4 * Write file data over NFS.
9 #include <linux/types.h>
10 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
24 #include <asm/uaccess.h>
26 #include "delegation.h"
32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34 #define MIN_POOL_WRITE (32)
35 #define MIN_POOL_COMMIT (4)
38 * Local function declarations
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
51 struct nfs_write_data *nfs_commitdata_alloc(void)
53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
56 memset(p, 0, sizeof(*p));
57 INIT_LIST_HEAD(&p->pages);
62 void nfs_commit_free(struct nfs_write_data *p)
64 if (p && (p->pagevec != &p->page_array[0]))
66 mempool_free(p, nfs_commit_mempool);
69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
74 memset(p, 0, sizeof(*p));
75 INIT_LIST_HEAD(&p->pages);
76 p->npages = pagecount;
77 if (pagecount <= ARRAY_SIZE(p->page_array))
78 p->pagevec = p->page_array;
80 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
82 mempool_free(p, nfs_wdata_mempool);
90 void nfs_writedata_free(struct nfs_write_data *p)
92 if (p && (p->pagevec != &p->page_array[0]))
94 mempool_free(p, nfs_wdata_mempool);
97 static void nfs_writedata_release(struct nfs_write_data *wdata)
99 put_nfs_open_context(wdata->args.context);
100 nfs_writedata_free(wdata);
103 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
107 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
112 struct nfs_page *req = NULL;
114 if (PagePrivate(page)) {
115 req = (struct nfs_page *)page_private(page);
117 kref_get(&req->wb_kref);
122 static struct nfs_page *nfs_page_find_request(struct page *page)
124 struct inode *inode = page->mapping->host;
125 struct nfs_page *req = NULL;
127 spin_lock(&inode->i_lock);
128 req = nfs_page_find_request_locked(page);
129 spin_unlock(&inode->i_lock);
133 /* Adjust the file length if we're writing beyond the end */
134 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
136 struct inode *inode = page->mapping->host;
140 spin_lock(&inode->i_lock);
141 i_size = i_size_read(inode);
142 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
143 if (i_size > 0 && page->index < end_index)
145 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 i_size_write(inode, end);
149 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
151 spin_unlock(&inode->i_lock);
154 /* A writeback failed: mark the page as bad, and invalidate the page cache */
155 static void nfs_set_pageerror(struct page *page)
158 nfs_zap_mapping(page->mapping->host, page->mapping);
161 /* We can set the PG_uptodate flag if we see that a write request
162 * covers the full page.
164 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
166 if (PageUptodate(page))
170 if (count != nfs_page_length(page))
172 SetPageUptodate(page);
175 static int wb_priority(struct writeback_control *wbc)
177 if (wbc->for_reclaim)
178 return FLUSH_HIGHPRI | FLUSH_STABLE;
179 if (wbc->for_kupdate || wbc->for_background)
185 * NFS congestion control
188 int nfs_congestion_kb;
190 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
191 #define NFS_CONGESTION_OFF_THRESH \
192 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
194 static int nfs_set_page_writeback(struct page *page)
196 int ret = test_set_page_writeback(page);
199 struct inode *inode = page->mapping->host;
200 struct nfs_server *nfss = NFS_SERVER(inode);
202 page_cache_get(page);
203 if (atomic_long_inc_return(&nfss->writeback) >
204 NFS_CONGESTION_ON_THRESH) {
205 set_bdi_congested(&nfss->backing_dev_info,
212 static void nfs_end_page_writeback(struct page *page)
214 struct inode *inode = page->mapping->host;
215 struct nfs_server *nfss = NFS_SERVER(inode);
217 end_page_writeback(page);
218 page_cache_release(page);
219 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
225 struct inode *inode = page->mapping->host;
226 struct nfs_page *req;
229 spin_lock(&inode->i_lock);
231 req = nfs_page_find_request_locked(page);
234 if (nfs_set_page_tag_locked(req))
236 /* Note: If we hold the page lock, as is the case in nfs_writepage,
237 * then the call to nfs_set_page_tag_locked() will always
238 * succeed provided that someone hasn't already marked the
239 * request as dirty (in which case we don't care).
241 spin_unlock(&inode->i_lock);
243 ret = nfs_wait_on_request(req);
246 nfs_release_request(req);
249 spin_lock(&inode->i_lock);
251 spin_unlock(&inode->i_lock);
256 * Find an associated nfs write request, and prepare to flush it out
257 * May return an error if the user signalled nfs_wait_on_request().
