the dm that the target only wants to process
1222 * additional n_sectors sectors of the bio and the rest of the data should be
1223 * sent in a next bio.
1225 * A diagram that explains the arithmetics:
1226 * +--------------------+---------------+-------+
1228 * +--------------------+---------------+-------+
1230 * <-------------- *tio->len_ptr --------------->
1231 * <----- bio_sectors ----->
1234 * Region 1 was already iterated over with bio_advance or similar function.
1235 * (it may be empty if the target doesn't use bio_advance)
1236 * Region 2 is the remaining bio size that the target wants to process.
1237 * (it may be empty if region 1 is non-empty, although there is no reason
1239 * The target requires that region 3 is to be sent in the next bio.
1241 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1242 * the partially processed part (the sum of regions 1+2) must be the same for all
1243 * copies of the bio.
1245 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1247 struct dm_target_io *tio = clone_to_tio(bio);
1248 unsigned bio_sectors = bio_sectors(bio);
1250 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1251 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1252 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1253 BUG_ON(bio_sectors > *tio->len_ptr);
1254 BUG_ON(n_sectors > bio_sectors);
1256 *tio->len_ptr -= bio_sectors - n_sectors;
1257 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1260 * __split_and_process_bio() may have already saved mapped part
1261 * for accounting but it is being reduced so update accordingly.
1263 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT);
1264 tio->io->sectors = n_sectors;
1266 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1269 * @clone: clone bio that DM core passed to target's .map function
1270 * @tgt_clone: clone of @clone bio that target needs submitted
1272 * Targets should use this interface to submit bios they take
1273 * ownership of when returning DM_MAPIO_SUBMITTED.
1275 * Target should also enable ti->accounts_remapped_io
1277 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1279 struct dm_target_io *tio = clone_to_tio(clone);
1280 struct dm_io *io = tio->io;
1282 /* establish bio that will get submitted */
1287 * Account io->origin_bio to DM dev on behalf of target
1288 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1290 dm_start_io_acct(io, clone);
1292 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1294 submit_bio_noacct(tgt_clone);
1296 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1298 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1300 mutex_lock(&md->swap_bios_lock);
1301 while (latch < md->swap_bios) {
1303 down(&md->swap_bios_semaphore);
1306 while (latch > md->swap_bios) {
1308 up(&md->swap_bios_semaphore);
1311 mutex_unlock(&md->swap_bios_lock);
1314 static void __map_bio(struct bio *clone)
1316 struct dm_target_io *tio = clone_to_tio(clone);
1317 struct dm_target *ti = tio->ti;
1318 struct dm_io *io = tio->io;
1319 struct mapped_device *md = io->md;
1322 clone->bi_end_io = clone_endio;
1327 tio->old_sector = clone->bi_iter.bi_sector;
1329 if (static_branch_unlikely(&swap_bios_enabled) &&
1330 unlikely(swap_bios_limit(ti, clone))) {
1331 int latch = get_swap_bios();
1332 if (unlikely(latch != md->swap_bios))
1333 __set_swap_bios_limit(md, latch);
1334 down(&md->swap_bios_semaphore);
1337 if (static_branch_unlikely(&zoned_enabled)) {
1339 * Check if the IO needs a special mapping due to zone append
1340 * emulation on zoned target. In this case, dm_zone_map_bio()
1341 * calls the target map operation.
1343 if (unlikely(dm_emulate_zone_append(md)))
1344 r = dm_zone_map_bio(tio);
1346 r = ti->type->map(ti, clone);
1348 r = ti->type->map(ti, clone);
1351 case DM_MAPIO_SUBMITTED:
1352 /* target has assumed ownership of this io */
1353 if (!ti->accounts_remapped_io)
1354 dm_start_io_acct(io, clone);
1356 case DM_MAPIO_REMAPPED:
1357 dm_submit_bio_remap(clone, NULL);
1360 case DM_MAPIO_REQUEUE:
1361 if (static_branch_unlikely(&swap_bios_enabled) &&
1362 unlikely(swap_bios_limit(ti, clone)))
1363 up(&md->swap_bios_semaphore);
1365 if (r == DM_MAPIO_KILL)
1366 dm_io_dec_pending(io, BLK_STS_IOERR);
1368 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1371 DMWARN("unimplemented target map return value: %d", r);
1376 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1378 struct dm_io *io = ci->io;
1380 if (ci->sector_count > len) {
1382 * Split needed, save the mapped part for accounting.
1383 * NOTE: dm_accept_partial_bio() will update accordingly.
1385 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1389 if (static_branch_unlikely(&stats_enabled) &&
1390 unlikely(dm_stats_used(&io->md->stats))) {
1392 * Save bi_sector in terms of its offset from end of
1393 * original bio, only needed for DM-stats' benefit.
1394 * - saved regardless of whether split needed so that
1395 * dm_accept_partial_bio() doesn't need to.
