2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
4 * Copyright (c) 2007 Xceive Corporation
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/dvb/frontend.h>
29 #include <linux/i2c.h>
31 #include "dvb_frontend.h"
34 #include "tuner-i2c.h"
37 module_param(debug, int, 0644);
38 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 static int no_poweroff;
41 module_param(no_poweroff, int, 0644);
42 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
43 "\t\t1 keep device energized and with tuner ready all the times.\n"
44 "\t\tFaster, but consumes more power and keeps the device hotter");
46 static DEFINE_MUTEX(xc5000_list_mutex);
47 static LIST_HEAD(hybrid_tuner_instance_list);
49 #define dprintk(level, fmt, arg...) if (debug >= level) \
50 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
52 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
53 #define XC5000_DEFAULT_FIRMWARE_SIZE 12401
56 struct tuner_i2c_props i2c_props;
57 struct list_head hybrid_tuner_instance_list;
68 #define MAX_TV_STANDARD 23
69 #define XC_MAX_I2C_WRITE_LENGTH 64
72 #define XC_RF_MODE_AIR 0
73 #define XC_RF_MODE_CABLE 1
76 #define XC_RESULT_SUCCESS 0
77 #define XC_RESULT_RESET_FAILURE 1
78 #define XC_RESULT_I2C_WRITE_FAILURE 2
79 #define XC_RESULT_I2C_READ_FAILURE 3
80 #define XC_RESULT_OUT_OF_RANGE 5
83 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
84 #define XC_PRODUCT_ID_FW_LOADED 0x1388
87 #define XREG_INIT 0x00
88 #define XREG_VIDEO_MODE 0x01
89 #define XREG_AUDIO_MODE 0x02
90 #define XREG_RF_FREQ 0x03
91 #define XREG_D_CODE 0x04
92 #define XREG_IF_OUT 0x05
93 #define XREG_SEEK_MODE 0x07
94 #define XREG_POWER_DOWN 0x0A /* Obsolete */
95 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
96 #define XREG_SMOOTHEDCVBS 0x0E
97 #define XREG_XTALFREQ 0x0F
98 #define XREG_FINERFREQ 0x10
99 #define XREG_DDIMODE 0x11
101 #define XREG_ADC_ENV 0x00
102 #define XREG_QUALITY 0x01
103 #define XREG_FRAME_LINES 0x02
104 #define XREG_HSYNC_FREQ 0x03
105 #define XREG_LOCK 0x04
106 #define XREG_FREQ_ERROR 0x05
107 #define XREG_SNR 0x06
108 #define XREG_VERSION 0x07
109 #define XREG_PRODUCT_ID 0x08
110 #define XREG_BUSY 0x09
111 #define XREG_BUILD 0x0D
114 Basic firmware description. This will remain with
115 the driver for documentation purposes.
117 This represents an I2C firmware file encoded as a
118 string of unsigned char. Format is as follows:
120 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
121 char[1 ]=len0_LSB -> length of first write transaction
122 char[2 ]=data0 -> first byte to be sent
126 char[M ]=dataN -> last byte to be sent
127 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
128 char[M+2]=len1_LSB -> length of second write transaction
134 The [len] value should be interpreted as follows:
136 len= len_MSB _ len_LSB
137 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
138 len=0000_0000_0000_0000 : Reset command: Do hardware reset
139 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
140 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
142 For the RESET and WAIT commands, the two following bytes will contain
143 immediately the length of the following transaction.
