1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_sem
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
110 * sb_start_write -> i_mutex -> mmap_sem
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
114 * transaction start -> page lock(s) -> i_data_sem (rw)
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #define IS_EXT2_SB(sb) (0)
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
145 * This works like sb_bread() except it uses ERR_PTR for error
146 * returns. Currently with sb_bread it's impossible to distinguish
147 * between ENOMEM and EIO situations (since both result in a NULL
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
153 struct buffer_head *bh = sb_getblk(sb, block);
156 return ERR_PTR(-ENOMEM);
157 if (buffer_uptodate(bh))
159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
161 if (buffer_uptodate(bh))
164 return ERR_PTR(-EIO);
167 static int ext4_verify_csum_type(struct super_block *sb,
168 struct ext4_super_block *es)
170 if (!ext4_has_feature_metadata_csum(sb))
173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177 struct ext4_super_block *es)
179 struct ext4_sb_info *sbi = EXT4_SB(sb);
180 int offset = offsetof(struct ext4_super_block, s_checksum);
183 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
185 return cpu_to_le32(csum);
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189 struct ext4_super_block *es)
191 if (!ext4_has_metadata_csum(sb))
194 return es->s_checksum == ext4_superblock_csum(sb, es);
197 void ext4_superblock_csum_set(struct super_block *sb)
199 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
201 if (!ext4_has_metadata_csum(sb))
204 es->s_checksum = ext4_superblock_csum(sb, es);
207 void *ext4_kvmalloc(size_t size, gfp_t flags)
211 ret = kmalloc(size, flags | __GFP_NOWARN);
213 ret = __vmalloc(size, flags, PAGE_KERNEL);
217 void *ext4_kvzalloc(size_t size, gfp_t flags)
221 ret = kzalloc(size, flags | __GFP_NOWARN);
223 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
227 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le32_to_cpu(bg->bg_block_bitmap_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
235 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
243 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le32_to_cpu(bg->bg_inode_table_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
251 __u32 ext4_free_group_clusters(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
259 __u32 ext4_free_inodes_count(struct super_block *sb,
260 struct ext4_group_desc *bg)
262 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
267 __u32 ext4_used_dirs_count(struct super_block *sb,
268 struct ext4_group_desc *bg)
270 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
275 __u32 ext4_itable_unused_count(struct super_block *sb,
276 struct ext4_group_desc *bg)
278 return le16_to_cpu(bg->bg_itable_unused_lo) |
279 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
283 void ext4_block_bitmap_set(struct super_block *sb,
284 struct ext4_group_desc *bg, ext4_fsblk_t blk)
286 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
291 void ext4_inode_bitmap_set(struct super_block *sb,
292 struct ext4_group_desc *bg, ext4_fsblk_t blk)
294 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
299 void ext4_inode_table_set(struct super_block *sb,
300 struct ext4_group_desc *bg, ext4_fsblk_t blk)
302 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
307 void ext4_free_group_clusters_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
315 void ext4_free_inodes_set(struct super_block *sb,
316 struct ext4_group_desc *bg, __u32 count)
318 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
323 void ext4_used_dirs_set(struct super_block *sb,
324 struct ext4_group_desc *bg, __u32 count)
326 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
331 void ext4_itable_unused_set(struct super_block *sb,
332 struct ext4_group_desc *bg, __u32 count)
334 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
339 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
341 time64_t now = ktime_get_real_seconds();
343 now = clamp_val(now, 0, (1ull << 40) - 1);
345 *lo = cpu_to_le32(lower_32_bits(now));
346 *hi = upper_32_bits(now);
349 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
351 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
353 #define ext4_update_tstamp(es, tstamp) \
354 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355 #define ext4_get_tstamp(es, tstamp) \
356 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
358 static void __save_error_info(struct super_block *sb, const char *func,
361 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
363 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364 if (bdev_read_only(sb->s_bdev))
366 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367 ext4_update_tstamp(es, s_last_error_time);
368 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369 es->s_last_error_line = cpu_to_le32(line);
370 if (!es->s_first_error_time) {
371 es->s_first_error_time = es->s_last_error_time;
372 es->s_first_error_time_hi = es->s_last_error_time_hi;
373 strncpy(es->s_first_error_func, func,
374 sizeof(es->s_first_error_func));
375 es->s_first_error_line = cpu_to_le32(line);
376 es->s_first_error_ino = es->s_last_error_ino;
377 es->s_first_error_block = es->s_last_error_block;
380 * Start the daily error reporting function if it hasn't been
383 if (!es->s_error_count)
384 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385 le32_add_cpu(&es->s_error_count, 1);
388 static void save_error_info(struct super_block *sb, const char *func,
391 __save_error_info(sb, func, line);
392 ext4_commit_super(sb, 1);
396 * The del_gendisk() function uninitializes the disk-specific data
397 * structures, including the bdi structure, without telling anyone
398 * else. Once this happens, any attempt to call mark_buffer_dirty()
399 * (for example, by ext4_commit_super), will cause a kernel OOPS.
400 * This is a kludge to prevent these oops until we can put in a proper
401 * hook in del_gendisk() to inform the VFS and file system layers.
403 static int block_device_ejected(struct super_block *sb)
405 struct inode *bd_inode = sb->s_bdev->bd_inode;
406 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
408 return bdi->dev == NULL;
411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
413 struct super_block *sb = journal->j_private;
414 struct ext4_sb_info *sbi = EXT4_SB(sb);
415 int error = is_journal_aborted(journal);
416 struct ext4_journal_cb_entry *jce;
418 BUG_ON(txn->t_state == T_FINISHED);
420 ext4_process_freed_data(sb, txn->t_tid);
422 spin_lock(&sbi->s_md_lock);
423 while (!list_empty(&txn->t_private_list)) {
424 jce = list_entry(txn->t_private_list.next,
425 struct ext4_journal_cb_entry, jce_list);
426 list_del_init(&jce->jce_list);
427 spin_unlock(&sbi->s_md_lock);
428 jce->jce_func(sb, jce, error);
429 spin_lock(&sbi->s_md_lock);
431 spin_unlock(&sbi->s_md_lock);
434 static bool system_going_down(void)
436 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437 || system_state == SYSTEM_RESTART;
440 /* Deal with the reporting of failure conditions on a filesystem such as
441 * inconsistencies detected or read IO failures.
443 * On ext2, we can store the error state of the filesystem in the
444 * superblock. That is not possible on ext4, because we may have other
445 * write ordering constraints on the superblock which prevent us from
446 * writing it out straight away; and given that the journal is about to
447 * be aborted, we can't rely on the current, or future, transactions to
448 * write out the superblock safely.
450 * We'll just use the jbd2_journal_abort() error code to record an error in
451 * the journal instead. On recovery, the journal will complain about
452 * that error until we've noted it down and cleared it.
455 static void ext4_handle_error(struct super_block *sb)
457 if (test_opt(sb, WARN_ON_ERROR))
463 if (!test_opt(sb, ERRORS_CONT)) {
464 journal_t *journal = EXT4_SB(sb)->s_journal;
466 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
468 jbd2_journal_abort(journal, -EIO);
471 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472 * could panic during 'reboot -f' as the underlying device got already
475 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
478 * Make sure updated value of ->s_mount_flags will be visible
479 * before ->s_flags update
482 sb->s_flags |= SB_RDONLY;
483 } else if (test_opt(sb, ERRORS_PANIC)) {
484 if (EXT4_SB(sb)->s_journal &&
485 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
487 panic("EXT4-fs (device %s): panic forced after error\n",
492 #define ext4_error_ratelimit(sb) \
493 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
496 void __ext4_error(struct super_block *sb, const char *function,
497 unsigned int line, const char *fmt, ...)
499 struct va_format vaf;
502 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
505 trace_ext4_error(sb, function, line);
506 if (ext4_error_ratelimit(sb)) {
511 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512 sb->s_id, function, line, current->comm, &vaf);
515 save_error_info(sb, function, line);
516 ext4_handle_error(sb);
519 void __ext4_error_inode(struct inode *inode, const char *function,
520 unsigned int line, ext4_fsblk_t block,
521 const char *fmt, ...)
524 struct va_format vaf;
525 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
527 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
530 trace_ext4_error(inode->i_sb, function, line);
531 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532 es->s_last_error_block = cpu_to_le64(block);
533 if (ext4_error_ratelimit(inode->i_sb)) {
538 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539 "inode #%lu: block %llu: comm %s: %pV\n",
540 inode->i_sb->s_id, function, line, inode->i_ino,
541 block, current->comm, &vaf);
543 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544 "inode #%lu: comm %s: %pV\n",
545 inode->i_sb->s_id, function, line, inode->i_ino,
546 current->comm, &vaf);
549 save_error_info(inode->i_sb, function, line);
550 ext4_handle_error(inode->i_sb);
553 void __ext4_error_file(struct file *file, const char *function,
554 unsigned int line, ext4_fsblk_t block,
555 const char *fmt, ...)
558 struct va_format vaf;
559 struct ext4_super_block *es;
560 struct inode *inode = file_inode(file);
561 char pathname[80], *path;
563 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
566 trace_ext4_error(inode->i_sb, function, line);
567 es = EXT4_SB(inode->i_sb)->s_es;
568 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569 if (ext4_error_ratelimit(inode->i_sb)) {
570 path = file_path(file, pathname, sizeof(pathname));
578 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579 "block %llu: comm %s: path %s: %pV\n",
580 inode->i_sb->s_id, function, line, inode->i_ino,
581 block, current->comm, path, &vaf);
584 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585 "comm %s: path %s: %pV\n",
586 inode->i_sb->s_id, function, line, inode->i_ino,
587 current->comm, path, &vaf);
590 save_error_info(inode->i_sb, function, line);
591 ext4_handle_error(inode->i_sb);
594 const char *ext4_decode_error(struct super_block *sb, int errno,
601 errstr = "Corrupt filesystem";
604 errstr = "Filesystem failed CRC";
607 errstr = "IO failure";
610 errstr = "Out of memory";
613 if (!sb || (EXT4_SB(sb)->s_journal &&
614 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615 errstr = "Journal has aborted";
617 errstr = "Readonly filesystem";
620 /* If the caller passed in an extra buffer for unknown
621 * errors, textualise them now. Else we just return
624 /* Check for truncated error codes... */
625 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
634 /* __ext4_std_error decodes expected errors from journaling functions
635 * automatically and invokes the appropriate error response. */
637 void __ext4_std_error(struct super_block *sb, const char *function,
638 unsigned int line, int errno)
643 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
646 /* Special case: if the error is EROFS, and we're not already
647 * inside a transaction, then there's really no point in logging
649 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
652 if (ext4_error_ratelimit(sb)) {
653 errstr = ext4_decode_error(sb, errno, nbuf);
654 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655 sb->s_id, function, line, errstr);
658 save_error_info(sb, function, line);
659 ext4_handle_error(sb);
663 * ext4_abort is a much stronger failure handler than ext4_error. The
664 * abort function may be used to deal with unrecoverable failures such
665 * as journal IO errors or ENOMEM at a critical moment in log management.
667 * We unconditionally force the filesystem into an ABORT|READONLY state,
668 * unless the error response on the fs has been set to panic in which
669 * case we take the easy way out and panic immediately.
672 void __ext4_abort(struct super_block *sb, const char *function,
673 unsigned int line, const char *fmt, ...)
675 struct va_format vaf;
678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
681 save_error_info(sb, function, line);
685 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686 sb->s_id, function, line, &vaf);
689 if (sb_rdonly(sb) == 0) {
690 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
693 * Make sure updated value of ->s_mount_flags will be visible
694 * before ->s_flags update
697 sb->s_flags |= SB_RDONLY;
698 if (EXT4_SB(sb)->s_journal)
699 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700 save_error_info(sb, function, line);
702 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703 if (EXT4_SB(sb)->s_journal &&
704 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
706 panic("EXT4-fs panic from previous error\n");
710 void __ext4_msg(struct super_block *sb,
711 const char *prefix, const char *fmt, ...)
713 struct va_format vaf;
716 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
722 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
726 #define ext4_warning_ratelimit(sb) \
727 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
730 void __ext4_warning(struct super_block *sb, const char *function,
731 unsigned int line, const char *fmt, ...)
733 struct va_format vaf;
736 if (!ext4_warning_ratelimit(sb))
742 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743 sb->s_id, function, line, &vaf);
747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748 unsigned int line, const char *fmt, ...)
750 struct va_format vaf;
753 if (!ext4_warning_ratelimit(inode->i_sb))
759 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761 function, line, inode->i_ino, current->comm, &vaf);
765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766 struct super_block *sb, ext4_group_t grp,
767 unsigned long ino, ext4_fsblk_t block,
768 const char *fmt, ...)
772 struct va_format vaf;
774 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
776 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
779 trace_ext4_error(sb, function, line);
780 es->s_last_error_ino = cpu_to_le32(ino);
781 es->s_last_error_block = cpu_to_le64(block);
782 __save_error_info(sb, function, line);
784 if (ext4_error_ratelimit(sb)) {
788 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789 sb->s_id, function, line, grp);
791 printk(KERN_CONT "inode %lu: ", ino);
793 printk(KERN_CONT "block %llu:",
794 (unsigned long long) block);
795 printk(KERN_CONT "%pV\n", &vaf);
799 if (test_opt(sb, WARN_ON_ERROR))
802 if (test_opt(sb, ERRORS_CONT)) {
803 ext4_commit_super(sb, 0);
807 ext4_unlock_group(sb, grp);
808 ext4_commit_super(sb, 1);
809 ext4_handle_error(sb);
811 * We only get here in the ERRORS_RO case; relocking the group
812 * may be dangerous, but nothing bad will happen since the
813 * filesystem will have already been marked read/only and the
814 * journal has been aborted. We return 1 as a hint to callers
815 * who might what to use the return value from
816 * ext4_grp_locked_error() to distinguish between the
817 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818 * aggressively from the ext4 function in question, with a
819 * more appropriate error code.
821 ext4_lock_group(sb, grp);
825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
829 struct ext4_sb_info *sbi = EXT4_SB(sb);
830 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
834 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
838 percpu_counter_sub(&sbi->s_freeclusters_counter,
842 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
848 count = ext4_free_inodes_count(sb, gdp);
849 percpu_counter_sub(&sbi->s_freeinodes_counter,
855 void ext4_update_dynamic_rev(struct super_block *sb)
857 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
859 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
863 "updating to rev %d because of new feature flag, "
864 "running e2fsck is recommended",
867 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870 /* leave es->s_feature_*compat flags alone */
871 /* es->s_uuid will be set by e2fsck if empty */
874 * The rest of the superblock fields should be zero, and if not it
875 * means they are likely already in use, so leave them alone. We
876 * can leave it up to e2fsck to clean up any inconsistencies there.
881 * Open the external journal device
883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
885 struct block_device *bdev;
886 char b[BDEVNAME_SIZE];
888 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
894 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895 __bdevname(dev, b), PTR_ERR(bdev));
900 * Release the journal device
902 static void ext4_blkdev_put(struct block_device *bdev)
904 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
909 struct block_device *bdev;
910 bdev = sbi->journal_bdev;
912 ext4_blkdev_put(bdev);
913 sbi->journal_bdev = NULL;
917 static inline struct inode *orphan_list_entry(struct list_head *l)
919 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
926 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927 le32_to_cpu(sbi->s_es->s_last_orphan));
929 printk(KERN_ERR "sb_info orphan list:\n");
930 list_for_each(l, &sbi->s_orphan) {
931 struct inode *inode = orphan_list_entry(l);
933 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934 inode->i_sb->s_id, inode->i_ino, inode,
935 inode->i_mode, inode->i_nlink,
941 static int ext4_quota_off(struct super_block *sb, int type);
943 static inline void ext4_quota_off_umount(struct super_block *sb)
947 /* Use our quota_off function to clear inode flags etc. */
948 for (type = 0; type < EXT4_MAXQUOTAS; type++)
949 ext4_quota_off(sb, type);
953 * This is a helper function which is used in the mount/remount
954 * codepaths (which holds s_umount) to fetch the quota file name.
956 static inline char *get_qf_name(struct super_block *sb,
957 struct ext4_sb_info *sbi,
960 return rcu_dereference_protected(sbi->s_qf_names[type],
961 lockdep_is_held(&sb->s_umount));
964 static inline void ext4_quota_off_umount(struct super_block *sb)
969 static void ext4_put_super(struct super_block *sb)
971 struct ext4_sb_info *sbi = EXT4_SB(sb);
972 struct ext4_super_block *es = sbi->s_es;
976 ext4_unregister_li_request(sb);
977 ext4_quota_off_umount(sb);
979 destroy_workqueue(sbi->rsv_conversion_wq);
981 if (sbi->s_journal) {
982 aborted = is_journal_aborted(sbi->s_journal);
983 err = jbd2_journal_destroy(sbi->s_journal);
984 sbi->s_journal = NULL;
985 if ((err < 0) && !aborted)
986 ext4_abort(sb, "Couldn't clean up the journal");
989 ext4_unregister_sysfs(sb);
990 ext4_es_unregister_shrinker(sbi);
991 del_timer_sync(&sbi->s_err_report);
992 ext4_release_system_zone(sb);
994 ext4_ext_release(sb);
996 if (!sb_rdonly(sb) && !aborted) {
997 ext4_clear_feature_journal_needs_recovery(sb);
998 es->s_state = cpu_to_le16(sbi->s_mount_state);
1001 ext4_commit_super(sb, 1);
1003 for (i = 0; i < sbi->s_gdb_count; i++)
1004 brelse(sbi->s_group_desc[i]);
1005 kvfree(sbi->s_group_desc);
1006 kvfree(sbi->s_flex_groups);
1007 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009 percpu_counter_destroy(&sbi->s_dirs_counter);
1010 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1013 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014 kfree(get_qf_name(sb, sbi, i));
1017 /* Debugging code just in case the in-memory inode orphan list
1018 * isn't empty. The on-disk one can be non-empty if we've
1019 * detected an error and taken the fs readonly, but the
1020 * in-memory list had better be clean by this point. */
1021 if (!list_empty(&sbi->s_orphan))
1022 dump_orphan_list(sb, sbi);
1023 J_ASSERT(list_empty(&sbi->s_orphan));
1025 sync_blockdev(sb->s_bdev);
1026 invalidate_bdev(sb->s_bdev);
1027 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1029 * Invalidate the journal device's buffers. We don't want them
1030 * floating about in memory - the physical journal device may
1031 * hotswapped, and it breaks the `ro-after' testing code.
