1 // SPDX-License-Identifier: GPL-2.0
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
25 * - test ext4_ext_search_left() and ext4_ext_search_right()
26 * - search for metadata in few groups
29 * - normalization should take into account whether file is still open
30 * - discard preallocations if no free space left (policy?)
31 * - don't normalize tails
33 * - reservation for superuser
36 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
37 * - track min/max extents in each group for better group selection
38 * - mb_mark_used() may allocate chunk right after splitting buddy
39 * - tree of groups sorted by number of free blocks
44 * The allocation request involve request for multiple number of blocks
45 * near to the goal(block) value specified.
47 * During initialization phase of the allocator we decide to use the
48 * group preallocation or inode preallocation depending on the size of
49 * the file. The size of the file could be the resulting file size we
50 * would have after allocation, or the current file size, which ever
51 * is larger. If the size is less than sbi->s_mb_stream_request we
52 * select to use the group preallocation. The default value of
53 * s_mb_stream_request is 16 blocks. This can also be tuned via
54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55 * terms of number of blocks.
57 * The main motivation for having small file use group preallocation is to
58 * ensure that we have small files closer together on the disk.
60 * First stage the allocator looks at the inode prealloc list,
61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62 * spaces for this particular inode. The inode prealloc space is
65 * pa_lstart -> the logical start block for this prealloc space
66 * pa_pstart -> the physical start block for this prealloc space
67 * pa_len -> length for this prealloc space (in clusters)
68 * pa_free -> free space available in this prealloc space (in clusters)
70 * The inode preallocation space is used looking at the _logical_ start
71 * block. If only the logical file block falls within the range of prealloc
72 * space we will consume the particular prealloc space. This makes sure that
73 * we have contiguous physical blocks representing the file blocks
75 * The important thing to be noted in case of inode prealloc space is that
76 * we don't modify the values associated to inode prealloc space except
79 * If we are not able to find blocks in the inode prealloc space and if we
80 * have the group allocation flag set then we look at the locality group
81 * prealloc space. These are per CPU prealloc list represented as
83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
85 * The reason for having a per cpu locality group is to reduce the contention
86 * between CPUs. It is possible to get scheduled at this point.
88 * The locality group prealloc space is used looking at whether we have
89 * enough free space (pa_free) within the prealloc space.
91 * If we can't allocate blocks via inode prealloc or/and locality group
92 * prealloc then we look at the buddy cache. The buddy cache is represented
93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94 * mapped to the buddy and bitmap information regarding different
95 * groups. The buddy information is attached to buddy cache inode so that
96 * we can access them through the page cache. The information regarding
97 * each group is loaded via ext4_mb_load_buddy. The information involve
98 * block bitmap and buddy information. The information are stored in the
102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
105 * one block each for bitmap and buddy information. So for each group we
106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107 * blocksize) blocks. So it can have information regarding groups_per_page
108 * which is blocks_per_page/2
110 * The buddy cache inode is not stored on disk. The inode is thrown
111 * away when the filesystem is unmounted.
113 * We look for count number of blocks in the buddy cache. If we were able
114 * to locate that many free blocks we return with additional information
115 * regarding rest of the contiguous physical block available
117 * Before allocating blocks via buddy cache we normalize the request
118 * blocks. This ensure we ask for more blocks that we needed. The extra
119 * blocks that we get after allocation is added to the respective prealloc
120 * list. In case of inode preallocation we follow a list of heuristics
121 * based on file size. This can be found in ext4_mb_normalize_request. If
122 * we are doing a group prealloc we try to normalize the request to
123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
124 * dependent on the cluster size; for non-bigalloc file systems, it is
125 * 512 blocks. This can be tuned via
126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * smallest multiple of the stripe value (sbi->s_stripe) which is
130 * greater than the default mb_group_prealloc.
132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133 * structures in two data structures:
135 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
137 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
139 * This is an array of lists where the index in the array represents the
140 * largest free order in the buddy bitmap of the participating group infos of
141 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142 * number of buddy bitmap orders possible) number of lists. Group-infos are
143 * placed in appropriate lists.
145 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
147 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
149 * This is an array of lists where in the i-th list there are groups with
150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size
151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152 * Note that we don't bother with a special list for completely empty groups
153 * so we only have MB_NUM_ORDERS(sb) lists.
155 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156 * structures to decide the order in which groups are to be traversed for
157 * fulfilling an allocation request.
159 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160 * >= the order of the request. We directly look at the largest free order list
161 * in the data structure (1) above where largest_free_order = order of the
162 * request. If that list is empty, we look at remaining list in the increasing
163 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164 * lookup in O(1) time.
166 * At CR_GOAL_LEN_FAST, we only consider groups where
167 * average fragment size > request size. So, we lookup a group which has average
168 * fragment size just above or equal to request size using our average fragment
169 * size group lists (data structure 2) in O(1) time.
171 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174 * fragment size > goal length. So before falling to the slower
175 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177 * enough average fragment size. This increases the chances of finding a
178 * suitable block group in O(1) time and results in faster allocation at the
179 * cost of reduced size of allocation.
181 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183 * CR_GOAL_LEN_FAST phase.
185 * The regular allocator (using the buddy cache) supports a few tunables.
187 * /sys/fs/ext4/<partition>/mb_min_to_scan
188 * /sys/fs/ext4/<partition>/mb_max_to_scan
189 * /sys/fs/ext4/<partition>/mb_order2_req
190 * /sys/fs/ext4/<partition>/mb_linear_limit
192 * The regular allocator uses buddy scan only if the request len is power of
193 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194 * value of s_mb_order2_reqs can be tuned via
195 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
196 * stripe size (sbi->s_stripe), we try to search for contiguous block in
197 * stripe size. This should result in better allocation on RAID setups. If
198 * not, we search in the specific group using bitmap for best extents. The
199 * tunable min_to_scan and max_to_scan control the behaviour here.
200 * min_to_scan indicate how long the mballoc __must__ look for a best
201 * extent and max_to_scan indicates how long the mballoc __can__ look for a
202 * best extent in the found extents. Searching for the blocks starts with
203 * the group specified as the goal value in allocation context via
204 * ac_g_ex. Each group is first checked based on the criteria whether it
205 * can be used for allocation. ext4_mb_good_group explains how the groups are
208 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209 * get traversed linearly. That may result in subsequent allocations being not
210 * close to each other. And so, the underlying device may get filled up in a
211 * non-linear fashion. While that may not matter on non-rotational devices, for
212 * rotational devices that may result in higher seek times. "mb_linear_limit"
213 * tells mballoc how many groups mballoc should search linearly before
214 * performing consulting above data structures for more efficient lookups. For
215 * non rotational devices, this value defaults to 0 and for rotational devices
216 * this is set to MB_DEFAULT_LINEAR_LIMIT.
218 * Both the prealloc space are getting populated as above. So for the first
219 * request we will hit the buddy cache which will result in this prealloc
220 * space getting filled. The prealloc space is then later used for the
221 * subsequent request.
225 * mballoc operates on the following data:
227 * - in-core buddy (actually includes buddy and bitmap)
228 * - preallocation descriptors (PAs)
230 * there are two types of preallocations:
232 * assiged to specific inode and can be used for this inode only.
233 * it describes part of inode's space preallocated to specific
234 * physical blocks. any block from that preallocated can be used
235 * independent. the descriptor just tracks number of blocks left
236 * unused. so, before taking some block from descriptor, one must
237 * make sure corresponded logical block isn't allocated yet. this
238 * also means that freeing any block within descriptor's range
239 * must discard all preallocated blocks.
241 * assigned to specific locality group which does not translate to
242 * permanent set of inodes: inode can join and leave group. space
243 * from this type of preallocation can be used for any inode. thus
244 * it's consumed from the beginning to the end.
246 * relation between them can be expressed as:
247 * in-core buddy = on-disk bitmap + preallocation descriptors
249 * this mean blocks mballoc considers used are:
250 * - allocated blocks (persistent)
251 * - preallocated blocks (non-persistent)
253 * consistency in mballoc world means that at any time a block is either
254 * free or used in ALL structures. notice: "any time" should not be read
255 * literally -- time is discrete and delimited by locks.
257 * to keep it simple, we don't use block numbers, instead we count number of
258 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
260 * all operations can be expressed as:
261 * - init buddy: buddy = on-disk + PAs
262 * - new PA: buddy += N; PA = N
263 * - use inode PA: on-disk += N; PA -= N
264 * - discard inode PA buddy -= on-disk - PA; PA = 0
265 * - use locality group PA on-disk += N; PA -= N
266 * - discard locality group PA buddy -= PA; PA = 0
267 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268 * is used in real operation because we can't know actual used
269 * bits from PA, only from on-disk bitmap
271 * if we follow this strict logic, then all operations above should be atomic.
272 * given some of them can block, we'd have to use something like semaphores
273 * killing performance on high-end SMP hardware. let's try to relax it using
274 * the following knowledge:
275 * 1) if buddy is referenced, it's already initialized
276 * 2) while block is used in buddy and the buddy is referenced,
277 * nobody can re-allocate that block
278 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279 * bit set and PA claims same block, it's OK. IOW, one can set bit in
280 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
283 * so, now we're building a concurrency table:
286 * blocks for PA are allocated in the buddy, buddy must be referenced
287 * until PA is linked to allocation group to avoid concurrent buddy init
289 * we need to make sure that either on-disk bitmap or PA has uptodate data
290 * given (3) we care that PA-=N operation doesn't interfere with init
292 * the simplest way would be to have buddy initialized by the discard
293 * - use locality group PA
294 * again PA-=N must be serialized with init
295 * - discard locality group PA
296 * the simplest way would be to have buddy initialized by the discard
299 * i_data_sem serializes them
301 * discard process must wait until PA isn't used by another process
302 * - use locality group PA
303 * some mutex should serialize them
304 * - discard locality group PA
305 * discard process must wait until PA isn't used by another process
308 * i_data_sem or another mutex should serializes them
310 * discard process must wait until PA isn't used by another process
311 * - use locality group PA
312 * nothing wrong here -- they're different PAs covering different blocks
313 * - discard locality group PA
314 * discard process must wait until PA isn't used by another process
316 * now we're ready to make few consequences:
317 * - PA is referenced and while it is no discard is possible
318 * - PA is referenced until block isn't marked in on-disk bitmap
319 * - PA changes only after on-disk bitmap
320 * - discard must not compete with init. either init is done before
321 * any discard or they're serialized somehow
322 * - buddy init as sum of on-disk bitmap and PAs is done atomically
324 * a special case when we've used PA to emptiness. no need to modify buddy
325 * in this case, but we should care about concurrent init
330 * Logic in few words:
335 * mark bits in on-disk bitmap
338 * - use preallocation:
339 * find proper PA (per-inode or group)
341 * mark bits in on-disk bitmap
347 * mark bits in on-disk bitmap
350 * - discard preallocations in group:
352 * move them onto local list
353 * load on-disk bitmap
355 * remove PA from object (inode or locality group)
356 * mark free blocks in-core
358 * - discard inode's preallocations:
365 * - bitlock on a group (group)
366 * - object (inode/locality) (object)
368 * - cr_power2_aligned lists lock (cr_power2_aligned)
369 * - cr_goal_len_fast lists lock (cr_goal_len_fast)
379 * - release consumed pa:
384 * - generate in-core bitmap:
388 * - discard all for given object (inode, locality group):
393 * - discard all for given group:
399 * - allocation path (ext4_mb_regular_allocator)
401 * cr_power2_aligned/cr_goal_len_fast
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
407 /* We create slab caches for groupinfo data structures based on the
408 * superblock block size. There will be one per mounted filesystem for
409 * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 ext4_group_t group, enum criteria cr);
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 struct ext4_buddy *e4b, ext4_grpblk_t start,
428 ext4_grpblk_t max, ext4_grpblk_t minblocks);
431 * The algorithm using this percpu seq counter goes below:
432 * 1. We sample the percpu discard_pa_seq counter before trying for block
433 * allocation in ext4_mb_new_blocks().
434 * 2. We increment this percpu discard_pa_seq counter when we either allocate
435 * or free these blocks i.e. while marking those blocks as used/free in
436 * mb_mark_used()/mb_free_blocks().
437 * 3. We also increment this percpu seq counter when we successfully identify
438 * that the bb_prealloc_list is not empty and hence proceed for discarding
439 * of those PAs inside ext4_mb_discard_group_preallocations().
441 * Now to make sure that the regular fast path of block allocation is not
442 * affected, as a small optimization we only sample the percpu seq counter
443 * on that cpu. Only when the block allocation fails and when freed blocks
444 * found were 0, that is when we sample percpu seq counter for all cpus using
445 * below function ext4_get_discard_pa_seq_sum(). This happens after making
446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
454 for_each_possible_cpu(__cpu)
455 __seq += per_cpu(discard_pa_seq, __cpu);
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
461 #if BITS_PER_LONG == 64
462 *bit += ((unsigned long) addr & 7UL) << 3;
463 addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 *bit += ((unsigned long) addr & 3UL) << 3;
466 addr = (void *) ((unsigned long) addr & ~3UL);
468 #error "how many bits you are?!"
473 static inline int mb_test_bit(int bit, void *addr)
476 * ext4_test_bit on architecture like powerpc
477 * needs unsigned long aligned address
479 addr = mb_correct_addr_and_bit(&bit, addr);
480 return ext4_test_bit(bit, addr);
483 static inline void mb_set_bit(int bit, void *addr)
485 addr = mb_correct_addr_and_bit(&bit, addr);
486 ext4_set_bit(bit, addr);
489 static inline void mb_clear_bit(int bit, void *addr)
491 addr = mb_correct_addr_and_bit(&bit, addr);
492 ext4_clear_bit(bit, addr);
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
497 addr = mb_correct_addr_and_bit(&bit, addr);
498 return ext4_test_and_clear_bit(bit, addr);
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
503 int fix = 0, ret, tmpmax;
504 addr = mb_correct_addr_and_bit(&fix, addr);
508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
514 static inline int mb_find_next_bit(void *addr, int max, int start)
516 int fix = 0, ret, tmpmax;
517 addr = mb_correct_addr_and_bit(&fix, addr);
521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
534 if (order > e4b->bd_blkbits + 1) {
539 /* at order 0 we see each particular block */
541 *max = 1 << (e4b->bd_blkbits + 3);
542 return e4b->bd_bitmap;
545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 int first, int count)
556 struct super_block *sb = e4b->bd_sb;
558 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 for (i = 0; i < count; i++) {
562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 ext4_fsblk_t blocknr;
565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569 ext4_grp_locked_error(sb, e4b->bd_group,
570 inode ? inode->i_ino : 0,
572 "freeing block already freed "
576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
584 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 for (i = 0; i < count; i++) {
588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
595 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 unsigned char *b1, *b2;
600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 b2 = (unsigned char *) bitmap;
602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 if (b1[i] != b2[i]) {
604 ext4_msg(e4b->bd_sb, KERN_ERR,
605 "corruption in group %u "
606 "at byte %u(%u): %x in copy != %x "
608 e4b->bd_group, i, i * 8, b1[i], b2[i]);
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 struct ext4_group_info *grp, ext4_group_t group)
618 struct buffer_head *bh;
620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
624 bh = ext4_read_block_bitmap(sb, group);
625 if (IS_ERR_OR_NULL(bh)) {
626 kfree(grp->bb_bitmap);
627 grp->bb_bitmap = NULL;
631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
637 kfree(grp->bb_bitmap);
641 static inline void mb_free_blocks_double(struct inode *inode,
642 struct ext4_buddy *e4b, int first, int count)
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 int first, int count)
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 struct ext4_group_info *grp, ext4_group_t group)
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
668 #ifdef AGGRESSIVE_CHECK
670 #define MB_CHECK_ASSERT(assert) \
674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675 function, file, line, # assert); \
680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 const char *function, int line)
683 struct super_block *sb = e4b->bd_sb;
684 int order = e4b->bd_blkbits + 1;
691 struct ext4_group_info *grp;
694 struct list_head *cur;
698 if (e4b->bd_info->bb_check_counter++ % 10)
702 buddy = mb_find_buddy(e4b, order, &max);
703 MB_CHECK_ASSERT(buddy);
704 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 MB_CHECK_ASSERT(buddy2);
706 MB_CHECK_ASSERT(buddy != buddy2);
707 MB_CHECK_ASSERT(max * 2 == max2);
710 for (i = 0; i < max; i++) {
712 if (mb_test_bit(i, buddy)) {
713 /* only single bit in buddy2 may be 0 */
714 if (!mb_test_bit(i << 1, buddy2)) {
716 mb_test_bit((i<<1)+1, buddy2));
721 /* both bits in buddy2 must be 1 */
722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
725 for (j = 0; j < (1 << order); j++) {
726 k = (i * (1 << order)) + j;
728 !mb_test_bit(k, e4b->bd_bitmap));
732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
737 buddy = mb_find_buddy(e4b, 0, &max);
738 for (i = 0; i < max; i++) {
739 if (!mb_test_bit(i, buddy)) {
740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
748 /* check used bits only */
749 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 buddy2 = mb_find_buddy(e4b, j, &max2);
752 MB_CHECK_ASSERT(k < max2);
753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
759 grp = ext4_get_group_info(sb, e4b->bd_group);
762 list_for_each(cur, &grp->bb_prealloc_list) {
763 ext4_group_t groupnr;
764 struct ext4_prealloc_space *pa;
765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 for (i = 0; i < pa->pa_len; i++)
769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
774 __FILE__, __func__, __LINE__)
776 #define mb_check_buddy(e4b)
780 * Divide blocks started from @first with length @len into
781 * smaller chunks with power of 2 blocks.