146 struct XC_TV_STANDARD {
152 /* Tuner standards */
153 #define MN_NTSC_PAL_BTSC 0
154 #define MN_NTSC_PAL_A2 1
155 #define MN_NTSC_PAL_EIAJ 2
156 #define MN_NTSC_PAL_Mono 3
158 #define BG_PAL_NICAM 5
159 #define BG_PAL_MONO 6
160 #define I_PAL_NICAM 7
161 #define I_PAL_NICAM_MONO 8
163 #define DK_PAL_NICAM 10
164 #define DK_PAL_MONO 11
165 #define DK_SECAM_A2DK1 12
166 #define DK_SECAM_A2LDK3 13
167 #define DK_SECAM_A2MONO 14
168 #define L_SECAM_NICAM 15
169 #define LC_SECAM_NICAM 16
174 #define FM_Radio_INPUT2 21
175 #define FM_Radio_INPUT1 22
177 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
178 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
179 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
180 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
181 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
182 {"B/G-PAL-A2", 0x0A00, 0x8049},
183 {"B/G-PAL-NICAM", 0x0C04, 0x8049},
184 {"B/G-PAL-MONO", 0x0878, 0x8059},
185 {"I-PAL-NICAM", 0x1080, 0x8009},
186 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
187 {"D/K-PAL-A2", 0x1600, 0x8009},
188 {"D/K-PAL-NICAM", 0x0E80, 0x8009},
189 {"D/K-PAL-MONO", 0x1478, 0x8009},
190 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
191 {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
192 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
193 {"L-SECAM-NICAM", 0x8E82, 0x0009},
194 {"L'-SECAM-NICAM", 0x8E82, 0x4009},
195 {"DTV6", 0x00C0, 0x8002},
196 {"DTV8", 0x00C0, 0x800B},
197 {"DTV7/8", 0x00C0, 0x801B},
198 {"DTV7", 0x00C0, 0x8007},
199 {"FM Radio-INPUT2", 0x9802, 0x9002},
200 {"FM Radio-INPUT1", 0x0208, 0x9002}
203 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
204 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
205 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
206 static int xc5000_TunerReset(struct dvb_frontend *fe);
208 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
210 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
211 .flags = 0, .buf = buf, .len = len };
213 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
214 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
215 return XC_RESULT_I2C_WRITE_FAILURE;
217 return XC_RESULT_SUCCESS;
221 /* This routine is never used because the only time we read data from the
222 i2c bus is when we read registers, and we want that to be an atomic i2c
223 transaction in case we are on a multi-master bus */
224 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
226 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
227 .flags = I2C_M_RD, .buf = buf, .len = len };
229 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
230 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
237 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
239 u8 buf[2] = { reg >> 8, reg & 0xff };
240 u8 bval[2] = { 0, 0 };
241 struct i2c_msg msg[2] = {
242 { .addr = priv->i2c_props.addr,
243 .flags = 0, .buf = &buf[0], .len = 2 },
244 { .addr = priv->i2c_props.addr,
245 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
248 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
249 printk(KERN_WARNING "xc5000: I2C read failed\n");
253 *val = (bval[0] << 8) | bval[1];
254 return XC_RESULT_SUCCESS;
257 static void xc_wait(int wait_ms)
262 static int xc5000_TunerReset(struct dvb_frontend *fe)
264 struct xc5000_priv *priv = fe->tuner_priv;
267 dprintk(1, "%s()\n", __func__);
270 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
272 priv->i2c_props.adap->algo_data,
273 DVB_FRONTEND_COMPONENT_TUNER,
274 XC5000_TUNER_RESET, 0);
276 printk(KERN_ERR "xc5000: reset failed\n");
277 return XC_RESULT_RESET_FAILURE;
280 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
281 return XC_RESULT_RESET_FAILURE;
283 return XC_RESULT_SUCCESS;
286 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
289 int WatchDogTimer = 100;
292 buf[0] = (regAddr >> 8) & 0xFF;
293 buf[1] = regAddr & 0xFF;
294 buf[2] = (i2cData >> 8) & 0xFF;
295 buf[3] = i2cData & 0xFF;
296 result = xc_send_i2c_data(priv, buf, 4);
297 if (result == XC_RESULT_SUCCESS) {
298 /* wait for busy flag to clear */
299 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
300 result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
301 if (result == XC_RESULT_SUCCESS) {
302 if ((buf[0] == 0) && (buf[1] == 0)) {
303 /* busy flag cleared */
306 xc_wait(5); /* wait 5 ms */
312 if (WatchDogTimer < 0)
313 result = XC_RESULT_I2C_WRITE_FAILURE;
318 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
320 struct xc5000_priv *priv = fe->tuner_priv;
322 int i, nbytes_to_send, result;
323 unsigned int len, pos, index;
324 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
327 while ((i2c_sequence[index] != 0xFF) ||
328 (i2c_sequence[index + 1] != 0xFF)) {
329 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
332 result = xc5000_TunerReset(fe);
334 if (result != XC_RESULT_SUCCESS)
336 } else if (len & 0x8000) {
338 xc_wait(len & 0x7FFF);
341 /* Send i2c data whilst ensuring individual transactions
342 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
345 buf[0] = i2c_sequence[index];
346 buf[1] = i2c_sequence[index + 1];
349 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
