1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 * Shared functions for accessing and configuring the MAC
35 static s32 e1000_check_downshift(struct e1000_hw *hw);
36 static s32 e1000_check_polarity(struct e1000_hw *hw,
37 e1000_rev_polarity *polarity);
38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39 static void e1000_clear_vfta(struct e1000_hw *hw);
40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
48 static s32 e1000_id_led_init(struct e1000_hw *hw);
49 static void e1000_init_rx_addrs(struct e1000_hw *hw);
50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 struct e1000_phy_info *phy_info);
52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 struct e1000_phy_info *phy_info);
54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
55 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57 static s32 e1000_set_phy_type(struct e1000_hw *hw);
58 static void e1000_phy_init_script(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
70 u16 words, u16 *data);
71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 u16 words, u16 *data);
73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
83 static void e1000_release_eeprom(struct e1000_hw *hw);
84 static void e1000_standby_eeprom(struct e1000_hw *hw);
85 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
93 /* IGP cable length table */
95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
109 static DEFINE_SPINLOCK(e1000_eeprom_lock);
112 * e1000_set_phy_type - Set the phy type member in the hw struct.
113 * @hw: Struct containing variables accessed by shared code
115 static s32 e1000_set_phy_type(struct e1000_hw *hw)
117 e_dbg("e1000_set_phy_type");
119 if (hw->mac_type == e1000_undefined)
120 return -E1000_ERR_PHY_TYPE;
122 switch (hw->phy_id) {
123 case M88E1000_E_PHY_ID:
124 case M88E1000_I_PHY_ID:
125 case M88E1011_I_PHY_ID:
126 case M88E1111_I_PHY_ID:
127 hw->phy_type = e1000_phy_m88;
129 case IGP01E1000_I_PHY_ID:
130 if (hw->mac_type == e1000_82541 ||
131 hw->mac_type == e1000_82541_rev_2 ||
132 hw->mac_type == e1000_82547 ||
133 hw->mac_type == e1000_82547_rev_2)
134 hw->phy_type = e1000_phy_igp;
136 case RTL8211B_PHY_ID:
137 hw->phy_type = e1000_phy_8211;
139 case RTL8201N_PHY_ID:
140 hw->phy_type = e1000_phy_8201;
143 /* Should never have loaded on this device */
144 hw->phy_type = e1000_phy_undefined;
145 return -E1000_ERR_PHY_TYPE;
148 return E1000_SUCCESS;
152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153 * @hw: Struct containing variables accessed by shared code
155 static void e1000_phy_init_script(struct e1000_hw *hw)
160 e_dbg("e1000_phy_init_script");
162 if (hw->phy_init_script) {
165 /* Save off the current value of register 0x2F5B to be restored at
166 * the end of this routine. */
167 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
169 /* Disabled the PHY transmitter */
170 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
173 e1000_write_phy_reg(hw, 0x0000, 0x0140);
176 switch (hw->mac_type) {
179 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
180 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
181 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
182 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
183 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
184 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
185 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
186 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
187 e1000_write_phy_reg(hw, 0x2010, 0x0008);
190 case e1000_82541_rev_2:
191 case e1000_82547_rev_2:
192 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
198 e1000_write_phy_reg(hw, 0x0000, 0x3300);
201 /* Now enable the transmitter */
202 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
204 if (hw->mac_type == e1000_82547) {
205 u16 fused, fine, coarse;
207 /* Move to analog registers page */
208 e1000_read_phy_reg(hw,
209 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
212 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
213 e1000_read_phy_reg(hw,
214 IGP01E1000_ANALOG_FUSE_STATUS,
217 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
219 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
222 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
224 IGP01E1000_ANALOG_FUSE_COARSE_10;
225 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
227 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
228 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
231 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
232 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
234 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
236 e1000_write_phy_reg(hw,
237 IGP01E1000_ANALOG_FUSE_CONTROL,
239 e1000_write_phy_reg(hw,
240 IGP01E1000_ANALOG_FUSE_BYPASS,
241 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
248 * e1000_set_mac_type - Set the mac type member in the hw struct.
249 * @hw: Struct containing variables accessed by shared code
251 s32 e1000_set_mac_type(struct e1000_hw *hw)
253 e_dbg("e1000_set_mac_type");
255 switch (hw->device_id) {
256 case E1000_DEV_ID_82542:
257 switch (hw->revision_id) {
258 case E1000_82542_2_0_REV_ID:
259 hw->mac_type = e1000_82542_rev2_0;
261 case E1000_82542_2_1_REV_ID:
262 hw->mac_type = e1000_82542_rev2_1;
265 /* Invalid 82542 revision ID */
266 return -E1000_ERR_MAC_TYPE;
269 case E1000_DEV_ID_82543GC_FIBER:
270 case E1000_DEV_ID_82543GC_COPPER:
271 hw->mac_type = e1000_82543;
273 case E1000_DEV_ID_82544EI_COPPER:
274 case E1000_DEV_ID_82544EI_FIBER:
275 case E1000_DEV_ID_82544GC_COPPER:
276 case E1000_DEV_ID_82544GC_LOM:
277 hw->mac_type = e1000_82544;
279 case E1000_DEV_ID_82540EM:
280 case E1000_DEV_ID_82540EM_LOM:
281 case E1000_DEV_ID_82540EP:
282 case E1000_DEV_ID_82540EP_LOM:
283 case E1000_DEV_ID_82540EP_LP:
284 hw->mac_type = e1000_82540;
286 case E1000_DEV_ID_82545EM_COPPER:
287 case E1000_DEV_ID_82545EM_FIBER:
288 hw->mac_type = e1000_82545;
290 case E1000_DEV_ID_82545GM_COPPER:
291 case E1000_DEV_ID_82545GM_FIBER:
292 case E1000_DEV_ID_82545GM_SERDES:
293 hw->mac_type = e1000_82545_rev_3;
295 case E1000_DEV_ID_82546EB_COPPER:
296 case E1000_DEV_ID_82546EB_FIBER:
297 case E1000_DEV_ID_82546EB_QUAD_COPPER:
298 hw->mac_type = e1000_82546;
300 case E1000_DEV_ID_82546GB_COPPER:
301 case E1000_DEV_ID_82546GB_FIBER:
302 case E1000_DEV_ID_82546GB_SERDES:
303 case E1000_DEV_ID_82546GB_PCIE:
304 case E1000_DEV_ID_82546GB_QUAD_COPPER:
305 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
306 hw->mac_type = e1000_82546_rev_3;
308 case E1000_DEV_ID_82541EI:
309 case E1000_DEV_ID_82541EI_MOBILE:
310 case E1000_DEV_ID_82541ER_LOM:
311 hw->mac_type = e1000_82541;
313 case E1000_DEV_ID_82541ER:
314 case E1000_DEV_ID_82541GI:
315 case E1000_DEV_ID_82541GI_LF:
316 case E1000_DEV_ID_82541GI_MOBILE:
317 hw->mac_type = e1000_82541_rev_2;
319 case E1000_DEV_ID_82547EI:
320 case E1000_DEV_ID_82547EI_MOBILE:
321 hw->mac_type = e1000_82547;
323 case E1000_DEV_ID_82547GI:
324 hw->mac_type = e1000_82547_rev_2;
326 case E1000_DEV_ID_INTEL_CE4100_GBE:
327 hw->mac_type = e1000_ce4100;
330 /* Should never have loaded on this device */
331 return -E1000_ERR_MAC_TYPE;
334 switch (hw->mac_type) {
337 case e1000_82541_rev_2:
338 case e1000_82547_rev_2:
339 hw->asf_firmware_present = true;
345 /* The 82543 chip does not count tx_carrier_errors properly in
348 if (hw->mac_type == e1000_82543)
349 hw->bad_tx_carr_stats_fd = true;
351 if (hw->mac_type > e1000_82544)
352 hw->has_smbus = true;
354 return E1000_SUCCESS;
358 * e1000_set_media_type - Set media type and TBI compatibility.
359 * @hw: Struct containing variables accessed by shared code
361 void e1000_set_media_type(struct e1000_hw *hw)
365 e_dbg("e1000_set_media_type");
367 if (hw->mac_type != e1000_82543) {
368 /* tbi_compatibility is only valid on 82543 */
369 hw->tbi_compatibility_en = false;
372 switch (hw->device_id) {
373 case E1000_DEV_ID_82545GM_SERDES:
374 case E1000_DEV_ID_82546GB_SERDES:
375 hw->media_type = e1000_media_type_internal_serdes;
378 switch (hw->mac_type) {
379 case e1000_82542_rev2_0:
380 case e1000_82542_rev2_1:
381 hw->media_type = e1000_media_type_fiber;
384 hw->media_type = e1000_media_type_copper;
387 status = er32(STATUS);
388 if (status & E1000_STATUS_TBIMODE) {
389 hw->media_type = e1000_media_type_fiber;
390 /* tbi_compatibility not valid on fiber */
391 hw->tbi_compatibility_en = false;
393 hw->media_type = e1000_media_type_copper;
401 * e1000_reset_hw: reset the hardware completely
402 * @hw: Struct containing variables accessed by shared code
404 * Reset the transmit and receive units; mask and clear all interrupts.
406 s32 e1000_reset_hw(struct e1000_hw *hw)
415 e_dbg("e1000_reset_hw");
417 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
418 if (hw->mac_type == e1000_82542_rev2_0) {
419 e_dbg("Disabling MWI on 82542 rev 2.0\n");
420 e1000_pci_clear_mwi(hw);
423 /* Clear interrupt mask to stop board from generating interrupts */
424 e_dbg("Masking off all interrupts\n");
425 ew32(IMC, 0xffffffff);
427 /* Disable the Transmit and Receive units. Then delay to allow
428 * any pending transactions to complete before we hit the MAC with
432 ew32(TCTL, E1000_TCTL_PSP);
435 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
436 hw->tbi_compatibility_on = false;
438 /* Delay to allow any outstanding PCI transactions to complete before
439 * resetting the device
445 /* Must reset the PHY before resetting the MAC */
446 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
447 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
451 /* Issue a global reset to the MAC. This will reset the chip's
452 * transmit, receive, DMA, and link units. It will not effect
453 * the current PCI configuration. The global reset bit is self-
454 * clearing, and should clear within a microsecond.
456 e_dbg("Issuing a global reset to MAC\n");
458 switch (hw->mac_type) {
464 case e1000_82541_rev_2:
465 /* These controllers can't ack the 64-bit write when issuing the
466 * reset, so use IO-mapping as a workaround to issue the reset */
467 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
469 case e1000_82545_rev_3:
470 case e1000_82546_rev_3:
471 /* Reset is performed on a shadow of the control register */
472 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
476 ew32(CTRL, (ctrl | E1000_CTRL_RST));
480 /* After MAC reset, force reload of EEPROM to restore power-on settings to
481 * device. Later controllers reload the EEPROM automatically, so just wait
482 * for reload to complete.
484 switch (hw->mac_type) {
485 case e1000_82542_rev2_0:
486 case e1000_82542_rev2_1:
489 /* Wait for reset to complete */
491 ctrl_ext = er32(CTRL_EXT);
492 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
493 ew32(CTRL_EXT, ctrl_ext);
495 /* Wait for EEPROM reload */
499 case e1000_82541_rev_2:
501 case e1000_82547_rev_2:
502 /* Wait for EEPROM reload */
506 /* Auto read done will delay 5ms or poll based on mac type */
507 ret_val = e1000_get_auto_rd_done(hw);
513 /* Disable HW ARPs on ASF enabled adapters */
514 if (hw->mac_type >= e1000_82540) {
516 manc &= ~(E1000_MANC_ARP_EN);
520 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
521 e1000_phy_init_script(hw);
523 /* Configure activity LED after PHY reset */
524 led_ctrl = er32(LEDCTL);
525 led_ctrl &= IGP_ACTIVITY_LED_MASK;
526 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
527 ew32(LEDCTL, led_ctrl);
530 /* Clear interrupt mask to stop board from generating interrupts */
531 e_dbg("Masking off all interrupts\n");
532 ew32(IMC, 0xffffffff);
534 /* Clear any pending interrupt events. */
537 /* If MWI was previously enabled, reenable it. */
538 if (hw->mac_type == e1000_82542_rev2_0) {
539 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
540 e1000_pci_set_mwi(hw);
543 return E1000_SUCCESS;
547 * e1000_init_hw: Performs basic configuration of the adapter.
548 * @hw: Struct containing variables accessed by shared code
550 * Assumes that the controller has previously been reset and is in a
551 * post-reset uninitialized state. Initializes the receive address registers,
552 * multicast table, and VLAN filter table. Calls routines to setup link
553 * configuration and flow control settings. Clears all on-chip counters. Leaves
554 * the transmit and receive units disabled and uninitialized.
556 s32 e1000_init_hw(struct e1000_hw *hw)
564 e_dbg("e1000_init_hw");
566 /* Initialize Identification LED */
567 ret_val = e1000_id_led_init(hw);
569 e_dbg("Error Initializing Identification LED\n");
573 /* Set the media type and TBI compatibility */
574 e1000_set_media_type(hw);
576 /* Disabling VLAN filtering. */
577 e_dbg("Initializing the IEEE VLAN\n");
578 if (hw->mac_type < e1000_82545_rev_3)
580 e1000_clear_vfta(hw);
582 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
583 if (hw->mac_type == e1000_82542_rev2_0) {
584 e_dbg("Disabling MWI on 82542 rev 2.0\n");
585 e1000_pci_clear_mwi(hw);
586 ew32(RCTL, E1000_RCTL_RST);
591 /* Setup the receive address. This involves initializing all of the Receive
592 * Address Registers (RARs 0 - 15).
594 e1000_init_rx_addrs(hw);
596 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
597 if (hw->mac_type == e1000_82542_rev2_0) {
601 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
602 e1000_pci_set_mwi(hw);
605 /* Zero out the Multicast HASH table */
606 e_dbg("Zeroing the MTA\n");
607 mta_size = E1000_MC_TBL_SIZE;
608 for (i = 0; i < mta_size; i++) {
609 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
610 /* use write flush to prevent Memory Write Block (MWB) from
611 * occurring when accessing our register space */
615 /* Set the PCI priority bit correctly in the CTRL register. This
616 * determines if the adapter gives priority to receives, or if it
617 * gives equal priority to transmits and receives. Valid only on
618 * 82542 and 82543 silicon.
620 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
622 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
625 switch (hw->mac_type) {
626 case e1000_82545_rev_3:
627 case e1000_82546_rev_3:
630 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
631 if (hw->bus_type == e1000_bus_type_pcix
632 && e1000_pcix_get_mmrbc(hw) > 2048)
633 e1000_pcix_set_mmrbc(hw, 2048);
637 /* Call a subroutine to configure the link and setup flow control. */
638 ret_val = e1000_setup_link(hw);
640 /* Set the transmit descriptor write-back policy */
641 if (hw->mac_type > e1000_82544) {
644 (ctrl & ~E1000_TXDCTL_WTHRESH) |
645 E1000_TXDCTL_FULL_TX_DESC_WB;
649 /* Clear all of the statistics registers (clear on read). It is
650 * important that we do this after we have tried to establish link
651 * because the symbol error count will increment wildly if there
654 e1000_clear_hw_cntrs(hw);
656 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
657 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
658 ctrl_ext = er32(CTRL_EXT);
659 /* Relaxed ordering must be disabled to avoid a parity
660 * error crash in a PCI slot. */
661 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
662 ew32(CTRL_EXT, ctrl_ext);
669 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
670 * @hw: Struct containing variables accessed by shared code.
672 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
677 e_dbg("e1000_adjust_serdes_amplitude");
679 if (hw->media_type != e1000_media_type_internal_serdes)
680 return E1000_SUCCESS;
682 switch (hw->mac_type) {
683 case e1000_82545_rev_3:
684 case e1000_82546_rev_3:
687 return E1000_SUCCESS;
690 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
696 if (eeprom_data != EEPROM_RESERVED_WORD) {
697 /* Adjust SERDES output amplitude only. */
698 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
700 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
705 return E1000_SUCCESS;
709 * e1000_setup_link - Configures flow control and link settings.
710 * @hw: Struct containing variables accessed by shared code
712 * Determines which flow control settings to use. Calls the appropriate media-
713 * specific link configuration function. Configures the flow control settings.