782 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783 * then increase bb_counters[] for corresponded chunk size.
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 struct ext4_group_info *grp)
789 struct ext4_sb_info *sbi = EXT4_SB(sb);
795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
797 border = 2 << sb->s_blocksize_bits;
800 /* find how many blocks can be covered since this position */
801 max = ffs(first | border) - 1;
803 /* find how many blocks of power 2 we need to mark */
810 /* mark multiblock chunks only */
811 grp->bb_counters[min]++;
813 mb_clear_bit(first >> min,
814 buddy + sbi->s_mb_offsets[min]);
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
826 * We don't bother with a special lists groups with only 1 block free
827 * extents and for completely empty groups.
829 order = fls(len) - 2;
832 if (order == MB_NUM_ORDERS(sb))
834 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
835 order = MB_NUM_ORDERS(sb) - 1;
839 /* Move group to appropriate avg_fragment_size list */
841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
843 struct ext4_sb_info *sbi = EXT4_SB(sb);
846 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
849 new_order = mb_avg_fragment_size_order(sb,
850 grp->bb_free / grp->bb_fragments);
851 if (new_order == grp->bb_avg_fragment_size_order)
854 if (grp->bb_avg_fragment_size_order != -1) {
855 write_lock(&sbi->s_mb_avg_fragment_size_locks[
856 grp->bb_avg_fragment_size_order]);
857 list_del(&grp->bb_avg_fragment_size_node);
858 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
859 grp->bb_avg_fragment_size_order]);
861 grp->bb_avg_fragment_size_order = new_order;
862 write_lock(&sbi->s_mb_avg_fragment_size_locks[
863 grp->bb_avg_fragment_size_order]);
864 list_add_tail(&grp->bb_avg_fragment_size_node,
865 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
866 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
867 grp->bb_avg_fragment_size_order]);
871 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
872 * cr level needs an update.
874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
875 enum criteria *new_cr, ext4_group_t *group)
877 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
878 struct ext4_group_info *iter;
881 if (ac->ac_status == AC_STATUS_FOUND)
884 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
885 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
887 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
890 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
895 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
896 bb_largest_free_order_node) {
898 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
899 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
900 *group = iter->bb_group;
901 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
902 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
909 /* Increment cr and search again if no group is found */
910 *new_cr = CR_GOAL_LEN_FAST;
914 * Find a suitable group of given order from the average fragments list.
916 static struct ext4_group_info *
917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
920 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
921 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
922 struct ext4_group_info *grp = NULL, *iter;
923 enum criteria cr = ac->ac_criteria;
925 if (list_empty(frag_list))
927 read_lock(frag_list_lock);
928 if (list_empty(frag_list)) {
929 read_unlock(frag_list_lock);
932 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
934 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
935 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
940 read_unlock(frag_list_lock);
945 * Choose next group by traversing average fragment size list of suitable
946 * order. Updates *new_cr if cr level needs an update.
948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
949 enum criteria *new_cr, ext4_group_t *group)
951 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
952 struct ext4_group_info *grp = NULL;
955 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
957 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
960 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
961 i < MB_NUM_ORDERS(ac->ac_sb); i++) {
962 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
964 *group = grp->bb_group;
965 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
971 * CR_BEST_AVAIL_LEN works based on the concept that we have
972 * a larger normalized goal len request which can be trimmed to
973 * a smaller goal len such that it can still satisfy original
974 * request len. However, allocation request for non-regular
975 * files never gets normalized.
976 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
978 if (ac->ac_flags & EXT4_MB_HINT_DATA)
979 *new_cr = CR_BEST_AVAIL_LEN;
981 *new_cr = CR_GOAL_LEN_SLOW;
985 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
986 * order we have and proactively trim the goal request length to that order to
987 * find a suitable group faster.
989 * This optimizes allocation speed at the cost of slightly reduced
990 * preallocations. However, we make sure that we don't trim the request too
991 * much and fall to CR_GOAL_LEN_SLOW in that case.
993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
994 enum criteria *new_cr, ext4_group_t *group)
996 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
997 struct ext4_group_info *grp = NULL;
998 int i, order, min_order;
999 unsigned long num_stripe_clusters = 0;
1001 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1002 if (sbi->s_mb_stats)
1003 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1007 * mb_avg_fragment_size_order() returns order in a way that makes
1008 * retrieving back the length using (1 << order) inaccurate. Hence, use
1009 * fls() instead since we need to know the actual length while modifying
1012 order = fls(ac->ac_g_ex.fe_len) - 1;
1013 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1014 order = MB_NUM_ORDERS(ac->ac_sb);
1015 min_order = order - sbi->s_mb_best_avail_max_trim_order;
1019 if (sbi->s_stripe > 0) {
1021 * We are assuming that stripe size is always a multiple of
1022 * cluster ratio otherwise __ext4_fill_super exists early.
1024 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1025 if (1 << min_order < num_stripe_clusters)
1027 * We consider 1 order less because later we round
1028 * up the goal len to num_stripe_clusters
1030 min_order = fls(num_stripe_clusters) - 1;
1033 if (1 << min_order < ac->ac_o_ex.fe_len)
1034 min_order = fls(ac->ac_o_ex.fe_len);
1036 for (i = order; i >= min_order; i--) {
1039 * Scale down goal len to make sure we find something
1040 * in the free fragments list. Basically, reduce
1043 ac->ac_g_ex.fe_len = 1 << i;
1045 if (num_stripe_clusters > 0) {
1047 * Try to round up the adjusted goal length to
1048 * stripe size (in cluster units) multiple for
1051 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1052 num_stripe_clusters);
1055 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1056 ac->ac_g_ex.fe_len);
1058 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1060 *group = grp->bb_group;
1061 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1066 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1067 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1068 *new_cr = CR_GOAL_LEN_SLOW;
1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1073 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1075 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1077 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1083 * Return next linear group for allocation.
1086 next_linear_group(ext4_group_t group, ext4_group_t ngroups)
1089 * Artificially restricted ngroups for non-extent
1090 * files makes group > ngroups possible on first loop.
1092 return group + 1 >= ngroups ? 0 : group + 1;
1096 * ext4_mb_choose_next_group: choose next group for allocation.
1098 * @ac Allocation Context
1099 * @new_cr This is an output parameter. If the there is no good group
1100 * available at current CR level, this field is updated to indicate
1101 * the new cr level that should be used.
1102 * @group This is an input / output parameter. As an input it indicates the
1103 * next group that the allocator intends to use for allocation. As
1104 * output, this field indicates the next group that should be used as
1105 * determined by the optimization functions.
1106 * @ngroups Total number of groups
1108 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1109 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1111 *new_cr = ac->ac_criteria;
1113 if (!should_optimize_scan(ac)) {
1114 *group = next_linear_group(*group, ngroups);
1119 * Optimized scanning can return non adjacent groups which can cause
1120 * seek overhead for rotational disks. So try few linear groups before
1121 * trying optimized scan.
1123 if (ac->ac_groups_linear_remaining) {
1124 *group = next_linear_group(*group, ngroups);
1125 ac->ac_groups_linear_remaining--;
1129 if (*new_cr == CR_POWER2_ALIGNED) {
1130 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1131 } else if (*new_cr == CR_GOAL_LEN_FAST) {
1132 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1133 } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1134 ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1137 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an
1138 * rb tree sorted by bb_free. But until that happens, we should
1146 * Cache the order of the largest free extent we have available in this block
1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1152 struct ext4_sb_info *sbi = EXT4_SB(sb);
1155 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1156 if (grp->bb_counters[i] > 0)
1158 /* No need to move between order lists? */
1159 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1160 i == grp->bb_largest_free_order) {
1161 grp->bb_largest_free_order = i;
1165 if (grp->bb_largest_free_order >= 0) {
1166 write_lock(&sbi->s_mb_largest_free_orders_locks[
1167 grp->bb_largest_free_order]);
1168 list_del_init(&grp->bb_largest_free_order_node);
1169 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1170 grp->bb_largest_free_order]);
1172 grp->bb_largest_free_order = i;
1173 if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1174 write_lock(&sbi->s_mb_largest_free_orders_locks[
1175 grp->bb_largest_free_order]);
1176 list_add_tail(&grp->bb_largest_free_order_node,
1177 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1178 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1179 grp->bb_largest_free_order]);
1183 static noinline_for_stack
1184 void ext4_mb_generate_buddy(struct super_block *sb,
1185 void *buddy, void *bitmap, ext4_group_t group,
1186 struct ext4_group_info *grp)
1188 struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1190 ext4_grpblk_t i = 0;
1191 ext4_grpblk_t first;
1194 unsigned fragments = 0;
1195 unsigned long long period = get_cycles();
1197 /* initialize buddy from bitmap which is aggregation
1198 * of on-disk bitmap and preallocations */
1199 i = mb_find_next_zero_bit(bitmap, max, 0);
1200 grp->bb_first_free = i;
1204 i = mb_find_next_bit(bitmap, max, i);
1208 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1210 grp->bb_counters[0]++;
1212 i = mb_find_next_zero_bit(bitmap, max, i);
1214 grp->bb_fragments = fragments;
1216 if (free != grp->bb_free) {
1217 ext4_grp_locked_error(sb, group, 0, 0,
1218 "block bitmap and bg descriptor "
1219 "inconsistent: %u vs %u free clusters",
1220 free, grp->bb_free);
1222 * If we intend to continue, we consider group descriptor
1223 * corrupt and update bb_free using bitmap value
1225 grp->bb_free = free;
1226 ext4_mark_group_bitmap_corrupted(sb, group,
1227 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1229 mb_set_largest_free_order(sb, grp);
1230 mb_update_avg_fragment_size(sb, grp);
1232 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1234 period = get_cycles() - period;
1235 atomic_inc(&sbi->s_mb_buddies_generated);
1236 atomic64_add(period, &sbi->s_mb_generation_time);
1239 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1245 while ((buddy = mb_find_buddy(e4b, order++, &count)))
1246 mb_set_bits(buddy, 0, count);
1248 e4b->bd_info->bb_fragments = 0;
1249 memset(e4b->bd_info->bb_counters, 0,
1250 sizeof(*e4b->bd_info->bb_counters) *
1251 (e4b->bd_sb->s_blocksize_bits + 2));
1253 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1254 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1257 /* The buddy information is attached the buddy cache inode
1258 * for convenience. The information regarding each group
1259 * is loaded via ext4_mb_load_buddy. The information involve
1260 * block bitmap and buddy information. The information are
1261 * stored in the inode as
1264 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1267 * one block each for bitmap and buddy information.
1268 * So for each group we take up 2 blocks. A page can
1269 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
1270 * So it can have information regarding groups_per_page which
1271 * is blocks_per_page/2
1273 * Locking note: This routine takes the block group lock of all groups
1274 * for this page; do not hold this lock when calling this routine!
1277 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp)
1279 ext4_group_t ngroups;
1280 unsigned int blocksize;
1281 int blocks_per_page;
1282 int groups_per_page;
1285 ext4_group_t first_group, group;
1287 struct super_block *sb;
1288 struct buffer_head *bhs;
1289 struct buffer_head **bh = NULL;
1290 struct inode *inode;
1293 struct ext4_group_info *grinfo;
1295 inode = folio->mapping->host;
1297 ngroups = ext4_get_groups_count(sb);
1298 blocksize = i_blocksize(inode);
1299 blocks_per_page = PAGE_SIZE / blocksize;
1301 mb_debug(sb, "init folio %lu\n", folio->index);
1303 groups_per_page = blocks_per_page >> 1;
1304 if (groups_per_page == 0)
1305 groups_per_page = 1;
1307 /* allocate buffer_heads to read bitmaps */
1308 if (groups_per_page > 1) {
1309 i = sizeof(struct buffer_head *) * groups_per_page;
1310 bh = kzalloc(i, gfp);
1316 first_group = folio->index * blocks_per_page / 2;
1318 /* read all groups the folio covers into the cache */
1319 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1320 if (group >= ngroups)
1323 grinfo = ext4_get_group_info(sb, group);
1327 * If page is uptodate then we came here after online resize
1328 * which added some new uninitialized group info structs, so
1329 * we must skip all initialized uptodate buddies on the folio,
1330 * which may be currently in use by an allocating task.
1332 if (folio_test_uptodate(folio) &&
1333 !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1337 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1338 if (IS_ERR(bh[i])) {
1339 err = PTR_ERR(bh[i]);
1343 mb_debug(sb, "read bitmap for group %u\n", group);
1346 /* wait for I/O completion */
1347 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1352 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1357 first_block = folio->index * blocks_per_page;
1358 for (i = 0; i < blocks_per_page; i++) {
1359 group = (first_block + i) >> 1;
1360 if (group >= ngroups)
1363 if (!bh[group - first_group])
1364 /* skip initialized uptodate buddy */
1367 if (!buffer_verified(bh[group - first_group]))
1368 /* Skip faulty bitmaps */
1373 * data carry information regarding this
1374 * particular group in the format specified
1378 data = folio_address(folio) + (i * blocksize);
1379 bitmap = bh[group - first_group]->b_data;
1382 * We place the buddy block and bitmap block
1385 grinfo = ext4_get_group_info(sb, group);
1387 err = -EFSCORRUPTED;
1390 if ((first_block + i) & 1) {
1391 /* this is block of buddy */
1392 BUG_ON(incore == NULL);
1393 mb_debug(sb, "put buddy for group %u in folio %lu/%x\n",
1394 group, folio->index, i * blocksize);
1395 trace_ext4_mb_buddy_bitmap_load(sb, group);
1396 grinfo->bb_fragments = 0;
1397 memset(grinfo->bb_counters, 0,
1398 sizeof(*grinfo->bb_counters) *
1399 (MB_NUM_ORDERS(sb)));
1401 * incore got set to the group block bitmap below
1403 ext4_lock_group(sb, group);
1404 /* init the buddy */
1405 memset(data, 0xff, blocksize);
1406 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1407 ext4_unlock_group(sb, group);
1410 /* this is block of bitmap */
1411 BUG_ON(incore != NULL);
1412 mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n",
1413 group, folio->index, i * blocksize);
1414 trace_ext4_mb_bitmap_load(sb, group);
1416 /* see comments in ext4_mb_put_pa() */
1417 ext4_lock_group(sb, group);
1418 memcpy(data, bitmap, blocksize);
1420 /* mark all preallocated blks used in in-core bitmap */
1421 ext4_mb_generate_from_pa(sb, data, group);
1422 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1423 ext4_unlock_group(sb, group);
1425 /* set incore so that the buddy information can be
1426 * generated using this
1431 folio_mark_uptodate(folio);
1435 for (i = 0; i < groups_per_page; i++)
1444 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1445 * on the same buddy page doesn't happen whild holding the buddy page lock.
1446 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1447 * are on the same page e4b->bd_buddy_folio is NULL and return value is 0.
1449 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1450 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1452 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1453 int block, pnum, poff;
1454 int blocks_per_page;
1455 struct folio *folio;
1457 e4b->bd_buddy_folio = NULL;
1458 e4b->bd_bitmap_folio = NULL;
1460 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1462 * the buddy cache inode stores the block bitmap
1463 * and buddy information in consecutive blocks.
1464 * So for each group we need two blocks.
1467 pnum = block / blocks_per_page;
1468 poff = block % blocks_per_page;
1469 folio = __filemap_get_folio(inode->i_mapping, pnum,
1470 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1472 return PTR_ERR(folio);
1473 BUG_ON(folio->mapping != inode->i_mapping);
1474 e4b->bd_bitmap_folio = folio;
1475 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1477 if (blocks_per_page >= 2) {
1478 /* buddy and bitmap are on the same page */
1482 /* blocks_per_page == 1, hence we need another page for the buddy */
1483 folio = __filemap_get_folio(inode->i_mapping, block + 1,
1484 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1486 return PTR_ERR(folio);
1487 BUG_ON(folio->mapping != inode->i_mapping);
1488 e4b->bd_buddy_folio = folio;
1492 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1494 if (e4b->bd_bitmap_folio) {
1495 folio_unlock(e4b->bd_bitmap_folio);
1496 folio_put(e4b->bd_bitmap_folio);
1498 if (e4b->bd_buddy_folio) {
1499 folio_unlock(e4b->bd_buddy_folio);
1500 folio_put(e4b->bd_buddy_folio);
1505 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1506 * block group lock of all groups for this page; do not hold the BG lock when
1507 * calling this routine!
1509 static noinline_for_stack
1510 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1513 struct ext4_group_info *this_grp;
1514 struct ext4_buddy e4b;
1515 struct folio *folio;
1519 mb_debug(sb, "init group %u\n", group);
1520 this_grp = ext4_get_group_info(sb, group);
1522 return -EFSCORRUPTED;
1525 * This ensures that we don't reinit the buddy cache
1526 * page which map to the group from which we are already
1527 * allocating. If we are looking at the buddy cache we would
1528 * have taken a reference using ext4_mb_load_buddy and that
1529 * would have pinned buddy page to page cache.