259 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
260 struct page *page, bool nonblock)
262 struct nfs_page *req;
265 req = nfs_find_and_lock_request(page, nonblock);
272 ret = nfs_set_page_writeback(page);
274 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
276 if (!nfs_pageio_add_request(pgio, req)) {
277 nfs_redirty_request(req);
278 ret = pgio->pg_error;
284 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
286 struct inode *inode = page->mapping->host;
289 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
290 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
292 nfs_pageio_cond_complete(pgio, page->index);
293 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
294 if (ret == -EAGAIN) {
295 redirty_page_for_writepage(wbc, page);
302 * Write an mmapped page to the server.
304 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
306 struct nfs_pageio_descriptor pgio;
309 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
310 err = nfs_do_writepage(page, wbc, &pgio);
311 nfs_pageio_complete(&pgio);
314 if (pgio.pg_error < 0)
315 return pgio.pg_error;
319 int nfs_writepage(struct page *page, struct writeback_control *wbc)
323 ret = nfs_writepage_locked(page, wbc);
328 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
332 ret = nfs_do_writepage(page, wbc, data);
337 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
339 struct inode *inode = mapping->host;
340 unsigned long *bitlock = &NFS_I(inode)->flags;
341 struct nfs_pageio_descriptor pgio;
344 /* Stop dirtying of new pages while we sync */
345 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
346 nfs_wait_bit_killable, TASK_KILLABLE);
350 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
352 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
353 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
354 nfs_pageio_complete(&pgio);
356 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
357 smp_mb__after_clear_bit();
358 wake_up_bit(bitlock, NFS_INO_FLUSHING);
371 * Insert a write request into an inode
373 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
375 struct nfs_inode *nfsi = NFS_I(inode);
378 error = radix_tree_preload(GFP_NOFS);
382 /* Lock the request! */
383 nfs_lock_request_dontget(req);
385 spin_lock(&inode->i_lock);
386 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
390 if (nfs_have_delegation(inode, FMODE_WRITE))
393 set_bit(PG_MAPPED, &req->wb_flags);
394 SetPagePrivate(req->wb_page);
395 set_page_private(req->wb_page, (unsigned long)req);
397 kref_get(&req->wb_kref);
398 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
399 NFS_PAGE_TAG_LOCKED);
400 spin_unlock(&inode->i_lock);
401 radix_tree_preload_end();
407 * Remove a write request from an inode
409 static void nfs_inode_remove_request(struct nfs_page *req)
411 struct inode *inode = req->wb_context->path.dentry->d_inode;
412 struct nfs_inode *nfsi = NFS_I(inode);
414 BUG_ON (!NFS_WBACK_BUSY(req));
416 spin_lock(&inode->i_lock);
417 set_page_private(req->wb_page, 0);
418 ClearPagePrivate(req->wb_page);
419 clear_bit(PG_MAPPED, &req->wb_flags);
420 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 spin_unlock(&inode->i_lock);
426 spin_unlock(&inode->i_lock);
427 nfs_release_request(req);
431 nfs_mark_request_dirty(struct nfs_page *req)
433 __set_page_dirty_nobuffers(req->wb_page);
434 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
437 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
439 * Add a request to the inode's commit list.
442 nfs_mark_request_commit(struct nfs_page *req)
444 struct inode *inode = req->wb_context->path.dentry->d_inode;
445 struct nfs_inode *nfsi = NFS_I(inode);
447 spin_lock(&inode->i_lock);
448 set_bit(PG_CLEAN, &(req)->wb_flags);
449 radix_tree_tag_set(&nfsi->nfs_page_tree,
451 NFS_PAGE_TAG_COMMIT);
453 spin_unlock(&inode->i_lock);
454 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
455 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
456 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
460 nfs_clear_request_commit(struct nfs_page *req)
462 struct page *page = req->wb_page;
464 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
465 dec_zone_page_state(page, NR_UNSTABLE_NFS);
466 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
473 int nfs_write_need_commit(struct nfs_write_data *data)
475 return data->verf.committed != NFS_FILE_SYNC;
479 int nfs_reschedule_unstable_write(struct nfs_page *req)
481 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
482 nfs_mark_request_commit(req);
485 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
486 nfs_mark_request_dirty(req);
493 nfs_mark_request_commit(struct nfs_page *req)
498 nfs_clear_request_commit(struct nfs_page *req)
504 int nfs_write_need_commit(struct nfs_write_data *data)
510 int nfs_reschedule_unstable_write(struct nfs_page *req)
516 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
518 nfs_need_commit(struct nfs_inode *nfsi)
520 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 * nfs_scan_commit - Scan an inode for commit requests
525 * @inode: NFS inode to scan
526 * @dst: destination list
527 * @idx_start: lower bound of page->index to scan.