1033 sync_blockdev(sbi->journal_bdev);
1034 invalidate_bdev(sbi->journal_bdev);
1035 ext4_blkdev_remove(sbi);
1038 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039 sbi->s_ea_inode_cache = NULL;
1041 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042 sbi->s_ea_block_cache = NULL;
1045 kthread_stop(sbi->s_mmp_tsk);
1047 sb->s_fs_info = NULL;
1049 * Now that we are completely done shutting down the
1050 * superblock, we need to actually destroy the kobject.
1052 kobject_put(&sbi->s_kobj);
1053 wait_for_completion(&sbi->s_kobj_unregister);
1054 if (sbi->s_chksum_driver)
1055 crypto_free_shash(sbi->s_chksum_driver);
1056 kfree(sbi->s_blockgroup_lock);
1057 fs_put_dax(sbi->s_daxdev);
1058 #ifdef CONFIG_UNICODE
1059 utf8_unload(sbi->s_encoding);
1064 static struct kmem_cache *ext4_inode_cachep;
1067 * Called inside transaction, so use GFP_NOFS
1069 static struct inode *ext4_alloc_inode(struct super_block *sb)
1071 struct ext4_inode_info *ei;
1073 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1077 inode_set_iversion(&ei->vfs_inode, 1);
1078 spin_lock_init(&ei->i_raw_lock);
1079 INIT_LIST_HEAD(&ei->i_prealloc_list);
1080 spin_lock_init(&ei->i_prealloc_lock);
1081 ext4_es_init_tree(&ei->i_es_tree);
1082 rwlock_init(&ei->i_es_lock);
1083 INIT_LIST_HEAD(&ei->i_es_list);
1084 ei->i_es_all_nr = 0;
1085 ei->i_es_shk_nr = 0;
1086 ei->i_es_shrink_lblk = 0;
1087 ei->i_reserved_data_blocks = 0;
1088 ei->i_da_metadata_calc_len = 0;
1089 ei->i_da_metadata_calc_last_lblock = 0;
1090 spin_lock_init(&(ei->i_block_reservation_lock));
1091 ext4_init_pending_tree(&ei->i_pending_tree);
1093 ei->i_reserved_quota = 0;
1094 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1097 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098 spin_lock_init(&ei->i_completed_io_lock);
1100 ei->i_datasync_tid = 0;
1101 atomic_set(&ei->i_unwritten, 0);
1102 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103 return &ei->vfs_inode;
1106 static int ext4_drop_inode(struct inode *inode)
1108 int drop = generic_drop_inode(inode);
1111 drop = fscrypt_drop_inode(inode);
1113 trace_ext4_drop_inode(inode, drop);
1117 static void ext4_free_in_core_inode(struct inode *inode)
1119 fscrypt_free_inode(inode);
1120 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1123 static void ext4_destroy_inode(struct inode *inode)
1125 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1126 ext4_msg(inode->i_sb, KERN_ERR,
1127 "Inode %lu (%p): orphan list check failed!",
1128 inode->i_ino, EXT4_I(inode));
1129 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1130 EXT4_I(inode), sizeof(struct ext4_inode_info),
1136 static void init_once(void *foo)
1138 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1140 INIT_LIST_HEAD(&ei->i_orphan);
1141 init_rwsem(&ei->xattr_sem);
1142 init_rwsem(&ei->i_data_sem);
1143 init_rwsem(&ei->i_mmap_sem);
1144 inode_init_once(&ei->vfs_inode);
1147 static int __init init_inodecache(void)
1149 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1150 sizeof(struct ext4_inode_info), 0,
1151 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1153 offsetof(struct ext4_inode_info, i_data),
1154 sizeof_field(struct ext4_inode_info, i_data),
1156 if (ext4_inode_cachep == NULL)
1161 static void destroy_inodecache(void)
1164 * Make sure all delayed rcu free inodes are flushed before we
1168 kmem_cache_destroy(ext4_inode_cachep);
1171 void ext4_clear_inode(struct inode *inode)
1173 invalidate_inode_buffers(inode);
1175 ext4_discard_preallocations(inode);
1176 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1178 if (EXT4_I(inode)->jinode) {
1179 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1180 EXT4_I(inode)->jinode);
1181 jbd2_free_inode(EXT4_I(inode)->jinode);
1182 EXT4_I(inode)->jinode = NULL;
1184 fscrypt_put_encryption_info(inode);
1185 fsverity_cleanup_inode(inode);
1188 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1189 u64 ino, u32 generation)
1191 struct inode *inode;
1194 * Currently we don't know the generation for parent directory, so
1195 * a generation of 0 means "accept any"
1197 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1199 return ERR_CAST(inode);
1200 if (generation && inode->i_generation != generation) {
1202 return ERR_PTR(-ESTALE);
1208 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1209 int fh_len, int fh_type)
1211 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1212 ext4_nfs_get_inode);
1215 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1216 int fh_len, int fh_type)
1218 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1219 ext4_nfs_get_inode);
1222 static int ext4_nfs_commit_metadata(struct inode *inode)
1224 struct writeback_control wbc = {
1225 .sync_mode = WB_SYNC_ALL
1228 trace_ext4_nfs_commit_metadata(inode);
1229 return ext4_write_inode(inode, &wbc);
1233 * Try to release metadata pages (indirect blocks, directories) which are
1234 * mapped via the block device. Since these pages could have journal heads
1235 * which would prevent try_to_free_buffers() from freeing them, we must use
1236 * jbd2 layer's try_to_free_buffers() function to release them.
1238 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1241 journal_t *journal = EXT4_SB(sb)->s_journal;
1243 WARN_ON(PageChecked(page));
1244 if (!page_has_buffers(page))
1247 return jbd2_journal_try_to_free_buffers(journal, page,
1248 wait & ~__GFP_DIRECT_RECLAIM);
1249 return try_to_free_buffers(page);
1252 #ifdef CONFIG_FS_ENCRYPTION
1253 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1255 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1256 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1259 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1262 handle_t *handle = fs_data;
1263 int res, res2, credits, retries = 0;
1266 * Encrypting the root directory is not allowed because e2fsck expects
1267 * lost+found to exist and be unencrypted, and encrypting the root
1268 * directory would imply encrypting the lost+found directory as well as
1269 * the filename "lost+found" itself.
1271 if (inode->i_ino == EXT4_ROOT_INO)
1274 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1277 res = ext4_convert_inline_data(inode);
1282 * If a journal handle was specified, then the encryption context is
1283 * being set on a new inode via inheritance and is part of a larger
1284 * transaction to create the inode. Otherwise the encryption context is
1285 * being set on an existing inode in its own transaction. Only in the
1286 * latter case should the "retry on ENOSPC" logic be used.
1290 res = ext4_xattr_set_handle(handle, inode,
1291 EXT4_XATTR_INDEX_ENCRYPTION,
1292 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1295 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1296 ext4_clear_inode_state(inode,
1297 EXT4_STATE_MAY_INLINE_DATA);
1299 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1300 * S_DAX may be disabled
1302 ext4_set_inode_flags(inode);
1307 res = dquot_initialize(inode);
1311 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1316 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1318 return PTR_ERR(handle);
1320 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1321 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1324 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1326 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1327 * S_DAX may be disabled
1329 ext4_set_inode_flags(inode);
1330 res = ext4_mark_inode_dirty(handle, inode);
1332 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1334 res2 = ext4_journal_stop(handle);
1336 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1343 static bool ext4_dummy_context(struct inode *inode)
1345 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1348 static bool ext4_has_stable_inodes(struct super_block *sb)
1350 return ext4_has_feature_stable_inodes(sb);
1353 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1354 int *ino_bits_ret, int *lblk_bits_ret)
1356 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1357 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1360 static const struct fscrypt_operations ext4_cryptops = {
1361 .key_prefix = "ext4:",
1362 .get_context = ext4_get_context,
1363 .set_context = ext4_set_context,
1364 .dummy_context = ext4_dummy_context,
1365 .empty_dir = ext4_empty_dir,
1366 .max_namelen = EXT4_NAME_LEN,
1367 .has_stable_inodes = ext4_has_stable_inodes,
1368 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1373 static const char * const quotatypes[] = INITQFNAMES;
1374 #define QTYPE2NAME(t) (quotatypes[t])
1376 static int ext4_write_dquot(struct dquot *dquot);
1377 static int ext4_acquire_dquot(struct dquot *dquot);
1378 static int ext4_release_dquot(struct dquot *dquot);
1379 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1380 static int ext4_write_info(struct super_block *sb, int type);
1381 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1382 const struct path *path);
1383 static int ext4_quota_on_mount(struct super_block *sb, int type);
1384 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1385 size_t len, loff_t off);
1386 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1387 const char *data, size_t len, loff_t off);
1388 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1389 unsigned int flags);
1390 static int ext4_enable_quotas(struct super_block *sb);
1392 static struct dquot **ext4_get_dquots(struct inode *inode)
1394 return EXT4_I(inode)->i_dquot;
1397 static const struct dquot_operations ext4_quota_operations = {
1398 .get_reserved_space = ext4_get_reserved_space,
1399 .write_dquot = ext4_write_dquot,
1400 .acquire_dquot = ext4_acquire_dquot,
1401 .release_dquot = ext4_release_dquot,
1402 .mark_dirty = ext4_mark_dquot_dirty,
1403 .write_info = ext4_write_info,
1404 .alloc_dquot = dquot_alloc,
1405 .destroy_dquot = dquot_destroy,
1406 .get_projid = ext4_get_projid,
1407 .get_inode_usage = ext4_get_inode_usage,
1408 .get_next_id = dquot_get_next_id,
1411 static const struct quotactl_ops ext4_qctl_operations = {
1412 .quota_on = ext4_quota_on,
1413 .quota_off = ext4_quota_off,
1414 .quota_sync = dquot_quota_sync,
1415 .get_state = dquot_get_state,
1416 .set_info = dquot_set_dqinfo,
1417 .get_dqblk = dquot_get_dqblk,
1418 .set_dqblk = dquot_set_dqblk,
1419 .get_nextdqblk = dquot_get_next_dqblk,
1423 static const struct super_operations ext4_sops = {
1424 .alloc_inode = ext4_alloc_inode,
1425 .free_inode = ext4_free_in_core_inode,
1426 .destroy_inode = ext4_destroy_inode,
1427 .write_inode = ext4_write_inode,
1428 .dirty_inode = ext4_dirty_inode,
1429 .drop_inode = ext4_drop_inode,
1430 .evict_inode = ext4_evict_inode,
1431 .put_super = ext4_put_super,
1432 .sync_fs = ext4_sync_fs,
1433 .freeze_fs = ext4_freeze,
1434 .unfreeze_fs = ext4_unfreeze,
1435 .statfs = ext4_statfs,
1436 .remount_fs = ext4_remount,
1437 .show_options = ext4_show_options,
1439 .quota_read = ext4_quota_read,
1440 .quota_write = ext4_quota_write,
1441 .get_dquots = ext4_get_dquots,
1443 .bdev_try_to_free_page = bdev_try_to_free_page,
1446 static const struct export_operations ext4_export_ops = {
1447 .fh_to_dentry = ext4_fh_to_dentry,
1448 .fh_to_parent = ext4_fh_to_parent,
1449 .get_parent = ext4_get_parent,
1450 .commit_metadata = ext4_nfs_commit_metadata,
1454 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1455 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1456 Opt_nouid32, Opt_debug, Opt_removed,
1457 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1458 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1459 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1460 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1461 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1462 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1463 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1464 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1465 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1466 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1467 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1468 Opt_nowarn_on_error, Opt_mblk_io_submit,
1469 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1470 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1471 Opt_inode_readahead_blks, Opt_journal_ioprio,
1472 Opt_dioread_nolock, Opt_dioread_lock,
1473 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1474 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1477 static const match_table_t tokens = {
1478 {Opt_bsd_df, "bsddf"},
1479 {Opt_minix_df, "minixdf"},
1480 {Opt_grpid, "grpid"},
1481 {Opt_grpid, "bsdgroups"},
1482 {Opt_nogrpid, "nogrpid"},
1483 {Opt_nogrpid, "sysvgroups"},
1484 {Opt_resgid, "resgid=%u"},
1485 {Opt_resuid, "resuid=%u"},
1487 {Opt_err_cont, "errors=continue"},
1488 {Opt_err_panic, "errors=panic"},
1489 {Opt_err_ro, "errors=remount-ro"},
1490 {Opt_nouid32, "nouid32"},
1491 {Opt_debug, "debug"},
1492 {Opt_removed, "oldalloc"},
1493 {Opt_removed, "orlov"},
1494 {Opt_user_xattr, "user_xattr"},
1495 {Opt_nouser_xattr, "nouser_xattr"},
1497 {Opt_noacl, "noacl"},
1498 {Opt_noload, "norecovery"},
1499 {Opt_noload, "noload"},
1500 {Opt_removed, "nobh"},
1501 {Opt_removed, "bh"},
1502 {Opt_commit, "commit=%u"},
1503 {Opt_min_batch_time, "min_batch_time=%u"},
1504 {Opt_max_batch_time, "max_batch_time=%u"},
1505 {Opt_journal_dev, "journal_dev=%u"},
1506 {Opt_journal_path, "journal_path=%s"},
1507 {Opt_journal_checksum, "journal_checksum"},
1508 {Opt_nojournal_checksum, "nojournal_checksum"},
1509 {Opt_journal_async_commit, "journal_async_commit"},
1510 {Opt_abort, "abort"},
1511 {Opt_data_journal, "data=journal"},
1512 {Opt_data_ordered, "data=ordered"},
1513 {Opt_data_writeback, "data=writeback"},
1514 {Opt_data_err_abort, "data_err=abort"},
1515 {Opt_data_err_ignore, "data_err=ignore"},
1516 {Opt_offusrjquota, "usrjquota="},
1517 {Opt_usrjquota, "usrjquota=%s"},
1518 {Opt_offgrpjquota, "grpjquota="},
1519 {Opt_grpjquota, "grpjquota=%s"},
1520 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1521 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1522 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1523 {Opt_grpquota, "grpquota"},
1524 {Opt_noquota, "noquota"},
1525 {Opt_quota, "quota"},
1526 {Opt_usrquota, "usrquota"},
1527 {Opt_prjquota, "prjquota"},
1528 {Opt_barrier, "barrier=%u"},
1529 {Opt_barrier, "barrier"},
1530 {Opt_nobarrier, "nobarrier"},
1531 {Opt_i_version, "i_version"},
1533 {Opt_stripe, "stripe=%u"},
1534 {Opt_delalloc, "delalloc"},
1535 {Opt_warn_on_error, "warn_on_error"},
1536 {Opt_nowarn_on_error, "nowarn_on_error"},
1537 {Opt_lazytime, "lazytime"},
1538 {Opt_nolazytime, "nolazytime"},
1539 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1540 {Opt_nodelalloc, "nodelalloc"},
1541 {Opt_removed, "mblk_io_submit"},
1542 {Opt_removed, "nomblk_io_submit"},
1543 {Opt_block_validity, "block_validity"},
1544 {Opt_noblock_validity, "noblock_validity"},
1545 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1546 {Opt_journal_ioprio, "journal_ioprio=%u"},
1547 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1548 {Opt_auto_da_alloc, "auto_da_alloc"},
1549 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1550 {Opt_dioread_nolock, "dioread_nolock"},
1551 {Opt_dioread_lock, "dioread_lock"},
1552 {Opt_discard, "discard"},
1553 {Opt_nodiscard, "nodiscard"},
1554 {Opt_init_itable, "init_itable=%u"},
1555 {Opt_init_itable, "init_itable"},
1556 {Opt_noinit_itable, "noinit_itable"},
1557 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1558 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1559 {Opt_nombcache, "nombcache"},
1560 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1561 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1562 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1563 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1564 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1565 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1569 static ext4_fsblk_t get_sb_block(void **data)
1571 ext4_fsblk_t sb_block;
1572 char *options = (char *) *data;
1574 if (!options || strncmp(options, "sb=", 3) != 0)
1575 return 1; /* Default location */
1578 /* TODO: use simple_strtoll with >32bit ext4 */
1579 sb_block = simple_strtoul(options, &options, 0);
1580 if (*options && *options != ',') {
1581 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1585 if (*options == ',')
1587 *data = (void *) options;
1592 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1593 static const char deprecated_msg[] =
1594 "Mount option \"%s\" will be removed by %s\n"
1598 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1600 struct ext4_sb_info *sbi = EXT4_SB(sb);
1601 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1604 if (sb_any_quota_loaded(sb) && !old_qname) {
1605 ext4_msg(sb, KERN_ERR,
1606 "Cannot change journaled "
1607 "quota options when quota turned on");
1610 if (ext4_has_feature_quota(sb)) {
1611 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1612 "ignored when QUOTA feature is enabled");
1615 qname = match_strdup(args);
1617 ext4_msg(sb, KERN_ERR,
1618 "Not enough memory for storing quotafile name");
1622 if (strcmp(old_qname, qname) == 0)
1625 ext4_msg(sb, KERN_ERR,
1626 "%s quota file already specified",
1630 if (strchr(qname, '/')) {
1631 ext4_msg(sb, KERN_ERR,
1632 "quotafile must be on filesystem root");
1635 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1643 static int clear_qf_name(struct super_block *sb, int qtype)
1646 struct ext4_sb_info *sbi = EXT4_SB(sb);
1647 char *old_qname = get_qf_name(sb, sbi, qtype);
1649 if (sb_any_quota_loaded(sb) && old_qname) {
1650 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1651 " when quota turned on");
1654 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1661 #define MOPT_SET 0x0001
1662 #define MOPT_CLEAR 0x0002
1663 #define MOPT_NOSUPPORT 0x0004
1664 #define MOPT_EXPLICIT 0x0008
1665 #define MOPT_CLEAR_ERR 0x0010
1666 #define MOPT_GTE0 0x0020
1669 #define MOPT_QFMT 0x0040
1671 #define MOPT_Q MOPT_NOSUPPORT
1672 #define MOPT_QFMT MOPT_NOSUPPORT
1674 #define MOPT_DATAJ 0x0080
1675 #define MOPT_NO_EXT2 0x0100
1676 #define MOPT_NO_EXT3 0x0200
1677 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1678 #define MOPT_STRING 0x0400
1680 static const struct mount_opts {
1684 } ext4_mount_opts[] = {
1685 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1686 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1687 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1688 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1689 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1690 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1691 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1692 MOPT_EXT4_ONLY | MOPT_SET},
1693 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1694 MOPT_EXT4_ONLY | MOPT_CLEAR},
1695 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1696 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1697 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1698 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1699 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1700 MOPT_EXT4_ONLY | MOPT_CLEAR},
1701 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1702 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1703 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1704 MOPT_EXT4_ONLY | MOPT_CLEAR},
1705 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1706 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1707 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1708 EXT4_MOUNT_JOURNAL_CHECKSUM),
1709 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1710 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1711 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1712 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1713 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1714 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1716 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1718 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1719 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1720 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1721 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1722 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1723 {Opt_commit, 0, MOPT_GTE0},
1724 {Opt_max_batch_time, 0, MOPT_GTE0},
1725 {Opt_min_batch_time, 0, MOPT_GTE0},
1726 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1727 {Opt_init_itable, 0, MOPT_GTE0},
1728 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1729 {Opt_stripe, 0, MOPT_GTE0},
1730 {Opt_resuid, 0, MOPT_GTE0},
1731 {Opt_resgid, 0, MOPT_GTE0},
1732 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1733 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1734 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1735 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1736 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1737 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1738 MOPT_NO_EXT2 | MOPT_DATAJ},
1739 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1740 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1741 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1742 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1743 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1745 {Opt_acl, 0, MOPT_NOSUPPORT},
1746 {Opt_noacl, 0, MOPT_NOSUPPORT},
1748 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1749 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1750 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1751 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1752 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1754 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1756 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1758 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1759 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1760 MOPT_CLEAR | MOPT_Q},
1761 {Opt_usrjquota, 0, MOPT_Q},
1762 {Opt_grpjquota, 0, MOPT_Q},
1763 {Opt_offusrjquota, 0, MOPT_Q},
1764 {Opt_offgrpjquota, 0, MOPT_Q},