1530 * The call to ext4_mb_get_buddy_page_lock will mark the
1533 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1534 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1536 * somebody initialized the group
1537 * return without doing anything
1542 folio = e4b.bd_bitmap_folio;
1543 ret = ext4_mb_init_cache(folio, NULL, gfp);
1546 if (!folio_test_uptodate(folio)) {
1551 if (e4b.bd_buddy_folio == NULL) {
1553 * If both the bitmap and buddy are in
1554 * the same page we don't need to force
1560 /* init buddy cache */
1561 folio = e4b.bd_buddy_folio;
1562 ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp);
1565 if (!folio_test_uptodate(folio)) {
1570 ext4_mb_put_buddy_page_lock(&e4b);
1575 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1576 * block group lock of all groups for this page; do not hold the BG lock when
1577 * calling this routine!
1579 static noinline_for_stack int
1580 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1581 struct ext4_buddy *e4b, gfp_t gfp)
1583 int blocks_per_page;
1587 struct folio *folio;
1589 struct ext4_group_info *grp;
1590 struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 struct inode *inode = sbi->s_buddy_cache;
1594 mb_debug(sb, "load group %u\n", group);
1596 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1597 grp = ext4_get_group_info(sb, group);
1599 return -EFSCORRUPTED;
1601 e4b->bd_blkbits = sb->s_blocksize_bits;
1604 e4b->bd_group = group;
1605 e4b->bd_buddy_folio = NULL;
1606 e4b->bd_bitmap_folio = NULL;
1608 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1610 * we need full data about the group
1611 * to make a good selection
1613 ret = ext4_mb_init_group(sb, group, gfp);
1619 * the buddy cache inode stores the block bitmap
1620 * and buddy information in consecutive blocks.
1621 * So for each group we need two blocks.
1624 pnum = block / blocks_per_page;
1625 poff = block % blocks_per_page;
1627 /* Avoid locking the folio in the fast path ... */
1628 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1629 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1632 * drop the folio reference and try
1633 * to get the folio with lock. If we
1634 * are not uptodate that implies
1635 * somebody just created the folio but
1636 * is yet to initialize it. So
1637 * wait for it to initialize.
1640 folio = __filemap_get_folio(inode->i_mapping, pnum,
1641 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1642 if (!IS_ERR(folio)) {
1643 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1644 "ext4: bitmap's mapping != inode->i_mapping\n")) {
1645 /* should never happen */
1646 folio_unlock(folio);
1650 if (!folio_test_uptodate(folio)) {
1651 ret = ext4_mb_init_cache(folio, NULL, gfp);
1653 folio_unlock(folio);
1656 mb_cmp_bitmaps(e4b, folio_address(folio) +
1657 (poff * sb->s_blocksize));
1659 folio_unlock(folio);
1662 if (IS_ERR(folio)) {
1663 ret = PTR_ERR(folio);
1666 if (!folio_test_uptodate(folio)) {
1671 /* Folios marked accessed already */
1672 e4b->bd_bitmap_folio = folio;
1673 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1676 pnum = block / blocks_per_page;
1677 poff = block % blocks_per_page;
1679 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1680 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1683 folio = __filemap_get_folio(inode->i_mapping, pnum,
1684 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1685 if (!IS_ERR(folio)) {
1686 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1687 "ext4: buddy bitmap's mapping != inode->i_mapping\n")) {
1688 /* should never happen */
1689 folio_unlock(folio);
1693 if (!folio_test_uptodate(folio)) {
1694 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap,
1697 folio_unlock(folio);
1701 folio_unlock(folio);
1704 if (IS_ERR(folio)) {
1705 ret = PTR_ERR(folio);
1708 if (!folio_test_uptodate(folio)) {
1713 /* Folios marked accessed already */
1714 e4b->bd_buddy_folio = folio;
1715 e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize);
1720 if (!IS_ERR_OR_NULL(folio))
1722 if (e4b->bd_bitmap_folio)
1723 folio_put(e4b->bd_bitmap_folio);
1725 e4b->bd_buddy = NULL;
1726 e4b->bd_bitmap = NULL;
1730 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1731 struct ext4_buddy *e4b)
1733 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1736 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1738 if (e4b->bd_bitmap_folio)
1739 folio_put(e4b->bd_bitmap_folio);
1740 if (e4b->bd_buddy_folio)
1741 folio_put(e4b->bd_buddy_folio);
1745 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1750 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1751 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1753 while (order <= e4b->bd_blkbits + 1) {
1754 bb = mb_find_buddy(e4b, order, &max);
1755 if (!mb_test_bit(block >> order, bb)) {
1756 /* this block is part of buddy of order 'order' */
1764 static void mb_clear_bits(void *bm, int cur, int len)
1770 if ((cur & 31) == 0 && (len - cur) >= 32) {
1771 /* fast path: clear whole word at once */
1772 addr = bm + (cur >> 3);
1777 mb_clear_bit(cur, bm);
1782 /* clear bits in given range
1783 * will return first found zero bit if any, -1 otherwise
1785 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1792 if ((cur & 31) == 0 && (len - cur) >= 32) {
1793 /* fast path: clear whole word at once */
1794 addr = bm + (cur >> 3);
1795 if (*addr != (__u32)(-1) && zero_bit == -1)
1796 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1801 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1809 void mb_set_bits(void *bm, int cur, int len)
1815 if ((cur & 31) == 0 && (len - cur) >= 32) {
1816 /* fast path: set whole word at once */
1817 addr = bm + (cur >> 3);
1822 mb_set_bit(cur, bm);
1827 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1829 if (mb_test_bit(*bit + side, bitmap)) {
1830 mb_clear_bit(*bit, bitmap);
1836 mb_set_bit(*bit, bitmap);
1841 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1845 void *buddy = mb_find_buddy(e4b, order, &max);
1850 /* Bits in range [first; last] are known to be set since
1851 * corresponding blocks were allocated. Bits in range
1852 * (first; last) will stay set because they form buddies on
1853 * upper layer. We just deal with borders if they don't
1854 * align with upper layer and then go up.
1855 * Releasing entire group is all about clearing
1856 * single bit of highest order buddy.
1860 * ---------------------------------
1862 * ---------------------------------
1863 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1864 * ---------------------------------
1866 * \_____________________/
1868 * Neither [1] nor [6] is aligned to above layer.
1869 * Left neighbour [0] is free, so mark it busy,
1870 * decrease bb_counters and extend range to
1872 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1873 * mark [6] free, increase bb_counters and shrink range to
1875 * Then shift range to [0; 2], go up and do the same.
1880 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1882 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1887 buddy2 = mb_find_buddy(e4b, order, &max);
1889 mb_clear_bits(buddy, first, last - first + 1);
1890 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1899 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1900 int first, int count)
1902 int left_is_free = 0;
1903 int right_is_free = 0;
1905 int last = first + count - 1;
1906 struct super_block *sb = e4b->bd_sb;
1908 if (WARN_ON(count == 0))
1910 BUG_ON(last >= (sb->s_blocksize << 3));
1911 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1912 /* Don't bother if the block group is corrupt. */
1913 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1916 mb_check_buddy(e4b);
1917 mb_free_blocks_double(inode, e4b, first, count);
1919 /* access memory sequentially: check left neighbour,
1920 * clear range and then check right neighbour
1923 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1924 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1925 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1926 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1928 if (unlikely(block != -1)) {
1929 struct ext4_sb_info *sbi = EXT4_SB(sb);
1930 ext4_fsblk_t blocknr;
1933 * Fastcommit replay can free already freed blocks which
1934 * corrupts allocation info. Regenerate it.
1936 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1937 mb_regenerate_buddy(e4b);
1941 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1942 blocknr += EXT4_C2B(sbi, block);
1943 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1944 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1945 ext4_grp_locked_error(sb, e4b->bd_group,
1946 inode ? inode->i_ino : 0, blocknr,
1947 "freeing already freed block (bit %u); block bitmap corrupt.",
1952 this_cpu_inc(discard_pa_seq);
1953 e4b->bd_info->bb_free += count;
1954 if (first < e4b->bd_info->bb_first_free)
1955 e4b->bd_info->bb_first_free = first;
1957 /* let's maintain fragments counter */
1958 if (left_is_free && right_is_free)
1959 e4b->bd_info->bb_fragments--;
1960 else if (!left_is_free && !right_is_free)
1961 e4b->bd_info->bb_fragments++;
1963 /* buddy[0] == bd_bitmap is a special case, so handle
1964 * it right away and let mb_buddy_mark_free stay free of
1965 * zero order checks.
1966 * Check if neighbours are to be coaleasced,
1967 * adjust bitmap bb_counters and borders appropriately.
1970 first += !left_is_free;
1971 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1974 last -= !right_is_free;
1975 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1979 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1981 mb_set_largest_free_order(sb, e4b->bd_info);
1982 mb_update_avg_fragment_size(sb, e4b->bd_info);
1984 mb_check_buddy(e4b);
1987 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1988 int needed, struct ext4_free_extent *ex)
1990 int max, order, next;
1993 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1996 buddy = mb_find_buddy(e4b, 0, &max);
1997 BUG_ON(buddy == NULL);
1998 BUG_ON(block >= max);
1999 if (mb_test_bit(block, buddy)) {
2006 /* find actual order */
2007 order = mb_find_order_for_block(e4b, block);
2009 ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2010 ex->fe_start = block;
2011 ex->fe_group = e4b->bd_group;
2013 block = block >> order;
2015 while (needed > ex->fe_len &&
2016 mb_find_buddy(e4b, order, &max)) {
2018 if (block + 1 >= max)
2021 next = (block + 1) * (1 << order);
2022 if (mb_test_bit(next, e4b->bd_bitmap))
2025 order = mb_find_order_for_block(e4b, next);
2027 block = next >> order;
2028 ex->fe_len += 1 << order;
2031 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2032 /* Should never happen! (but apparently sometimes does?!?) */
2034 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2035 "corruption or bug in mb_find_extent "
2036 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2037 block, order, needed, ex->fe_group, ex->fe_start,
2038 ex->fe_len, ex->fe_logical);
2046 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2051 int start = ex->fe_start;
2052 int len = ex->fe_len;
2056 int ord_start, ord_end;
2058 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2059 BUG_ON(e4b->bd_group != ex->fe_group);
2060 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2061 mb_check_buddy(e4b);
2062 mb_mark_used_double(e4b, start, len);
2064 this_cpu_inc(discard_pa_seq);
2065 e4b->bd_info->bb_free -= len;
2066 if (e4b->bd_info->bb_first_free == start)
2067 e4b->bd_info->bb_first_free += len;
2069 /* let's maintain fragments counter */
2071 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2072 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2073 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2075 e4b->bd_info->bb_fragments++;
2076 else if (!mlen && !max)
2077 e4b->bd_info->bb_fragments--;
2079 /* let's maintain buddy itself */
2081 ord = mb_find_order_for_block(e4b, start);
2083 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2084 /* the whole chunk may be allocated at once! */
2086 buddy = mb_find_buddy(e4b, ord, &max);
2087 BUG_ON((start >> ord) >= max);
2088 mb_set_bit(start >> ord, buddy);
2089 e4b->bd_info->bb_counters[ord]--;
2096 /* store for history */
2098 ret = len | (ord << 16);
2101 buddy = mb_find_buddy(e4b, ord, &max);
2102 mb_set_bit(start >> ord, buddy);
2103 e4b->bd_info->bb_counters[ord]--;
2105 ord_start = (start >> ord) << ord;
2106 ord_end = ord_start + (1 << ord);
2108 if (start > ord_start)
2109 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2110 ord_start, start - ord_start,
2114 if (start + len < ord_end) {
2115 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2117 ord_end - (start + len),
2121 len = start + len - ord_end;
2124 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2126 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2127 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2128 mb_check_buddy(e4b);
2134 * Must be called under group lock!
2136 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2137 struct ext4_buddy *e4b)
2139 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2142 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2143 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2145 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2146 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2147 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2149 /* preallocation can change ac_b_ex, thus we store actually
2150 * allocated blocks for history */
2151 ac->ac_f_ex = ac->ac_b_ex;
2153 ac->ac_status = AC_STATUS_FOUND;
2154 ac->ac_tail = ret & 0xffff;
2155 ac->ac_buddy = ret >> 16;
2158 * take the page reference. We want the page to be pinned
2159 * so that we don't get a ext4_mb_init_cache_call for this
2160 * group until we update the bitmap. That would mean we
2161 * double allocate blocks. The reference is dropped
2162 * in ext4_mb_release_context
2164 ac->ac_bitmap_folio = e4b->bd_bitmap_folio;
2165 folio_get(ac->ac_bitmap_folio);
2166 ac->ac_buddy_folio = e4b->bd_buddy_folio;
2167 folio_get(ac->ac_buddy_folio);
2168 /* store last allocated for subsequent stream allocation */
2169 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2170 spin_lock(&sbi->s_md_lock);
2171 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2172 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2173 spin_unlock(&sbi->s_md_lock);
2176 * As we've just preallocated more space than
2177 * user requested originally, we store allocated
2178 * space in a special descriptor.
2180 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2181 ext4_mb_new_preallocation(ac);
2185 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2186 struct ext4_buddy *e4b,
2189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2190 struct ext4_free_extent *bex = &ac->ac_b_ex;
2191 struct ext4_free_extent *gex = &ac->ac_g_ex;
2193 if (ac->ac_status == AC_STATUS_FOUND)
2196 * We don't want to scan for a whole year
2198 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2199 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2200 ac->ac_status = AC_STATUS_BREAK;
2205 * Haven't found good chunk so far, let's continue
2207 if (bex->fe_len < gex->fe_len)
2210 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2211 ext4_mb_use_best_found(ac, e4b);
2215 * The routine checks whether found extent is good enough. If it is,
2216 * then the extent gets marked used and flag is set to the context
2217 * to stop scanning. Otherwise, the extent is compared with the
2218 * previous found extent and if new one is better, then it's stored
2219 * in the context. Later, the best found extent will be used, if
2220 * mballoc can't find good enough extent.
2222 * The algorithm used is roughly as follows:
2224 * * If free extent found is exactly as big as goal, then
2225 * stop the scan and use it immediately
2227 * * If free extent found is smaller than goal, then keep retrying
2228 * upto a max of sbi->s_mb_max_to_scan times (default 200). After
2229 * that stop scanning and use whatever we have.
2231 * * If free extent found is bigger than goal, then keep retrying
2232 * upto a max of sbi->s_mb_min_to_scan times (default 10) before
2233 * stopping the scan and using the extent.
2236 * FIXME: real allocation policy is to be designed yet!
2238 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2239 struct ext4_free_extent *ex,
2240 struct ext4_buddy *e4b)
2242 struct ext4_free_extent *bex = &ac->ac_b_ex;
2243 struct ext4_free_extent *gex = &ac->ac_g_ex;
2245 BUG_ON(ex->fe_len <= 0);
2246 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2247 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2248 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2251 ac->ac_cX_found[ac->ac_criteria]++;
2254 * The special case - take what you catch first
2256 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2258 ext4_mb_use_best_found(ac, e4b);
2263 * Let's check whether the chuck is good enough
2265 if (ex->fe_len == gex->fe_len) {
2267 ext4_mb_use_best_found(ac, e4b);
2272 * If this is first found extent, just store it in the context
2274 if (bex->fe_len == 0) {
2280 * If new found extent is better, store it in the context
2282 if (bex->fe_len < gex->fe_len) {
2283 /* if the request isn't satisfied, any found extent
2284 * larger than previous best one is better */
2285 if (ex->fe_len > bex->fe_len)
2287 } else if (ex->fe_len > gex->fe_len) {
2288 /* if the request is satisfied, then we try to find
2289 * an extent that still satisfy the request, but is
2290 * smaller than previous one */
2291 if (ex->fe_len < bex->fe_len)
2295 ext4_mb_check_limits(ac, e4b, 0);
2298 static noinline_for_stack
2299 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2300 struct ext4_buddy *e4b)
2302 struct ext4_free_extent ex = ac->ac_b_ex;
2303 ext4_group_t group = ex.fe_group;
2307 BUG_ON(ex.fe_len <= 0);
2308 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2312 ext4_lock_group(ac->ac_sb, group);
2313 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2316 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2320 ext4_mb_use_best_found(ac, e4b);
2324 ext4_unlock_group(ac->ac_sb, group);
2325 ext4_mb_unload_buddy(e4b);
2328 static noinline_for_stack
2329 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2330 struct ext4_buddy *e4b)
2332 ext4_group_t group = ac->ac_g_ex.fe_group;
2335 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2336 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2337 struct ext4_free_extent ex;
2340 return -EFSCORRUPTED;
2341 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2343 if (grp->bb_free == 0)
2346 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2350 ext4_lock_group(ac->ac_sb, group);
2351 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2354 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2355 ac->ac_g_ex.fe_len, &ex);
2356 ex.fe_logical = 0xDEADFA11; /* debug value */
2358 if (max >= ac->ac_g_ex.fe_len &&
2359 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2362 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2363 /* use do_div to get remainder (would be 64-bit modulo) */
2364 if (do_div(start, sbi->s_stripe) == 0) {
2367 ext4_mb_use_best_found(ac, e4b);
2369 } else if (max >= ac->ac_g_ex.fe_len) {
2370 BUG_ON(ex.fe_len <= 0);
2371 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2372 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2375 ext4_mb_use_best_found(ac, e4b);
2376 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2377 /* Sometimes, caller may want to merge even small
2378 * number of blocks to an existing extent */
2379 BUG_ON(ex.fe_len <= 0);
2380 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2381 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2384 ext4_mb_use_best_found(ac, e4b);
2387 ext4_unlock_group(ac->ac_sb, group);
2388 ext4_mb_unload_buddy(e4b);
2394 * The routine scans buddy structures (not bitmap!) from given order
2395 * to max order and tries to find big enough chunk to satisfy the req
2397 static noinline_for_stack
2398 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2399 struct ext4_buddy *e4b)
2401 struct super_block *sb = ac->ac_sb;
2402 struct ext4_group_info *grp = e4b->bd_info;
2408 BUG_ON(ac->ac_2order <= 0);
2409 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2410 if (grp->bb_counters[i] == 0)
2413 buddy = mb_find_buddy(e4b, i, &max);
2414 if (WARN_RATELIMIT(buddy == NULL,
2415 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2418 k = mb_find_next_zero_bit(buddy, max, 0);
2420 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2422 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2423 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2424 "%d free clusters of order %d. But found 0",
2425 grp->bb_counters[i], i);
2429 ac->ac_cX_found[ac->ac_criteria]++;
2431 ac->ac_b_ex.fe_len = 1 << i;
2432 ac->ac_b_ex.fe_start = k << i;
2433 ac->ac_b_ex.fe_group = e4b->bd_group;
2435 ext4_mb_use_best_found(ac, e4b);
2437 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2439 if (EXT4_SB(sb)->s_mb_stats)
2440 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2447 * The routine scans the group and measures all found extents.
