2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
5 * Copyright 2010 Red Hat, Inc.
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
31 #include <linux/bitfield.h>
32 #include <linux/cec.h>
33 #include <linux/hdmi.h>
34 #include <linux/i2c.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/slab.h>
39 #include <linux/vga_switcheroo.h>
41 #include <drm/drm_displayid.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_edid.h>
44 #include <drm/drm_eld.h>
45 #include <drm/drm_encoder.h>
46 #include <drm/drm_print.h>
48 #include "drm_crtc_internal.h"
49 #include "drm_internal.h"
51 static int oui(u8 first, u8 second, u8 third)
53 return (first << 16) | (second << 8) | third;
56 #define EDID_EST_TIMINGS 16
57 #define EDID_STD_TIMINGS 8
58 #define EDID_DETAILED_TIMINGS 4
61 * EDID blocks out in the wild have a variety of bugs, try to collect
62 * them here (note that userspace may work around broken monitors first,
63 * but fixes should make their way here so that the kernel "just works"
64 * on as many displays as possible).
67 /* First detailed mode wrong, use largest 60Hz mode */
68 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
69 /* Reported 135MHz pixel clock is too high, needs adjustment */
70 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
71 /* Prefer the largest mode at 75 Hz */
72 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
73 /* Detail timing is in cm not mm */
74 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
75 /* Detailed timing descriptors have bogus size values, so just take the
76 * maximum size and use that.
78 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
79 /* use +hsync +vsync for detailed mode */
80 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
81 /* Force reduced-blanking timings for detailed modes */
82 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
84 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
86 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
88 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
90 #define EDID_QUIRK_FORCE_10BPC (1 << 11)
91 /* Non desktop display (i.e. HMD) */
92 #define EDID_QUIRK_NON_DESKTOP (1 << 12)
93 /* Cap the DSC target bitrate to 15bpp */
94 #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
96 #define MICROSOFT_IEEE_OUI 0xca125c
98 struct detailed_mode_closure {
99 struct drm_connector *connector;
100 const struct drm_edid *drm_edid;
110 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
112 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
117 static const struct edid_quirk {
120 } edid_quirk_list[] = {
122 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
124 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
126 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
127 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
130 EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
132 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
133 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
135 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
136 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
138 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
139 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
141 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
142 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
144 /* Belinea 10 15 55 */
145 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
146 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
148 /* Envision Peripherals, Inc. EN-7100e */
149 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
150 /* Envision EN2028 */
151 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
153 /* Funai Electronics PM36B */
154 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
155 EDID_QUIRK_DETAILED_IN_CM),
158 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
161 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
163 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
164 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
166 /* LG Philips LCD LP154W01-A5 */
167 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
168 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
170 /* Samsung SyncMaster 205BW. Note: irony */
171 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
172 /* Samsung SyncMaster 22[5-6]BW */
173 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
174 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
176 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
177 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
179 /* ViewSonic VA2026w */
180 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
182 /* Medion MD 30217 PG */
183 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
186 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
188 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
189 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
191 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
192 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
194 /* Valve Index Headset */
195 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
206 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
207 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
208 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
209 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
210 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
211 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
213 /* HTC Vive and Vive Pro VR Headsets */
214 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
215 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
217 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
218 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
219 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
220 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
221 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
223 /* Windows Mixed Reality Headsets */
224 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
226 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
227 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
228 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
229 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
231 /* Sony PlayStation VR Headset */
232 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
234 /* Sensics VR Headsets */
235 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
237 /* OSVR HDK and HDK2 VR Headsets */
238 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
239 EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
243 * Autogenerated from the DMT spec.
244 * This table is copied from xfree86/modes/xf86EdidModes.c.
246 static const struct drm_display_mode drm_dmt_modes[] = {
247 /* 0x01 - 640x350@85Hz */
248 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
249 736, 832, 0, 350, 382, 385, 445, 0,
250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 /* 0x02 - 640x400@85Hz */
252 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
253 736, 832, 0, 400, 401, 404, 445, 0,
254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 /* 0x03 - 720x400@85Hz */
256 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
257 828, 936, 0, 400, 401, 404, 446, 0,
258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 /* 0x04 - 640x480@60Hz */
260 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
261 752, 800, 0, 480, 490, 492, 525, 0,
262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 /* 0x05 - 640x480@72Hz */
264 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
265 704, 832, 0, 480, 489, 492, 520, 0,
266 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 /* 0x06 - 640x480@75Hz */
268 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
269 720, 840, 0, 480, 481, 484, 500, 0,
270 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 /* 0x07 - 640x480@85Hz */
272 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
273 752, 832, 0, 480, 481, 484, 509, 0,
274 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 /* 0x08 - 800x600@56Hz */
276 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
277 896, 1024, 0, 600, 601, 603, 625, 0,
278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 /* 0x09 - 800x600@60Hz */
280 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
281 968, 1056, 0, 600, 601, 605, 628, 0,
282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 /* 0x0a - 800x600@72Hz */
284 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
285 976, 1040, 0, 600, 637, 643, 666, 0,
286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 /* 0x0b - 800x600@75Hz */
288 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
289 896, 1056, 0, 600, 601, 604, 625, 0,
290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 /* 0x0c - 800x600@85Hz */
292 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
293 896, 1048, 0, 600, 601, 604, 631, 0,
294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 /* 0x0d - 800x600@120Hz RB */
296 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
297 880, 960, 0, 600, 603, 607, 636, 0,
298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 /* 0x0e - 848x480@60Hz */
300 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
301 976, 1088, 0, 480, 486, 494, 517, 0,
302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 /* 0x0f - 1024x768@43Hz, interlace */
304 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
305 1208, 1264, 0, 768, 768, 776, 817, 0,
306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
307 DRM_MODE_FLAG_INTERLACE) },
308 /* 0x10 - 1024x768@60Hz */
309 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
310 1184, 1344, 0, 768, 771, 777, 806, 0,
311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 /* 0x11 - 1024x768@70Hz */
313 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
314 1184, 1328, 0, 768, 771, 777, 806, 0,
315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 /* 0x12 - 1024x768@75Hz */
317 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
318 1136, 1312, 0, 768, 769, 772, 800, 0,
319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 /* 0x13 - 1024x768@85Hz */
321 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
322 1168, 1376, 0, 768, 769, 772, 808, 0,
323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 /* 0x14 - 1024x768@120Hz RB */
325 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
326 1104, 1184, 0, 768, 771, 775, 813, 0,
327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 /* 0x15 - 1152x864@75Hz */
329 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
330 1344, 1600, 0, 864, 865, 868, 900, 0,
331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 /* 0x55 - 1280x720@60Hz */
333 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
334 1430, 1650, 0, 720, 725, 730, 750, 0,
335 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 /* 0x16 - 1280x768@60Hz RB */
337 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
338 1360, 1440, 0, 768, 771, 778, 790, 0,
339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
340 /* 0x17 - 1280x768@60Hz */
341 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
342 1472, 1664, 0, 768, 771, 778, 798, 0,
343 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 /* 0x18 - 1280x768@75Hz */
345 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
346 1488, 1696, 0, 768, 771, 778, 805, 0,
347 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 /* 0x19 - 1280x768@85Hz */
349 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
350 1496, 1712, 0, 768, 771, 778, 809, 0,
351 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 /* 0x1a - 1280x768@120Hz RB */
353 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
354 1360, 1440, 0, 768, 771, 778, 813, 0,
355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
356 /* 0x1b - 1280x800@60Hz RB */
357 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
358 1360, 1440, 0, 800, 803, 809, 823, 0,
359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 /* 0x1c - 1280x800@60Hz */
361 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
362 1480, 1680, 0, 800, 803, 809, 831, 0,
363 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 /* 0x1d - 1280x800@75Hz */
365 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
366 1488, 1696, 0, 800, 803, 809, 838, 0,
367 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 /* 0x1e - 1280x800@85Hz */
369 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
370 1496, 1712, 0, 800, 803, 809, 843, 0,
371 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 /* 0x1f - 1280x800@120Hz RB */
373 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
374 1360, 1440, 0, 800, 803, 809, 847, 0,
375 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376 /* 0x20 - 1280x960@60Hz */
377 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
378 1488, 1800, 0, 960, 961, 964, 1000, 0,
379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 /* 0x21 - 1280x960@85Hz */
381 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
382 1504, 1728, 0, 960, 961, 964, 1011, 0,
383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 /* 0x22 - 1280x960@120Hz RB */
385 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
386 1360, 1440, 0, 960, 963, 967, 1017, 0,
387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 /* 0x23 - 1280x1024@60Hz */
389 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
390 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 /* 0x24 - 1280x1024@75Hz */
393 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
394 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 /* 0x25 - 1280x1024@85Hz */
397 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
398 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 /* 0x26 - 1280x1024@120Hz RB */
401 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
402 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
403 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 /* 0x27 - 1360x768@60Hz */
405 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
406 1536, 1792, 0, 768, 771, 777, 795, 0,
407 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 /* 0x28 - 1360x768@120Hz RB */
409 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
410 1440, 1520, 0, 768, 771, 776, 813, 0,
411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 /* 0x51 - 1366x768@60Hz */
413 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
414 1579, 1792, 0, 768, 771, 774, 798, 0,
415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 /* 0x56 - 1366x768@60Hz */
417 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
418 1436, 1500, 0, 768, 769, 772, 800, 0,
419 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 /* 0x29 - 1400x1050@60Hz RB */
421 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
422 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
423 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 /* 0x2a - 1400x1050@60Hz */
425 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
426 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 /* 0x2b - 1400x1050@75Hz */
429 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
430 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
431 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 /* 0x2c - 1400x1050@85Hz */
433 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
434 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 /* 0x2d - 1400x1050@120Hz RB */
437 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
438 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 /* 0x2e - 1440x900@60Hz RB */
441 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
442 1520, 1600, 0, 900, 903, 909, 926, 0,
443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 /* 0x2f - 1440x900@60Hz */
445 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
446 1672, 1904, 0, 900, 903, 909, 934, 0,
447 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 /* 0x30 - 1440x900@75Hz */
449 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
450 1688, 1936, 0, 900, 903, 909, 942, 0,
451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 /* 0x31 - 1440x900@85Hz */
453 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
454 1696, 1952, 0, 900, 903, 909, 948, 0,
455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 /* 0x32 - 1440x900@120Hz RB */
457 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
458 1520, 1600, 0, 900, 903, 909, 953, 0,
459 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 /* 0x53 - 1600x900@60Hz */
461 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
462 1704, 1800, 0, 900, 901, 904, 1000, 0,
463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
464 /* 0x33 - 1600x1200@60Hz */
465 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
466 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 /* 0x34 - 1600x1200@65Hz */
469 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
470 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 /* 0x35 - 1600x1200@70Hz */
473 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
474 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
476 /* 0x36 - 1600x1200@75Hz */
477 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
478 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
479 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 /* 0x37 - 1600x1200@85Hz */
481 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
482 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
483 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 /* 0x38 - 1600x1200@120Hz RB */
485 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
486 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 /* 0x39 - 1680x1050@60Hz RB */
489 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
490 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
492 /* 0x3a - 1680x1050@60Hz */
493 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
494 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
495 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 /* 0x3b - 1680x1050@75Hz */
497 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
498 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 /* 0x3c - 1680x1050@85Hz */
501 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
502 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 /* 0x3d - 1680x1050@120Hz RB */
505 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
506 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 /* 0x3e - 1792x1344@60Hz */
509 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
510 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
512 /* 0x3f - 1792x1344@75Hz */
513 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
514 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
515 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 /* 0x40 - 1792x1344@120Hz RB */
517 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
518 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520 /* 0x41 - 1856x1392@60Hz */
521 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
522 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
523 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524 /* 0x42 - 1856x1392@75Hz */
525 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
526 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
527 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
528 /* 0x43 - 1856x1392@120Hz RB */
529 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
530 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532 /* 0x52 - 1920x1080@60Hz */
533 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
534 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
535 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
536 /* 0x44 - 1920x1200@60Hz RB */
537 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
538 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
539 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540 /* 0x45 - 1920x1200@60Hz */
541 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
542 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 /* 0x46 - 1920x1200@75Hz */
545 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
546 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
547 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548 /* 0x47 - 1920x1200@85Hz */
549 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
550 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
551 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
552 /* 0x48 - 1920x1200@120Hz RB */
553 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
554 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
555 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 /* 0x49 - 1920x1440@60Hz */
557 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
558 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
559 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
560 /* 0x4a - 1920x1440@75Hz */
561 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
562 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
563 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564 /* 0x4b - 1920x1440@120Hz RB */
565 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
566 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
568 /* 0x54 - 2048x1152@60Hz */
569 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
570 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
572 /* 0x4c - 2560x1600@60Hz RB */
573 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
574 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
575 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576 /* 0x4d - 2560x1600@60Hz */
577 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
578 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
579 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580 /* 0x4e - 2560x1600@75Hz */
581 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
582 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
583 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584 /* 0x4f - 2560x1600@85Hz */
585 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
586 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
587 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
588 /* 0x50 - 2560x1600@120Hz RB */
589 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
590 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
591 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
592 /* 0x57 - 4096x2160@60Hz RB */
593 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
594 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
595 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
597 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
598 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
599 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
603 * These more or less come from the DMT spec. The 720x400 modes are
604 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
605 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
609 * The DMT modes have been fact-checked; the rest are mild guesses.
611 static const struct drm_display_mode edid_est_modes[] = {
612 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
613 968, 1056, 0, 600, 601, 605, 628, 0,
614 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
615 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
616 896, 1024, 0, 600, 601, 603, 625, 0,
617 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
619 720, 840, 0, 480, 481, 484, 500, 0,
620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
622 704, 832, 0, 480, 489, 492, 520, 0,
623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
624 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
625 768, 864, 0, 480, 483, 486, 525, 0,
626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
627 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
628 752, 800, 0, 480, 490, 492, 525, 0,
629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
630 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
631 846, 900, 0, 400, 421, 423, 449, 0,
632 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
633 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
634 846, 900, 0, 400, 412, 414, 449, 0,
635 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
636 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
637 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
638 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
640 1136, 1312, 0, 768, 769, 772, 800, 0,
641 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
642 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
643 1184, 1328, 0, 768, 771, 777, 806, 0,
644 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
645 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
646 1184, 1344, 0, 768, 771, 777, 806, 0,
647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
648 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
649 1208, 1264, 0, 768, 768, 776, 817, 0,
650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
651 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
652 928, 1152, 0, 624, 625, 628, 667, 0,
653 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
654 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
655 896, 1056, 0, 600, 601, 604, 625, 0,
656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
657 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
658 976, 1040, 0, 600, 637, 643, 666, 0,
659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
660 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
661 1344, 1600, 0, 864, 865, 868, 900, 0,
662 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
672 static const struct minimode est3_modes[] = {
680 { 1024, 768, 85, 0 },
681 { 1152, 864, 75, 0 },
683 { 1280, 768, 60, 1 },
684 { 1280, 768, 60, 0 },
685 { 1280, 768, 75, 0 },
686 { 1280, 768, 85, 0 },
687 { 1280, 960, 60, 0 },
688 { 1280, 960, 85, 0 },
689 { 1280, 1024, 60, 0 },
690 { 1280, 1024, 85, 0 },
692 { 1360, 768, 60, 0 },
693 { 1440, 900, 60, 1 },
694 { 1440, 900, 60, 0 },
695 { 1440, 900, 75, 0 },
696 { 1440, 900, 85, 0 },
697 { 1400, 1050, 60, 1 },
698 { 1400, 1050, 60, 0 },
699 { 1400, 1050, 75, 0 },
701 { 1400, 1050, 85, 0 },
702 { 1680, 1050, 60, 1 },
703 { 1680, 1050, 60, 0 },
704 { 1680, 1050, 75, 0 },
705 { 1680, 1050, 85, 0 },
706 { 1600, 1200, 60, 0 },
707 { 1600, 1200, 65, 0 },
708 { 1600, 1200, 70, 0 },
710 { 1600, 1200, 75, 0 },
711 { 1600, 1200, 85, 0 },
712 { 1792, 1344, 60, 0 },
713 { 1792, 1344, 75, 0 },
714 { 1856, 1392, 60, 0 },
715 { 1856, 1392, 75, 0 },
716 { 1920, 1200, 60, 1 },
717 { 1920, 1200, 60, 0 },
719 { 1920, 1200, 75, 0 },
720 { 1920, 1200, 85, 0 },
721 { 1920, 1440, 60, 0 },
722 { 1920, 1440, 75, 0 },
725 static const struct minimode extra_modes[] = {
726 { 1024, 576, 60, 0 },
727 { 1366, 768, 60, 0 },
728 { 1600, 900, 60, 0 },
729 { 1680, 945, 60, 0 },
730 { 1920, 1080, 60, 0 },
731 { 2048, 1152, 60, 0 },
732 { 2048, 1536, 60, 0 },
736 * From CEA/CTA-861 spec.
738 * Do not access directly, instead always use cea_mode_for_vic().