528 * @npages: idx_start + npages sets the upper bound to scan.
530 * Moves requests from the inode's 'commit' request list.
531 * The requests are *not* checked to ensure that they form a contiguous set.
534 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
536 struct nfs_inode *nfsi = NFS_I(inode);
539 if (!nfs_need_commit(nfsi))
542 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
544 nfsi->ncommit -= ret;
545 if (nfs_need_commit(NFS_I(inode)))
546 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
550 static inline int nfs_need_commit(struct nfs_inode *nfsi)
555 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
562 * Search for an existing write request, and attempt to update
563 * it to reflect a new dirty region on a given page.
565 * If the attempt fails, then the existing request is flushed out
568 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
573 struct nfs_page *req;
578 if (!PagePrivate(page))
581 end = offset + bytes;
582 spin_lock(&inode->i_lock);
585 req = nfs_page_find_request_locked(page);
589 rqend = req->wb_offset + req->wb_bytes;
591 * Tell the caller to flush out the request if
592 * the offsets are non-contiguous.
593 * Note: nfs_flush_incompatible() will already
594 * have flushed out requests having wrong owners.
597 || end < req->wb_offset)
600 if (nfs_set_page_tag_locked(req))
603 /* The request is locked, so wait and then retry */
604 spin_unlock(&inode->i_lock);
605 error = nfs_wait_on_request(req);
606 nfs_release_request(req);
609 spin_lock(&inode->i_lock);
612 if (nfs_clear_request_commit(req) &&
613 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
614 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
615 NFS_I(inode)->ncommit--;
617 /* Okay, the request matches. Update the region */
618 if (offset < req->wb_offset) {
619 req->wb_offset = offset;
620 req->wb_pgbase = offset;
623 req->wb_bytes = end - req->wb_offset;
625 req->wb_bytes = rqend - req->wb_offset;
627 spin_unlock(&inode->i_lock);
630 spin_unlock(&inode->i_lock);
631 nfs_release_request(req);
632 error = nfs_wb_page(inode, page);
634 return ERR_PTR(error);
638 * Try to update an existing write request, or create one if there is none.
640 * Note: Should always be called with the Page Lock held to prevent races
641 * if we have to add a new request. Also assumes that the caller has
642 * already called nfs_flush_incompatible() if necessary.
644 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
645 struct page *page, unsigned int offset, unsigned int bytes)
647 struct inode *inode = page->mapping->host;
648 struct nfs_page *req;
651 req = nfs_try_to_update_request(inode, page, offset, bytes);
654 req = nfs_create_request(ctx, inode, page, offset, bytes);
657 error = nfs_inode_add_request(inode, req);
659 nfs_release_request(req);
660 req = ERR_PTR(error);
666 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
667 unsigned int offset, unsigned int count)
669 struct nfs_page *req;
671 req = nfs_setup_write_request(ctx, page, offset, count);
674 nfs_mark_request_dirty(req);
675 /* Update file length */
676 nfs_grow_file(page, offset, count);
677 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
678 nfs_mark_request_dirty(req);
679 nfs_clear_page_tag_locked(req);
683 int nfs_flush_incompatible(struct file *file, struct page *page)
685 struct nfs_open_context *ctx = nfs_file_open_context(file);
686 struct nfs_page *req;
687 int do_flush, status;
689 * Look for a request corresponding to this page. If there
690 * is one, and it belongs to another file, we flush it out
691 * before we try to copy anything into the page. Do this
692 * due to the lack of an ACCESS-type call in NFSv2.
693 * Also do the same if we find a request from an existing
697 req = nfs_page_find_request(page);
700 do_flush = req->wb_page != page || req->wb_context != ctx ||
701 req->wb_lock_context->lockowner != current->files ||
702 req->wb_lock_context->pid != current->tgid;
703 nfs_release_request(req);
706 status = nfs_wb_page(page->mapping->host, page);
707 } while (status == 0);
712 * If the page cache is marked as unsafe or invalid, then we can't rely on
713 * the PageUptodate() flag. In this case, we will need to turn off
714 * write optimisations that depend on the page contents being correct.