2448 * In order to optimize scanning, caller must pass number of
2449 * free blocks in the group, so the routine can know upper limit.
2451 static noinline_for_stack
2452 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2453 struct ext4_buddy *e4b)
2455 struct super_block *sb = ac->ac_sb;
2456 void *bitmap = e4b->bd_bitmap;
2457 struct ext4_free_extent ex;
2461 free = e4b->bd_info->bb_free;
2462 if (WARN_ON(free <= 0))
2465 i = e4b->bd_info->bb_first_free;
2467 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2468 i = mb_find_next_zero_bit(bitmap,
2469 EXT4_CLUSTERS_PER_GROUP(sb), i);
2470 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2472 * IF we have corrupt bitmap, we won't find any
2473 * free blocks even though group info says we
2476 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2477 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2478 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2479 "%d free clusters as per "
2480 "group info. But bitmap says 0",
2485 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2487 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2488 * sure that this group will have a large enough
2489 * continuous free extent, so skip over the smaller free
2492 j = mb_find_next_bit(bitmap,
2493 EXT4_CLUSTERS_PER_GROUP(sb), i);
2496 if (freelen < ac->ac_g_ex.fe_len) {
2503 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2504 if (WARN_ON(ex.fe_len <= 0))
2506 if (free < ex.fe_len) {
2507 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2508 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2509 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2510 "%d free clusters as per "
2511 "group info. But got %d blocks",
2514 * The number of free blocks differs. This mostly
2515 * indicate that the bitmap is corrupt. So exit
2516 * without claiming the space.
2520 ex.fe_logical = 0xDEADC0DE; /* debug value */
2521 ext4_mb_measure_extent(ac, &ex, e4b);
2527 ext4_mb_check_limits(ac, e4b, 1);
2531 * This is a special case for storages like raid5
2532 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2534 static noinline_for_stack
2535 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2536 struct ext4_buddy *e4b)
2538 struct super_block *sb = ac->ac_sb;
2539 struct ext4_sb_info *sbi = EXT4_SB(sb);
2540 void *bitmap = e4b->bd_bitmap;
2541 struct ext4_free_extent ex;
2542 ext4_fsblk_t first_group_block;
2544 ext4_grpblk_t i, stripe;
2547 BUG_ON(sbi->s_stripe == 0);
2549 /* find first stripe-aligned block in group */
2550 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2552 a = first_group_block + sbi->s_stripe - 1;
2553 do_div(a, sbi->s_stripe);
2554 i = (a * sbi->s_stripe) - first_group_block;
2556 stripe = EXT4_B2C(sbi, sbi->s_stripe);
2557 i = EXT4_B2C(sbi, i);
2558 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2559 if (!mb_test_bit(i, bitmap)) {
2560 max = mb_find_extent(e4b, i, stripe, &ex);
2561 if (max >= stripe) {
2563 ac->ac_cX_found[ac->ac_criteria]++;
2564 ex.fe_logical = 0xDEADF00D; /* debug value */
2566 ext4_mb_use_best_found(ac, e4b);
2575 * This is also called BEFORE we load the buddy bitmap.
2576 * Returns either 1 or 0 indicating that the group is either suitable
2577 * for the allocation or not.
2579 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2580 ext4_group_t group, enum criteria cr)
2582 ext4_grpblk_t free, fragments;
2583 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2584 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2586 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2588 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2591 free = grp->bb_free;
2595 fragments = grp->bb_fragments;
2600 case CR_POWER2_ALIGNED:
2601 BUG_ON(ac->ac_2order == 0);
2603 /* Avoid using the first bg of a flexgroup for data files */
2604 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2605 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2606 ((group % flex_size) == 0))
2609 if (free < ac->ac_g_ex.fe_len)
2612 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2615 if (grp->bb_largest_free_order < ac->ac_2order)
2619 case CR_GOAL_LEN_FAST:
2620 case CR_BEST_AVAIL_LEN:
2621 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2624 case CR_GOAL_LEN_SLOW:
2625 if (free >= ac->ac_g_ex.fe_len)
2638 * This could return negative error code if something goes wrong
2639 * during ext4_mb_init_group(). This should not be called with
2640 * ext4_lock_group() held.
2642 * Note: because we are conditionally operating with the group lock in
2643 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2644 * function using __acquire and __release. This means we need to be
2645 * super careful before messing with the error path handling via "goto
2648 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2649 ext4_group_t group, enum criteria cr)
2651 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2652 struct super_block *sb = ac->ac_sb;
2653 struct ext4_sb_info *sbi = EXT4_SB(sb);
2654 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2659 return -EFSCORRUPTED;
2660 if (sbi->s_mb_stats)
2661 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2663 ext4_lock_group(sb, group);
2664 __release(ext4_group_lock_ptr(sb, group));
2666 free = grp->bb_free;
2670 * In all criterias except CR_ANY_FREE we try to avoid groups that
2671 * can't possibly satisfy the full goal request due to insufficient
2674 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2676 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2679 __acquire(ext4_group_lock_ptr(sb, group));
2680 ext4_unlock_group(sb, group);
2683 /* We only do this if the grp has never been initialized */
2684 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2685 struct ext4_group_desc *gdp =
2686 ext4_get_group_desc(sb, group, NULL);
2690 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2691 * search to find large good chunks almost for free. If buddy
2692 * data is not ready, then this optimization makes no sense. But
2693 * we never skip the first block group in a flex_bg, since this
2694 * gets used for metadata block allocation, and we want to make
2695 * sure we locate metadata blocks in the first block group in
2696 * the flex_bg if possible.
2698 if (!ext4_mb_cr_expensive(cr) &&
2699 (!sbi->s_log_groups_per_flex ||
2700 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2701 !(ext4_has_group_desc_csum(sb) &&
2702 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2704 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2710 ext4_lock_group(sb, group);
2711 __release(ext4_group_lock_ptr(sb, group));
2713 ret = ext4_mb_good_group(ac, group, cr);
2716 __acquire(ext4_group_lock_ptr(sb, group));
2717 ext4_unlock_group(sb, group);
2723 * Start prefetching @nr block bitmaps starting at @group.
2724 * Return the next group which needs to be prefetched.
2726 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2727 unsigned int nr, int *cnt)
2729 ext4_group_t ngroups = ext4_get_groups_count(sb);
2730 struct buffer_head *bh;
2731 struct blk_plug plug;
2733 blk_start_plug(&plug);
2735 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2737 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2740 * Prefetch block groups with free blocks; but don't
2741 * bother if it is marked uninitialized on disk, since
2742 * it won't require I/O to read. Also only try to
2743 * prefetch once, so we avoid getblk() call, which can
2746 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2747 EXT4_MB_GRP_NEED_INIT(grp) &&
2748 ext4_free_group_clusters(sb, gdp) > 0 ) {
2749 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2750 if (bh && !IS_ERR(bh)) {
2751 if (!buffer_uptodate(bh) && cnt)
2756 if (++group >= ngroups)
2759 blk_finish_plug(&plug);
2764 * Prefetching reads the block bitmap into the buffer cache; but we
2765 * need to make sure that the buddy bitmap in the page cache has been
2766 * initialized. Note that ext4_mb_init_group() will block if the I/O
2767 * is not yet completed, or indeed if it was not initiated by
2768 * ext4_mb_prefetch did not start the I/O.
2770 * TODO: We should actually kick off the buddy bitmap setup in a work
2771 * queue when the buffer I/O is completed, so that we don't block
2772 * waiting for the block allocation bitmap read to finish when
2773 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2775 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2778 struct ext4_group_desc *gdp;
2779 struct ext4_group_info *grp;
2783 group = ext4_get_groups_count(sb);
2785 gdp = ext4_get_group_desc(sb, group, NULL);
2786 grp = ext4_get_group_info(sb, group);
2788 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2789 ext4_free_group_clusters(sb, gdp) > 0) {
2790 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2796 static noinline_for_stack int
2797 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2799 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2800 enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2801 int err = 0, first_err = 0;
2802 unsigned int nr = 0, prefetch_ios = 0;
2803 struct ext4_sb_info *sbi;
2804 struct super_block *sb;
2805 struct ext4_buddy e4b;
2810 ngroups = ext4_get_groups_count(sb);
2811 /* non-extent files are limited to low blocks/groups */
2812 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2813 ngroups = sbi->s_blockfile_groups;
2815 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2817 /* first, try the goal */
2818 err = ext4_mb_find_by_goal(ac, &e4b);
2819 if (err || ac->ac_status == AC_STATUS_FOUND)
2822 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2826 * ac->ac_2order is set only if the fe_len is a power of 2
2827 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2828 * so that we try exact allocation using buddy.
2830 i = fls(ac->ac_g_ex.fe_len);
2833 * We search using buddy data only if the order of the request
2834 * is greater than equal to the sbi_s_mb_order2_reqs
2835 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2836 * We also support searching for power-of-two requests only for
2837 * requests upto maximum buddy size we have constructed.
2839 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2840 if (is_power_of_2(ac->ac_g_ex.fe_len))
2841 ac->ac_2order = array_index_nospec(i - 1,
2845 /* if stream allocation is enabled, use global goal */
2846 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2847 /* TBD: may be hot point */
2848 spin_lock(&sbi->s_md_lock);
2849 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2850 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2851 spin_unlock(&sbi->s_md_lock);
2855 * Let's just scan groups to find more-less suitable blocks We
2856 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2857 * aligned, in which case let's do that faster approach first.
2860 cr = CR_POWER2_ALIGNED;
2862 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2863 ac->ac_criteria = cr;
2865 * searching for the right group start
2866 * from the goal value specified
2868 group = ac->ac_g_ex.fe_group;
2869 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2870 prefetch_grp = group;
2873 for (i = 0, new_cr = cr; i < ngroups; i++,
2874 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2884 * Batch reads of the block allocation bitmaps
2885 * to get multiple READs in flight; limit
2886 * prefetching at inexpensive CR, otherwise mballoc
2887 * can spend a lot of time loading imperfect groups
2889 if ((prefetch_grp == group) &&
2890 (ext4_mb_cr_expensive(cr) ||
2891 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2892 nr = sbi->s_mb_prefetch;
2893 if (ext4_has_feature_flex_bg(sb)) {
2894 nr = 1 << sbi->s_log_groups_per_flex;
2895 nr -= group & (nr - 1);
2896 nr = min(nr, sbi->s_mb_prefetch);
2898 prefetch_grp = ext4_mb_prefetch(sb, group,
2902 /* This now checks without needing the buddy page */
2903 ret = ext4_mb_good_group_nolock(ac, group, cr);
2910 err = ext4_mb_load_buddy(sb, group, &e4b);
2914 ext4_lock_group(sb, group);
2917 * We need to check again after locking the
2920 ret = ext4_mb_good_group(ac, group, cr);
2922 ext4_unlock_group(sb, group);
2923 ext4_mb_unload_buddy(&e4b);
2927 ac->ac_groups_scanned++;
2928 if (cr == CR_POWER2_ALIGNED)
2929 ext4_mb_simple_scan_group(ac, &e4b);
2931 bool is_stripe_aligned = sbi->s_stripe &&
2932 !(ac->ac_g_ex.fe_len %
2933 EXT4_B2C(sbi, sbi->s_stripe));
2935 if ((cr == CR_GOAL_LEN_FAST ||
2936 cr == CR_BEST_AVAIL_LEN) &&
2938 ext4_mb_scan_aligned(ac, &e4b);
2940 if (ac->ac_status == AC_STATUS_CONTINUE)
2941 ext4_mb_complex_scan_group(ac, &e4b);
2944 ext4_unlock_group(sb, group);
2945 ext4_mb_unload_buddy(&e4b);
2947 if (ac->ac_status != AC_STATUS_CONTINUE)
2950 /* Processed all groups and haven't found blocks */
2951 if (sbi->s_mb_stats && i == ngroups)
2952 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2954 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2955 /* Reset goal length to original goal length before
2956 * falling into CR_GOAL_LEN_SLOW */
2957 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2960 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2961 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2963 * We've been searching too long. Let's try to allocate
2964 * the best chunk we've found so far
2966 ext4_mb_try_best_found(ac, &e4b);
2967 if (ac->ac_status != AC_STATUS_FOUND) {
2969 * Someone more lucky has already allocated it.