351 XC_MAX_I2C_WRITE_LENGTH;
353 nbytes_to_send = (len - pos + 2);
354 for (i = 2; i < nbytes_to_send; i++) {
355 buf[i] = i2c_sequence[index + pos +
358 result = xc_send_i2c_data(priv, buf,
361 if (result != XC_RESULT_SUCCESS)
364 pos += nbytes_to_send - 2;
369 return XC_RESULT_SUCCESS;
372 static int xc_initialize(struct xc5000_priv *priv)
374 dprintk(1, "%s()\n", __func__);
375 return xc_write_reg(priv, XREG_INIT, 0);
378 static int xc_SetTVStandard(struct xc5000_priv *priv,
379 u16 VideoMode, u16 AudioMode)
382 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
383 dprintk(1, "%s() Standard = %s\n",
385 XC5000_Standard[priv->video_standard].Name);
387 ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
388 if (ret == XC_RESULT_SUCCESS)
389 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
394 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
396 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
397 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
399 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
400 rf_mode = XC_RF_MODE_CABLE;
402 "%s(), Invalid mode, defaulting to CABLE",
405 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
408 static const struct dvb_tuner_ops xc5000_tuner_ops;
410 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
414 dprintk(1, "%s(%u)\n", __func__, freq_hz);
416 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
417 (freq_hz < xc5000_tuner_ops.info.frequency_min))
418 return XC_RESULT_OUT_OF_RANGE;
420 freq_code = (u16)(freq_hz / 15625);
422 /* Starting in firmware version 1.1.44, Xceive recommends using the
423 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
424 only be used for fast scanning for channel lock) */
425 return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
429 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
431 u32 freq_code = (freq_khz * 1024)/1000;
432 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
433 __func__, freq_khz, freq_code);
435 return xc_write_reg(priv, XREG_IF_OUT, freq_code);
439 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
441 return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
444 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
450 result = xc5000_readreg(priv, XREG_FREQ_ERROR, ®Data);
451 if (result != XC_RESULT_SUCCESS)
455 (*freq_error_hz) = (tmp * 15625) / 1000;
459 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
461 return xc5000_readreg(priv, XREG_LOCK, lock_status);
464 static int xc_get_version(struct xc5000_priv *priv,
465 u8 *hw_majorversion, u8 *hw_minorversion,
466 u8 *fw_majorversion, u8 *fw_minorversion)
471 result = xc5000_readreg(priv, XREG_VERSION, &data);
472 if (result != XC_RESULT_SUCCESS)
475 (*hw_majorversion) = (data >> 12) & 0x0F;
476 (*hw_minorversion) = (data >> 8) & 0x0F;
477 (*fw_majorversion) = (data >> 4) & 0x0F;
478 (*fw_minorversion) = data & 0x0F;
483 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
485 return xc5000_readreg(priv, XREG_BUILD, buildrev);
488 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
493 result = xc5000_readreg(priv, XREG_HSYNC_FREQ, ®Data);
494 if (result != XC_RESULT_SUCCESS)
497 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
501 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
503 return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
506 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
508 return xc5000_readreg(priv, XREG_QUALITY, quality);
511 static u16 WaitForLock(struct xc5000_priv *priv)
514 int watchDogCount = 40;
516 while ((lockState == 0) && (watchDogCount > 0)) {
517 xc_get_lock_status(priv, &lockState);
518 if (lockState != 1) {
526 #define XC_TUNE_ANALOG 0
527 #define XC_TUNE_DIGITAL 1
528 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
532 dprintk(1, "%s(%u)\n", __func__, freq_hz);
534 if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
537 if (mode == XC_TUNE_ANALOG) {
538 if (WaitForLock(priv) == 1)
546 static int xc5000_fwupload(struct dvb_frontend *fe)
548 struct xc5000_priv *priv = fe->tuner_priv;
549 const struct firmware *fw;
552 /* request the firmware, this will block and timeout */
553 printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
554 XC5000_DEFAULT_FIRMWARE);
556 ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
557 priv->i2c_props.adap->dev.parent);
559 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
560 ret = XC_RESULT_RESET_FAILURE;
563 printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
565 ret = XC_RESULT_SUCCESS;
568 if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
569 printk(KERN_ERR "xc5000: firmware incorrect size\n");
570 ret = XC_RESULT_RESET_FAILURE;
572 printk(KERN_INFO "xc5000: firmware uploading...\n");
573 ret = xc_load_i2c_sequence(fe, fw->data);
574 printk(KERN_INFO "xc5000: firmware upload complete...\n");
578 release_firmware(fw);
582 static void xc_debug_dump(struct xc5000_priv *priv)
585 u32 freq_error_hz = 0;
587 u32 hsync_freq_hz = 0;
590 u8 hw_majorversion = 0, hw_minorversion = 0;
591 u8 fw_majorversion = 0, fw_minorversion = 0;
592 u16 fw_buildversion = 0;
594 /* Wait for stats to stabilize.