1397 io->sector_offset = bio_end_sector(ci->bio) - ci->sector;
1401 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1402 struct dm_target *ti, unsigned num_bios)
1407 for (try = 0; try < 2; try++) {
1411 mutex_lock(&ci->io->md->table_devices_lock);
1412 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1413 bio = alloc_tio(ci, ti, bio_nr, NULL,
1414 try ? GFP_NOIO : GFP_NOWAIT);
1418 bio_list_add(blist, bio);
1421 mutex_unlock(&ci->io->md->table_devices_lock);
1422 if (bio_nr == num_bios)
1425 while ((bio = bio_list_pop(blist)))
1430 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1431 unsigned num_bios, unsigned *len)
1433 struct bio_list blist = BIO_EMPTY_LIST;
1442 setup_split_accounting(ci, *len);
1443 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1448 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1449 alloc_multiple_bios(&blist, ci, ti, num_bios);
1450 while ((clone = bio_list_pop(&blist))) {
1451 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1461 static void __send_empty_flush(struct clone_info *ci)
1463 unsigned target_nr = 0;
1464 struct dm_target *ti;
1465 struct bio flush_bio;
1468 * Use an on-stack bio for this, it's safe since we don't
1469 * need to reference it after submit. It's just used as
1470 * the basis for the clone(s).
1472 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1473 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1475 ci->bio = &flush_bio;
1476 ci->sector_count = 0;
1477 ci->io->tio.clone.bi_iter.bi_size = 0;
1479 while ((ti = dm_table_get_target(ci->map, target_nr++))) {
1482 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1483 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1484 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1488 * alloc_io() takes one extra reference for submission, so the
1489 * reference won't reach 0 without the following subtraction
1491 atomic_sub(1, &ci->io->io_count);
1493 bio_uninit(ci->bio);
1496 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1502 len = min_t(sector_t, ci->sector_count,
1503 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1505 atomic_add(num_bios, &ci->io->io_count);
1506 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1508 * alloc_io() takes one extra reference for submission, so the
1509 * reference won't reach 0 without the following (+1) subtraction
1511 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1514 ci->sector_count -= len;
1517 static bool is_abnormal_io(struct bio *bio)
1519 unsigned int op = bio_op(bio);
1521 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1523 case REQ_OP_DISCARD:
1524 case REQ_OP_SECURE_ERASE:
1525 case REQ_OP_WRITE_ZEROES:
1535 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1536 struct dm_target *ti)
1538 unsigned num_bios = 0;
1540 switch (bio_op(ci->bio)) {
1541 case REQ_OP_DISCARD:
1542 num_bios = ti->num_discard_bios;
1544 case REQ_OP_SECURE_ERASE:
1545 num_bios = ti->num_secure_erase_bios;
1547 case REQ_OP_WRITE_ZEROES:
1548 num_bios = ti->num_write_zeroes_bios;
1553 * Even though the device advertised support for this type of
1554 * request, that does not mean every target supports it, and
1555 * reconfiguration might also have changed that since the
1556 * check was performed.
1558 if (unlikely(!num_bios))
1559 return BLK_STS_NOTSUPP;
1561 __send_changing_extent_only(ci, ti, num_bios);
1566 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1567 * associated with this bio, and this bio's bi_private needs to be
1568 * stored in dm_io->data before the reuse.
1570 * bio->bi_private is owned by fs or upper layer, so block layer won't
1571 * touch it after splitting. Meantime it won't be changed by anyone after
1572 * bio is submitted. So this reuse is safe.
1574 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1576 return (struct dm_io **)&bio->bi_private;
1579 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1581 struct dm_io **head = dm_poll_list_head(bio);
1583 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1584 bio->bi_opf |= REQ_DM_POLL_LIST;
1586 * Save .bi_private into dm_io, so that we can reuse
1587 * .bi_private as dm_io list head for storing dm_io list
1589 io->data = bio->bi_private;
1591 /* tell block layer to poll for completion */
1592 bio->bi_cookie = ~BLK_QC_T_NONE;
1597 * bio recursed due to split, reuse original poll list,
1598 * and save bio->bi_private too.
1600 io->data = (*head)->data;
1608 * Select the correct strategy for processing a non-flush bio.
1610 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1613 struct dm_target *ti;
1616 ti = dm_table_find_target(ci->map, ci->sector);
1618 return BLK_STS_IOERR;
1620 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1621 unlikely(!dm_target_supports_nowait(ti->type)))
1622 return BLK_STS_NOTSUPP;
1624 if (unlikely(ci->is_abnormal_io))
1625 return __process_abnormal_io(ci, ti);
1628 * Only support bio polling for normal IO, and the target io is
1629 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1631 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1633 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1634 setup_split_accounting(ci, len);
1635 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1639 ci->sector_count -= len;
1644 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1645 struct dm_table *map, struct bio *bio, bool is_abnormal)
1648 ci->io = alloc_io(md, bio);
1650 ci->is_abnormal_io = is_abnormal;
1651 ci->submit_as_polled = false;
1652 ci->sector = bio->bi_iter.bi_sector;
1653 ci->sector_count = bio_sectors(bio);
1655 /* Shouldn't happen but sector_count was being set to 0 so... */
1656 if (static_branch_unlikely(&zoned_enabled) &&
1657 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1658 ci->sector_count = 0;
1662 * Entry point to split a bio into clones and submit them to the targets.
1664 static void dm_split_and_process_bio(struct mapped_device *md,
1665 struct dm_table *map, struct bio *bio)
1667 struct clone_info ci;
1669 blk_status_t error = BLK_STS_OK;
1672 is_abnormal = is_abnormal_io(bio);
1673 if (unlikely(is_abnormal)) {
1675 * Use blk_queue_split() for abnormal IO (e.g. discard, etc)
1676 * otherwise associated queue_limits won't be imposed.