2970 * The only thing we can do is just take first
2973 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2974 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2975 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2976 ac->ac_b_ex.fe_len, lost);
2978 ac->ac_b_ex.fe_group = 0;
2979 ac->ac_b_ex.fe_start = 0;
2980 ac->ac_b_ex.fe_len = 0;
2981 ac->ac_status = AC_STATUS_CONTINUE;
2982 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2988 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2989 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2991 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2994 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2995 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2996 ac->ac_flags, cr, err);
2999 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
3004 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
3006 struct super_block *sb = pde_data(file_inode(seq->file));
3009 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3012 return (void *) ((unsigned long) group);
3015 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3017 struct super_block *sb = pde_data(file_inode(seq->file));
3021 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3024 return (void *) ((unsigned long) group);
3027 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3029 struct super_block *sb = pde_data(file_inode(seq->file));
3030 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3033 struct ext4_buddy e4b;
3034 struct ext4_group_info *grinfo;
3035 unsigned char blocksize_bits = min_t(unsigned char,
3036 sb->s_blocksize_bits,
3037 EXT4_MAX_BLOCK_LOG_SIZE);
3039 struct ext4_group_info info;
3040 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3045 seq_puts(seq, "#group: free frags first ["
3046 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
3047 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
3049 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3050 sizeof(struct ext4_group_info);
3052 grinfo = ext4_get_group_info(sb, group);
3055 /* Load the group info in memory only if not already loaded. */
3056 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3057 err = ext4_mb_load_buddy(sb, group, &e4b);
3059 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3062 ext4_mb_unload_buddy(&e4b);
3066 * We care only about free space counters in the group info and
3067 * these are safe to access even after the buddy has been unloaded
3069 memcpy(&sg, grinfo, i);
3070 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3071 sg.info.bb_fragments, sg.info.bb_first_free);
3072 for (i = 0; i <= 13; i++)
3073 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3074 sg.info.bb_counters[i] : 0);
3075 seq_puts(seq, " ]");
3076 if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3077 seq_puts(seq, " Block bitmap corrupted!");
3078 seq_puts(seq, "\n");
3083 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3087 const struct seq_operations ext4_mb_seq_groups_ops = {
3088 .start = ext4_mb_seq_groups_start,
3089 .next = ext4_mb_seq_groups_next,
3090 .stop = ext4_mb_seq_groups_stop,
3091 .show = ext4_mb_seq_groups_show,
3094 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3096 struct super_block *sb = seq->private;
3097 struct ext4_sb_info *sbi = EXT4_SB(sb);
3099 seq_puts(seq, "mballoc:\n");
3100 if (!sbi->s_mb_stats) {
3101 seq_puts(seq, "\tmb stats collection turned off.\n");
3104 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3107 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3108 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3110 seq_printf(seq, "\tgroups_scanned: %u\n",
3111 atomic_read(&sbi->s_bal_groups_scanned));
3113 /* CR_POWER2_ALIGNED stats */
3114 seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3115 seq_printf(seq, "\t\thits: %llu\n",
3116 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3118 seq, "\t\tgroups_considered: %llu\n",
3120 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3121 seq_printf(seq, "\t\textents_scanned: %u\n",
3122 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3123 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3124 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3125 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3126 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3128 /* CR_GOAL_LEN_FAST stats */
3129 seq_puts(seq, "\tcr_goal_fast_stats:\n");
3130 seq_printf(seq, "\t\thits: %llu\n",
3131 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3132 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3134 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3135 seq_printf(seq, "\t\textents_scanned: %u\n",
3136 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3137 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3138 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3139 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3140 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3142 /* CR_BEST_AVAIL_LEN stats */
3143 seq_puts(seq, "\tcr_best_avail_stats:\n");
3144 seq_printf(seq, "\t\thits: %llu\n",
3145 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3147 seq, "\t\tgroups_considered: %llu\n",
3149 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3150 seq_printf(seq, "\t\textents_scanned: %u\n",
3151 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3152 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3153 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3154 seq_printf(seq, "\t\tbad_suggestions: %u\n",
3155 atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3157 /* CR_GOAL_LEN_SLOW stats */
3158 seq_puts(seq, "\tcr_goal_slow_stats:\n");
3159 seq_printf(seq, "\t\thits: %llu\n",
3160 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3161 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3163 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3164 seq_printf(seq, "\t\textents_scanned: %u\n",
3165 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3166 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3167 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3169 /* CR_ANY_FREE stats */
3170 seq_puts(seq, "\tcr_any_free_stats:\n");
3171 seq_printf(seq, "\t\thits: %llu\n",
3172 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3174 seq, "\t\tgroups_considered: %llu\n",
3175 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3176 seq_printf(seq, "\t\textents_scanned: %u\n",
3177 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3178 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3179 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3182 seq_printf(seq, "\textents_scanned: %u\n",
3183 atomic_read(&sbi->s_bal_ex_scanned));
3184 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3185 seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3186 atomic_read(&sbi->s_bal_len_goals));
3187 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3188 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3189 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3190 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3191 atomic_read(&sbi->s_mb_buddies_generated),
3192 ext4_get_groups_count(sb));
3193 seq_printf(seq, "\tbuddies_time_used: %llu\n",
3194 atomic64_read(&sbi->s_mb_generation_time));
3195 seq_printf(seq, "\tpreallocated: %u\n",
3196 atomic_read(&sbi->s_mb_preallocated));
3197 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3201 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3203 struct super_block *sb = pde_data(file_inode(seq->file));
3204 unsigned long position;
3206 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3208 position = *pos + 1;
3209 return (void *) ((unsigned long) position);
3212 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3214 struct super_block *sb = pde_data(file_inode(seq->file));
3215 unsigned long position;
3218 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3220 position = *pos + 1;
3221 return (void *) ((unsigned long) position);
3224 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3226 struct super_block *sb = pde_data(file_inode(seq->file));
3227 struct ext4_sb_info *sbi = EXT4_SB(sb);
3228 unsigned long position = ((unsigned long) v);
3229 struct ext4_group_info *grp;
3233 if (position >= MB_NUM_ORDERS(sb)) {
3234 position -= MB_NUM_ORDERS(sb);
3236 seq_puts(seq, "avg_fragment_size_lists:\n");
3239 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3240 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3241 bb_avg_fragment_size_node)
3243 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3244 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3245 (unsigned int)position, count);
3249 if (position == 0) {
3250 seq_printf(seq, "optimize_scan: %d\n",
3251 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3252 seq_puts(seq, "max_free_order_lists:\n");
3255 read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3256 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3257 bb_largest_free_order_node)
3259 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3260 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3261 (unsigned int)position, count);
3266 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3270 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3271 .start = ext4_mb_seq_structs_summary_start,
3272 .next = ext4_mb_seq_structs_summary_next,
3273 .stop = ext4_mb_seq_structs_summary_stop,
3274 .show = ext4_mb_seq_structs_summary_show,
3277 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3279 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3280 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3287 * Allocate the top-level s_group_info array for the specified number
3290 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3292 struct ext4_sb_info *sbi = EXT4_SB(sb);
3294 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3296 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3297 EXT4_DESC_PER_BLOCK_BITS(sb);
3298 if (size <= sbi->s_group_info_size)
3301 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3302 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3303 if (!new_groupinfo) {
3304 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3308 old_groupinfo = rcu_dereference(sbi->s_group_info);
3310 memcpy(new_groupinfo, old_groupinfo,
3311 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3313 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3314 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3316 ext4_kvfree_array_rcu(old_groupinfo);
3317 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3318 sbi->s_group_info_size);
3322 /* Create and initialize ext4_group_info data for the given group. */
3323 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3324 struct ext4_group_desc *desc)
3328 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3329 struct ext4_sb_info *sbi = EXT4_SB(sb);
3330 struct ext4_group_info **meta_group_info;
3331 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3334 * First check if this group is the first of a reserved block.
3335 * If it's true, we have to allocate a new table of pointers
3336 * to ext4_group_info structures
3338 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3339 metalen = sizeof(*meta_group_info) <<
3340 EXT4_DESC_PER_BLOCK_BITS(sb);
3341 meta_group_info = kmalloc(metalen, GFP_NOFS);
3342 if (meta_group_info == NULL) {
3343 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3344 "for a buddy group");
3348 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3352 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3353 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3355 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3356 if (meta_group_info[i] == NULL) {
3357 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3358 goto exit_group_info;
3360 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3361 &(meta_group_info[i]->bb_state));
3364 * initialize bb_free to be able to skip
3365 * empty groups without initialization
3367 if (ext4_has_group_desc_csum(sb) &&
3368 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3369 meta_group_info[i]->bb_free =
3370 ext4_free_clusters_after_init(sb, group, desc);
3372 meta_group_info[i]->bb_free =
3373 ext4_free_group_clusters(sb, desc);
3376 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3377 init_rwsem(&meta_group_info[i]->alloc_sem);
3378 meta_group_info[i]->bb_free_root = RB_ROOT;
3379 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3380 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3381 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3382 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */
3383 meta_group_info[i]->bb_group = group;
3385 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3389 /* If a meta_group_info table has been allocated, release it now */
3390 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3391 struct ext4_group_info ***group_info;
3394 group_info = rcu_dereference(sbi->s_group_info);
3395 kfree(group_info[idx]);
3396 group_info[idx] = NULL;
3400 } /* ext4_mb_add_groupinfo */
3402 static int ext4_mb_init_backend(struct super_block *sb)
3404 ext4_group_t ngroups = ext4_get_groups_count(sb);
3406 struct ext4_sb_info *sbi = EXT4_SB(sb);
3408 struct ext4_group_desc *desc;
3409 struct ext4_group_info ***group_info;
3410 struct kmem_cache *cachep;
3412 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3416 sbi->s_buddy_cache = new_inode(sb);
3417 if (sbi->s_buddy_cache == NULL) {
3418 ext4_msg(sb, KERN_ERR, "can't get new inode");
3421 /* To avoid potentially colliding with an valid on-disk inode number,
3422 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3423 * not in the inode hash, so it should never be found by iget(), but
3424 * this will avoid confusion if it ever shows up during debugging. */
3425 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3426 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3427 for (i = 0; i < ngroups; i++) {
3429 desc = ext4_get_group_desc(sb, i, NULL);
3431 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3434 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3438 if (ext4_has_feature_flex_bg(sb)) {
3439 /* a single flex group is supposed to be read by a single IO.
3440 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3441 * unsigned integer, so the maximum shift is 32.
3443 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3444 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3447 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3448 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3449 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3451 sbi->s_mb_prefetch = 32;
3453 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3454 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3456 * now many real IOs to prefetch within a single allocation at
3457 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related
3458 * optimization we shouldn't try to load too many groups, at some point
3459 * we should start to use what we've got in memory.
3460 * with an average random access time 5ms, it'd take a second to get
3461 * 200 groups (* N with flex_bg), so let's make this limit 4
3463 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3464 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3465 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3470 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3472 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3475 kmem_cache_free(cachep, grp);
3477 i = sbi->s_group_info_size;
3479 group_info = rcu_dereference(sbi->s_group_info);
3481 kfree(group_info[i]);
3483 iput(sbi->s_buddy_cache);
3486 kvfree(rcu_dereference(sbi->s_group_info));
3491 static void ext4_groupinfo_destroy_slabs(void)
3495 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3496 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3497 ext4_groupinfo_caches[i] = NULL;
3501 static int ext4_groupinfo_create_slab(size_t size)
3503 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3505 int blocksize_bits = order_base_2(size);
3506 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3507 struct kmem_cache *cachep;
3509 if (cache_index >= NR_GRPINFO_CACHES)
3512 if (unlikely(cache_index < 0))
3515 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3516 if (ext4_groupinfo_caches[cache_index]) {
3517 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3518 return 0; /* Already created */
3521 slab_size = offsetof(struct ext4_group_info,
3522 bb_counters[blocksize_bits + 2]);
3524 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3525 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3528 ext4_groupinfo_caches[cache_index] = cachep;
3530 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3533 "EXT4-fs: no memory for groupinfo slab cache\n");
3540 static void ext4_discard_work(struct work_struct *work)
3542 struct ext4_sb_info *sbi = container_of(work,
3543 struct ext4_sb_info, s_discard_work);
3544 struct super_block *sb = sbi->s_sb;
3545 struct ext4_free_data *fd, *nfd;
3546 struct ext4_buddy e4b;
3547 LIST_HEAD(discard_list);
3548 ext4_group_t grp, load_grp;
3551 spin_lock(&sbi->s_md_lock);
3552 list_splice_init(&sbi->s_discard_list, &discard_list);
3553 spin_unlock(&sbi->s_md_lock);
3555 load_grp = UINT_MAX;
3556 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3558 * If filesystem is umounting or no memory or suffering
3559 * from no space, give up the discard
3561 if ((sb->s_flags & SB_ACTIVE) && !err &&
3562 !atomic_read(&sbi->s_retry_alloc_pending)) {
3563 grp = fd->efd_group;
3564 if (grp != load_grp) {
3565 if (load_grp != UINT_MAX)
3566 ext4_mb_unload_buddy(&e4b);
3568 err = ext4_mb_load_buddy(sb, grp, &e4b);
3570 kmem_cache_free(ext4_free_data_cachep, fd);
3571 load_grp = UINT_MAX;
3578 ext4_lock_group(sb, grp);
3579 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3580 fd->efd_start_cluster + fd->efd_count - 1, 1);
3581 ext4_unlock_group(sb, grp);
3583 kmem_cache_free(ext4_free_data_cachep, fd);
3586 if (load_grp != UINT_MAX)
3587 ext4_mb_unload_buddy(&e4b);
3590 int ext4_mb_init(struct super_block *sb)
3592 struct ext4_sb_info *sbi = EXT4_SB(sb);
3594 unsigned offset, offset_incr;
3598 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3600 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3601 if (sbi->s_mb_offsets == NULL) {
3606 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3607 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3608 if (sbi->s_mb_maxs == NULL) {
3613 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3617 /* order 0 is regular bitmap */
3618 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3619 sbi->s_mb_offsets[0] = 0;
3623 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3624 max = sb->s_blocksize << 2;
3626 sbi->s_mb_offsets[i] = offset;
3627 sbi->s_mb_maxs[i] = max;
3628 offset += offset_incr;
3629 offset_incr = offset_incr >> 1;
3632 } while (i < MB_NUM_ORDERS(sb));
3634 sbi->s_mb_avg_fragment_size =
3635 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3637 if (!sbi->s_mb_avg_fragment_size) {
3641 sbi->s_mb_avg_fragment_size_locks =
3642 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3644 if (!sbi->s_mb_avg_fragment_size_locks) {
3648 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3649 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3650 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3652 sbi->s_mb_largest_free_orders =
3653 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3655 if (!sbi->s_mb_largest_free_orders) {
3659 sbi->s_mb_largest_free_orders_locks =
3660 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3662 if (!sbi->s_mb_largest_free_orders_locks) {
3666 for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3667 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3668 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3671 spin_lock_init(&sbi->s_md_lock);
3672 sbi->s_mb_free_pending = 0;
3673 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3674 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3675 INIT_LIST_HEAD(&sbi->s_discard_list);
3676 INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3677 atomic_set(&sbi->s_retry_alloc_pending, 0);
3679 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3680 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3681 sbi->s_mb_stats = MB_DEFAULT_STATS;
3682 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3683 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3684 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3687 * The default group preallocation is 512, which for 4k block
3688 * sizes translates to 2 megabytes. However for bigalloc file
3689 * systems, this is probably too big (i.e, if the cluster size
3690 * is 1 megabyte, then group preallocation size becomes half a
3691 * gigabyte!). As a default, we will keep a two megabyte
3692 * group pralloc size for cluster sizes up to 64k, and after
3693 * that, we will force a minimum group preallocation size of
3694 * 32 clusters. This translates to 8 megs when the cluster
3695 * size is 256k, and 32 megs when the cluster size is 1 meg,
3696 * which seems reasonable as a default.
3698 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3699 sbi->s_cluster_bits, 32);
3701 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3702 * to the lowest multiple of s_stripe which is bigger than
3703 * the s_mb_group_prealloc as determined above. We want
3704 * the preallocation size to be an exact multiple of the
3705 * RAID stripe size so that preallocations don't fragment
3708 if (sbi->s_stripe > 1) {
3709 sbi->s_mb_group_prealloc = roundup(
3710 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3713 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3714 if (sbi->s_locality_groups == NULL) {
3718 for_each_possible_cpu(i) {
3719 struct ext4_locality_group *lg;
3720 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3721 mutex_init(&lg->lg_mutex);
3722 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3723 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3724 spin_lock_init(&lg->lg_prealloc_lock);
3727 if (bdev_nonrot(sb->s_bdev))
3728 sbi->s_mb_max_linear_groups = 0;
3730 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3731 /* init file for buddy data */
3732 ret = ext4_mb_init_backend(sb);
3734 goto out_free_locality_groups;
3738 out_free_locality_groups:
3739 free_percpu(sbi->s_locality_groups);
3740 sbi->s_locality_groups = NULL;
3742 kfree(sbi->s_mb_avg_fragment_size);
3743 kfree(sbi->s_mb_avg_fragment_size_locks);
3744 kfree(sbi->s_mb_largest_free_orders);
3745 kfree(sbi->s_mb_largest_free_orders_locks);
3746 kfree(sbi->s_mb_offsets);
3747 sbi->s_mb_offsets = NULL;
3748 kfree(sbi->s_mb_maxs);
3749 sbi->s_mb_maxs = NULL;
3753 /* need to called with the ext4 group lock held */
3754 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3756 struct ext4_prealloc_space *pa;
3757 struct list_head *cur, *tmp;
3760 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3761 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3762 list_del(&pa->pa_group_list);
3764 kmem_cache_free(ext4_pspace_cachep, pa);
3769 void ext4_mb_release(struct super_block *sb)
3771 ext4_group_t ngroups = ext4_get_groups_count(sb);
3773 int num_meta_group_infos;
3774 struct ext4_group_info *grinfo, ***group_info;
3775 struct ext4_sb_info *sbi = EXT4_SB(sb);
3776 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3779 if (test_opt(sb, DISCARD)) {
3781 * wait the discard work to drain all of ext4_free_data
3783 flush_work(&sbi->s_discard_work);
3784 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3787 if (sbi->s_group_info) {
3788 for (i = 0; i < ngroups; i++) {
3790 grinfo = ext4_get_group_info(sb, i);
3793 mb_group_bb_bitmap_free(grinfo);
3794 ext4_lock_group(sb, i);
3795 count = ext4_mb_cleanup_pa(grinfo);
3797 mb_debug(sb, "mballoc: %d PAs left\n",
3799 ext4_unlock_group(sb, i);
3800 kmem_cache_free(cachep, grinfo);
3802 num_meta_group_infos = (ngroups +
3803 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3804 EXT4_DESC_PER_BLOCK_BITS(sb);
3806 group_info = rcu_dereference(sbi->s_group_info);
3807 for (i = 0; i < num_meta_group_infos; i++)
3808 kfree(group_info[i]);
3812 kfree(sbi->s_mb_avg_fragment_size);
3813 kfree(sbi->s_mb_avg_fragment_size_locks);
3814 kfree(sbi->s_mb_largest_free_orders);
3815 kfree(sbi->s_mb_largest_free_orders_locks);
3816 kfree(sbi->s_mb_offsets);
3817 kfree(sbi->s_mb_maxs);
3818 iput(sbi->s_buddy_cache);
3819 if (sbi->s_mb_stats) {
3820 ext4_msg(sb, KERN_INFO,
3821 "mballoc: %u blocks %u reqs (%u success)",
3822 atomic_read(&sbi->s_bal_allocated),
3823 atomic_read(&sbi->s_bal_reqs),
3824 atomic_read(&sbi->s_bal_success));
3825 ext4_msg(sb, KERN_INFO,
3826 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3827 "%u 2^N hits, %u breaks, %u lost",
3828 atomic_read(&sbi->s_bal_ex_scanned),
3829 atomic_read(&sbi->s_bal_groups_scanned),
3830 atomic_read(&sbi->s_bal_goals),
3831 atomic_read(&sbi->s_bal_2orders),
3832 atomic_read(&sbi->s_bal_breaks),
3833 atomic_read(&sbi->s_mb_lost_chunks));
3834 ext4_msg(sb, KERN_INFO,
3835 "mballoc: %u generated and it took %llu",
3836 atomic_read(&sbi->s_mb_buddies_generated),
3837 atomic64_read(&sbi->s_mb_generation_time));
3838 ext4_msg(sb, KERN_INFO,
3839 "mballoc: %u preallocated, %u discarded",
3840 atomic_read(&sbi->s_mb_preallocated),
3841 atomic_read(&sbi->s_mb_discarded));
3844 free_percpu(sbi->s_locality_groups);
3847 static inline int ext4_issue_discard(struct super_block *sb,
3848 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3850 ext4_fsblk_t discard_block;
3852 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3853 ext4_group_first_block_no(sb, block_group));
3854 count = EXT4_C2B(EXT4_SB(sb), count);
3855 trace_ext4_discard_blocks(sb,
3856 (unsigned long long) discard_block, count);
3858 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3861 static void ext4_free_data_in_buddy(struct super_block *sb,
3862 struct ext4_free_data *entry)
3864 struct ext4_buddy e4b;
3865 struct ext4_group_info *db;
3868 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3869 entry->efd_count, entry->efd_group, entry);
3871 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3872 /* we expect to find existing buddy because it's pinned */
3875 spin_lock(&EXT4_SB(sb)->s_md_lock);
3876 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3877 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3880 /* there are blocks to put in buddy to make them really free */
3881 count += entry->efd_count;
3882 ext4_lock_group(sb, entry->efd_group);
3883 /* Take it out of per group rb tree */
3884 rb_erase(&entry->efd_node, &(db->bb_free_root));
3885 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3888 * Clear the trimmed flag for the group so that the next
3889 * ext4_trim_fs can trim it.