595 * Frame Lines needs two frame times after initial lock
596 * before it is valid.
600 xc_get_ADC_Envelope(priv, &adc_envelope);
601 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
603 xc_get_frequency_error(priv, &freq_error_hz);
604 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
606 xc_get_lock_status(priv, &lock_status);
607 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
610 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
611 &fw_majorversion, &fw_minorversion);
612 xc_get_buildversion(priv, &fw_buildversion);
613 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
614 hw_majorversion, hw_minorversion,
615 fw_majorversion, fw_minorversion, fw_buildversion);
617 xc_get_hsync_freq(priv, &hsync_freq_hz);
618 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
620 xc_get_frame_lines(priv, &frame_lines);
621 dprintk(1, "*** Frame lines = %d\n", frame_lines);
623 xc_get_quality(priv, &quality);
624 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
627 static int xc5000_set_params(struct dvb_frontend *fe,
628 struct dvb_frontend_parameters *params)
630 struct xc5000_priv *priv = fe->tuner_priv;
633 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
634 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
635 dprintk(1, "Unable to load firmware and init tuner\n");
640 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
642 if (fe->ops.info.type == FE_ATSC) {
643 dprintk(1, "%s() ATSC\n", __func__);
644 switch (params->u.vsb.modulation) {
647 dprintk(1, "%s() VSB modulation\n", __func__);
648 priv->rf_mode = XC_RF_MODE_AIR;
649 priv->freq_hz = params->frequency - 1750000;
650 priv->bandwidth = BANDWIDTH_6_MHZ;
651 priv->video_standard = DTV6;
656 dprintk(1, "%s() QAM modulation\n", __func__);
657 priv->rf_mode = XC_RF_MODE_CABLE;
658 priv->freq_hz = params->frequency - 1750000;
659 priv->bandwidth = BANDWIDTH_6_MHZ;
660 priv->video_standard = DTV6;
665 } else if (fe->ops.info.type == FE_OFDM) {
666 dprintk(1, "%s() OFDM\n", __func__);
667 switch (params->u.ofdm.bandwidth) {
668 case BANDWIDTH_6_MHZ:
669 priv->bandwidth = BANDWIDTH_6_MHZ;
670 priv->video_standard = DTV6;
671 priv->freq_hz = params->frequency - 1750000;
673 case BANDWIDTH_7_MHZ:
674 printk(KERN_ERR "xc5000 bandwidth 7MHz not supported\n");
676 case BANDWIDTH_8_MHZ:
677 priv->bandwidth = BANDWIDTH_8_MHZ;
678 priv->video_standard = DTV8;
679 priv->freq_hz = params->frequency - 2750000;
682 printk(KERN_ERR "xc5000 bandwidth not set!\n");
685 priv->rf_mode = XC_RF_MODE_AIR;
687 printk(KERN_ERR "xc5000 modulation type not supported!\n");
691 dprintk(1, "%s() frequency=%d (compensated)\n",
692 __func__, priv->freq_hz);
694 ret = xc_SetSignalSource(priv, priv->rf_mode);
695 if (ret != XC_RESULT_SUCCESS) {
697 "xc5000: xc_SetSignalSource(%d) failed\n",
702 ret = xc_SetTVStandard(priv,
703 XC5000_Standard[priv->video_standard].VideoMode,
704 XC5000_Standard[priv->video_standard].AudioMode);
705 if (ret != XC_RESULT_SUCCESS) {
706 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
710 ret = xc_set_IF_frequency(priv, priv->if_khz);
711 if (ret != XC_RESULT_SUCCESS) {
712 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
717 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
725 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
727 struct xc5000_priv *priv = fe->tuner_priv;
731 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
732 if (ret == XC_RESULT_SUCCESS) {
733 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
734 ret = XC_RESULT_RESET_FAILURE;
736 ret = XC_RESULT_SUCCESS;
739 dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
740 ret == XC_RESULT_SUCCESS ? "True" : "False", id);
744 static int xc5000_set_tv_freq(struct dvb_frontend *fe,
745 struct analog_parameters *params)
747 struct xc5000_priv *priv = fe->tuner_priv;
750 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
751 __func__, params->frequency);
753 /* Fix me: it could be air. */
754 priv->rf_mode = params->mode;
755 if (params->mode > XC_RF_MODE_CABLE)
756 priv->rf_mode = XC_RF_MODE_CABLE;
758 /* params->frequency is in units of 62.5khz */
759 priv->freq_hz = params->frequency * 62500;
761 /* FIX ME: Some video standards may have several possible audio
762 standards. We simply default to one of them here.