714 * Assuming the adapter has a valid link partner, a valid link should be
715 * established. Assumes the hardware has previously been reset and the
716 * transmitter and receiver are not enabled.
718 s32 e1000_setup_link(struct e1000_hw *hw)
724 e_dbg("e1000_setup_link");
726 /* Read and store word 0x0F of the EEPROM. This word contains bits
727 * that determine the hardware's default PAUSE (flow control) mode,
728 * a bit that determines whether the HW defaults to enabling or
729 * disabling auto-negotiation, and the direction of the
730 * SW defined pins. If there is no SW over-ride of the flow
731 * control setting, then the variable hw->fc will
732 * be initialized based on a value in the EEPROM.
734 if (hw->fc == E1000_FC_DEFAULT) {
735 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
738 e_dbg("EEPROM Read Error\n");
739 return -E1000_ERR_EEPROM;
741 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
742 hw->fc = E1000_FC_NONE;
743 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
744 EEPROM_WORD0F_ASM_DIR)
745 hw->fc = E1000_FC_TX_PAUSE;
747 hw->fc = E1000_FC_FULL;
750 /* We want to save off the original Flow Control configuration just
751 * in case we get disconnected and then reconnected into a different
752 * hub or switch with different Flow Control capabilities.
754 if (hw->mac_type == e1000_82542_rev2_0)
755 hw->fc &= (~E1000_FC_TX_PAUSE);
757 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
758 hw->fc &= (~E1000_FC_RX_PAUSE);
760 hw->original_fc = hw->fc;
762 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
764 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
765 * polarity value for the SW controlled pins, and setup the
766 * Extended Device Control reg with that info.
767 * This is needed because one of the SW controlled pins is used for
768 * signal detection. So this should be done before e1000_setup_pcs_link()
769 * or e1000_phy_setup() is called.
771 if (hw->mac_type == e1000_82543) {
772 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
775 e_dbg("EEPROM Read Error\n");
776 return -E1000_ERR_EEPROM;
778 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
780 ew32(CTRL_EXT, ctrl_ext);
783 /* Call the necessary subroutine to configure the link. */
784 ret_val = (hw->media_type == e1000_media_type_copper) ?
785 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
787 /* Initialize the flow control address, type, and PAUSE timer
788 * registers to their default values. This is done even if flow
789 * control is disabled, because it does not hurt anything to
790 * initialize these registers.
792 e_dbg("Initializing the Flow Control address, type and timer regs\n");
794 ew32(FCT, FLOW_CONTROL_TYPE);
795 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
796 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
798 ew32(FCTTV, hw->fc_pause_time);
800 /* Set the flow control receive threshold registers. Normally,
801 * these registers will be set to a default threshold that may be
802 * adjusted later by the driver's runtime code. However, if the
803 * ability to transmit pause frames in not enabled, then these
804 * registers will be set to 0.
806 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
810 /* We need to set up the Receive Threshold high and low water marks
811 * as well as (optionally) enabling the transmission of XON frames.
813 if (hw->fc_send_xon) {
814 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
815 ew32(FCRTH, hw->fc_high_water);
817 ew32(FCRTL, hw->fc_low_water);
818 ew32(FCRTH, hw->fc_high_water);
825 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
826 * @hw: Struct containing variables accessed by shared code
828 * Manipulates Physical Coding Sublayer functions in order to configure
829 * link. Assumes the hardware has been previously reset and the transmitter
830 * and receiver are not enabled.
832 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
841 e_dbg("e1000_setup_fiber_serdes_link");
843 /* On adapters with a MAC newer than 82544, SWDP 1 will be
844 * set when the optics detect a signal. On older adapters, it will be
845 * cleared when there is a signal. This applies to fiber media only.
846 * If we're on serdes media, adjust the output amplitude to value
850 if (hw->media_type == e1000_media_type_fiber)
851 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
853 ret_val = e1000_adjust_serdes_amplitude(hw);
857 /* Take the link out of reset */
858 ctrl &= ~(E1000_CTRL_LRST);
860 /* Adjust VCO speed to improve BER performance */
861 ret_val = e1000_set_vco_speed(hw);
865 e1000_config_collision_dist(hw);
867 /* Check for a software override of the flow control settings, and setup
868 * the device accordingly. If auto-negotiation is enabled, then software
869 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
870 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
871 * auto-negotiation is disabled, then software will have to manually
872 * configure the two flow control enable bits in the CTRL register.
874 * The possible values of the "fc" parameter are:
875 * 0: Flow control is completely disabled
876 * 1: Rx flow control is enabled (we can receive pause frames, but
877 * not send pause frames).
878 * 2: Tx flow control is enabled (we can send pause frames but we do
879 * not support receiving pause frames).
880 * 3: Both Rx and TX flow control (symmetric) are enabled.
884 /* Flow control is completely disabled by a software over-ride. */
885 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
887 case E1000_FC_RX_PAUSE:
888 /* RX Flow control is enabled and TX Flow control is disabled by a
889 * software over-ride. Since there really isn't a way to advertise
890 * that we are capable of RX Pause ONLY, we will advertise that we
891 * support both symmetric and asymmetric RX PAUSE. Later, we will
892 * disable the adapter's ability to send PAUSE frames.
894 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
896 case E1000_FC_TX_PAUSE:
897 /* TX Flow control is enabled, and RX Flow control is disabled, by a
898 * software over-ride.
900 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
903 /* Flow control (both RX and TX) is enabled by a software over-ride. */
904 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
907 e_dbg("Flow control param set incorrectly\n");
908 return -E1000_ERR_CONFIG;
912 /* Since auto-negotiation is enabled, take the link out of reset (the link
913 * will be in reset, because we previously reset the chip). This will
914 * restart auto-negotiation. If auto-negotiation is successful then the
915 * link-up status bit will be set and the flow control enable bits (RFCE
916 * and TFCE) will be set according to their negotiated value.
918 e_dbg("Auto-negotiation enabled\n");
927 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
928 * indication in the Device Status Register. Time-out if a link isn't
929 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
930 * less than 500 milliseconds even if the other end is doing it in SW).
931 * For internal serdes, we just assume a signal is present, then poll.
933 if (hw->media_type == e1000_media_type_internal_serdes ||
934 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
935 e_dbg("Looking for Link\n");
936 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
938 status = er32(STATUS);
939 if (status & E1000_STATUS_LU)
942 if (i == (LINK_UP_TIMEOUT / 10)) {
943 e_dbg("Never got a valid link from auto-neg!!!\n");
944 hw->autoneg_failed = 1;
945 /* AutoNeg failed to achieve a link, so we'll call
946 * e1000_check_for_link. This routine will force the link up if
947 * we detect a signal. This will allow us to communicate with
948 * non-autonegotiating link partners.
950 ret_val = e1000_check_for_link(hw);
952 e_dbg("Error while checking for link\n");
955 hw->autoneg_failed = 0;
957 hw->autoneg_failed = 0;
958 e_dbg("Valid Link Found\n");
961 e_dbg("No Signal Detected\n");
963 return E1000_SUCCESS;
967 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
968 * @hw: Struct containing variables accessed by shared code
970 * Commits changes to PHY configuration by calling e1000_phy_reset().
972 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
976 /* SW reset the PHY so all changes take effect */
977 ret_val = e1000_phy_reset(hw);
979 e_dbg("Error Resetting the PHY\n");
983 return E1000_SUCCESS;
986 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
991 switch (hw->phy_type) {
993 ret_val = e1000_copper_link_rtl_setup(hw);
995 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1001 ctrl_aux = er32(CTL_AUX);
1002 ctrl_aux |= E1000_CTL_AUX_RMII;
1003 ew32(CTL_AUX, ctrl_aux);
1004 E1000_WRITE_FLUSH();
1006 /* Disable the J/K bits required for receive */
1007 ctrl_aux = er32(CTL_AUX);
1010 ew32(CTL_AUX, ctrl_aux);
1011 E1000_WRITE_FLUSH();
1012 ret_val = e1000_copper_link_rtl_setup(hw);
1015 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1020 e_dbg("Error Resetting the PHY\n");
1021 return E1000_ERR_PHY_TYPE;
1024 return E1000_SUCCESS;
1028 * e1000_copper_link_preconfig - early configuration for copper
1029 * @hw: Struct containing variables accessed by shared code
1031 * Make sure we have a valid PHY and change PHY mode before link setup.
1033 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1039 e_dbg("e1000_copper_link_preconfig");
1042 /* With 82543, we need to force speed and duplex on the MAC equal to what
1043 * the PHY speed and duplex configuration is. In addition, we need to
1044 * perform a hardware reset on the PHY to take it out of reset.
1046 if (hw->mac_type > e1000_82543) {
1047 ctrl |= E1000_CTRL_SLU;
1048 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1052 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1054 ret_val = e1000_phy_hw_reset(hw);
1059 /* Make sure we have a valid PHY */
1060 ret_val = e1000_detect_gig_phy(hw);
1062 e_dbg("Error, did not detect valid phy.\n");
1065 e_dbg("Phy ID = %x\n", hw->phy_id);
1067 /* Set PHY to class A mode (if necessary) */
1068 ret_val = e1000_set_phy_mode(hw);
1072 if ((hw->mac_type == e1000_82545_rev_3) ||
1073 (hw->mac_type == e1000_82546_rev_3)) {
1075 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1076 phy_data |= 0x00000008;
1078 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1081 if (hw->mac_type <= e1000_82543 ||
1082 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1083 hw->mac_type == e1000_82541_rev_2
1084 || hw->mac_type == e1000_82547_rev_2)
1085 hw->phy_reset_disable = false;
1087 return E1000_SUCCESS;
1091 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1092 * @hw: Struct containing variables accessed by shared code
1094 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1100 e_dbg("e1000_copper_link_igp_setup");
1102 if (hw->phy_reset_disable)
1103 return E1000_SUCCESS;
1105 ret_val = e1000_phy_reset(hw);
1107 e_dbg("Error Resetting the PHY\n");
1111 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1113 /* Configure activity LED after PHY reset */
1114 led_ctrl = er32(LEDCTL);
1115 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1116 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1117 ew32(LEDCTL, led_ctrl);
1119 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1120 if (hw->phy_type == e1000_phy_igp) {
1121 /* disable lplu d3 during driver init */
1122 ret_val = e1000_set_d3_lplu_state(hw, false);
1124 e_dbg("Error Disabling LPLU D3\n");
1129 /* Configure mdi-mdix settings */
1130 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1134 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1135 hw->dsp_config_state = e1000_dsp_config_disabled;
1136 /* Force MDI for earlier revs of the IGP PHY */
1138 ~(IGP01E1000_PSCR_AUTO_MDIX |
1139 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1143 hw->dsp_config_state = e1000_dsp_config_enabled;
1144 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1148 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1151 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1155 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1159 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1163 /* set auto-master slave resolution settings */
1165 e1000_ms_type phy_ms_setting = hw->master_slave;
1167 if (hw->ffe_config_state == e1000_ffe_config_active)
1168 hw->ffe_config_state = e1000_ffe_config_enabled;
1170 if (hw->dsp_config_state == e1000_dsp_config_activated)
1171 hw->dsp_config_state = e1000_dsp_config_enabled;
1173 /* when autonegotiation advertisement is only 1000Mbps then we
1174 * should disable SmartSpeed and enable Auto MasterSlave
1175 * resolution as hardware default. */
1176 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1177 /* Disable SmartSpeed */
1179 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1183 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1185 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1189 /* Set auto Master/Slave resolution process */
1191 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1194 phy_data &= ~CR_1000T_MS_ENABLE;
1196 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1201 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1205 /* load defaults for future use */
1206 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1207 ((phy_data & CR_1000T_MS_VALUE) ?
1208 e1000_ms_force_master :
1209 e1000_ms_force_slave) : e1000_ms_auto;
1211 switch (phy_ms_setting) {
1212 case e1000_ms_force_master:
1213 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1215 case e1000_ms_force_slave:
1216 phy_data |= CR_1000T_MS_ENABLE;
1217 phy_data &= ~(CR_1000T_MS_VALUE);
1220 phy_data &= ~CR_1000T_MS_ENABLE;
1224 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1229 return E1000_SUCCESS;
1233 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1234 * @hw: Struct containing variables accessed by shared code
1236 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1241 e_dbg("e1000_copper_link_mgp_setup");
1243 if (hw->phy_reset_disable)
1244 return E1000_SUCCESS;
1246 /* Enable CRS on TX. This must be set for half-duplex operation. */
1247 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1251 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1254 * MDI/MDI-X = 0 (default)
1255 * 0 - Auto for all speeds
1258 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1260 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1264 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1267 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1270 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1274 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1279 * disable_polarity_correction = 0 (default)
1280 * Automatic Correction for Reversed Cable Polarity
1284 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1285 if (hw->disable_polarity_correction == 1)
1286 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1287 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1291 if (hw->phy_revision < M88E1011_I_REV_4) {
1292 /* Force TX_CLK in the Extended PHY Specific Control Register
1296 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1301 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1303 if ((hw->phy_revision == E1000_REVISION_2) &&
1304 (hw->phy_id == M88E1111_I_PHY_ID)) {
1305 /* Vidalia Phy, set the downshift counter to 5x */
1306 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1307 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1308 ret_val = e1000_write_phy_reg(hw,
1309 M88E1000_EXT_PHY_SPEC_CTRL,
1314 /* Configure Master and Slave downshift values */
1315 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1316 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1317 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1318 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1319 ret_val = e1000_write_phy_reg(hw,
1320 M88E1000_EXT_PHY_SPEC_CTRL,
1327 /* SW Reset the PHY so all changes take effect */
1328 ret_val = e1000_phy_reset(hw);
1330 e_dbg("Error Resetting the PHY\n");
1334 return E1000_SUCCESS;
1338 * e1000_copper_link_autoneg - setup auto-neg
1339 * @hw: Struct containing variables accessed by shared code
1341 * Setup auto-negotiation and flow control advertisements,
1342 * and then perform auto-negotiation.
1344 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1349 e_dbg("e1000_copper_link_autoneg");
1351 /* Perform some bounds checking on the hw->autoneg_advertised
1352 * parameter. If this variable is zero, then set it to the default.
1354 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1356 /* If autoneg_advertised is zero, we assume it was not defaulted
1357 * by the calling code so we set to advertise full capability.
1359 if (hw->autoneg_advertised == 0)
1360 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1362 /* IFE/RTL8201N PHY only supports 10/100 */
1363 if (hw->phy_type == e1000_phy_8201)
1364 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1366 e_dbg("Reconfiguring auto-neg advertisement params\n");
1367 ret_val = e1000_phy_setup_autoneg(hw);
1369 e_dbg("Error Setting up Auto-Negotiation\n");
1372 e_dbg("Restarting Auto-Neg\n");
1374 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1375 * the Auto Neg Restart bit in the PHY control register.
1377 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1381 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1382 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1386 /* Does the user want to wait for Auto-Neg to complete here, or
1387 * check at a later time (for example, callback routine).
1389 if (hw->wait_autoneg_complete) {
1390 ret_val = e1000_wait_autoneg(hw);
1393 ("Error while waiting for autoneg to complete\n");
1398 hw->get_link_status = true;
1400 return E1000_SUCCESS;
1404 * e1000_copper_link_postconfig - post link setup
1405 * @hw: Struct containing variables accessed by shared code
1407 * Config the MAC and the PHY after link is up.
1408 * 1) Set up the MAC to the current PHY speed/duplex
1409 * if we are on 82543. If we
1410 * are on newer silicon, we only need to configure
1411 * collision distance in the Transmit Control Register.