1678 blk_queue_split(&bio);
1681 init_clone_info(&ci, md, map, bio, is_abnormal);
1684 if (bio->bi_opf & REQ_PREFLUSH) {
1685 __send_empty_flush(&ci);
1686 /* dm_io_complete submits any data associated with flush */
1690 error = __split_and_process_bio(&ci);
1691 if (error || !ci.sector_count)
1694 * Remainder must be passed to submit_bio_noacct() so it gets handled
1695 * *after* bios already submitted have been completely processed.
1697 WARN_ON_ONCE(!dm_io_flagged(io, DM_IO_WAS_SPLIT));
1698 io->split_bio = bio_split(bio, io->sectors, GFP_NOIO,
1699 &md->queue->bio_split);
1700 bio_chain(io->split_bio, bio);
1701 trace_block_split(io->split_bio, bio->bi_iter.bi_sector);
1702 submit_bio_noacct(bio);
1705 * Drop the extra reference count for non-POLLED bio, and hold one
1706 * reference for POLLED bio, which will be released in dm_poll_bio
1708 * Add every dm_io instance into the dm_io list head which is stored
1709 * in bio->bi_private, so that dm_poll_bio can poll them all.
1711 if (error || !ci.submit_as_polled) {
1713 * In case of submission failure, the extra reference for
1714 * submitting io isn't consumed yet
1717 atomic_dec(&io->io_count);
1718 dm_io_dec_pending(io, error);
1720 dm_queue_poll_io(bio, io);
1723 static void dm_submit_bio(struct bio *bio)
1725 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1727 struct dm_table *map;
1728 unsigned bio_opf = bio->bi_opf;
1730 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1732 /* If suspended, or map not yet available, queue this IO for later */
1733 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1735 if (bio->bi_opf & REQ_NOWAIT)
1736 bio_wouldblock_error(bio);
1737 else if (bio->bi_opf & REQ_RAHEAD)
1744 dm_split_and_process_bio(md, map, bio);
1746 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1749 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1752 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1754 /* don't poll if the mapped io is done */
1755 if (atomic_read(&io->io_count) > 1)
1756 bio_poll(&io->tio.clone, iob, flags);
1758 /* bio_poll holds the last reference */
1759 return atomic_read(&io->io_count) == 1;
1762 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1765 struct dm_io **head = dm_poll_list_head(bio);
1766 struct dm_io *list = *head;
1767 struct dm_io *tmp = NULL;
1768 struct dm_io *curr, *next;
1770 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1771 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1774 WARN_ON_ONCE(!list);
1777 * Restore .bi_private before possibly completing dm_io.
1779 * bio_poll() is only possible once @bio has been completely
1780 * submitted via submit_bio_noacct()'s depth-first submission.
1781 * So there is no dm_queue_poll_io() race associated with
1782 * clearing REQ_DM_POLL_LIST here.
1784 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1785 bio->bi_private = list->data;
1787 for (curr = list, next = curr->next; curr; curr = next, next =
1788 curr ? curr->next : NULL) {
1789 if (dm_poll_dm_io(curr, iob, flags)) {
1791 * clone_endio() has already occurred, so no
1792 * error handling is needed here.
1794 __dm_io_dec_pending(curr);
1803 bio->bi_opf |= REQ_DM_POLL_LIST;
1804 /* Reset bio->bi_private to dm_io list head */
1811 /*-----------------------------------------------------------------
1812 * An IDR is used to keep track of allocated minor numbers.
1813 *---------------------------------------------------------------*/
1814 static void free_minor(int minor)
1816 spin_lock(&_minor_lock);
1817 idr_remove(&_minor_idr, minor);
1818 spin_unlock(&_minor_lock);
1822 * See if the device with a specific minor # is free.
1824 static int specific_minor(int minor)
1828 if (minor >= (1 << MINORBITS))
1831 idr_preload(GFP_KERNEL);
1832 spin_lock(&_minor_lock);
1834 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1836 spin_unlock(&_minor_lock);
1839 return r == -ENOSPC ? -EBUSY : r;
1843 static int next_free_minor(int *minor)
1847 idr_preload(GFP_KERNEL);
1848 spin_lock(&_minor_lock);
1850 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1852 spin_unlock(&_minor_lock);
1860 static const struct block_device_operations dm_blk_dops;
1861 static const struct block_device_operations dm_rq_blk_dops;
1862 static const struct dax_operations dm_dax_ops;
1864 static void dm_wq_work(struct work_struct *work);
1866 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1867 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1869 dm_destroy_crypto_profile(q->crypto_profile);
1872 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1874 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1877 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1879 static void cleanup_mapped_device(struct mapped_device *md)
1882 destroy_workqueue(md->wq);
1883 dm_free_md_mempools(md->mempools);
1886 dax_remove_host(md->disk);
1887 kill_dax(md->dax_dev);
1888 put_dax(md->dax_dev);
1892 dm_cleanup_zoned_dev(md);
1894 spin_lock(&_minor_lock);
1895 md->disk->private_data = NULL;
1896 spin_unlock(&_minor_lock);
1897 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1899 del_gendisk(md->disk);
1901 dm_queue_destroy_crypto_profile(md->queue);
1902 blk_cleanup_disk(md->disk);
1905 if (md->pending_io) {
1906 free_percpu(md->pending_io);
1907 md->pending_io = NULL;
1910 cleanup_srcu_struct(&md->io_barrier);
1912 mutex_destroy(&md->suspend_lock);
1913 mutex_destroy(&md->type_lock);
1914 mutex_destroy(&md->table_devices_lock);
1915 mutex_destroy(&md->swap_bios_lock);
1917 dm_mq_cleanup_mapped_device(md);
1921 * Allocate and initialise a blank device with a given minor.