3890 * If the volume is mounted with -o discard, online discard
3891 * is supported and the free blocks will be trimmed online.
3893 if (!test_opt(sb, DISCARD))
3894 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3896 if (!db->bb_free_root.rb_node) {
3897 /* No more items in the per group rb tree
3898 * balance refcounts from ext4_mb_free_metadata()
3900 folio_put(e4b.bd_buddy_folio);
3901 folio_put(e4b.bd_bitmap_folio);
3903 ext4_unlock_group(sb, entry->efd_group);
3904 ext4_mb_unload_buddy(&e4b);
3906 mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3910 * This function is called by the jbd2 layer once the commit has finished,
3911 * so we know we can free the blocks that were released with that commit.
3913 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3915 struct ext4_sb_info *sbi = EXT4_SB(sb);
3916 struct ext4_free_data *entry, *tmp;
3917 LIST_HEAD(freed_data_list);
3918 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3921 list_replace_init(s_freed_head, &freed_data_list);
3923 list_for_each_entry(entry, &freed_data_list, efd_list)
3924 ext4_free_data_in_buddy(sb, entry);
3926 if (test_opt(sb, DISCARD)) {
3927 spin_lock(&sbi->s_md_lock);
3928 wake = list_empty(&sbi->s_discard_list);
3929 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3930 spin_unlock(&sbi->s_md_lock);
3932 queue_work(system_unbound_wq, &sbi->s_discard_work);
3934 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3935 kmem_cache_free(ext4_free_data_cachep, entry);
3939 int __init ext4_init_mballoc(void)
3941 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3942 SLAB_RECLAIM_ACCOUNT);
3943 if (ext4_pspace_cachep == NULL)
3946 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3947 SLAB_RECLAIM_ACCOUNT);
3948 if (ext4_ac_cachep == NULL)
3951 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3952 SLAB_RECLAIM_ACCOUNT);
3953 if (ext4_free_data_cachep == NULL)
3959 kmem_cache_destroy(ext4_ac_cachep);
3961 kmem_cache_destroy(ext4_pspace_cachep);
3966 void ext4_exit_mballoc(void)
3969 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3970 * before destroying the slab cache.
3973 kmem_cache_destroy(ext4_pspace_cachep);
3974 kmem_cache_destroy(ext4_ac_cachep);
3975 kmem_cache_destroy(ext4_free_data_cachep);
3976 ext4_groupinfo_destroy_slabs();
3979 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3980 #define EXT4_MB_SYNC_UPDATE 0x0002
3982 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3983 ext4_group_t group, ext4_grpblk_t blkoff,
3984 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3986 struct ext4_sb_info *sbi = EXT4_SB(sb);
3987 struct buffer_head *bitmap_bh = NULL;
3988 struct ext4_group_desc *gdp;
3989 struct buffer_head *gdp_bh;
3991 unsigned int i, already, changed = len;
3993 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3994 handle, sb, state, group, blkoff, len,
3995 flags, ret_changed);
3999 bitmap_bh = ext4_read_block_bitmap(sb, group);
4000 if (IS_ERR(bitmap_bh))
4001 return PTR_ERR(bitmap_bh);
4004 BUFFER_TRACE(bitmap_bh, "getting write access");
4005 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4012 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4017 BUFFER_TRACE(gdp_bh, "get_write_access");
4018 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4024 ext4_lock_group(sb, group);
4025 if (ext4_has_group_desc_csum(sb) &&
4026 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4027 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4028 ext4_free_group_clusters_set(sb, gdp,
4029 ext4_free_clusters_after_init(sb, group, gdp));
4032 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4034 for (i = 0; i < len; i++)
4035 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4038 changed = len - already;
4042 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4043 ext4_free_group_clusters_set(sb, gdp,
4044 ext4_free_group_clusters(sb, gdp) - changed);
4046 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4047 ext4_free_group_clusters_set(sb, gdp,
4048 ext4_free_group_clusters(sb, gdp) + changed);
4051 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4052 ext4_group_desc_csum_set(sb, group, gdp);
4053 ext4_unlock_group(sb, group);
4055 *ret_changed = changed;
4057 if (sbi->s_log_groups_per_flex) {
4058 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4059 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4060 s_flex_groups, flex_group);
4063 atomic64_sub(changed, &fg->free_clusters);
4065 atomic64_add(changed, &fg->free_clusters);
4068 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4071 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4075 if (flags & EXT4_MB_SYNC_UPDATE) {
4076 sync_dirty_buffer(bitmap_bh);
4077 sync_dirty_buffer(gdp_bh);
4086 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4087 * Returns 0 if success or error code
4089 static noinline_for_stack int
4090 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4091 handle_t *handle, unsigned int reserv_clstrs)
4093 struct ext4_group_desc *gdp;
4094 struct ext4_sb_info *sbi;
4095 struct super_block *sb;
4099 ext4_grpblk_t changed;
4101 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4102 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4107 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4110 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4111 ext4_free_group_clusters(sb, gdp));
4113 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4114 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4115 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4116 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4117 "fs metadata", block, block+len);
4118 /* File system mounted not to panic on error
4119 * Fix the bitmap and return EFSCORRUPTED
4120 * We leak some of the blocks here.
4122 err = ext4_mb_mark_context(handle, sb, true,
4123 ac->ac_b_ex.fe_group,
4124 ac->ac_b_ex.fe_start,
4128 err = -EFSCORRUPTED;
4132 #ifdef AGGRESSIVE_CHECK
4133 flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4135 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4136 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4139 if (err && changed == 0)
4142 #ifdef AGGRESSIVE_CHECK
4143 BUG_ON(changed != ac->ac_b_ex.fe_len);
4145 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4147 * Now reduce the dirty block count also. Should not go negative
4149 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4150 /* release all the reserved blocks if non delalloc */
4151 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4158 * Idempotent helper for Ext4 fast commit replay path to set the state of
4159 * blocks in bitmaps and update counters.
4161 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4162 int len, bool state)
4164 struct ext4_sb_info *sbi = EXT4_SB(sb);
4166 ext4_grpblk_t blkoff;
4168 unsigned int clen, thisgrp_len;
4171 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4174 * Check to see if we are freeing blocks across a group
4176 * In case of flex_bg, this can happen that (block, len) may
4177 * span across more than one group. In that case we need to
4178 * get the corresponding group metadata to work with.
4179 * For this we have goto again loop.
4181 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4182 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4183 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4185 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4186 ext4_error(sb, "Marking blocks in system zone - "
4187 "Block = %llu, len = %u",
4188 block, thisgrp_len);
4192 err = ext4_mb_mark_context(NULL, sb, state,
4193 group, blkoff, clen,
4194 EXT4_MB_BITMAP_MARKED_CHECK |
4195 EXT4_MB_SYNC_UPDATE,
4200 block += thisgrp_len;
4207 * here we normalize request for locality group
4208 * Group request are normalized to s_mb_group_prealloc, which goes to
4209 * s_strip if we set the same via mount option.
4210 * s_mb_group_prealloc can be configured via
4211 * /sys/fs/ext4/<partition>/mb_group_prealloc
4213 * XXX: should we try to preallocate more than the group has now?
4215 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4217 struct super_block *sb = ac->ac_sb;
4218 struct ext4_locality_group *lg = ac->ac_lg;
4221 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4222 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4226 * This function returns the next element to look at during inode
4227 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4228 * (ei->i_prealloc_lock)
4230 * new_start The start of the range we want to compare
4231 * cur_start The existing start that we are comparing against
4232 * node The node of the rb_tree
4234 static inline struct rb_node*
4235 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4237 if (new_start < cur_start)
4238 return node->rb_left;
4240 return node->rb_right;
4244 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4245 ext4_lblk_t start, loff_t end)
4247 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4248 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4249 struct ext4_prealloc_space *tmp_pa;
4250 ext4_lblk_t tmp_pa_start;
4252 struct rb_node *iter;
4254 read_lock(&ei->i_prealloc_lock);
4255 for (iter = ei->i_prealloc_node.rb_node; iter;
4256 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4257 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4258 pa_node.inode_node);
4259 tmp_pa_start = tmp_pa->pa_lstart;
4260 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4262 spin_lock(&tmp_pa->pa_lock);
4263 if (tmp_pa->pa_deleted == 0)
4264 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4265 spin_unlock(&tmp_pa->pa_lock);
4267 read_unlock(&ei->i_prealloc_lock);
4271 * Given an allocation context "ac" and a range "start", "end", check
4272 * and adjust boundaries if the range overlaps with any of the existing
4273 * preallocatoins stored in the corresponding inode of the allocation context.
4276 * ac allocation context
4277 * start start of the new range
4278 * end end of the new range
4281 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4282 ext4_lblk_t *start, loff_t *end)
4284 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4285 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4286 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4287 struct rb_node *iter;
4288 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4289 loff_t new_end, tmp_pa_end, left_pa_end = -1;
4295 * Adjust the normalized range so that it doesn't overlap with any
4296 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4297 * so it doesn't change underneath us.
4299 read_lock(&ei->i_prealloc_lock);
4301 /* Step 1: find any one immediate neighboring PA of the normalized range */
4302 for (iter = ei->i_prealloc_node.rb_node; iter;
4303 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4304 tmp_pa_start, iter)) {
4305 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4306 pa_node.inode_node);
4307 tmp_pa_start = tmp_pa->pa_lstart;
4308 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4310 /* PA must not overlap original request */
4311 spin_lock(&tmp_pa->pa_lock);
4312 if (tmp_pa->pa_deleted == 0)
4313 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4314 ac->ac_o_ex.fe_logical < tmp_pa_start));
4315 spin_unlock(&tmp_pa->pa_lock);
4319 * Step 2: check if the found PA is left or right neighbor and
4320 * get the other neighbor
4323 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4324 struct rb_node *tmp;
4327 tmp = rb_next(&left_pa->pa_node.inode_node);
4329 right_pa = rb_entry(tmp,
4330 struct ext4_prealloc_space,
4331 pa_node.inode_node);
4334 struct rb_node *tmp;
4337 tmp = rb_prev(&right_pa->pa_node.inode_node);
4339 left_pa = rb_entry(tmp,
4340 struct ext4_prealloc_space,
4341 pa_node.inode_node);
4346 /* Step 3: get the non deleted neighbors */
4348 for (iter = &left_pa->pa_node.inode_node;;
4349 iter = rb_prev(iter)) {
4355 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4356 pa_node.inode_node);
4358 spin_lock(&tmp_pa->pa_lock);
4359 if (tmp_pa->pa_deleted == 0) {
4360 spin_unlock(&tmp_pa->pa_lock);
4363 spin_unlock(&tmp_pa->pa_lock);
4368 for (iter = &right_pa->pa_node.inode_node;;
4369 iter = rb_next(iter)) {
4375 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4376 pa_node.inode_node);
4378 spin_lock(&tmp_pa->pa_lock);
4379 if (tmp_pa->pa_deleted == 0) {
4380 spin_unlock(&tmp_pa->pa_lock);
4383 spin_unlock(&tmp_pa->pa_lock);
4388 left_pa_end = pa_logical_end(sbi, left_pa);
4389 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4393 right_pa_start = right_pa->pa_lstart;
4394 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4397 /* Step 4: trim our normalized range to not overlap with the neighbors */
4399 if (left_pa_end > new_start)
4400 new_start = left_pa_end;
4404 if (right_pa_start < new_end)
4405 new_end = right_pa_start;
4407 read_unlock(&ei->i_prealloc_lock);
4409 /* XXX: extra loop to check we really don't overlap preallocations */
4410 ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4417 * Normalization means making request better in terms of
4418 * size and alignment
4420 static noinline_for_stack void
4421 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4422 struct ext4_allocation_request *ar)
4424 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4425 struct ext4_super_block *es = sbi->s_es;
4427 loff_t size, start_off, end;
4428 loff_t orig_size __maybe_unused;
4431 /* do normalize only data requests, metadata requests
4432 do not need preallocation */
4433 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4436 /* sometime caller may want exact blocks */
4437 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4440 /* caller may indicate that preallocation isn't
4441 * required (it's a tail, for example) */
4442 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4445 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4446 ext4_mb_normalize_group_request(ac);
4450 bsbits = ac->ac_sb->s_blocksize_bits;
4452 /* first, let's learn actual file size
4453 * given current request is allocated */
4454 size = extent_logical_end(sbi, &ac->ac_o_ex);
4455 size = size << bsbits;
4456 if (size < i_size_read(ac->ac_inode))
4457 size = i_size_read(ac->ac_inode);
4460 /* max size of free chunks */
4463 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
4464 (req <= (size) || max <= (chunk_size))
4466 /* first, try to predict filesize */
4467 /* XXX: should this table be tunable? */
4469 if (size <= 16 * 1024) {
4471 } else if (size <= 32 * 1024) {
4473 } else if (size <= 64 * 1024) {
4475 } else if (size <= 128 * 1024) {
4477 } else if (size <= 256 * 1024) {
4479 } else if (size <= 512 * 1024) {
4481 } else if (size <= 1024 * 1024) {
4483 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4484 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4485 (21 - bsbits)) << 21;
4486 size = 2 * 1024 * 1024;
4487 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4488 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4489 (22 - bsbits)) << 22;
4490 size = 4 * 1024 * 1024;
4491 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4492 (8<<20)>>bsbits, max, 8 * 1024)) {
4493 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4494 (23 - bsbits)) << 23;
4495 size = 8 * 1024 * 1024;
4497 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4498 size = (loff_t) EXT4_C2B(sbi,
4499 ac->ac_o_ex.fe_len) << bsbits;
4501 size = size >> bsbits;
4502 start = start_off >> bsbits;
4505 * For tiny groups (smaller than 8MB) the chosen allocation
4506 * alignment may be larger than group size. Make sure the
4507 * alignment does not move allocation to a different group which
4508 * makes mballoc fail assertions later.
4510 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4511 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4513 /* avoid unnecessary preallocation that may trigger assertions */
4514 if (start + size > EXT_MAX_BLOCKS)
4515 size = EXT_MAX_BLOCKS - start;
4517 /* don't cover already allocated blocks in selected range */
4518 if (ar->pleft && start <= ar->lleft) {
4519 size -= ar->lleft + 1 - start;
4520 start = ar->lleft + 1;
4522 if (ar->pright && start + size - 1 >= ar->lright)
4523 size -= start + size - ar->lright;
4526 * Trim allocation request for filesystems with artificially small
4529 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4530 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4534 ext4_mb_pa_adjust_overlap(ac, &start, &end);
4539 * In this function "start" and "size" are normalized for better
4540 * alignment and length such that we could preallocate more blocks.
4541 * This normalization is done such that original request of
4542 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4543 * "size" boundaries.
4544 * (Note fe_len can be relaxed since FS block allocation API does not
4545 * provide gurantee on number of contiguous blocks allocation since that
4546 * depends upon free space left, etc).
4547 * In case of inode pa, later we use the allocated blocks
4548 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4549 * range of goal/best blocks [start, size] to put it at the
4550 * ac_o_ex.fe_logical extent of this inode.