716 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
718 return PageUptodate(page) &&
719 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
723 * Update and possibly write a cached page of an NFS file.
725 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
726 * things with a page scheduled for an RPC call (e.g. invalidate it).
728 int nfs_updatepage(struct file *file, struct page *page,
729 unsigned int offset, unsigned int count)
731 struct nfs_open_context *ctx = nfs_file_open_context(file);
732 struct inode *inode = page->mapping->host;
735 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
737 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
738 file->f_path.dentry->d_parent->d_name.name,
739 file->f_path.dentry->d_name.name, count,
740 (long long)(page_offset(page) + offset));
742 /* If we're not using byte range locks, and we know the page
743 * is up to date, it may be more efficient to extend the write
744 * to cover the entire page in order to avoid fragmentation
747 if (nfs_write_pageuptodate(page, inode) &&
748 inode->i_flock == NULL &&
749 !(file->f_flags & O_DSYNC)) {
750 count = max(count + offset, nfs_page_length(page));
754 status = nfs_writepage_setup(ctx, page, offset, count);
756 nfs_set_pageerror(page);
758 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
759 status, (long long)i_size_read(inode));
763 static void nfs_writepage_release(struct nfs_page *req)
765 struct page *page = req->wb_page;
767 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
768 nfs_inode_remove_request(req);
769 nfs_clear_page_tag_locked(req);
770 nfs_end_page_writeback(page);
773 static int flush_task_priority(int how)
775 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
777 return RPC_PRIORITY_HIGH;
779 return RPC_PRIORITY_LOW;
781 return RPC_PRIORITY_NORMAL;
785 * Set up the argument/result storage required for the RPC call.
787 static int nfs_write_rpcsetup(struct nfs_page *req,
788 struct nfs_write_data *data,
789 const struct rpc_call_ops *call_ops,
790 unsigned int count, unsigned int offset,
793 struct inode *inode = req->wb_context->path.dentry->d_inode;
794 int priority = flush_task_priority(how);
795 struct rpc_task *task;
796 struct rpc_message msg = {
797 .rpc_argp = &data->args,
798 .rpc_resp = &data->res,
799 .rpc_cred = req->wb_context->cred,
801 struct rpc_task_setup task_setup_data = {
802 .rpc_client = NFS_CLIENT(inode),
805 .callback_ops = call_ops,
806 .callback_data = data,
807 .workqueue = nfsiod_workqueue,
808 .flags = RPC_TASK_ASYNC,
809 .priority = priority,
813 /* Set up the RPC argument and reply structs
814 * NB: take care not to mess about with data->commit et al. */
817 data->inode = inode = req->wb_context->path.dentry->d_inode;
818 data->cred = msg.rpc_cred;
820 data->args.fh = NFS_FH(inode);
821 data->args.offset = req_offset(req) + offset;
822 data->args.pgbase = req->wb_pgbase + offset;
823 data->args.pages = data->pagevec;
824 data->args.count = count;
825 data->args.context = get_nfs_open_context(req->wb_context);
826 data->args.lock_context = req->wb_lock_context;
827 data->args.stable = NFS_UNSTABLE;
828 if (how & FLUSH_STABLE) {
829 data->args.stable = NFS_DATA_SYNC;
830 if (!nfs_need_commit(NFS_I(inode)))
831 data->args.stable = NFS_FILE_SYNC;
834 data->res.fattr = &data->fattr;
835 data->res.count = count;
836 data->res.verf = &data->verf;
837 nfs_fattr_init(&data->fattr);
839 /* Set up the initial task struct. */
840 NFS_PROTO(inode)->write_setup(data, &msg);
842 dprintk("NFS: %5u initiated write call "
843 "(req %s/%lld, %u bytes @ offset %llu)\n",
846 (long long)NFS_FILEID(inode),
848 (unsigned long long)data->args.offset);
850 task = rpc_run_task(&task_setup_data);
855 if (how & FLUSH_SYNC) {
856 ret = rpc_wait_for_completion_task(task);
858 ret = task->tk_status;
865 /* If a nfs_flush_* function fails, it should remove reqs from @head and
866 * call this on each, which will prepare them to be retried on next
867 * writeback using standard nfs.