1412 * 2) Set up flow control on the MAC to that established with
1414 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1416 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1419 e_dbg("e1000_copper_link_postconfig");
1421 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1422 e1000_config_collision_dist(hw);
1424 ret_val = e1000_config_mac_to_phy(hw);
1426 e_dbg("Error configuring MAC to PHY settings\n");
1430 ret_val = e1000_config_fc_after_link_up(hw);
1432 e_dbg("Error Configuring Flow Control\n");
1436 /* Config DSP to improve Giga link quality */
1437 if (hw->phy_type == e1000_phy_igp) {
1438 ret_val = e1000_config_dsp_after_link_change(hw, true);
1440 e_dbg("Error Configuring DSP after link up\n");
1445 return E1000_SUCCESS;
1449 * e1000_setup_copper_link - phy/speed/duplex setting
1450 * @hw: Struct containing variables accessed by shared code
1452 * Detects which PHY is present and sets up the speed and duplex
1454 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1460 e_dbg("e1000_setup_copper_link");
1462 /* Check if it is a valid PHY and set PHY mode if necessary. */
1463 ret_val = e1000_copper_link_preconfig(hw);
1467 if (hw->phy_type == e1000_phy_igp) {
1468 ret_val = e1000_copper_link_igp_setup(hw);
1471 } else if (hw->phy_type == e1000_phy_m88) {
1472 ret_val = e1000_copper_link_mgp_setup(hw);
1476 ret_val = gbe_dhg_phy_setup(hw);
1478 e_dbg("gbe_dhg_phy_setup failed!\n");
1484 /* Setup autoneg and flow control advertisement
1485 * and perform autonegotiation */
1486 ret_val = e1000_copper_link_autoneg(hw);
1490 /* PHY will be set to 10H, 10F, 100H,or 100F
1491 * depending on value from forced_speed_duplex. */
1492 e_dbg("Forcing speed and duplex\n");
1493 ret_val = e1000_phy_force_speed_duplex(hw);
1495 e_dbg("Error Forcing Speed and Duplex\n");
1500 /* Check link status. Wait up to 100 microseconds for link to become
1503 for (i = 0; i < 10; i++) {
1504 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1507 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1511 if (phy_data & MII_SR_LINK_STATUS) {
1512 /* Config the MAC and PHY after link is up */
1513 ret_val = e1000_copper_link_postconfig(hw);
1517 e_dbg("Valid link established!!!\n");
1518 return E1000_SUCCESS;
1523 e_dbg("Unable to establish link!!!\n");
1524 return E1000_SUCCESS;
1528 * e1000_phy_setup_autoneg - phy settings
1529 * @hw: Struct containing variables accessed by shared code
1531 * Configures PHY autoneg and flow control advertisement settings
1533 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1536 u16 mii_autoneg_adv_reg;
1537 u16 mii_1000t_ctrl_reg;
1539 e_dbg("e1000_phy_setup_autoneg");
1541 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1542 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1546 /* Read the MII 1000Base-T Control Register (Address 9). */
1547 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1550 else if (hw->phy_type == e1000_phy_8201)
1551 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1553 /* Need to parse both autoneg_advertised and fc and set up
1554 * the appropriate PHY registers. First we will parse for
1555 * autoneg_advertised software override. Since we can advertise
1556 * a plethora of combinations, we need to check each bit
1560 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1561 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1562 * the 1000Base-T Control Register (Address 9).
1564 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1565 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1567 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1569 /* Do we want to advertise 10 Mb Half Duplex? */
1570 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1571 e_dbg("Advertise 10mb Half duplex\n");
1572 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1575 /* Do we want to advertise 10 Mb Full Duplex? */
1576 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1577 e_dbg("Advertise 10mb Full duplex\n");
1578 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1581 /* Do we want to advertise 100 Mb Half Duplex? */
1582 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1583 e_dbg("Advertise 100mb Half duplex\n");
1584 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1587 /* Do we want to advertise 100 Mb Full Duplex? */
1588 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1589 e_dbg("Advertise 100mb Full duplex\n");
1590 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1593 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1594 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1596 ("Advertise 1000mb Half duplex requested, request denied!\n");
1599 /* Do we want to advertise 1000 Mb Full Duplex? */
1600 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1601 e_dbg("Advertise 1000mb Full duplex\n");
1602 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1605 /* Check for a software override of the flow control settings, and
1606 * setup the PHY advertisement registers accordingly. If
1607 * auto-negotiation is enabled, then software will have to set the
1608 * "PAUSE" bits to the correct value in the Auto-Negotiation
1609 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1611 * The possible values of the "fc" parameter are:
1612 * 0: Flow control is completely disabled
1613 * 1: Rx flow control is enabled (we can receive pause frames
1614 * but not send pause frames).
1615 * 2: Tx flow control is enabled (we can send pause frames
1616 * but we do not support receiving pause frames).
1617 * 3: Both Rx and TX flow control (symmetric) are enabled.
1618 * other: No software override. The flow control configuration
1619 * in the EEPROM is used.
1622 case E1000_FC_NONE: /* 0 */
1623 /* Flow control (RX & TX) is completely disabled by a
1624 * software over-ride.
1626 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1628 case E1000_FC_RX_PAUSE: /* 1 */
1629 /* RX Flow control is enabled, and TX Flow control is
1630 * disabled, by a software over-ride.
1632 /* Since there really isn't a way to advertise that we are
1633 * capable of RX Pause ONLY, we will advertise that we
1634 * support both symmetric and asymmetric RX PAUSE. Later
1635 * (in e1000_config_fc_after_link_up) we will disable the
1636 *hw's ability to send PAUSE frames.
1638 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1640 case E1000_FC_TX_PAUSE: /* 2 */
1641 /* TX Flow control is enabled, and RX Flow control is
1642 * disabled, by a software over-ride.
1644 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1645 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1647 case E1000_FC_FULL: /* 3 */
1648 /* Flow control (both RX and TX) is enabled by a software
1651 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1654 e_dbg("Flow control param set incorrectly\n");
1655 return -E1000_ERR_CONFIG;
1658 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1662 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1664 if (hw->phy_type == e1000_phy_8201) {
1665 mii_1000t_ctrl_reg = 0;
1667 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1668 mii_1000t_ctrl_reg);
1673 return E1000_SUCCESS;
1677 * e1000_phy_force_speed_duplex - force link settings
1678 * @hw: Struct containing variables accessed by shared code
1680 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1682 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1691 e_dbg("e1000_phy_force_speed_duplex");
1693 /* Turn off Flow control if we are forcing speed and duplex. */
1694 hw->fc = E1000_FC_NONE;
1696 e_dbg("hw->fc = %d\n", hw->fc);
1698 /* Read the Device Control Register. */
1701 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1702 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1703 ctrl &= ~(DEVICE_SPEED_MASK);
1705 /* Clear the Auto Speed Detect Enable bit. */
1706 ctrl &= ~E1000_CTRL_ASDE;
1708 /* Read the MII Control Register. */
1709 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1713 /* We need to disable autoneg in order to force link and duplex. */
1715 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1717 /* Are we forcing Full or Half Duplex? */
1718 if (hw->forced_speed_duplex == e1000_100_full ||
1719 hw->forced_speed_duplex == e1000_10_full) {
1720 /* We want to force full duplex so we SET the full duplex bits in the
1721 * Device and MII Control Registers.
1723 ctrl |= E1000_CTRL_FD;
1724 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1725 e_dbg("Full Duplex\n");
1727 /* We want to force half duplex so we CLEAR the full duplex bits in
1728 * the Device and MII Control Registers.
1730 ctrl &= ~E1000_CTRL_FD;
1731 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1732 e_dbg("Half Duplex\n");
1735 /* Are we forcing 100Mbps??? */
1736 if (hw->forced_speed_duplex == e1000_100_full ||
1737 hw->forced_speed_duplex == e1000_100_half) {
1738 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1739 ctrl |= E1000_CTRL_SPD_100;
1740 mii_ctrl_reg |= MII_CR_SPEED_100;
1741 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1742 e_dbg("Forcing 100mb ");
1744 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1745 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1746 mii_ctrl_reg |= MII_CR_SPEED_10;
1747 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1748 e_dbg("Forcing 10mb ");
1751 e1000_config_collision_dist(hw);
1753 /* Write the configured values back to the Device Control Reg. */
1756 if (hw->phy_type == e1000_phy_m88) {
1758 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1762 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1763 * forced whenever speed are duplex are forced.
1765 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1767 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1771 e_dbg("M88E1000 PSCR: %x\n", phy_data);
1773 /* Need to reset the PHY or these changes will be ignored */
1774 mii_ctrl_reg |= MII_CR_RESET;
1776 /* Disable MDI-X support for 10/100 */
1778 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1779 * forced whenever speed or duplex are forced.
1782 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1786 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1787 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1790 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1795 /* Write back the modified PHY MII control register. */
1796 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1802 /* The wait_autoneg_complete flag may be a little misleading here.
1803 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1804 * But we do want to delay for a period while forcing only so we
1805 * don't generate false No Link messages. So we will wait here
1806 * only if the user has set wait_autoneg_complete to 1, which is
1809 if (hw->wait_autoneg_complete) {
1810 /* We will wait for autoneg to complete. */
1811 e_dbg("Waiting for forced speed/duplex link.\n");
1814 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
1815 for (i = PHY_FORCE_TIME; i > 0; i--) {
1816 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1820 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1825 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1829 if (mii_status_reg & MII_SR_LINK_STATUS)
1833 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1834 /* We didn't get link. Reset the DSP and wait again for link. */
1835 ret_val = e1000_phy_reset_dsp(hw);
1837 e_dbg("Error Resetting PHY DSP\n");
1841 /* This loop will early-out if the link condition has been met. */
1842 for (i = PHY_FORCE_TIME; i > 0; i--) {
1843 if (mii_status_reg & MII_SR_LINK_STATUS)
1846 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1850 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1855 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1861 if (hw->phy_type == e1000_phy_m88) {
1862 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1863 * Extended PHY Specific Control Register to 25MHz clock. This value
1864 * defaults back to a 2.5MHz clock when the PHY is reset.
1867 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1872 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1874 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1879 /* In addition, because of the s/w reset above, we need to enable CRS on
1880 * TX. This must be set for both full and half duplex operation.
1883 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1887 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1889 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1893 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1895 && (hw->forced_speed_duplex == e1000_10_full
1896 || hw->forced_speed_duplex == e1000_10_half)) {
1897 ret_val = e1000_polarity_reversal_workaround(hw);
1902 return E1000_SUCCESS;
1906 * e1000_config_collision_dist - set collision distance register
1907 * @hw: Struct containing variables accessed by shared code
1909 * Sets the collision distance in the Transmit Control register.
1910 * Link should have been established previously. Reads the speed and duplex
1911 * information from the Device Status register.
1913 void e1000_config_collision_dist(struct e1000_hw *hw)
1915 u32 tctl, coll_dist;
1917 e_dbg("e1000_config_collision_dist");
1919 if (hw->mac_type < e1000_82543)
1920 coll_dist = E1000_COLLISION_DISTANCE_82542;
1922 coll_dist = E1000_COLLISION_DISTANCE;
1926 tctl &= ~E1000_TCTL_COLD;
1927 tctl |= coll_dist << E1000_COLD_SHIFT;
1930 E1000_WRITE_FLUSH();
1934 * e1000_config_mac_to_phy - sync phy and mac settings
1935 * @hw: Struct containing variables accessed by shared code
1936 * @mii_reg: data to write to the MII control register
1938 * Sets MAC speed and duplex settings to reflect the those in the PHY
1939 * The contents of the PHY register containing the needed information need to
1942 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1948 e_dbg("e1000_config_mac_to_phy");
1950 /* 82544 or newer MAC, Auto Speed Detection takes care of
1951 * MAC speed/duplex configuration.*/
1952 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1953 return E1000_SUCCESS;
1955 /* Read the Device Control Register and set the bits to Force Speed
1959 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1960 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1962 switch (hw->phy_type) {
1963 case e1000_phy_8201:
1964 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1968 if (phy_data & RTL_PHY_CTRL_FD)
1969 ctrl |= E1000_CTRL_FD;
1971 ctrl &= ~E1000_CTRL_FD;
1973 if (phy_data & RTL_PHY_CTRL_SPD_100)
1974 ctrl |= E1000_CTRL_SPD_100;
1976 ctrl |= E1000_CTRL_SPD_10;
1978 e1000_config_collision_dist(hw);
1981 /* Set up duplex in the Device Control and Transmit Control
1982 * registers depending on negotiated values.
1984 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1989 if (phy_data & M88E1000_PSSR_DPLX)
1990 ctrl |= E1000_CTRL_FD;
1992 ctrl &= ~E1000_CTRL_FD;
1994 e1000_config_collision_dist(hw);
1996 /* Set up speed in the Device Control register depending on
1997 * negotiated values.
1999 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2000 ctrl |= E1000_CTRL_SPD_1000;
2001 else if ((phy_data & M88E1000_PSSR_SPEED) ==
2002 M88E1000_PSSR_100MBS)
2003 ctrl |= E1000_CTRL_SPD_100;
2006 /* Write the configured values back to the Device Control Reg. */
2008 return E1000_SUCCESS;
2012 * e1000_force_mac_fc - force flow control settings
2013 * @hw: Struct containing variables accessed by shared code
2015 * Forces the MAC's flow control settings.
2016 * Sets the TFCE and RFCE bits in the device control register to reflect
2017 * the adapter settings. TFCE and RFCE need to be explicitly set by
2018 * software when a Copper PHY is used because autonegotiation is managed
2019 * by the PHY rather than the MAC. Software must also configure these
2020 * bits when link is forced on a fiber connection.
2022 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2026 e_dbg("e1000_force_mac_fc");
2028 /* Get the current configuration of the Device Control Register */
2031 /* Because we didn't get link via the internal auto-negotiation
2032 * mechanism (we either forced link or we got link via PHY
2033 * auto-neg), we have to manually enable/disable transmit an
2034 * receive flow control.
2036 * The "Case" statement below enables/disable flow control
2037 * according to the "hw->fc" parameter.
2039 * The possible values of the "fc" parameter are:
2040 * 0: Flow control is completely disabled
2041 * 1: Rx flow control is enabled (we can receive pause
2042 * frames but not send pause frames).
2043 * 2: Tx flow control is enabled (we can send pause frames
2044 * frames but we do not receive pause frames).
2045 * 3: Both Rx and TX flow control (symmetric) is enabled.
2046 * other: No other values should be possible at this point.
2051 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2053 case E1000_FC_RX_PAUSE:
2054 ctrl &= (~E1000_CTRL_TFCE);
2055 ctrl |= E1000_CTRL_RFCE;
2057 case E1000_FC_TX_PAUSE:
2058 ctrl &= (~E1000_CTRL_RFCE);
2059 ctrl |= E1000_CTRL_TFCE;
2062 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2065 e_dbg("Flow control param set incorrectly\n");
2066 return -E1000_ERR_CONFIG;
2069 /* Disable TX Flow Control for 82542 (rev 2.0) */
2070 if (hw->mac_type == e1000_82542_rev2_0)
2071 ctrl &= (~E1000_CTRL_TFCE);
2074 return E1000_SUCCESS;
2078 * e1000_config_fc_after_link_up - configure flow control after autoneg
2079 * @hw: Struct containing variables accessed by shared code
2081 * Configures flow control settings after link is established
2082 * Should be called immediately after a valid link has been established.
2083 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2084 * and autonegotiation is enabled, the MAC flow control settings will be set
2085 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2086 * and RFCE bits will be automatically set to the negotiated flow control mode.
2088 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2092 u16 mii_nway_adv_reg;
2093 u16 mii_nway_lp_ability_reg;
2097 e_dbg("e1000_config_fc_after_link_up");
2099 /* Check for the case where we have fiber media and auto-neg failed
2100 * so we had to force link. In this case, we need to force the
2101 * configuration of the MAC to match the "fc" parameter.
2103 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2104 || ((hw->media_type == e1000_media_type_internal_serdes)
2105 && (hw->autoneg_failed))
2106 || ((hw->media_type == e1000_media_type_copper)
2107 && (!hw->autoneg))) {
2108 ret_val = e1000_force_mac_fc(hw);
2110 e_dbg("Error forcing flow control settings\n");
2115 /* Check for the case where we have copper media and auto-neg is
2116 * enabled. In this case, we need to check and see if Auto-Neg
2117 * has completed, and if so, how the PHY and link partner has
2118 * flow control configured.
2120 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2121 /* Read the MII Status Register and check to see if AutoNeg
2122 * has completed. We read this twice because this reg has
2123 * some "sticky" (latched) bits.
