1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/ialloc.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * BSD ufs-inspired inode and directory allocation by
12 * Big-endian to little-endian byte-swapping/bitmaps by
16 #include <linux/time.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
27 #include <asm/byteorder.h>
30 #include "ext4_jbd2.h"
34 #include <trace/events/ext4.h>
37 * ialloc.c contains the inodes allocation and deallocation routines
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
59 if (start_bit >= end_bit)
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
85 struct ext4_group_info *grp;
87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
90 grp = ext4_get_group_info(sb, block_group);
92 if (buffer_verified(bh))
94 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
97 ext4_lock_group(sb, block_group);
98 if (buffer_verified(bh))
100 blk = ext4_inode_bitmap(sb, desc);
101 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
102 EXT4_INODES_PER_GROUP(sb) / 8) ||
103 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
104 ext4_unlock_group(sb, block_group);
105 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
106 "inode_bitmap = %llu", block_group, blk);
107 ext4_mark_group_bitmap_corrupted(sb, block_group,
108 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
111 set_buffer_verified(bh);
113 ext4_unlock_group(sb, block_group);
118 * Read the inode allocation bitmap for a given block_group, reading
119 * into the specified slot in the superblock's bitmap cache.
121 * Return buffer_head of bitmap on success, or an ERR_PTR on error.
123 static struct buffer_head *
124 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
126 struct ext4_group_desc *desc;
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 struct buffer_head *bh = NULL;
129 ext4_fsblk_t bitmap_blk;
132 desc = ext4_get_group_desc(sb, block_group, NULL);
134 return ERR_PTR(-EFSCORRUPTED);
136 bitmap_blk = ext4_inode_bitmap(sb, desc);
137 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
138 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
139 ext4_error(sb, "Invalid inode bitmap blk %llu in "
140 "block_group %u", bitmap_blk, block_group);
141 ext4_mark_group_bitmap_corrupted(sb, block_group,
142 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
143 return ERR_PTR(-EFSCORRUPTED);
145 bh = sb_getblk(sb, bitmap_blk);
147 ext4_warning(sb, "Cannot read inode bitmap - "
148 "block_group = %u, inode_bitmap = %llu",
149 block_group, bitmap_blk);
150 return ERR_PTR(-ENOMEM);
152 if (bitmap_uptodate(bh))
156 if (bitmap_uptodate(bh)) {
161 ext4_lock_group(sb, block_group);
162 if (ext4_has_group_desc_csum(sb) &&
163 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
164 if (block_group == 0) {
165 ext4_unlock_group(sb, block_group);
167 ext4_error(sb, "Inode bitmap for bg 0 marked "
172 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
173 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
174 sb->s_blocksize * 8, bh->b_data);
175 set_bitmap_uptodate(bh);
176 set_buffer_uptodate(bh);
177 set_buffer_verified(bh);
178 ext4_unlock_group(sb, block_group);
182 ext4_unlock_group(sb, block_group);
184 if (buffer_uptodate(bh)) {
186 * if not uninit if bh is uptodate,
187 * bitmap is also uptodate
189 set_bitmap_uptodate(bh);
194 * submit the buffer_head for reading
196 trace_ext4_load_inode_bitmap(sb, block_group);
197 ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read);
198 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
199 if (!buffer_uptodate(bh)) {
201 ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
202 "block_group = %u, inode_bitmap = %llu",
203 block_group, bitmap_blk);
204 ext4_mark_group_bitmap_corrupted(sb, block_group,
205 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
206 return ERR_PTR(-EIO);
210 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
220 * NOTE! When we get the inode, we're the only people
221 * that have access to it, and as such there are no
222 * race conditions we have to worry about. The inode
223 * is not on the hash-lists, and it cannot be reached
224 * through the filesystem because the directory entry
225 * has been deleted earlier.
227 * HOWEVER: we must make sure that we get no aliases,
228 * which means that we have to call "clear_inode()"
229 * _before_ we mark the inode not in use in the inode
230 * bitmaps. Otherwise a newly created file might use
231 * the same inode number (not actually the same pointer
232 * though), and then we'd have two inodes sharing the
233 * same inode number and space on the harddisk.