1765 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1766 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1767 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1768 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1769 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1770 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1774 #ifdef CONFIG_UNICODE
1775 static const struct ext4_sb_encodings {
1779 } ext4_sb_encoding_map[] = {
1780 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1783 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1784 const struct ext4_sb_encodings **encoding,
1787 __u16 magic = le16_to_cpu(es->s_encoding);
1790 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1791 if (magic == ext4_sb_encoding_map[i].magic)
1794 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1797 *encoding = &ext4_sb_encoding_map[i];
1798 *flags = le16_to_cpu(es->s_encoding_flags);
1804 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1805 substring_t *args, unsigned long *journal_devnum,
1806 unsigned int *journal_ioprio, int is_remount)
1808 struct ext4_sb_info *sbi = EXT4_SB(sb);
1809 const struct mount_opts *m;
1815 if (token == Opt_usrjquota)
1816 return set_qf_name(sb, USRQUOTA, &args[0]);
1817 else if (token == Opt_grpjquota)
1818 return set_qf_name(sb, GRPQUOTA, &args[0]);
1819 else if (token == Opt_offusrjquota)
1820 return clear_qf_name(sb, USRQUOTA);
1821 else if (token == Opt_offgrpjquota)
1822 return clear_qf_name(sb, GRPQUOTA);
1826 case Opt_nouser_xattr:
1827 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1830 return 1; /* handled by get_sb_block() */
1832 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1835 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1838 sb->s_flags |= SB_I_VERSION;
1841 sb->s_flags |= SB_LAZYTIME;
1843 case Opt_nolazytime:
1844 sb->s_flags &= ~SB_LAZYTIME;
1848 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1849 if (token == m->token)
1852 if (m->token == Opt_err) {
1853 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1854 "or missing value", opt);
1858 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1859 ext4_msg(sb, KERN_ERR,
1860 "Mount option \"%s\" incompatible with ext2", opt);
1863 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1864 ext4_msg(sb, KERN_ERR,
1865 "Mount option \"%s\" incompatible with ext3", opt);
1869 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1871 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1873 if (m->flags & MOPT_EXPLICIT) {
1874 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1875 set_opt2(sb, EXPLICIT_DELALLOC);
1876 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1877 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1881 if (m->flags & MOPT_CLEAR_ERR)
1882 clear_opt(sb, ERRORS_MASK);
1883 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1884 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1885 "options when quota turned on");
1889 if (m->flags & MOPT_NOSUPPORT) {
1890 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1891 } else if (token == Opt_commit) {
1893 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1894 else if (arg > INT_MAX / HZ) {
1895 ext4_msg(sb, KERN_ERR,
1896 "Invalid commit interval %d, "
1897 "must be smaller than %d",
1901 sbi->s_commit_interval = HZ * arg;
1902 } else if (token == Opt_debug_want_extra_isize) {
1905 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1906 ext4_msg(sb, KERN_ERR,
1907 "Invalid want_extra_isize %d", arg);
1910 sbi->s_want_extra_isize = arg;
1911 } else if (token == Opt_max_batch_time) {
1912 sbi->s_max_batch_time = arg;
1913 } else if (token == Opt_min_batch_time) {
1914 sbi->s_min_batch_time = arg;
1915 } else if (token == Opt_inode_readahead_blks) {
1916 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1917 ext4_msg(sb, KERN_ERR,
1918 "EXT4-fs: inode_readahead_blks must be "
1919 "0 or a power of 2 smaller than 2^31");
1922 sbi->s_inode_readahead_blks = arg;
1923 } else if (token == Opt_init_itable) {
1924 set_opt(sb, INIT_INODE_TABLE);
1926 arg = EXT4_DEF_LI_WAIT_MULT;
1927 sbi->s_li_wait_mult = arg;
1928 } else if (token == Opt_max_dir_size_kb) {
1929 sbi->s_max_dir_size_kb = arg;
1930 } else if (token == Opt_stripe) {
1931 sbi->s_stripe = arg;
1932 } else if (token == Opt_resuid) {
1933 uid = make_kuid(current_user_ns(), arg);
1934 if (!uid_valid(uid)) {
1935 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1938 sbi->s_resuid = uid;
1939 } else if (token == Opt_resgid) {
1940 gid = make_kgid(current_user_ns(), arg);
1941 if (!gid_valid(gid)) {
1942 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1945 sbi->s_resgid = gid;
1946 } else if (token == Opt_journal_dev) {
1948 ext4_msg(sb, KERN_ERR,
1949 "Cannot specify journal on remount");
1952 *journal_devnum = arg;
1953 } else if (token == Opt_journal_path) {
1955 struct inode *journal_inode;
1960 ext4_msg(sb, KERN_ERR,
1961 "Cannot specify journal on remount");
1964 journal_path = match_strdup(&args[0]);
1965 if (!journal_path) {
1966 ext4_msg(sb, KERN_ERR, "error: could not dup "
1967 "journal device string");
1971 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1973 ext4_msg(sb, KERN_ERR, "error: could not find "
1974 "journal device path: error %d", error);
1975 kfree(journal_path);
1979 journal_inode = d_inode(path.dentry);
1980 if (!S_ISBLK(journal_inode->i_mode)) {
1981 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1982 "is not a block device", journal_path);
1984 kfree(journal_path);
1988 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1990 kfree(journal_path);
1991 } else if (token == Opt_journal_ioprio) {
1993 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1998 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1999 } else if (token == Opt_test_dummy_encryption) {
2000 #ifdef CONFIG_FS_ENCRYPTION
2001 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
2002 ext4_msg(sb, KERN_WARNING,
2003 "Test dummy encryption mode enabled");
2005 ext4_msg(sb, KERN_WARNING,
2006 "Test dummy encryption mount option ignored");
2008 } else if (m->flags & MOPT_DATAJ) {
2010 if (!sbi->s_journal)
2011 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2012 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2013 ext4_msg(sb, KERN_ERR,
2014 "Cannot change data mode on remount");
2018 clear_opt(sb, DATA_FLAGS);
2019 sbi->s_mount_opt |= m->mount_opt;
2022 } else if (m->flags & MOPT_QFMT) {
2023 if (sb_any_quota_loaded(sb) &&
2024 sbi->s_jquota_fmt != m->mount_opt) {
2025 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2026 "quota options when quota turned on");
2029 if (ext4_has_feature_quota(sb)) {
2030 ext4_msg(sb, KERN_INFO,
2031 "Quota format mount options ignored "
2032 "when QUOTA feature is enabled");
2035 sbi->s_jquota_fmt = m->mount_opt;
2037 } else if (token == Opt_dax) {
2038 #ifdef CONFIG_FS_DAX
2039 ext4_msg(sb, KERN_WARNING,
2040 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2041 sbi->s_mount_opt |= m->mount_opt;
2043 ext4_msg(sb, KERN_INFO, "dax option not supported");
2046 } else if (token == Opt_data_err_abort) {
2047 sbi->s_mount_opt |= m->mount_opt;
2048 } else if (token == Opt_data_err_ignore) {
2049 sbi->s_mount_opt &= ~m->mount_opt;
2053 if (m->flags & MOPT_CLEAR)
2055 else if (unlikely(!(m->flags & MOPT_SET))) {
2056 ext4_msg(sb, KERN_WARNING,
2057 "buggy handling of option %s", opt);
2062 sbi->s_mount_opt |= m->mount_opt;
2064 sbi->s_mount_opt &= ~m->mount_opt;
2069 static int parse_options(char *options, struct super_block *sb,
2070 unsigned long *journal_devnum,
2071 unsigned int *journal_ioprio,
2074 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2075 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2076 substring_t args[MAX_OPT_ARGS];
2082 while ((p = strsep(&options, ",")) != NULL) {
2086 * Initialize args struct so we know whether arg was
2087 * found; some options take optional arguments.
2089 args[0].to = args[0].from = NULL;
2090 token = match_token(p, tokens, args);
2091 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2092 journal_ioprio, is_remount) < 0)
2097 * We do the test below only for project quotas. 'usrquota' and
2098 * 'grpquota' mount options are allowed even without quota feature
2099 * to support legacy quotas in quota files.
2101 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2102 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2103 "Cannot enable project quota enforcement.");
2106 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2107 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2108 if (usr_qf_name || grp_qf_name) {
2109 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2110 clear_opt(sb, USRQUOTA);
2112 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2113 clear_opt(sb, GRPQUOTA);
2115 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2116 ext4_msg(sb, KERN_ERR, "old and new quota "
2121 if (!sbi->s_jquota_fmt) {
2122 ext4_msg(sb, KERN_ERR, "journaled quota format "
2131 static inline void ext4_show_quota_options(struct seq_file *seq,
2132 struct super_block *sb)
2134 #if defined(CONFIG_QUOTA)
2135 struct ext4_sb_info *sbi = EXT4_SB(sb);
2136 char *usr_qf_name, *grp_qf_name;
2138 if (sbi->s_jquota_fmt) {
2141 switch (sbi->s_jquota_fmt) {
2152 seq_printf(seq, ",jqfmt=%s", fmtname);
2156 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2157 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2159 seq_show_option(seq, "usrjquota", usr_qf_name);
2161 seq_show_option(seq, "grpjquota", grp_qf_name);
2166 static const char *token2str(int token)
2168 const struct match_token *t;
2170 for (t = tokens; t->token != Opt_err; t++)
2171 if (t->token == token && !strchr(t->pattern, '='))
2178 * - it's set to a non-default value OR
2179 * - if the per-sb default is different from the global default
2181 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2184 struct ext4_sb_info *sbi = EXT4_SB(sb);
2185 struct ext4_super_block *es = sbi->s_es;
2186 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2187 const struct mount_opts *m;
2188 char sep = nodefs ? '\n' : ',';
2190 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2191 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2193 if (sbi->s_sb_block != 1)
2194 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2196 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2197 int want_set = m->flags & MOPT_SET;
2198 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2199 (m->flags & MOPT_CLEAR_ERR))
2201 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2202 continue; /* skip if same as the default */
2204 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2205 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2206 continue; /* select Opt_noFoo vs Opt_Foo */
2207 SEQ_OPTS_PRINT("%s", token2str(m->token));
2210 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2211 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2212 SEQ_OPTS_PRINT("resuid=%u",
2213 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2214 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2215 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2216 SEQ_OPTS_PRINT("resgid=%u",
2217 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2218 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2219 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2220 SEQ_OPTS_PUTS("errors=remount-ro");
2221 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2222 SEQ_OPTS_PUTS("errors=continue");
2223 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2224 SEQ_OPTS_PUTS("errors=panic");
2225 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2226 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2227 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2228 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2229 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2230 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2231 if (sb->s_flags & SB_I_VERSION)
2232 SEQ_OPTS_PUTS("i_version");
2233 if (nodefs || sbi->s_stripe)
2234 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2235 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2236 (sbi->s_mount_opt ^ def_mount_opt)) {
2237 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2238 SEQ_OPTS_PUTS("data=journal");
2239 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2240 SEQ_OPTS_PUTS("data=ordered");
2241 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2242 SEQ_OPTS_PUTS("data=writeback");
2245 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2246 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2247 sbi->s_inode_readahead_blks);
2249 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2250 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2251 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2252 if (nodefs || sbi->s_max_dir_size_kb)
2253 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2254 if (test_opt(sb, DATA_ERR_ABORT))
2255 SEQ_OPTS_PUTS("data_err=abort");
2256 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2257 SEQ_OPTS_PUTS("test_dummy_encryption");
2259 ext4_show_quota_options(seq, sb);
2263 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2265 return _ext4_show_options(seq, root->d_sb, 0);
2268 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2270 struct super_block *sb = seq->private;
2273 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2274 rc = _ext4_show_options(seq, sb, 1);
2275 seq_puts(seq, "\n");
2279 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2282 struct ext4_sb_info *sbi = EXT4_SB(sb);
2285 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2286 ext4_msg(sb, KERN_ERR, "revision level too high, "
2287 "forcing read-only mode");
2292 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2293 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2294 "running e2fsck is recommended");
2295 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2296 ext4_msg(sb, KERN_WARNING,
2297 "warning: mounting fs with errors, "
2298 "running e2fsck is recommended");
2299 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2300 le16_to_cpu(es->s_mnt_count) >=
2301 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2302 ext4_msg(sb, KERN_WARNING,
2303 "warning: maximal mount count reached, "
2304 "running e2fsck is recommended");
2305 else if (le32_to_cpu(es->s_checkinterval) &&
2306 (ext4_get_tstamp(es, s_lastcheck) +
2307 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2308 ext4_msg(sb, KERN_WARNING,
2309 "warning: checktime reached, "
2310 "running e2fsck is recommended");
2311 if (!sbi->s_journal)
2312 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2313 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2314 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2315 le16_add_cpu(&es->s_mnt_count, 1);
2316 ext4_update_tstamp(es, s_mtime);
2318 ext4_set_feature_journal_needs_recovery(sb);
2320 err = ext4_commit_super(sb, 1);
2322 if (test_opt(sb, DEBUG))
2323 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2324 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2326 sbi->s_groups_count,
2327 EXT4_BLOCKS_PER_GROUP(sb),
2328 EXT4_INODES_PER_GROUP(sb),
2329 sbi->s_mount_opt, sbi->s_mount_opt2);
2331 cleancache_init_fs(sb);
2335 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2337 struct ext4_sb_info *sbi = EXT4_SB(sb);
2338 struct flex_groups *new_groups;
2341 if (!sbi->s_log_groups_per_flex)
2344 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2345 if (size <= sbi->s_flex_groups_allocated)
2348 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2349 new_groups = kvzalloc(size, GFP_KERNEL);
2351 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2352 size / (int) sizeof(struct flex_groups));
2356 if (sbi->s_flex_groups) {
2357 memcpy(new_groups, sbi->s_flex_groups,
2358 (sbi->s_flex_groups_allocated *
2359 sizeof(struct flex_groups)));
2360 kvfree(sbi->s_flex_groups);
2362 sbi->s_flex_groups = new_groups;
2363 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2367 static int ext4_fill_flex_info(struct super_block *sb)
2369 struct ext4_sb_info *sbi = EXT4_SB(sb);
2370 struct ext4_group_desc *gdp = NULL;
2371 ext4_group_t flex_group;
2374 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2375 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2376 sbi->s_log_groups_per_flex = 0;
2380 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2384 for (i = 0; i < sbi->s_groups_count; i++) {
2385 gdp = ext4_get_group_desc(sb, i, NULL);
2387 flex_group = ext4_flex_group(sbi, i);
2388 atomic_add(ext4_free_inodes_count(sb, gdp),
2389 &sbi->s_flex_groups[flex_group].free_inodes);
2390 atomic64_add(ext4_free_group_clusters(sb, gdp),
2391 &sbi->s_flex_groups[flex_group].free_clusters);
2392 atomic_add(ext4_used_dirs_count(sb, gdp),
2393 &sbi->s_flex_groups[flex_group].used_dirs);
2401 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2402 struct ext4_group_desc *gdp)
2404 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2406 __le32 le_group = cpu_to_le32(block_group);
2407 struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 if (ext4_has_metadata_csum(sbi->s_sb)) {
2410 /* Use new metadata_csum algorithm */
2412 __u16 dummy_csum = 0;
2414 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2416 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2417 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2418 sizeof(dummy_csum));
2419 offset += sizeof(dummy_csum);
2420 if (offset < sbi->s_desc_size)
2421 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2422 sbi->s_desc_size - offset);
2424 crc = csum32 & 0xFFFF;
2428 /* old crc16 code */
2429 if (!ext4_has_feature_gdt_csum(sb))
2432 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2433 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2434 crc = crc16(crc, (__u8 *)gdp, offset);
2435 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2436 /* for checksum of struct ext4_group_desc do the rest...*/
2437 if (ext4_has_feature_64bit(sb) &&
2438 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2439 crc = crc16(crc, (__u8 *)gdp + offset,
2440 le16_to_cpu(sbi->s_es->s_desc_size) -
2444 return cpu_to_le16(crc);
2447 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2448 struct ext4_group_desc *gdp)
2450 if (ext4_has_group_desc_csum(sb) &&
2451 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2457 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2458 struct ext4_group_desc *gdp)
2460 if (!ext4_has_group_desc_csum(sb))
2462 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2465 /* Called at mount-time, super-block is locked */
2466 static int ext4_check_descriptors(struct super_block *sb,
2467 ext4_fsblk_t sb_block,
2468 ext4_group_t *first_not_zeroed)
2470 struct ext4_sb_info *sbi = EXT4_SB(sb);
2471 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2472 ext4_fsblk_t last_block;
2473 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2474 ext4_fsblk_t block_bitmap;
2475 ext4_fsblk_t inode_bitmap;
2476 ext4_fsblk_t inode_table;
2477 int flexbg_flag = 0;
2478 ext4_group_t i, grp = sbi->s_groups_count;
2480 if (ext4_has_feature_flex_bg(sb))
2483 ext4_debug("Checking group descriptors");
2485 for (i = 0; i < sbi->s_groups_count; i++) {
2486 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2488 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2489 last_block = ext4_blocks_count(sbi->s_es) - 1;
2491 last_block = first_block +
2492 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2494 if ((grp == sbi->s_groups_count) &&
2495 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2498 block_bitmap = ext4_block_bitmap(sb, gdp);
2499 if (block_bitmap == sb_block) {
2500 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2501 "Block bitmap for group %u overlaps "
2506 if (block_bitmap >= sb_block + 1 &&
2507 block_bitmap <= last_bg_block) {
2508 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2509 "Block bitmap for group %u overlaps "
2510 "block group descriptors", i);
2514 if (block_bitmap < first_block || block_bitmap > last_block) {
2515 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2516 "Block bitmap for group %u not in group "
2517 "(block %llu)!", i, block_bitmap);
2520 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2521 if (inode_bitmap == sb_block) {
2522 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2523 "Inode bitmap for group %u overlaps "
2528 if (inode_bitmap >= sb_block + 1 &&
2529 inode_bitmap <= last_bg_block) {
2530 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2531 "Inode bitmap for group %u overlaps "
2532 "block group descriptors", i);
2536 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2537 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2538 "Inode bitmap for group %u not in group "
2539 "(block %llu)!", i, inode_bitmap);
2542 inode_table = ext4_inode_table(sb, gdp);
2543 if (inode_table == sb_block) {
2544 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2545 "Inode table for group %u overlaps "
2550 if (inode_table >= sb_block + 1 &&
2551 inode_table <= last_bg_block) {
2552 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2553 "Inode table for group %u overlaps "
2554 "block group descriptors", i);
2558 if (inode_table < first_block ||
2559 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2560 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2561 "Inode table for group %u not in group "
2562 "(block %llu)!", i, inode_table);
2565 ext4_lock_group(sb, i);
2566 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2567 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2568 "Checksum for group %u failed (%u!=%u)",
2569 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2570 gdp)), le16_to_cpu(gdp->bg_checksum));
2571 if (!sb_rdonly(sb)) {
2572 ext4_unlock_group(sb, i);
2576 ext4_unlock_group(sb, i);
2578 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2580 if (NULL != first_not_zeroed)
2581 *first_not_zeroed = grp;
2585 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2586 * the superblock) which were deleted from all directories, but held open by
2587 * a process at the time of a crash. We walk the list and try to delete these
2588 * inodes at recovery time (only with a read-write filesystem).