740 static const struct drm_display_mode edid_cea_modes_1[] = {
741 /* 1 - 640x480@60Hz 4:3 */
742 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
743 752, 800, 0, 480, 490, 492, 525, 0,
744 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 /* 2 - 720x480@60Hz 4:3 */
747 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
748 798, 858, 0, 480, 489, 495, 525, 0,
749 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751 /* 3 - 720x480@60Hz 16:9 */
752 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
753 798, 858, 0, 480, 489, 495, 525, 0,
754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 /* 4 - 1280x720@60Hz 16:9 */
757 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
758 1430, 1650, 0, 720, 725, 730, 750, 0,
759 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 /* 5 - 1920x1080i@60Hz 16:9 */
762 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
763 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765 DRM_MODE_FLAG_INTERLACE),
766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767 /* 6 - 720(1440)x480i@60Hz 4:3 */
768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 801, 858, 0, 480, 488, 494, 525, 0,
770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
773 /* 7 - 720(1440)x480i@60Hz 16:9 */
774 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 801, 858, 0, 480, 488, 494, 525, 0,
776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
779 /* 8 - 720(1440)x240@60Hz 4:3 */
780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 801, 858, 0, 240, 244, 247, 262, 0,
782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 DRM_MODE_FLAG_DBLCLK),
784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
785 /* 9 - 720(1440)x240@60Hz 16:9 */
786 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
787 801, 858, 0, 240, 244, 247, 262, 0,
788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 DRM_MODE_FLAG_DBLCLK),
790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791 /* 10 - 2880x480i@60Hz 4:3 */
792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 3204, 3432, 0, 480, 488, 494, 525, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 DRM_MODE_FLAG_INTERLACE),
796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
797 /* 11 - 2880x480i@60Hz 16:9 */
798 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 3204, 3432, 0, 480, 488, 494, 525, 0,
800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
801 DRM_MODE_FLAG_INTERLACE),
802 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803 /* 12 - 2880x240@60Hz 4:3 */
804 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
805 3204, 3432, 0, 240, 244, 247, 262, 0,
806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808 /* 13 - 2880x240@60Hz 16:9 */
809 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
810 3204, 3432, 0, 240, 244, 247, 262, 0,
811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813 /* 14 - 1440x480@60Hz 4:3 */
814 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
815 1596, 1716, 0, 480, 489, 495, 525, 0,
816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818 /* 15 - 1440x480@60Hz 16:9 */
819 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
820 1596, 1716, 0, 480, 489, 495, 525, 0,
821 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 /* 16 - 1920x1080@60Hz 16:9 */
824 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
825 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
826 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
827 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828 /* 17 - 720x576@50Hz 4:3 */
829 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
830 796, 864, 0, 576, 581, 586, 625, 0,
831 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833 /* 18 - 720x576@50Hz 16:9 */
834 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
835 796, 864, 0, 576, 581, 586, 625, 0,
836 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 /* 19 - 1280x720@50Hz 16:9 */
839 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
840 1760, 1980, 0, 720, 725, 730, 750, 0,
841 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 /* 20 - 1920x1080i@50Hz 16:9 */
844 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
846 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
847 DRM_MODE_FLAG_INTERLACE),
848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 /* 21 - 720(1440)x576i@50Hz 4:3 */
850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 795, 864, 0, 576, 580, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
855 /* 22 - 720(1440)x576i@50Hz 16:9 */
856 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 795, 864, 0, 576, 580, 586, 625, 0,
858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 /* 23 - 720(1440)x288@50Hz 4:3 */
862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 795, 864, 0, 288, 290, 293, 312, 0,
864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 DRM_MODE_FLAG_DBLCLK),
866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
867 /* 24 - 720(1440)x288@50Hz 16:9 */
868 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
869 795, 864, 0, 288, 290, 293, 312, 0,
870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 DRM_MODE_FLAG_DBLCLK),
872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 /* 25 - 2880x576i@50Hz 4:3 */
874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 3180, 3456, 0, 576, 580, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 DRM_MODE_FLAG_INTERLACE),
878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 /* 26 - 2880x576i@50Hz 16:9 */
880 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 3180, 3456, 0, 576, 580, 586, 625, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 DRM_MODE_FLAG_INTERLACE),
884 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 /* 27 - 2880x288@50Hz 4:3 */
886 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
887 3180, 3456, 0, 288, 290, 293, 312, 0,
888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 /* 28 - 2880x288@50Hz 16:9 */
891 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
892 3180, 3456, 0, 288, 290, 293, 312, 0,
893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 /* 29 - 1440x576@50Hz 4:3 */
896 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
897 1592, 1728, 0, 576, 581, 586, 625, 0,
898 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
900 /* 30 - 1440x576@50Hz 16:9 */
901 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
902 1592, 1728, 0, 576, 581, 586, 625, 0,
903 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 /* 31 - 1920x1080@50Hz 16:9 */
906 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
907 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
908 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
909 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 /* 32 - 1920x1080@24Hz 16:9 */
911 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
912 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
913 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 /* 33 - 1920x1080@25Hz 16:9 */
916 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
917 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
918 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
920 /* 34 - 1920x1080@30Hz 16:9 */
921 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
922 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
923 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 /* 35 - 2880x480@60Hz 4:3 */
926 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
927 3192, 3432, 0, 480, 489, 495, 525, 0,
928 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
929 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
930 /* 36 - 2880x480@60Hz 16:9 */
931 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
932 3192, 3432, 0, 480, 489, 495, 525, 0,
933 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
934 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 /* 37 - 2880x576@50Hz 4:3 */
936 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
937 3184, 3456, 0, 576, 581, 586, 625, 0,
938 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
939 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940 /* 38 - 2880x576@50Hz 16:9 */
941 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
942 3184, 3456, 0, 576, 581, 586, 625, 0,
943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 /* 39 - 1920x1080i@50Hz 16:9 */
946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
947 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
949 DRM_MODE_FLAG_INTERLACE),
950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 /* 40 - 1920x1080i@100Hz 16:9 */
952 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
953 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
955 DRM_MODE_FLAG_INTERLACE),
956 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
957 /* 41 - 1280x720@100Hz 16:9 */
958 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
959 1760, 1980, 0, 720, 725, 730, 750, 0,
960 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 /* 42 - 720x576@100Hz 4:3 */
963 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964 796, 864, 0, 576, 581, 586, 625, 0,
965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967 /* 43 - 720x576@100Hz 16:9 */
968 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
969 796, 864, 0, 576, 581, 586, 625, 0,
970 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 /* 44 - 720(1440)x576i@100Hz 4:3 */
973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 795, 864, 0, 576, 580, 586, 625, 0,
975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 /* 45 - 720(1440)x576i@100Hz 16:9 */
979 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
980 795, 864, 0, 576, 580, 586, 625, 0,
981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 /* 46 - 1920x1080i@120Hz 16:9 */
985 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
986 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
988 DRM_MODE_FLAG_INTERLACE),
989 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 /* 47 - 1280x720@120Hz 16:9 */
991 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
992 1430, 1650, 0, 720, 725, 730, 750, 0,
993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 /* 48 - 720x480@120Hz 4:3 */
996 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
997 798, 858, 0, 480, 489, 495, 525, 0,
998 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000 /* 49 - 720x480@120Hz 16:9 */
1001 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002 798, 858, 0, 480, 489, 495, 525, 0,
1003 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 /* 50 - 720(1440)x480i@120Hz 4:3 */
1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 801, 858, 0, 480, 488, 494, 525, 0,
1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011 /* 51 - 720(1440)x480i@120Hz 16:9 */
1012 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013 801, 858, 0, 480, 488, 494, 525, 0,
1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017 /* 52 - 720x576@200Hz 4:3 */
1018 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019 796, 864, 0, 576, 581, 586, 625, 0,
1020 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022 /* 53 - 720x576@200Hz 16:9 */
1023 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024 796, 864, 0, 576, 581, 586, 625, 0,
1025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027 /* 54 - 720(1440)x576i@200Hz 4:3 */
1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 795, 864, 0, 576, 580, 586, 625, 0,
1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033 /* 55 - 720(1440)x576i@200Hz 16:9 */
1034 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035 795, 864, 0, 576, 580, 586, 625, 0,
1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039 /* 56 - 720x480@240Hz 4:3 */
1040 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041 798, 858, 0, 480, 489, 495, 525, 0,
1042 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044 /* 57 - 720x480@240Hz 16:9 */
1045 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046 798, 858, 0, 480, 489, 495, 525, 0,
1047 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049 /* 58 - 720(1440)x480i@240Hz 4:3 */
1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 801, 858, 0, 480, 488, 494, 525, 0,
1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055 /* 59 - 720(1440)x480i@240Hz 16:9 */
1056 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057 801, 858, 0, 480, 488, 494, 525, 0,
1058 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061 /* 60 - 1280x720@24Hz 16:9 */
1062 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063 3080, 3300, 0, 720, 725, 730, 750, 0,
1064 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066 /* 61 - 1280x720@25Hz 16:9 */
1067 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068 3740, 3960, 0, 720, 725, 730, 750, 0,
1069 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071 /* 62 - 1280x720@30Hz 16:9 */
1072 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073 3080, 3300, 0, 720, 725, 730, 750, 0,
1074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076 /* 63 - 1920x1080@120Hz 16:9 */
1077 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081 /* 64 - 1920x1080@100Hz 16:9 */
1082 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086 /* 65 - 1280x720@24Hz 64:27 */
1087 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088 3080, 3300, 0, 720, 725, 730, 750, 0,
1089 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 /* 66 - 1280x720@25Hz 64:27 */
1092 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093 3740, 3960, 0, 720, 725, 730, 750, 0,
1094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 /* 67 - 1280x720@30Hz 64:27 */
1097 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098 3080, 3300, 0, 720, 725, 730, 750, 0,
1099 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 /* 68 - 1280x720@50Hz 64:27 */
1102 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103 1760, 1980, 0, 720, 725, 730, 750, 0,
1104 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 /* 69 - 1280x720@60Hz 64:27 */
1107 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108 1430, 1650, 0, 720, 725, 730, 750, 0,
1109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 /* 70 - 1280x720@100Hz 64:27 */
1112 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113 1760, 1980, 0, 720, 725, 730, 750, 0,
1114 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 /* 71 - 1280x720@120Hz 64:27 */
1117 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118 1430, 1650, 0, 720, 725, 730, 750, 0,
1119 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 /* 72 - 1920x1080@24Hz 64:27 */
1122 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 /* 73 - 1920x1080@25Hz 64:27 */
1127 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 /* 74 - 1920x1080@30Hz 64:27 */
1132 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 /* 75 - 1920x1080@50Hz 64:27 */
1137 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 /* 76 - 1920x1080@60Hz 64:27 */
1142 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 /* 77 - 1920x1080@100Hz 64:27 */
1147 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 /* 78 - 1920x1080@120Hz 64:27 */
1152 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 /* 79 - 1680x720@24Hz 64:27 */
1157 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158 3080, 3300, 0, 720, 725, 730, 750, 0,
1159 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 /* 80 - 1680x720@25Hz 64:27 */
1162 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163 2948, 3168, 0, 720, 725, 730, 750, 0,
1164 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 /* 81 - 1680x720@30Hz 64:27 */
1167 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168 2420, 2640, 0, 720, 725, 730, 750, 0,
1169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 /* 82 - 1680x720@50Hz 64:27 */
1172 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173 1980, 2200, 0, 720, 725, 730, 750, 0,
1174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 /* 83 - 1680x720@60Hz 64:27 */
1177 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178 1980, 2200, 0, 720, 725, 730, 750, 0,
1179 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 /* 84 - 1680x720@100Hz 64:27 */
1182 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183 1780, 2000, 0, 720, 725, 730, 825, 0,
1184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 /* 85 - 1680x720@120Hz 64:27 */
1187 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188 1780, 2000, 0, 720, 725, 730, 825, 0,
1189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 /* 86 - 2560x1080@24Hz 64:27 */
1192 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 /* 87 - 2560x1080@25Hz 64:27 */
1197 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 /* 88 - 2560x1080@30Hz 64:27 */
1202 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 /* 89 - 2560x1080@50Hz 64:27 */
1207 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211 /* 90 - 2560x1080@60Hz 64:27 */
1212 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216 /* 91 - 2560x1080@100Hz 64:27 */
1217 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221 /* 92 - 2560x1080@120Hz 64:27 */
1222 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226 /* 93 - 3840x2160@24Hz 16:9 */
1227 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231 /* 94 - 3840x2160@25Hz 16:9 */
1232 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236 /* 95 - 3840x2160@30Hz 16:9 */
1237 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241 /* 96 - 3840x2160@50Hz 16:9 */
1242 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246 /* 97 - 3840x2160@60Hz 16:9 */
1247 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251 /* 98 - 4096x2160@24Hz 256:135 */
1252 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256 /* 99 - 4096x2160@25Hz 256:135 */
1257 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261 /* 100 - 4096x2160@30Hz 256:135 */
1262 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266 /* 101 - 4096x2160@50Hz 256:135 */
1267 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271 /* 102 - 4096x2160@60Hz 256:135 */
1272 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276 /* 103 - 3840x2160@24Hz 64:27 */
1277 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281 /* 104 - 3840x2160@25Hz 64:27 */
1282 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286 /* 105 - 3840x2160@30Hz 64:27 */
1287 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291 /* 106 - 3840x2160@50Hz 64:27 */
1292 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296 /* 107 - 3840x2160@60Hz 64:27 */
1297 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301 /* 108 - 1280x720@48Hz 16:9 */
1302 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303 2280, 2500, 0, 720, 725, 730, 750, 0,
1304 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306 /* 109 - 1280x720@48Hz 64:27 */
1307 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308 2280, 2500, 0, 720, 725, 730, 750, 0,
1309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311 /* 110 - 1680x720@48Hz 64:27 */
1312 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313 2530, 2750, 0, 720, 725, 730, 750, 0,
1314 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316 /* 111 - 1920x1080@48Hz 16:9 */
1317 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321 /* 112 - 1920x1080@48Hz 64:27 */
1322 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326 /* 113 - 2560x1080@48Hz 64:27 */
1327 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331 /* 114 - 3840x2160@48Hz 16:9 */
1332 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336 /* 115 - 4096x2160@48Hz 256:135 */
1337 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341 /* 116 - 3840x2160@48Hz 64:27 */
1342 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346 /* 117 - 3840x2160@100Hz 16:9 */
1347 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351 /* 118 - 3840x2160@120Hz 16:9 */
1352 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356 /* 119 - 3840x2160@100Hz 64:27 */
1357 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361 /* 120 - 3840x2160@120Hz 64:27 */
1362 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366 /* 121 - 5120x2160@24Hz 64:27 */
1367 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371 /* 122 - 5120x2160@25Hz 64:27 */
1372 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376 /* 123 - 5120x2160@30Hz 64:27 */
1377 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381 /* 124 - 5120x2160@48Hz 64:27 */
1382 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386 /* 125 - 5120x2160@50Hz 64:27 */
1387 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391 /* 126 - 5120x2160@60Hz 64:27 */
1392 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396 /* 127 - 5120x2160@100Hz 64:27 */
1397 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1404 * From CEA/CTA-861 spec.
1406 * Do not access directly, instead always use cea_mode_for_vic().
1408 static const struct drm_display_mode edid_cea_modes_193[] = {
1409 /* 193 - 5120x2160@120Hz 64:27 */
1410 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414 /* 194 - 7680x4320@24Hz 16:9 */
1415 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419 /* 195 - 7680x4320@25Hz 16:9 */
1420 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424 /* 196 - 7680x4320@30Hz 16:9 */
1425 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429 /* 197 - 7680x4320@48Hz 16:9 */
1430 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434 /* 198 - 7680x4320@50Hz 16:9 */
1435 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439 /* 199 - 7680x4320@60Hz 16:9 */
1440 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444 /* 200 - 7680x4320@100Hz 16:9 */
1445 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449 /* 201 - 7680x4320@120Hz 16:9 */
1450 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 /* 202 - 7680x4320@24Hz 64:27 */
1455 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459 /* 203 - 7680x4320@25Hz 64:27 */
1460 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464 /* 204 - 7680x4320@30Hz 64:27 */
1465 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469 /* 205 - 7680x4320@48Hz 64:27 */
1470 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474 /* 206 - 7680x4320@50Hz 64:27 */
1475 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479 /* 207 - 7680x4320@60Hz 64:27 */
1480 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484 /* 208 - 7680x4320@100Hz 64:27 */
1485 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489 /* 209 - 7680x4320@120Hz 64:27 */
1490 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494 /* 210 - 10240x4320@24Hz 64:27 */
1495 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499 /* 211 - 10240x4320@25Hz 64:27 */
1500 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504 /* 212 - 10240x4320@30Hz 64:27 */
1505 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509 /* 213 - 10240x4320@48Hz 64:27 */
1510 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514 /* 214 - 10240x4320@50Hz 64:27 */
1515 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519 /* 215 - 10240x4320@60Hz 64:27 */
1520 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524 /* 216 - 10240x4320@100Hz 64:27 */
1525 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529 /* 217 - 10240x4320@120Hz 64:27 */
1530 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534 /* 218 - 4096x2160@100Hz 256:135 */
1535 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539 /* 219 - 4096x2160@120Hz 256:135 */
1540 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1547 * HDMI 1.4 4k modes. Index using the VIC.
1549 static const struct drm_display_mode edid_4k_modes[] = {
1550 /* 0 - dummy, VICs start at 1 */
1552 /* 1 - 3840x2160@30Hz */
1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 3840, 4016, 4104, 4400, 0,
1555 2160, 2168, 2178, 2250, 0,
1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 /* 2 - 3840x2160@25Hz */
1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 3840, 4896, 4984, 5280, 0,
1561 2160, 2168, 2178, 2250, 0,
1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 /* 3 - 3840x2160@24Hz */
1565 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 3840, 5116, 5204, 5500, 0,
1567 2160, 2168, 2178, 2250, 0,
1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570 /* 4 - 4096x2160@24Hz (SMPTE) */
1571 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572 4096, 5116, 5204, 5500, 0,
1573 2160, 2168, 2178, 2250, 0,
1574 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1578 /*** DDC fetch and block validation ***/
1581 * The opaque EDID type, internal to drm_edid.c.
1584 /* Size allocated for edid */
1586 const struct edid *edid;
1589 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1591 static int edid_hfeeodb_block_count(const struct edid *edid)
1593 int eeodb = edid_hfeeodb_extension_block_count(edid);
1595 return eeodb ? eeodb + 1 : 0;
1598 static int edid_extension_block_count(const struct edid *edid)
1600 return edid->extensions;
1603 static int edid_block_count(const struct edid *edid)
1605 return edid_extension_block_count(edid) + 1;
1608 static int edid_size_by_blocks(int num_blocks)
1610 return num_blocks * EDID_LENGTH;
1613 static int edid_size(const struct edid *edid)
1615 return edid_size_by_blocks(edid_block_count(edid));
1618 static const void *edid_block_data(const struct edid *edid, int index)
1620 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1622 return edid + index;
1625 static const void *edid_extension_block_data(const struct edid *edid, int index)
1627 return edid_block_data(edid, index + 1);
1630 /* EDID block count indicated in EDID, may exceed allocated size */
1631 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1635 /* Starting point */
1636 num_blocks = edid_block_count(drm_edid->edid);
1638 /* HF-EEODB override */
1639 if (drm_edid->size >= edid_size_by_blocks(2)) {
1643 * Note: HF-EEODB may specify a smaller extension count than the
1644 * regular one. Unlike in buffer allocation, here we can use it.
1646 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1654 /* EDID block count, limited by allocated size */
1655 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1657 /* Limit by allocated size */
1658 return min(__drm_edid_block_count(drm_edid),
1659 (int)drm_edid->size / EDID_LENGTH);
1662 /* EDID extension block count, limited by allocated size */
1663 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1665 return drm_edid_block_count(drm_edid) - 1;
1668 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1670 return edid_block_data(drm_edid->edid, index);
1673 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1676 return edid_extension_block_data(drm_edid->edid, index);
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1683 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684 const struct edid *edid)
1689 memset(drm_edid, 0, sizeof(*drm_edid));
1691 drm_edid->edid = edid;
1692 drm_edid->size = edid_size(edid);
1698 * EDID base and extension block iterator.
1700 * struct drm_edid_iter iter;
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 * // do stuff with block
1707 * drm_edid_iter_end(&iter);
1709 struct drm_edid_iter {
1710 const struct drm_edid *drm_edid;
1712 /* Current block index. */
1716 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717 struct drm_edid_iter *iter)
1719 memset(iter, 0, sizeof(*iter));
1721 iter->drm_edid = drm_edid;
1724 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1726 const void *block = NULL;
1728 if (!iter->drm_edid)
1731 if (iter->index < drm_edid_block_count(iter->drm_edid))
1732 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1737 #define drm_edid_iter_for_each(__block, __iter) \
1738 while (((__block) = __drm_edid_iter_next(__iter)))
1740 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1742 memset(iter, 0, sizeof(*iter));
1745 static const u8 edid_header[] = {
1746 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1749 static void edid_header_fix(void *edid)
1751 memcpy(edid, edid_header, sizeof(edid_header));
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1758 * Sanity check the header of the base EDID block.