235 void ext4_free_inode(handle_t *handle, struct inode *inode)
237 struct super_block *sb = inode->i_sb;
240 struct buffer_head *bitmap_bh = NULL;
241 struct buffer_head *bh2;
242 ext4_group_t block_group;
244 struct ext4_group_desc *gdp;
245 struct ext4_super_block *es;
246 struct ext4_sb_info *sbi;
247 int fatal = 0, err, count, cleared;
248 struct ext4_group_info *grp;
251 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
252 "nonexistent device\n", __func__, __LINE__);
255 if (atomic_read(&inode->i_count) > 1) {
256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
257 __func__, __LINE__, inode->i_ino,
258 atomic_read(&inode->i_count));
261 if (inode->i_nlink) {
262 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
263 __func__, __LINE__, inode->i_ino, inode->i_nlink);
269 ext4_debug("freeing inode %lu\n", ino);
270 trace_ext4_free_inode(inode);
272 dquot_initialize(inode);
273 dquot_free_inode(inode);
275 is_directory = S_ISDIR(inode->i_mode);
277 /* Do this BEFORE marking the inode not in use or returning an error */
278 ext4_clear_inode(inode);
281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
282 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
288 /* Don't bother if the inode bitmap is corrupt. */
289 if (IS_ERR(bitmap_bh)) {
290 fatal = PTR_ERR(bitmap_bh);
294 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
295 grp = ext4_get_group_info(sb, block_group);
296 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
297 fatal = -EFSCORRUPTED;
302 BUFFER_TRACE(bitmap_bh, "get_write_access");
303 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
308 gdp = ext4_get_group_desc(sb, block_group, &bh2);
310 BUFFER_TRACE(bh2, "get_write_access");
311 fatal = ext4_journal_get_write_access(handle, bh2);
313 ext4_lock_group(sb, block_group);
314 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
315 if (fatal || !cleared) {
316 ext4_unlock_group(sb, block_group);
320 count = ext4_free_inodes_count(sb, gdp) + 1;
321 ext4_free_inodes_set(sb, gdp, count);
323 count = ext4_used_dirs_count(sb, gdp) - 1;
324 ext4_used_dirs_set(sb, gdp, count);
325 if (percpu_counter_initialized(&sbi->s_dirs_counter))
326 percpu_counter_dec(&sbi->s_dirs_counter);
328 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
329 EXT4_INODES_PER_GROUP(sb) / 8);
330 ext4_group_desc_csum_set(sb, block_group, gdp);
331 ext4_unlock_group(sb, block_group);
333 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
334 percpu_counter_inc(&sbi->s_freeinodes_counter);
335 if (sbi->s_log_groups_per_flex) {
336 struct flex_groups *fg;
338 fg = sbi_array_rcu_deref(sbi, s_flex_groups,
339 ext4_flex_group(sbi, block_group));
340 atomic_inc(&fg->free_inodes);
342 atomic_dec(&fg->used_dirs);
344 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
345 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
348 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
349 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
353 ext4_error(sb, "bit already cleared for inode %lu", ino);
354 ext4_mark_group_bitmap_corrupted(sb, block_group,
355 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
360 ext4_std_error(sb, fatal);
370 * Helper function for Orlov's allocator; returns critical information
371 * for a particular block group or flex_bg. If flex_size is 1, then g
372 * is a block group number; otherwise it is flex_bg number.
374 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
375 int flex_size, struct orlov_stats *stats)
377 struct ext4_group_desc *desc;
380 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
382 stats->free_inodes = atomic_read(&fg->free_inodes);
383 stats->free_clusters = atomic64_read(&fg->free_clusters);
384 stats->used_dirs = atomic_read(&fg->used_dirs);
388 desc = ext4_get_group_desc(sb, g, NULL);
390 stats->free_inodes = ext4_free_inodes_count(sb, desc);
391 stats->free_clusters = ext4_free_group_clusters(sb, desc);
392 stats->used_dirs = ext4_used_dirs_count(sb, desc);
394 stats->free_inodes = 0;
395 stats->free_clusters = 0;
396 stats->used_dirs = 0;
401 * Orlov's allocator for directories.
403 * We always try to spread first-level directories.
405 * If there are blockgroups with both free inodes and free clusters counts
406 * not worse than average we return one with smallest directory count.
407 * Otherwise we simply return a random group.
409 * For the rest rules look so:
411 * It's OK to put directory into a group unless
412 * it has too many directories already (max_dirs) or
413 * it has too few free inodes left (min_inodes) or
414 * it has too few free clusters left (min_clusters) or
415 * Parent's group is preferred, if it doesn't satisfy these
416 * conditions we search cyclically through the rest. If none
417 * of the groups look good we just look for a group with more
418 * free inodes than average (starting at parent's group).