2590 * In order to keep the orphan inode chain consistent during traversal (in
2591 * case of crash during recovery), we link each inode into the superblock
2592 * orphan list_head and handle it the same way as an inode deletion during
2593 * normal operation (which journals the operations for us).
2595 * We only do an iget() and an iput() on each inode, which is very safe if we
2596 * accidentally point at an in-use or already deleted inode. The worst that
2597 * can happen in this case is that we get a "bit already cleared" message from
2598 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2599 * e2fsck was run on this filesystem, and it must have already done the orphan
2600 * inode cleanup for us, so we can safely abort without any further action.
2602 static void ext4_orphan_cleanup(struct super_block *sb,
2603 struct ext4_super_block *es)
2605 unsigned int s_flags = sb->s_flags;
2606 int ret, nr_orphans = 0, nr_truncates = 0;
2608 int quota_update = 0;
2611 if (!es->s_last_orphan) {
2612 jbd_debug(4, "no orphan inodes to clean up\n");
2616 if (bdev_read_only(sb->s_bdev)) {
2617 ext4_msg(sb, KERN_ERR, "write access "
2618 "unavailable, skipping orphan cleanup");
2622 /* Check if feature set would not allow a r/w mount */
2623 if (!ext4_feature_set_ok(sb, 0)) {
2624 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2625 "unknown ROCOMPAT features");
2629 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2630 /* don't clear list on RO mount w/ errors */
2631 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2632 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2633 "clearing orphan list.\n");
2634 es->s_last_orphan = 0;
2636 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2640 if (s_flags & SB_RDONLY) {
2641 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2642 sb->s_flags &= ~SB_RDONLY;
2645 /* Needed for iput() to work correctly and not trash data */
2646 sb->s_flags |= SB_ACTIVE;
2649 * Turn on quotas which were not enabled for read-only mounts if
2650 * filesystem has quota feature, so that they are updated correctly.
2652 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2653 int ret = ext4_enable_quotas(sb);
2658 ext4_msg(sb, KERN_ERR,
2659 "Cannot turn on quotas: error %d", ret);
2662 /* Turn on journaled quotas used for old sytle */
2663 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2664 if (EXT4_SB(sb)->s_qf_names[i]) {
2665 int ret = ext4_quota_on_mount(sb, i);
2670 ext4_msg(sb, KERN_ERR,
2671 "Cannot turn on journaled "
2672 "quota: type %d: error %d", i, ret);
2677 while (es->s_last_orphan) {
2678 struct inode *inode;
2681 * We may have encountered an error during cleanup; if
2682 * so, skip the rest.
2684 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2685 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2686 es->s_last_orphan = 0;
2690 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2691 if (IS_ERR(inode)) {
2692 es->s_last_orphan = 0;
2696 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2697 dquot_initialize(inode);
2698 if (inode->i_nlink) {
2699 if (test_opt(sb, DEBUG))
2700 ext4_msg(sb, KERN_DEBUG,
2701 "%s: truncating inode %lu to %lld bytes",
2702 __func__, inode->i_ino, inode->i_size);
2703 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2704 inode->i_ino, inode->i_size);
2706 truncate_inode_pages(inode->i_mapping, inode->i_size);
2707 ret = ext4_truncate(inode);
2709 ext4_std_error(inode->i_sb, ret);
2710 inode_unlock(inode);
2713 if (test_opt(sb, DEBUG))
2714 ext4_msg(sb, KERN_DEBUG,
2715 "%s: deleting unreferenced inode %lu",
2716 __func__, inode->i_ino);
2717 jbd_debug(2, "deleting unreferenced inode %lu\n",
2721 iput(inode); /* The delete magic happens here! */
2724 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2727 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2728 PLURAL(nr_orphans));
2730 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2731 PLURAL(nr_truncates));
2733 /* Turn off quotas if they were enabled for orphan cleanup */
2735 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2736 if (sb_dqopt(sb)->files[i])
2737 dquot_quota_off(sb, i);
2741 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2745 * Maximal extent format file size.
2746 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2747 * extent format containers, within a sector_t, and within i_blocks
2748 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2749 * so that won't be a limiting factor.
2751 * However there is other limiting factor. We do store extents in the form
2752 * of starting block and length, hence the resulting length of the extent
2753 * covering maximum file size must fit into on-disk format containers as
2754 * well. Given that length is always by 1 unit bigger than max unit (because
2755 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2757 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2759 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2762 loff_t upper_limit = MAX_LFS_FILESIZE;
2764 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2766 if (!has_huge_files) {
2767 upper_limit = (1LL << 32) - 1;
2769 /* total blocks in file system block size */
2770 upper_limit >>= (blkbits - 9);
2771 upper_limit <<= blkbits;
2775 * 32-bit extent-start container, ee_block. We lower the maxbytes
2776 * by one fs block, so ee_len can cover the extent of maximum file
2779 res = (1LL << 32) - 1;
2782 /* Sanity check against vm- & vfs- imposed limits */
2783 if (res > upper_limit)
2790 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2791 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2792 * We need to be 1 filesystem block less than the 2^48 sector limit.
2794 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2796 loff_t res = EXT4_NDIR_BLOCKS;
2799 /* This is calculated to be the largest file size for a dense, block
2800 * mapped file such that the file's total number of 512-byte sectors,
2801 * including data and all indirect blocks, does not exceed (2^48 - 1).
2803 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2804 * number of 512-byte sectors of the file.
2807 if (!has_huge_files) {
2809 * !has_huge_files or implies that the inode i_block field
2810 * represents total file blocks in 2^32 512-byte sectors ==
2811 * size of vfs inode i_blocks * 8
2813 upper_limit = (1LL << 32) - 1;
2815 /* total blocks in file system block size */
2816 upper_limit >>= (bits - 9);
2820 * We use 48 bit ext4_inode i_blocks
2821 * With EXT4_HUGE_FILE_FL set the i_blocks
2822 * represent total number of blocks in
2823 * file system block size
2825 upper_limit = (1LL << 48) - 1;
2829 /* indirect blocks */
2831 /* double indirect blocks */
2832 meta_blocks += 1 + (1LL << (bits-2));
2833 /* tripple indirect blocks */
2834 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2836 upper_limit -= meta_blocks;
2837 upper_limit <<= bits;
2839 res += 1LL << (bits-2);
2840 res += 1LL << (2*(bits-2));
2841 res += 1LL << (3*(bits-2));
2843 if (res > upper_limit)
2846 if (res > MAX_LFS_FILESIZE)
2847 res = MAX_LFS_FILESIZE;
2852 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2853 ext4_fsblk_t logical_sb_block, int nr)
2855 struct ext4_sb_info *sbi = EXT4_SB(sb);
2856 ext4_group_t bg, first_meta_bg;
2859 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2861 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2862 return logical_sb_block + nr + 1;
2863 bg = sbi->s_desc_per_block * nr;
2864 if (ext4_bg_has_super(sb, bg))
2868 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2869 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2870 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2873 if (sb->s_blocksize == 1024 && nr == 0 &&
2874 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2877 return (has_super + ext4_group_first_block_no(sb, bg));
2881 * ext4_get_stripe_size: Get the stripe size.
2882 * @sbi: In memory super block info
2884 * If we have specified it via mount option, then
2885 * use the mount option value. If the value specified at mount time is
2886 * greater than the blocks per group use the super block value.
2887 * If the super block value is greater than blocks per group return 0.
2888 * Allocator needs it be less than blocks per group.
2891 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2893 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2894 unsigned long stripe_width =
2895 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2898 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2899 ret = sbi->s_stripe;
2900 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2902 else if (stride && stride <= sbi->s_blocks_per_group)
2908 * If the stripe width is 1, this makes no sense and
2909 * we set it to 0 to turn off stripe handling code.
2918 * Check whether this filesystem can be mounted based on
2919 * the features present and the RDONLY/RDWR mount requested.
2920 * Returns 1 if this filesystem can be mounted as requested,
2921 * 0 if it cannot be.
2923 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2925 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2926 ext4_msg(sb, KERN_ERR,
2927 "Couldn't mount because of "
2928 "unsupported optional features (%x)",
2929 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2930 ~EXT4_FEATURE_INCOMPAT_SUPP));
2934 #ifndef CONFIG_UNICODE
2935 if (ext4_has_feature_casefold(sb)) {
2936 ext4_msg(sb, KERN_ERR,
2937 "Filesystem with casefold feature cannot be "
2938 "mounted without CONFIG_UNICODE");
2946 if (ext4_has_feature_readonly(sb)) {
2947 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2948 sb->s_flags |= SB_RDONLY;
2952 /* Check that feature set is OK for a read-write mount */
2953 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2954 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2955 "unsupported optional features (%x)",
2956 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2957 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2960 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2961 ext4_msg(sb, KERN_ERR,
2962 "Can't support bigalloc feature without "
2963 "extents feature\n");
2967 #ifndef CONFIG_QUOTA
2968 if (ext4_has_feature_quota(sb) && !readonly) {
2969 ext4_msg(sb, KERN_ERR,
2970 "Filesystem with quota feature cannot be mounted RDWR "
2971 "without CONFIG_QUOTA");
2974 if (ext4_has_feature_project(sb) && !readonly) {
2975 ext4_msg(sb, KERN_ERR,
2976 "Filesystem with project quota feature cannot be mounted RDWR "
2977 "without CONFIG_QUOTA");
2980 #endif /* CONFIG_QUOTA */
2985 * This function is called once a day if we have errors logged
2986 * on the file system
2988 static void print_daily_error_info(struct timer_list *t)
2990 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2991 struct super_block *sb = sbi->s_sb;
2992 struct ext4_super_block *es = sbi->s_es;
2994 if (es->s_error_count)
2995 /* fsck newer than v1.41.13 is needed to clean this condition. */
2996 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2997 le32_to_cpu(es->s_error_count));
2998 if (es->s_first_error_time) {
2999 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3001 ext4_get_tstamp(es, s_first_error_time),
3002 (int) sizeof(es->s_first_error_func),
3003 es->s_first_error_func,
3004 le32_to_cpu(es->s_first_error_line));
3005 if (es->s_first_error_ino)
3006 printk(KERN_CONT ": inode %u",
3007 le32_to_cpu(es->s_first_error_ino));
3008 if (es->s_first_error_block)
3009 printk(KERN_CONT ": block %llu", (unsigned long long)
3010 le64_to_cpu(es->s_first_error_block));
3011 printk(KERN_CONT "\n");
3013 if (es->s_last_error_time) {
3014 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3016 ext4_get_tstamp(es, s_last_error_time),
3017 (int) sizeof(es->s_last_error_func),
3018 es->s_last_error_func,
3019 le32_to_cpu(es->s_last_error_line));
3020 if (es->s_last_error_ino)
3021 printk(KERN_CONT ": inode %u",
3022 le32_to_cpu(es->s_last_error_ino));
3023 if (es->s_last_error_block)
3024 printk(KERN_CONT ": block %llu", (unsigned long long)
3025 le64_to_cpu(es->s_last_error_block));
3026 printk(KERN_CONT "\n");
3028 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3031 /* Find next suitable group and run ext4_init_inode_table */
3032 static int ext4_run_li_request(struct ext4_li_request *elr)
3034 struct ext4_group_desc *gdp = NULL;
3035 ext4_group_t group, ngroups;
3036 struct super_block *sb;
3037 unsigned long timeout = 0;
3041 ngroups = EXT4_SB(sb)->s_groups_count;
3043 for (group = elr->lr_next_group; group < ngroups; group++) {
3044 gdp = ext4_get_group_desc(sb, group, NULL);
3050 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3054 if (group >= ngroups)
3059 ret = ext4_init_inode_table(sb, group,
3060 elr->lr_timeout ? 0 : 1);
3061 if (elr->lr_timeout == 0) {
3062 timeout = (jiffies - timeout) *
3063 elr->lr_sbi->s_li_wait_mult;
3064 elr->lr_timeout = timeout;
3066 elr->lr_next_sched = jiffies + elr->lr_timeout;
3067 elr->lr_next_group = group + 1;
3073 * Remove lr_request from the list_request and free the
3074 * request structure. Should be called with li_list_mtx held
3076 static void ext4_remove_li_request(struct ext4_li_request *elr)
3078 struct ext4_sb_info *sbi;
3085 list_del(&elr->lr_request);
3086 sbi->s_li_request = NULL;
3090 static void ext4_unregister_li_request(struct super_block *sb)
3092 mutex_lock(&ext4_li_mtx);
3093 if (!ext4_li_info) {
3094 mutex_unlock(&ext4_li_mtx);
3098 mutex_lock(&ext4_li_info->li_list_mtx);
3099 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3100 mutex_unlock(&ext4_li_info->li_list_mtx);
3101 mutex_unlock(&ext4_li_mtx);
3104 static struct task_struct *ext4_lazyinit_task;
3107 * This is the function where ext4lazyinit thread lives. It walks
3108 * through the request list searching for next scheduled filesystem.