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1762 int drm_edid_header_is_valid(const void *_edid)
1764 const struct edid *edid = _edid;
1767 for (i = 0; i < sizeof(edid_header); i++) {
1768 if (edid->header[i] == edid_header[i])
1774 EXPORT_SYMBOL(drm_edid_header_is_valid);
1776 static int edid_fixup __read_mostly = 6;
1777 module_param_named(edid_fixup, edid_fixup, int, 0400);
1778 MODULE_PARM_DESC(edid_fixup,
1779 "Minimum number of valid EDID header bytes (0-8, default 6)");
1781 static int edid_block_compute_checksum(const void *_block)
1783 const u8 *block = _block;
1785 u8 csum = 0, crc = 0;
1787 for (i = 0; i < EDID_LENGTH - 1; i++)
1795 static int edid_block_get_checksum(const void *_block)
1797 const struct edid *block = _block;
1799 return block->checksum;
1802 static int edid_block_tag(const void *_block)
1804 const u8 *block = _block;
1809 static bool edid_block_is_zero(const void *edid)
1811 return !memchr_inv(edid, 0, EDID_LENGTH);
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1821 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1823 int edid1_len, edid2_len;
1824 bool edid1_present = edid1 != NULL;
1825 bool edid2_present = edid2 != NULL;
1827 if (edid1_present != edid2_present)
1831 edid1_len = edid_size(edid1);
1832 edid2_len = edid_size(edid2);
1834 if (edid1_len != edid2_len)
1837 if (memcmp(edid1, edid2, edid1_len))
1843 EXPORT_SYMBOL(drm_edid_are_equal);
1845 enum edid_block_status {
1847 EDID_BLOCK_READ_FAIL,
1850 EDID_BLOCK_HEADER_CORRUPT,
1851 EDID_BLOCK_HEADER_REPAIR,
1852 EDID_BLOCK_HEADER_FIXED,
1853 EDID_BLOCK_CHECKSUM,
1857 static enum edid_block_status edid_block_check(const void *_block,
1860 const struct edid *block = _block;
1863 return EDID_BLOCK_NULL;
1865 if (is_base_block) {
1866 int score = drm_edid_header_is_valid(block);
1868 if (score < clamp(edid_fixup, 0, 8)) {
1869 if (edid_block_is_zero(block))
1870 return EDID_BLOCK_ZERO;
1872 return EDID_BLOCK_HEADER_CORRUPT;
1876 return EDID_BLOCK_HEADER_REPAIR;
1879 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880 if (edid_block_is_zero(block))
1881 return EDID_BLOCK_ZERO;
1883 return EDID_BLOCK_CHECKSUM;
1886 if (is_base_block) {
1887 if (block->version != 1)
1888 return EDID_BLOCK_VERSION;
1891 return EDID_BLOCK_OK;
1894 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1896 return status == EDID_BLOCK_OK ||
1897 status == EDID_BLOCK_HEADER_FIXED ||
1898 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1901 static bool edid_block_valid(const void *block, bool base)
1903 return edid_block_status_valid(edid_block_check(block, base),
1904 edid_block_tag(block));
1907 static void edid_block_status_print(enum edid_block_status status,
1908 const struct edid *block,
1914 case EDID_BLOCK_READ_FAIL:
1915 pr_debug("EDID block %d read failed\n", block_num);
1917 case EDID_BLOCK_NULL:
1918 pr_debug("EDID block %d pointer is NULL\n", block_num);
1920 case EDID_BLOCK_ZERO:
1921 pr_notice("EDID block %d is all zeroes\n", block_num);
1923 case EDID_BLOCK_HEADER_CORRUPT:
1924 pr_notice("EDID has corrupt header\n");
1926 case EDID_BLOCK_HEADER_REPAIR:
1927 pr_debug("EDID corrupt header needs repair\n");
1929 case EDID_BLOCK_HEADER_FIXED:
1930 pr_debug("EDID corrupt header fixed\n");
1932 case EDID_BLOCK_CHECKSUM:
1933 if (edid_block_status_valid(status, edid_block_tag(block))) {
1934 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935 block_num, edid_block_tag(block),
1936 edid_block_compute_checksum(block));
1938 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939 block_num, edid_block_tag(block),
1940 edid_block_compute_checksum(block));
1943 case EDID_BLOCK_VERSION:
1944 pr_notice("EDID has major version %d, instead of 1\n",
1948 WARN(1, "EDID block %d unknown edid block status code %d\n",
1954 static void edid_block_dump(const char *level, const void *block, int block_num)
1956 enum edid_block_status status;
1959 status = edid_block_check(block, block_num == 0);
1960 if (status == EDID_BLOCK_ZERO)
1961 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963 sprintf(prefix, "\t[%02x] BAD ", block_num);
1965 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1967 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968 block, EDID_LENGTH, false);
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1981 * Return: True if the block is valid, false otherwise.
1983 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1986 struct edid *block = (struct edid *)_block;
1987 enum edid_block_status status;
1988 bool is_base_block = block_num == 0;
1991 if (WARN_ON(!block))
1994 status = edid_block_check(block, is_base_block);
1995 if (status == EDID_BLOCK_HEADER_REPAIR) {
1996 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997 edid_header_fix(block);
1999 /* Retry with fixed header, update status if that worked. */
2000 status = edid_block_check(block, is_base_block);
2001 if (status == EDID_BLOCK_OK)
2002 status = EDID_BLOCK_HEADER_FIXED;
2007 * Unknown major version isn't corrupt but we can't use it. Only
2008 * the base block can reset edid_corrupt to false.
2010 if (is_base_block &&
2011 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012 *edid_corrupt = false;
2013 else if (status != EDID_BLOCK_OK)
2014 *edid_corrupt = true;
2017 edid_block_status_print(status, block, block_num);
2019 /* Determine whether we can use this block with this status. */
2020 valid = edid_block_status_valid(status, edid_block_tag(block));
2022 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023 pr_notice("Raw EDID:\n");
2024 edid_block_dump(KERN_NOTICE, block, block_num);
2029 EXPORT_SYMBOL(drm_edid_block_valid);
2032 * drm_edid_is_valid - sanity check EDID data
2035 * Sanity-check an entire EDID record (including extensions)
2037 * Return: True if the EDID data is valid, false otherwise.
2039 bool drm_edid_is_valid(struct edid *edid)
2046 for (i = 0; i < edid_block_count(edid); i++) {
2047 void *block = (void *)edid_block_data(edid, i);
2049 if (!drm_edid_block_valid(block, i, true, NULL))
2055 EXPORT_SYMBOL(drm_edid_is_valid);
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2064 * Return: True if the EDID data is valid, false otherwise.
2066 bool drm_edid_valid(const struct drm_edid *drm_edid)
2073 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2076 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077 const void *block = drm_edid_block_data(drm_edid, i);
2079 if (!edid_block_valid(block, i == 0))
2085 EXPORT_SYMBOL(drm_edid_valid);
2087 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2091 int i, valid_blocks = 0;
2094 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095 * back to regular extension count here. We don't want to start
2096 * modifying the HF-EEODB extension too.
2098 for (i = 0; i < edid_block_count(edid); i++) {
2099 const void *src_block = edid_block_data(edid, i);
2101 if (edid_block_valid(src_block, i == 0)) {
2102 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2104 memmove(dst_block, src_block, EDID_LENGTH);
2109 /* We already trusted the base block to be valid here... */
2110 if (WARN_ON(!valid_blocks)) {
2115 edid->extensions = valid_blocks - 1;
2116 edid->checksum = edid_block_compute_checksum(edid);
2118 *alloc_size = edid_size_by_blocks(valid_blocks);
2120 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2127 #define DDC_SEGMENT_ADDR 0x30
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2135 * Try to fetch EDID information by calling I2C driver functions.
2137 * Return: 0 on success or -1 on failure.
2140 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2142 struct i2c_adapter *adapter = data;
2143 unsigned char start = block * EDID_LENGTH;
2144 unsigned char segment = block >> 1;
2145 unsigned char xfers = segment ? 3 : 2;
2146 int ret, retries = 5;
2149 * The core I2C driver will automatically retry the transfer if the
2150 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151 * are susceptible to errors under a heavily loaded machine and
2152 * generate spurious NAKs and timeouts. Retrying the transfer
2153 * of the individual block a few times seems to overcome this.
2156 struct i2c_msg msgs[] = {
2158 .addr = DDC_SEGMENT_ADDR,
2176 * Avoid sending the segment addr to not upset non-compliant
2179 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2181 if (ret == -ENXIO) {
2182 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2186 } while (ret != xfers && --retries);
2188 return ret == xfers ? 0 : -1;
2191 static void connector_bad_edid(struct drm_connector *connector,
2192 const struct edid *edid, int num_blocks)
2198 * 0x7e in the EDID is the number of extension blocks. The EDID
2199 * is 1 (base block) + num_ext_blocks big. That means we can think
2200 * of 0x7e in the EDID of the _index_ of the last block in the
2201 * combined chunk of memory.
2203 last_block = edid->extensions;
2205 /* Calculate real checksum for the last edid extension block data */
2206 if (last_block < num_blocks)
2207 connector->real_edid_checksum =
2208 edid_block_compute_checksum(edid + last_block);
2210 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2213 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214 connector->base.id, connector->name);
2215 for (i = 0; i < num_blocks; i++)
2216 edid_block_dump(KERN_DEBUG, edid + i, i);
2219 /* Get override or firmware EDID */
2220 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2222 const struct drm_edid *override = NULL;
2224 mutex_lock(&connector->edid_override_mutex);
2226 if (connector->edid_override)
2227 override = drm_edid_dup(connector->edid_override);
2229 mutex_unlock(&connector->edid_override_mutex);
2232 override = drm_edid_load_firmware(connector);
2234 return IS_ERR(override) ? NULL : override;
2237 /* For debugfs edid_override implementation */
2238 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2240 const struct drm_edid *drm_edid;
2242 mutex_lock(&connector->edid_override_mutex);
2244 drm_edid = connector->edid_override;
2246 seq_write(m, drm_edid->edid, drm_edid->size);
2248 mutex_unlock(&connector->edid_override_mutex);
2253 /* For debugfs edid_override implementation */
2254 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2257 const struct drm_edid *drm_edid;
2259 drm_edid = drm_edid_alloc(edid, size);
2260 if (!drm_edid_valid(drm_edid)) {
2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262 connector->base.id, connector->name);
2263 drm_edid_free(drm_edid);
2267 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268 connector->base.id, connector->name);
2270 mutex_lock(&connector->edid_override_mutex);
2272 drm_edid_free(connector->edid_override);
2273 connector->edid_override = drm_edid;
2275 mutex_unlock(&connector->edid_override_mutex);
2280 /* For debugfs edid_override implementation */
2281 int drm_edid_override_reset(struct drm_connector *connector)
2283 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284 connector->base.id, connector->name);
2286 mutex_lock(&connector->edid_override_mutex);
2288 drm_edid_free(connector->edid_override);
2289 connector->edid_override = NULL;
2291 mutex_unlock(&connector->edid_override_mutex);
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2305 * Return: The number of modes added or 0 if we couldn't find any.
2307 int drm_edid_override_connector_update(struct drm_connector *connector)
2309 const struct drm_edid *override;
2312 override = drm_edid_override_get(connector);
2314 num_modes = drm_edid_connector_update(connector, override);
2316 drm_edid_free(override);
2318 drm_dbg_kms(connector->dev,
2319 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2320 connector->base.id, connector->name, num_modes);
2325 EXPORT_SYMBOL(drm_edid_override_connector_update);
2327 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2330 read_block_fn read_block,
2333 enum edid_block_status status;
2334 bool is_base_block = block_num == 0;
2337 for (try = 0; try < 4; try++) {
2338 if (read_block(context, block, block_num, EDID_LENGTH))
2339 return EDID_BLOCK_READ_FAIL;
2341 status = edid_block_check(block, is_base_block);
2342 if (status == EDID_BLOCK_HEADER_REPAIR) {
2343 edid_header_fix(block);
2345 /* Retry with fixed header, update status if that worked. */
2346 status = edid_block_check(block, is_base_block);
2347 if (status == EDID_BLOCK_OK)
2348 status = EDID_BLOCK_HEADER_FIXED;
2351 if (edid_block_status_valid(status, edid_block_tag(block)))
2354 /* Fail early for unrepairable base block all zeros. */
2355 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2362 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2363 read_block_fn read_block, void *context,
2366 enum edid_block_status status;
2367 int i, num_blocks, invalid_blocks = 0;
2368 const struct drm_edid *override;
2369 struct edid *edid, *new;
2370 size_t alloc_size = EDID_LENGTH;
2372 override = drm_edid_override_get(connector);
2374 alloc_size = override->size;
2375 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2376 drm_edid_free(override);
2382 edid = kmalloc(alloc_size, GFP_KERNEL);
2386 status = edid_block_read(edid, 0, read_block, context);
2388 edid_block_status_print(status, edid, 0);
2390 if (status == EDID_BLOCK_READ_FAIL)
2393 /* FIXME: Clarify what a corrupt EDID actually means. */
2394 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2395 connector->edid_corrupt = false;
2397 connector->edid_corrupt = true;
2399 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2400 if (status == EDID_BLOCK_ZERO)
2401 connector->null_edid_counter++;
2403 connector_bad_edid(connector, edid, 1);
2407 if (!edid_extension_block_count(edid))
2410 alloc_size = edid_size(edid);
2411 new = krealloc(edid, alloc_size, GFP_KERNEL);
2416 num_blocks = edid_block_count(edid);
2417 for (i = 1; i < num_blocks; i++) {
2418 void *block = (void *)edid_block_data(edid, i);
2420 status = edid_block_read(block, i, read_block, context);
2422 edid_block_status_print(status, block, i);
2424 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2425 if (status == EDID_BLOCK_READ_FAIL)
2428 } else if (i == 1) {
2430 * If the first EDID extension is a CTA extension, and
2431 * the first Data Block is HF-EEODB, override the
2432 * extension block count.
2434 * Note: HF-EEODB could specify a smaller extension
2435 * count too, but we can't risk allocating a smaller
2438 int eeodb = edid_hfeeodb_block_count(edid);
2440 if (eeodb > num_blocks) {
2442 alloc_size = edid_size_by_blocks(num_blocks);
2443 new = krealloc(edid, alloc_size, GFP_KERNEL);
2451 if (invalid_blocks) {
2452 connector_bad_edid(connector, edid, num_blocks);
2454 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2469 * drm_do_get_edid - get EDID data using a custom EDID block read function
2470 * @connector: connector we're probing
2471 * @read_block: EDID block read function
2472 * @context: private data passed to the block read function
2474 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2475 * exposes a different interface to read EDID blocks this function can be used
2476 * to get EDID data using a custom block read function.
2478 * As in the general case the DDC bus is accessible by the kernel at the I2C
2479 * level, drivers must make all reasonable efforts to expose it as an I2C
2480 * adapter and use drm_get_edid() instead of abusing this function.
2482 * The EDID may be overridden using debugfs override_edid or firmware EDID
2483 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2484 * order. Having either of them bypasses actual EDID reads.
2486 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488 struct edid *drm_do_get_edid(struct drm_connector *connector,
2489 read_block_fn read_block,
2492 return _drm_do_get_edid(connector, read_block, context, NULL);
2494 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2497 * drm_edid_raw - Get a pointer to the raw EDID data.
2498 * @drm_edid: drm_edid container
2500 * Get a pointer to the raw EDID data.
2502 * This is for transition only. Avoid using this like the plague.
2504 * Return: Pointer to raw EDID data.
2506 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508 if (!drm_edid || !drm_edid->size)
2512 * Do not return pointers where relying on EDID extension count would
2513 * lead to buffer overflow.
2515 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2518 return drm_edid->edid;
2520 EXPORT_SYMBOL(drm_edid_raw);
2522 /* Allocate struct drm_edid container *without* duplicating the edid data */
2523 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525 struct drm_edid *drm_edid;
2527 if (!edid || !size || size < EDID_LENGTH)
2530 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532 drm_edid->edid = edid;
2533 drm_edid->size = size;
2540 * drm_edid_alloc - Allocate a new drm_edid container
2541 * @edid: Pointer to raw EDID data
2542 * @size: Size of memory allocated for EDID
2544 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2545 * the actual size that has been allocated for the data. There is no validation
2546 * of the raw EDID data against the size, but at least the EDID base block must
2547 * fit in the buffer.
2549 * The returned pointer must be freed using drm_edid_free().
2551 * Return: drm_edid container, or NULL on errors
2553 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555 const struct drm_edid *drm_edid;
2557 if (!edid || !size || size < EDID_LENGTH)
2560 edid = kmemdup(edid, size, GFP_KERNEL);
2564 drm_edid = _drm_edid_alloc(edid, size);
2570 EXPORT_SYMBOL(drm_edid_alloc);
2573 * drm_edid_dup - Duplicate a drm_edid container
2574 * @drm_edid: EDID to duplicate
2576 * The returned pointer must be freed using drm_edid_free().
2578 * Returns: drm_edid container copy, or NULL on errors
2580 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2585 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587 EXPORT_SYMBOL(drm_edid_dup);
2590 * drm_edid_free - Free the drm_edid container
2591 * @drm_edid: EDID to free
2593 void drm_edid_free(const struct drm_edid *drm_edid)
2598 kfree(drm_edid->edid);
2601 EXPORT_SYMBOL(drm_edid_free);
2604 * drm_probe_ddc() - probe DDC presence
2605 * @adapter: I2C adapter to probe
2607 * Return: True on success, false on failure.
2610 drm_probe_ddc(struct i2c_adapter *adapter)
2614 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616 EXPORT_SYMBOL(drm_probe_ddc);
2619 * drm_get_edid - get EDID data, if available
2620 * @connector: connector we're probing
2621 * @adapter: I2C adapter to use for DDC
2623 * Poke the given I2C channel to grab EDID data if possible. If found,
2624 * attach it to the connector.
2626 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628 struct edid *drm_get_edid(struct drm_connector *connector,
2629 struct i2c_adapter *adapter)
2633 if (connector->force == DRM_FORCE_OFF)
2636 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2639 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2640 drm_connector_update_edid_property(connector, edid);
2643 EXPORT_SYMBOL(drm_get_edid);
2646 * drm_edid_read_custom - Read EDID data using given EDID block read function
2647 * @connector: Connector to use
2648 * @read_block: EDID block read function
2649 * @context: Private data passed to the block read function
2651 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2652 * exposes a different interface to read EDID blocks this function can be used
2653 * to get EDID data using a custom block read function.
2655 * As in the general case the DDC bus is accessible by the kernel at the I2C
2656 * level, drivers must make all reasonable efforts to expose it as an I2C
2657 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2660 * The EDID may be overridden using debugfs override_edid or firmware EDID
2661 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2662 * order. Having either of them bypasses actual EDID reads.
2664 * The returned pointer must be freed using drm_edid_free().
2666 * Return: Pointer to EDID, or NULL if probe/read failed.
2668 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2669 read_block_fn read_block,
2672 const struct drm_edid *drm_edid;
2676 edid = _drm_do_get_edid(connector, read_block, context, &size);
2680 /* Sanity check for now */
2681 drm_WARN_ON(connector->dev, !size);
2683 drm_edid = _drm_edid_alloc(edid, size);
2689 EXPORT_SYMBOL(drm_edid_read_custom);
2692 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2693 * @connector: Connector to use
2694 * @adapter: I2C adapter to use for DDC
2696 * Read EDID using the given I2C adapter.