421 static int find_group_orlov(struct super_block *sb, struct inode *parent,
422 ext4_group_t *group, umode_t mode,
423 const struct qstr *qstr)
425 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
426 struct ext4_sb_info *sbi = EXT4_SB(sb);
427 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
428 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
429 unsigned int freei, avefreei, grp_free;
430 ext4_fsblk_t freec, avefreec;
432 int max_dirs, min_inodes;
433 ext4_grpblk_t min_clusters;
434 ext4_group_t i, grp, g, ngroups;
435 struct ext4_group_desc *desc;
436 struct orlov_stats stats;
437 int flex_size = ext4_flex_bg_size(sbi);
438 struct dx_hash_info hinfo;
440 ngroups = real_ngroups;
442 ngroups = (real_ngroups + flex_size - 1) >>
443 sbi->s_log_groups_per_flex;
444 parent_group >>= sbi->s_log_groups_per_flex;
447 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
448 avefreei = freei / ngroups;
449 freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter);
451 do_div(avefreec, ngroups);
452 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
455 ((parent == d_inode(sb->s_root)) ||
456 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
457 int best_ndir = inodes_per_group;
461 hinfo.hash_version = DX_HASH_HALF_MD4;
462 hinfo.seed = sbi->s_hash_seed;
463 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
467 parent_group = (unsigned)grp % ngroups;
468 for (i = 0; i < ngroups; i++) {
469 g = (parent_group + i) % ngroups;
470 get_orlov_stats(sb, g, flex_size, &stats);
471 if (!stats.free_inodes)
473 if (stats.used_dirs >= best_ndir)
475 if (stats.free_inodes < avefreei)
477 if (stats.free_clusters < avefreec)
481 best_ndir = stats.used_dirs;
486 if (flex_size == 1) {
492 * We pack inodes at the beginning of the flexgroup's
493 * inode tables. Block allocation decisions will do
494 * something similar, although regular files will
495 * start at 2nd block group of the flexgroup. See
496 * ext4_ext_find_goal() and ext4_find_near().
499 for (i = 0; i < flex_size; i++) {
500 if (grp+i >= real_ngroups)
502 desc = ext4_get_group_desc(sb, grp+i, NULL);
503 if (desc && ext4_free_inodes_count(sb, desc)) {
511 max_dirs = ndirs / ngroups + inodes_per_group / 16;
512 min_inodes = avefreei - inodes_per_group*flex_size / 4;
515 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
518 * Start looking in the flex group where we last allocated an
519 * inode for this parent directory
521 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
522 parent_group = EXT4_I(parent)->i_last_alloc_group;
524 parent_group >>= sbi->s_log_groups_per_flex;
527 for (i = 0; i < ngroups; i++) {
528 grp = (parent_group + i) % ngroups;
529 get_orlov_stats(sb, grp, flex_size, &stats);
530 if (stats.used_dirs >= max_dirs)
532 if (stats.free_inodes < min_inodes)
534 if (stats.free_clusters < min_clusters)
540 ngroups = real_ngroups;
541 avefreei = freei / ngroups;
543 parent_group = EXT4_I(parent)->i_block_group;
544 for (i = 0; i < ngroups; i++) {
545 grp = (parent_group + i) % ngroups;
546 desc = ext4_get_group_desc(sb, grp, NULL);
548 grp_free = ext4_free_inodes_count(sb, desc);
549 if (grp_free && grp_free >= avefreei) {
558 * The free-inodes counter is approximate, and for really small
559 * filesystems the above test can fail to find any blockgroups
568 static int find_group_other(struct super_block *sb, struct inode *parent,
569 ext4_group_t *group, umode_t mode)
571 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
572 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
573 struct ext4_group_desc *desc;
574 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
577 * Try to place the inode is the same flex group as its
578 * parent. If we can't find space, use the Orlov algorithm to
579 * find another flex group, and store that information in the
580 * parent directory's inode information so that use that flex
581 * group for future allocations.
587 parent_group &= ~(flex_size-1);
588 last = parent_group + flex_size;
591 for (i = parent_group; i < last; i++) {
592 desc = ext4_get_group_desc(sb, i, NULL);
593 if (desc && ext4_free_inodes_count(sb, desc)) {
598 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
600 parent_group = EXT4_I(parent)->i_last_alloc_group;
604 * If this didn't work, use the Orlov search algorithm
605 * to find a new flex group; we pass in the mode to
606 * avoid the topdir algorithms.
608 *group = parent_group + flex_size;
609 if (*group > ngroups)
611 return find_group_orlov(sb, parent, group, mode, NULL);
615 * Try to place the inode in its parent directory
617 *group = parent_group;
618 desc = ext4_get_group_desc(sb, *group, NULL);
619 if (desc && ext4_free_inodes_count(sb, desc) &&
620 ext4_free_group_clusters(sb, desc))
624 * We're going to place this inode in a different blockgroup from its
625 * parent. We want to cause files in a common directory to all land in
626 * the same blockgroup. But we want files which are in a different
627 * directory which shares a blockgroup with our parent to land in a
628 * different blockgroup.
630 * So add our directory's i_ino into the starting point for the hash.