869 static void nfs_redirty_request(struct nfs_page *req)
871 struct page *page = req->wb_page;
873 nfs_mark_request_dirty(req);
874 nfs_clear_page_tag_locked(req);
875 nfs_end_page_writeback(page);
879 * Generate multiple small requests to write out a single
880 * contiguous dirty area on one page.
882 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
884 struct nfs_page *req = nfs_list_entry(head->next);
885 struct page *page = req->wb_page;
886 struct nfs_write_data *data;
887 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
893 nfs_list_remove_request(req);
897 size_t len = min(nbytes, wsize);
899 data = nfs_writedata_alloc(1);
902 list_add(&data->pages, &list);
905 } while (nbytes != 0);
906 atomic_set(&req->wb_complete, requests);
908 ClearPageError(page);
914 data = list_entry(list.next, struct nfs_write_data, pages);
915 list_del_init(&data->pages);
917 data->pagevec[0] = page;
921 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
927 } while (nbytes != 0);
932 while (!list_empty(&list)) {
933 data = list_entry(list.next, struct nfs_write_data, pages);
934 list_del(&data->pages);
935 nfs_writedata_release(data);
937 nfs_redirty_request(req);
942 * Create an RPC task for the given write request and kick it.
943 * The page must have been locked by the caller.
945 * It may happen that the page we're passed is not marked dirty.
946 * This is the case if nfs_updatepage detects a conflicting request
947 * that has been written but not committed.
949 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
951 struct nfs_page *req;
953 struct nfs_write_data *data;
955 data = nfs_writedata_alloc(npages);
959 pages = data->pagevec;
960 while (!list_empty(head)) {
961 req = nfs_list_entry(head->next);
962 nfs_list_remove_request(req);
963 nfs_list_add_request(req, &data->pages);
964 ClearPageError(req->wb_page);
965 *pages++ = req->wb_page;
967 req = nfs_list_entry(data->pages.next);
969 /* Set up the argument struct */
970 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
972 while (!list_empty(head)) {
973 req = nfs_list_entry(head->next);
974 nfs_list_remove_request(req);
975 nfs_redirty_request(req);
980 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
981 struct inode *inode, int ioflags)
983 size_t wsize = NFS_SERVER(inode)->wsize;
985 if (wsize < PAGE_CACHE_SIZE)
986 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
988 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
992 * Handle a write reply that flushed part of a page.
994 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
996 struct nfs_write_data *data = calldata;
998 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1000 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1002 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1003 data->req->wb_bytes, (long long)req_offset(data->req));
1005 nfs_writeback_done(task, data);
1008 static void nfs_writeback_release_partial(void *calldata)
1010 struct nfs_write_data *data = calldata;
1011 struct nfs_page *req = data->req;
1012 struct page *page = req->wb_page;
1013 int status = data->task.tk_status;
1016 nfs_set_pageerror(page);
1017 nfs_context_set_write_error(req->wb_context, status);
1018 dprintk(", error = %d\n", status);
1022 if (nfs_write_need_commit(data)) {
1023 struct inode *inode = page->mapping->host;
1025 spin_lock(&inode->i_lock);
1026 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1027 /* Do nothing we need to resend the writes */
1028 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1029 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1030 dprintk(" defer commit\n");
1031 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1032 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1033 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1034 dprintk(" server reboot detected\n");
1036 spin_unlock(&inode->i_lock);
1041 if (atomic_dec_and_test(&req->wb_complete))
1042 nfs_writepage_release(req);
1043 nfs_writedata_release(calldata);
1046 #if defined(CONFIG_NFS_V4_1)
1047 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1049 struct nfs_write_data *data = calldata;
1051 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1052 &data->args.seq_args,
1053 &data->res.seq_res, 1, task))
1055 rpc_call_start(task);
1057 #endif /* CONFIG_NFS_V4_1 */
1059 static const struct rpc_call_ops nfs_write_partial_ops = {
1060 #if defined(CONFIG_NFS_V4_1)
1061 .rpc_call_prepare = nfs_write_prepare,
1062 #endif /* CONFIG_NFS_V4_1 */
1063 .rpc_call_done = nfs_writeback_done_partial,
1064 .rpc_release = nfs_writeback_release_partial,
1068 * Handle a write reply that flushes a whole page.
1070 * FIXME: There is an inherent race with invalidate_inode_pages and
1071 * writebacks since the page->count is kept > 1 for as long
1072 * as the page has a write request pending.