3109 * When such a fs is found, run the lazy initialization request
3110 * (ext4_rn_li_request) and keep track of the time spend in this
3111 * function. Based on that time we compute next schedule time of
3112 * the request. When walking through the list is complete, compute
3113 * next waking time and put itself into sleep.
3115 static int ext4_lazyinit_thread(void *arg)
3117 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3118 struct list_head *pos, *n;
3119 struct ext4_li_request *elr;
3120 unsigned long next_wakeup, cur;
3122 BUG_ON(NULL == eli);
3126 next_wakeup = MAX_JIFFY_OFFSET;
3128 mutex_lock(&eli->li_list_mtx);
3129 if (list_empty(&eli->li_request_list)) {
3130 mutex_unlock(&eli->li_list_mtx);
3133 list_for_each_safe(pos, n, &eli->li_request_list) {
3136 elr = list_entry(pos, struct ext4_li_request,
3139 if (time_before(jiffies, elr->lr_next_sched)) {
3140 if (time_before(elr->lr_next_sched, next_wakeup))
3141 next_wakeup = elr->lr_next_sched;
3144 if (down_read_trylock(&elr->lr_super->s_umount)) {
3145 if (sb_start_write_trylock(elr->lr_super)) {
3148 * We hold sb->s_umount, sb can not
3149 * be removed from the list, it is
3150 * now safe to drop li_list_mtx
3152 mutex_unlock(&eli->li_list_mtx);
3153 err = ext4_run_li_request(elr);
3154 sb_end_write(elr->lr_super);
3155 mutex_lock(&eli->li_list_mtx);
3158 up_read((&elr->lr_super->s_umount));
3160 /* error, remove the lazy_init job */
3162 ext4_remove_li_request(elr);
3166 elr->lr_next_sched = jiffies +
3168 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3170 if (time_before(elr->lr_next_sched, next_wakeup))
3171 next_wakeup = elr->lr_next_sched;
3173 mutex_unlock(&eli->li_list_mtx);
3178 if ((time_after_eq(cur, next_wakeup)) ||
3179 (MAX_JIFFY_OFFSET == next_wakeup)) {
3184 schedule_timeout_interruptible(next_wakeup - cur);
3186 if (kthread_should_stop()) {
3187 ext4_clear_request_list();
3194 * It looks like the request list is empty, but we need
3195 * to check it under the li_list_mtx lock, to prevent any
3196 * additions into it, and of course we should lock ext4_li_mtx
3197 * to atomically free the list and ext4_li_info, because at
3198 * this point another ext4 filesystem could be registering
3201 mutex_lock(&ext4_li_mtx);
3202 mutex_lock(&eli->li_list_mtx);
3203 if (!list_empty(&eli->li_request_list)) {
3204 mutex_unlock(&eli->li_list_mtx);
3205 mutex_unlock(&ext4_li_mtx);
3208 mutex_unlock(&eli->li_list_mtx);
3209 kfree(ext4_li_info);
3210 ext4_li_info = NULL;
3211 mutex_unlock(&ext4_li_mtx);
3216 static void ext4_clear_request_list(void)
3218 struct list_head *pos, *n;
3219 struct ext4_li_request *elr;
3221 mutex_lock(&ext4_li_info->li_list_mtx);
3222 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3223 elr = list_entry(pos, struct ext4_li_request,
3225 ext4_remove_li_request(elr);
3227 mutex_unlock(&ext4_li_info->li_list_mtx);
3230 static int ext4_run_lazyinit_thread(void)
3232 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3233 ext4_li_info, "ext4lazyinit");
3234 if (IS_ERR(ext4_lazyinit_task)) {
3235 int err = PTR_ERR(ext4_lazyinit_task);
3236 ext4_clear_request_list();
3237 kfree(ext4_li_info);
3238 ext4_li_info = NULL;
3239 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3240 "initialization thread\n",
3244 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3249 * Check whether it make sense to run itable init. thread or not.
3250 * If there is at least one uninitialized inode table, return
3251 * corresponding group number, else the loop goes through all
3252 * groups and return total number of groups.
3254 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3256 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3257 struct ext4_group_desc *gdp = NULL;
3259 if (!ext4_has_group_desc_csum(sb))
3262 for (group = 0; group < ngroups; group++) {
3263 gdp = ext4_get_group_desc(sb, group, NULL);
3267 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3274 static int ext4_li_info_new(void)
3276 struct ext4_lazy_init *eli = NULL;
3278 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3282 INIT_LIST_HEAD(&eli->li_request_list);
3283 mutex_init(&eli->li_list_mtx);
3285 eli->li_state |= EXT4_LAZYINIT_QUIT;
3292 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3295 struct ext4_sb_info *sbi = EXT4_SB(sb);
3296 struct ext4_li_request *elr;
3298 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3304 elr->lr_next_group = start;
3307 * Randomize first schedule time of the request to
3308 * spread the inode table initialization requests
3311 elr->lr_next_sched = jiffies + (prandom_u32() %
3312 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3316 int ext4_register_li_request(struct super_block *sb,
3317 ext4_group_t first_not_zeroed)
3319 struct ext4_sb_info *sbi = EXT4_SB(sb);
3320 struct ext4_li_request *elr = NULL;
3321 ext4_group_t ngroups = sbi->s_groups_count;
3324 mutex_lock(&ext4_li_mtx);
3325 if (sbi->s_li_request != NULL) {
3327 * Reset timeout so it can be computed again, because
3328 * s_li_wait_mult might have changed.
3330 sbi->s_li_request->lr_timeout = 0;
3334 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3335 !test_opt(sb, INIT_INODE_TABLE))
3338 elr = ext4_li_request_new(sb, first_not_zeroed);
3344 if (NULL == ext4_li_info) {
3345 ret = ext4_li_info_new();
3350 mutex_lock(&ext4_li_info->li_list_mtx);
3351 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3352 mutex_unlock(&ext4_li_info->li_list_mtx);
3354 sbi->s_li_request = elr;
3356 * set elr to NULL here since it has been inserted to
3357 * the request_list and the removal and free of it is
3358 * handled by ext4_clear_request_list from now on.
3362 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3363 ret = ext4_run_lazyinit_thread();
3368 mutex_unlock(&ext4_li_mtx);
3375 * We do not need to lock anything since this is called on
3378 static void ext4_destroy_lazyinit_thread(void)
3381 * If thread exited earlier
3382 * there's nothing to be done.
3384 if (!ext4_li_info || !ext4_lazyinit_task)
3387 kthread_stop(ext4_lazyinit_task);
3390 static int set_journal_csum_feature_set(struct super_block *sb)
3393 int compat, incompat;
3394 struct ext4_sb_info *sbi = EXT4_SB(sb);
3396 if (ext4_has_metadata_csum(sb)) {
3397 /* journal checksum v3 */
3399 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3401 /* journal checksum v1 */
3402 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3406 jbd2_journal_clear_features(sbi->s_journal,
3407 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3408 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3409 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3410 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3411 ret = jbd2_journal_set_features(sbi->s_journal,
3413 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3415 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3416 ret = jbd2_journal_set_features(sbi->s_journal,
3419 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3420 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3422 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3423 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3430 * Note: calculating the overhead so we can be compatible with
3431 * historical BSD practice is quite difficult in the face of
3432 * clusters/bigalloc. This is because multiple metadata blocks from
3433 * different block group can end up in the same allocation cluster.
3434 * Calculating the exact overhead in the face of clustered allocation
3435 * requires either O(all block bitmaps) in memory or O(number of block
3436 * groups**2) in time. We will still calculate the superblock for
3437 * older file systems --- and if we come across with a bigalloc file
3438 * system with zero in s_overhead_clusters the estimate will be close to
3439 * correct especially for very large cluster sizes --- but for newer
3440 * file systems, it's better to calculate this figure once at mkfs
3441 * time, and store it in the superblock. If the superblock value is
3442 * present (even for non-bigalloc file systems), we will use it.
3444 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3447 struct ext4_sb_info *sbi = EXT4_SB(sb);
3448 struct ext4_group_desc *gdp;
3449 ext4_fsblk_t first_block, last_block, b;
3450 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3451 int s, j, count = 0;
3453 if (!ext4_has_feature_bigalloc(sb))
3454 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3455 sbi->s_itb_per_group + 2);
3457 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3458 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3459 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3460 for (i = 0; i < ngroups; i++) {
3461 gdp = ext4_get_group_desc(sb, i, NULL);
3462 b = ext4_block_bitmap(sb, gdp);
3463 if (b >= first_block && b <= last_block) {
3464 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3467 b = ext4_inode_bitmap(sb, gdp);
3468 if (b >= first_block && b <= last_block) {
3469 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3472 b = ext4_inode_table(sb, gdp);
3473 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3474 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3475 int c = EXT4_B2C(sbi, b - first_block);
3476 ext4_set_bit(c, buf);
3482 if (ext4_bg_has_super(sb, grp)) {
3483 ext4_set_bit(s++, buf);
3486 j = ext4_bg_num_gdb(sb, grp);
3487 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3488 ext4_error(sb, "Invalid number of block group "
3489 "descriptor blocks: %d", j);
3490 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3494 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3498 return EXT4_CLUSTERS_PER_GROUP(sb) -
3499 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3503 * Compute the overhead and stash it in sbi->s_overhead
3505 int ext4_calculate_overhead(struct super_block *sb)
3507 struct ext4_sb_info *sbi = EXT4_SB(sb);
3508 struct ext4_super_block *es = sbi->s_es;
3509 struct inode *j_inode;
3510 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3511 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3512 ext4_fsblk_t overhead = 0;
3513 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3519 * Compute the overhead (FS structures). This is constant
3520 * for a given filesystem unless the number of block groups
3521 * changes so we cache the previous value until it does.
3525 * All of the blocks before first_data_block are overhead
3527 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3530 * Add the overhead found in each block group
3532 for (i = 0; i < ngroups; i++) {
3535 blks = count_overhead(sb, i, buf);
3538 memset(buf, 0, PAGE_SIZE);
3543 * Add the internal journal blocks whether the journal has been
3546 if (sbi->s_journal && !sbi->journal_bdev)
3547 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3548 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3549 j_inode = ext4_get_journal_inode(sb, j_inum);
3551 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3552 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3555 ext4_msg(sb, KERN_ERR, "can't get journal size");
3558 sbi->s_overhead = overhead;
3560 free_page((unsigned long) buf);
3564 static void ext4_set_resv_clusters(struct super_block *sb)
3566 ext4_fsblk_t resv_clusters;
3567 struct ext4_sb_info *sbi = EXT4_SB(sb);
3570 * There's no need to reserve anything when we aren't using extents.
3571 * The space estimates are exact, there are no unwritten extents,
3572 * hole punching doesn't need new metadata... This is needed especially
3573 * to keep ext2/3 backward compatibility.
3575 if (!ext4_has_feature_extents(sb))
3578 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3579 * This should cover the situations where we can not afford to run
3580 * out of space like for example punch hole, or converting
3581 * unwritten extents in delalloc path. In most cases such
3582 * allocation would require 1, or 2 blocks, higher numbers are
3585 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3586 sbi->s_cluster_bits);
3588 do_div(resv_clusters, 50);
3589 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3591 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3594 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3596 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3597 char *orig_data = kstrdup(data, GFP_KERNEL);
3598 struct buffer_head *bh;
3599 struct ext4_super_block *es = NULL;
3600 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3602 ext4_fsblk_t sb_block = get_sb_block(&data);
3603 ext4_fsblk_t logical_sb_block;
3604 unsigned long offset = 0;
3605 unsigned long journal_devnum = 0;
3606 unsigned long def_mount_opts;
3610 int blocksize, clustersize;
3611 unsigned int db_count;
3613 int needs_recovery, has_huge_files, has_bigalloc;
3616 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3617 ext4_group_t first_not_zeroed;
3619 if ((data && !orig_data) || !sbi)
3622 sbi->s_daxdev = dax_dev;
3623 sbi->s_blockgroup_lock =
3624 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3625 if (!sbi->s_blockgroup_lock)
3628 sb->s_fs_info = sbi;
3630 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3631 sbi->s_sb_block = sb_block;
3632 if (sb->s_bdev->bd_part)
3633 sbi->s_sectors_written_start =
3634 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3636 /* Cleanup superblock name */
3637 strreplace(sb->s_id, '/', '!');
3639 /* -EINVAL is default */
3641 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3643 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3648 * The ext4 superblock will not be buffer aligned for other than 1kB
3649 * block sizes. We need to calculate the offset from buffer start.
3651 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3652 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3653 offset = do_div(logical_sb_block, blocksize);
3655 logical_sb_block = sb_block;
3658 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3659 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3663 * Note: s_es must be initialized as soon as possible because
3664 * some ext4 macro-instructions depend on its value
3666 es = (struct ext4_super_block *) (bh->b_data + offset);
3668 sb->s_magic = le16_to_cpu(es->s_magic);
3669 if (sb->s_magic != EXT4_SUPER_MAGIC)
3671 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3673 /* Warn if metadata_csum and gdt_csum are both set. */
3674 if (ext4_has_feature_metadata_csum(sb) &&
3675 ext4_has_feature_gdt_csum(sb))
3676 ext4_warning(sb, "metadata_csum and uninit_bg are "
3677 "redundant flags; please run fsck.");
3679 /* Check for a known checksum algorithm */
3680 if (!ext4_verify_csum_type(sb, es)) {
3681 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3682 "unknown checksum algorithm.");
3687 /* Load the checksum driver */
3688 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3689 if (IS_ERR(sbi->s_chksum_driver)) {
3690 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3691 ret = PTR_ERR(sbi->s_chksum_driver);
3692 sbi->s_chksum_driver = NULL;
3696 /* Check superblock checksum */
3697 if (!ext4_superblock_csum_verify(sb, es)) {
3698 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3699 "invalid superblock checksum. Run e2fsck?");
3705 /* Precompute checksum seed for all metadata */
3706 if (ext4_has_feature_csum_seed(sb))
3707 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3708 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3709 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3710 sizeof(es->s_uuid));
3712 /* Set defaults before we parse the mount options */
3713 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3714 set_opt(sb, INIT_INODE_TABLE);
3715 if (def_mount_opts & EXT4_DEFM_DEBUG)
3717 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3719 if (def_mount_opts & EXT4_DEFM_UID16)
3720 set_opt(sb, NO_UID32);
3721 /* xattr user namespace & acls are now defaulted on */
3722 set_opt(sb, XATTR_USER);
3723 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3724 set_opt(sb, POSIX_ACL);
3726 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3727 if (ext4_has_metadata_csum(sb))
3728 set_opt(sb, JOURNAL_CHECKSUM);
3730 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3731 set_opt(sb, JOURNAL_DATA);
3732 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3733 set_opt(sb, ORDERED_DATA);
3734 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3735 set_opt(sb, WRITEBACK_DATA);
3737 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3738 set_opt(sb, ERRORS_PANIC);
3739 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3740 set_opt(sb, ERRORS_CONT);
3742 set_opt(sb, ERRORS_RO);
3743 /* block_validity enabled by default; disable with noblock_validity */
3744 set_opt(sb, BLOCK_VALIDITY);
3745 if (def_mount_opts & EXT4_DEFM_DISCARD)
3746 set_opt(sb, DISCARD);
3748 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3749 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3750 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3751 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3752 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3754 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3755 set_opt(sb, BARRIER);
3758 * enable delayed allocation by default
3759 * Use -o nodelalloc to turn it off
3761 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3762 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3763 set_opt(sb, DELALLOC);
3766 * set default s_li_wait_mult for lazyinit, for the case there is
3767 * no mount option specified.