632 *group = (*group + parent->i_ino) % ngroups;
635 * Use a quadratic hash to find a group with a free inode and some free
638 for (i = 1; i < ngroups; i <<= 1) {
640 if (*group >= ngroups)
642 desc = ext4_get_group_desc(sb, *group, NULL);
643 if (desc && ext4_free_inodes_count(sb, desc) &&
644 ext4_free_group_clusters(sb, desc))
649 * That failed: try linear search for a free inode, even if that group
650 * has no free blocks.
652 *group = parent_group;
653 for (i = 0; i < ngroups; i++) {
654 if (++*group >= ngroups)
656 desc = ext4_get_group_desc(sb, *group, NULL);
657 if (desc && ext4_free_inodes_count(sb, desc))
665 * In no journal mode, if an inode has recently been deleted, we want
666 * to avoid reusing it until we're reasonably sure the inode table
667 * block has been written back to disk. (Yes, these values are
668 * somewhat arbitrary...)
670 #define RECENTCY_MIN 60
671 #define RECENTCY_DIRTY 300
673 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
675 struct ext4_group_desc *gdp;
676 struct ext4_inode *raw_inode;
677 struct buffer_head *bh;
678 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
680 int recentcy = RECENTCY_MIN;
683 gdp = ext4_get_group_desc(sb, group, NULL);
687 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
688 (ino / inodes_per_block));
689 if (!bh || !buffer_uptodate(bh))
691 * If the block is not in the buffer cache, then it
692 * must have been written out.
696 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
697 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
699 /* i_dtime is only 32 bits on disk, but we only care about relative
700 * times in the range of a few minutes (i.e. long enough to sync a
701 * recently-deleted inode to disk), so using the low 32 bits of the
702 * clock (a 68 year range) is enough, see time_before32() */
703 dtime = le32_to_cpu(raw_inode->i_dtime);
704 now = ktime_get_real_seconds();
705 if (buffer_dirty(bh))
706 recentcy += RECENTCY_DIRTY;
708 if (dtime && time_before32(dtime, now) &&
709 time_before32(now, dtime + recentcy))
716 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
717 struct buffer_head *bitmap, unsigned long *ino)
719 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
720 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
723 *ino = ext4_find_next_zero_bit((unsigned long *)
725 EXT4_INODES_PER_GROUP(sb), *ino);
726 if (*ino >= EXT4_INODES_PER_GROUP(sb))
729 if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
730 recently_deleted_ino = *ino;
732 if (*ino < EXT4_INODES_PER_GROUP(sb))
738 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
741 * Not reusing recently deleted inodes is mostly a preference. We don't
742 * want to report ENOSPC or skew allocation patterns because of that.
743 * So return even recently deleted inode if we could find better in the
746 *ino = recently_deleted_ino;
750 int ext4_mark_inode_used(struct super_block *sb, int ino)
752 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
753 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL;
754 struct ext4_group_desc *gdp;
757 int err = -EFSCORRUPTED;
759 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
762 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
763 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
764 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
765 if (IS_ERR(inode_bitmap_bh))
766 return PTR_ERR(inode_bitmap_bh);
768 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) {
773 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
774 if (!gdp || !group_desc_bh) {
779 ext4_set_bit(bit, inode_bitmap_bh->b_data);
781 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
782 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh);
784 ext4_std_error(sb, err);
787 err = sync_dirty_buffer(inode_bitmap_bh);
789 ext4_std_error(sb, err);
793 /* We may have to initialize the block bitmap if it isn't already */
794 if (ext4_has_group_desc_csum(sb) &&
795 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
796 struct buffer_head *block_bitmap_bh;
798 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
799 if (IS_ERR(block_bitmap_bh)) {
800 err = PTR_ERR(block_bitmap_bh);
804 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
805 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh);
806 sync_dirty_buffer(block_bitmap_bh);
808 /* recheck and clear flag under lock if we still need to */
809 ext4_lock_group(sb, group);
810 if (ext4_has_group_desc_csum(sb) &&
811 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
812 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
813 ext4_free_group_clusters_set(sb, gdp,
814 ext4_free_clusters_after_init(sb, group, gdp));
815 ext4_block_bitmap_csum_set(sb, group, gdp,
817 ext4_group_desc_csum_set(sb, group, gdp);
819 ext4_unlock_group(sb, group);
820 brelse(block_bitmap_bh);
823 ext4_std_error(sb, err);
828 /* Update the relevant bg descriptor fields */
829 if (ext4_has_group_desc_csum(sb)) {
832 ext4_lock_group(sb, group); /* while we modify the bg desc */
833 free = EXT4_INODES_PER_GROUP(sb) -
834 ext4_itable_unused_count(sb, gdp);
835 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
836 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
841 * Check the relative inode number against the last used
842 * relative inode number in this group. if it is greater
843 * we need to update the bg_itable_unused count
846 ext4_itable_unused_set(sb, gdp,
847 (EXT4_INODES_PER_GROUP(sb) - bit - 1));
849 ext4_lock_group(sb, group);
852 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
853 if (ext4_has_group_desc_csum(sb)) {
854 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
855 EXT4_INODES_PER_GROUP(sb) / 8);
856 ext4_group_desc_csum_set(sb, group, gdp);
859 ext4_unlock_group(sb, group);
860 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh);
861 sync_dirty_buffer(group_desc_bh);
866 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode,
869 struct super_block *sb = dir->i_sb;
871 #ifdef CONFIG_EXT4_FS_POSIX_ACL
872 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
877 int acl_size = p->a_count * sizeof(ext4_acl_entry);
879 nblocks += (S_ISDIR(mode) ? 2 : 1) *
880 __ext4_xattr_set_credits(sb, NULL /* inode */,
881 NULL /* block_bh */, acl_size,
882 true /* is_create */);
883 posix_acl_release(p);
887 #ifdef CONFIG_SECURITY
889 int num_security_xattrs = 1;
891 #ifdef CONFIG_INTEGRITY
892 num_security_xattrs++;
895 * We assume that security xattrs are never more than 1k.