2125 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2128 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2132 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2133 /* The AutoNeg process has completed, so we now need to
2134 * read both the Auto Negotiation Advertisement Register
2135 * (Address 4) and the Auto_Negotiation Base Page Ability
2136 * Register (Address 5) to determine how flow control was
2139 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2143 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2144 &mii_nway_lp_ability_reg);
2148 /* Two bits in the Auto Negotiation Advertisement Register
2149 * (Address 4) and two bits in the Auto Negotiation Base
2150 * Page Ability Register (Address 5) determine flow control
2151 * for both the PHY and the link partner. The following
2152 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2153 * 1999, describes these PAUSE resolution bits and how flow
2154 * control is determined based upon these settings.
2155 * NOTE: DC = Don't Care
2157 * LOCAL DEVICE | LINK PARTNER
2158 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2159 *-------|---------|-------|---------|--------------------
2160 * 0 | 0 | DC | DC | E1000_FC_NONE
2161 * 0 | 1 | 0 | DC | E1000_FC_NONE
2162 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2163 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2164 * 1 | 0 | 0 | DC | E1000_FC_NONE
2165 * 1 | DC | 1 | DC | E1000_FC_FULL
2166 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2167 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2170 /* Are both PAUSE bits set to 1? If so, this implies
2171 * Symmetric Flow Control is enabled at both ends. The
2172 * ASM_DIR bits are irrelevant per the spec.
2174 * For Symmetric Flow Control:
2176 * LOCAL DEVICE | LINK PARTNER
2177 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2178 *-------|---------|-------|---------|--------------------
2179 * 1 | DC | 1 | DC | E1000_FC_FULL
2182 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2183 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2184 /* Now we need to check if the user selected RX ONLY
2185 * of pause frames. In this case, we had to advertise
2186 * FULL flow control because we could not advertise RX
2187 * ONLY. Hence, we must now check to see if we need to
2188 * turn OFF the TRANSMISSION of PAUSE frames.
2190 if (hw->original_fc == E1000_FC_FULL) {
2191 hw->fc = E1000_FC_FULL;
2192 e_dbg("Flow Control = FULL.\n");
2194 hw->fc = E1000_FC_RX_PAUSE;
2196 ("Flow Control = RX PAUSE frames only.\n");
2199 /* For receiving PAUSE frames ONLY.
2201 * LOCAL DEVICE | LINK PARTNER
2202 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2203 *-------|---------|-------|---------|--------------------
2204 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2207 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2208 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2209 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2210 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2212 hw->fc = E1000_FC_TX_PAUSE;
2214 ("Flow Control = TX PAUSE frames only.\n");
2216 /* For transmitting PAUSE frames ONLY.
2218 * LOCAL DEVICE | LINK PARTNER
2219 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2220 *-------|---------|-------|---------|--------------------
2221 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2224 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2225 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2226 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2227 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2229 hw->fc = E1000_FC_RX_PAUSE;
2231 ("Flow Control = RX PAUSE frames only.\n");
2233 /* Per the IEEE spec, at this point flow control should be
2234 * disabled. However, we want to consider that we could
2235 * be connected to a legacy switch that doesn't advertise
2236 * desired flow control, but can be forced on the link
2237 * partner. So if we advertised no flow control, that is
2238 * what we will resolve to. If we advertised some kind of
2239 * receive capability (Rx Pause Only or Full Flow Control)
2240 * and the link partner advertised none, we will configure
2241 * ourselves to enable Rx Flow Control only. We can do
2242 * this safely for two reasons: If the link partner really
2243 * didn't want flow control enabled, and we enable Rx, no
2244 * harm done since we won't be receiving any PAUSE frames
2245 * anyway. If the intent on the link partner was to have
2246 * flow control enabled, then by us enabling RX only, we
2247 * can at least receive pause frames and process them.
2248 * This is a good idea because in most cases, since we are
2249 * predominantly a server NIC, more times than not we will
2250 * be asked to delay transmission of packets than asking
2251 * our link partner to pause transmission of frames.
2253 else if ((hw->original_fc == E1000_FC_NONE ||
2254 hw->original_fc == E1000_FC_TX_PAUSE) ||
2255 hw->fc_strict_ieee) {
2256 hw->fc = E1000_FC_NONE;
2257 e_dbg("Flow Control = NONE.\n");
2259 hw->fc = E1000_FC_RX_PAUSE;
2261 ("Flow Control = RX PAUSE frames only.\n");
2264 /* Now we need to do one last check... If we auto-
2265 * negotiated to HALF DUPLEX, flow control should not be
2266 * enabled per IEEE 802.3 spec.
2269 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2272 ("Error getting link speed and duplex\n");
2276 if (duplex == HALF_DUPLEX)
2277 hw->fc = E1000_FC_NONE;
2279 /* Now we call a subroutine to actually force the MAC
2280 * controller to use the correct flow control settings.
2282 ret_val = e1000_force_mac_fc(hw);
2285 ("Error forcing flow control settings\n");
2290 ("Copper PHY and Auto Neg has not completed.\n");
2293 return E1000_SUCCESS;
2297 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2298 * @hw: pointer to the HW structure
2300 * Checks for link up on the hardware. If link is not up and we have
2301 * a signal, then we need to force link up.
2303 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2308 s32 ret_val = E1000_SUCCESS;
2310 e_dbg("e1000_check_for_serdes_link_generic");
2313 status = er32(STATUS);
2317 * If we don't have link (auto-negotiation failed or link partner
2318 * cannot auto-negotiate), and our link partner is not trying to
2319 * auto-negotiate with us (we are receiving idles or data),
2320 * we need to force link up. We also need to give auto-negotiation
2323 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2324 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2325 if (hw->autoneg_failed == 0) {
2326 hw->autoneg_failed = 1;
2329 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2331 /* Disable auto-negotiation in the TXCW register */
2332 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2334 /* Force link-up and also force full-duplex. */
2336 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2339 /* Configure Flow Control after forcing link up. */
2340 ret_val = e1000_config_fc_after_link_up(hw);
2342 e_dbg("Error configuring flow control\n");
2345 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2347 * If we are forcing link and we are receiving /C/ ordered
2348 * sets, re-enable auto-negotiation in the TXCW register
2349 * and disable forced link in the Device Control register
2350 * in an attempt to auto-negotiate with our link partner.
2352 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2353 ew32(TXCW, hw->txcw);
2354 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2356 hw->serdes_has_link = true;
2357 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2359 * If we force link for non-auto-negotiation switch, check
2360 * link status based on MAC synchronization for internal
2361 * serdes media type.
2363 /* SYNCH bit and IV bit are sticky. */
2366 if (rxcw & E1000_RXCW_SYNCH) {
2367 if (!(rxcw & E1000_RXCW_IV)) {
2368 hw->serdes_has_link = true;
2369 e_dbg("SERDES: Link up - forced.\n");
2372 hw->serdes_has_link = false;
2373 e_dbg("SERDES: Link down - force failed.\n");
2377 if (E1000_TXCW_ANE & er32(TXCW)) {
2378 status = er32(STATUS);
2379 if (status & E1000_STATUS_LU) {
2380 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2383 if (rxcw & E1000_RXCW_SYNCH) {
2384 if (!(rxcw & E1000_RXCW_IV)) {
2385 hw->serdes_has_link = true;
2386 e_dbg("SERDES: Link up - autoneg "
2387 "completed successfully.\n");
2389 hw->serdes_has_link = false;
2390 e_dbg("SERDES: Link down - invalid"
2391 "codewords detected in autoneg.\n");
2394 hw->serdes_has_link = false;
2395 e_dbg("SERDES: Link down - no sync.\n");
2398 hw->serdes_has_link = false;
2399 e_dbg("SERDES: Link down - autoneg failed\n");
2408 * e1000_check_for_link
2409 * @hw: Struct containing variables accessed by shared code
2411 * Checks to see if the link status of the hardware has changed.
2412 * Called by any function that needs to check the link status of the adapter.
2414 s32 e1000_check_for_link(struct e1000_hw *hw)
2425 e_dbg("e1000_check_for_link");
2428 status = er32(STATUS);
2430 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2431 * set when the optics detect a signal. On older adapters, it will be
2432 * cleared when there is a signal. This applies to fiber media only.
2434 if ((hw->media_type == e1000_media_type_fiber) ||
2435 (hw->media_type == e1000_media_type_internal_serdes)) {
2438 if (hw->media_type == e1000_media_type_fiber) {
2441 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2442 if (status & E1000_STATUS_LU)
2443 hw->get_link_status = false;
2447 /* If we have a copper PHY then we only want to go out to the PHY
2448 * registers to see if Auto-Neg has completed and/or if our link
2449 * status has changed. The get_link_status flag will be set if we
2450 * receive a Link Status Change interrupt or we have Rx Sequence
2453 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2454 /* First we want to see if the MII Status Register reports
2455 * link. If so, then we want to get the current speed/duplex
2457 * Read the register twice since the link bit is sticky.
2459 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2462 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2466 if (phy_data & MII_SR_LINK_STATUS) {
2467 hw->get_link_status = false;
2468 /* Check if there was DownShift, must be checked immediately after
2470 e1000_check_downshift(hw);
2472 /* If we are on 82544 or 82543 silicon and speed/duplex
2473 * are forced to 10H or 10F, then we will implement the polarity
2474 * reversal workaround. We disable interrupts first, and upon
2475 * returning, place the devices interrupt state to its previous
2476 * value except for the link status change interrupt which will
2477 * happen due to the execution of this workaround.
2480 if ((hw->mac_type == e1000_82544
2481 || hw->mac_type == e1000_82543) && (!hw->autoneg)
2482 && (hw->forced_speed_duplex == e1000_10_full
2483 || hw->forced_speed_duplex == e1000_10_half)) {
2484 ew32(IMC, 0xffffffff);
2486 e1000_polarity_reversal_workaround(hw);
2488 ew32(ICS, (icr & ~E1000_ICS_LSC));
2489 ew32(IMS, IMS_ENABLE_MASK);
2493 /* No link detected */
2494 e1000_config_dsp_after_link_change(hw, false);
2498 /* If we are forcing speed/duplex, then we simply return since
2499 * we have already determined whether we have link or not.
2502 return -E1000_ERR_CONFIG;
2504 /* optimize the dsp settings for the igp phy */
2505 e1000_config_dsp_after_link_change(hw, true);
2507 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2508 * have Si on board that is 82544 or newer, Auto
2509 * Speed Detection takes care of MAC speed/duplex
2510 * configuration. So we only need to configure Collision
2511 * Distance in the MAC. Otherwise, we need to force
2512 * speed/duplex on the MAC to the current PHY speed/duplex
2515 if ((hw->mac_type >= e1000_82544) &&
2516 (hw->mac_type != e1000_ce4100))
2517 e1000_config_collision_dist(hw);
2519 ret_val = e1000_config_mac_to_phy(hw);
2522 ("Error configuring MAC to PHY settings\n");
2527 /* Configure Flow Control now that Auto-Neg has completed. First, we
2528 * need to restore the desired flow control settings because we may
2529 * have had to re-autoneg with a different link partner.
2531 ret_val = e1000_config_fc_after_link_up(hw);
2533 e_dbg("Error configuring flow control\n");
2537 /* At this point we know that we are on copper and we have
2538 * auto-negotiated link. These are conditions for checking the link
2539 * partner capability register. We use the link speed to determine if
2540 * TBI compatibility needs to be turned on or off. If the link is not
2541 * at gigabit speed, then TBI compatibility is not needed. If we are
2542 * at gigabit speed, we turn on TBI compatibility.
2544 if (hw->tbi_compatibility_en) {
2547 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2550 ("Error getting link speed and duplex\n");
2553 if (speed != SPEED_1000) {
2554 /* If link speed is not set to gigabit speed, we do not need
2555 * to enable TBI compatibility.
2557 if (hw->tbi_compatibility_on) {
2558 /* If we previously were in the mode, turn it off. */
2560 rctl &= ~E1000_RCTL_SBP;
2562 hw->tbi_compatibility_on = false;
2565 /* If TBI compatibility is was previously off, turn it on. For
2566 * compatibility with a TBI link partner, we will store bad
2567 * packets. Some frames have an additional byte on the end and
2568 * will look like CRC errors to to the hardware.
2570 if (!hw->tbi_compatibility_on) {
2571 hw->tbi_compatibility_on = true;
2573 rctl |= E1000_RCTL_SBP;
2580 if ((hw->media_type == e1000_media_type_fiber) ||
2581 (hw->media_type == e1000_media_type_internal_serdes))
2582 e1000_check_for_serdes_link_generic(hw);
2584 return E1000_SUCCESS;
2588 * e1000_get_speed_and_duplex
2589 * @hw: Struct containing variables accessed by shared code
2590 * @speed: Speed of the connection
2591 * @duplex: Duplex setting of the connection
2593 * Detects the current speed and duplex settings of the hardware.
2595 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2601 e_dbg("e1000_get_speed_and_duplex");
2603 if (hw->mac_type >= e1000_82543) {
2604 status = er32(STATUS);
2605 if (status & E1000_STATUS_SPEED_1000) {
2606 *speed = SPEED_1000;
2607 e_dbg("1000 Mbs, ");
2608 } else if (status & E1000_STATUS_SPEED_100) {
2616 if (status & E1000_STATUS_FD) {
2617 *duplex = FULL_DUPLEX;
2618 e_dbg("Full Duplex\n");
2620 *duplex = HALF_DUPLEX;
2621 e_dbg(" Half Duplex\n");
2624 e_dbg("1000 Mbs, Full Duplex\n");
2625 *speed = SPEED_1000;
2626 *duplex = FULL_DUPLEX;
2629 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
2630 * if it is operating at half duplex. Here we set the duplex settings to
2631 * match the duplex in the link partner's capabilities.
2633 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2634 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2638 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2639 *duplex = HALF_DUPLEX;
2642 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2645 if ((*speed == SPEED_100
2646 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2647 || (*speed == SPEED_10
2648 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2649 *duplex = HALF_DUPLEX;
2653 return E1000_SUCCESS;
2657 * e1000_wait_autoneg
2658 * @hw: Struct containing variables accessed by shared code
2660 * Blocks until autoneg completes or times out (~4.5 seconds)
2662 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2668 e_dbg("e1000_wait_autoneg");
2669 e_dbg("Waiting for Auto-Neg to complete.\n");
2671 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2672 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2673 /* Read the MII Status Register and wait for Auto-Neg
2674 * Complete bit to be set.
2676 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2679 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2682 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2683 return E1000_SUCCESS;
2687 return E1000_SUCCESS;
2691 * e1000_raise_mdi_clk - Raises the Management Data Clock
2692 * @hw: Struct containing variables accessed by shared code
2693 * @ctrl: Device control register's current value
2695 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2697 /* Raise the clock input to the Management Data Clock (by setting the MDC
2698 * bit), and then delay 10 microseconds.
2700 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2701 E1000_WRITE_FLUSH();
2706 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2707 * @hw: Struct containing variables accessed by shared code
2708 * @ctrl: Device control register's current value
2710 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2712 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2713 * bit), and then delay 10 microseconds.
2715 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2716 E1000_WRITE_FLUSH();
2721 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2722 * @hw: Struct containing variables accessed by shared code
2723 * @data: Data to send out to the PHY
2724 * @count: Number of bits to shift out
2726 * Bits are shifted out in MSB to LSB order.
2728 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2733 /* We need to shift "count" number of bits out to the PHY. So, the value
2734 * in the "data" parameter will be shifted out to the PHY one bit at a
2735 * time. In order to do this, "data" must be broken down into bits.
2738 mask <<= (count - 1);
2742 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2743 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2746 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2747 * then raising and lowering the Management Data Clock. A "0" is
2748 * shifted out to the PHY by setting the MDIO bit to "0" and then
2749 * raising and lowering the clock.
2752 ctrl |= E1000_CTRL_MDIO;
2754 ctrl &= ~E1000_CTRL_MDIO;
2757 E1000_WRITE_FLUSH();
2761 e1000_raise_mdi_clk(hw, &ctrl);
2762 e1000_lower_mdi_clk(hw, &ctrl);
2769 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2770 * @hw: Struct containing variables accessed by shared code
2772 * Bits are shifted in in MSB to LSB order.
2774 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2780 /* In order to read a register from the PHY, we need to shift in a total
2781 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2782 * to avoid contention on the MDIO pin when a read operation is performed.
2783 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2784 * by raising the input to the Management Data Clock (setting the MDC bit),
2785 * and then reading the value of the MDIO bit.