1923 static struct mapped_device *alloc_dev(int minor)
1925 int r, numa_node_id = dm_get_numa_node();
1926 struct mapped_device *md;
1929 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1931 DMWARN("unable to allocate device, out of memory.");
1935 if (!try_module_get(THIS_MODULE))
1936 goto bad_module_get;
1938 /* get a minor number for the dev */
1939 if (minor == DM_ANY_MINOR)
1940 r = next_free_minor(&minor);
1942 r = specific_minor(minor);
1946 r = init_srcu_struct(&md->io_barrier);
1948 goto bad_io_barrier;
1950 md->numa_node_id = numa_node_id;
1951 md->init_tio_pdu = false;
1952 md->type = DM_TYPE_NONE;
1953 mutex_init(&md->suspend_lock);
1954 mutex_init(&md->type_lock);
1955 mutex_init(&md->table_devices_lock);
1956 spin_lock_init(&md->deferred_lock);
1957 atomic_set(&md->holders, 1);
1958 atomic_set(&md->open_count, 0);
1959 atomic_set(&md->event_nr, 0);
1960 atomic_set(&md->uevent_seq, 0);
1961 INIT_LIST_HEAD(&md->uevent_list);
1962 INIT_LIST_HEAD(&md->table_devices);
1963 spin_lock_init(&md->uevent_lock);
1966 * default to bio-based until DM table is loaded and md->type
1967 * established. If request-based table is loaded: blk-mq will
1968 * override accordingly.
1970 md->disk = blk_alloc_disk(md->numa_node_id);
1973 md->queue = md->disk->queue;
1975 init_waitqueue_head(&md->wait);
1976 INIT_WORK(&md->work, dm_wq_work);
1977 init_waitqueue_head(&md->eventq);
1978 init_completion(&md->kobj_holder.completion);
1980 md->swap_bios = get_swap_bios();
1981 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1982 mutex_init(&md->swap_bios_lock);
1984 md->disk->major = _major;
1985 md->disk->first_minor = minor;
1986 md->disk->minors = 1;
1987 md->disk->flags |= GENHD_FL_NO_PART;
1988 md->disk->fops = &dm_blk_dops;
1989 md->disk->queue = md->queue;
1990 md->disk->private_data = md;
1991 sprintf(md->disk->disk_name, "dm-%d", minor);
1993 if (IS_ENABLED(CONFIG_FS_DAX)) {
1994 md->dax_dev = alloc_dax(md, &dm_dax_ops);
1995 if (IS_ERR(md->dax_dev)) {
1999 set_dax_nocache(md->dax_dev);
2000 set_dax_nomc(md->dax_dev);
2001 if (dax_add_host(md->dax_dev, md->disk))
2005 format_dev_t(md->name, MKDEV(_major, minor));
2007 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2011 md->pending_io = alloc_percpu(unsigned long);
2012 if (!md->pending_io)
2015 dm_stats_init(&md->stats);
2017 /* Populate the mapping, nobody knows we exist yet */
2018 spin_lock(&_minor_lock);
2019 old_md = idr_replace(&_minor_idr, md, minor);
2020 spin_unlock(&_minor_lock);
2022 BUG_ON(old_md != MINOR_ALLOCED);
2027 cleanup_mapped_device(md);
2031 module_put(THIS_MODULE);
2037 static void unlock_fs(struct mapped_device *md);
2039 static void free_dev(struct mapped_device *md)
2041 int minor = MINOR(disk_devt(md->disk));
2045 cleanup_mapped_device(md);
2047 free_table_devices(&md->table_devices);
2048 dm_stats_cleanup(&md->stats);
2051 module_put(THIS_MODULE);
2056 * Bind a table to the device.
2058 static void event_callback(void *context)
2060 unsigned long flags;
2062 struct mapped_device *md = (struct mapped_device *) context;
2064 spin_lock_irqsave(&md->uevent_lock, flags);
2065 list_splice_init(&md->uevent_list, &uevents);
2066 spin_unlock_irqrestore(&md->uevent_lock, flags);
2068 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2070 atomic_inc(&md->event_nr);
2071 wake_up(&md->eventq);
2072 dm_issue_global_event();
2076 * Returns old map, which caller must destroy.
2078 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2079 struct queue_limits *limits)
2081 struct dm_table *old_map;
2085 lockdep_assert_held(&md->suspend_lock);
2087 size = dm_table_get_size(t);
2090 * Wipe any geometry if the size of the table changed.
2092 if (size != dm_get_size(md))
2093 memset(&md->geometry, 0, sizeof(md->geometry));
2095 if (!get_capacity(md->disk))
2096 set_capacity(md->disk, size);
2098 set_capacity_and_notify(md->disk, size);
2100 dm_table_event_callback(t, event_callback, md);
2102 if (dm_table_request_based(t)) {
2104 * Leverage the fact that request-based DM targets are
2105 * immutable singletons - used to optimize dm_mq_queue_rq.
2107 md->immutable_target = dm_table_get_immutable_target(t);
2110 * There is no need to reload with request-based dm because the
2111 * size of front_pad doesn't change.
2113 * Note for future: If you are to reload bioset, prep-ed
2114 * requests in the queue may refer to bio from the old bioset,
2115 * so you must walk through the queue to unprep.
2117 if (!md->mempools) {
2118 md->mempools = t->mempools;
2123 * The md may already have mempools that need changing.