2698 * The EDID may be overridden using debugfs override_edid or firmware EDID
2699 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2700 * order. Having either of them bypasses actual EDID reads.
2702 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2703 * using drm_edid_read() instead of this function.
2705 * The returned pointer must be freed using drm_edid_free().
2707 * Return: Pointer to EDID, or NULL if probe/read failed.
2709 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2710 struct i2c_adapter *adapter)
2712 const struct drm_edid *drm_edid;
2714 if (connector->force == DRM_FORCE_OFF)
2717 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2720 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722 /* Note: Do *not* call connector updates here. */
2726 EXPORT_SYMBOL(drm_edid_read_ddc);
2729 * drm_edid_read - Read EDID data using connector's I2C adapter
2730 * @connector: Connector to use
2732 * Read EDID using the connector's I2C adapter.
2734 * The EDID may be overridden using debugfs override_edid or firmware EDID
2735 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2736 * order. Having either of them bypasses actual EDID reads.
2738 * The returned pointer must be freed using drm_edid_free().
2740 * Return: Pointer to EDID, or NULL if probe/read failed.
2742 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744 if (drm_WARN_ON(connector->dev, !connector->ddc))
2747 return drm_edid_read_ddc(connector, connector->ddc);
2749 EXPORT_SYMBOL(drm_edid_read);
2751 static u32 edid_extract_panel_id(const struct edid *edid)
2754 * We represent the ID as a 32-bit number so it can easily be compared
2757 * NOTE that we deal with endianness differently for the top half
2758 * of this ID than for the bottom half. The bottom half (the product
2759 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2760 * that's how everyone seems to interpret it. The top half (the mfg_id)
2761 * gets stored as big endian because that makes
2762 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2763 * to write (it's easier to extract the ASCII). It doesn't really
2764 * matter, though, as long as the number here is unique.
2766 return (u32)edid->mfg_id[0] << 24 |
2767 (u32)edid->mfg_id[1] << 16 |
2768 (u32)EDID_PRODUCT_ID(edid);
2772 * drm_edid_get_panel_id - Get a panel's ID through DDC
2773 * @adapter: I2C adapter to use for DDC
2775 * This function reads the first block of the EDID of a panel and (assuming
2776 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2777 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2778 * supposed to be different for each different modem of panel.
2780 * This function is intended to be used during early probing on devices where
2781 * more than one panel might be present. Because of its intended use it must
2782 * assume that the EDID of the panel is correct, at least as far as the ID
2783 * is concerned (in other words, we don't process any overrides here).
2785 * NOTE: it's expected that this function and drm_do_get_edid() will both
2786 * be read the EDID, but there is no caching between them. Since we're only
2787 * reading the first block, hopefully this extra overhead won't be too big.
2789 * Return: A 32-bit ID that should be different for each make/model of panel.
2790 * See the functions drm_edid_encode_panel_id() and
2791 * drm_edid_decode_panel_id() for some details on the structure of this
2795 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797 enum edid_block_status status;
2802 * There are no manufacturer IDs of 0, so if there is a problem reading
2803 * the EDID then we'll just return 0.
2806 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2810 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812 edid_block_status_print(status, base_block, 0);
2814 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2815 panel_id = edid_extract_panel_id(base_block);
2817 edid_block_dump(KERN_NOTICE, base_block, 0);
2823 EXPORT_SYMBOL(drm_edid_get_panel_id);
2826 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2827 * @connector: connector we're probing
2828 * @adapter: I2C adapter to use for DDC
2830 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2831 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2832 * switch DDC to the GPU which is retrieving EDID.
2834 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2837 struct i2c_adapter *adapter)
2839 struct drm_device *dev = connector->dev;
2840 struct pci_dev *pdev = to_pci_dev(dev->dev);
2843 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2846 vga_switcheroo_lock_ddc(pdev);
2847 edid = drm_get_edid(connector, adapter);
2848 vga_switcheroo_unlock_ddc(pdev);
2852 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2855 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2856 * @connector: connector we're probing
2857 * @adapter: I2C adapter to use for DDC
2859 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2860 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2861 * temporarily switch DDC to the GPU which is retrieving EDID.
2863 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2866 struct i2c_adapter *adapter)
2868 struct drm_device *dev = connector->dev;
2869 struct pci_dev *pdev = to_pci_dev(dev->dev);
2870 const struct drm_edid *drm_edid;
2872 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2875 vga_switcheroo_lock_ddc(pdev);
2876 drm_edid = drm_edid_read_ddc(connector, adapter);
2877 vga_switcheroo_unlock_ddc(pdev);
2881 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2884 * drm_edid_duplicate - duplicate an EDID and the extensions
2885 * @edid: EDID to duplicate
2887 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889 struct edid *drm_edid_duplicate(const struct edid *edid)
2894 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896 EXPORT_SYMBOL(drm_edid_duplicate);
2898 /*** EDID parsing ***/
2901 * edid_get_quirks - return quirk flags for a given EDID
2902 * @drm_edid: EDID to process
2904 * This tells subsequent routines what fixes they need to apply.
2906 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2909 const struct edid_quirk *quirk;
2912 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2913 quirk = &edid_quirk_list[i];
2914 if (quirk->panel_id == panel_id)
2915 return quirk->quirks;
2921 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2922 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2925 * Walk the mode list for connector, clearing the preferred status on existing
2926 * modes and setting it anew for the right mode ala quirks.
2928 static void edid_fixup_preferred(struct drm_connector *connector)
2930 const struct drm_display_info *info = &connector->display_info;
2931 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2932 int target_refresh = 0;
2933 int cur_vrefresh, preferred_vrefresh;
2935 if (list_empty(&connector->probed_modes))
2938 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2939 target_refresh = 60;
2940 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2941 target_refresh = 75;
2943 preferred_mode = list_first_entry(&connector->probed_modes,
2944 struct drm_display_mode, head);
2946 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2947 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949 if (cur_mode == preferred_mode)
2952 /* Largest mode is preferred */
2953 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2954 preferred_mode = cur_mode;
2956 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2957 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2958 /* At a given size, try to get closest to target refresh */
2959 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2960 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2961 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2962 preferred_mode = cur_mode;
2966 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2970 mode_is_rb(const struct drm_display_mode *mode)
2972 return (mode->htotal - mode->hdisplay == 160) &&
2973 (mode->hsync_end - mode->hdisplay == 80) &&
2974 (mode->hsync_end - mode->hsync_start == 32) &&
2975 (mode->vsync_start - mode->vdisplay == 3);
2979 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2980 * @dev: Device to duplicate against
2981 * @hsize: Mode width
2982 * @vsize: Mode height
2983 * @fresh: Mode refresh rate
2984 * @rb: Mode reduced-blanking-ness
2986 * Walk the DMT mode list looking for a match for the given parameters.
2988 * Return: A newly allocated copy of the mode, or NULL if not found.
2990 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2991 int hsize, int vsize, int fresh,
2996 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2997 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999 if (hsize != ptr->hdisplay)
3001 if (vsize != ptr->vdisplay)
3003 if (fresh != drm_mode_vrefresh(ptr))
3005 if (rb != mode_is_rb(ptr))
3008 return drm_mode_duplicate(dev, ptr);
3013 EXPORT_SYMBOL(drm_mode_find_dmt);
3015 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3018 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3019 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021 return descriptor->pixel_clock == 0 &&
3022 descriptor->data.other_data.pad1 == 0 &&
3023 descriptor->data.other_data.type == type;
3026 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030 return descriptor->pixel_clock != 0;
3033 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3036 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3040 const u8 *det_base = ext + d;
3042 if (d < 4 || d > 127)
3046 for (i = 0; i < n; i++)
3047 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3051 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053 unsigned int i, n = min((int)ext[0x02], 6);
3054 const u8 *det_base = ext + 5;
3057 return; /* unknown version */
3059 for (i = 0; i < n; i++)
3060 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3063 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3064 detailed_cb *cb, void *closure)
3066 struct drm_edid_iter edid_iter;
3073 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3074 cb(&drm_edid->edid->detailed_timings[i], closure);
3076 drm_edid_iter_begin(drm_edid, &edid_iter);
3077 drm_edid_iter_for_each(ext, &edid_iter) {
3080 cea_for_each_detailed_block(ext, cb, closure);
3083 vtb_for_each_detailed_block(ext, cb, closure);
3089 drm_edid_iter_end(&edid_iter);
3093 is_rb(const struct detailed_timing *descriptor, void *data)
3097 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3100 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3101 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3104 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3108 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3110 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112 if (drm_edid->edid->revision >= 4) {
3115 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3119 return drm_edid_is_digital(drm_edid);
3123 find_gtf2(const struct detailed_timing *descriptor, void *data)
3125 const struct detailed_timing **res = data;
3127 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3130 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3136 /* Secondary GTF curve kicks in above some break frequency */
3138 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140 const struct detailed_timing *descriptor = NULL;
3142 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3150 drm_gtf2_2c(const struct drm_edid *drm_edid)
3152 const struct detailed_timing *descriptor = NULL;
3154 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3162 drm_gtf2_m(const struct drm_edid *drm_edid)
3164 const struct detailed_timing *descriptor = NULL;
3166 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3174 drm_gtf2_k(const struct drm_edid *drm_edid)
3176 const struct detailed_timing *descriptor = NULL;
3178 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3186 drm_gtf2_2j(const struct drm_edid *drm_edid)
3188 const struct detailed_timing *descriptor = NULL;
3190 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3198 get_timing_level(const struct detailed_timing *descriptor, void *data)
3202 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3205 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207 switch (descriptor->data.other_data.data.range.flags) {
3208 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3211 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3214 case DRM_EDID_CVT_SUPPORT_FLAG:
3222 /* Get standard timing level (CVT/GTF/DMT). */
3223 static int standard_timing_level(const struct drm_edid *drm_edid)
3225 const struct edid *edid = drm_edid->edid;
3227 if (edid->revision >= 4) {
3229 * If the range descriptor doesn't
3230 * indicate otherwise default to CVT
3232 int ret = LEVEL_CVT;
3234 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3237 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239 } else if (edid->revision >= 2) {
3247 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3248 * monitors fill with ascii space (0x20) instead.
3251 bad_std_timing(u8 a, u8 b)
3253 return (a == 0x00 && b == 0x00) ||
3254 (a == 0x01 && b == 0x01) ||
3255 (a == 0x20 && b == 0x20);
3258 static int drm_mode_hsync(const struct drm_display_mode *mode)
3260 if (mode->htotal <= 0)
3263 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3266 static struct drm_display_mode *
3267 drm_gtf2_mode(struct drm_device *dev,
3268 const struct drm_edid *drm_edid,
3269 int hsize, int vsize, int vrefresh_rate)
3271 struct drm_display_mode *mode;
3274 * This is potentially wrong if there's ever a monitor with
3275 * more than one ranges section, each claiming a different
3276 * secondary GTF curve. Please don't do that.
3278 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3282 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3283 drm_mode_destroy(dev, mode);
3284 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3285 vrefresh_rate, 0, 0,
3286 drm_gtf2_m(drm_edid),
3287 drm_gtf2_2c(drm_edid),
3288 drm_gtf2_k(drm_edid),
3289 drm_gtf2_2j(drm_edid));
3296 * Take the standard timing params (in this case width, aspect, and refresh)
3297 * and convert them into a real mode using CVT/GTF/DMT.
3299 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3300 const struct drm_edid *drm_edid,
3301 const struct std_timing *t)
3303 struct drm_device *dev = connector->dev;
3304 struct drm_display_mode *m, *mode = NULL;
3307 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3308 >> EDID_TIMING_ASPECT_SHIFT;
3309 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3310 >> EDID_TIMING_VFREQ_SHIFT;
3311 int timing_level = standard_timing_level(drm_edid);
3313 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3316 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3317 hsize = t->hsize * 8 + 248;
3318 /* vrefresh_rate = vfreq + 60 */
3319 vrefresh_rate = vfreq + 60;
3320 /* the vdisplay is calculated based on the aspect ratio */
3321 if (aspect_ratio == 0) {
3322 if (drm_edid->edid->revision < 3)
3325 vsize = (hsize * 10) / 16;
3326 } else if (aspect_ratio == 1)
3327 vsize = (hsize * 3) / 4;
3328 else if (aspect_ratio == 2)
3329 vsize = (hsize * 4) / 5;
3331 vsize = (hsize * 9) / 16;
3333 /* HDTV hack, part 1 */
3334 if (vrefresh_rate == 60 &&
3335 ((hsize == 1360 && vsize == 765) ||
3336 (hsize == 1368 && vsize == 769))) {
3342 * If this connector already has a mode for this size and refresh
3343 * rate (because it came from detailed or CVT info), use that
3344 * instead. This way we don't have to guess at interlace or
3347 list_for_each_entry(m, &connector->probed_modes, head)
3348 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3349 drm_mode_vrefresh(m) == vrefresh_rate)
3352 /* HDTV hack, part 2 */
3353 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3354 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3358 mode->hdisplay = 1366;
3359 mode->hsync_start = mode->hsync_start - 1;
3360 mode->hsync_end = mode->hsync_end - 1;
3364 /* check whether it can be found in default mode table */
3365 if (drm_monitor_supports_rb(drm_edid)) {
3366 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3371 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3375 /* okay, generate it */
3376 switch (timing_level) {
3380 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3383 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3386 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3394 * EDID is delightfully ambiguous about how interlaced modes are to be
3395 * encoded. Our internal representation is of frame height, but some
3396 * HDTV detailed timings are encoded as field height.
3398 * The format list here is from CEA, in frame size. Technically we
3399 * should be checking refresh rate too. Whatever.
3402 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3403 const struct detailed_pixel_timing *pt)
3406 static const struct {
3408 } cea_interlaced[] = {
3418 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3421 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3422 if ((mode->hdisplay == cea_interlaced[i].w) &&
3423 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3424 mode->vdisplay *= 2;
3425 mode->vsync_start *= 2;
3426 mode->vsync_end *= 2;
3432 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3436 * Create a new mode from an EDID detailed timing section. An EDID detailed
3437 * timing block contains enough info for us to create and return a new struct
3440 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3441 const struct drm_edid *drm_edid,
3442 const struct detailed_timing *timing)
3444 const struct drm_display_info *info = &connector->display_info;
3445 struct drm_device *dev = connector->dev;
3446 struct drm_display_mode *mode;
3447 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3448 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3449 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3450 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3451 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3452 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3453 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3454 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3455 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457 /* ignore tiny modes */
3458 if (hactive < 64 || vactive < 64)
3461 if (pt->misc & DRM_EDID_PT_STEREO) {
3462 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3463 connector->base.id, connector->name);
3466 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3467 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3468 connector->base.id, connector->name);
3471 /* it is incorrect if hsync/vsync width is zero */
3472 if (!hsync_pulse_width || !vsync_pulse_width) {
3473 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3474 connector->base.id, connector->name);
3478 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3479 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3486 mode = drm_mode_create(dev);
3490 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3491 mode->clock = 1088 * 10;
3493 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495 mode->hdisplay = hactive;
3496 mode->hsync_start = mode->hdisplay + hsync_offset;
3497 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3498 mode->htotal = mode->hdisplay + hblank;
3500 mode->vdisplay = vactive;
3501 mode->vsync_start = mode->vdisplay + vsync_offset;
3502 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3503 mode->vtotal = mode->vdisplay + vblank;
3505 /* Some EDIDs have bogus h/vsync_end values */
3506 if (mode->hsync_end > mode->htotal) {
3507 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3508 connector->base.id, connector->name,
3509 mode->hsync_end, mode->htotal);
3510 mode->hsync_end = mode->htotal;
3512 if (mode->vsync_end > mode->vtotal) {
3513 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3514 connector->base.id, connector->name,
3515 mode->vsync_end, mode->vtotal);
3516 mode->vsync_end = mode->vtotal;
3519 drm_mode_do_interlace_quirk(mode, pt);
3521 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3522 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3525 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3526 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3527 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3531 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3532 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3535 mode->width_mm *= 10;
3536 mode->height_mm *= 10;
3539 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3540 mode->width_mm = drm_edid->edid->width_cm * 10;
3541 mode->height_mm = drm_edid->edid->height_cm * 10;
3544 mode->type = DRM_MODE_TYPE_DRIVER;
3545 drm_mode_set_name(mode);
3551 mode_in_hsync_range(const struct drm_display_mode *mode,
3552 const struct edid *edid, const u8 *t)
3554 int hsync, hmin, hmax;
3557 if (edid->revision >= 4)
3558 hmin += ((t[4] & 0x04) ? 255 : 0);
3560 if (edid->revision >= 4)
3561 hmax += ((t[4] & 0x08) ? 255 : 0);
3562 hsync = drm_mode_hsync(mode);
3564 return (hsync <= hmax && hsync >= hmin);
3568 mode_in_vsync_range(const struct drm_display_mode *mode,
3569 const struct edid *edid, const u8 *t)
3571 int vsync, vmin, vmax;
3574 if (edid->revision >= 4)
3575 vmin += ((t[4] & 0x01) ? 255 : 0);
3577 if (edid->revision >= 4)
3578 vmax += ((t[4] & 0x02) ? 255 : 0);
3579 vsync = drm_mode_vrefresh(mode);
3581 return (vsync <= vmax && vsync >= vmin);
3585 range_pixel_clock(const struct edid *edid, const u8 *t)
3588 if (t[9] == 0 || t[9] == 255)
3591 /* 1.4 with CVT support gives us real precision, yay */
3592 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3593 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595 /* 1.3 is pathetic, so fuzz up a bit */
3596 return t[9] * 10000 + 5001;
3599 static bool mode_in_range(const struct drm_display_mode *mode,
3600 const struct drm_edid *drm_edid,
3601 const struct detailed_timing *timing)
3603 const struct edid *edid = drm_edid->edid;
3605 const u8 *t = (const u8 *)timing;
3607 if (!mode_in_hsync_range(mode, edid, t))
3610 if (!mode_in_vsync_range(mode, edid, t))
3613 if ((max_clock = range_pixel_clock(edid, t)))
3614 if (mode->clock > max_clock)
3617 /* 1.4 max horizontal check */
3618 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3619 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3622 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3628 static bool valid_inferred_mode(const struct drm_connector *connector,
3629 const struct drm_display_mode *mode)
3631 const struct drm_display_mode *m;
3634 list_for_each_entry(m, &connector->probed_modes, head) {
3635 if (mode->hdisplay == m->hdisplay &&
3636 mode->vdisplay == m->vdisplay &&
3637 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3638 return false; /* duplicated */
3639 if (mode->hdisplay <= m->hdisplay &&
3640 mode->vdisplay <= m->vdisplay)
3646 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3647 const struct drm_edid *drm_edid,
3648 const struct detailed_timing *timing)
3651 struct drm_display_mode *newmode;
3652 struct drm_device *dev = connector->dev;
3654 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3655 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3656 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3657 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3659 drm_mode_probed_add(connector, newmode);
3668 /* fix up 1366x768 mode from 1368x768;
3669 * GFT/CVT can't express 1366 width which isn't dividable by 8
3671 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3673 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3674 mode->hdisplay = 1366;
3675 mode->hsync_start--;
3677 drm_mode_set_name(mode);
3681 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3682 const struct drm_edid *drm_edid,
3683 const struct detailed_timing *timing)
3686 struct drm_display_mode *newmode;
3687 struct drm_device *dev = connector->dev;
3689 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3690 const struct minimode *m = &extra_modes[i];
3692 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3696 drm_mode_fixup_1366x768(newmode);
3697 if (!mode_in_range(newmode, drm_edid, timing) ||
3698 !valid_inferred_mode(connector, newmode)) {
3699 drm_mode_destroy(dev, newmode);
3703 drm_mode_probed_add(connector, newmode);
3710 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3711 const struct drm_edid *drm_edid,
3712 const struct detailed_timing *timing)
3715 struct drm_display_mode *newmode;
3716 struct drm_device *dev = connector->dev;
3718 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3719 const struct minimode *m = &extra_modes[i];
3721 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3725 drm_mode_fixup_1366x768(newmode);
3726 if (!mode_in_range(newmode, drm_edid, timing) ||
3727 !valid_inferred_mode(connector, newmode)) {
3728 drm_mode_destroy(dev, newmode);
3732 drm_mode_probed_add(connector, newmode);
3739 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3740 const struct drm_edid *drm_edid,
3741 const struct detailed_timing *timing)
3744 struct drm_display_mode *newmode;
3745 struct drm_device *dev = connector->dev;
3746 bool rb = drm_monitor_supports_rb(drm_edid);
3748 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3749 const struct minimode *m = &extra_modes[i];
3751 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3755 drm_mode_fixup_1366x768(newmode);
3756 if (!mode_in_range(newmode, drm_edid, timing) ||
3757 !valid_inferred_mode(connector, newmode)) {
3758 drm_mode_destroy(dev, newmode);
3762 drm_mode_probed_add(connector, newmode);
3770 do_inferred_modes(const struct detailed_timing *timing, void *c)
3772 struct detailed_mode_closure *closure = c;
3773 const struct detailed_non_pixel *data = &timing->data.other_data;
3774 const struct detailed_data_monitor_range *range = &data->data.range;
3776 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3779 closure->modes += drm_dmt_modes_for_range(closure->connector,
3783 if (closure->drm_edid->edid->revision < 2)
3784 return; /* GTF not defined yet */
3786 switch (range->flags) {
3787 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3788 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3792 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3793 closure->modes += drm_gtf_modes_for_range(closure->connector,
3797 case DRM_EDID_CVT_SUPPORT_FLAG:
3798 if (closure->drm_edid->edid->revision < 4)
3801 closure->modes += drm_cvt_modes_for_range(closure->connector,
3805 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3811 static int add_inferred_modes(struct drm_connector *connector,
3812 const struct drm_edid *drm_edid)
3814 struct detailed_mode_closure closure = {
3815 .connector = connector,
3816 .drm_edid = drm_edid,
3819 if (drm_edid->edid->revision >= 1)
3820 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3822 return closure.modes;
3826 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3828 int i, j, m, modes = 0;
3829 struct drm_display_mode *mode;
3830 const u8 *est = ((const u8 *)timing) + 6;
3832 for (i = 0; i < 6; i++) {
3833 for (j = 7; j >= 0; j--) {
3834 m = (i * 8) + (7 - j);
3835 if (m >= ARRAY_SIZE(est3_modes))
3837 if (est[i] & (1 << j)) {
3838 mode = drm_mode_find_dmt(connector->dev,
3844 drm_mode_probed_add(connector, mode);
3855 do_established_modes(const struct detailed_timing *timing, void *c)
3857 struct detailed_mode_closure *closure = c;
3859 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3862 closure->modes += drm_est3_modes(closure->connector, timing);
3866 * Get established modes from EDID and add them. Each EDID block contains a
3867 * bitmap of the supported "established modes" list (defined above). Tease them
3868 * out and add them to the global modes list.