2789 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2790 ctrl &= ~E1000_CTRL_MDIO_DIR;
2791 ctrl &= ~E1000_CTRL_MDIO;
2794 E1000_WRITE_FLUSH();
2796 /* Raise and Lower the clock before reading in the data. This accounts for
2797 * the turnaround bits. The first clock occurred when we clocked out the
2798 * last bit of the Register Address.
2800 e1000_raise_mdi_clk(hw, &ctrl);
2801 e1000_lower_mdi_clk(hw, &ctrl);
2803 for (data = 0, i = 0; i < 16; i++) {
2805 e1000_raise_mdi_clk(hw, &ctrl);
2807 /* Check to see if we shifted in a "1". */
2808 if (ctrl & E1000_CTRL_MDIO)
2810 e1000_lower_mdi_clk(hw, &ctrl);
2813 e1000_raise_mdi_clk(hw, &ctrl);
2814 e1000_lower_mdi_clk(hw, &ctrl);
2821 * e1000_read_phy_reg - read a phy register
2822 * @hw: Struct containing variables accessed by shared code
2823 * @reg_addr: address of the PHY register to read
2825 * Reads the value from a PHY register, if the value is on a specific non zero
2826 * page, sets the page first.
2828 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2832 e_dbg("e1000_read_phy_reg");
2834 if ((hw->phy_type == e1000_phy_igp) &&
2835 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2836 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2842 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2848 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2853 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2855 e_dbg("e1000_read_phy_reg_ex");
2857 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2858 e_dbg("PHY Address %d is out of range\n", reg_addr);
2859 return -E1000_ERR_PARAM;
2862 if (hw->mac_type > e1000_82543) {
2863 /* Set up Op-code, Phy Address, and register address in the MDI
2864 * Control register. The MAC will take care of interfacing with the
2865 * PHY to retrieve the desired data.
2867 if (hw->mac_type == e1000_ce4100) {
2868 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2869 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2870 (INTEL_CE_GBE_MDIC_OP_READ) |
2871 (INTEL_CE_GBE_MDIC_GO));
2873 writel(mdic, E1000_MDIO_CMD);
2875 /* Poll the ready bit to see if the MDI read
2878 for (i = 0; i < 64; i++) {
2880 mdic = readl(E1000_MDIO_CMD);
2881 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2885 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2886 e_dbg("MDI Read did not complete\n");
2887 return -E1000_ERR_PHY;
2890 mdic = readl(E1000_MDIO_STS);
2891 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2892 e_dbg("MDI Read Error\n");
2893 return -E1000_ERR_PHY;
2895 *phy_data = (u16) mdic;
2897 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2898 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2899 (E1000_MDIC_OP_READ));
2903 /* Poll the ready bit to see if the MDI read
2906 for (i = 0; i < 64; i++) {
2909 if (mdic & E1000_MDIC_READY)
2912 if (!(mdic & E1000_MDIC_READY)) {
2913 e_dbg("MDI Read did not complete\n");
2914 return -E1000_ERR_PHY;
2916 if (mdic & E1000_MDIC_ERROR) {
2917 e_dbg("MDI Error\n");
2918 return -E1000_ERR_PHY;
2920 *phy_data = (u16) mdic;
2923 /* We must first send a preamble through the MDIO pin to signal the
2924 * beginning of an MII instruction. This is done by sending 32
2925 * consecutive "1" bits.
2927 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2929 /* Now combine the next few fields that are required for a read
2930 * operation. We use this method instead of calling the
2931 * e1000_shift_out_mdi_bits routine five different times. The format of
2932 * a MII read instruction consists of a shift out of 14 bits and is
2933 * defined as follows:
2934 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2935 * followed by a shift in of 18 bits. This first two bits shifted in
2936 * are TurnAround bits used to avoid contention on the MDIO pin when a
2937 * READ operation is performed. These two bits are thrown away
2938 * followed by a shift in of 16 bits which contains the desired data.
2940 mdic = ((reg_addr) | (phy_addr << 5) |
2941 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2943 e1000_shift_out_mdi_bits(hw, mdic, 14);
2945 /* Now that we've shifted out the read command to the MII, we need to
2946 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2949 *phy_data = e1000_shift_in_mdi_bits(hw);
2951 return E1000_SUCCESS;
2955 * e1000_write_phy_reg - write a phy register
2957 * @hw: Struct containing variables accessed by shared code
2958 * @reg_addr: address of the PHY register to write
2959 * @data: data to write to the PHY
2961 * Writes a value to a PHY register
2963 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2967 e_dbg("e1000_write_phy_reg");
2969 if ((hw->phy_type == e1000_phy_igp) &&
2970 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2971 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2977 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2983 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2988 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2990 e_dbg("e1000_write_phy_reg_ex");
2992 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2993 e_dbg("PHY Address %d is out of range\n", reg_addr);
2994 return -E1000_ERR_PARAM;
2997 if (hw->mac_type > e1000_82543) {
2998 /* Set up Op-code, Phy Address, register address, and data
2999 * intended for the PHY register in the MDI Control register.
3000 * The MAC will take care of interfacing with the PHY to send
3003 if (hw->mac_type == e1000_ce4100) {
3004 mdic = (((u32) phy_data) |
3005 (reg_addr << E1000_MDIC_REG_SHIFT) |
3006 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3007 (INTEL_CE_GBE_MDIC_OP_WRITE) |
3008 (INTEL_CE_GBE_MDIC_GO));
3010 writel(mdic, E1000_MDIO_CMD);
3012 /* Poll the ready bit to see if the MDI read
3015 for (i = 0; i < 640; i++) {
3017 mdic = readl(E1000_MDIO_CMD);
3018 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3021 if (mdic & INTEL_CE_GBE_MDIC_GO) {
3022 e_dbg("MDI Write did not complete\n");
3023 return -E1000_ERR_PHY;
3026 mdic = (((u32) phy_data) |
3027 (reg_addr << E1000_MDIC_REG_SHIFT) |
3028 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3029 (E1000_MDIC_OP_WRITE));
3033 /* Poll the ready bit to see if the MDI read
3036 for (i = 0; i < 641; i++) {
3039 if (mdic & E1000_MDIC_READY)
3042 if (!(mdic & E1000_MDIC_READY)) {
3043 e_dbg("MDI Write did not complete\n");
3044 return -E1000_ERR_PHY;
3048 /* We'll need to use the SW defined pins to shift the write command
3049 * out to the PHY. We first send a preamble to the PHY to signal the
3050 * beginning of the MII instruction. This is done by sending 32
3051 * consecutive "1" bits.
3053 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3055 /* Now combine the remaining required fields that will indicate a
3056 * write operation. We use this method instead of calling the
3057 * e1000_shift_out_mdi_bits routine for each field in the command. The
3058 * format of a MII write instruction is as follows:
3059 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3061 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3062 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3064 mdic |= (u32) phy_data;
3066 e1000_shift_out_mdi_bits(hw, mdic, 32);
3069 return E1000_SUCCESS;
3073 * e1000_phy_hw_reset - reset the phy, hardware style
3074 * @hw: Struct containing variables accessed by shared code
3076 * Returns the PHY to the power-on reset state
3078 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3084 e_dbg("e1000_phy_hw_reset");
3086 e_dbg("Resetting Phy...\n");
3088 if (hw->mac_type > e1000_82543) {
3089 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3090 * bit. Then, take it out of reset.
3091 * For e1000 hardware, we delay for 10ms between the assert
3095 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3096 E1000_WRITE_FLUSH();
3101 E1000_WRITE_FLUSH();
3104 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3105 * bit to put the PHY into reset. Then, take it out of reset.
3107 ctrl_ext = er32(CTRL_EXT);
3108 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3109 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3110 ew32(CTRL_EXT, ctrl_ext);
3111 E1000_WRITE_FLUSH();
3113 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3114 ew32(CTRL_EXT, ctrl_ext);
3115 E1000_WRITE_FLUSH();
3119 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3120 /* Configure activity LED after PHY reset */
3121 led_ctrl = er32(LEDCTL);
3122 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3123 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3124 ew32(LEDCTL, led_ctrl);
3127 /* Wait for FW to finish PHY configuration. */
3128 ret_val = e1000_get_phy_cfg_done(hw);
3129 if (ret_val != E1000_SUCCESS)
3136 * e1000_phy_reset - reset the phy to commit settings
3137 * @hw: Struct containing variables accessed by shared code
3140 * Sets bit 15 of the MII Control register
3142 s32 e1000_phy_reset(struct e1000_hw *hw)
3147 e_dbg("e1000_phy_reset");
3149 switch (hw->phy_type) {
3151 ret_val = e1000_phy_hw_reset(hw);
3156 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3160 phy_data |= MII_CR_RESET;
3161 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3169 if (hw->phy_type == e1000_phy_igp)
3170 e1000_phy_init_script(hw);
3172 return E1000_SUCCESS;
3176 * e1000_detect_gig_phy - check the phy type
3177 * @hw: Struct containing variables accessed by shared code
3179 * Probes the expected PHY address for known PHY IDs
3181 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3183 s32 phy_init_status, ret_val;
3184 u16 phy_id_high, phy_id_low;
3187 e_dbg("e1000_detect_gig_phy");
3189 if (hw->phy_id != 0)
3190 return E1000_SUCCESS;
3192 /* Read the PHY ID Registers to identify which PHY is onboard. */
3193 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3197 hw->phy_id = (u32) (phy_id_high << 16);
3199 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3203 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3204 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3206 switch (hw->mac_type) {
3208 if (hw->phy_id == M88E1000_E_PHY_ID)
3212 if (hw->phy_id == M88E1000_I_PHY_ID)
3217 case e1000_82545_rev_3:
3219 case e1000_82546_rev_3:
3220 if (hw->phy_id == M88E1011_I_PHY_ID)
3224 if ((hw->phy_id == RTL8211B_PHY_ID) ||
3225 (hw->phy_id == RTL8201N_PHY_ID))
3229 case e1000_82541_rev_2:
3231 case e1000_82547_rev_2:
3232 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3236 e_dbg("Invalid MAC type %d\n", hw->mac_type);
3237 return -E1000_ERR_CONFIG;
3239 phy_init_status = e1000_set_phy_type(hw);
3241 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3242 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3243 return E1000_SUCCESS;
3245 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3246 return -E1000_ERR_PHY;
3250 * e1000_phy_reset_dsp - reset DSP
3251 * @hw: Struct containing variables accessed by shared code
3253 * Resets the PHY's DSP
3255 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3258 e_dbg("e1000_phy_reset_dsp");
3261 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3264 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3267 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3270 ret_val = E1000_SUCCESS;
3277 * e1000_phy_igp_get_info - get igp specific registers
3278 * @hw: Struct containing variables accessed by shared code
3279 * @phy_info: PHY information structure
3281 * Get PHY information from various PHY registers for igp PHY only.
3283 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3284 struct e1000_phy_info *phy_info)
3287 u16 phy_data, min_length, max_length, average;
3288 e1000_rev_polarity polarity;
3290 e_dbg("e1000_phy_igp_get_info");
3292 /* The downshift status is checked only once, after link is established,
3293 * and it stored in the hw->speed_downgraded parameter. */
3294 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3296 /* IGP01E1000 does not need to support it. */
3297 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3299 /* IGP01E1000 always correct polarity reversal */
3300 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3302 /* Check polarity status */
3303 ret_val = e1000_check_polarity(hw, &polarity);
3307 phy_info->cable_polarity = polarity;
3309 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3313 phy_info->mdix_mode =
3314 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3315 IGP01E1000_PSSR_MDIX_SHIFT);
3317 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3318 IGP01E1000_PSSR_SPEED_1000MBPS) {
3319 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
3320 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3324 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3325 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3326 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3327 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3328 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3329 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3331 /* Get cable length */
3332 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3336 /* Translate to old method */
3337 average = (max_length + min_length) / 2;
3339 if (average <= e1000_igp_cable_length_50)
3340 phy_info->cable_length = e1000_cable_length_50;
3341 else if (average <= e1000_igp_cable_length_80)
3342 phy_info->cable_length = e1000_cable_length_50_80;
3343 else if (average <= e1000_igp_cable_length_110)
3344 phy_info->cable_length = e1000_cable_length_80_110;
3345 else if (average <= e1000_igp_cable_length_140)
3346 phy_info->cable_length = e1000_cable_length_110_140;
3348 phy_info->cable_length = e1000_cable_length_140;
3351 return E1000_SUCCESS;
3355 * e1000_phy_m88_get_info - get m88 specific registers
3356 * @hw: Struct containing variables accessed by shared code
3357 * @phy_info: PHY information structure
3359 * Get PHY information from various PHY registers for m88 PHY only.
3361 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3362 struct e1000_phy_info *phy_info)
3366 e1000_rev_polarity polarity;
3368 e_dbg("e1000_phy_m88_get_info");
3370 /* The downshift status is checked only once, after link is established,
3371 * and it stored in the hw->speed_downgraded parameter. */
3372 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3374 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3378 phy_info->extended_10bt_distance =
3379 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3380 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3381 e1000_10bt_ext_dist_enable_lower :
3382 e1000_10bt_ext_dist_enable_normal;
3384 phy_info->polarity_correction =
3385 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3386 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3387 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3389 /* Check polarity status */
3390 ret_val = e1000_check_polarity(hw, &polarity);
3393 phy_info->cable_polarity = polarity;
3395 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3399 phy_info->mdix_mode =
3400 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3401 M88E1000_PSSR_MDIX_SHIFT);
3403 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3404 /* Cable Length Estimation and Local/Remote Receiver Information
3405 * are only valid at 1000 Mbps.
3407 phy_info->cable_length =
3408 (e1000_cable_length) ((phy_data &
3409 M88E1000_PSSR_CABLE_LENGTH) >>
3410 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3412 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3416 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3417 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3418 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3419 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3420 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3421 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3425 return E1000_SUCCESS;
3429 * e1000_phy_get_info - request phy info
3430 * @hw: Struct containing variables accessed by shared code
3431 * @phy_info: PHY information structure
3433 * Get PHY information from various PHY registers
3435 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3440 e_dbg("e1000_phy_get_info");
3442 phy_info->cable_length = e1000_cable_length_undefined;
3443 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3444 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3445 phy_info->downshift = e1000_downshift_undefined;
3446 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3447 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3448 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3449 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3451 if (hw->media_type != e1000_media_type_copper) {
3452 e_dbg("PHY info is only valid for copper media\n");
3453 return -E1000_ERR_CONFIG;
3456 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3460 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3464 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3465 e_dbg("PHY info is only valid if link is up\n");
3466 return -E1000_ERR_CONFIG;
3469 if (hw->phy_type == e1000_phy_igp)
3470 return e1000_phy_igp_get_info(hw, phy_info);
3471 else if ((hw->phy_type == e1000_phy_8211) ||
3472 (hw->phy_type == e1000_phy_8201))
3473 return E1000_SUCCESS;
3475 return e1000_phy_m88_get_info(hw, phy_info);
3478 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3480 e_dbg("e1000_validate_mdi_settings");
3482 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3483 e_dbg("Invalid MDI setting detected\n");
3485 return -E1000_ERR_CONFIG;
3487 return E1000_SUCCESS;
3491 * e1000_init_eeprom_params - initialize sw eeprom vars
3492 * @hw: Struct containing variables accessed by shared code
3494 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3497 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3499 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3500 u32 eecd = er32(EECD);
3501 s32 ret_val = E1000_SUCCESS;
3504 e_dbg("e1000_init_eeprom_params");
3506 switch (hw->mac_type) {
3507 case e1000_82542_rev2_0:
3508 case e1000_82542_rev2_1:
3511 eeprom->type = e1000_eeprom_microwire;
3512 eeprom->word_size = 64;
3513 eeprom->opcode_bits = 3;
3514 eeprom->address_bits = 6;
3515 eeprom->delay_usec = 50;
3519 case e1000_82545_rev_3:
3521 case e1000_82546_rev_3:
3522 eeprom->type = e1000_eeprom_microwire;
3523 eeprom->opcode_bits = 3;
3524 eeprom->delay_usec = 50;
3525 if (eecd & E1000_EECD_SIZE) {
3526 eeprom->word_size = 256;
3527 eeprom->address_bits = 8;
3529 eeprom->word_size = 64;
3530 eeprom->address_bits = 6;
3534 case e1000_82541_rev_2:
3536 case e1000_82547_rev_2:
3537 if (eecd & E1000_EECD_TYPE) {
3538 eeprom->type = e1000_eeprom_spi;
3539 eeprom->opcode_bits = 8;
3540 eeprom->delay_usec = 1;
3541 if (eecd & E1000_EECD_ADDR_BITS) {
3542 eeprom->page_size = 32;
3543 eeprom->address_bits = 16;
3545 eeprom->page_size = 8;
3546 eeprom->address_bits = 8;
3549 eeprom->type = e1000_eeprom_microwire;
3550 eeprom->opcode_bits = 3;
3551 eeprom->delay_usec = 50;
3552 if (eecd & E1000_EECD_ADDR_BITS) {
3553 eeprom->word_size = 256;
3554 eeprom->address_bits = 8;
3556 eeprom->word_size = 64;
3557 eeprom->address_bits = 6;
3565 if (eeprom->type == e1000_eeprom_spi) {
3566 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3567 * 32KB (incremented by powers of 2).