2124 * If so, reload bioset because front_pad may have changed
2125 * because a different table was loaded.
2127 dm_free_md_mempools(md->mempools);
2128 md->mempools = t->mempools;
2132 ret = dm_table_set_restrictions(t, md->queue, limits);
2134 old_map = ERR_PTR(ret);
2138 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2139 rcu_assign_pointer(md->map, (void *)t);
2140 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2149 * Returns unbound table for the caller to free.
2151 static struct dm_table *__unbind(struct mapped_device *md)
2153 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2158 dm_table_event_callback(map, NULL, NULL);
2159 RCU_INIT_POINTER(md->map, NULL);
2166 * Constructor for a new device.
2168 int dm_create(int minor, struct mapped_device **result)
2170 struct mapped_device *md;
2172 md = alloc_dev(minor);
2176 dm_ima_reset_data(md);
2183 * Functions to manage md->type.
2184 * All are required to hold md->type_lock.
2186 void dm_lock_md_type(struct mapped_device *md)
2188 mutex_lock(&md->type_lock);
2191 void dm_unlock_md_type(struct mapped_device *md)
2193 mutex_unlock(&md->type_lock);
2196 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2198 BUG_ON(!mutex_is_locked(&md->type_lock));
2202 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2207 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2209 return md->immutable_target_type;
2213 * The queue_limits are only valid as long as you have a reference
2216 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2218 BUG_ON(!atomic_read(&md->holders));
2219 return &md->queue->limits;
2221 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2224 * Setup the DM device's queue based on md's type
2226 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2228 enum dm_queue_mode type = dm_table_get_type(t);
2229 struct queue_limits limits;
2233 case DM_TYPE_REQUEST_BASED:
2234 md->disk->fops = &dm_rq_blk_dops;
2235 r = dm_mq_init_request_queue(md, t);
2237 DMERR("Cannot initialize queue for request-based dm mapped device");
2241 case DM_TYPE_BIO_BASED:
2242 case DM_TYPE_DAX_BIO_BASED:
2249 r = dm_calculate_queue_limits(t, &limits);
2251 DMERR("Cannot calculate initial queue limits");
2254 r = dm_table_set_restrictions(t, md->queue, &limits);
2258 r = add_disk(md->disk);
2262 r = dm_sysfs_init(md);
2264 del_gendisk(md->disk);
2271 struct mapped_device *dm_get_md(dev_t dev)
2273 struct mapped_device *md;
2274 unsigned minor = MINOR(dev);
2276 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2279 spin_lock(&_minor_lock);
2281 md = idr_find(&_minor_idr, minor);
2282 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2283 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2289 spin_unlock(&_minor_lock);
2293 EXPORT_SYMBOL_GPL(dm_get_md);
2295 void *dm_get_mdptr(struct mapped_device *md)
2297 return md->interface_ptr;
2300 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2302 md->interface_ptr = ptr;
2305 void dm_get(struct mapped_device *md)
2307 atomic_inc(&md->holders);
2308 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2311 int dm_hold(struct mapped_device *md)
2313 spin_lock(&_minor_lock);
2314 if (test_bit(DMF_FREEING, &md->flags)) {
2315 spin_unlock(&_minor_lock);
2319 spin_unlock(&_minor_lock);
2322 EXPORT_SYMBOL_GPL(dm_hold);
2324 const char *dm_device_name(struct mapped_device *md)
2328 EXPORT_SYMBOL_GPL(dm_device_name);
2330 static void __dm_destroy(struct mapped_device *md, bool wait)
2332 struct dm_table *map;
2337 spin_lock(&_minor_lock);
2338 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2339 set_bit(DMF_FREEING, &md->flags);
2340 spin_unlock(&_minor_lock);
2342 blk_mark_disk_dead(md->disk);
2345 * Take suspend_lock so that presuspend and postsuspend methods
2346 * do not race with internal suspend.
2348 mutex_lock(&md->suspend_lock);
2349 map = dm_get_live_table(md, &srcu_idx);
2350 if (!dm_suspended_md(md)) {
2351 dm_table_presuspend_targets(map);
2352 set_bit(DMF_SUSPENDED, &md->flags);
2353 set_bit(DMF_POST_SUSPENDING, &md->flags);
2354 dm_table_postsuspend_targets(map);
2356 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2357 dm_put_live_table(md, srcu_idx);
2358 mutex_unlock(&md->suspend_lock);
2361 * Rare, but there may be I/O requests still going to complete,
2362 * for example. Wait for all references to disappear.
2363 * No one should increment the reference count of the mapped_device,
2364 * after the mapped_device state becomes DMF_FREEING.