3769 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3771 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3772 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3773 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3775 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3776 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3777 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3778 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3782 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3783 (!is_power_of_2(sbi->s_inode_size)) ||
3784 (sbi->s_inode_size > blocksize)) {
3785 ext4_msg(sb, KERN_ERR,
3786 "unsupported inode size: %d",
3791 * i_atime_extra is the last extra field available for
3792 * [acm]times in struct ext4_inode. Checking for that
3793 * field should suffice to ensure we have extra space
3796 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3797 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3798 sb->s_time_gran = 1;
3799 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
3801 sb->s_time_gran = NSEC_PER_SEC;
3802 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
3804 sb->s_time_min = EXT4_TIMESTAMP_MIN;
3806 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3807 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3808 EXT4_GOOD_OLD_INODE_SIZE;
3809 if (ext4_has_feature_extra_isize(sb)) {
3810 unsigned v, max = (sbi->s_inode_size -
3811 EXT4_GOOD_OLD_INODE_SIZE);
3813 v = le16_to_cpu(es->s_want_extra_isize);
3815 ext4_msg(sb, KERN_ERR,
3816 "bad s_want_extra_isize: %d", v);
3819 if (sbi->s_want_extra_isize < v)
3820 sbi->s_want_extra_isize = v;
3822 v = le16_to_cpu(es->s_min_extra_isize);
3824 ext4_msg(sb, KERN_ERR,
3825 "bad s_min_extra_isize: %d", v);
3828 if (sbi->s_want_extra_isize < v)
3829 sbi->s_want_extra_isize = v;
3833 if (sbi->s_es->s_mount_opts[0]) {
3834 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3835 sizeof(sbi->s_es->s_mount_opts),
3839 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3840 &journal_ioprio, 0)) {
3841 ext4_msg(sb, KERN_WARNING,
3842 "failed to parse options in superblock: %s",
3845 kfree(s_mount_opts);
3847 sbi->s_def_mount_opt = sbi->s_mount_opt;
3848 if (!parse_options((char *) data, sb, &journal_devnum,
3849 &journal_ioprio, 0))
3852 #ifdef CONFIG_UNICODE
3853 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3854 const struct ext4_sb_encodings *encoding_info;
3855 struct unicode_map *encoding;
3856 __u16 encoding_flags;
3858 if (ext4_has_feature_encrypt(sb)) {
3859 ext4_msg(sb, KERN_ERR,
3860 "Can't mount with encoding and encryption");
3864 if (ext4_sb_read_encoding(es, &encoding_info,
3866 ext4_msg(sb, KERN_ERR,
3867 "Encoding requested by superblock is unknown");
3871 encoding = utf8_load(encoding_info->version);
3872 if (IS_ERR(encoding)) {
3873 ext4_msg(sb, KERN_ERR,
3874 "can't mount with superblock charset: %s-%s "
3875 "not supported by the kernel. flags: 0x%x.",
3876 encoding_info->name, encoding_info->version,
3880 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3881 "%s-%s with flags 0x%hx", encoding_info->name,
3882 encoding_info->version?:"\b", encoding_flags);
3884 sbi->s_encoding = encoding;
3885 sbi->s_encoding_flags = encoding_flags;
3889 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3890 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3891 "with data=journal disables delayed "
3892 "allocation and O_DIRECT support!\n");
3893 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3894 ext4_msg(sb, KERN_ERR, "can't mount with "
3895 "both data=journal and delalloc");
3898 if (test_opt(sb, DIOREAD_NOLOCK)) {
3899 ext4_msg(sb, KERN_ERR, "can't mount with "
3900 "both data=journal and dioread_nolock");
3903 if (test_opt(sb, DAX)) {
3904 ext4_msg(sb, KERN_ERR, "can't mount with "
3905 "both data=journal and dax");
3908 if (ext4_has_feature_encrypt(sb)) {
3909 ext4_msg(sb, KERN_WARNING,
3910 "encrypted files will use data=ordered "
3911 "instead of data journaling mode");
3913 if (test_opt(sb, DELALLOC))
3914 clear_opt(sb, DELALLOC);
3916 sb->s_iflags |= SB_I_CGROUPWB;
3919 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3920 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3922 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3923 (ext4_has_compat_features(sb) ||
3924 ext4_has_ro_compat_features(sb) ||
3925 ext4_has_incompat_features(sb)))
3926 ext4_msg(sb, KERN_WARNING,
3927 "feature flags set on rev 0 fs, "
3928 "running e2fsck is recommended");
3930 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3931 set_opt2(sb, HURD_COMPAT);
3932 if (ext4_has_feature_64bit(sb)) {
3933 ext4_msg(sb, KERN_ERR,
3934 "The Hurd can't support 64-bit file systems");
3939 * ea_inode feature uses l_i_version field which is not
3940 * available in HURD_COMPAT mode.
3942 if (ext4_has_feature_ea_inode(sb)) {
3943 ext4_msg(sb, KERN_ERR,
3944 "ea_inode feature is not supported for Hurd");
3949 if (IS_EXT2_SB(sb)) {
3950 if (ext2_feature_set_ok(sb))
3951 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3952 "using the ext4 subsystem");
3955 * If we're probing be silent, if this looks like
3956 * it's actually an ext[34] filesystem.
3958 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3960 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3961 "to feature incompatibilities");
3966 if (IS_EXT3_SB(sb)) {
3967 if (ext3_feature_set_ok(sb))
3968 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3969 "using the ext4 subsystem");
3972 * If we're probing be silent, if this looks like
3973 * it's actually an ext4 filesystem.
3975 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3977 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3978 "to feature incompatibilities");
3984 * Check feature flags regardless of the revision level, since we
3985 * previously didn't change the revision level when setting the flags,
3986 * so there is a chance incompat flags are set on a rev 0 filesystem.
3988 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3991 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3992 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3993 blocksize > EXT4_MAX_BLOCK_SIZE) {
3994 ext4_msg(sb, KERN_ERR,
3995 "Unsupported filesystem blocksize %d (%d log_block_size)",
3996 blocksize, le32_to_cpu(es->s_log_block_size));
3999 if (le32_to_cpu(es->s_log_block_size) >
4000 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4001 ext4_msg(sb, KERN_ERR,
4002 "Invalid log block size: %u",
4003 le32_to_cpu(es->s_log_block_size));
4006 if (le32_to_cpu(es->s_log_cluster_size) >
4007 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4008 ext4_msg(sb, KERN_ERR,
4009 "Invalid log cluster size: %u",
4010 le32_to_cpu(es->s_log_cluster_size));
4014 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4015 ext4_msg(sb, KERN_ERR,
4016 "Number of reserved GDT blocks insanely large: %d",
4017 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4021 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
4022 if (ext4_has_feature_inline_data(sb)) {
4023 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4024 " that may contain inline data");
4027 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
4028 ext4_msg(sb, KERN_ERR,
4029 "DAX unsupported by block device.");
4034 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4035 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4036 es->s_encryption_level);
4040 if (sb->s_blocksize != blocksize) {
4041 /* Validate the filesystem blocksize */
4042 if (!sb_set_blocksize(sb, blocksize)) {
4043 ext4_msg(sb, KERN_ERR, "bad block size %d",
4049 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4050 offset = do_div(logical_sb_block, blocksize);
4051 bh = sb_bread_unmovable(sb, logical_sb_block);
4053 ext4_msg(sb, KERN_ERR,
4054 "Can't read superblock on 2nd try");
4057 es = (struct ext4_super_block *)(bh->b_data + offset);
4059 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4060 ext4_msg(sb, KERN_ERR,
4061 "Magic mismatch, very weird!");
4066 has_huge_files = ext4_has_feature_huge_file(sb);
4067 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4069 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4071 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4072 if (ext4_has_feature_64bit(sb)) {
4073 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4074 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4075 !is_power_of_2(sbi->s_desc_size)) {
4076 ext4_msg(sb, KERN_ERR,
4077 "unsupported descriptor size %lu",
4082 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4084 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4085 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4087 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4088 if (sbi->s_inodes_per_block == 0)
4090 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4091 sbi->s_inodes_per_group > blocksize * 8) {
4092 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4093 sbi->s_blocks_per_group);
4096 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4097 sbi->s_inodes_per_block;
4098 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4100 sbi->s_mount_state = le16_to_cpu(es->s_state);
4101 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4102 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4104 for (i = 0; i < 4; i++)
4105 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4106 sbi->s_def_hash_version = es->s_def_hash_version;
4107 if (ext4_has_feature_dir_index(sb)) {
4108 i = le32_to_cpu(es->s_flags);
4109 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4110 sbi->s_hash_unsigned = 3;
4111 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4112 #ifdef __CHAR_UNSIGNED__
4115 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4116 sbi->s_hash_unsigned = 3;
4120 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4125 /* Handle clustersize */
4126 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4127 has_bigalloc = ext4_has_feature_bigalloc(sb);
4129 if (clustersize < blocksize) {
4130 ext4_msg(sb, KERN_ERR,
4131 "cluster size (%d) smaller than "
4132 "block size (%d)", clustersize, blocksize);
4135 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4136 le32_to_cpu(es->s_log_block_size);
4137 sbi->s_clusters_per_group =
4138 le32_to_cpu(es->s_clusters_per_group);
4139 if (sbi->s_clusters_per_group > blocksize * 8) {
4140 ext4_msg(sb, KERN_ERR,
4141 "#clusters per group too big: %lu",
4142 sbi->s_clusters_per_group);
4145 if (sbi->s_blocks_per_group !=
4146 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4147 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4148 "clusters per group (%lu) inconsistent",
4149 sbi->s_blocks_per_group,
4150 sbi->s_clusters_per_group);
4154 if (clustersize != blocksize) {
4155 ext4_msg(sb, KERN_ERR,
4156 "fragment/cluster size (%d) != "
4157 "block size (%d)", clustersize, blocksize);
4160 if (sbi->s_blocks_per_group > blocksize * 8) {
4161 ext4_msg(sb, KERN_ERR,
4162 "#blocks per group too big: %lu",
4163 sbi->s_blocks_per_group);
4166 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4167 sbi->s_cluster_bits = 0;
4169 sbi->s_cluster_ratio = clustersize / blocksize;
4171 /* Do we have standard group size of clustersize * 8 blocks ? */
4172 if (sbi->s_blocks_per_group == clustersize << 3)
4173 set_opt2(sb, STD_GROUP_SIZE);
4176 * Test whether we have more sectors than will fit in sector_t,
4177 * and whether the max offset is addressable by the page cache.
4179 err = generic_check_addressable(sb->s_blocksize_bits,
4180 ext4_blocks_count(es));
4182 ext4_msg(sb, KERN_ERR, "filesystem"
4183 " too large to mount safely on this system");
4187 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4190 /* check blocks count against device size */
4191 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4192 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4193 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4194 "exceeds size of device (%llu blocks)",
4195 ext4_blocks_count(es), blocks_count);
4200 * It makes no sense for the first data block to be beyond the end
4201 * of the filesystem.
4203 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4204 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4205 "block %u is beyond end of filesystem (%llu)",
4206 le32_to_cpu(es->s_first_data_block),
4207 ext4_blocks_count(es));
4210 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4211 (sbi->s_cluster_ratio == 1)) {
4212 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4213 "block is 0 with a 1k block and cluster size");
4217 blocks_count = (ext4_blocks_count(es) -
4218 le32_to_cpu(es->s_first_data_block) +
4219 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4220 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4221 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4222 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4223 "(block count %llu, first data block %u, "
4224 "blocks per group %lu)", sbi->s_groups_count,
4225 ext4_blocks_count(es),
4226 le32_to_cpu(es->s_first_data_block),
4227 EXT4_BLOCKS_PER_GROUP(sb));
4230 sbi->s_groups_count = blocks_count;
4231 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4232 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4233 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4234 le32_to_cpu(es->s_inodes_count)) {
4235 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4236 le32_to_cpu(es->s_inodes_count),
4237 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4241 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4242 EXT4_DESC_PER_BLOCK(sb);
4243 if (ext4_has_feature_meta_bg(sb)) {
4244 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4245 ext4_msg(sb, KERN_WARNING,
4246 "first meta block group too large: %u "
4247 "(group descriptor block count %u)",
4248 le32_to_cpu(es->s_first_meta_bg), db_count);
4252 sbi->s_group_desc = kvmalloc_array(db_count,
4253 sizeof(struct buffer_head *),
4255 if (sbi->s_group_desc == NULL) {
4256 ext4_msg(sb, KERN_ERR, "not enough memory");
4261 bgl_lock_init(sbi->s_blockgroup_lock);
4263 /* Pre-read the descriptors into the buffer cache */
4264 for (i = 0; i < db_count; i++) {
4265 block = descriptor_loc(sb, logical_sb_block, i);
4266 sb_breadahead(sb, block);
4269 for (i = 0; i < db_count; i++) {
4270 block = descriptor_loc(sb, logical_sb_block, i);
4271 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4272 if (!sbi->s_group_desc[i]) {
4273 ext4_msg(sb, KERN_ERR,
4274 "can't read group descriptor %d", i);
4279 sbi->s_gdb_count = db_count;
4280 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4281 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4282 ret = -EFSCORRUPTED;
4286 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4288 /* Register extent status tree shrinker */
4289 if (ext4_es_register_shrinker(sbi))
4292 sbi->s_stripe = ext4_get_stripe_size(sbi);
4293 sbi->s_extent_max_zeroout_kb = 32;
4296 * set up enough so that it can read an inode
4298 sb->s_op = &ext4_sops;
4299 sb->s_export_op = &ext4_export_ops;
4300 sb->s_xattr = ext4_xattr_handlers;
4301 #ifdef CONFIG_FS_ENCRYPTION
4302 sb->s_cop = &ext4_cryptops;
4304 #ifdef CONFIG_FS_VERITY
4305 sb->s_vop = &ext4_verityops;
4308 sb->dq_op = &ext4_quota_operations;
4309 if (ext4_has_feature_quota(sb))
4310 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4312 sb->s_qcop = &ext4_qctl_operations;
4313 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4315 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4317 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4318 mutex_init(&sbi->s_orphan_lock);
4322 needs_recovery = (es->s_last_orphan != 0 ||
4323 ext4_has_feature_journal_needs_recovery(sb));
4325 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4326 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4327 goto failed_mount3a;
4330 * The first inode we look at is the journal inode. Don't try
4331 * root first: it may be modified in the journal!
4333 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4334 err = ext4_load_journal(sb, es, journal_devnum);
4336 goto failed_mount3a;
4337 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4338 ext4_has_feature_journal_needs_recovery(sb)) {
4339 ext4_msg(sb, KERN_ERR, "required journal recovery "
4340 "suppressed and not mounted read-only");
4341 goto failed_mount_wq;
4343 /* Nojournal mode, all journal mount options are illegal */
4344 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4345 ext4_msg(sb, KERN_ERR, "can't mount with "
4346 "journal_checksum, fs mounted w/o journal");
4347 goto failed_mount_wq;
4349 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4350 ext4_msg(sb, KERN_ERR, "can't mount with "
4351 "journal_async_commit, fs mounted w/o journal");
4352 goto failed_mount_wq;
4354 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4355 ext4_msg(sb, KERN_ERR, "can't mount with "
4356 "commit=%lu, fs mounted w/o journal",
4357 sbi->s_commit_interval / HZ);
4358 goto failed_mount_wq;
4360 if (EXT4_MOUNT_DATA_FLAGS &
4361 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4362 ext4_msg(sb, KERN_ERR, "can't mount with "
4363 "data=, fs mounted w/o journal");
4364 goto failed_mount_wq;
4366 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4367 clear_opt(sb, JOURNAL_CHECKSUM);
4368 clear_opt(sb, DATA_FLAGS);
4369 sbi->s_journal = NULL;
4374 if (ext4_has_feature_64bit(sb) &&
4375 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4376 JBD2_FEATURE_INCOMPAT_64BIT)) {
4377 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4378 goto failed_mount_wq;
4381 if (!set_journal_csum_feature_set(sb)) {
4382 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4384 goto failed_mount_wq;
4387 /* We have now updated the journal if required, so we can
4388 * validate the data journaling mode. */
4389 switch (test_opt(sb, DATA_FLAGS)) {
4391 /* No mode set, assume a default based on the journal
4392 * capabilities: ORDERED_DATA if the journal can
4393 * cope, else JOURNAL_DATA
4395 if (jbd2_journal_check_available_features
4396 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4397 set_opt(sb, ORDERED_DATA);
4398 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4400 set_opt(sb, JOURNAL_DATA);
4401 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4405 case EXT4_MOUNT_ORDERED_DATA:
4406 case EXT4_MOUNT_WRITEBACK_DATA:
4407 if (!jbd2_journal_check_available_features
4408 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4409 ext4_msg(sb, KERN_ERR, "Journal does not support "
4410 "requested data journaling mode");
4411 goto failed_mount_wq;
4417 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4418 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4419 ext4_msg(sb, KERN_ERR, "can't mount with "
4420 "journal_async_commit in data=ordered mode");
4421 goto failed_mount_wq;
4424 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4426 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4429 if (!test_opt(sb, NO_MBCACHE)) {
4430 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4431 if (!sbi->s_ea_block_cache) {
4432 ext4_msg(sb, KERN_ERR,
4433 "Failed to create ea_block_cache");
4434 goto failed_mount_wq;
4437 if (ext4_has_feature_ea_inode(sb)) {
4438 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4439 if (!sbi->s_ea_inode_cache) {
4440 ext4_msg(sb, KERN_ERR,
4441 "Failed to create ea_inode_cache");
4442 goto failed_mount_wq;
4447 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4448 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4449 goto failed_mount_wq;
4452 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4453 !ext4_has_feature_encrypt(sb)) {
4454 ext4_set_feature_encrypt(sb);
4455 ext4_commit_super(sb, 1);
4459 * Get the # of file system overhead blocks from the
4460 * superblock if present.
4462 if (es->s_overhead_clusters)
4463 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4465 err = ext4_calculate_overhead(sb);
4467 goto failed_mount_wq;
4471 * The maximum number of concurrent works can be high and
4472 * concurrency isn't really necessary. Limit it to 1.
4474 EXT4_SB(sb)->rsv_conversion_wq =
4475 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4476 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4477 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4483 * The jbd2_journal_load will have done any necessary log recovery,
4484 * so we can safely mount the rest of the filesystem now.