3569 /* Set to default value for initial eeprom read. */
3570 eeprom->word_size = 64;
3571 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3575 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3576 /* 256B eeprom size was not supported in earlier hardware, so we
3577 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3578 * is never the result used in the shifting logic below. */
3582 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3588 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3589 * @hw: Struct containing variables accessed by shared code
3590 * @eecd: EECD's current value
3592 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3594 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3595 * wait <delay> microseconds.
3597 *eecd = *eecd | E1000_EECD_SK;
3599 E1000_WRITE_FLUSH();
3600 udelay(hw->eeprom.delay_usec);
3604 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3605 * @hw: Struct containing variables accessed by shared code
3606 * @eecd: EECD's current value
3608 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3610 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3611 * wait 50 microseconds.
3613 *eecd = *eecd & ~E1000_EECD_SK;
3615 E1000_WRITE_FLUSH();
3616 udelay(hw->eeprom.delay_usec);
3620 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3621 * @hw: Struct containing variables accessed by shared code
3622 * @data: data to send to the EEPROM
3623 * @count: number of bits to shift out
3625 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3627 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3631 /* We need to shift "count" bits out to the EEPROM. So, value in the
3632 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3633 * In order to do this, "data" must be broken down into bits.
3635 mask = 0x01 << (count - 1);
3637 if (eeprom->type == e1000_eeprom_microwire) {
3638 eecd &= ~E1000_EECD_DO;
3639 } else if (eeprom->type == e1000_eeprom_spi) {
3640 eecd |= E1000_EECD_DO;
3643 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3644 * and then raising and then lowering the clock (the SK bit controls
3645 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
3646 * by setting "DI" to "0" and then raising and then lowering the clock.
3648 eecd &= ~E1000_EECD_DI;
3651 eecd |= E1000_EECD_DI;
3654 E1000_WRITE_FLUSH();
3656 udelay(eeprom->delay_usec);
3658 e1000_raise_ee_clk(hw, &eecd);
3659 e1000_lower_ee_clk(hw, &eecd);
3665 /* We leave the "DI" bit set to "0" when we leave this routine. */
3666 eecd &= ~E1000_EECD_DI;
3671 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3672 * @hw: Struct containing variables accessed by shared code
3673 * @count: number of bits to shift in
3675 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3681 /* In order to read a register from the EEPROM, we need to shift 'count'
3682 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3683 * input to the EEPROM (setting the SK bit), and then reading the value of
3684 * the "DO" bit. During this "shifting in" process the "DI" bit should
3690 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3693 for (i = 0; i < count; i++) {
3695 e1000_raise_ee_clk(hw, &eecd);
3699 eecd &= ~(E1000_EECD_DI);
3700 if (eecd & E1000_EECD_DO)
3703 e1000_lower_ee_clk(hw, &eecd);
3710 * e1000_acquire_eeprom - Prepares EEPROM for access
3711 * @hw: Struct containing variables accessed by shared code
3713 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3714 * function should be called before issuing a command to the EEPROM.
3716 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3718 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3721 e_dbg("e1000_acquire_eeprom");
3725 /* Request EEPROM Access */
3726 if (hw->mac_type > e1000_82544) {
3727 eecd |= E1000_EECD_REQ;
3730 while ((!(eecd & E1000_EECD_GNT)) &&
3731 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3736 if (!(eecd & E1000_EECD_GNT)) {
3737 eecd &= ~E1000_EECD_REQ;
3739 e_dbg("Could not acquire EEPROM grant\n");
3740 return -E1000_ERR_EEPROM;
3744 /* Setup EEPROM for Read/Write */
3746 if (eeprom->type == e1000_eeprom_microwire) {
3747 /* Clear SK and DI */
3748 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3752 eecd |= E1000_EECD_CS;
3754 } else if (eeprom->type == e1000_eeprom_spi) {
3755 /* Clear SK and CS */
3756 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3761 return E1000_SUCCESS;
3765 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3766 * @hw: Struct containing variables accessed by shared code
3768 static void e1000_standby_eeprom(struct e1000_hw *hw)
3770 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3775 if (eeprom->type == e1000_eeprom_microwire) {
3776 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3778 E1000_WRITE_FLUSH();
3779 udelay(eeprom->delay_usec);
3782 eecd |= E1000_EECD_SK;
3784 E1000_WRITE_FLUSH();
3785 udelay(eeprom->delay_usec);
3788 eecd |= E1000_EECD_CS;
3790 E1000_WRITE_FLUSH();
3791 udelay(eeprom->delay_usec);
3794 eecd &= ~E1000_EECD_SK;
3796 E1000_WRITE_FLUSH();
3797 udelay(eeprom->delay_usec);
3798 } else if (eeprom->type == e1000_eeprom_spi) {
3799 /* Toggle CS to flush commands */
3800 eecd |= E1000_EECD_CS;
3802 E1000_WRITE_FLUSH();
3803 udelay(eeprom->delay_usec);
3804 eecd &= ~E1000_EECD_CS;
3806 E1000_WRITE_FLUSH();
3807 udelay(eeprom->delay_usec);
3812 * e1000_release_eeprom - drop chip select
3813 * @hw: Struct containing variables accessed by shared code
3815 * Terminates a command by inverting the EEPROM's chip select pin
3817 static void e1000_release_eeprom(struct e1000_hw *hw)
3821 e_dbg("e1000_release_eeprom");
3825 if (hw->eeprom.type == e1000_eeprom_spi) {
3826 eecd |= E1000_EECD_CS; /* Pull CS high */
3827 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3831 udelay(hw->eeprom.delay_usec);
3832 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3833 /* cleanup eeprom */
3835 /* CS on Microwire is active-high */
3836 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3840 /* Rising edge of clock */
3841 eecd |= E1000_EECD_SK;
3843 E1000_WRITE_FLUSH();
3844 udelay(hw->eeprom.delay_usec);
3846 /* Falling edge of clock */
3847 eecd &= ~E1000_EECD_SK;
3849 E1000_WRITE_FLUSH();
3850 udelay(hw->eeprom.delay_usec);
3853 /* Stop requesting EEPROM access */
3854 if (hw->mac_type > e1000_82544) {
3855 eecd &= ~E1000_EECD_REQ;
3861 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3862 * @hw: Struct containing variables accessed by shared code
3864 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3866 u16 retry_count = 0;
3869 e_dbg("e1000_spi_eeprom_ready");
3871 /* Read "Status Register" repeatedly until the LSB is cleared. The
3872 * EEPROM will signal that the command has been completed by clearing
3873 * bit 0 of the internal status register. If it's not cleared within
3874 * 5 milliseconds, then error out.
3878 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3879 hw->eeprom.opcode_bits);
3880 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3881 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3887 e1000_standby_eeprom(hw);
3888 } while (retry_count < EEPROM_MAX_RETRY_SPI);
3890 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3891 * only 0-5mSec on 5V devices)
3893 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3894 e_dbg("SPI EEPROM Status error\n");
3895 return -E1000_ERR_EEPROM;
3898 return E1000_SUCCESS;
3902 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3903 * @hw: Struct containing variables accessed by shared code
3904 * @offset: offset of word in the EEPROM to read
3905 * @data: word read from the EEPROM
3906 * @words: number of words to read
3908 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3911 spin_lock(&e1000_eeprom_lock);
3912 ret = e1000_do_read_eeprom(hw, offset, words, data);
3913 spin_unlock(&e1000_eeprom_lock);
3917 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3920 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3923 e_dbg("e1000_read_eeprom");
3925 if (hw->mac_type == e1000_ce4100) {
3926 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3928 return E1000_SUCCESS;
3931 /* If eeprom is not yet detected, do so now */
3932 if (eeprom->word_size == 0)
3933 e1000_init_eeprom_params(hw);
3935 /* A check for invalid values: offset too large, too many words, and not
3938 if ((offset >= eeprom->word_size)
3939 || (words > eeprom->word_size - offset) || (words == 0)) {
3940 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3941 "size = %d\n", offset, eeprom->word_size);
3942 return -E1000_ERR_EEPROM;
3945 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3946 * directly. In this case, we need to acquire the EEPROM so that
3947 * FW or other port software does not interrupt.
3949 /* Prepare the EEPROM for bit-bang reading */
3950 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3951 return -E1000_ERR_EEPROM;
3953 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
3954 * acquired the EEPROM at this point, so any returns should release it */
3955 if (eeprom->type == e1000_eeprom_spi) {
3957 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3959 if (e1000_spi_eeprom_ready(hw)) {
3960 e1000_release_eeprom(hw);
3961 return -E1000_ERR_EEPROM;
3964 e1000_standby_eeprom(hw);
3966 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3967 if ((eeprom->address_bits == 8) && (offset >= 128))
3968 read_opcode |= EEPROM_A8_OPCODE_SPI;
3970 /* Send the READ command (opcode + addr) */
3971 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3972 e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3973 eeprom->address_bits);
3975 /* Read the data. The address of the eeprom internally increments with
3976 * each byte (spi) being read, saving on the overhead of eeprom setup
3977 * and tear-down. The address counter will roll over if reading beyond
3978 * the size of the eeprom, thus allowing the entire memory to be read
3979 * starting from any offset. */
3980 for (i = 0; i < words; i++) {
3981 word_in = e1000_shift_in_ee_bits(hw, 16);
3982 data[i] = (word_in >> 8) | (word_in << 8);
3984 } else if (eeprom->type == e1000_eeprom_microwire) {
3985 for (i = 0; i < words; i++) {
3986 /* Send the READ command (opcode + addr) */
3987 e1000_shift_out_ee_bits(hw,
3988 EEPROM_READ_OPCODE_MICROWIRE,
3989 eeprom->opcode_bits);
3990 e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3991 eeprom->address_bits);
3993 /* Read the data. For microwire, each word requires the overhead
3994 * of eeprom setup and tear-down. */
3995 data[i] = e1000_shift_in_ee_bits(hw, 16);
3996 e1000_standby_eeprom(hw);
4000 /* End this read operation */
4001 e1000_release_eeprom(hw);
4003 return E1000_SUCCESS;
4007 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
4008 * @hw: Struct containing variables accessed by shared code
4010 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4011 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4014 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4019 e_dbg("e1000_validate_eeprom_checksum");
4021 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4022 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4023 e_dbg("EEPROM Read Error\n");
4024 return -E1000_ERR_EEPROM;
4026 checksum += eeprom_data;
4029 if (checksum == (u16) EEPROM_SUM)
4030 return E1000_SUCCESS;
4032 e_dbg("EEPROM Checksum Invalid\n");
4033 return -E1000_ERR_EEPROM;
4038 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4039 * @hw: Struct containing variables accessed by shared code
4041 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4042 * Writes the difference to word offset 63 of the EEPROM.
4044 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4049 e_dbg("e1000_update_eeprom_checksum");
4051 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4052 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4053 e_dbg("EEPROM Read Error\n");
4054 return -E1000_ERR_EEPROM;
4056 checksum += eeprom_data;
4058 checksum = (u16) EEPROM_SUM - checksum;
4059 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4060 e_dbg("EEPROM Write Error\n");
4061 return -E1000_ERR_EEPROM;
4063 return E1000_SUCCESS;
4067 * e1000_write_eeprom - write words to the different EEPROM types.
4068 * @hw: Struct containing variables accessed by shared code
4069 * @offset: offset within the EEPROM to be written to
4070 * @words: number of words to write
4071 * @data: 16 bit word to be written to the EEPROM
4073 * If e1000_update_eeprom_checksum is not called after this function, the
4074 * EEPROM will most likely contain an invalid checksum.
4076 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4079 spin_lock(&e1000_eeprom_lock);
4080 ret = e1000_do_write_eeprom(hw, offset, words, data);
4081 spin_unlock(&e1000_eeprom_lock);
4085 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4088 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4091 e_dbg("e1000_write_eeprom");
4093 if (hw->mac_type == e1000_ce4100) {
4094 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4096 return E1000_SUCCESS;
4099 /* If eeprom is not yet detected, do so now */
4100 if (eeprom->word_size == 0)
4101 e1000_init_eeprom_params(hw);
4103 /* A check for invalid values: offset too large, too many words, and not
4106 if ((offset >= eeprom->word_size)
4107 || (words > eeprom->word_size - offset) || (words == 0)) {
4108 e_dbg("\"words\" parameter out of bounds\n");
4109 return -E1000_ERR_EEPROM;
4112 /* Prepare the EEPROM for writing */
4113 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4114 return -E1000_ERR_EEPROM;
4116 if (eeprom->type == e1000_eeprom_microwire) {
4117 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4119 status = e1000_write_eeprom_spi(hw, offset, words, data);
4123 /* Done with writing */
4124 e1000_release_eeprom(hw);
4130 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4131 * @hw: Struct containing variables accessed by shared code
4132 * @offset: offset within the EEPROM to be written to
4133 * @words: number of words to write
4134 * @data: pointer to array of 8 bit words to be written to the EEPROM
4136 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4139 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4142 e_dbg("e1000_write_eeprom_spi");
4144 while (widx < words) {
4145 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4147 if (e1000_spi_eeprom_ready(hw))
4148 return -E1000_ERR_EEPROM;
4150 e1000_standby_eeprom(hw);
4152 /* Send the WRITE ENABLE command (8 bit opcode ) */
4153 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4154 eeprom->opcode_bits);
4156 e1000_standby_eeprom(hw);
4158 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4159 if ((eeprom->address_bits == 8) && (offset >= 128))
4160 write_opcode |= EEPROM_A8_OPCODE_SPI;
4162 /* Send the Write command (8-bit opcode + addr) */
4163 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4165 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4166 eeprom->address_bits);
4170 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
4171 while (widx < words) {
4172 u16 word_out = data[widx];
4173 word_out = (word_out >> 8) | (word_out << 8);
4174 e1000_shift_out_ee_bits(hw, word_out, 16);
4177 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4178 * operation, while the smaller eeproms are capable of an 8-byte
4179 * PAGE WRITE operation. Break the inner loop to pass new address
4181 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4182 e1000_standby_eeprom(hw);
4188 return E1000_SUCCESS;
4192 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4193 * @hw: Struct containing variables accessed by shared code
4194 * @offset: offset within the EEPROM to be written to
4195 * @words: number of words to write
4196 * @data: pointer to array of 8 bit words to be written to the EEPROM
4198 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4199 u16 words, u16 *data)
4201 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4203 u16 words_written = 0;
4206 e_dbg("e1000_write_eeprom_microwire");
4208 /* Send the write enable command to the EEPROM (3-bit opcode plus
4209 * 6/8-bit dummy address beginning with 11). It's less work to include
4210 * the 11 of the dummy address as part of the opcode than it is to shift
4211 * it over the correct number of bits for the address. This puts the
4212 * EEPROM into write/erase mode.
4214 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4215 (u16) (eeprom->opcode_bits + 2));
4217 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4219 /* Prepare the EEPROM */
4220 e1000_standby_eeprom(hw);
4222 while (words_written < words) {
4223 /* Send the Write command (3-bit opcode + addr) */
4224 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4225 eeprom->opcode_bits);
4227 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4228 eeprom->address_bits);
4231 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4233 /* Toggle the CS line. This in effect tells the EEPROM to execute
4234 * the previous command.
4236 e1000_standby_eeprom(hw);
4238 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
4239 * signal that the command has been completed by raising the DO signal.