3870 static int add_established_modes(struct drm_connector *connector,
3871 const struct drm_edid *drm_edid)
3873 struct drm_device *dev = connector->dev;
3874 const struct edid *edid = drm_edid->edid;
3875 unsigned long est_bits = edid->established_timings.t1 |
3876 (edid->established_timings.t2 << 8) |
3877 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3879 struct detailed_mode_closure closure = {
3880 .connector = connector,
3881 .drm_edid = drm_edid,
3884 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3885 if (est_bits & (1<<i)) {
3886 struct drm_display_mode *newmode;
3888 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3890 drm_mode_probed_add(connector, newmode);
3896 if (edid->revision >= 1)
3897 drm_for_each_detailed_block(drm_edid, do_established_modes,
3900 return modes + closure.modes;
3904 do_standard_modes(const struct detailed_timing *timing, void *c)
3906 struct detailed_mode_closure *closure = c;
3907 const struct detailed_non_pixel *data = &timing->data.other_data;
3908 struct drm_connector *connector = closure->connector;
3911 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3914 for (i = 0; i < 6; i++) {
3915 const struct std_timing *std = &data->data.timings[i];
3916 struct drm_display_mode *newmode;
3918 newmode = drm_mode_std(connector, closure->drm_edid, std);
3920 drm_mode_probed_add(connector, newmode);
3927 * Get standard modes from EDID and add them. Standard modes can be calculated
3928 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3929 * add them to the list.
3931 static int add_standard_modes(struct drm_connector *connector,
3932 const struct drm_edid *drm_edid)
3935 struct detailed_mode_closure closure = {
3936 .connector = connector,
3937 .drm_edid = drm_edid,
3940 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3941 struct drm_display_mode *newmode;
3943 newmode = drm_mode_std(connector, drm_edid,
3944 &drm_edid->edid->standard_timings[i]);
3946 drm_mode_probed_add(connector, newmode);
3951 if (drm_edid->edid->revision >= 1)
3952 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3955 /* XXX should also look for standard codes in VTB blocks */
3957 return modes + closure.modes;
3960 static int drm_cvt_modes(struct drm_connector *connector,
3961 const struct detailed_timing *timing)
3963 int i, j, modes = 0;
3964 struct drm_display_mode *newmode;
3965 struct drm_device *dev = connector->dev;
3966 const struct cvt_timing *cvt;
3967 static const int rates[] = { 60, 85, 75, 60, 50 };
3968 const u8 empty[3] = { 0, 0, 0 };
3970 for (i = 0; i < 4; i++) {
3973 cvt = &(timing->data.other_data.data.cvt[i]);
3975 if (!memcmp(cvt->code, empty, 3))
3978 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3979 switch (cvt->code[1] & 0x0c) {
3980 /* default - because compiler doesn't see that we've enumerated all cases */
3983 width = height * 4 / 3;
3986 width = height * 16 / 9;
3989 width = height * 16 / 10;
3992 width = height * 15 / 9;
3996 for (j = 1; j < 5; j++) {
3997 if (cvt->code[2] & (1 << j)) {
3998 newmode = drm_cvt_mode(dev, width, height,
4002 drm_mode_probed_add(connector, newmode);
4013 do_cvt_mode(const struct detailed_timing *timing, void *c)
4015 struct detailed_mode_closure *closure = c;
4017 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4020 closure->modes += drm_cvt_modes(closure->connector, timing);
4024 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4026 struct detailed_mode_closure closure = {
4027 .connector = connector,
4028 .drm_edid = drm_edid,
4031 if (drm_edid->edid->revision >= 3)
4032 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4034 /* XXX should also look for CVT codes in VTB blocks */
4036 return closure.modes;
4039 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4040 struct drm_display_mode *mode);
4043 do_detailed_mode(const struct detailed_timing *timing, void *c)
4045 struct detailed_mode_closure *closure = c;
4046 struct drm_display_mode *newmode;
4048 if (!is_detailed_timing_descriptor(timing))
4051 newmode = drm_mode_detailed(closure->connector,
4052 closure->drm_edid, timing);
4056 if (closure->preferred)
4057 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4060 * Detailed modes are limited to 10kHz pixel clock resolution,
4061 * so fix up anything that looks like CEA/HDMI mode, but the clock
4062 * is just slightly off.
4064 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4066 drm_mode_probed_add(closure->connector, newmode);
4068 closure->preferred = false;
4072 * add_detailed_modes - Add modes from detailed timings
4073 * @connector: attached connector
4074 * @drm_edid: EDID block to scan
4076 static int add_detailed_modes(struct drm_connector *connector,
4077 const struct drm_edid *drm_edid)
4079 struct detailed_mode_closure closure = {
4080 .connector = connector,
4081 .drm_edid = drm_edid,
4084 if (drm_edid->edid->revision >= 4)
4085 closure.preferred = true; /* first detailed timing is always preferred */
4088 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4090 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4092 return closure.modes;
4095 /* CTA-861-H Table 60 - CTA Tag Codes */
4096 #define CTA_DB_AUDIO 1
4097 #define CTA_DB_VIDEO 2
4098 #define CTA_DB_VENDOR 3
4099 #define CTA_DB_SPEAKER 4
4100 #define CTA_DB_EXTENDED_TAG 7
4102 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4103 #define CTA_EXT_DB_VIDEO_CAP 0
4104 #define CTA_EXT_DB_VENDOR 1
4105 #define CTA_EXT_DB_HDR_STATIC_METADATA 6
4106 #define CTA_EXT_DB_420_VIDEO_DATA 14
4107 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4108 #define CTA_EXT_DB_HF_EEODB 0x78
4109 #define CTA_EXT_DB_HF_SCDB 0x79
4111 #define EDID_BASIC_AUDIO (1 << 6)
4112 #define EDID_CEA_YCRCB444 (1 << 5)
4113 #define EDID_CEA_YCRCB422 (1 << 4)
4114 #define EDID_CEA_VCDB_QS (1 << 6)
4117 * Search EDID for CEA extension block.
4119 * FIXME: Prefer not returning pointers to raw EDID data.
4121 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4122 int ext_id, int *ext_index)
4124 const u8 *edid_ext = NULL;
4127 /* No EDID or EDID extensions */
4128 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4131 /* Find CEA extension */
4132 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4133 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4134 if (edid_block_tag(edid_ext) == ext_id)
4138 if (i >= drm_edid_extension_block_count(drm_edid))
4146 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4147 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4149 const struct displayid_block *block;
4150 struct displayid_iter iter;
4154 /* Look for a top level CEA extension block */
4155 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4158 /* CEA blocks can also be found embedded in a DisplayID block */
4159 displayid_iter_edid_begin(drm_edid, &iter);
4160 displayid_iter_for_each(block, &iter) {
4161 if (block->tag == DATA_BLOCK_CTA) {
4166 displayid_iter_end(&iter);
4171 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4173 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4174 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4176 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4177 return &edid_cea_modes_1[vic - 1];
4178 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4179 return &edid_cea_modes_193[vic - 193];
4183 static u8 cea_num_vics(void)
4185 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4188 static u8 cea_next_vic(u8 vic)
4190 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4196 * Calculate the alternate clock for the CEA mode
4197 * (60Hz vs. 59.94Hz etc.)
4200 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4202 unsigned int clock = cea_mode->clock;
4204 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4208 * edid_cea_modes contains the 59.94Hz
4209 * variant for 240 and 480 line modes,
4210 * and the 60Hz variant otherwise.
4212 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4213 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4215 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4221 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4224 * For certain VICs the spec allows the vertical
4225 * front porch to vary by one or two lines.
4227 * cea_modes[] stores the variant with the shortest
4228 * vertical front porch. We can adjust the mode to
4229 * get the other variants by simply increasing the
4230 * vertical front porch length.
4232 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4233 cea_mode_for_vic(9)->vtotal != 262 ||
4234 cea_mode_for_vic(12)->vtotal != 262 ||
4235 cea_mode_for_vic(13)->vtotal != 262 ||
4236 cea_mode_for_vic(23)->vtotal != 312 ||
4237 cea_mode_for_vic(24)->vtotal != 312 ||
4238 cea_mode_for_vic(27)->vtotal != 312 ||
4239 cea_mode_for_vic(28)->vtotal != 312);
4241 if (((vic == 8 || vic == 9 ||
4242 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4243 ((vic == 23 || vic == 24 ||
4244 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4245 mode->vsync_start++;
4255 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4256 unsigned int clock_tolerance)
4258 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4261 if (!to_match->clock)
4264 if (to_match->picture_aspect_ratio)
4265 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4267 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4268 struct drm_display_mode cea_mode;
4269 unsigned int clock1, clock2;
4271 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4273 /* Check both 60Hz and 59.94Hz */
4274 clock1 = cea_mode.clock;
4275 clock2 = cea_mode_alternate_clock(&cea_mode);
4277 if (abs(to_match->clock - clock1) > clock_tolerance &&
4278 abs(to_match->clock - clock2) > clock_tolerance)
4282 if (drm_mode_match(to_match, &cea_mode, match_flags))
4284 } while (cea_mode_alternate_timings(vic, &cea_mode));
4291 * drm_match_cea_mode - look for a CEA mode matching given mode
4292 * @to_match: display mode
4294 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4297 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4299 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4302 if (!to_match->clock)
4305 if (to_match->picture_aspect_ratio)
4306 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4308 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4309 struct drm_display_mode cea_mode;
4310 unsigned int clock1, clock2;
4312 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4314 /* Check both 60Hz and 59.94Hz */
4315 clock1 = cea_mode.clock;
4316 clock2 = cea_mode_alternate_clock(&cea_mode);
4318 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4319 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4323 if (drm_mode_match(to_match, &cea_mode, match_flags))
4325 } while (cea_mode_alternate_timings(vic, &cea_mode));
4330 EXPORT_SYMBOL(drm_match_cea_mode);
4332 static bool drm_valid_cea_vic(u8 vic)
4334 return cea_mode_for_vic(vic) != NULL;
4337 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4339 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4342 return mode->picture_aspect_ratio;
4344 return HDMI_PICTURE_ASPECT_NONE;
4347 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4349 return edid_4k_modes[video_code].picture_aspect_ratio;
4353 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4357 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4359 return cea_mode_alternate_clock(hdmi_mode);
4362 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4363 unsigned int clock_tolerance)
4365 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4368 if (!to_match->clock)
4371 if (to_match->picture_aspect_ratio)
4372 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4374 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4375 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4376 unsigned int clock1, clock2;
4378 /* Make sure to also match alternate clocks */
4379 clock1 = hdmi_mode->clock;
4380 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4382 if (abs(to_match->clock - clock1) > clock_tolerance &&
4383 abs(to_match->clock - clock2) > clock_tolerance)
4386 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4394 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4395 * @to_match: display mode
4397 * An HDMI mode is one defined in the HDMI vendor specific block.
4399 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4401 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4403 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4406 if (!to_match->clock)
4409 if (to_match->picture_aspect_ratio)
4410 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4412 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4413 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4414 unsigned int clock1, clock2;
4416 /* Make sure to also match alternate clocks */
4417 clock1 = hdmi_mode->clock;
4418 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4420 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4421 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4422 drm_mode_match(to_match, hdmi_mode, match_flags))
4428 static bool drm_valid_hdmi_vic(u8 vic)
4430 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4433 static int add_alternate_cea_modes(struct drm_connector *connector,
4434 const struct drm_edid *drm_edid)
4436 struct drm_device *dev = connector->dev;
4437 struct drm_display_mode *mode, *tmp;
4441 /* Don't add CTA modes if the CTA extension block is missing */
4442 if (!drm_edid_has_cta_extension(drm_edid))
4446 * Go through all probed modes and create a new mode
4447 * with the alternate clock for certain CEA modes.
4449 list_for_each_entry(mode, &connector->probed_modes, head) {
4450 const struct drm_display_mode *cea_mode = NULL;
4451 struct drm_display_mode *newmode;
4452 u8 vic = drm_match_cea_mode(mode);
4453 unsigned int clock1, clock2;
4455 if (drm_valid_cea_vic(vic)) {
4456 cea_mode = cea_mode_for_vic(vic);
4457 clock2 = cea_mode_alternate_clock(cea_mode);
4459 vic = drm_match_hdmi_mode(mode);
4460 if (drm_valid_hdmi_vic(vic)) {
4461 cea_mode = &edid_4k_modes[vic];
4462 clock2 = hdmi_mode_alternate_clock(cea_mode);
4469 clock1 = cea_mode->clock;
4471 if (clock1 == clock2)
4474 if (mode->clock != clock1 && mode->clock != clock2)
4477 newmode = drm_mode_duplicate(dev, cea_mode);
4481 /* Carry over the stereo flags */
4482 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4485 * The current mode could be either variant. Make
4486 * sure to pick the "other" clock for the new mode.
4488 if (mode->clock != clock1)
4489 newmode->clock = clock1;
4491 newmode->clock = clock2;
4493 list_add_tail(&newmode->head, &list);
4496 list_for_each_entry_safe(mode, tmp, &list, head) {
4497 list_del(&mode->head);
4498 drm_mode_probed_add(connector, mode);
4505 static u8 svd_to_vic(u8 svd)
4507 /* 0-6 bit vic, 7th bit native mode indicator */
4508 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4515 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4516 * the EDID, or NULL on errors.
4518 static struct drm_display_mode *
4519 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4521 const struct drm_display_info *info = &connector->display_info;
4522 struct drm_device *dev = connector->dev;
4524 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4527 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4531 * do_y420vdb_modes - Parse YCBCR 420 only modes
4532 * @connector: connector corresponding to the HDMI sink
4533 * @svds: start of the data block of CEA YCBCR 420 VDB
4534 * @len: length of the CEA YCBCR 420 VDB
4536 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4537 * which contains modes which can be supported in YCBCR 420
4538 * output format only.
4540 static int do_y420vdb_modes(struct drm_connector *connector,
4541 const u8 *svds, u8 svds_len)
4543 struct drm_device *dev = connector->dev;
4546 for (i = 0; i < svds_len; i++) {
4547 u8 vic = svd_to_vic(svds[i]);
4548 struct drm_display_mode *newmode;
4550 if (!drm_valid_cea_vic(vic))
4553 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4556 drm_mode_probed_add(connector, newmode);
4564 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4566 * @video_code: CEA VIC of the mode
4568 * Creates a new mode matching the specified CEA VIC.