4551 * (See ext4_mb_use_inode_pa() for more details)
4553 if (start + size <= ac->ac_o_ex.fe_logical ||
4554 start > ac->ac_o_ex.fe_logical) {
4555 ext4_msg(ac->ac_sb, KERN_ERR,
4556 "start %lu, size %lu, fe_logical %lu",
4557 (unsigned long) start, (unsigned long) size,
4558 (unsigned long) ac->ac_o_ex.fe_logical);
4561 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4563 /* now prepare goal request */
4565 /* XXX: is it better to align blocks WRT to logical
4566 * placement or satisfy big request as is */
4567 ac->ac_g_ex.fe_logical = start;
4568 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4569 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4571 /* define goal start in order to merge */
4572 if (ar->pright && (ar->lright == (start + size)) &&
4573 ar->pright >= size &&
4574 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4575 /* merge to the right */
4576 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4577 &ac->ac_g_ex.fe_group,
4578 &ac->ac_g_ex.fe_start);
4579 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4581 if (ar->pleft && (ar->lleft + 1 == start) &&
4582 ar->pleft + 1 < ext4_blocks_count(es)) {
4583 /* merge to the left */
4584 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4585 &ac->ac_g_ex.fe_group,
4586 &ac->ac_g_ex.fe_start);
4587 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4590 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4594 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4596 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4598 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4599 atomic_inc(&sbi->s_bal_reqs);
4600 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4601 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4602 atomic_inc(&sbi->s_bal_success);
4604 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4605 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4606 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4609 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4610 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4611 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4612 atomic_inc(&sbi->s_bal_goals);
4613 /* did we allocate as much as normalizer originally wanted? */
4614 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4615 atomic_inc(&sbi->s_bal_len_goals);
4617 if (ac->ac_found > sbi->s_mb_max_to_scan)
4618 atomic_inc(&sbi->s_bal_breaks);
4621 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4622 trace_ext4_mballoc_alloc(ac);
4624 trace_ext4_mballoc_prealloc(ac);
4628 * Called on failure; free up any blocks from the inode PA for this
4629 * context. We don't need this for MB_GROUP_PA because we only change
4630 * pa_free in ext4_mb_release_context(), but on failure, we've already
4631 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4633 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4635 struct ext4_prealloc_space *pa = ac->ac_pa;
4636 struct ext4_buddy e4b;
4640 if (ac->ac_f_ex.fe_len == 0)
4642 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4643 if (WARN_RATELIMIT(err,
4644 "ext4: mb_load_buddy failed (%d)", err))
4646 * This should never happen since we pin the
4647 * pages in the ext4_allocation_context so
4648 * ext4_mb_load_buddy() should never fail.
4651 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4652 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4653 ac->ac_f_ex.fe_len);
4654 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4655 ext4_mb_unload_buddy(&e4b);
4658 if (pa->pa_type == MB_INODE_PA) {
4659 spin_lock(&pa->pa_lock);
4660 pa->pa_free += ac->ac_b_ex.fe_len;
4661 spin_unlock(&pa->pa_lock);
4666 * use blocks preallocated to inode
4668 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4669 struct ext4_prealloc_space *pa)
4671 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4676 /* found preallocated blocks, use them */
4677 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4678 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4679 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4680 len = EXT4_NUM_B2C(sbi, end - start);
4681 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4682 &ac->ac_b_ex.fe_start);
4683 ac->ac_b_ex.fe_len = len;
4684 ac->ac_status = AC_STATUS_FOUND;
4687 BUG_ON(start < pa->pa_pstart);
4688 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4689 BUG_ON(pa->pa_free < len);
4690 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4693 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4697 * use blocks preallocated to locality group
4699 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4700 struct ext4_prealloc_space *pa)
4702 unsigned int len = ac->ac_o_ex.fe_len;
4704 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4705 &ac->ac_b_ex.fe_group,
4706 &ac->ac_b_ex.fe_start);
4707 ac->ac_b_ex.fe_len = len;
4708 ac->ac_status = AC_STATUS_FOUND;
4711 /* we don't correct pa_pstart or pa_len here to avoid
4712 * possible race when the group is being loaded concurrently
4713 * instead we correct pa later, after blocks are marked
4714 * in on-disk bitmap -- see ext4_mb_release_context()
4715 * Other CPUs are prevented from allocating from this pa by lg_mutex
4717 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4718 pa->pa_lstart, len, pa);
4722 * Return the prealloc space that have minimal distance
4723 * from the goal block. @cpa is the prealloc
4724 * space that is having currently known minimal distance
4725 * from the goal block.
4727 static struct ext4_prealloc_space *
4728 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4729 struct ext4_prealloc_space *pa,
4730 struct ext4_prealloc_space *cpa)
4732 ext4_fsblk_t cur_distance, new_distance;
4735 atomic_inc(&pa->pa_count);
4738 cur_distance = abs(goal_block - cpa->pa_pstart);
4739 new_distance = abs(goal_block - pa->pa_pstart);
4741 if (cur_distance <= new_distance)
4744 /* drop the previous reference */
4745 atomic_dec(&cpa->pa_count);
4746 atomic_inc(&pa->pa_count);
4751 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4754 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4755 struct ext4_prealloc_space *pa)
4757 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4760 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4764 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4765 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4766 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4767 * consistent with ext4_mb_find_by_goal.
4769 start = pa->pa_pstart +
4770 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4771 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4774 if (ac->ac_g_ex.fe_len > pa->pa_len -
4775 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4782 * search goal blocks in preallocated space
4784 static noinline_for_stack bool
4785 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4787 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4789 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4790 struct ext4_locality_group *lg;
4791 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4792 struct rb_node *iter;
4793 ext4_fsblk_t goal_block;
4795 /* only data can be preallocated */
4796 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4800 * first, try per-file preallocation by searching the inode pa rbtree.
4802 * Here, we can't do a direct traversal of the tree because
4803 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4804 * deleted and that can cause direct traversal to skip some entries.
4806 read_lock(&ei->i_prealloc_lock);
4808 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4813 * Step 1: Find a pa with logical start immediately adjacent to the
4814 * original logical start. This could be on the left or right.
4816 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4818 for (iter = ei->i_prealloc_node.rb_node; iter;
4819 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4820 tmp_pa->pa_lstart, iter)) {
4821 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4822 pa_node.inode_node);
4826 * Step 2: The adjacent pa might be to the right of logical start, find
4827 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4828 * logical start is towards the left of original request's logical start
4830 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4831 struct rb_node *tmp;
4832 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4835 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4836 pa_node.inode_node);
4839 * If there is no adjacent pa to the left then finding
4840 * an overlapping pa is not possible hence stop searching
4847 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4850 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4851 * the first non deleted adjacent pa. After this step we should have a
4852 * valid tmp_pa which is guaranteed to be non deleted.
4854 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4857 * no non deleted left adjacent pa, so stop searching
4862 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4863 pa_node.inode_node);
4864 spin_lock(&tmp_pa->pa_lock);
4865 if (tmp_pa->pa_deleted == 0) {
4867 * We will keep holding the pa_lock from
4868 * this point on because we don't want group discard
4869 * to delete this pa underneath us. Since group
4870 * discard is anyways an ENOSPC operation it
4871 * should be okay for it to wait a few more cycles.
4875 spin_unlock(&tmp_pa->pa_lock);
4879 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4880 BUG_ON(tmp_pa->pa_deleted == 1);
4883 * Step 4: We now have the non deleted left adjacent pa. Only this
4884 * pa can possibly satisfy the request hence check if it overlaps
4885 * original logical start and stop searching if it doesn't.
4887 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4888 spin_unlock(&tmp_pa->pa_lock);
4892 /* non-extent files can't have physical blocks past 2^32 */
4893 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4894 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4895 EXT4_MAX_BLOCK_FILE_PHYS)) {
4897 * Since PAs don't overlap, we won't find any other PA to
4900 spin_unlock(&tmp_pa->pa_lock);
4904 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4905 atomic_inc(&tmp_pa->pa_count);
4906 ext4_mb_use_inode_pa(ac, tmp_pa);
4907 spin_unlock(&tmp_pa->pa_lock);
4908 read_unlock(&ei->i_prealloc_lock);
4912 * We found a valid overlapping pa but couldn't use it because
4913 * it had no free blocks. This should ideally never happen
4916 * 1. When a new inode pa is added to rbtree it must have
4917 * pa_free > 0 since otherwise we won't actually need
4920 * 2. An inode pa that is in the rbtree can only have it's
4921 * pa_free become zero when another thread calls:
4922 * ext4_mb_new_blocks
4923 * ext4_mb_use_preallocated
4924 * ext4_mb_use_inode_pa
4926 * 3. Further, after the above calls make pa_free == 0, we will
4927 * immediately remove it from the rbtree in:
4928 * ext4_mb_new_blocks
4929 * ext4_mb_release_context
4932 * 4. Since the pa_free becoming 0 and pa_free getting removed
4933 * from tree both happen in ext4_mb_new_blocks, which is always
4934 * called with i_data_sem held for data allocations, we can be
4935 * sure that another process will never see a pa in rbtree with
4938 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4940 spin_unlock(&tmp_pa->pa_lock);
4942 read_unlock(&ei->i_prealloc_lock);
4944 /* can we use group allocation? */
4945 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4948 /* inode may have no locality group for some reason */
4952 order = fls(ac->ac_o_ex.fe_len) - 1;
4953 if (order > PREALLOC_TB_SIZE - 1)
4954 /* The max size of hash table is PREALLOC_TB_SIZE */
4955 order = PREALLOC_TB_SIZE - 1;
4957 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4959 * search for the prealloc space that is having
4960 * minimal distance from the goal block.
4962 for (i = order; i < PREALLOC_TB_SIZE; i++) {
4964 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4966 spin_lock(&tmp_pa->pa_lock);
4967 if (tmp_pa->pa_deleted == 0 &&
4968 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4970 cpa = ext4_mb_check_group_pa(goal_block,
4973 spin_unlock(&tmp_pa->pa_lock);
4978 ext4_mb_use_group_pa(ac, cpa);
4985 * the function goes through all preallocation in this group and marks them
4986 * used in in-core bitmap. buddy must be generated from this bitmap
4987 * Need to be called with ext4 group lock held
4989 static noinline_for_stack
4990 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4993 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4994 struct ext4_prealloc_space *pa;
4995 struct list_head *cur;
4996 ext4_group_t groupnr;
4997 ext4_grpblk_t start;
4998 int preallocated = 0;
5004 /* all form of preallocation discards first load group,
5005 * so the only competing code is preallocation use.
5006 * we don't need any locking here
5007 * notice we do NOT ignore preallocations with pa_deleted
5008 * otherwise we could leave used blocks available for
5009 * allocation in buddy when concurrent ext4_mb_put_pa()
5010 * is dropping preallocation
5012 list_for_each(cur, &grp->bb_prealloc_list) {
5013 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5014 spin_lock(&pa->pa_lock);
5015 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5018 spin_unlock(&pa->pa_lock);
5019 if (unlikely(len == 0))
5021 BUG_ON(groupnr != group);
5022 mb_set_bits(bitmap, start, len);
5023 preallocated += len;
5025 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5028 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5029 struct ext4_prealloc_space *pa)
5031 struct ext4_inode_info *ei;
5033 if (pa->pa_deleted) {
5034 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5035 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5042 if (pa->pa_type == MB_INODE_PA) {
5043 ei = EXT4_I(pa->pa_inode);
5044 atomic_dec(&ei->i_prealloc_active);
5048 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5051 BUG_ON(atomic_read(&pa->pa_count));
5052 BUG_ON(pa->pa_deleted == 0);
5053 kmem_cache_free(ext4_pspace_cachep, pa);
5056 static void ext4_mb_pa_callback(struct rcu_head *head)
5058 struct ext4_prealloc_space *pa;
5060 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5061 ext4_mb_pa_free(pa);
5065 * drops a reference to preallocated space descriptor
5066 * if this was the last reference and the space is consumed
5068 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5069 struct super_block *sb, struct ext4_prealloc_space *pa)
5072 ext4_fsblk_t grp_blk;
5073 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5075 /* in this short window concurrent discard can set pa_deleted */
5076 spin_lock(&pa->pa_lock);
5077 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5078 spin_unlock(&pa->pa_lock);
5082 if (pa->pa_deleted == 1) {
5083 spin_unlock(&pa->pa_lock);
5087 ext4_mb_mark_pa_deleted(sb, pa);
5088 spin_unlock(&pa->pa_lock);
5090 grp_blk = pa->pa_pstart;
5092 * If doing group-based preallocation, pa_pstart may be in the
5093 * next group when pa is used up
5095 if (pa->pa_type == MB_GROUP_PA)
5098 grp = ext4_get_group_number(sb, grp_blk);
5103 * P1 (buddy init) P2 (regular allocation)
5104 * find block B in PA
5105 * copy on-disk bitmap to buddy
5106 * mark B in on-disk bitmap
5107 * drop PA from group
5108 * mark all PAs in buddy
5110 * thus, P1 initializes buddy with B available. to prevent this
5111 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5114 ext4_lock_group(sb, grp);
5115 list_del(&pa->pa_group_list);
5116 ext4_unlock_group(sb, grp);
5118 if (pa->pa_type == MB_INODE_PA) {
5119 write_lock(pa->pa_node_lock.inode_lock);
5120 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5121 write_unlock(pa->pa_node_lock.inode_lock);
5122 ext4_mb_pa_free(pa);
5124 spin_lock(pa->pa_node_lock.lg_lock);
5125 list_del_rcu(&pa->pa_node.lg_list);
5126 spin_unlock(pa->pa_node_lock.lg_lock);
5127 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5131 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5133 struct rb_node **iter = &root->rb_node, *parent = NULL;
5134 struct ext4_prealloc_space *iter_pa, *new_pa;
5135 ext4_lblk_t iter_start, new_start;
5138 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5139 pa_node.inode_node);
5140 new_pa = rb_entry(new, struct ext4_prealloc_space,
5141 pa_node.inode_node);
5142 iter_start = iter_pa->pa_lstart;
5143 new_start = new_pa->pa_lstart;
5146 if (new_start < iter_start)
5147 iter = &((*iter)->rb_left);
5149 iter = &((*iter)->rb_right);
5152 rb_link_node(new, parent, iter);
5153 rb_insert_color(new, root);
5157 * creates new preallocated space for given inode
5159 static noinline_for_stack void
5160 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5162 struct super_block *sb = ac->ac_sb;
5163 struct ext4_sb_info *sbi = EXT4_SB(sb);
5164 struct ext4_prealloc_space *pa;
5165 struct ext4_group_info *grp;
5166 struct ext4_inode_info *ei;
5168 /* preallocate only when found space is larger then requested */
5169 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5170 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5171 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5172 BUG_ON(ac->ac_pa == NULL);
5176 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5177 struct ext4_free_extent ex = {
5178 .fe_logical = ac->ac_g_ex.fe_logical,
5179 .fe_len = ac->ac_orig_goal_len,
5181 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5182 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5185 * We can't allocate as much as normalizer wants, so we try
5186 * to get proper lstart to cover the original request, except
5187 * when the goal doesn't cover the original request as below:
5189 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5190 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5192 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5193 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5196 * Use the below logic for adjusting best extent as it keeps
5197 * fragmentation in check while ensuring logical range of best
5198 * extent doesn't overflow out of goal extent:
5200 * 1. Check if best ex can be kept at end of goal (before
5201 * cr_best_avail trimmed it) and still cover original start
5202 * 2. Else, check if best ex can be kept at start of goal and
5203 * still cover original end
5204 * 3. Else, keep the best ex at start of original request.
5206 ex.fe_len = ac->ac_b_ex.fe_len;
5208 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5209 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5212 ex.fe_logical = ac->ac_g_ex.fe_logical;
5213 if (o_ex_end <= extent_logical_end(sbi, &ex))
5216 ex.fe_logical = ac->ac_o_ex.fe_logical;
5218 ac->ac_b_ex.fe_logical = ex.fe_logical;
5220 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5221 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5224 pa->pa_lstart = ac->ac_b_ex.fe_logical;
5225 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5226 pa->pa_len = ac->ac_b_ex.fe_len;
5227 pa->pa_free = pa->pa_len;
5228 spin_lock_init(&pa->pa_lock);
5229 INIT_LIST_HEAD(&pa->pa_group_list);
5231 pa->pa_type = MB_INODE_PA;
5233 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5234 pa->pa_len, pa->pa_lstart);
5235 trace_ext4_mb_new_inode_pa(ac, pa);
5237 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5238 ext4_mb_use_inode_pa(ac, pa);
5240 ei = EXT4_I(ac->ac_inode);
5241 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5245 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5246 pa->pa_inode = ac->ac_inode;
5248 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5250 write_lock(pa->pa_node_lock.inode_lock);
5251 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5252 write_unlock(pa->pa_node_lock.inode_lock);
5253 atomic_inc(&ei->i_prealloc_active);
5257 * creates new preallocated space for locality group inodes belongs to
5259 static noinline_for_stack void
5260 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5262 struct super_block *sb = ac->ac_sb;
5263 struct ext4_locality_group *lg;
5264 struct ext4_prealloc_space *pa;
5265 struct ext4_group_info *grp;
5267 /* preallocate only when found space is larger then requested */
5268 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5269 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5270 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5271 BUG_ON(ac->ac_pa == NULL);
5275 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5276 pa->pa_lstart = pa->pa_pstart;
5277 pa->pa_len = ac->ac_b_ex.fe_len;
5278 pa->pa_free = pa->pa_len;
5279 spin_lock_init(&pa->pa_lock);
5280 INIT_LIST_HEAD(&pa->pa_node.lg_list);
5281 INIT_LIST_HEAD(&pa->pa_group_list);
5283 pa->pa_type = MB_GROUP_PA;
5285 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5286 pa->pa_len, pa->pa_lstart);
5287 trace_ext4_mb_new_group_pa(ac, pa);
5289 ext4_mb_use_group_pa(ac, pa);
5290 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5292 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5298 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5299 pa->pa_inode = NULL;
5301 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5304 * We will later add the new pa to the right bucket
5305 * after updating the pa_free in ext4_mb_release_context
5309 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5311 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5312 ext4_mb_new_group_pa(ac);
5314 ext4_mb_new_inode_pa(ac);
5318 * finds all unused blocks in on-disk bitmap, frees them in
5319 * in-core bitmap and buddy.