1074 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1076 struct nfs_write_data *data = calldata;
1078 nfs_writeback_done(task, data);
1081 static void nfs_writeback_release_full(void *calldata)
1083 struct nfs_write_data *data = calldata;
1084 int status = data->task.tk_status;
1086 /* Update attributes as result of writeback. */
1087 while (!list_empty(&data->pages)) {
1088 struct nfs_page *req = nfs_list_entry(data->pages.next);
1089 struct page *page = req->wb_page;
1091 nfs_list_remove_request(req);
1093 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1095 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1096 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1098 (long long)req_offset(req));
1101 nfs_set_pageerror(page);
1102 nfs_context_set_write_error(req->wb_context, status);
1103 dprintk(", error = %d\n", status);
1104 goto remove_request;
1107 if (nfs_write_need_commit(data)) {
1108 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1109 nfs_mark_request_commit(req);
1110 dprintk(" marked for commit\n");
1115 nfs_inode_remove_request(req);
1117 nfs_clear_page_tag_locked(req);
1118 nfs_end_page_writeback(page);
1120 nfs_writedata_release(calldata);
1123 static const struct rpc_call_ops nfs_write_full_ops = {
1124 #if defined(CONFIG_NFS_V4_1)
1125 .rpc_call_prepare = nfs_write_prepare,
1126 #endif /* CONFIG_NFS_V4_1 */
1127 .rpc_call_done = nfs_writeback_done_full,
1128 .rpc_release = nfs_writeback_release_full,
1133 * This function is called when the WRITE call is complete.
1135 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1137 struct nfs_writeargs *argp = &data->args;
1138 struct nfs_writeres *resp = &data->res;
1139 struct nfs_server *server = NFS_SERVER(data->inode);
1142 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1143 task->tk_pid, task->tk_status);
1146 * ->write_done will attempt to use post-op attributes to detect
1147 * conflicting writes by other clients. A strict interpretation
1148 * of close-to-open would allow us to continue caching even if
1149 * another writer had changed the file, but some applications
1150 * depend on tighter cache coherency when writing.
1152 status = NFS_PROTO(data->inode)->write_done(task, data);
1155 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1157 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1158 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1159 /* We tried a write call, but the server did not
1160 * commit data to stable storage even though we
1162 * Note: There is a known bug in Tru64 < 5.0 in which
1163 * the server reports NFS_DATA_SYNC, but performs
1164 * NFS_FILE_SYNC. We therefore implement this checking
1165 * as a dprintk() in order to avoid filling syslog.
1167 static unsigned long complain;
1169 if (time_before(complain, jiffies)) {
1170 dprintk("NFS: faulty NFS server %s:"
1171 " (committed = %d) != (stable = %d)\n",
1172 server->nfs_client->cl_hostname,
1173 resp->verf->committed, argp->stable);
1174 complain = jiffies + 300 * HZ;
1178 /* Is this a short write? */
1179 if (task->tk_status >= 0 && resp->count < argp->count) {
1180 static unsigned long complain;
1182 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1184 /* Has the server at least made some progress? */
1185 if (resp->count != 0) {
1186 /* Was this an NFSv2 write or an NFSv3 stable write? */
1187 if (resp->verf->committed != NFS_UNSTABLE) {
1188 /* Resend from where the server left off */
1189 argp->offset += resp->count;
1190 argp->pgbase += resp->count;
1191 argp->count -= resp->count;
1193 /* Resend as a stable write in order to avoid
1194 * headaches in the case of a server crash.
1196 argp->stable = NFS_FILE_SYNC;
1198 nfs_restart_rpc(task, server->nfs_client);
1201 if (time_before(complain, jiffies)) {
1203 "NFS: Server wrote zero bytes, expected %u.\n",
1205 complain = jiffies + 300 * HZ;
1207 /* Can't do anything about it except throw an error. */
1208 task->tk_status = -EIO;
1214 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1215 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1217 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1219 if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1220 NFS_INO_COMMIT, nfs_wait_bit_killable,
1226 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1228 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1229 smp_mb__after_clear_bit();
1230 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1234 static void nfs_commitdata_release(void *data)
1236 struct nfs_write_data *wdata = data;
1238 put_nfs_open_context(wdata->args.context);
1239 nfs_commit_free(wdata);
1243 * Set up the argument/result storage required for the RPC call.