4570 * Returns: A new drm_display_mode on success or NULL on failure
4572 struct drm_display_mode *
4573 drm_display_mode_from_cea_vic(struct drm_device *dev,
4576 const struct drm_display_mode *cea_mode;
4577 struct drm_display_mode *newmode;
4579 cea_mode = cea_mode_for_vic(video_code);
4583 newmode = drm_mode_duplicate(dev, cea_mode);
4589 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4591 /* Add modes based on VICs parsed in parse_cta_vdb() */
4592 static int add_cta_vdb_modes(struct drm_connector *connector)
4594 const struct drm_display_info *info = &connector->display_info;
4600 for (i = 0; i < info->vics_len; i++) {
4601 struct drm_display_mode *mode;
4603 mode = drm_display_mode_from_vic_index(connector, i);
4605 drm_mode_probed_add(connector, mode);
4613 struct stereo_mandatory_mode {
4614 int width, height, vrefresh;
4618 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4619 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4620 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4622 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4624 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4625 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4627 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4628 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4632 stereo_match_mandatory(const struct drm_display_mode *mode,
4633 const struct stereo_mandatory_mode *stereo_mode)
4635 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4637 return mode->hdisplay == stereo_mode->width &&
4638 mode->vdisplay == stereo_mode->height &&
4639 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4640 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4643 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4645 struct drm_device *dev = connector->dev;
4646 const struct drm_display_mode *mode;
4647 struct list_head stereo_modes;
4650 INIT_LIST_HEAD(&stereo_modes);
4652 list_for_each_entry(mode, &connector->probed_modes, head) {
4653 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4654 const struct stereo_mandatory_mode *mandatory;
4655 struct drm_display_mode *new_mode;
4657 if (!stereo_match_mandatory(mode,
4658 &stereo_mandatory_modes[i]))
4661 mandatory = &stereo_mandatory_modes[i];
4662 new_mode = drm_mode_duplicate(dev, mode);
4666 new_mode->flags |= mandatory->flags;
4667 list_add_tail(&new_mode->head, &stereo_modes);
4672 list_splice_tail(&stereo_modes, &connector->probed_modes);
4677 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4679 struct drm_device *dev = connector->dev;
4680 struct drm_display_mode *newmode;
4682 if (!drm_valid_hdmi_vic(vic)) {
4683 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4684 connector->base.id, connector->name, vic);
4688 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4692 drm_mode_probed_add(connector, newmode);
4697 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4700 struct drm_display_mode *newmode;
4703 if (structure & (1 << 0)) {
4704 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4706 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4707 drm_mode_probed_add(connector, newmode);
4711 if (structure & (1 << 6)) {
4712 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4714 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4715 drm_mode_probed_add(connector, newmode);
4719 if (structure & (1 << 8)) {
4720 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4722 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4723 drm_mode_probed_add(connector, newmode);
4731 static bool hdmi_vsdb_latency_present(const u8 *db)
4733 return db[8] & BIT(7);
4736 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4738 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4741 static int hdmi_vsdb_latency_length(const u8 *db)
4743 if (hdmi_vsdb_i_latency_present(db))
4745 else if (hdmi_vsdb_latency_present(db))
4752 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4753 * @connector: connector corresponding to the HDMI sink
4754 * @db: start of the CEA vendor specific block
4755 * @len: length of the CEA block payload, ie. one can access up to db[len]
4757 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4758 * also adds the stereo 3d modes when applicable.
4761 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4763 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4764 u8 vic_len, hdmi_3d_len = 0;
4771 /* no HDMI_Video_Present */
4772 if (!(db[8] & (1 << 5)))
4775 offset += hdmi_vsdb_latency_length(db);
4777 /* the declared length is not long enough for the 2 first bytes
4778 * of additional video format capabilities */
4779 if (len < (8 + offset + 2))
4784 if (db[8 + offset] & (1 << 7)) {
4785 modes += add_hdmi_mandatory_stereo_modes(connector);
4787 /* 3D_Multi_present */
4788 multi_present = (db[8 + offset] & 0x60) >> 5;
4792 vic_len = db[8 + offset] >> 5;
4793 hdmi_3d_len = db[8 + offset] & 0x1f;
4795 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4798 vic = db[9 + offset + i];
4799 modes += add_hdmi_mode(connector, vic);
4801 offset += 1 + vic_len;
4803 if (multi_present == 1)
4805 else if (multi_present == 2)
4810 if (len < (8 + offset + hdmi_3d_len - 1))
4813 if (hdmi_3d_len < multi_len)
4816 if (multi_present == 1 || multi_present == 2) {
4817 /* 3D_Structure_ALL */
4818 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4820 /* check if 3D_MASK is present */
4821 if (multi_present == 2)
4822 mask = (db[10 + offset] << 8) | db[11 + offset];
4826 for (i = 0; i < 16; i++) {
4827 if (mask & (1 << i))
4828 modes += add_3d_struct_modes(connector,
4833 offset += multi_len;
4835 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4837 struct drm_display_mode *newmode = NULL;
4838 unsigned int newflag = 0;
4839 bool detail_present;
4841 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4843 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4846 /* 2D_VIC_order_X */
4847 vic_index = db[8 + offset + i] >> 4;
4849 /* 3D_Structure_X */
4850 switch (db[8 + offset + i] & 0x0f) {
4852 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4855 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4859 if ((db[9 + offset + i] >> 4) == 1)
4860 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4865 newmode = drm_display_mode_from_vic_index(connector,
4869 newmode->flags |= newflag;
4870 drm_mode_probed_add(connector, newmode);
4884 cea_revision(const u8 *cea)
4887 * FIXME is this correct for the DispID variant?
4888 * The DispID spec doesn't really specify whether
4889 * this is the revision of the CEA extension or
4890 * the DispID CEA data block. And the only value
4891 * given as an example is 0.
4897 * CTA Data Block iterator.
4899 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4902 * struct cea_db *db:
4903 * struct cea_db_iter iter;
4905 * cea_db_iter_edid_begin(edid, &iter);
4906 * cea_db_iter_for_each(db, &iter) {
4907 * // do stuff with db
4909 * cea_db_iter_end(&iter);
4911 struct cea_db_iter {
4912 struct drm_edid_iter edid_iter;
4913 struct displayid_iter displayid_iter;
4915 /* Current Data Block Collection. */
4916 const u8 *collection;
4918 /* Current Data Block index in current collection. */
4921 /* End index in current collection. */
4925 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4931 static int cea_db_tag(const struct cea_db *db)
4933 return db->tag_length >> 5;
4936 static int cea_db_payload_len(const void *_db)
4938 /* FIXME: Transition to passing struct cea_db * everywhere. */
4939 const struct cea_db *db = _db;
4941 return db->tag_length & 0x1f;
4944 static const void *cea_db_data(const struct cea_db *db)
4949 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4951 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4952 cea_db_payload_len(db) >= 1 &&
4956 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4958 const u8 *data = cea_db_data(db);
4960 return cea_db_tag(db) == CTA_DB_VENDOR &&
4961 cea_db_payload_len(db) >= 3 &&
4962 oui(data[2], data[1], data[0]) == vendor_oui;
4965 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4966 struct cea_db_iter *iter)
4968 memset(iter, 0, sizeof(*iter));
4970 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4971 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4974 static const struct cea_db *
4975 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4977 const struct cea_db *db;
4979 if (!iter->collection)
4982 db = (const struct cea_db *)&iter->collection[iter->index];
4984 if (iter->index + sizeof(*db) <= iter->end &&
4985 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4993 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4995 static int cea_db_collection_size(const u8 *cta)
4999 if (d < 4 || d > 127)
5007 * - VESA E-EDID v1.4
5008 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5010 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5014 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5017 /* Only support CTA Extension revision 3+ */
5018 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5021 size = cea_db_collection_size(ext);
5026 iter->end = iter->index + size;
5036 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5037 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5039 * Note that the above do not specify any connection between DisplayID Data
5040 * Block revision and CTA Extension versions.
5042 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5044 const struct displayid_block *block;
5046 displayid_iter_for_each(block, &iter->displayid_iter) {
5047 if (block->tag != DATA_BLOCK_CTA)
5051 * The displayid iterator has already verified the block bounds
5052 * in displayid_iter_block().
5054 iter->index = sizeof(*block);
5055 iter->end = iter->index + block->num_bytes;
5063 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5065 const struct cea_db *db;
5067 if (iter->collection) {
5068 /* Current collection should always be valid. */
5069 db = __cea_db_iter_current_block(iter);
5071 iter->collection = NULL;
5075 /* Next block in CTA Data Block Collection */
5076 iter->index += sizeof(*db) + cea_db_payload_len(db);
5078 db = __cea_db_iter_current_block(iter);
5085 * Find the next CTA Data Block Collection. First iterate all
5086 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5088 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5089 * Extension, it's recommended that DisplayID extensions are
5090 * exposed after all of the CTA Extensions.
5092 iter->collection = __cea_db_iter_edid_next(iter);
5093 if (!iter->collection)
5094 iter->collection = __cea_db_iter_displayid_next(iter);
5096 if (!iter->collection)
5099 db = __cea_db_iter_current_block(iter);
5105 #define cea_db_iter_for_each(__db, __iter) \
5106 while (((__db) = __cea_db_iter_next(__iter)))
5108 static void cea_db_iter_end(struct cea_db_iter *iter)
5110 displayid_iter_end(&iter->displayid_iter);
5111 drm_edid_iter_end(&iter->edid_iter);
5113 memset(iter, 0, sizeof(*iter));
5116 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5118 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5119 cea_db_payload_len(db) >= 5;
5122 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5124 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5125 cea_db_payload_len(db) >= 7;
5128 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5130 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5131 cea_db_payload_len(db) >= 2;
5134 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5136 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5137 cea_db_payload_len(db) == 21;
5140 static bool cea_db_is_vcdb(const struct cea_db *db)
5142 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5143 cea_db_payload_len(db) == 2;
5146 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5148 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5149 cea_db_payload_len(db) >= 7;
5152 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5154 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5157 static bool cea_db_is_y420vdb(const struct cea_db *db)
5159 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5162 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5164 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5165 cea_db_payload_len(db) >= 3;
5169 * Get the HF-EEODB override extension block count from EDID.
5171 * The passed in EDID may be partially read, as long as it has at least two
5172 * blocks (base block and one extension block) if EDID extension count is > 0.
5174 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5175 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5176 * iterators instead.
5179 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5181 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5185 /* No extensions according to base block, no HF-EEODB. */
5186 if (!edid_extension_block_count(edid))
5189 /* HF-EEODB is always in the first EDID extension block only */
5190 cta = edid_extension_block_data(edid, 0);
5191 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5194 /* Need to have the data block collection, and at least 3 bytes. */
5195 if (cea_db_collection_size(cta) < 3)
5199 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5200 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5201 * through 6 of Block 1 of the E-EDID.
5203 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5210 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5212 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5213 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5214 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5215 * support YCBCR420 output too.
5217 static void parse_cta_y420cmdb(struct drm_connector *connector,
5218 const struct cea_db *db, u64 *y420cmdb_map)
5220 struct drm_display_info *info = &connector->display_info;
5221 int i, map_len = cea_db_payload_len(db) - 1;
5222 const u8 *data = cea_db_data(db) + 1;
5226 /* All CEA modes support ycbcr420 sampling also.*/
5232 * This map indicates which of the existing CEA block modes
5233 * from VDB can support YCBCR420 output too. So if bit=0 is
5234 * set, first mode from VDB can support YCBCR420 output too.
5235 * We will parse and keep this map, before parsing VDB itself
5236 * to avoid going through the same block again and again.
5238 * Spec is not clear about max possible size of this block.
5239 * Clamping max bitmap block size at 8 bytes. Every byte can
5240 * address 8 CEA modes, in this way this map can address
5241 * 8*8 = first 64 SVDs.
5243 if (WARN_ON_ONCE(map_len > 8))
5246 for (i = 0; i < map_len; i++)
5247 map |= (u64)data[i] << (8 * i);
5251 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5253 *y420cmdb_map = map;
5256 static int add_cea_modes(struct drm_connector *connector,
5257 const struct drm_edid *drm_edid)
5259 const struct cea_db *db;
5260 struct cea_db_iter iter;
5263 /* CTA VDB block VICs parsed earlier */
5264 modes = add_cta_vdb_modes(connector);
5266 cea_db_iter_edid_begin(drm_edid, &iter);
5267 cea_db_iter_for_each(db, &iter) {
5268 if (cea_db_is_hdmi_vsdb(db)) {
5269 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5270 cea_db_payload_len(db));
5271 } else if (cea_db_is_y420vdb(db)) {
5272 const u8 *vdb420 = cea_db_data(db) + 1;
5274 /* Add 4:2:0(only) modes present in EDID */
5275 modes += do_y420vdb_modes(connector, vdb420,
5276 cea_db_payload_len(db) - 1);
5279 cea_db_iter_end(&iter);
5284 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5285 struct drm_display_mode *mode)
5287 const struct drm_display_mode *cea_mode;
5288 int clock1, clock2, clock;
5293 * allow 5kHz clock difference either way to account for
5294 * the 10kHz clock resolution limit of detailed timings.
5296 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5297 if (drm_valid_cea_vic(vic)) {
5299 cea_mode = cea_mode_for_vic(vic);
5300 clock1 = cea_mode->clock;
5301 clock2 = cea_mode_alternate_clock(cea_mode);
5303 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5304 if (drm_valid_hdmi_vic(vic)) {
5306 cea_mode = &edid_4k_modes[vic];
5307 clock1 = cea_mode->clock;
5308 clock2 = hdmi_mode_alternate_clock(cea_mode);
5314 /* pick whichever is closest */
5315 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5320 if (mode->clock == clock)
5323 drm_dbg_kms(connector->dev,
5324 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5325 connector->base.id, connector->name,
5326 type, vic, mode->clock, clock);
5327 mode->clock = clock;
5330 static void drm_calculate_luminance_range(struct drm_connector *connector)
5332 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5333 struct drm_luminance_range_info *luminance_range =
5334 &connector->display_info.luminance_range;
5335 static const u8 pre_computed_values[] = {
5336 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5337 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5339 u32 max_avg, min_cll, max, min, q, r;
5341 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5344 max_avg = hdr_metadata->max_fall;
5345 min_cll = hdr_metadata->min_cll;
5348 * From the specification (CTA-861-G), for calculating the maximum
5349 * luminance we need to use:
5350 * Luminance = 50*2**(CV/32)
5351 * Where CV is a one-byte value.
5352 * For calculating this expression we may need float point precision;
5353 * to avoid this complexity level, we take advantage that CV is divided
5354 * by a constant. From the Euclids division algorithm, we know that CV
5355 * can be written as: CV = 32*q + r. Next, we replace CV in the
5356 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5357 * need to pre-compute the value of r/32. For pre-computing the values
5358 * We just used the following Ruby line:
5359 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5360 * The results of the above expressions can be verified at
5361 * pre_computed_values.
5365 max = (1 << q) * pre_computed_values[r];
5367 /* min luminance: maxLum * (CV/255)^2 / 100 */
5368 q = DIV_ROUND_CLOSEST(min_cll, 255);
5369 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5371 luminance_range->min_luminance = min;
5372 luminance_range->max_luminance = max;
5375 static uint8_t eotf_supported(const u8 *edid_ext)
5377 return edid_ext[2] &
5378 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5379 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5380 BIT(HDMI_EOTF_SMPTE_ST2084) |
5381 BIT(HDMI_EOTF_BT_2100_HLG));
5384 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5386 return edid_ext[3] &
5387 BIT(HDMI_STATIC_METADATA_TYPE1);
5391 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5395 len = cea_db_payload_len(db);
5397 connector->hdr_sink_metadata.hdmi_type1.eotf =
5399 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5400 hdr_metadata_type(db);
5403 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5405 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5407 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5409 /* Calculate only when all values are available */
5410 drm_calculate_luminance_range(connector);
5414 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5416 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5418 u8 len = cea_db_payload_len(db);
5420 if (len >= 6 && (db[6] & (1 << 7)))
5421 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5423 if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5424 connector->latency_present[0] = true;
5425 connector->video_latency[0] = db[9];
5426 connector->audio_latency[0] = db[10];
5429 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5430 connector->latency_present[1] = true;
5431 connector->video_latency[1] = db[11];
5432 connector->audio_latency[1] = db[12];
5435 drm_dbg_kms(connector->dev,
5436 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5437 connector->base.id, connector->name,
5438 connector->latency_present[0], connector->latency_present[1],
5439 connector->video_latency[0], connector->video_latency[1],
5440 connector->audio_latency[0], connector->audio_latency[1]);
5444 monitor_name(const struct detailed_timing *timing, void *data)
5446 const char **res = data;
5448 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5451 *res = timing->data.other_data.data.str.str;
5454 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5456 const char *edid_name = NULL;
5459 if (!drm_edid || !name)
5462 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5463 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5464 if (edid_name[mnl] == 0x0a)
5467 name[mnl] = edid_name[mnl];
5474 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5475 * @edid: monitor EDID information
5476 * @name: pointer to a character array to hold the name of the monitor
5477 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5480 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5482 int name_length = 0;
5489 struct drm_edid drm_edid = {
5491 .size = edid_size(edid),
5494 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5495 memcpy(name, buf, name_length);
5498 name[name_length] = '\0';
5500 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5502 static void clear_eld(struct drm_connector *connector)
5504 memset(connector->eld, 0, sizeof(connector->eld));
5506 connector->latency_present[0] = false;
5507 connector->latency_present[1] = false;
5508 connector->video_latency[0] = 0;
5509 connector->audio_latency[0] = 0;
5510 connector->video_latency[1] = 0;
5511 connector->audio_latency[1] = 0;
5515 * Get 3-byte SAD buffer from struct cea_sad.
5517 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5519 sad[0] = cta_sad->format << 3 | cta_sad->channels;
5520 sad[1] = cta_sad->freq;
5521 sad[2] = cta_sad->byte2;
5525 * Set struct cea_sad from 3-byte SAD buffer.
5527 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5529 cta_sad->format = (sad[0] & 0x78) >> 3;
5530 cta_sad->channels = sad[0] & 0x07;
5531 cta_sad->freq = sad[1] & 0x7f;
5532 cta_sad->byte2 = sad[2];
5536 * drm_edid_to_eld - build ELD from EDID
5537 * @connector: connector corresponding to the HDMI/DP sink
5538 * @drm_edid: EDID to parse
5540 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5541 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5543 static void drm_edid_to_eld(struct drm_connector *connector,
5544 const struct drm_edid *drm_edid)
5546 const struct drm_display_info *info = &connector->display_info;
5547 const struct cea_db *db;
5548 struct cea_db_iter iter;
5549 uint8_t *eld = connector->eld;
5550 int total_sad_count = 0;
5556 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5557 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5558 connector->base.id, connector->name,
5559 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5561 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5562 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5564 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5566 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5567 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5568 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5569 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5571 cea_db_iter_edid_begin(drm_edid, &iter);
5572 cea_db_iter_for_each(db, &iter) {
5573 const u8 *data = cea_db_data(db);
5574 int len = cea_db_payload_len(db);
5577 switch (cea_db_tag(db)) {
5579 /* Audio Data Block, contains SADs */
5580 sad_count = min(len / 3, 15 - total_sad_count);
5582 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5583 data, sad_count * 3);
5584 total_sad_count += sad_count;
5586 case CTA_DB_SPEAKER:
5587 /* Speaker Allocation Data Block */
5589 eld[DRM_ELD_SPEAKER] = data[0];
5592 /* HDMI Vendor-Specific Data Block */
5593 if (cea_db_is_hdmi_vsdb(db))
5594 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5600 cea_db_iter_end(&iter);
5602 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5604 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5605 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5606 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5608 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5610 eld[DRM_ELD_BASELINE_ELD_LEN] =
5611 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5613 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5614 connector->base.id, connector->name,
5615 drm_eld_size(eld), total_sad_count);
5618 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5619 struct cea_sad **psads)
5621 const struct cea_db *db;
5622 struct cea_db_iter iter;
5625 cea_db_iter_edid_begin(drm_edid, &iter);
5626 cea_db_iter_for_each(db, &iter) {
5627 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5628 struct cea_sad *sads;
5631 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5632 sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5636 for (i = 0; i < count; i++)
5637 drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5641 cea_db_iter_end(&iter);
5643 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5649 * drm_edid_to_sad - extracts SADs from EDID
5650 * @edid: EDID to parse
5651 * @sads: pointer that will be set to the extracted SADs
5653 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5655 * Note: The returned pointer needs to be freed using kfree().