896 * In practice they are under 128 bytes.
898 nblocks += num_security_xattrs *
899 __ext4_xattr_set_credits(sb, NULL /* inode */,
900 NULL /* block_bh */, 1024,
901 true /* is_create */);
905 nblocks += __ext4_xattr_set_credits(sb,
908 FSCRYPT_SET_CONTEXT_MAX_SIZE,
909 true /* is_create */);
914 * There are two policies for allocating an inode. If the new inode is
915 * a directory, then a forward search is made for a block group with both
916 * free space and a low directory-to-inode ratio; if that fails, then of
917 * the groups with above-average free space, that group with the fewest
918 * directories already is chosen.
920 * For other inodes, search forward from the parent directory's block
921 * group to find a free inode.
923 struct inode *__ext4_new_inode(struct user_namespace *mnt_userns,
924 handle_t *handle, struct inode *dir,
925 umode_t mode, const struct qstr *qstr,
926 __u32 goal, uid_t *owner, __u32 i_flags,
927 int handle_type, unsigned int line_no,
930 struct super_block *sb;
931 struct buffer_head *inode_bitmap_bh = NULL;
932 struct buffer_head *group_desc_bh;
933 ext4_group_t ngroups, group = 0;
934 unsigned long ino = 0;
936 struct ext4_group_desc *gdp = NULL;
937 struct ext4_inode_info *ei;
938 struct ext4_sb_info *sbi;
942 ext4_group_t flex_group;
943 struct ext4_group_info *grp = NULL;
944 bool encrypt = false;
946 /* Cannot create files in a deleted directory */
947 if (!dir || !dir->i_nlink)
948 return ERR_PTR(-EPERM);
953 if (unlikely(ext4_forced_shutdown(sbi)))
954 return ERR_PTR(-EIO);
956 ngroups = ext4_get_groups_count(sb);
957 trace_ext4_request_inode(dir, mode);
958 inode = new_inode(sb);
960 return ERR_PTR(-ENOMEM);
964 * Initialize owners and quota early so that we don't have to account
965 * for quota initialization worst case in standard inode creating
969 inode->i_mode = mode;
970 i_uid_write(inode, owner[0]);
971 i_gid_write(inode, owner[1]);
972 } else if (test_opt(sb, GRPID)) {
973 inode->i_mode = mode;
974 inode_fsuid_set(inode, mnt_userns);
975 inode->i_gid = dir->i_gid;
977 inode_init_owner(mnt_userns, inode, dir, mode);
979 if (ext4_has_feature_project(sb) &&
980 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
981 ei->i_projid = EXT4_I(dir)->i_projid;
983 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
985 if (!(i_flags & EXT4_EA_INODE_FL)) {
986 err = fscrypt_prepare_new_inode(dir, inode, &encrypt);
991 err = dquot_initialize(inode);
995 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
996 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt);
1005 goal = sbi->s_inode_goal;
1007 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
1008 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
1009 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
1015 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
1017 ret2 = find_group_other(sb, dir, &group, mode);
1020 EXT4_I(dir)->i_last_alloc_group = group;
1026 * Normally we will only go through one pass of this loop,
1027 * unless we get unlucky and it turns out the group we selected
1028 * had its last inode grabbed by someone else.