4240 * If DO does not go high in 10 milliseconds, then error out.
4242 for (i = 0; i < 200; i++) {
4244 if (eecd & E1000_EECD_DO)
4249 e_dbg("EEPROM Write did not complete\n");
4250 return -E1000_ERR_EEPROM;
4253 /* Recover from write */
4254 e1000_standby_eeprom(hw);
4259 /* Send the write disable command to the EEPROM (3-bit opcode plus
4260 * 6/8-bit dummy address beginning with 10). It's less work to include
4261 * the 10 of the dummy address as part of the opcode than it is to shift
4262 * it over the correct number of bits for the address. This takes the
4263 * EEPROM out of write/erase mode.
4265 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4266 (u16) (eeprom->opcode_bits + 2));
4268 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4270 return E1000_SUCCESS;
4274 * e1000_read_mac_addr - read the adapters MAC from eeprom
4275 * @hw: Struct containing variables accessed by shared code
4277 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4278 * second function of dual function devices
4280 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4285 e_dbg("e1000_read_mac_addr");
4287 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4289 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4290 e_dbg("EEPROM Read Error\n");
4291 return -E1000_ERR_EEPROM;
4293 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4294 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4297 switch (hw->mac_type) {
4301 case e1000_82546_rev_3:
4302 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4303 hw->perm_mac_addr[5] ^= 0x01;
4307 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4308 hw->mac_addr[i] = hw->perm_mac_addr[i];
4309 return E1000_SUCCESS;
4313 * e1000_init_rx_addrs - Initializes receive address filters.
4314 * @hw: Struct containing variables accessed by shared code
4316 * Places the MAC address in receive address register 0 and clears the rest
4317 * of the receive address registers. Clears the multicast table. Assumes
4318 * the receiver is in reset when the routine is called.
4320 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4325 e_dbg("e1000_init_rx_addrs");
4327 /* Setup the receive address. */
4328 e_dbg("Programming MAC Address into RAR[0]\n");
4330 e1000_rar_set(hw, hw->mac_addr, 0);
4332 rar_num = E1000_RAR_ENTRIES;
4334 /* Zero out the other 15 receive addresses. */
4335 e_dbg("Clearing RAR[1-15]\n");
4336 for (i = 1; i < rar_num; i++) {
4337 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4338 E1000_WRITE_FLUSH();
4339 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4340 E1000_WRITE_FLUSH();
4345 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4346 * @hw: Struct containing variables accessed by shared code
4347 * @mc_addr: the multicast address to hash
4349 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4353 /* The portion of the address that is used for the hash table is
4354 * determined by the mc_filter_type setting.
4356 switch (hw->mc_filter_type) {
4357 /* [0] [1] [2] [3] [4] [5]
4362 /* [47:36] i.e. 0x563 for above example address */
4363 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4366 /* [46:35] i.e. 0xAC6 for above example address */
4367 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4370 /* [45:34] i.e. 0x5D8 for above example address */
4371 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4374 /* [43:32] i.e. 0x634 for above example address */
4375 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4379 hash_value &= 0xFFF;
4384 * e1000_rar_set - Puts an ethernet address into a receive address register.
4385 * @hw: Struct containing variables accessed by shared code
4386 * @addr: Address to put into receive address register
4387 * @index: Receive address register to write
4389 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4391 u32 rar_low, rar_high;
4393 /* HW expects these in little endian so we reverse the byte order
4394 * from network order (big endian) to little endian
4396 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4397 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4398 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4400 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4404 * If there are any Rx frames queued up or otherwise present in the HW
4405 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4406 * hang. To work around this issue, we have to disable receives and
4407 * flush out all Rx frames before we enable RSS. To do so, we modify we
4408 * redirect all Rx traffic to manageability and then reset the HW.
4409 * This flushes away Rx frames, and (since the redirections to
4410 * manageability persists across resets) keeps new ones from coming in
4411 * while we work. Then, we clear the Address Valid AV bit for all MAC
4412 * addresses and undo the re-direction to manageability.
4413 * Now, frames are coming in again, but the MAC won't accept them, so
4414 * far so good. We now proceed to initialize RSS (if necessary) and
4415 * configure the Rx unit. Last, we re-enable the AV bits and continue
4418 switch (hw->mac_type) {
4420 /* Indicate to hardware the Address is Valid. */
4421 rar_high |= E1000_RAH_AV;
4425 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4426 E1000_WRITE_FLUSH();
4427 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4428 E1000_WRITE_FLUSH();
4432 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4433 * @hw: Struct containing variables accessed by shared code
4434 * @offset: Offset in VLAN filer table to write
4435 * @value: Value to write into VLAN filter table
4437 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4441 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4442 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4443 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4444 E1000_WRITE_FLUSH();
4445 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4446 E1000_WRITE_FLUSH();
4448 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4449 E1000_WRITE_FLUSH();
4454 * e1000_clear_vfta - Clears the VLAN filer table
4455 * @hw: Struct containing variables accessed by shared code
4457 static void e1000_clear_vfta(struct e1000_hw *hw)
4461 u32 vfta_offset = 0;
4462 u32 vfta_bit_in_reg = 0;
4464 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4465 /* If the offset we want to clear is the same offset of the
4466 * manageability VLAN ID, then clear all bits except that of the
4467 * manageability unit */
4468 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4469 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4470 E1000_WRITE_FLUSH();
4474 static s32 e1000_id_led_init(struct e1000_hw *hw)
4477 const u32 ledctl_mask = 0x000000FF;
4478 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4479 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4480 u16 eeprom_data, i, temp;
4481 const u16 led_mask = 0x0F;
4483 e_dbg("e1000_id_led_init");
4485 if (hw->mac_type < e1000_82540) {
4487 return E1000_SUCCESS;
4490 ledctl = er32(LEDCTL);
4491 hw->ledctl_default = ledctl;
4492 hw->ledctl_mode1 = hw->ledctl_default;
4493 hw->ledctl_mode2 = hw->ledctl_default;
4495 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4496 e_dbg("EEPROM Read Error\n");
4497 return -E1000_ERR_EEPROM;
4500 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4501 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4502 eeprom_data = ID_LED_DEFAULT;
4505 for (i = 0; i < 4; i++) {
4506 temp = (eeprom_data >> (i << 2)) & led_mask;
4508 case ID_LED_ON1_DEF2:
4509 case ID_LED_ON1_ON2:
4510 case ID_LED_ON1_OFF2:
4511 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4512 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4514 case ID_LED_OFF1_DEF2:
4515 case ID_LED_OFF1_ON2:
4516 case ID_LED_OFF1_OFF2:
4517 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4518 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4525 case ID_LED_DEF1_ON2:
4526 case ID_LED_ON1_ON2:
4527 case ID_LED_OFF1_ON2:
4528 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4529 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4531 case ID_LED_DEF1_OFF2:
4532 case ID_LED_ON1_OFF2:
4533 case ID_LED_OFF1_OFF2:
4534 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4535 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4542 return E1000_SUCCESS;
4547 * @hw: Struct containing variables accessed by shared code
4549 * Prepares SW controlable LED for use and saves the current state of the LED.
4551 s32 e1000_setup_led(struct e1000_hw *hw)
4554 s32 ret_val = E1000_SUCCESS;
4556 e_dbg("e1000_setup_led");
4558 switch (hw->mac_type) {
4559 case e1000_82542_rev2_0:
4560 case e1000_82542_rev2_1:
4563 /* No setup necessary */
4567 case e1000_82541_rev_2:
4568 case e1000_82547_rev_2:
4569 /* Turn off PHY Smart Power Down (if enabled) */
4570 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4571 &hw->phy_spd_default);
4574 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4575 (u16) (hw->phy_spd_default &
4576 ~IGP01E1000_GMII_SPD));
4581 if (hw->media_type == e1000_media_type_fiber) {
4582 ledctl = er32(LEDCTL);
4583 /* Save current LEDCTL settings */
4584 hw->ledctl_default = ledctl;
4586 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4587 E1000_LEDCTL_LED0_BLINK |
4588 E1000_LEDCTL_LED0_MODE_MASK);
4589 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4590 E1000_LEDCTL_LED0_MODE_SHIFT);
4591 ew32(LEDCTL, ledctl);
4592 } else if (hw->media_type == e1000_media_type_copper)
4593 ew32(LEDCTL, hw->ledctl_mode1);
4597 return E1000_SUCCESS;
4601 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4602 * @hw: Struct containing variables accessed by shared code
4604 s32 e1000_cleanup_led(struct e1000_hw *hw)
4606 s32 ret_val = E1000_SUCCESS;
4608 e_dbg("e1000_cleanup_led");
4610 switch (hw->mac_type) {
4611 case e1000_82542_rev2_0:
4612 case e1000_82542_rev2_1:
4615 /* No cleanup necessary */
4619 case e1000_82541_rev_2:
4620 case e1000_82547_rev_2:
4621 /* Turn on PHY Smart Power Down (if previously enabled) */
4622 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4623 hw->phy_spd_default);
4628 /* Restore LEDCTL settings */
4629 ew32(LEDCTL, hw->ledctl_default);
4633 return E1000_SUCCESS;
4637 * e1000_led_on - Turns on the software controllable LED
4638 * @hw: Struct containing variables accessed by shared code
4640 s32 e1000_led_on(struct e1000_hw *hw)
4642 u32 ctrl = er32(CTRL);
4644 e_dbg("e1000_led_on");
4646 switch (hw->mac_type) {
4647 case e1000_82542_rev2_0:
4648 case e1000_82542_rev2_1:
4650 /* Set SW Defineable Pin 0 to turn on the LED */
4651 ctrl |= E1000_CTRL_SWDPIN0;
4652 ctrl |= E1000_CTRL_SWDPIO0;
4655 if (hw->media_type == e1000_media_type_fiber) {
4656 /* Set SW Defineable Pin 0 to turn on the LED */
4657 ctrl |= E1000_CTRL_SWDPIN0;
4658 ctrl |= E1000_CTRL_SWDPIO0;
4660 /* Clear SW Defineable Pin 0 to turn on the LED */
4661 ctrl &= ~E1000_CTRL_SWDPIN0;
4662 ctrl |= E1000_CTRL_SWDPIO0;
4666 if (hw->media_type == e1000_media_type_fiber) {
4667 /* Clear SW Defineable Pin 0 to turn on the LED */
4668 ctrl &= ~E1000_CTRL_SWDPIN0;
4669 ctrl |= E1000_CTRL_SWDPIO0;
4670 } else if (hw->media_type == e1000_media_type_copper) {
4671 ew32(LEDCTL, hw->ledctl_mode2);
4672 return E1000_SUCCESS;
4679 return E1000_SUCCESS;
4683 * e1000_led_off - Turns off the software controllable LED
4684 * @hw: Struct containing variables accessed by shared code
4686 s32 e1000_led_off(struct e1000_hw *hw)
4688 u32 ctrl = er32(CTRL);
4690 e_dbg("e1000_led_off");
4692 switch (hw->mac_type) {
4693 case e1000_82542_rev2_0:
4694 case e1000_82542_rev2_1:
4696 /* Clear SW Defineable Pin 0 to turn off the LED */
4697 ctrl &= ~E1000_CTRL_SWDPIN0;
4698 ctrl |= E1000_CTRL_SWDPIO0;
4701 if (hw->media_type == e1000_media_type_fiber) {
4702 /* Clear SW Defineable Pin 0 to turn off the LED */
4703 ctrl &= ~E1000_CTRL_SWDPIN0;
4704 ctrl |= E1000_CTRL_SWDPIO0;
4706 /* Set SW Defineable Pin 0 to turn off the LED */
4707 ctrl |= E1000_CTRL_SWDPIN0;
4708 ctrl |= E1000_CTRL_SWDPIO0;
4712 if (hw->media_type == e1000_media_type_fiber) {
4713 /* Set SW Defineable Pin 0 to turn off the LED */
4714 ctrl |= E1000_CTRL_SWDPIN0;
4715 ctrl |= E1000_CTRL_SWDPIO0;
4716 } else if (hw->media_type == e1000_media_type_copper) {
4717 ew32(LEDCTL, hw->ledctl_mode1);
4718 return E1000_SUCCESS;
4725 return E1000_SUCCESS;
4729 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4730 * @hw: Struct containing variables accessed by shared code
4732 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4736 temp = er32(CRCERRS);
4737 temp = er32(SYMERRS);
4742 temp = er32(LATECOL);
4747 temp = er32(XONRXC);
4748 temp = er32(XONTXC);
4749 temp = er32(XOFFRXC);
4750 temp = er32(XOFFTXC);
4754 temp = er32(PRC127);
4755 temp = er32(PRC255);
4756 temp = er32(PRC511);
4757 temp = er32(PRC1023);
4758 temp = er32(PRC1522);
4781 temp = er32(PTC127);
4782 temp = er32(PTC255);
4783 temp = er32(PTC511);
4784 temp = er32(PTC1023);
4785 temp = er32(PTC1522);
4790 if (hw->mac_type < e1000_82543)
4793 temp = er32(ALGNERRC);
4794 temp = er32(RXERRC);
4796 temp = er32(CEXTERR);
4798 temp = er32(TSCTFC);
4800 if (hw->mac_type <= e1000_82544)
4803 temp = er32(MGTPRC);
4804 temp = er32(MGTPDC);
4805 temp = er32(MGTPTC);
4809 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4810 * @hw: Struct containing variables accessed by shared code
4812 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4813 * hw->ifs_params_forced to true. However, you must initialize hw->
4814 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4815 * before calling this function.
4817 void e1000_reset_adaptive(struct e1000_hw *hw)
4819 e_dbg("e1000_reset_adaptive");
4821 if (hw->adaptive_ifs) {
4822 if (!hw->ifs_params_forced) {
4823 hw->current_ifs_val = 0;
4824 hw->ifs_min_val = IFS_MIN;
4825 hw->ifs_max_val = IFS_MAX;
4826 hw->ifs_step_size = IFS_STEP;
4827 hw->ifs_ratio = IFS_RATIO;
4829 hw->in_ifs_mode = false;
4832 e_dbg("Not in Adaptive IFS mode!\n");
4837 * e1000_update_adaptive - update adaptive IFS
4838 * @hw: Struct containing variables accessed by shared code
4839 * @tx_packets: Number of transmits since last callback
4840 * @total_collisions: Number of collisions since last callback
4842 * Called during the callback/watchdog routine to update IFS value based on
4843 * the ratio of transmits to collisions.
4845 void e1000_update_adaptive(struct e1000_hw *hw)
4847 e_dbg("e1000_update_adaptive");
4849 if (hw->adaptive_ifs) {
4850 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4851 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4852 hw->in_ifs_mode = true;
4853 if (hw->current_ifs_val < hw->ifs_max_val) {
4854 if (hw->current_ifs_val == 0)
4855 hw->current_ifs_val =
4858 hw->current_ifs_val +=
4860 ew32(AIT, hw->current_ifs_val);
4865 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4866 hw->current_ifs_val = 0;
4867 hw->in_ifs_mode = false;
4872 e_dbg("Not in Adaptive IFS mode!\n");
4877 * e1000_tbi_adjust_stats
4878 * @hw: Struct containing variables accessed by shared code
4879 * @frame_len: The length of the frame in question
4880 * @mac_addr: The Ethernet destination address of the frame in question
4882 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4884 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4885 u32 frame_len, u8 *mac_addr)
4889 /* First adjust the frame length. */
4891 /* We need to adjust the statistics counters, since the hardware
4892 * counters overcount this packet as a CRC error and undercount
4893 * the packet as a good packet
4895 /* This packet should not be counted as a CRC error. */
4897 /* This packet does count as a Good Packet Received. */
4900 /* Adjust the Good Octets received counters */
4901 carry_bit = 0x80000000 & stats->gorcl;
4902 stats->gorcl += frame_len;
4903 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4904 * Received Count) was one before the addition,
4905 * AND it is zero after, then we lost the carry out,
4906 * need to add one to Gorch (Good Octets Received Count High).
4907 * This could be simplified if all environments supported
4910 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4912 /* Is this a broadcast or multicast? Check broadcast first,
4913 * since the test for a multicast frame will test positive on
4914 * a broadcast frame.