5657 * Return: The number of found SADs or negative number on error.
5659 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5661 struct drm_edid drm_edid;
5663 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5665 EXPORT_SYMBOL(drm_edid_to_sad);
5667 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5670 const struct cea_db *db;
5671 struct cea_db_iter iter;
5674 cea_db_iter_edid_begin(drm_edid, &iter);
5675 cea_db_iter_for_each(db, &iter) {
5676 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5677 cea_db_payload_len(db) == 3) {
5678 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5682 count = cea_db_payload_len(db);
5686 cea_db_iter_end(&iter);
5688 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5694 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5695 * @edid: EDID to parse
5696 * @sadb: pointer to the speaker block
5698 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5700 * Note: The returned pointer needs to be freed using kfree().
5702 * Return: The number of found Speaker Allocation Blocks or negative number on
5705 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5707 struct drm_edid drm_edid;
5709 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5712 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5715 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5716 * @connector: connector associated with the HDMI/DP sink
5717 * @mode: the display mode
5719 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5720 * the sink doesn't support audio or video.
5722 int drm_av_sync_delay(struct drm_connector *connector,
5723 const struct drm_display_mode *mode)
5725 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5728 if (!connector->latency_present[0])
5730 if (!connector->latency_present[1])
5733 a = connector->audio_latency[i];
5734 v = connector->video_latency[i];
5737 * HDMI/DP sink doesn't support audio or video?
5739 if (a == 255 || v == 255)
5743 * Convert raw EDID values to millisecond.
5744 * Treat unknown latency as 0ms.
5747 a = min(2 * (a - 1), 500);
5749 v = min(2 * (v - 1), 500);
5751 return max(v - a, 0);
5753 EXPORT_SYMBOL(drm_av_sync_delay);
5755 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5757 const struct cea_db *db;
5758 struct cea_db_iter iter;
5762 * Because HDMI identifier is in Vendor Specific Block,
5763 * search it from all data blocks of CEA extension.
5765 cea_db_iter_edid_begin(drm_edid, &iter);
5766 cea_db_iter_for_each(db, &iter) {
5767 if (cea_db_is_hdmi_vsdb(db)) {
5772 cea_db_iter_end(&iter);
5778 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5779 * @edid: monitor EDID information
5781 * Parse the CEA extension according to CEA-861-B.
5783 * Drivers that have added the modes parsed from EDID to drm_display_info
5784 * should use &drm_display_info.is_hdmi instead of calling this function.
5786 * Return: True if the monitor is HDMI, false if not or unknown.
5788 bool drm_detect_hdmi_monitor(const struct edid *edid)
5790 struct drm_edid drm_edid;
5792 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5794 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5796 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5798 struct drm_edid_iter edid_iter;
5799 const struct cea_db *db;
5800 struct cea_db_iter iter;
5802 bool has_audio = false;
5804 drm_edid_iter_begin(drm_edid, &edid_iter);
5805 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5806 if (edid_ext[0] == CEA_EXT) {
5807 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5812 drm_edid_iter_end(&edid_iter);
5815 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5819 cea_db_iter_edid_begin(drm_edid, &iter);
5820 cea_db_iter_for_each(db, &iter) {
5821 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5822 const u8 *data = cea_db_data(db);
5825 for (i = 0; i < cea_db_payload_len(db); i += 3)
5826 DRM_DEBUG_KMS("CEA audio format %d\n",
5827 (data[i] >> 3) & 0xf);
5832 cea_db_iter_end(&iter);
5839 * drm_detect_monitor_audio - check monitor audio capability
5840 * @edid: EDID block to scan
5842 * Monitor should have CEA extension block.
5843 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5844 * audio' only. If there is any audio extension block and supported
5845 * audio format, assume at least 'basic audio' support, even if 'basic
5846 * audio' is not defined in EDID.
5848 * Return: True if the monitor supports audio, false otherwise.
5850 bool drm_detect_monitor_audio(const struct edid *edid)
5852 struct drm_edid drm_edid;
5854 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5856 EXPORT_SYMBOL(drm_detect_monitor_audio);
5860 * drm_default_rgb_quant_range - default RGB quantization range
5861 * @mode: display mode
5863 * Determine the default RGB quantization range for the mode,
5864 * as specified in CEA-861.
5866 * Return: The default RGB quantization range for the mode
5868 enum hdmi_quantization_range
5869 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5871 /* All CEA modes other than VIC 1 use limited quantization range. */
5872 return drm_match_cea_mode(mode) > 1 ?
5873 HDMI_QUANTIZATION_RANGE_LIMITED :
5874 HDMI_QUANTIZATION_RANGE_FULL;
5876 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5878 /* CTA-861 Video Data Block (CTA VDB) */
5879 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5881 struct drm_display_info *info = &connector->display_info;
5882 int i, vic_index, len = cea_db_payload_len(db);
5883 const u8 *svds = cea_db_data(db);
5889 /* Gracefully handle multiple VDBs, however unlikely that is */
5890 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5894 vic_index = info->vics_len;
5895 info->vics_len += len;
5898 for (i = 0; i < len; i++) {
5899 u8 vic = svd_to_vic(svds[i]);
5901 if (!drm_valid_cea_vic(vic))
5904 info->vics[vic_index++] = vic;
5909 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5911 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5912 * using the VICs themselves.
5914 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5916 struct drm_display_info *info = &connector->display_info;
5917 struct drm_hdmi_info *hdmi = &info->hdmi;
5918 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5920 for (i = 0; i < len; i++) {
5921 u8 vic = info->vics[i];
5923 if (vic && y420cmdb_map & BIT_ULL(i))
5924 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5928 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5930 const struct drm_display_info *info = &connector->display_info;
5933 if (!vic || !info->vics)
5936 for (i = 0; i < info->vics_len; i++) {
5937 if (info->vics[i] == vic)
5944 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5945 static void parse_cta_y420vdb(struct drm_connector *connector,
5946 const struct cea_db *db)
5948 struct drm_display_info *info = &connector->display_info;
5949 struct drm_hdmi_info *hdmi = &info->hdmi;
5950 const u8 *svds = cea_db_data(db) + 1;
5953 for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5954 u8 vic = svd_to_vic(svds[i]);
5956 if (!drm_valid_cea_vic(vic))
5959 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5960 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5964 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5966 struct drm_display_info *info = &connector->display_info;
5968 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5969 connector->base.id, connector->name, db[2]);
5971 if (db[2] & EDID_CEA_VCDB_QS)
5972 info->rgb_quant_range_selectable = true;
5976 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5978 switch (max_frl_rate) {
5981 *max_rate_per_lane = 3;
5985 *max_rate_per_lane = 6;
5989 *max_rate_per_lane = 6;
5993 *max_rate_per_lane = 8;
5997 *max_rate_per_lane = 10;
6001 *max_rate_per_lane = 12;
6006 *max_rate_per_lane = 0;
6010 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6014 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6016 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6017 hdmi->y420_dc_modes = dc_mask;
6020 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6023 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6025 if (!hdmi_dsc->v_1p2)
6028 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6029 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6031 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6032 hdmi_dsc->bpc_supported = 16;
6033 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6034 hdmi_dsc->bpc_supported = 12;
6035 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6036 hdmi_dsc->bpc_supported = 10;
6038 /* Supports min 8 BPC if DSC 1.2 is supported*/
6039 hdmi_dsc->bpc_supported = 8;
6041 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6043 u8 dsc_max_frl_rate;
6045 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6046 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6047 &hdmi_dsc->max_frl_rate_per_lane);
6049 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6051 switch (dsc_max_slices) {
6053 hdmi_dsc->max_slices = 1;
6054 hdmi_dsc->clk_per_slice = 340;
6057 hdmi_dsc->max_slices = 2;
6058 hdmi_dsc->clk_per_slice = 340;
6061 hdmi_dsc->max_slices = 4;
6062 hdmi_dsc->clk_per_slice = 340;
6065 hdmi_dsc->max_slices = 8;
6066 hdmi_dsc->clk_per_slice = 340;
6069 hdmi_dsc->max_slices = 8;
6070 hdmi_dsc->clk_per_slice = 400;
6073 hdmi_dsc->max_slices = 12;
6074 hdmi_dsc->clk_per_slice = 400;
6077 hdmi_dsc->max_slices = 16;
6078 hdmi_dsc->clk_per_slice = 400;
6082 hdmi_dsc->max_slices = 0;
6083 hdmi_dsc->clk_per_slice = 0;
6087 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6088 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6091 /* Sink Capability Data Structure */
6092 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6095 struct drm_display_info *info = &connector->display_info;
6096 struct drm_hdmi_info *hdmi = &info->hdmi;
6097 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6098 int max_tmds_clock = 0;
6099 u8 max_frl_rate = 0;
6100 bool dsc_support = false;
6102 info->has_hdmi_infoframe = true;
6104 if (hf_scds[6] & 0x80) {
6105 hdmi->scdc.supported = true;
6106 if (hf_scds[6] & 0x40)
6107 hdmi->scdc.read_request = true;
6111 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6112 * And as per the spec, three factors confirm this:
6113 * * Availability of a HF-VSDB block in EDID (check)
6114 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6115 * * SCDC support available (let's check)
6116 * Lets check it out.
6120 struct drm_scdc *scdc = &hdmi->scdc;
6122 /* max clock is 5000 KHz times block value */
6123 max_tmds_clock = hf_scds[5] * 5000;
6125 if (max_tmds_clock > 340000) {
6126 info->max_tmds_clock = max_tmds_clock;
6129 if (scdc->supported) {
6130 scdc->scrambling.supported = true;
6132 /* Few sinks support scrambling for clocks < 340M */
6133 if ((hf_scds[6] & 0x8))
6134 scdc->scrambling.low_rates = true;
6139 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6140 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6141 &hdmi->max_frl_rate_per_lane);
6144 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6146 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6147 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6151 drm_dbg_kms(connector->dev,
6152 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6153 connector->base.id, connector->name,
6154 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6157 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6160 struct drm_display_info *info = &connector->display_info;
6161 unsigned int dc_bpc = 0;
6163 /* HDMI supports at least 8 bpc */
6166 if (cea_db_payload_len(hdmi) < 6)
6169 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6171 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6172 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6173 connector->base.id, connector->name);
6176 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6178 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6179 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6180 connector->base.id, connector->name);
6183 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6185 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6186 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6187 connector->base.id, connector->name);
6191 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6192 connector->base.id, connector->name);
6196 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6197 connector->base.id, connector->name, dc_bpc);
6200 /* YCRCB444 is optional according to spec. */
6201 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6202 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6203 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6204 connector->base.id, connector->name);
6208 * Spec says that if any deep color mode is supported at all,
6209 * then deep color 36 bit must be supported.
6211 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6212 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6213 connector->base.id, connector->name);
6217 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6219 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6221 struct drm_display_info *info = &connector->display_info;
6222 u8 len = cea_db_payload_len(db);
6224 info->is_hdmi = true;
6226 info->source_physical_address = (db[4] << 8) | db[5];
6229 info->dvi_dual = db[6] & 1;
6231 info->max_tmds_clock = db[7] * 5000;
6234 * Try to infer whether the sink supports HDMI infoframes.
6236 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6237 * supports infoframes if HDMI_Video_present is set.
6239 if (len >= 8 && db[8] & BIT(5))
6240 info->has_hdmi_infoframe = true;
6242 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6243 connector->base.id, connector->name,
6244 info->dvi_dual, info->max_tmds_clock);
6246 drm_parse_hdmi_deep_color_info(connector, db);
6250 * See EDID extension for head-mounted and specialized monitors, specified at:
6251 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6253 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6256 struct drm_display_info *info = &connector->display_info;
6258 bool desktop_usage = db[5] & BIT(6);
6260 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6261 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6262 info->non_desktop = true;
6264 drm_dbg_kms(connector->dev,
6265 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6266 connector->base.id, connector->name, version, db[5]);
6269 static void drm_parse_cea_ext(struct drm_connector *connector,
6270 const struct drm_edid *drm_edid)
6272 struct drm_display_info *info = &connector->display_info;
6273 struct drm_edid_iter edid_iter;
6274 const struct cea_db *db;
6275 struct cea_db_iter iter;
6277 u64 y420cmdb_map = 0;
6279 drm_edid_iter_begin(drm_edid, &edid_iter);
6280 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6281 if (edid_ext[0] != CEA_EXT)
6285 info->cea_rev = edid_ext[1];
6287 if (info->cea_rev != edid_ext[1])
6288 drm_dbg_kms(connector->dev,
6289 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6290 connector->base.id, connector->name,
6291 info->cea_rev, edid_ext[1]);
6293 /* The existence of a CTA extension should imply RGB support */
6294 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6295 if (edid_ext[3] & EDID_CEA_YCRCB444)
6296 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6297 if (edid_ext[3] & EDID_CEA_YCRCB422)
6298 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6299 if (edid_ext[3] & EDID_BASIC_AUDIO)
6300 info->has_audio = true;
6303 drm_edid_iter_end(&edid_iter);
6305 cea_db_iter_edid_begin(drm_edid, &iter);
6306 cea_db_iter_for_each(db, &iter) {
6307 /* FIXME: convert parsers to use struct cea_db */
6308 const u8 *data = (const u8 *)db;
6310 if (cea_db_is_hdmi_vsdb(db))
6311 drm_parse_hdmi_vsdb_video(connector, data);
6312 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6313 cea_db_is_hdmi_forum_scdb(db))
6314 drm_parse_hdmi_forum_scds(connector, data);
6315 else if (cea_db_is_microsoft_vsdb(db))
6316 drm_parse_microsoft_vsdb(connector, data);
6317 else if (cea_db_is_y420cmdb(db))
6318 parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6319 else if (cea_db_is_y420vdb(db))
6320 parse_cta_y420vdb(connector, db);
6321 else if (cea_db_is_vcdb(db))
6322 drm_parse_vcdb(connector, data);
6323 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6324 drm_parse_hdr_metadata_block(connector, data);
6325 else if (cea_db_tag(db) == CTA_DB_VIDEO)
6326 parse_cta_vdb(connector, db);
6327 else if (cea_db_tag(db) == CTA_DB_AUDIO)
6328 info->has_audio = true;
6330 cea_db_iter_end(&iter);
6333 update_cta_y420cmdb(connector, y420cmdb_map);
6337 void get_monitor_range(const struct detailed_timing *timing, void *c)
6339 struct detailed_mode_closure *closure = c;
6340 struct drm_display_info *info = &closure->connector->display_info;
6341 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6342 const struct detailed_non_pixel *data = &timing->data.other_data;
6343 const struct detailed_data_monitor_range *range = &data->data.range;
6344 const struct edid *edid = closure->drm_edid->edid;
6346 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6350 * These limits are used to determine the VRR refresh
6351 * rate range. Only the "range limits only" variant
6352 * of the range descriptor seems to guarantee that
6353 * any and all timings are accepted by the sink, as
6354 * opposed to just timings conforming to the indicated
6355 * formula (GTF/GTF2/CVT). Thus other variants of the
6356 * range descriptor are not accepted here.
6358 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6361 monitor_range->min_vfreq = range->min_vfreq;
6362 monitor_range->max_vfreq = range->max_vfreq;
6364 if (edid->revision >= 4) {
6365 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6366 monitor_range->min_vfreq += 255;
6367 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6368 monitor_range->max_vfreq += 255;
6372 static void drm_get_monitor_range(struct drm_connector *connector,
6373 const struct drm_edid *drm_edid)
6375 const struct drm_display_info *info = &connector->display_info;
6376 struct detailed_mode_closure closure = {
6377 .connector = connector,
6378 .drm_edid = drm_edid,
6381 if (drm_edid->edid->revision < 4)
6384 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6387 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6389 drm_dbg_kms(connector->dev,
6390 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6391 connector->base.id, connector->name,
6392 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6395 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6396 const struct displayid_block *block)
6398 struct displayid_vesa_vendor_specific_block *vesa =
6399 (struct displayid_vesa_vendor_specific_block *)block;
6400 struct drm_display_info *info = &connector->display_info;
6402 if (block->num_bytes < 3) {
6403 drm_dbg_kms(connector->dev,
6404 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6405 connector->base.id, connector->name, block->num_bytes);
6409 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6412 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6413 drm_dbg_kms(connector->dev,
6414 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6415 connector->base.id, connector->name);
6419 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6421 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6422 connector->base.id, connector->name);
6425 info->mso_stream_count = 0;
6428 info->mso_stream_count = 2; /* 2 or 4 links */
6431 info->mso_stream_count = 4; /* 4 links */
6435 if (!info->mso_stream_count) {
6436 info->mso_pixel_overlap = 0;
6440 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6441 if (info->mso_pixel_overlap > 8) {
6442 drm_dbg_kms(connector->dev,
6443 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6444 connector->base.id, connector->name,
6445 info->mso_pixel_overlap);
6446 info->mso_pixel_overlap = 8;
6449 drm_dbg_kms(connector->dev,
6450 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6451 connector->base.id, connector->name,
6452 info->mso_stream_count, info->mso_pixel_overlap);
6455 static void drm_update_mso(struct drm_connector *connector,
6456 const struct drm_edid *drm_edid)
6458 const struct displayid_block *block;
6459 struct displayid_iter iter;
6461 displayid_iter_edid_begin(drm_edid, &iter);
6462 displayid_iter_for_each(block, &iter) {
6463 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6464 drm_parse_vesa_mso_data(connector, block);
6466 displayid_iter_end(&iter);
6469 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6470 * all of the values which would have been set from EDID
6472 static void drm_reset_display_info(struct drm_connector *connector)
6474 struct drm_display_info *info = &connector->display_info;
6477 info->height_mm = 0;
6480 info->color_formats = 0;
6482 info->max_tmds_clock = 0;
6483 info->dvi_dual = false;
6484 info->is_hdmi = false;
6485 info->has_audio = false;
6486 info->has_hdmi_infoframe = false;
6487 info->rgb_quant_range_selectable = false;
6488 memset(&info->hdmi, 0, sizeof(info->hdmi));
6490 info->edid_hdmi_rgb444_dc_modes = 0;
6491 info->edid_hdmi_ycbcr444_dc_modes = 0;
6493 info->non_desktop = 0;
6494 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6495 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6497 info->mso_stream_count = 0;
6498 info->mso_pixel_overlap = 0;
6499 info->max_dsc_bpp = 0;
6507 info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6510 static void update_displayid_info(struct drm_connector *connector,
6511 const struct drm_edid *drm_edid)
6513 struct drm_display_info *info = &connector->display_info;
6514 const struct displayid_block *block;
6515 struct displayid_iter iter;
6517 displayid_iter_edid_begin(drm_edid, &iter);
6518 displayid_iter_for_each(block, &iter) {
6519 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6520 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6521 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6522 info->non_desktop = true;
6525 * We're only interested in the base section here, no need to
6530 displayid_iter_end(&iter);
6533 static void update_display_info(struct drm_connector *connector,
6534 const struct drm_edid *drm_edid)
6536 struct drm_display_info *info = &connector->display_info;
6537 const struct edid *edid;
6539 drm_reset_display_info(connector);
6540 clear_eld(connector);
6545 edid = drm_edid->edid;
6547 info->quirks = edid_get_quirks(drm_edid);
6549 info->width_mm = edid->width_cm * 10;
6550 info->height_mm = edid->height_cm * 10;
6552 drm_get_monitor_range(connector, drm_edid);
6554 if (edid->revision < 3)
6557 if (!drm_edid_is_digital(drm_edid))
6560 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6561 drm_parse_cea_ext(connector, drm_edid);
6563 update_displayid_info(connector, drm_edid);
6566 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6568 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6569 * tells us to assume 8 bpc color depth if the EDID doesn't have
6570 * extensions which tell otherwise.