1245 static int nfs_commit_rpcsetup(struct list_head *head,
1246 struct nfs_write_data *data,
1249 struct nfs_page *first = nfs_list_entry(head->next);
1250 struct inode *inode = first->wb_context->path.dentry->d_inode;
1251 int priority = flush_task_priority(how);
1252 struct rpc_task *task;
1253 struct rpc_message msg = {
1254 .rpc_argp = &data->args,
1255 .rpc_resp = &data->res,
1256 .rpc_cred = first->wb_context->cred,
1258 struct rpc_task_setup task_setup_data = {
1259 .task = &data->task,
1260 .rpc_client = NFS_CLIENT(inode),
1261 .rpc_message = &msg,
1262 .callback_ops = &nfs_commit_ops,
1263 .callback_data = data,
1264 .workqueue = nfsiod_workqueue,
1265 .flags = RPC_TASK_ASYNC,
1266 .priority = priority,
1269 /* Set up the RPC argument and reply structs
1270 * NB: take care not to mess about with data->commit et al. */
1272 list_splice_init(head, &data->pages);
1274 data->inode = inode;
1275 data->cred = msg.rpc_cred;
1277 data->args.fh = NFS_FH(data->inode);
1278 /* Note: we always request a commit of the entire inode */
1279 data->args.offset = 0;
1280 data->args.count = 0;
1281 data->args.context = get_nfs_open_context(first->wb_context);
1282 data->res.count = 0;
1283 data->res.fattr = &data->fattr;
1284 data->res.verf = &data->verf;
1285 nfs_fattr_init(&data->fattr);
1287 /* Set up the initial task struct. */
1288 NFS_PROTO(inode)->commit_setup(data, &msg);
1290 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1292 task = rpc_run_task(&task_setup_data);
1294 return PTR_ERR(task);
1300 * Commit dirty pages
1303 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1305 struct nfs_write_data *data;
1306 struct nfs_page *req;
1308 data = nfs_commitdata_alloc();
1313 /* Set up the argument struct */
1314 return nfs_commit_rpcsetup(head, data, how);
1316 while (!list_empty(head)) {
1317 req = nfs_list_entry(head->next);
1318 nfs_list_remove_request(req);
1319 nfs_mark_request_commit(req);
1320 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1321 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1323 nfs_clear_page_tag_locked(req);
1325 nfs_commit_clear_lock(NFS_I(inode));
1330 * COMMIT call returned
1332 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1334 struct nfs_write_data *data = calldata;
1336 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1337 task->tk_pid, task->tk_status);
1339 /* Call the NFS version-specific code */
1340 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1344 static void nfs_commit_release(void *calldata)
1346 struct nfs_write_data *data = calldata;
1347 struct nfs_page *req;
1348 int status = data->task.tk_status;
1350 while (!list_empty(&data->pages)) {
1351 req = nfs_list_entry(data->pages.next);
1352 nfs_list_remove_request(req);
1353 nfs_clear_request_commit(req);
1355 dprintk("NFS: commit (%s/%lld %d@%lld)",
1356 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1357 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1359 (long long)req_offset(req));
1361 nfs_context_set_write_error(req->wb_context, status);
1362 nfs_inode_remove_request(req);
1363 dprintk(", error = %d\n", status);
1367 /* Okay, COMMIT succeeded, apparently. Check the verifier
1368 * returned by the server against all stored verfs. */
1369 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1370 /* We have a match */
1371 nfs_inode_remove_request(req);
1375 /* We have a mismatch. Write the page again */
1376 dprintk(" mismatch\n");
1377 nfs_mark_request_dirty(req);
1379 nfs_clear_page_tag_locked(req);
1381 nfs_commit_clear_lock(NFS_I(data->inode));
1382 nfs_commitdata_release(calldata);
1385 static const struct rpc_call_ops nfs_commit_ops = {
1386 #if defined(CONFIG_NFS_V4_1)
1387 .rpc_call_prepare = nfs_write_prepare,
1388 #endif /* CONFIG_NFS_V4_1 */
1389 .rpc_call_done = nfs_commit_done,
1390 .rpc_release = nfs_commit_release,
1393 int nfs_commit_inode(struct inode *inode, int how)
1396 int may_wait = how & FLUSH_SYNC;
1399 if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1400 goto out_mark_dirty;
1401 spin_lock(&inode->i_lock);
1402 res = nfs_scan_commit(inode, &head, 0, 0);
1403 spin_unlock(&inode->i_lock);
1405 int error = nfs_commit_list(inode, &head, how);
1409 wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1410 nfs_wait_bit_killable,
1413 goto out_mark_dirty;
1415 nfs_commit_clear_lock(NFS_I(inode));
1417 /* Note: If we exit without ensuring that the commit is complete,
1418 * we must mark the inode as dirty. Otherwise, future calls to
1419 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1420 * that the data is on the disk.