1030 for (i = 0; i < ngroups; i++, ino = 0) {
1033 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1038 * Check free inodes count before loading bitmap.
1040 if (ext4_free_inodes_count(sb, gdp) == 0)
1043 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1044 grp = ext4_get_group_info(sb, group);
1046 * Skip groups with already-known suspicious inode
1049 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
1053 brelse(inode_bitmap_bh);
1054 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
1055 /* Skip groups with suspicious inode tables */
1056 if (((!(sbi->s_mount_state & EXT4_FC_REPLAY))
1057 && EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) ||
1058 IS_ERR(inode_bitmap_bh)) {
1059 inode_bitmap_bh = NULL;
1063 repeat_in_this_group:
1064 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
1068 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
1069 ext4_error(sb, "reserved inode found cleared - "
1070 "inode=%lu", ino + 1);
1071 ext4_mark_group_bitmap_corrupted(sb, group,
1072 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1076 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) {
1077 BUG_ON(nblocks <= 0);
1078 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
1079 handle_type, nblocks, 0,
1080 ext4_trans_default_revoke_credits(sb));
1081 if (IS_ERR(handle)) {
1082 err = PTR_ERR(handle);
1083 ext4_std_error(sb, err);
1087 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
1088 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
1090 ext4_std_error(sb, err);
1093 ext4_lock_group(sb, group);
1094 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
1096 /* Someone already took the bit. Repeat the search
1099 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
1101 ext4_set_bit(ino, inode_bitmap_bh->b_data);
1104 ret2 = 1; /* we didn't grab the inode */
1107 ext4_unlock_group(sb, group);
1108 ino++; /* the inode bitmap is zero-based */
1110 goto got; /* we grabbed the inode! */
1112 if (ino < EXT4_INODES_PER_GROUP(sb))
1113 goto repeat_in_this_group;
1115 if (++group == ngroups)
1122 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
1123 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
1125 ext4_std_error(sb, err);
1129 BUFFER_TRACE(group_desc_bh, "get_write_access");
1130 err = ext4_journal_get_write_access(handle, group_desc_bh);
1132 ext4_std_error(sb, err);
1136 /* We may have to initialize the block bitmap if it isn't already */
1137 if (ext4_has_group_desc_csum(sb) &&
1138 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1139 struct buffer_head *block_bitmap_bh;
1141 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1142 if (IS_ERR(block_bitmap_bh)) {
1143 err = PTR_ERR(block_bitmap_bh);
1146 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1147 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1149 brelse(block_bitmap_bh);
1150 ext4_std_error(sb, err);
1154 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1155 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1157 /* recheck and clear flag under lock if we still need to */
1158 ext4_lock_group(sb, group);
1159 if (ext4_has_group_desc_csum(sb) &&
1160 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1161 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1162 ext4_free_group_clusters_set(sb, gdp,
1163 ext4_free_clusters_after_init(sb, group, gdp));
1164 ext4_block_bitmap_csum_set(sb, group, gdp,
1166 ext4_group_desc_csum_set(sb, group, gdp);
1168 ext4_unlock_group(sb, group);
1169 brelse(block_bitmap_bh);
1172 ext4_std_error(sb, err);
1177 /* Update the relevant bg descriptor fields */
1178 if (ext4_has_group_desc_csum(sb)) {
1180 struct ext4_group_info *grp = NULL;
1182 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1183 grp = ext4_get_group_info(sb, group);
1184 down_read(&grp->alloc_sem); /*
1189 ext4_lock_group(sb, group); /* while we modify the bg desc */
1190 free = EXT4_INODES_PER_GROUP(sb) -
1191 ext4_itable_unused_count(sb, gdp);
1192 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1193 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1197 * Check the relative inode number against the last used
1198 * relative inode number in this group. if it is greater
1199 * we need to update the bg_itable_unused count
1202 ext4_itable_unused_set(sb, gdp,
1203 (EXT4_INODES_PER_GROUP(sb) - ino));
1204 if (!(sbi->s_mount_state & EXT4_FC_REPLAY))
1205 up_read(&grp->alloc_sem);
1207 ext4_lock_group(sb, group);
1210 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1211 if (S_ISDIR(mode)) {
1212 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1213 if (sbi->s_log_groups_per_flex) {
1214 ext4_group_t f = ext4_flex_group(sbi, group);
1216 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1220 if (ext4_has_group_desc_csum(sb)) {