6572 if (info->bpc == 0 && edid->revision == 3 &&
6573 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6575 drm_dbg_kms(connector->dev,
6576 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6577 connector->base.id, connector->name, info->bpc);
6580 /* Only defined for 1.4 with digital displays */
6581 if (edid->revision < 4)
6584 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6585 case DRM_EDID_DIGITAL_DEPTH_6:
6588 case DRM_EDID_DIGITAL_DEPTH_8:
6591 case DRM_EDID_DIGITAL_DEPTH_10:
6594 case DRM_EDID_DIGITAL_DEPTH_12:
6597 case DRM_EDID_DIGITAL_DEPTH_14:
6600 case DRM_EDID_DIGITAL_DEPTH_16:
6603 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6609 drm_dbg_kms(connector->dev,
6610 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6611 connector->base.id, connector->name, info->bpc);
6613 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6614 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6615 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6616 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6618 drm_update_mso(connector, drm_edid);
6621 if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6622 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6623 connector->base.id, connector->name,
6624 info->non_desktop ? " (redundant quirk)" : "");
6625 info->non_desktop = true;
6628 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6629 info->max_dsc_bpp = 15;
6631 if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6634 if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6637 if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6640 if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6643 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6644 drm_edid_to_eld(connector, drm_edid);
6647 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6648 struct displayid_detailed_timings_1 *timings,
6651 struct drm_display_mode *mode;
6652 unsigned pixel_clock = (timings->pixel_clock[0] |
6653 (timings->pixel_clock[1] << 8) |
6654 (timings->pixel_clock[2] << 16)) + 1;
6655 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6656 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6657 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6658 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6659 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6660 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6661 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6662 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6663 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6664 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6666 mode = drm_mode_create(dev);
6670 /* resolution is kHz for type VII, and 10 kHz for type I */
6671 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6672 mode->hdisplay = hactive;
6673 mode->hsync_start = mode->hdisplay + hsync;
6674 mode->hsync_end = mode->hsync_start + hsync_width;
6675 mode->htotal = mode->hdisplay + hblank;
6677 mode->vdisplay = vactive;
6678 mode->vsync_start = mode->vdisplay + vsync;
6679 mode->vsync_end = mode->vsync_start + vsync_width;
6680 mode->vtotal = mode->vdisplay + vblank;
6683 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6684 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6685 mode->type = DRM_MODE_TYPE_DRIVER;
6687 if (timings->flags & 0x80)
6688 mode->type |= DRM_MODE_TYPE_PREFERRED;
6689 drm_mode_set_name(mode);
6694 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6695 const struct displayid_block *block)
6697 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6700 struct drm_display_mode *newmode;
6702 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6703 /* blocks must be multiple of 20 bytes length */
6704 if (block->num_bytes % 20)
6707 num_timings = block->num_bytes / 20;
6708 for (i = 0; i < num_timings; i++) {
6709 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6711 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6715 drm_mode_probed_add(connector, newmode);
6721 static int add_displayid_detailed_modes(struct drm_connector *connector,
6722 const struct drm_edid *drm_edid)
6724 const struct displayid_block *block;
6725 struct displayid_iter iter;
6728 displayid_iter_edid_begin(drm_edid, &iter);
6729 displayid_iter_for_each(block, &iter) {
6730 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6731 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6732 num_modes += add_displayid_detailed_1_modes(connector, block);
6734 displayid_iter_end(&iter);
6739 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6740 const struct drm_edid *drm_edid)
6742 const struct drm_display_info *info = &connector->display_info;
6749 * EDID spec says modes should be preferred in this order:
6750 * - preferred detailed mode
6751 * - other detailed modes from base block
6752 * - detailed modes from extension blocks
6753 * - CVT 3-byte code modes
6754 * - standard timing codes
6755 * - established timing codes
6756 * - modes inferred from GTF or CVT range information
6758 * We get this pretty much right.
6760 * XXX order for additional mode types in extension blocks?
6762 num_modes += add_detailed_modes(connector, drm_edid);
6763 num_modes += add_cvt_modes(connector, drm_edid);
6764 num_modes += add_standard_modes(connector, drm_edid);
6765 num_modes += add_established_modes(connector, drm_edid);
6766 num_modes += add_cea_modes(connector, drm_edid);
6767 num_modes += add_alternate_cea_modes(connector, drm_edid);
6768 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6769 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6770 num_modes += add_inferred_modes(connector, drm_edid);
6772 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6773 edid_fixup_preferred(connector);
6778 static void _drm_update_tile_info(struct drm_connector *connector,
6779 const struct drm_edid *drm_edid);
6781 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6782 const struct drm_edid *drm_edid)
6784 struct drm_device *dev = connector->dev;
6787 if (connector->edid_blob_ptr) {
6788 const struct edid *old_edid = connector->edid_blob_ptr->data;
6791 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6792 connector->epoch_counter++;
6793 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6794 connector->base.id, connector->name,
6795 connector->epoch_counter);
6800 ret = drm_property_replace_global_blob(dev,
6801 &connector->edid_blob_ptr,
6802 drm_edid ? drm_edid->size : 0,
6803 drm_edid ? drm_edid->edid : NULL,
6805 dev->mode_config.edid_property);
6807 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6808 connector->base.id, connector->name, ret);
6812 ret = drm_object_property_set_value(&connector->base,
6813 dev->mode_config.non_desktop_property,
6814 connector->display_info.non_desktop);
6816 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6817 connector->base.id, connector->name, ret);
6821 ret = drm_connector_set_tile_property(connector);
6823 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6824 connector->base.id, connector->name, ret);
6833 * drm_edid_connector_update - Update connector information from EDID
6834 * @connector: Connector
6837 * Update the connector display info, ELD, HDR metadata, relevant properties,
6838 * etc. from the passed in EDID.
6840 * If EDID is NULL, reset the information.
6842 * Must be called before calling drm_edid_connector_add_modes().
6844 * Return: 0 on success, negative error on errors.
6846 int drm_edid_connector_update(struct drm_connector *connector,
6847 const struct drm_edid *drm_edid)
6849 update_display_info(connector, drm_edid);
6851 _drm_update_tile_info(connector, drm_edid);
6853 return _drm_edid_connector_property_update(connector, drm_edid);
6855 EXPORT_SYMBOL(drm_edid_connector_update);
6858 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6859 * @connector: Connector
6861 * Add the modes from the previously updated EDID property to the connector
6862 * probed modes list.
6864 * drm_edid_connector_update() must have been called before this to update the
6867 * Return: The number of modes added, or 0 if we couldn't find any.
6869 int drm_edid_connector_add_modes(struct drm_connector *connector)
6871 const struct drm_edid *drm_edid = NULL;
6874 if (connector->edid_blob_ptr)
6875 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6876 connector->edid_blob_ptr->length);
6878 count = _drm_edid_connector_add_modes(connector, drm_edid);
6880 drm_edid_free(drm_edid);
6884 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6887 * drm_connector_update_edid_property - update the edid property of a connector
6888 * @connector: drm connector
6889 * @edid: new value of the edid property
6891 * This function creates a new blob modeset object and assigns its id to the
6892 * connector's edid property.
6893 * Since we also parse tile information from EDID's displayID block, we also
6894 * set the connector's tile property here. See drm_connector_set_tile_property()
6897 * This function is deprecated. Use drm_edid_connector_update() instead.
6900 * Zero on success, negative errno on failure.
6902 int drm_connector_update_edid_property(struct drm_connector *connector,
6903 const struct edid *edid)
6905 struct drm_edid drm_edid;
6907 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6909 EXPORT_SYMBOL(drm_connector_update_edid_property);
6912 * drm_add_edid_modes - add modes from EDID data, if available
6913 * @connector: connector we're probing
6916 * Add the specified modes to the connector's mode list. Also fills out the
6917 * &drm_display_info structure and ELD in @connector with any information which
6918 * can be derived from the edid.
6920 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6922 * Return: The number of modes added or 0 if we couldn't find any.
6924 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6926 struct drm_edid _drm_edid;
6927 const struct drm_edid *drm_edid;
6929 if (edid && !drm_edid_is_valid(edid)) {
6930 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6931 connector->base.id, connector->name);
6935 drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6937 update_display_info(connector, drm_edid);
6939 return _drm_edid_connector_add_modes(connector, drm_edid);
6941 EXPORT_SYMBOL(drm_add_edid_modes);
6944 * drm_add_modes_noedid - add modes for the connectors without EDID
6945 * @connector: connector we're probing
6946 * @hdisplay: the horizontal display limit
6947 * @vdisplay: the vertical display limit
6949 * Add the specified modes to the connector's mode list. Only when the
6950 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6952 * Return: The number of modes added or 0 if we couldn't find any.
6954 int drm_add_modes_noedid(struct drm_connector *connector,
6955 int hdisplay, int vdisplay)
6957 int i, count, num_modes = 0;
6958 struct drm_display_mode *mode;
6959 struct drm_device *dev = connector->dev;
6961 count = ARRAY_SIZE(drm_dmt_modes);
6967 for (i = 0; i < count; i++) {
6968 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6970 if (hdisplay && vdisplay) {
6972 * Only when two are valid, they will be used to check
6973 * whether the mode should be added to the mode list of
6976 if (ptr->hdisplay > hdisplay ||
6977 ptr->vdisplay > vdisplay)
6980 if (drm_mode_vrefresh(ptr) > 61)
6982 mode = drm_mode_duplicate(dev, ptr);
6984 drm_mode_probed_add(connector, mode);
6990 EXPORT_SYMBOL(drm_add_modes_noedid);
6993 * drm_set_preferred_mode - Sets the preferred mode of a connector
6994 * @connector: connector whose mode list should be processed
6995 * @hpref: horizontal resolution of preferred mode
6996 * @vpref: vertical resolution of preferred mode
6998 * Marks a mode as preferred if it matches the resolution specified by @hpref
7001 void drm_set_preferred_mode(struct drm_connector *connector,
7002 int hpref, int vpref)
7004 struct drm_display_mode *mode;
7006 list_for_each_entry(mode, &connector->probed_modes, head) {
7007 if (mode->hdisplay == hpref &&
7008 mode->vdisplay == vpref)
7009 mode->type |= DRM_MODE_TYPE_PREFERRED;
7012 EXPORT_SYMBOL(drm_set_preferred_mode);
7014 static bool is_hdmi2_sink(const struct drm_connector *connector)
7017 * FIXME: sil-sii8620 doesn't have a connector around when
7018 * we need one, so we have to be prepared for a NULL connector.
7023 return connector->display_info.hdmi.scdc.supported ||
7024 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7027 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7028 const struct drm_display_mode *mode)
7030 bool has_hdmi_infoframe = connector ?
7031 connector->display_info.has_hdmi_infoframe : false;
7033 if (!has_hdmi_infoframe)
7036 /* No HDMI VIC when signalling 3D video format */
7037 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7040 return drm_match_hdmi_mode(mode);
7043 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7044 const struct drm_display_mode *mode)
7047 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7048 * we should send its VIC in vendor infoframes, else send the
7049 * VIC in AVI infoframes. Lets check if this mode is present in
7050 * HDMI 1.4b 4K modes
7052 if (drm_mode_hdmi_vic(connector, mode))
7055 return drm_match_cea_mode(mode);
7059 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7060 * conform to HDMI 1.4.
7062 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7063 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7065 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7068 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7070 if (!is_hdmi2_sink(connector) && vic > 64 &&
7071 !cta_vdb_has_vic(connector, vic))
7078 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7079 * data from a DRM display mode
7080 * @frame: HDMI AVI infoframe
7081 * @connector: the connector
7082 * @mode: DRM display mode
7084 * Return: 0 on success or a negative error code on failure.
7087 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7088 const struct drm_connector *connector,
7089 const struct drm_display_mode *mode)
7091 enum hdmi_picture_aspect picture_aspect;
7094 if (!frame || !mode)
7097 hdmi_avi_infoframe_init(frame);
7099 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7100 frame->pixel_repeat = 1;
7102 vic = drm_mode_cea_vic(connector, mode);
7103 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7105 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7108 * As some drivers don't support atomic, we can't use connector state.
7109 * So just initialize the frame with default values, just the same way
7110 * as it's done with other properties here.
7112 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7116 * Populate picture aspect ratio from either
7117 * user input (if specified) or from the CEA/HDMI mode lists.
7119 picture_aspect = mode->picture_aspect_ratio;
7120 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7122 picture_aspect = drm_get_cea_aspect_ratio(vic);
7124 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7128 * The infoframe can't convey anything but none, 4:3
7129 * and 16:9, so if the user has asked for anything else
7130 * we can only satisfy it by specifying the right VIC.
7132 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7134 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7136 } else if (hdmi_vic) {
7137 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7143 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7146 frame->video_code = vic_for_avi_infoframe(connector, vic);
7147 frame->picture_aspect = picture_aspect;
7148 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7149 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7153 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7156 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7157 * quantization range information
7158 * @frame: HDMI AVI infoframe
7159 * @connector: the connector
7160 * @mode: DRM display mode
7161 * @rgb_quant_range: RGB quantization range (Q)
7164 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7165 const struct drm_connector *connector,
7166 const struct drm_display_mode *mode,
7167 enum hdmi_quantization_range rgb_quant_range)
7169 const struct drm_display_info *info = &connector->display_info;
7173 * "A Source shall not send a non-zero Q value that does not correspond
7174 * to the default RGB Quantization Range for the transmitted Picture
7175 * unless the Sink indicates support for the Q bit in a Video
7176 * Capabilities Data Block."
7178 * HDMI 2.0 recommends sending non-zero Q when it does match the
7179 * default RGB quantization range for the mode, even when QS=0.
7181 if (info->rgb_quant_range_selectable ||
7182 rgb_quant_range == drm_default_rgb_quant_range(mode))
7183 frame->quantization_range = rgb_quant_range;
7185 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7189 * "When transmitting any RGB colorimetry, the Source should set the
7190 * YQ-field to match the RGB Quantization Range being transmitted
7191 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7192 * set YQ=1) and the Sink shall ignore the YQ-field."
7194 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7195 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7196 * good way to tell which version of CEA-861 the sink supports, so
7197 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7200 if (!is_hdmi2_sink(connector) ||
7201 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7202 frame->ycc_quantization_range =
7203 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7205 frame->ycc_quantization_range =
7206 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7208 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7210 static enum hdmi_3d_structure
7211 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7213 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7216 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7217 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7218 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7219 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7220 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7221 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7222 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7223 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7224 case DRM_MODE_FLAG_3D_L_DEPTH:
7225 return HDMI_3D_STRUCTURE_L_DEPTH;
7226 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7227 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7228 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7229 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7230 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7231 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7233 return HDMI_3D_STRUCTURE_INVALID;
7238 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7239 * data from a DRM display mode
7240 * @frame: HDMI vendor infoframe
7241 * @connector: the connector
7242 * @mode: DRM display mode
7244 * Note that there's is a need to send HDMI vendor infoframes only when using a
7245 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7246 * function will return -EINVAL, error that can be safely ignored.
7248 * Return: 0 on success or a negative error code on failure.
7251 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7252 const struct drm_connector *connector,
7253 const struct drm_display_mode *mode)
7256 * FIXME: sil-sii8620 doesn't have a connector around when
7257 * we need one, so we have to be prepared for a NULL connector.
7259 bool has_hdmi_infoframe = connector ?
7260 connector->display_info.has_hdmi_infoframe : false;
7263 if (!frame || !mode)
7266 if (!has_hdmi_infoframe)
7269 err = hdmi_vendor_infoframe_init(frame);
7274 * Even if it's not absolutely necessary to send the infoframe
7275 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7276 * know that the sink can handle it. This is based on a
7277 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7278 * have trouble realizing that they should switch from 3D to 2D
7279 * mode if the source simply stops sending the infoframe when
7280 * it wants to switch from 3D to 2D.
7282 frame->vic = drm_mode_hdmi_vic(connector, mode);
7283 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7287 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7289 static void drm_parse_tiled_block(struct drm_connector *connector,
7290 const struct displayid_block *block)
7292 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7294 u8 tile_v_loc, tile_h_loc;
7295 u8 num_v_tile, num_h_tile;
7296 struct drm_tile_group *tg;
7298 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7299 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7301 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7302 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7303 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7304 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7306 connector->has_tile = true;
7307 if (tile->tile_cap & 0x80)
7308 connector->tile_is_single_monitor = true;
7310 connector->num_h_tile = num_h_tile + 1;
7311 connector->num_v_tile = num_v_tile + 1;
7312 connector->tile_h_loc = tile_h_loc;
7313 connector->tile_v_loc = tile_v_loc;
7314 connector->tile_h_size = w + 1;
7315 connector->tile_v_size = h + 1;
7317 drm_dbg_kms(connector->dev,
7318 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7319 connector->base.id, connector->name,
7321 connector->tile_h_size, connector->tile_v_size,
7322 connector->num_h_tile, connector->num_v_tile,
7323 connector->tile_h_loc, connector->tile_v_loc,
7324 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7326 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7328 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7332 if (connector->tile_group != tg) {
7333 /* if we haven't got a pointer,
7334 take the reference, drop ref to old tile group */
7335 if (connector->tile_group)
7336 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7337 connector->tile_group = tg;
7339 /* if same tile group, then release the ref we just took. */
7340 drm_mode_put_tile_group(connector->dev, tg);
7344 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7345 const struct displayid_block *block)
7347 return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7348 block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7349 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7350 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7353 static void _drm_update_tile_info(struct drm_connector *connector,
7354 const struct drm_edid *drm_edid)
7356 const struct displayid_block *block;
7357 struct displayid_iter iter;
7359 connector->has_tile = false;
7361 displayid_iter_edid_begin(drm_edid, &iter);
7362 displayid_iter_for_each(block, &iter) {
7363 if (displayid_is_tiled_block(&iter, block))
7364 drm_parse_tiled_block(connector, block);
7366 displayid_iter_end(&iter);
7368 if (!connector->has_tile && connector->tile_group) {
7369 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7370 connector->tile_group = NULL;
7375 * drm_edid_is_digital - is digital?
7376 * @drm_edid: The EDID
7378 * Return true if input is digital.
7380 bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7382 return drm_edid && drm_edid->edid &&
7383 drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7385 EXPORT_SYMBOL(drm_edid_is_digital);