1423 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1427 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1429 struct nfs_inode *nfsi = NFS_I(inode);
1430 int flags = FLUSH_SYNC;
1433 if (wbc->sync_mode == WB_SYNC_NONE) {
1434 /* Don't commit yet if this is a non-blocking flush and there
1435 * are a lot of outstanding writes for this mapping.
1437 if (nfsi->ncommit <= (nfsi->npages >> 1))
1438 goto out_mark_dirty;
1440 /* don't wait for the COMMIT response */
1444 ret = nfs_commit_inode(inode, flags);
1446 if (wbc->sync_mode == WB_SYNC_NONE) {
1447 if (ret < wbc->nr_to_write)
1448 wbc->nr_to_write -= ret;
1450 wbc->nr_to_write = 0;
1455 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1459 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1465 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1467 return nfs_commit_unstable_pages(inode, wbc);
1471 * flush the inode to disk.
1473 int nfs_wb_all(struct inode *inode)
1475 struct writeback_control wbc = {
1476 .sync_mode = WB_SYNC_ALL,
1477 .nr_to_write = LONG_MAX,
1479 .range_end = LLONG_MAX,
1482 return sync_inode(inode, &wbc);
1485 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1487 struct nfs_page *req;
1490 BUG_ON(!PageLocked(page));
1492 wait_on_page_writeback(page);
1493 req = nfs_page_find_request(page);
1496 if (nfs_lock_request_dontget(req)) {
1497 nfs_inode_remove_request(req);
1499 * In case nfs_inode_remove_request has marked the
1500 * page as being dirty
1502 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1503 nfs_unlock_request(req);
1506 ret = nfs_wait_on_request(req);
1507 nfs_release_request(req);
1515 * Write back all requests on one page - we do this before reading it.
1517 int nfs_wb_page(struct inode *inode, struct page *page)
1519 loff_t range_start = page_offset(page);
1520 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1521 struct writeback_control wbc = {
1522 .sync_mode = WB_SYNC_ALL,
1524 .range_start = range_start,
1525 .range_end = range_end,
1530 wait_on_page_writeback(page);
1531 if (clear_page_dirty_for_io(page)) {
1532 ret = nfs_writepage_locked(page, &wbc);
1537 if (!PagePrivate(page))
1539 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1548 #ifdef CONFIG_MIGRATION
1549 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1552 struct nfs_page *req;
1555 nfs_fscache_release_page(page, GFP_KERNEL);
1557 req = nfs_find_and_lock_request(page, false);
1562 ret = migrate_page(mapping, newpage, page);
1567 page_cache_get(newpage);
1568 spin_lock(&mapping->host->i_lock);
1569 req->wb_page = newpage;
1570 SetPagePrivate(newpage);
1571 set_page_private(newpage, (unsigned long)req);
1572 ClearPagePrivate(page);
1573 set_page_private(page, 0);
1574 spin_unlock(&mapping->host->i_lock);
1575 page_cache_release(page);
1577 nfs_clear_page_tag_locked(req);
1583 int __init nfs_init_writepagecache(void)
1585 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1586 sizeof(struct nfs_write_data),
1587 0, SLAB_HWCACHE_ALIGN,
1589 if (nfs_wdata_cachep == NULL)
1592 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1594 if (nfs_wdata_mempool == NULL)
1597 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1599 if (nfs_commit_mempool == NULL)
1603 * NFS congestion size, scale with available memory.
1615 * This allows larger machines to have larger/more transfers.
1616 * Limit the default to 256M
1618 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1619 if (nfs_congestion_kb > 256*1024)
1620 nfs_congestion_kb = 256*1024;
1625 void nfs_destroy_writepagecache(void)
1627 mempool_destroy(nfs_commit_mempool);
1628 mempool_destroy(nfs_wdata_mempool);
1629 kmem_cache_destroy(nfs_wdata_cachep);