1221 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1222 EXT4_INODES_PER_GROUP(sb) / 8);
1223 ext4_group_desc_csum_set(sb, group, gdp);
1225 ext4_unlock_group(sb, group);
1227 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1228 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1230 ext4_std_error(sb, err);
1234 percpu_counter_dec(&sbi->s_freeinodes_counter);
1236 percpu_counter_inc(&sbi->s_dirs_counter);
1238 if (sbi->s_log_groups_per_flex) {
1239 flex_group = ext4_flex_group(sbi, group);
1240 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1241 flex_group)->free_inodes);
1244 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1245 /* This is the optimal IO size (for stat), not the fs block size */
1246 inode->i_blocks = 0;
1247 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1248 ei->i_crtime = inode->i_mtime;
1250 memset(ei->i_data, 0, sizeof(ei->i_data));
1251 ei->i_dir_start_lookup = 0;
1254 /* Don't inherit extent flag from directory, amongst others. */
1256 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1257 ei->i_flags |= i_flags;
1260 ei->i_block_group = group;
1261 ei->i_last_alloc_group = ~0;
1263 ext4_set_inode_flags(inode, true);
1264 if (IS_DIRSYNC(inode))
1265 ext4_handle_sync(handle);
1266 if (insert_inode_locked(inode) < 0) {
1268 * Likely a bitmap corruption causing inode to be allocated
1272 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1274 ext4_mark_group_bitmap_corrupted(sb, group,
1275 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1278 inode->i_generation = prandom_u32();
1280 /* Precompute checksum seed for inode metadata */
1281 if (ext4_has_metadata_csum(sb)) {
1283 __le32 inum = cpu_to_le32(inode->i_ino);
1284 __le32 gen = cpu_to_le32(inode->i_generation);
1285 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1287 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1291 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1292 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1294 ei->i_extra_isize = sbi->s_want_extra_isize;
1295 ei->i_inline_off = 0;
1296 if (ext4_has_feature_inline_data(sb) &&
1297 (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode)))
1298 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1300 err = dquot_alloc_inode(inode);
1305 * Since the encryption xattr will always be unique, create it first so
1306 * that it's less likely to end up in an external xattr block and
1307 * prevent its deduplication.
1310 err = fscrypt_set_context(inode, handle);
1312 goto fail_free_drop;
1315 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1316 err = ext4_init_acl(handle, inode, dir);
1318 goto fail_free_drop;
1320 err = ext4_init_security(handle, inode, dir, qstr);
1322 goto fail_free_drop;
1325 if (ext4_has_feature_extents(sb)) {
1326 /* set extent flag only for directory, file and normal symlink*/
1327 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1328 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1329 ext4_ext_tree_init(handle, inode);
1333 if (ext4_handle_valid(handle)) {
1334 ei->i_sync_tid = handle->h_transaction->t_tid;
1335 ei->i_datasync_tid = handle->h_transaction->t_tid;
1338 err = ext4_mark_inode_dirty(handle, inode);
1340 ext4_std_error(sb, err);
1341 goto fail_free_drop;
1344 ext4_debug("allocating inode %lu\n", inode->i_ino);
1345 trace_ext4_allocate_inode(inode, dir, mode);
1346 brelse(inode_bitmap_bh);
1350 dquot_free_inode(inode);
1353 unlock_new_inode(inode);
1356 inode->i_flags |= S_NOQUOTA;
1358 brelse(inode_bitmap_bh);
1359 return ERR_PTR(err);
1362 /* Verify that we are loading a valid orphan from disk */
1363 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1365 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1366 ext4_group_t block_group;
1368 struct buffer_head *bitmap_bh = NULL;
1369 struct inode *inode = NULL;
1370 int err = -EFSCORRUPTED;
1372 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1375 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1376 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1377 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1378 if (IS_ERR(bitmap_bh))
1379 return ERR_CAST(bitmap_bh);
1381 /* Having the inode bit set should be a 100% indicator that this
1382 * is a valid orphan (no e2fsck run on fs). Orphans also include
1383 * inodes that were being truncated, so we can't check i_nlink==0.
1385 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1388 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1389 if (IS_ERR(inode)) {
1390 err = PTR_ERR(inode);
1391 ext4_error_err(sb, -err,
1392 "couldn't read orphan inode %lu (err %d)",
1399 * If the orphans has i_nlinks > 0 then it should be able to
1400 * be truncated, otherwise it won't be removed from the orphan
1401 * list during processing and an infinite loop will result.
1402 * Similarly, it must not be a bad inode.