2367 while (atomic_read(&md->holders))
2369 else if (atomic_read(&md->holders))
2370 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2371 dm_device_name(md), atomic_read(&md->holders));
2373 dm_table_destroy(__unbind(md));
2377 void dm_destroy(struct mapped_device *md)
2379 __dm_destroy(md, true);
2382 void dm_destroy_immediate(struct mapped_device *md)
2384 __dm_destroy(md, false);
2387 void dm_put(struct mapped_device *md)
2389 atomic_dec(&md->holders);
2391 EXPORT_SYMBOL_GPL(dm_put);
2393 static bool dm_in_flight_bios(struct mapped_device *md)
2396 unsigned long sum = 0;
2398 for_each_possible_cpu(cpu)
2399 sum += *per_cpu_ptr(md->pending_io, cpu);
2404 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2410 prepare_to_wait(&md->wait, &wait, task_state);
2412 if (!dm_in_flight_bios(md))
2415 if (signal_pending_state(task_state, current)) {
2422 finish_wait(&md->wait, &wait);
2429 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2433 if (!queue_is_mq(md->queue))
2434 return dm_wait_for_bios_completion(md, task_state);
2437 if (!blk_mq_queue_inflight(md->queue))
2440 if (signal_pending_state(task_state, current)) {
2452 * Process the deferred bios
2454 static void dm_wq_work(struct work_struct *work)
2456 struct mapped_device *md = container_of(work, struct mapped_device, work);
2459 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2460 spin_lock_irq(&md->deferred_lock);
2461 bio = bio_list_pop(&md->deferred);
2462 spin_unlock_irq(&md->deferred_lock);
2467 submit_bio_noacct(bio);
2471 static void dm_queue_flush(struct mapped_device *md)
2473 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2474 smp_mb__after_atomic();
2475 queue_work(md->wq, &md->work);
2479 * Swap in a new table, returning the old one for the caller to destroy.
2481 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2483 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2484 struct queue_limits limits;
2487 mutex_lock(&md->suspend_lock);
2489 /* device must be suspended */
2490 if (!dm_suspended_md(md))
2494 * If the new table has no data devices, retain the existing limits.
2495 * This helps multipath with queue_if_no_path if all paths disappear,
2496 * then new I/O is queued based on these limits, and then some paths
2499 if (dm_table_has_no_data_devices(table)) {
2500 live_map = dm_get_live_table_fast(md);
2502 limits = md->queue->limits;
2503 dm_put_live_table_fast(md);
2507 r = dm_calculate_queue_limits(table, &limits);
2514 map = __bind(md, table, &limits);
2515 dm_issue_global_event();
2518 mutex_unlock(&md->suspend_lock);
2523 * Functions to lock and unlock any filesystem running on the
2526 static int lock_fs(struct mapped_device *md)
2530 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2532 r = freeze_bdev(md->disk->part0);
2534 set_bit(DMF_FROZEN, &md->flags);
2538 static void unlock_fs(struct mapped_device *md)
2540 if (!test_bit(DMF_FROZEN, &md->flags))
2542 thaw_bdev(md->disk->part0);
2543 clear_bit(DMF_FROZEN, &md->flags);
2547 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2548 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2549 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2551 * If __dm_suspend returns 0, the device is completely quiescent
2552 * now. There is no request-processing activity. All new requests
2553 * are being added to md->deferred list.
2555 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2556 unsigned suspend_flags, unsigned int task_state,
2557 int dmf_suspended_flag)
2559 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2560 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2563 lockdep_assert_held(&md->suspend_lock);
2566 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2567 * This flag is cleared before dm_suspend returns.
2570 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2572 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2575 * This gets reverted if there's an error later and the targets
2576 * provide the .presuspend_undo hook.
2578 dm_table_presuspend_targets(map);
2581 * Flush I/O to the device.
2582 * Any I/O submitted after lock_fs() may not be flushed.
2583 * noflush takes precedence over do_lockfs.
2584 * (lock_fs() flushes I/Os and waits for them to complete.)
2586 if (!noflush && do_lockfs) {
2589 dm_table_presuspend_undo_targets(map);
2595 * Here we must make sure that no processes are submitting requests
2596 * to target drivers i.e. no one may be executing
2597 * dm_split_and_process_bio from dm_submit_bio.
2599 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2600 * we take the write lock. To prevent any process from reentering
2601 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2602 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2603 * flush_workqueue(md->wq).
2605 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2607 synchronize_srcu(&md->io_barrier);
2610 * Stop md->queue before flushing md->wq in case request-based
2611 * dm defers requests to md->wq from md->queue.
2613 if (dm_request_based(md))
2614 dm_stop_queue(md->queue);
2616 flush_workqueue(md->wq);
2619 * At this point no more requests are entering target request routines.
2620 * We call dm_wait_for_completion to wait for all existing requests
2623 r = dm_wait_for_completion(md, task_state);
2625 set_bit(dmf_suspended_flag, &md->flags);
2628 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2630 synchronize_srcu(&md->io_barrier);
2632 /* were we interrupted ? */
2636 if (dm_request_based(md))
2637 dm_start_queue(md->queue);
2640 dm_table_presuspend_undo_targets(map);
2641 /* pushback list is already flushed, so skip flush */
2648 * We need to be able to change a mapping table under a mounted
2649 * filesystem. For example we might want to move some data in
2650 * the background. Before the table can be swapped with
2651 * dm_bind_table, dm_suspend must be called to flush any in
2652 * flight bios and ensure that any further io gets deferred.
2655 * Suspend mechanism in request-based dm.
2657 * 1. Flush all I/Os by lock_fs() if needed.
2658 * 2. Stop dispatching any I/O by stopping the request_queue.
2659 * 3. Wait for all in-flight I/Os to be completed or requeued.
2661 * To abort suspend, start the request_queue.
2663 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2665 struct dm_table *map = NULL;
2669 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2671 if (dm_suspended_md(md)) {
2676 if (dm_suspended_internally_md(md)) {
2677 /* already internally suspended, wait for internal resume */
2678 mutex_unlock(&md->suspend_lock);
2679 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2685 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2687 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2691 set_bit(DMF_POST_SUSPENDING, &md->flags);
2692 dm_table_postsuspend_targets(map);
2693 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2696 mutex_unlock(&md->suspend_lock);
2700 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2703 int r = dm_table_resume_targets(map);
2711 * Flushing deferred I/Os must be done after targets are resumed
2712 * so that mapping of targets can work correctly.