4487 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4489 ext4_msg(sb, KERN_ERR, "get root inode failed");
4490 ret = PTR_ERR(root);
4494 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4495 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4500 #ifdef CONFIG_UNICODE
4501 if (sbi->s_encoding)
4502 sb->s_d_op = &ext4_dentry_ops;
4505 sb->s_root = d_make_root(root);
4507 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4512 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4513 if (ret == -EROFS) {
4514 sb->s_flags |= SB_RDONLY;
4517 goto failed_mount4a;
4519 ext4_set_resv_clusters(sb);
4521 err = ext4_setup_system_zone(sb);
4523 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4525 goto failed_mount4a;
4529 err = ext4_mb_init(sb);
4531 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4536 block = ext4_count_free_clusters(sb);
4537 ext4_free_blocks_count_set(sbi->s_es,
4538 EXT4_C2B(sbi, block));
4539 ext4_superblock_csum_set(sb);
4540 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4543 unsigned long freei = ext4_count_free_inodes(sb);
4544 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4545 ext4_superblock_csum_set(sb);
4546 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4550 err = percpu_counter_init(&sbi->s_dirs_counter,
4551 ext4_count_dirs(sb), GFP_KERNEL);
4553 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4556 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4559 ext4_msg(sb, KERN_ERR, "insufficient memory");
4563 if (ext4_has_feature_flex_bg(sb))
4564 if (!ext4_fill_flex_info(sb)) {
4565 ext4_msg(sb, KERN_ERR,
4566 "unable to initialize "
4567 "flex_bg meta info!");
4571 err = ext4_register_li_request(sb, first_not_zeroed);
4575 err = ext4_register_sysfs(sb);
4580 /* Enable quota usage during mount. */
4581 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4582 err = ext4_enable_quotas(sb);
4586 #endif /* CONFIG_QUOTA */
4588 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4589 ext4_orphan_cleanup(sb, es);
4590 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4591 if (needs_recovery) {
4592 ext4_msg(sb, KERN_INFO, "recovery complete");
4593 ext4_mark_recovery_complete(sb, es);
4595 if (EXT4_SB(sb)->s_journal) {
4596 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4597 descr = " journalled data mode";
4598 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4599 descr = " ordered data mode";
4601 descr = " writeback data mode";
4603 descr = "out journal";
4605 if (test_opt(sb, DISCARD)) {
4606 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4607 if (!blk_queue_discard(q))
4608 ext4_msg(sb, KERN_WARNING,
4609 "mounting with \"discard\" option, but "
4610 "the device does not support discard");
4613 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4614 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4615 "Opts: %.*s%s%s", descr,
4616 (int) sizeof(sbi->s_es->s_mount_opts),
4617 sbi->s_es->s_mount_opts,
4618 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4620 if (es->s_error_count)
4621 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4623 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4624 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4625 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4626 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4633 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4638 ext4_unregister_sysfs(sb);
4641 ext4_unregister_li_request(sb);
4643 ext4_mb_release(sb);
4644 if (sbi->s_flex_groups)
4645 kvfree(sbi->s_flex_groups);
4646 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4647 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4648 percpu_counter_destroy(&sbi->s_dirs_counter);
4649 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4650 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4652 ext4_ext_release(sb);
4653 ext4_release_system_zone(sb);
4658 ext4_msg(sb, KERN_ERR, "mount failed");
4659 if (EXT4_SB(sb)->rsv_conversion_wq)
4660 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4662 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4663 sbi->s_ea_inode_cache = NULL;
4665 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4666 sbi->s_ea_block_cache = NULL;
4668 if (sbi->s_journal) {
4669 jbd2_journal_destroy(sbi->s_journal);
4670 sbi->s_journal = NULL;
4673 ext4_es_unregister_shrinker(sbi);
4675 del_timer_sync(&sbi->s_err_report);
4677 kthread_stop(sbi->s_mmp_tsk);
4679 for (i = 0; i < db_count; i++)
4680 brelse(sbi->s_group_desc[i]);
4681 kvfree(sbi->s_group_desc);
4683 if (sbi->s_chksum_driver)
4684 crypto_free_shash(sbi->s_chksum_driver);
4686 #ifdef CONFIG_UNICODE
4687 utf8_unload(sbi->s_encoding);
4691 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4692 kfree(get_qf_name(sb, sbi, i));
4694 ext4_blkdev_remove(sbi);
4697 sb->s_fs_info = NULL;
4698 kfree(sbi->s_blockgroup_lock);
4702 fs_put_dax(dax_dev);
4703 return err ? err : ret;
4707 * Setup any per-fs journal parameters now. We'll do this both on
4708 * initial mount, once the journal has been initialised but before we've
4709 * done any recovery; and again on any subsequent remount.
4711 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4713 struct ext4_sb_info *sbi = EXT4_SB(sb);
4715 journal->j_commit_interval = sbi->s_commit_interval;
4716 journal->j_min_batch_time = sbi->s_min_batch_time;
4717 journal->j_max_batch_time = sbi->s_max_batch_time;
4719 write_lock(&journal->j_state_lock);
4720 if (test_opt(sb, BARRIER))
4721 journal->j_flags |= JBD2_BARRIER;
4723 journal->j_flags &= ~JBD2_BARRIER;
4724 if (test_opt(sb, DATA_ERR_ABORT))
4725 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4727 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4728 write_unlock(&journal->j_state_lock);
4731 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4732 unsigned int journal_inum)
4734 struct inode *journal_inode;
4737 * Test for the existence of a valid inode on disk. Bad things
4738 * happen if we iget() an unused inode, as the subsequent iput()
4739 * will try to delete it.
4741 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4742 if (IS_ERR(journal_inode)) {
4743 ext4_msg(sb, KERN_ERR, "no journal found");
4746 if (!journal_inode->i_nlink) {
4747 make_bad_inode(journal_inode);
4748 iput(journal_inode);
4749 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4753 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4754 journal_inode, journal_inode->i_size);
4755 if (!S_ISREG(journal_inode->i_mode)) {
4756 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4757 iput(journal_inode);
4760 return journal_inode;
4763 static journal_t *ext4_get_journal(struct super_block *sb,
4764 unsigned int journal_inum)
4766 struct inode *journal_inode;
4769 BUG_ON(!ext4_has_feature_journal(sb));
4771 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4775 journal = jbd2_journal_init_inode(journal_inode);
4777 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4778 iput(journal_inode);
4781 journal->j_private = sb;
4782 ext4_init_journal_params(sb, journal);
4786 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4789 struct buffer_head *bh;
4793 int hblock, blocksize;
4794 ext4_fsblk_t sb_block;
4795 unsigned long offset;
4796 struct ext4_super_block *es;
4797 struct block_device *bdev;
4799 BUG_ON(!ext4_has_feature_journal(sb));
4801 bdev = ext4_blkdev_get(j_dev, sb);
4805 blocksize = sb->s_blocksize;
4806 hblock = bdev_logical_block_size(bdev);
4807 if (blocksize < hblock) {
4808 ext4_msg(sb, KERN_ERR,
4809 "blocksize too small for journal device");
4813 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4814 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4815 set_blocksize(bdev, blocksize);
4816 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4817 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4818 "external journal");
4822 es = (struct ext4_super_block *) (bh->b_data + offset);
4823 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4824 !(le32_to_cpu(es->s_feature_incompat) &
4825 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4826 ext4_msg(sb, KERN_ERR, "external journal has "
4832 if ((le32_to_cpu(es->s_feature_ro_compat) &
4833 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4834 es->s_checksum != ext4_superblock_csum(sb, es)) {
4835 ext4_msg(sb, KERN_ERR, "external journal has "
4836 "corrupt superblock");
4841 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4842 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4847 len = ext4_blocks_count(es);
4848 start = sb_block + 1;
4849 brelse(bh); /* we're done with the superblock */
4851 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4852 start, len, blocksize);
4854 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4857 journal->j_private = sb;
4858 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4859 wait_on_buffer(journal->j_sb_buffer);
4860 if (!buffer_uptodate(journal->j_sb_buffer)) {
4861 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4864 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4865 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4866 "user (unsupported) - %d",
4867 be32_to_cpu(journal->j_superblock->s_nr_users));
4870 EXT4_SB(sb)->journal_bdev = bdev;
4871 ext4_init_journal_params(sb, journal);
4875 jbd2_journal_destroy(journal);
4877 ext4_blkdev_put(bdev);
4881 static int ext4_load_journal(struct super_block *sb,
4882 struct ext4_super_block *es,
4883 unsigned long journal_devnum)
4886 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4889 int really_read_only;
4891 BUG_ON(!ext4_has_feature_journal(sb));
4893 if (journal_devnum &&
4894 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4895 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4896 "numbers have changed");
4897 journal_dev = new_decode_dev(journal_devnum);
4899 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4901 really_read_only = bdev_read_only(sb->s_bdev);
4904 * Are we loading a blank journal or performing recovery after a
4905 * crash? For recovery, we need to check in advance whether we
4906 * can get read-write access to the device.
4908 if (ext4_has_feature_journal_needs_recovery(sb)) {
4909 if (sb_rdonly(sb)) {
4910 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4911 "required on readonly filesystem");
4912 if (really_read_only) {
4913 ext4_msg(sb, KERN_ERR, "write access "
4914 "unavailable, cannot proceed "
4915 "(try mounting with noload)");
4918 ext4_msg(sb, KERN_INFO, "write access will "
4919 "be enabled during recovery");
4923 if (journal_inum && journal_dev) {
4924 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4925 "and inode journals!");
4930 if (!(journal = ext4_get_journal(sb, journal_inum)))
4933 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4937 if (!(journal->j_flags & JBD2_BARRIER))
4938 ext4_msg(sb, KERN_INFO, "barriers disabled");
4940 if (!ext4_has_feature_journal_needs_recovery(sb))
4941 err = jbd2_journal_wipe(journal, !really_read_only);
4943 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4945 memcpy(save, ((char *) es) +
4946 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4947 err = jbd2_journal_load(journal);
4949 memcpy(((char *) es) + EXT4_S_ERR_START,
4950 save, EXT4_S_ERR_LEN);
4955 ext4_msg(sb, KERN_ERR, "error loading journal");
4956 jbd2_journal_destroy(journal);
4960 EXT4_SB(sb)->s_journal = journal;
4961 ext4_clear_journal_err(sb, es);
4963 if (!really_read_only && journal_devnum &&
4964 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4965 es->s_journal_dev = cpu_to_le32(journal_devnum);
4967 /* Make sure we flush the recovery flag to disk. */
4968 ext4_commit_super(sb, 1);
4974 static int ext4_commit_super(struct super_block *sb, int sync)
4976 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4977 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4980 if (!sbh || block_device_ejected(sb))
4984 * The superblock bh should be mapped, but it might not be if the
4985 * device was hot-removed. Not much we can do but fail the I/O.
4987 if (!buffer_mapped(sbh))
4991 * If the file system is mounted read-only, don't update the
4992 * superblock write time. This avoids updating the superblock
4993 * write time when we are mounting the root file system
4994 * read/only but we need to replay the journal; at that point,
4995 * for people who are east of GMT and who make their clock
4996 * tick in localtime for Windows bug-for-bug compatibility,
4997 * the clock is set in the future, and this will cause e2fsck
4998 * to complain and force a full file system check.
5000 if (!(sb->s_flags & SB_RDONLY))
5001 ext4_update_tstamp(es, s_wtime);
5002 if (sb->s_bdev->bd_part)
5003 es->s_kbytes_written =
5004 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5005 ((part_stat_read(sb->s_bdev->bd_part,
5006 sectors[STAT_WRITE]) -
5007 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5009 es->s_kbytes_written =
5010 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5011 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5012 ext4_free_blocks_count_set(es,
5013 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5014 &EXT4_SB(sb)->s_freeclusters_counter)));
5015 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5016 es->s_free_inodes_count =
5017 cpu_to_le32(percpu_counter_sum_positive(
5018 &EXT4_SB(sb)->s_freeinodes_counter));
5019 BUFFER_TRACE(sbh, "marking dirty");
5020 ext4_superblock_csum_set(sb);
5023 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5025 * Oh, dear. A previous attempt to write the
5026 * superblock failed. This could happen because the
5027 * USB device was yanked out. Or it could happen to
5028 * be a transient write error and maybe the block will
5029 * be remapped. Nothing we can do but to retry the
5030 * write and hope for the best.
5032 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5033 "superblock detected");
5034 clear_buffer_write_io_error(sbh);
5035 set_buffer_uptodate(sbh);
5037 mark_buffer_dirty(sbh);
5040 error = __sync_dirty_buffer(sbh,
5041 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5042 if (buffer_write_io_error(sbh)) {
5043 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5045 clear_buffer_write_io_error(sbh);
5046 set_buffer_uptodate(sbh);
5053 * Have we just finished recovery? If so, and if we are mounting (or
5054 * remounting) the filesystem readonly, then we will end up with a
5055 * consistent fs on disk. Record that fact.
5057 static void ext4_mark_recovery_complete(struct super_block *sb,
5058 struct ext4_super_block *es)
5060 journal_t *journal = EXT4_SB(sb)->s_journal;
5062 if (!ext4_has_feature_journal(sb)) {
5063 BUG_ON(journal != NULL);
5066 jbd2_journal_lock_updates(journal);
5067 if (jbd2_journal_flush(journal) < 0)
5070 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5071 ext4_clear_feature_journal_needs_recovery(sb);
5072 ext4_commit_super(sb, 1);
5076 jbd2_journal_unlock_updates(journal);
5080 * If we are mounting (or read-write remounting) a filesystem whose journal
5081 * has recorded an error from a previous lifetime, move that error to the
5082 * main filesystem now.
5084 static void ext4_clear_journal_err(struct super_block *sb,
5085 struct ext4_super_block *es)
5091 BUG_ON(!ext4_has_feature_journal(sb));
5093 journal = EXT4_SB(sb)->s_journal;
5096 * Now check for any error status which may have been recorded in the
5097 * journal by a prior ext4_error() or ext4_abort()
5100 j_errno = jbd2_journal_errno(journal);
5104 errstr = ext4_decode_error(sb, j_errno, nbuf);
5105 ext4_warning(sb, "Filesystem error recorded "
5106 "from previous mount: %s", errstr);
5107 ext4_warning(sb, "Marking fs in need of filesystem check.");
5109 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5110 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5111 ext4_commit_super(sb, 1);
5113 jbd2_journal_clear_err(journal);
5114 jbd2_journal_update_sb_errno(journal);
5119 * Force the running and committing transactions to commit,
5120 * and wait on the commit.
5122 int ext4_force_commit(struct super_block *sb)
5129 journal = EXT4_SB(sb)->s_journal;
5130 return ext4_journal_force_commit(journal);
5133 static int ext4_sync_fs(struct super_block *sb, int wait)
5137 bool needs_barrier = false;
5138 struct ext4_sb_info *sbi = EXT4_SB(sb);
5140 if (unlikely(ext4_forced_shutdown(sbi)))
5143 trace_ext4_sync_fs(sb, wait);
5144 flush_workqueue(sbi->rsv_conversion_wq);
5146 * Writeback quota in non-journalled quota case - journalled quota has
5149 dquot_writeback_dquots(sb, -1);
5151 * Data writeback is possible w/o journal transaction, so barrier must
5152 * being sent at the end of the function. But we can skip it if
5153 * transaction_commit will do it for us.
5155 if (sbi->s_journal) {
5156 target = jbd2_get_latest_transaction(sbi->s_journal);
5157 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5158 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5159 needs_barrier = true;
5161 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5163 ret = jbd2_log_wait_commit(sbi->s_journal,
5166 } else if (wait && test_opt(sb, BARRIER))
5167 needs_barrier = true;
5168 if (needs_barrier) {
5170 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5179 * LVM calls this function before a (read-only) snapshot is created. This
5180 * gives us a chance to flush the journal completely and mark the fs clean.
5182 * Note that only this function cannot bring a filesystem to be in a clean
5183 * state independently. It relies on upper layer to stop all data & metadata
5186 static int ext4_freeze(struct super_block *sb)
5194 journal = EXT4_SB(sb)->s_journal;
5197 /* Now we set up the journal barrier. */
5198 jbd2_journal_lock_updates(journal);
5201 * Don't clear the needs_recovery flag if we failed to
5202 * flush the journal.
5204 error = jbd2_journal_flush(journal);
5208 /* Journal blocked and flushed, clear needs_recovery flag. */
5209 ext4_clear_feature_journal_needs_recovery(sb);
5212 error = ext4_commit_super(sb, 1);
5215 /* we rely on upper layer to stop further updates */
5216 jbd2_journal_unlock_updates(journal);
5221 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5222 * flag here, even though the filesystem is not technically dirty yet.
5224 static int ext4_unfreeze(struct super_block *sb)
5226 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5229 if (EXT4_SB(sb)->s_journal) {
5230 /* Reset the needs_recovery flag before the fs is unlocked. */
5231 ext4_set_feature_journal_needs_recovery(sb);
5234 ext4_commit_super(sb, 1);
5239 * Structure to save mount options for ext4_remount's benefit
5241 struct ext4_mount_options {
5242 unsigned long s_mount_opt;
5243 unsigned long s_mount_opt2;
5246 unsigned long s_commit_interval;
5247 u32 s_min_batch_time, s_max_batch_time;
5250 char *s_qf_names[EXT4_MAXQUOTAS];
5254 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5256 struct ext4_super_block *es;
5257 struct ext4_sb_info *sbi = EXT4_SB(sb);
5258 unsigned long old_sb_flags;
5259 struct ext4_mount_options old_opts;
5260 int enable_quota = 0;
5262 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5266 char *to_free[EXT4_MAXQUOTAS];
5268 char *orig_data = kstrdup(data, GFP_KERNEL);
5270 if (data && !orig_data)
5273 /* Store the original options */
5274 old_sb_flags = sb->s_flags;
5275 old_opts.s_mount_opt = sbi->s_mount_opt;
5276 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5277 old_opts.s_resuid = sbi->s_resuid;
5278 old_opts.s_resgid = sbi->s_resgid;
5279 old_opts.s_commit_interval = sbi->s_commit_interval;
5280 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5281 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5283 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5284 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5285 if (sbi->s_qf_names[i]) {
5286 char *qf_name = get_qf_name(sb, sbi, i);
5288 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5289 if (!old_opts.s_qf_names[i]) {
5290 for (j = 0; j < i; j++)
5291 kfree(old_opts.s_qf_names[j]);
5296 old_opts.s_qf_names[i] = NULL;
5298 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5299 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5301 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5306 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5307 test_opt(sb, JOURNAL_CHECKSUM)) {
5308 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5309 "during remount not supported; ignoring");
5310 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5313 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5314 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5315 ext4_msg(sb, KERN_ERR, "can't mount with "
5316 "both data=journal and delalloc");
5320 if (test_opt(sb, DIOREAD_NOLOCK)) {
5321 ext4_msg(sb, KERN_ERR, "can't mount with "
5322 "both data=journal and dioread_nolock");
5326 if (test_opt(sb, DAX)) {
5327 ext4_msg(sb, KERN_ERR, "can't mount with "
5328 "both data=journal and dax");
5332 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5333 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5334 ext4_msg(sb, KERN_ERR, "can't mount with "
5335 "journal_async_commit in data=ordered mode");
5341 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5342 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5347 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5348 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5349 "dax flag with busy inodes while remounting");
5350 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5353 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5354 ext4_abort(sb, "Abort forced by user");
5356 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5357 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5361 if (sbi->s_journal) {
5362 ext4_init_journal_params(sb, sbi->s_journal);
5363 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5366 if (*flags & SB_LAZYTIME)
5367 sb->s_flags |= SB_LAZYTIME;
5369 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5370 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5375 if (*flags & SB_RDONLY) {
5376 err = sync_filesystem(sb);
5379 err = dquot_suspend(sb, -1);
5384 * First of all, the unconditional stuff we have to do
5385 * to disable replay of the journal when we next remount
5387 sb->s_flags |= SB_RDONLY;
5390 * OK, test if we are remounting a valid rw partition
5391 * readonly, and if so set the rdonly flag and then
5392 * mark the partition as valid again.