4916 if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
4917 /* Broadcast packet */
4919 else if (*mac_addr & 0x01)
4920 /* Multicast packet */
4923 if (frame_len == hw->max_frame_size) {
4924 /* In this case, the hardware has overcounted the number of
4931 /* Adjust the bin counters when the extra byte put the frame in the
4932 * wrong bin. Remember that the frame_len was adjusted above.
4934 if (frame_len == 64) {
4937 } else if (frame_len == 127) {
4940 } else if (frame_len == 255) {
4943 } else if (frame_len == 511) {
4946 } else if (frame_len == 1023) {
4949 } else if (frame_len == 1522) {
4955 * e1000_get_bus_info
4956 * @hw: Struct containing variables accessed by shared code
4958 * Gets the current PCI bus type, speed, and width of the hardware
4960 void e1000_get_bus_info(struct e1000_hw *hw)
4964 switch (hw->mac_type) {
4965 case e1000_82542_rev2_0:
4966 case e1000_82542_rev2_1:
4967 hw->bus_type = e1000_bus_type_pci;
4968 hw->bus_speed = e1000_bus_speed_unknown;
4969 hw->bus_width = e1000_bus_width_unknown;
4972 status = er32(STATUS);
4973 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4974 e1000_bus_type_pcix : e1000_bus_type_pci;
4976 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4977 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4978 e1000_bus_speed_66 : e1000_bus_speed_120;
4979 } else if (hw->bus_type == e1000_bus_type_pci) {
4980 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4981 e1000_bus_speed_66 : e1000_bus_speed_33;
4983 switch (status & E1000_STATUS_PCIX_SPEED) {
4984 case E1000_STATUS_PCIX_SPEED_66:
4985 hw->bus_speed = e1000_bus_speed_66;
4987 case E1000_STATUS_PCIX_SPEED_100:
4988 hw->bus_speed = e1000_bus_speed_100;
4990 case E1000_STATUS_PCIX_SPEED_133:
4991 hw->bus_speed = e1000_bus_speed_133;
4994 hw->bus_speed = e1000_bus_speed_reserved;
4998 hw->bus_width = (status & E1000_STATUS_BUS64) ?
4999 e1000_bus_width_64 : e1000_bus_width_32;
5005 * e1000_write_reg_io
5006 * @hw: Struct containing variables accessed by shared code
5007 * @offset: offset to write to
5008 * @value: value to write
5010 * Writes a value to one of the devices registers using port I/O (as opposed to
5011 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5013 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
5015 unsigned long io_addr = hw->io_base;
5016 unsigned long io_data = hw->io_base + 4;
5018 e1000_io_write(hw, io_addr, offset);
5019 e1000_io_write(hw, io_data, value);
5023 * e1000_get_cable_length - Estimates the cable length.
5024 * @hw: Struct containing variables accessed by shared code
5025 * @min_length: The estimated minimum length
5026 * @max_length: The estimated maximum length
5028 * returns: - E1000_ERR_XXX
5031 * This function always returns a ranged length (minimum & maximum).
5032 * So for M88 phy's, this function interprets the one value returned from the
5033 * register to the minimum and maximum range.
5034 * For IGP phy's, the function calculates the range by the AGC registers.
5036 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5044 e_dbg("e1000_get_cable_length");
5046 *min_length = *max_length = 0;
5048 /* Use old method for Phy older than IGP */
5049 if (hw->phy_type == e1000_phy_m88) {
5051 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5055 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5056 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5058 /* Convert the enum value to ranged values */
5059 switch (cable_length) {
5060 case e1000_cable_length_50:
5062 *max_length = e1000_igp_cable_length_50;
5064 case e1000_cable_length_50_80:
5065 *min_length = e1000_igp_cable_length_50;
5066 *max_length = e1000_igp_cable_length_80;
5068 case e1000_cable_length_80_110:
5069 *min_length = e1000_igp_cable_length_80;
5070 *max_length = e1000_igp_cable_length_110;
5072 case e1000_cable_length_110_140:
5073 *min_length = e1000_igp_cable_length_110;
5074 *max_length = e1000_igp_cable_length_140;
5076 case e1000_cable_length_140:
5077 *min_length = e1000_igp_cable_length_140;
5078 *max_length = e1000_igp_cable_length_170;
5081 return -E1000_ERR_PHY;
5084 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
5086 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5087 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5088 IGP01E1000_PHY_AGC_A,
5089 IGP01E1000_PHY_AGC_B,
5090 IGP01E1000_PHY_AGC_C,
5091 IGP01E1000_PHY_AGC_D
5093 /* Read the AGC registers for all channels */
5094 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5097 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5101 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5103 /* Value bound check. */
5104 if ((cur_agc_value >=
5105 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5106 || (cur_agc_value == 0))
5107 return -E1000_ERR_PHY;
5109 agc_value += cur_agc_value;
5111 /* Update minimal AGC value. */
5112 if (min_agc_value > cur_agc_value)
5113 min_agc_value = cur_agc_value;
5116 /* Remove the minimal AGC result for length < 50m */
5118 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5119 agc_value -= min_agc_value;
5121 /* Get the average length of the remaining 3 channels */
5122 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5124 /* Get the average length of all the 4 channels. */
5125 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5128 /* Set the range of the calculated length. */
5129 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5130 IGP01E1000_AGC_RANGE) > 0) ?
5131 (e1000_igp_cable_length_table[agc_value] -
5132 IGP01E1000_AGC_RANGE) : 0;
5133 *max_length = e1000_igp_cable_length_table[agc_value] +
5134 IGP01E1000_AGC_RANGE;
5137 return E1000_SUCCESS;
5141 * e1000_check_polarity - Check the cable polarity
5142 * @hw: Struct containing variables accessed by shared code
5143 * @polarity: output parameter : 0 - Polarity is not reversed
5144 * 1 - Polarity is reversed.
5146 * returns: - E1000_ERR_XXX
5149 * For phy's older than IGP, this function simply reads the polarity bit in the
5150 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5151 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5152 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5153 * IGP01E1000_PHY_PCS_INIT_REG.
5155 static s32 e1000_check_polarity(struct e1000_hw *hw,
5156 e1000_rev_polarity *polarity)
5161 e_dbg("e1000_check_polarity");
5163 if (hw->phy_type == e1000_phy_m88) {
5164 /* return the Polarity bit in the Status register. */
5165 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5169 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5170 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5171 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5173 } else if (hw->phy_type == e1000_phy_igp) {
5174 /* Read the Status register to check the speed */
5175 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5180 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5181 * find the polarity status */
5182 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5183 IGP01E1000_PSSR_SPEED_1000MBPS) {
5185 /* Read the GIG initialization PCS register (0x00B4) */
5187 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5192 /* Check the polarity bits */
5193 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5194 e1000_rev_polarity_reversed :
5195 e1000_rev_polarity_normal;
5197 /* For 10 Mbps, read the polarity bit in the status register. (for
5198 * 100 Mbps this bit is always 0) */
5200 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5201 e1000_rev_polarity_reversed :
5202 e1000_rev_polarity_normal;
5205 return E1000_SUCCESS;
5209 * e1000_check_downshift - Check if Downshift occurred
5210 * @hw: Struct containing variables accessed by shared code
5211 * @downshift: output parameter : 0 - No Downshift occurred.
5212 * 1 - Downshift occurred.
5214 * returns: - E1000_ERR_XXX
5217 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5218 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5219 * Link Health register. In IGP this bit is latched high, so the driver must
5220 * read it immediately after link is established.
5222 static s32 e1000_check_downshift(struct e1000_hw *hw)
5227 e_dbg("e1000_check_downshift");
5229 if (hw->phy_type == e1000_phy_igp) {
5230 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5235 hw->speed_downgraded =
5236 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5237 } else if (hw->phy_type == e1000_phy_m88) {
5238 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5243 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5244 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5247 return E1000_SUCCESS;
5251 * e1000_config_dsp_after_link_change
5252 * @hw: Struct containing variables accessed by shared code
5253 * @link_up: was link up at the time this was called
5255 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5256 * E1000_SUCCESS at any other case.
5258 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5259 * gigabit link is achieved to improve link quality.
5262 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5265 u16 phy_data, phy_saved_data, speed, duplex, i;
5266 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5267 IGP01E1000_PHY_AGC_PARAM_A,
5268 IGP01E1000_PHY_AGC_PARAM_B,
5269 IGP01E1000_PHY_AGC_PARAM_C,
5270 IGP01E1000_PHY_AGC_PARAM_D
5272 u16 min_length, max_length;
5274 e_dbg("e1000_config_dsp_after_link_change");
5276 if (hw->phy_type != e1000_phy_igp)
5277 return E1000_SUCCESS;
5280 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5282 e_dbg("Error getting link speed and duplex\n");
5286 if (speed == SPEED_1000) {
5289 e1000_get_cable_length(hw, &min_length,
5294 if ((hw->dsp_config_state == e1000_dsp_config_enabled)
5295 && min_length >= e1000_igp_cable_length_50) {
5297 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5299 e1000_read_phy_reg(hw,
5306 ~IGP01E1000_PHY_EDAC_MU_INDEX;
5309 e1000_write_phy_reg(hw,
5315 hw->dsp_config_state =
5316 e1000_dsp_config_activated;
5319 if ((hw->ffe_config_state == e1000_ffe_config_enabled)
5320 && (min_length < e1000_igp_cable_length_50)) {
5322 u16 ffe_idle_err_timeout =
5323 FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5326 /* clear previous idle error counts */
5328 e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5333 for (i = 0; i < ffe_idle_err_timeout; i++) {
5336 e1000_read_phy_reg(hw,
5344 SR_1000T_IDLE_ERROR_CNT);
5346 SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
5348 hw->ffe_config_state =
5349 e1000_ffe_config_active;
5352 e1000_write_phy_reg(hw,
5353 IGP01E1000_PHY_DSP_FFE,
5354 IGP01E1000_PHY_DSP_FFE_CM_CP);
5361 ffe_idle_err_timeout =
5362 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5367 if (hw->dsp_config_state == e1000_dsp_config_activated) {
5368 /* Save off the current value of register 0x2F5B to be restored at
5369 * the end of the routines. */
5371 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5376 /* Disable the PHY transmitter */
5377 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5384 ret_val = e1000_write_phy_reg(hw, 0x0000,
5385 IGP01E1000_IEEE_FORCE_GIGA);
5388 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5390 e1000_read_phy_reg(hw, dsp_reg_array[i],
5395 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5396 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5399 e1000_write_phy_reg(hw, dsp_reg_array[i],
5405 ret_val = e1000_write_phy_reg(hw, 0x0000,
5406 IGP01E1000_IEEE_RESTART_AUTONEG);
5412 /* Now enable the transmitter */
5414 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5419 hw->dsp_config_state = e1000_dsp_config_enabled;
5422 if (hw->ffe_config_state == e1000_ffe_config_active) {
5423 /* Save off the current value of register 0x2F5B to be restored at
5424 * the end of the routines. */
5426 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5431 /* Disable the PHY transmitter */
5432 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5439 ret_val = e1000_write_phy_reg(hw, 0x0000,
5440 IGP01E1000_IEEE_FORCE_GIGA);
5444 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5445 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5449 ret_val = e1000_write_phy_reg(hw, 0x0000,
5450 IGP01E1000_IEEE_RESTART_AUTONEG);
5456 /* Now enable the transmitter */
5458 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5463 hw->ffe_config_state = e1000_ffe_config_enabled;
5466 return E1000_SUCCESS;
5470 * e1000_set_phy_mode - Set PHY to class A mode
5471 * @hw: Struct containing variables accessed by shared code
5473 * Assumes the following operations will follow to enable the new class mode.
5474 * 1. Do a PHY soft reset
5475 * 2. Restart auto-negotiation or force link.
5477 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5482 e_dbg("e1000_set_phy_mode");
5484 if ((hw->mac_type == e1000_82545_rev_3) &&
5485 (hw->media_type == e1000_media_type_copper)) {
5487 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5493 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5494 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5496 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5501 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5506 hw->phy_reset_disable = false;
5510 return E1000_SUCCESS;
5514 * e1000_set_d3_lplu_state - set d3 link power state
5515 * @hw: Struct containing variables accessed by shared code
5516 * @active: true to enable lplu false to disable lplu.
5518 * This function sets the lplu state according to the active flag. When
5519 * activating lplu this function also disables smart speed and vise versa.
5520 * lplu will not be activated unless the device autonegotiation advertisement
5521 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5523 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5524 * E1000_SUCCESS at any other case.
5526 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5530 e_dbg("e1000_set_d3_lplu_state");
5532 if (hw->phy_type != e1000_phy_igp)
5533 return E1000_SUCCESS;
5535 /* During driver activity LPLU should not be used or it will attain link
5536 * from the lowest speeds starting from 10Mbps. The capability is used for
5537 * Dx transitions and states */
5538 if (hw->mac_type == e1000_82541_rev_2
5539 || hw->mac_type == e1000_82547_rev_2) {
5541 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5547 if (hw->mac_type == e1000_82541_rev_2 ||
5548 hw->mac_type == e1000_82547_rev_2) {
5549 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5551 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5557 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5558 * Dx states where the power conservation is most important. During
5559 * driver activity we should enable SmartSpeed, so performance is
5561 if (hw->smart_speed == e1000_smart_speed_on) {
5563 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5568 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5570 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5574 } else if (hw->smart_speed == e1000_smart_speed_off) {
5576 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5581 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5583 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5588 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5589 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5590 || (hw->autoneg_advertised ==
5591 AUTONEG_ADVERTISE_10_100_ALL)) {
5593 if (hw->mac_type == e1000_82541_rev_2 ||
5594 hw->mac_type == e1000_82547_rev_2) {
5595 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5597 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5603 /* When LPLU is enabled we should disable SmartSpeed */
5605 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5610 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5612 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5618 return E1000_SUCCESS;
5622 * e1000_set_vco_speed
5623 * @hw: Struct containing variables accessed by shared code
5625 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5627 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5630 u16 default_page = 0;
5633 e_dbg("e1000_set_vco_speed");
5635 switch (hw->mac_type) {
5636 case e1000_82545_rev_3:
5637 case e1000_82546_rev_3:
5640 return E1000_SUCCESS;
5643 /* Set PHY register 30, page 5, bit 8 to 0 */
5646 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5650 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5654 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5658 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5659 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5663 /* Set PHY register 30, page 4, bit 11 to 1 */
5665 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5669 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5673 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5674 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5679 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5683 return E1000_SUCCESS;
5688 * e1000_enable_mng_pass_thru - check for bmc pass through
5689 * @hw: Struct containing variables accessed by shared code
5691 * Verifies the hardware needs to allow ARPs to be processed by the host
5692 * returns: - true/false
5694 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5698 if (hw->asf_firmware_present) {
5701 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5702 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5704 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5710 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5716 /* Polarity reversal workaround for forced 10F/10H links. */
5718 /* Disable the transmitter on the PHY */
5720 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5723 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5727 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5731 /* This loop will early-out if the NO link condition has been met. */
5732 for (i = PHY_FORCE_TIME; i > 0; i--) {
5733 /* Read the MII Status Register and wait for Link Status bit
5737 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5741 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5745 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5750 /* Recommended delay time after link has been lost */
5753 /* Now we will re-enable th transmitter on the PHY */
5755 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5759 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5763 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5767 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5771 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5775 /* This loop will early-out if the link condition has been met. */
5776 for (i = PHY_FORCE_TIME; i > 0; i--) {
5777 /* Read the MII Status Register and wait for Link Status bit
5781 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5785 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5789 if (mii_status_reg & MII_SR_LINK_STATUS)
5793 return E1000_SUCCESS;
5797 * e1000_get_auto_rd_done
5798 * @hw: Struct containing variables accessed by shared code
5800 * Check for EEPROM Auto Read bit done.
5801 * returns: - E1000_ERR_RESET if fail to reset MAC
5802 * E1000_SUCCESS at any other case.
5804 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5806 e_dbg("e1000_get_auto_rd_done");
5808 return E1000_SUCCESS;
5812 * e1000_get_phy_cfg_done
5813 * @hw: Struct containing variables accessed by shared code
5815 * Checks if the PHY configuration is done
5816 * returns: - E1000_ERR_RESET if fail to reset MAC
5817 * E1000_SUCCESS at any other case.
5819 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5821 e_dbg("e1000_get_phy_cfg_done");
5823 return E1000_SUCCESS;