2713 * Request-based dm is queueing the deferred I/Os in its request_queue.
2715 if (dm_request_based(md))
2716 dm_start_queue(md->queue);
2723 int dm_resume(struct mapped_device *md)
2726 struct dm_table *map = NULL;
2730 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2732 if (!dm_suspended_md(md))
2735 if (dm_suspended_internally_md(md)) {
2736 /* already internally suspended, wait for internal resume */
2737 mutex_unlock(&md->suspend_lock);
2738 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2744 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2745 if (!map || !dm_table_get_size(map))
2748 r = __dm_resume(md, map);
2752 clear_bit(DMF_SUSPENDED, &md->flags);
2754 mutex_unlock(&md->suspend_lock);
2760 * Internal suspend/resume works like userspace-driven suspend. It waits
2761 * until all bios finish and prevents issuing new bios to the target drivers.
2762 * It may be used only from the kernel.
2765 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2767 struct dm_table *map = NULL;
2769 lockdep_assert_held(&md->suspend_lock);
2771 if (md->internal_suspend_count++)
2772 return; /* nested internal suspend */
2774 if (dm_suspended_md(md)) {
2775 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2776 return; /* nest suspend */
2779 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2782 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2783 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2784 * would require changing .presuspend to return an error -- avoid this
2785 * until there is a need for more elaborate variants of internal suspend.
2787 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2788 DMF_SUSPENDED_INTERNALLY);
2790 set_bit(DMF_POST_SUSPENDING, &md->flags);
2791 dm_table_postsuspend_targets(map);
2792 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2795 static void __dm_internal_resume(struct mapped_device *md)
2797 BUG_ON(!md->internal_suspend_count);
2799 if (--md->internal_suspend_count)
2800 return; /* resume from nested internal suspend */
2802 if (dm_suspended_md(md))
2803 goto done; /* resume from nested suspend */
2806 * NOTE: existing callers don't need to call dm_table_resume_targets
2807 * (which may fail -- so best to avoid it for now by passing NULL map)
2809 (void) __dm_resume(md, NULL);
2812 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2813 smp_mb__after_atomic();
2814 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2817 void dm_internal_suspend_noflush(struct mapped_device *md)
2819 mutex_lock(&md->suspend_lock);
2820 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2821 mutex_unlock(&md->suspend_lock);
2823 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2825 void dm_internal_resume(struct mapped_device *md)
2827 mutex_lock(&md->suspend_lock);
2828 __dm_internal_resume(md);
2829 mutex_unlock(&md->suspend_lock);
2831 EXPORT_SYMBOL_GPL(dm_internal_resume);
2834 * Fast variants of internal suspend/resume hold md->suspend_lock,
2835 * which prevents interaction with userspace-driven suspend.
2838 void dm_internal_suspend_fast(struct mapped_device *md)
2840 mutex_lock(&md->suspend_lock);
2841 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2844 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2845 synchronize_srcu(&md->io_barrier);
2846 flush_workqueue(md->wq);
2847 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2849 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2851 void dm_internal_resume_fast(struct mapped_device *md)
2853 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2859 mutex_unlock(&md->suspend_lock);
2861 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2863 /*-----------------------------------------------------------------
2864 * Event notification.
2865 *---------------------------------------------------------------*/
2866 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2871 char udev_cookie[DM_COOKIE_LENGTH];
2872 char *envp[] = { udev_cookie, NULL };
2874 noio_flag = memalloc_noio_save();
2877 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2879 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2880 DM_COOKIE_ENV_VAR_NAME, cookie);
2881 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2885 memalloc_noio_restore(noio_flag);
2890 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2892 return atomic_add_return(1, &md->uevent_seq);
2895 uint32_t dm_get_event_nr(struct mapped_device *md)
2897 return atomic_read(&md->event_nr);
2900 int dm_wait_event(struct mapped_device *md, int event_nr)
2902 return wait_event_interruptible(md->eventq,
2903 (event_nr != atomic_read(&md->event_nr)));
2906 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2908 unsigned long flags;
2910 spin_lock_irqsave(&md->uevent_lock, flags);
2911 list_add(elist, &md->uevent_list);
2912 spin_unlock_irqrestore(&md->uevent_lock, flags);
2916 * The gendisk is only valid as long as you have a reference
2919 struct gendisk *dm_disk(struct mapped_device *md)
2923 EXPORT_SYMBOL_GPL(dm_disk);
2925 struct kobject *dm_kobject(struct mapped_device *md)
2927 return &md->kobj_holder.kobj;
2930 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2932 struct mapped_device *md;
2934 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2936 spin_lock(&_minor_lock);
2937 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2943 spin_unlock(&_minor_lock);
2948 int dm_suspended_md(struct mapped_device *md)
2950 return test_bit(DMF_SUSPENDED, &md->flags);
2953 static int dm_post_suspending_md(struct mapped_device *md)
2955 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2958 int dm_suspended_internally_md(struct mapped_device *md)
2960 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2963 int dm_test_deferred_remove_flag(struct mapped_device *md)
2965 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2968 int dm_suspended(struct dm_target *ti)