5394 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5395 (sbi->s_mount_state & EXT4_VALID_FS))
5396 es->s_state = cpu_to_le16(sbi->s_mount_state);
5399 ext4_mark_recovery_complete(sb, es);
5401 kthread_stop(sbi->s_mmp_tsk);
5403 /* Make sure we can mount this feature set readwrite */
5404 if (ext4_has_feature_readonly(sb) ||
5405 !ext4_feature_set_ok(sb, 0)) {
5410 * Make sure the group descriptor checksums
5411 * are sane. If they aren't, refuse to remount r/w.
5413 for (g = 0; g < sbi->s_groups_count; g++) {
5414 struct ext4_group_desc *gdp =
5415 ext4_get_group_desc(sb, g, NULL);
5417 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5418 ext4_msg(sb, KERN_ERR,
5419 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5420 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5421 le16_to_cpu(gdp->bg_checksum));
5428 * If we have an unprocessed orphan list hanging
5429 * around from a previously readonly bdev mount,
5430 * require a full umount/remount for now.
5432 if (es->s_last_orphan) {
5433 ext4_msg(sb, KERN_WARNING, "Couldn't "
5434 "remount RDWR because of unprocessed "
5435 "orphan inode list. Please "
5436 "umount/remount instead");
5442 * Mounting a RDONLY partition read-write, so reread
5443 * and store the current valid flag. (It may have
5444 * been changed by e2fsck since we originally mounted
5448 ext4_clear_journal_err(sb, es);
5449 sbi->s_mount_state = le16_to_cpu(es->s_state);
5451 err = ext4_setup_super(sb, es, 0);
5455 sb->s_flags &= ~SB_RDONLY;
5456 if (ext4_has_feature_mmp(sb))
5457 if (ext4_multi_mount_protect(sb,
5458 le64_to_cpu(es->s_mmp_block))) {
5467 * Reinitialize lazy itable initialization thread based on
5470 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5471 ext4_unregister_li_request(sb);
5473 ext4_group_t first_not_zeroed;
5474 first_not_zeroed = ext4_has_uninit_itable(sb);
5475 ext4_register_li_request(sb, first_not_zeroed);
5478 ext4_setup_system_zone(sb);
5479 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5480 err = ext4_commit_super(sb, 1);
5486 /* Release old quota file names */
5487 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5488 kfree(old_opts.s_qf_names[i]);
5490 if (sb_any_quota_suspended(sb))
5491 dquot_resume(sb, -1);
5492 else if (ext4_has_feature_quota(sb)) {
5493 err = ext4_enable_quotas(sb);
5500 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5501 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5506 sb->s_flags = old_sb_flags;
5507 sbi->s_mount_opt = old_opts.s_mount_opt;
5508 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5509 sbi->s_resuid = old_opts.s_resuid;
5510 sbi->s_resgid = old_opts.s_resgid;
5511 sbi->s_commit_interval = old_opts.s_commit_interval;
5512 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5513 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5515 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5516 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5517 to_free[i] = get_qf_name(sb, sbi, i);
5518 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5521 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5529 static int ext4_statfs_project(struct super_block *sb,
5530 kprojid_t projid, struct kstatfs *buf)
5533 struct dquot *dquot;
5537 qid = make_kqid_projid(projid);
5538 dquot = dqget(sb, qid);
5540 return PTR_ERR(dquot);
5541 spin_lock(&dquot->dq_dqb_lock);
5543 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5544 dquot->dq_dqb.dqb_bsoftlimit :
5545 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5546 if (limit && buf->f_blocks > limit) {
5547 curblock = (dquot->dq_dqb.dqb_curspace +
5548 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5549 buf->f_blocks = limit;
5550 buf->f_bfree = buf->f_bavail =
5551 (buf->f_blocks > curblock) ?
5552 (buf->f_blocks - curblock) : 0;
5555 limit = dquot->dq_dqb.dqb_isoftlimit ?
5556 dquot->dq_dqb.dqb_isoftlimit :
5557 dquot->dq_dqb.dqb_ihardlimit;
5558 if (limit && buf->f_files > limit) {
5559 buf->f_files = limit;
5561 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5562 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5565 spin_unlock(&dquot->dq_dqb_lock);
5571 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5573 struct super_block *sb = dentry->d_sb;
5574 struct ext4_sb_info *sbi = EXT4_SB(sb);
5575 struct ext4_super_block *es = sbi->s_es;
5576 ext4_fsblk_t overhead = 0, resv_blocks;
5579 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5581 if (!test_opt(sb, MINIX_DF))
5582 overhead = sbi->s_overhead;
5584 buf->f_type = EXT4_SUPER_MAGIC;
5585 buf->f_bsize = sb->s_blocksize;
5586 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5587 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5588 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5589 /* prevent underflow in case that few free space is available */
5590 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5591 buf->f_bavail = buf->f_bfree -
5592 (ext4_r_blocks_count(es) + resv_blocks);
5593 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5595 buf->f_files = le32_to_cpu(es->s_inodes_count);
5596 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5597 buf->f_namelen = EXT4_NAME_LEN;
5598 fsid = le64_to_cpup((void *)es->s_uuid) ^
5599 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5600 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5601 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5604 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5605 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5606 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5615 * Helper functions so that transaction is started before we acquire dqio_sem
5616 * to keep correct lock ordering of transaction > dqio_sem
5618 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5620 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5623 static int ext4_write_dquot(struct dquot *dquot)
5627 struct inode *inode;
5629 inode = dquot_to_inode(dquot);
5630 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5631 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5633 return PTR_ERR(handle);
5634 ret = dquot_commit(dquot);
5635 err = ext4_journal_stop(handle);
5641 static int ext4_acquire_dquot(struct dquot *dquot)
5646 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5647 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5649 return PTR_ERR(handle);
5650 ret = dquot_acquire(dquot);
5651 err = ext4_journal_stop(handle);
5657 static int ext4_release_dquot(struct dquot *dquot)
5662 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5663 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5664 if (IS_ERR(handle)) {
5665 /* Release dquot anyway to avoid endless cycle in dqput() */
5666 dquot_release(dquot);
5667 return PTR_ERR(handle);
5669 ret = dquot_release(dquot);
5670 err = ext4_journal_stop(handle);
5676 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5678 struct super_block *sb = dquot->dq_sb;
5679 struct ext4_sb_info *sbi = EXT4_SB(sb);
5681 /* Are we journaling quotas? */
5682 if (ext4_has_feature_quota(sb) ||
5683 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5684 dquot_mark_dquot_dirty(dquot);
5685 return ext4_write_dquot(dquot);
5687 return dquot_mark_dquot_dirty(dquot);
5691 static int ext4_write_info(struct super_block *sb, int type)
5696 /* Data block + inode block */
5697 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5699 return PTR_ERR(handle);
5700 ret = dquot_commit_info(sb, type);
5701 err = ext4_journal_stop(handle);
5708 * Turn on quotas during mount time - we need to find
5709 * the quota file and such...
5711 static int ext4_quota_on_mount(struct super_block *sb, int type)
5713 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5714 EXT4_SB(sb)->s_jquota_fmt, type);
5717 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5719 struct ext4_inode_info *ei = EXT4_I(inode);
5721 /* The first argument of lockdep_set_subclass has to be
5722 * *exactly* the same as the argument to init_rwsem() --- in
5723 * this case, in init_once() --- or lockdep gets unhappy
5724 * because the name of the lock is set using the
5725 * stringification of the argument to init_rwsem().
5727 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5728 lockdep_set_subclass(&ei->i_data_sem, subclass);
5732 * Standard function to be called on quota_on
5734 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5735 const struct path *path)
5739 if (!test_opt(sb, QUOTA))
5742 /* Quotafile not on the same filesystem? */
5743 if (path->dentry->d_sb != sb)
5745 /* Journaling quota? */
5746 if (EXT4_SB(sb)->s_qf_names[type]) {
5747 /* Quotafile not in fs root? */
5748 if (path->dentry->d_parent != sb->s_root)
5749 ext4_msg(sb, KERN_WARNING,
5750 "Quota file not on filesystem root. "
5751 "Journaled quota will not work");
5752 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5755 * Clear the flag just in case mount options changed since
5758 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5762 * When we journal data on quota file, we have to flush journal to see
5763 * all updates to the file when we bypass pagecache...
5765 if (EXT4_SB(sb)->s_journal &&
5766 ext4_should_journal_data(d_inode(path->dentry))) {
5768 * We don't need to lock updates but journal_flush() could
5769 * otherwise be livelocked...
5771 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5772 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5773 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5778 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5779 err = dquot_quota_on(sb, type, format_id, path);
5781 lockdep_set_quota_inode(path->dentry->d_inode,
5784 struct inode *inode = d_inode(path->dentry);
5788 * Set inode flags to prevent userspace from messing with quota
5789 * files. If this fails, we return success anyway since quotas
5790 * are already enabled and this is not a hard failure.
5793 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5796 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5797 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5798 S_NOATIME | S_IMMUTABLE);
5799 ext4_mark_inode_dirty(handle, inode);
5800 ext4_journal_stop(handle);
5802 inode_unlock(inode);
5807 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5811 struct inode *qf_inode;
5812 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5813 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5814 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5815 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5818 BUG_ON(!ext4_has_feature_quota(sb));
5820 if (!qf_inums[type])
5823 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5824 if (IS_ERR(qf_inode)) {
5825 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5826 return PTR_ERR(qf_inode);
5829 /* Don't account quota for quota files to avoid recursion */
5830 qf_inode->i_flags |= S_NOQUOTA;
5831 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5832 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
5834 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5840 /* Enable usage tracking for all quota types. */
5841 static int ext4_enable_quotas(struct super_block *sb)
5844 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5845 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5846 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5847 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5849 bool quota_mopt[EXT4_MAXQUOTAS] = {
5850 test_opt(sb, USRQUOTA),
5851 test_opt(sb, GRPQUOTA),
5852 test_opt(sb, PRJQUOTA),
5855 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5856 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5857 if (qf_inums[type]) {
5858 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5859 DQUOT_USAGE_ENABLED |
5860 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5863 "Failed to enable quota tracking "
5864 "(type=%d, err=%d). Please run "
5865 "e2fsck to fix.", type, err);
5866 for (type--; type >= 0; type--)
5867 dquot_quota_off(sb, type);
5876 static int ext4_quota_off(struct super_block *sb, int type)
5878 struct inode *inode = sb_dqopt(sb)->files[type];
5882 /* Force all delayed allocation blocks to be allocated.
5883 * Caller already holds s_umount sem */
5884 if (test_opt(sb, DELALLOC))
5885 sync_filesystem(sb);
5887 if (!inode || !igrab(inode))
5890 err = dquot_quota_off(sb, type);
5891 if (err || ext4_has_feature_quota(sb))
5896 * Update modification times of quota files when userspace can
5897 * start looking at them. If we fail, we return success anyway since
5898 * this is not a hard failure and quotas are already disabled.
5900 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5903 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5904 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5905 inode->i_mtime = inode->i_ctime = current_time(inode);
5906 ext4_mark_inode_dirty(handle, inode);
5907 ext4_journal_stop(handle);
5909 inode_unlock(inode);
5911 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5915 return dquot_quota_off(sb, type);
5918 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5919 * acquiring the locks... As quota files are never truncated and quota code
5920 * itself serializes the operations (and no one else should touch the files)
5921 * we don't have to be afraid of races */
5922 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5923 size_t len, loff_t off)
5925 struct inode *inode = sb_dqopt(sb)->files[type];
5926 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5927 int offset = off & (sb->s_blocksize - 1);
5930 struct buffer_head *bh;
5931 loff_t i_size = i_size_read(inode);
5935 if (off+len > i_size)
5938 while (toread > 0) {
5939 tocopy = sb->s_blocksize - offset < toread ?
5940 sb->s_blocksize - offset : toread;
5941 bh = ext4_bread(NULL, inode, blk, 0);
5944 if (!bh) /* A hole? */
5945 memset(data, 0, tocopy);
5947 memcpy(data, bh->b_data+offset, tocopy);
5957 /* Write to quotafile (we know the transaction is already started and has
5958 * enough credits) */
5959 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5960 const char *data, size_t len, loff_t off)
5962 struct inode *inode = sb_dqopt(sb)->files[type];
5963 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5964 int err, offset = off & (sb->s_blocksize - 1);
5966 struct buffer_head *bh;
5967 handle_t *handle = journal_current_handle();
5969 if (EXT4_SB(sb)->s_journal && !handle) {
5970 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5971 " cancelled because transaction is not started",
5972 (unsigned long long)off, (unsigned long long)len);
5976 * Since we account only one data block in transaction credits,
5977 * then it is impossible to cross a block boundary.
5979 if (sb->s_blocksize - offset < len) {
5980 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5981 " cancelled because not block aligned",
5982 (unsigned long long)off, (unsigned long long)len);
5987 bh = ext4_bread(handle, inode, blk,
5988 EXT4_GET_BLOCKS_CREATE |
5989 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5990 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5991 ext4_should_retry_alloc(inode->i_sb, &retries));
5996 BUFFER_TRACE(bh, "get write access");
5997 err = ext4_journal_get_write_access(handle, bh);
6003 memcpy(bh->b_data+offset, data, len);
6004 flush_dcache_page(bh->b_page);
6006 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6009 if (inode->i_size < off + len) {
6010 i_size_write(inode, off + len);
6011 EXT4_I(inode)->i_disksize = inode->i_size;
6012 ext4_mark_inode_dirty(handle, inode);
6018 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6019 const char *dev_name, void *data)
6021 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6024 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6025 static inline void register_as_ext2(void)
6027 int err = register_filesystem(&ext2_fs_type);
6030 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6033 static inline void unregister_as_ext2(void)
6035 unregister_filesystem(&ext2_fs_type);
6038 static inline int ext2_feature_set_ok(struct super_block *sb)
6040 if (ext4_has_unknown_ext2_incompat_features(sb))
6044 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6049 static inline void register_as_ext2(void) { }
6050 static inline void unregister_as_ext2(void) { }
6051 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6054 static inline void register_as_ext3(void)
6056 int err = register_filesystem(&ext3_fs_type);
6059 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6062 static inline void unregister_as_ext3(void)
6064 unregister_filesystem(&ext3_fs_type);
6067 static inline int ext3_feature_set_ok(struct super_block *sb)
6069 if (ext4_has_unknown_ext3_incompat_features(sb))
6071 if (!ext4_has_feature_journal(sb))
6075 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6080 static struct file_system_type ext4_fs_type = {
6081 .owner = THIS_MODULE,
6083 .mount = ext4_mount,
6084 .kill_sb = kill_block_super,
6085 .fs_flags = FS_REQUIRES_DEV,
6087 MODULE_ALIAS_FS("ext4");
6089 /* Shared across all ext4 file systems */
6090 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6092 static int __init ext4_init_fs(void)
6096 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6097 ext4_li_info = NULL;
6098 mutex_init(&ext4_li_mtx);
6100 /* Build-time check for flags consistency */
6101 ext4_check_flag_values();
6103 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6104 init_waitqueue_head(&ext4__ioend_wq[i]);
6106 err = ext4_init_es();
6110 err = ext4_init_pending();
6114 err = ext4_init_post_read_processing();
6118 err = ext4_init_pageio();
6122 err = ext4_init_system_zone();
6126 err = ext4_init_sysfs();
6130 err = ext4_init_mballoc();
6133 err = init_inodecache();
6138 err = register_filesystem(&ext4_fs_type);
6144 unregister_as_ext2();
6145 unregister_as_ext3();
6146 destroy_inodecache();
6148 ext4_exit_mballoc();
6152 ext4_exit_system_zone();
6156 ext4_exit_post_read_processing();
6158 ext4_exit_pending();
6165 static void __exit ext4_exit_fs(void)
6167 ext4_destroy_lazyinit_thread();
6168 unregister_as_ext2();
6169 unregister_as_ext3();
6170 unregister_filesystem(&ext4_fs_type);
6171 destroy_inodecache();
6172 ext4_exit_mballoc();
6174 ext4_exit_system_zone();
6176 ext4_exit_post_read_processing();
6178 ext4_exit_pending();
6181 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6182 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6183 MODULE_LICENSE("GPL");
6184 MODULE_SOFTDEP("pre: crc32c");
6185 module_init(ext4_init_fs)
6186 module_exit(ext4_exit_fs)