764 if (params->std & V4L2_STD_MN) {
765 /* default to BTSC audio standard */
766 priv->video_standard = MN_NTSC_PAL_BTSC;
770 if (params->std & V4L2_STD_PAL_BG) {
771 /* default to NICAM audio standard */
772 priv->video_standard = BG_PAL_NICAM;
776 if (params->std & V4L2_STD_PAL_I) {
777 /* default to NICAM audio standard */
778 priv->video_standard = I_PAL_NICAM;
782 if (params->std & V4L2_STD_PAL_DK) {
783 /* default to NICAM audio standard */
784 priv->video_standard = DK_PAL_NICAM;
788 if (params->std & V4L2_STD_SECAM_DK) {
789 /* default to A2 DK1 audio standard */
790 priv->video_standard = DK_SECAM_A2DK1;
794 if (params->std & V4L2_STD_SECAM_L) {
795 priv->video_standard = L_SECAM_NICAM;
799 if (params->std & V4L2_STD_SECAM_LC) {
800 priv->video_standard = LC_SECAM_NICAM;
805 ret = xc_SetSignalSource(priv, priv->rf_mode);
806 if (ret != XC_RESULT_SUCCESS) {
808 "xc5000: xc_SetSignalSource(%d) failed\n",
813 ret = xc_SetTVStandard(priv,
814 XC5000_Standard[priv->video_standard].VideoMode,
815 XC5000_Standard[priv->video_standard].AudioMode);
816 if (ret != XC_RESULT_SUCCESS) {
817 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
821 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
829 static int xc5000_set_radio_freq(struct dvb_frontend *fe,
830 struct analog_parameters *params)
832 struct xc5000_priv *priv = fe->tuner_priv;
836 dprintk(1, "%s() frequency=%d (in units of khz)\n",
837 __func__, params->frequency);
839 if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
840 dprintk(1, "%s() radio input not configured\n", __func__);
844 if (priv->radio_input == XC5000_RADIO_FM1)
845 radio_input = FM_Radio_INPUT1;
846 else if (priv->radio_input == XC5000_RADIO_FM2)
847 radio_input = FM_Radio_INPUT2;
849 dprintk(1, "%s() unknown radio input %d\n", __func__,
854 priv->freq_hz = params->frequency * 125 / 2;
856 priv->rf_mode = XC_RF_MODE_AIR;
858 ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
859 XC5000_Standard[radio_input].AudioMode);
861 if (ret != XC_RESULT_SUCCESS) {
862 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
866 ret = xc_SetSignalSource(priv, priv->rf_mode);
867 if (ret != XC_RESULT_SUCCESS) {
869 "xc5000: xc_SetSignalSource(%d) failed\n",
874 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
879 static int xc5000_set_analog_params(struct dvb_frontend *fe,
880 struct analog_parameters *params)
882 struct xc5000_priv *priv = fe->tuner_priv;
885 if (priv->i2c_props.adap == NULL)
888 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
889 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
890 dprintk(1, "Unable to load firmware and init tuner\n");
895 switch (params->mode) {
896 case V4L2_TUNER_RADIO:
897 ret = xc5000_set_radio_freq(fe, params);
899 case V4L2_TUNER_ANALOG_TV:
900 case V4L2_TUNER_DIGITAL_TV:
901 ret = xc5000_set_tv_freq(fe, params);
909 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
911 struct xc5000_priv *priv = fe->tuner_priv;
912 dprintk(1, "%s()\n", __func__);
913 *freq = priv->freq_hz;
917 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
919 struct xc5000_priv *priv = fe->tuner_priv;
920 dprintk(1, "%s()\n", __func__);
922 *bw = priv->bandwidth;
926 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
928 struct xc5000_priv *priv = fe->tuner_priv;
931 xc_get_lock_status(priv, &lock_status);
933 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
935 *status = lock_status;
940 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
942 struct xc5000_priv *priv = fe->tuner_priv;
945 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
946 ret = xc5000_fwupload(fe);
947 if (ret != XC_RESULT_SUCCESS)
951 /* Start the tuner self-calibration process */
952 ret |= xc_initialize(priv);
954 /* Wait for calibration to complete.