1404 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1405 is_bad_inode(inode))
1408 if (NEXT_ORPHAN(inode) > max_ino)
1414 ext4_error(sb, "bad orphan inode %lu", ino);
1416 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1417 bit, (unsigned long long)bitmap_bh->b_blocknr,
1418 ext4_test_bit(bit, bitmap_bh->b_data));
1420 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1421 is_bad_inode(inode));
1422 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1423 NEXT_ORPHAN(inode));
1424 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1425 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1426 /* Avoid freeing blocks if we got a bad deleted inode */
1427 if (inode->i_nlink == 0)
1428 inode->i_blocks = 0;
1432 return ERR_PTR(err);
1435 unsigned long ext4_count_free_inodes(struct super_block *sb)
1437 unsigned long desc_count;
1438 struct ext4_group_desc *gdp;
1439 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1441 struct ext4_super_block *es;
1442 unsigned long bitmap_count, x;
1443 struct buffer_head *bitmap_bh = NULL;
1445 es = EXT4_SB(sb)->s_es;
1449 for (i = 0; i < ngroups; i++) {
1450 gdp = ext4_get_group_desc(sb, i, NULL);
1453 desc_count += ext4_free_inodes_count(sb, gdp);
1455 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1456 if (IS_ERR(bitmap_bh)) {
1461 x = ext4_count_free(bitmap_bh->b_data,
1462 EXT4_INODES_PER_GROUP(sb) / 8);
1463 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1464 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1468 printk(KERN_DEBUG "ext4_count_free_inodes: "
1469 "stored = %u, computed = %lu, %lu\n",
1470 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1474 for (i = 0; i < ngroups; i++) {
1475 gdp = ext4_get_group_desc(sb, i, NULL);
1478 desc_count += ext4_free_inodes_count(sb, gdp);
1485 /* Called at mount-time, super-block is locked */
1486 unsigned long ext4_count_dirs(struct super_block * sb)
1488 unsigned long count = 0;
1489 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1491 for (i = 0; i < ngroups; i++) {
1492 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1495 count += ext4_used_dirs_count(sb, gdp);
1501 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1502 * inode table. Must be called without any spinlock held. The only place
1503 * where it is called from on active part of filesystem is ext4lazyinit
1504 * thread, so we do not need any special locks, however we have to prevent
1505 * inode allocation from the current group, so we take alloc_sem lock, to
1506 * block ext4_new_inode() until we are finished.
1508 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1511 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1512 struct ext4_sb_info *sbi = EXT4_SB(sb);
1513 struct ext4_group_desc *gdp = NULL;
1514 struct buffer_head *group_desc_bh;
1517 int num, ret = 0, used_blks = 0;
1518 unsigned long used_inos = 0;
1520 /* This should not happen, but just to be sure check this */
1521 if (sb_rdonly(sb)) {
1526 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1531 * We do not need to lock this, because we are the only one
1532 * handling this flag.
1534 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1537 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1538 if (IS_ERR(handle)) {
1539 ret = PTR_ERR(handle);
1543 down_write(&grp->alloc_sem);
1545 * If inode bitmap was already initialized there may be some
1546 * used inodes so we need to skip blocks with used inodes in
1549 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
1550 used_inos = EXT4_INODES_PER_GROUP(sb) -
1551 ext4_itable_unused_count(sb, gdp);
1552 used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block);
1554 /* Bogus inode unused count? */
1555 if (used_blks < 0 || used_blks > sbi->s_itb_per_group) {
1556 ext4_error(sb, "Something is wrong with group %u: "
1557 "used itable blocks: %d; "
1558 "itable unused count: %u",
1560 ext4_itable_unused_count(sb, gdp));
1565 used_inos += group * EXT4_INODES_PER_GROUP(sb);
1567 * Are there some uninitialized inodes in the inode table
1568 * before the first normal inode?
1570 if ((used_blks != sbi->s_itb_per_group) &&
1571 (used_inos < EXT4_FIRST_INO(sb))) {
1572 ext4_error(sb, "Something is wrong with group %u: "
1573 "itable unused count: %u; "
1574 "itables initialized count: %ld",
1575 group, ext4_itable_unused_count(sb, gdp),
1582 blk = ext4_inode_table(sb, gdp) + used_blks;
1583 num = sbi->s_itb_per_group - used_blks;
1585 BUFFER_TRACE(group_desc_bh, "get_write_access");
1586 ret = ext4_journal_get_write_access(handle,
1592 * Skip zeroout if the inode table is full. But we set the ZEROED
1593 * flag anyway, because obviously, when it is full it does not need
1596 if (unlikely(num == 0))
1599 ext4_debug("going to zero out inode table in group %d\n",
1601 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1605 blkdev_issue_flush(sb->s_bdev);
1608 ext4_lock_group(sb, group);
1609 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1610 ext4_group_desc_csum_set(sb, group, gdp);
1611 ext4_unlock_group(sb, group);
1613 BUFFER_TRACE(group_desc_bh,
1614 "call ext4_handle_dirty_metadata");
1615 ret = ext4_handle_dirty_metadata(handle, NULL,
1619 up_write(&grp->alloc_sem);
1620 ext4_journal_stop(handle);