2970 return dm_suspended_md(ti->table->md);
2972 EXPORT_SYMBOL_GPL(dm_suspended);
2974 int dm_post_suspending(struct dm_target *ti)
2976 return dm_post_suspending_md(ti->table->md);
2978 EXPORT_SYMBOL_GPL(dm_post_suspending);
2980 int dm_noflush_suspending(struct dm_target *ti)
2982 return __noflush_suspending(ti->table->md);
2984 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2986 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2987 unsigned per_io_data_size, unsigned min_pool_size,
2988 bool integrity, bool poll)
2990 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2991 unsigned int pool_size = 0;
2992 unsigned int front_pad, io_front_pad;
2999 case DM_TYPE_BIO_BASED:
3000 case DM_TYPE_DAX_BIO_BASED:
3001 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3002 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
3003 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
3004 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0);
3007 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3010 case DM_TYPE_REQUEST_BASED:
3011 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3012 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3013 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3019 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3023 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3029 dm_free_md_mempools(pools);
3034 void dm_free_md_mempools(struct dm_md_mempools *pools)
3039 bioset_exit(&pools->bs);
3040 bioset_exit(&pools->io_bs);
3052 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3055 struct mapped_device *md = bdev->bd_disk->private_data;
3056 struct dm_table *table;
3057 struct dm_target *ti;
3058 int ret = -ENOTTY, srcu_idx;
3060 table = dm_get_live_table(md, &srcu_idx);
3061 if (!table || !dm_table_get_size(table))
3064 /* We only support devices that have a single target */
3065 if (dm_table_get_num_targets(table) != 1)
3067 ti = dm_table_get_target(table, 0);
3070 if (!ti->type->iterate_devices)
3073 ret = ti->type->iterate_devices(ti, fn, data);
3075 dm_put_live_table(md, srcu_idx);
3080 * For register / unregister we need to manually call out to every path.
3082 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3083 sector_t start, sector_t len, void *data)
3085 struct dm_pr *pr = data;
3086 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3088 if (!ops || !ops->pr_register)
3090 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3093 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3104 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3105 if (ret && new_key) {
3106 /* unregister all paths if we failed to register any path */
3107 pr.old_key = new_key;
3110 pr.fail_early = false;
3111 dm_call_pr(bdev, __dm_pr_register, &pr);
3117 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3120 struct mapped_device *md = bdev->bd_disk->private_data;
3121 const struct pr_ops *ops;
3124 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3128 ops = bdev->bd_disk->fops->pr_ops;
3129 if (ops && ops->pr_reserve)
3130 r = ops->pr_reserve(bdev, key, type, flags);
3134 dm_unprepare_ioctl(md, srcu_idx);
3138 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3140 struct mapped_device *md = bdev->bd_disk->private_data;
3141 const struct pr_ops *ops;
3144 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3148 ops = bdev->bd_disk->fops->pr_ops;
3149 if (ops && ops->pr_release)
3150 r = ops->pr_release(bdev, key, type);
3154 dm_unprepare_ioctl(md, srcu_idx);
3158 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3159 enum pr_type type, bool abort)
3161 struct mapped_device *md = bdev->bd_disk->private_data;
3162 const struct pr_ops *ops;
3165 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3169 ops = bdev->bd_disk->fops->pr_ops;
3170 if (ops && ops->pr_preempt)
3171 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3175 dm_unprepare_ioctl(md, srcu_idx);
3179 static int dm_pr_clear(struct block_device *bdev, u64 key)
3181 struct mapped_device *md = bdev->bd_disk->private_data;
3182 const struct pr_ops *ops;
3185 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3189 ops = bdev->bd_disk->fops->pr_ops;
3190 if (ops && ops->pr_clear)
3191 r = ops->pr_clear(bdev, key);
3195 dm_unprepare_ioctl(md, srcu_idx);
3199 static const struct pr_ops dm_pr_ops = {
3200 .pr_register = dm_pr_register,
3201 .pr_reserve = dm_pr_reserve,
3202 .pr_release = dm_pr_release,
3203 .pr_preempt = dm_pr_preempt,
3204 .pr_clear = dm_pr_clear,
3207 static const struct block_device_operations dm_blk_dops = {
3208 .submit_bio = dm_submit_bio,
3209 .poll_bio = dm_poll_bio,
3210 .open = dm_blk_open,
3211 .release = dm_blk_close,
3212 .ioctl = dm_blk_ioctl,
3213 .getgeo = dm_blk_getgeo,
3214 .report_zones = dm_blk_report_zones,
3215 .pr_ops = &dm_pr_ops,
3216 .owner = THIS_MODULE
3219 static const struct block_device_operations dm_rq_blk_dops = {
3220 .open = dm_blk_open,
3221 .release = dm_blk_close,
3222 .ioctl = dm_blk_ioctl,
3223 .getgeo = dm_blk_getgeo,
3224 .pr_ops = &dm_pr_ops,
3225 .owner = THIS_MODULE
3228 static const struct dax_operations dm_dax_ops = {
3229 .direct_access = dm_dax_direct_access,
3230 .zero_page_range = dm_dax_zero_page_range,
3231 .recovery_write = dm_dax_recovery_write,
3237 module_init(dm_init);
3238 module_exit(dm_exit);
3240 module_param(major, uint, 0);
3241 MODULE_PARM_DESC(major, "The major number of the device mapper");
3243 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3244 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3246 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3247 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3249 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3250 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3252 MODULE_DESCRIPTION(DM_NAME " driver");
3254 MODULE_LICENSE("GPL");