955 * We could continue but XC5000 will clock stretch subsequent
956 * I2C transactions until calibration is complete. This way we
957 * don't have to rely on clock stretching working.
961 /* Default to "CABLE" mode */
962 ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
967 static int xc5000_sleep(struct dvb_frontend *fe)
971 dprintk(1, "%s()\n", __func__);
973 /* Avoid firmware reload on slow devices */
977 /* According to Xceive technical support, the "powerdown" register
978 was removed in newer versions of the firmware. The "supported"
979 way to sleep the tuner is to pull the reset pin low for 10ms */
980 ret = xc5000_TunerReset(fe);
981 if (ret != XC_RESULT_SUCCESS) {
983 "xc5000: %s() unable to shutdown tuner\n",
987 return XC_RESULT_SUCCESS;
990 static int xc5000_init(struct dvb_frontend *fe)
992 struct xc5000_priv *priv = fe->tuner_priv;
993 dprintk(1, "%s()\n", __func__);
995 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
996 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1001 xc_debug_dump(priv);
1006 static int xc5000_release(struct dvb_frontend *fe)
1008 struct xc5000_priv *priv = fe->tuner_priv;
1010 dprintk(1, "%s()\n", __func__);
1012 mutex_lock(&xc5000_list_mutex);
1015 hybrid_tuner_release_state(priv);
1017 mutex_unlock(&xc5000_list_mutex);
1019 fe->tuner_priv = NULL;
1024 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1026 .name = "Xceive XC5000",
1027 .frequency_min = 1000000,
1028 .frequency_max = 1023000000,
1029 .frequency_step = 50000,
1032 .release = xc5000_release,
1033 .init = xc5000_init,
1034 .sleep = xc5000_sleep,
1036 .set_params = xc5000_set_params,
1037 .set_analog_params = xc5000_set_analog_params,
1038 .get_frequency = xc5000_get_frequency,
1039 .get_bandwidth = xc5000_get_bandwidth,
1040 .get_status = xc5000_get_status
1043 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1044 struct i2c_adapter *i2c,
1045 const struct xc5000_config *cfg)
1047 struct xc5000_priv *priv = NULL;
1051 dprintk(1, "%s(%d-%04x)\n", __func__,
1052 i2c ? i2c_adapter_id(i2c) : -1,
1053 cfg ? cfg->i2c_address : -1);
1055 mutex_lock(&xc5000_list_mutex);
1057 instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1058 hybrid_tuner_instance_list,
1059 i2c, cfg->i2c_address, "xc5000");
1065 /* new tuner instance */
1066 priv->bandwidth = BANDWIDTH_6_MHZ;
1067 fe->tuner_priv = priv;
1070 /* existing tuner instance */
1071 fe->tuner_priv = priv;
1075 if (priv->if_khz == 0) {
1076 /* If the IF hasn't been set yet, use the value provided by
1077 the caller (occurs in hybrid devices where the analog
1078 call to xc5000_attach occurs before the digital side) */
1079 priv->if_khz = cfg->if_khz;
1082 if (priv->radio_input == 0)
1083 priv->radio_input = cfg->radio_input;
1085 /* Check if firmware has been loaded. It is possible that another
1086 instance of the driver has loaded the firmware.
1088 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1092 case XC_PRODUCT_ID_FW_LOADED:
1094 "xc5000: Successfully identified at address 0x%02x\n",
1097 "xc5000: Firmware has been loaded previously\n");
1099 case XC_PRODUCT_ID_FW_NOT_LOADED:
1101 "xc5000: Successfully identified at address 0x%02x\n",
1104 "xc5000: Firmware has not been loaded previously\n");
1108 "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1109 cfg->i2c_address, id);
1113 mutex_unlock(&xc5000_list_mutex);
1115 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1116 sizeof(struct dvb_tuner_ops));
1120 mutex_unlock(&xc5000_list_mutex);
1125 EXPORT_SYMBOL(xc5000_attach);
1127 MODULE_AUTHOR("Steven Toth");
1128 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1129 MODULE_LICENSE("GPL");