5320 * @pa must be unlinked from inode and group lists, so that
5321 * nobody else can find/use it.
5322 * the caller MUST hold group/inode locks.
5323 * TODO: optimize the case when there are no in-core structures yet
5325 static noinline_for_stack void
5326 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5327 struct ext4_prealloc_space *pa)
5329 struct super_block *sb = e4b->bd_sb;
5330 struct ext4_sb_info *sbi = EXT4_SB(sb);
5335 unsigned long long grp_blk_start;
5338 BUG_ON(pa->pa_deleted == 0);
5339 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5340 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5341 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5342 end = bit + pa->pa_len;
5345 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5348 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5349 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5350 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5351 (unsigned) next - bit, (unsigned) group);
5354 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5355 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5356 EXT4_C2B(sbi, bit)),
5358 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5361 if (free != pa->pa_free) {
5362 ext4_msg(e4b->bd_sb, KERN_CRIT,
5363 "pa %p: logic %lu, phys. %lu, len %d",
5364 pa, (unsigned long) pa->pa_lstart,
5365 (unsigned long) pa->pa_pstart,
5367 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5370 * pa is already deleted so we use the value obtained
5371 * from the bitmap and continue.
5374 atomic_add(free, &sbi->s_mb_discarded);
5377 static noinline_for_stack void
5378 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5379 struct ext4_prealloc_space *pa)
5381 struct super_block *sb = e4b->bd_sb;
5385 trace_ext4_mb_release_group_pa(sb, pa);
5386 BUG_ON(pa->pa_deleted == 0);
5387 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5388 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5389 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5390 e4b->bd_group, group, pa->pa_pstart);
5393 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5394 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5395 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5399 * releases all preallocations in given group
5401 * first, we need to decide discard policy:
5402 * - when do we discard
5404 * - how many do we discard
5405 * 1) how many requested
5407 static noinline_for_stack int
5408 ext4_mb_discard_group_preallocations(struct super_block *sb,
5409 ext4_group_t group, int *busy)
5411 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5412 struct buffer_head *bitmap_bh = NULL;
5413 struct ext4_prealloc_space *pa, *tmp;
5415 struct ext4_buddy e4b;
5416 struct ext4_inode_info *ei;
5422 mb_debug(sb, "discard preallocation for group %u\n", group);
5423 if (list_empty(&grp->bb_prealloc_list))
5426 bitmap_bh = ext4_read_block_bitmap(sb, group);
5427 if (IS_ERR(bitmap_bh)) {
5428 err = PTR_ERR(bitmap_bh);
5429 ext4_error_err(sb, -err,
5430 "Error %d reading block bitmap for %u",
5435 err = ext4_mb_load_buddy(sb, group, &e4b);
5437 ext4_warning(sb, "Error %d loading buddy information for %u",
5443 ext4_lock_group(sb, group);
5444 list_for_each_entry_safe(pa, tmp,
5445 &grp->bb_prealloc_list, pa_group_list) {
5446 spin_lock(&pa->pa_lock);
5447 if (atomic_read(&pa->pa_count)) {
5448 spin_unlock(&pa->pa_lock);
5452 if (pa->pa_deleted) {
5453 spin_unlock(&pa->pa_lock);
5457 /* seems this one can be freed ... */
5458 ext4_mb_mark_pa_deleted(sb, pa);
5461 this_cpu_inc(discard_pa_seq);
5463 /* we can trust pa_free ... */
5464 free += pa->pa_free;
5466 spin_unlock(&pa->pa_lock);
5468 list_del(&pa->pa_group_list);
5469 list_add(&pa->u.pa_tmp_list, &list);
5472 /* now free all selected PAs */
5473 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5475 /* remove from object (inode or locality group) */
5476 if (pa->pa_type == MB_GROUP_PA) {
5477 spin_lock(pa->pa_node_lock.lg_lock);
5478 list_del_rcu(&pa->pa_node.lg_list);
5479 spin_unlock(pa->pa_node_lock.lg_lock);
5481 write_lock(pa->pa_node_lock.inode_lock);
5482 ei = EXT4_I(pa->pa_inode);
5483 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5484 write_unlock(pa->pa_node_lock.inode_lock);
5487 list_del(&pa->u.pa_tmp_list);
5489 if (pa->pa_type == MB_GROUP_PA) {
5490 ext4_mb_release_group_pa(&e4b, pa);
5491 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5493 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5494 ext4_mb_pa_free(pa);
5498 ext4_unlock_group(sb, group);
5499 ext4_mb_unload_buddy(&e4b);
5502 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5503 free, group, grp->bb_free);
5508 * releases all non-used preallocated blocks for given inode
5510 * It's important to discard preallocations under i_data_sem
5511 * We don't want another block to be served from the prealloc
5512 * space when we are discarding the inode prealloc space.
5514 * FIXME!! Make sure it is valid at all the call sites
5516 void ext4_discard_preallocations(struct inode *inode)
5518 struct ext4_inode_info *ei = EXT4_I(inode);
5519 struct super_block *sb = inode->i_sb;
5520 struct buffer_head *bitmap_bh = NULL;
5521 struct ext4_prealloc_space *pa, *tmp;
5522 ext4_group_t group = 0;
5524 struct ext4_buddy e4b;
5525 struct rb_node *iter;
5528 if (!S_ISREG(inode->i_mode))
5531 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5534 mb_debug(sb, "discard preallocation for inode %lu\n",
5536 trace_ext4_discard_preallocations(inode,
5537 atomic_read(&ei->i_prealloc_active));
5540 /* first, collect all pa's in the inode */
5541 write_lock(&ei->i_prealloc_lock);
5542 for (iter = rb_first(&ei->i_prealloc_node); iter;
5543 iter = rb_next(iter)) {
5544 pa = rb_entry(iter, struct ext4_prealloc_space,
5545 pa_node.inode_node);
5546 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5548 spin_lock(&pa->pa_lock);
5549 if (atomic_read(&pa->pa_count)) {
5550 /* this shouldn't happen often - nobody should
5551 * use preallocation while we're discarding it */
5552 spin_unlock(&pa->pa_lock);
5553 write_unlock(&ei->i_prealloc_lock);
5554 ext4_msg(sb, KERN_ERR,
5555 "uh-oh! used pa while discarding");
5557 schedule_timeout_uninterruptible(HZ);
5561 if (pa->pa_deleted == 0) {
5562 ext4_mb_mark_pa_deleted(sb, pa);
5563 spin_unlock(&pa->pa_lock);
5564 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5565 list_add(&pa->u.pa_tmp_list, &list);
5569 /* someone is deleting pa right now */
5570 spin_unlock(&pa->pa_lock);
5571 write_unlock(&ei->i_prealloc_lock);
5573 /* we have to wait here because pa_deleted
5574 * doesn't mean pa is already unlinked from
5575 * the list. as we might be called from
5576 * ->clear_inode() the inode will get freed
5577 * and concurrent thread which is unlinking
5578 * pa from inode's list may access already
5579 * freed memory, bad-bad-bad */
5581 /* XXX: if this happens too often, we can
5582 * add a flag to force wait only in case
5583 * of ->clear_inode(), but not in case of
5584 * regular truncate */
5585 schedule_timeout_uninterruptible(HZ);
5588 write_unlock(&ei->i_prealloc_lock);
5590 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5591 BUG_ON(pa->pa_type != MB_INODE_PA);
5592 group = ext4_get_group_number(sb, pa->pa_pstart);
5594 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5595 GFP_NOFS|__GFP_NOFAIL);
5597 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5602 bitmap_bh = ext4_read_block_bitmap(sb, group);
5603 if (IS_ERR(bitmap_bh)) {
5604 err = PTR_ERR(bitmap_bh);
5605 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5607 ext4_mb_unload_buddy(&e4b);
5611 ext4_lock_group(sb, group);
5612 list_del(&pa->pa_group_list);
5613 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5614 ext4_unlock_group(sb, group);
5616 ext4_mb_unload_buddy(&e4b);
5619 list_del(&pa->u.pa_tmp_list);
5620 ext4_mb_pa_free(pa);
5624 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5626 struct ext4_prealloc_space *pa;
5628 BUG_ON(ext4_pspace_cachep == NULL);
5629 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5632 atomic_set(&pa->pa_count, 1);
5637 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5639 struct ext4_prealloc_space *pa = ac->ac_pa;
5643 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5645 * current function is only called due to an error or due to
5646 * len of found blocks < len of requested blocks hence the PA has not
5647 * been added to grp->bb_prealloc_list. So we don't need to lock it
5650 ext4_mb_pa_free(pa);
5653 #ifdef CONFIG_EXT4_DEBUG
5654 static inline void ext4_mb_show_pa(struct super_block *sb)
5656 ext4_group_t i, ngroups;
5658 if (ext4_forced_shutdown(sb))
5661 ngroups = ext4_get_groups_count(sb);
5662 mb_debug(sb, "groups: ");
5663 for (i = 0; i < ngroups; i++) {
5664 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5665 struct ext4_prealloc_space *pa;
5666 ext4_grpblk_t start;
5667 struct list_head *cur;
5671 ext4_lock_group(sb, i);
5672 list_for_each(cur, &grp->bb_prealloc_list) {
5673 pa = list_entry(cur, struct ext4_prealloc_space,
5675 spin_lock(&pa->pa_lock);
5676 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5678 spin_unlock(&pa->pa_lock);
5679 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5682 ext4_unlock_group(sb, i);
5683 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5688 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5690 struct super_block *sb = ac->ac_sb;
5692 if (ext4_forced_shutdown(sb))
5695 mb_debug(sb, "Can't allocate:"
5696 " Allocation context details:");
5697 mb_debug(sb, "status %u flags 0x%x",
5698 ac->ac_status, ac->ac_flags);
5699 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5700 "goal %lu/%lu/%lu@%lu, "
5701 "best %lu/%lu/%lu@%lu cr %d",
5702 (unsigned long)ac->ac_o_ex.fe_group,
5703 (unsigned long)ac->ac_o_ex.fe_start,
5704 (unsigned long)ac->ac_o_ex.fe_len,
5705 (unsigned long)ac->ac_o_ex.fe_logical,
5706 (unsigned long)ac->ac_g_ex.fe_group,
5707 (unsigned long)ac->ac_g_ex.fe_start,
5708 (unsigned long)ac->ac_g_ex.fe_len,
5709 (unsigned long)ac->ac_g_ex.fe_logical,
5710 (unsigned long)ac->ac_b_ex.fe_group,
5711 (unsigned long)ac->ac_b_ex.fe_start,
5712 (unsigned long)ac->ac_b_ex.fe_len,
5713 (unsigned long)ac->ac_b_ex.fe_logical,
5714 (int)ac->ac_criteria);
5715 mb_debug(sb, "%u found", ac->ac_found);
5716 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5718 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5719 "group pa" : "inode pa");
5720 ext4_mb_show_pa(sb);
5723 static inline void ext4_mb_show_pa(struct super_block *sb)
5726 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5728 ext4_mb_show_pa(ac->ac_sb);
5733 * We use locality group preallocation for small size file. The size of the
5734 * file is determined by the current size or the resulting size after
5735 * allocation which ever is larger
5737 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5739 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5741 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5742 int bsbits = ac->ac_sb->s_blocksize_bits;
5744 bool inode_pa_eligible, group_pa_eligible;
5746 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5749 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5752 group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5753 inode_pa_eligible = true;
5754 size = extent_logical_end(sbi, &ac->ac_o_ex);
5755 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5758 /* No point in using inode preallocation for closed files */
5759 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5760 !inode_is_open_for_write(ac->ac_inode))
5761 inode_pa_eligible = false;
5763 size = max(size, isize);
5764 /* Don't use group allocation for large files */
5765 if (size > sbi->s_mb_stream_request)
5766 group_pa_eligible = false;
5768 if (!group_pa_eligible) {
5769 if (inode_pa_eligible)
5770 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5772 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5776 BUG_ON(ac->ac_lg != NULL);
5778 * locality group prealloc space are per cpu. The reason for having
5779 * per cpu locality group is to reduce the contention between block
5780 * request from multiple CPUs.
5782 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5784 /* we're going to use group allocation */
5785 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5787 /* serialize all allocations in the group */
5788 mutex_lock(&ac->ac_lg->lg_mutex);
5791 static noinline_for_stack void
5792 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5793 struct ext4_allocation_request *ar)
5795 struct super_block *sb = ar->inode->i_sb;
5796 struct ext4_sb_info *sbi = EXT4_SB(sb);
5797 struct ext4_super_block *es = sbi->s_es;
5801 ext4_grpblk_t block;
5803 /* we can't allocate > group size */
5806 /* just a dirty hack to filter too big requests */
5807 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5808 len = EXT4_CLUSTERS_PER_GROUP(sb);
5810 /* start searching from the goal */
5812 if (goal < le32_to_cpu(es->s_first_data_block) ||
5813 goal >= ext4_blocks_count(es))
5814 goal = le32_to_cpu(es->s_first_data_block);
5815 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5817 /* set up allocation goals */
5818 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5819 ac->ac_status = AC_STATUS_CONTINUE;
5821 ac->ac_inode = ar->inode;
5822 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5823 ac->ac_o_ex.fe_group = group;
5824 ac->ac_o_ex.fe_start = block;
5825 ac->ac_o_ex.fe_len = len;
5826 ac->ac_g_ex = ac->ac_o_ex;
5827 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5828 ac->ac_flags = ar->flags;
5830 /* we have to define context: we'll work with a file or
5831 * locality group. this is a policy, actually */
5832 ext4_mb_group_or_file(ac);
5834 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5835 "left: %u/%u, right %u/%u to %swritable\n",
5836 (unsigned) ar->len, (unsigned) ar->logical,
5837 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5838 (unsigned) ar->lleft, (unsigned) ar->pleft,
5839 (unsigned) ar->lright, (unsigned) ar->pright,
5840 inode_is_open_for_write(ar->inode) ? "" : "non-");
5843 static noinline_for_stack void
5844 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5845 struct ext4_locality_group *lg,
5846 int order, int total_entries)
5848 ext4_group_t group = 0;
5849 struct ext4_buddy e4b;
5850 LIST_HEAD(discard_list);
5851 struct ext4_prealloc_space *pa, *tmp;
5853 mb_debug(sb, "discard locality group preallocation\n");
5855 spin_lock(&lg->lg_prealloc_lock);
5856 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5858 lockdep_is_held(&lg->lg_prealloc_lock)) {
5859 spin_lock(&pa->pa_lock);
5860 if (atomic_read(&pa->pa_count)) {
5862 * This is the pa that we just used
5863 * for block allocation. So don't
5866 spin_unlock(&pa->pa_lock);
5869 if (pa->pa_deleted) {
5870 spin_unlock(&pa->pa_lock);
5873 /* only lg prealloc space */
5874 BUG_ON(pa->pa_type != MB_GROUP_PA);
5876 /* seems this one can be freed ... */
5877 ext4_mb_mark_pa_deleted(sb, pa);
5878 spin_unlock(&pa->pa_lock);
5880 list_del_rcu(&pa->pa_node.lg_list);
5881 list_add(&pa->u.pa_tmp_list, &discard_list);
5884 if (total_entries <= 5) {
5886 * we want to keep only 5 entries
5887 * allowing it to grow to 8. This
5888 * mak sure we don't call discard
5889 * soon for this list.
5894 spin_unlock(&lg->lg_prealloc_lock);
5896 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5899 group = ext4_get_group_number(sb, pa->pa_pstart);
5900 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5901 GFP_NOFS|__GFP_NOFAIL);
5903 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5907 ext4_lock_group(sb, group);
5908 list_del(&pa->pa_group_list);
5909 ext4_mb_release_group_pa(&e4b, pa);
5910 ext4_unlock_group(sb, group);
5912 ext4_mb_unload_buddy(&e4b);
5913 list_del(&pa->u.pa_tmp_list);
5914 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5919 * We have incremented pa_count. So it cannot be freed at this
5920 * point. Also we hold lg_mutex. So no parallel allocation is
5921 * possible from this lg. That means pa_free cannot be updated.
5923 * A parallel ext4_mb_discard_group_preallocations is possible.
5924 * which can cause the lg_prealloc_list to be updated.
5927 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5929 int order, added = 0, lg_prealloc_count = 1;
5930 struct super_block *sb = ac->ac_sb;
5931 struct ext4_locality_group *lg = ac->ac_lg;
5932 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5934 order = fls(pa->pa_free) - 1;
5935 if (order > PREALLOC_TB_SIZE - 1)
5936 /* The max size of hash table is PREALLOC_TB_SIZE */
5937 order = PREALLOC_TB_SIZE - 1;
5938 /* Add the prealloc space to lg */
5939 spin_lock(&lg->lg_prealloc_lock);
5940 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5942 lockdep_is_held(&lg->lg_prealloc_lock)) {
5943 spin_lock(&tmp_pa->pa_lock);
5944 if (tmp_pa->pa_deleted) {
5945 spin_unlock(&tmp_pa->pa_lock);
5948 if (!added && pa->pa_free < tmp_pa->pa_free) {
5949 /* Add to the tail of the previous entry */
5950 list_add_tail_rcu(&pa->pa_node.lg_list,
5951 &tmp_pa->pa_node.lg_list);
5954 * we want to count the total
5955 * number of entries in the list
5958 spin_unlock(&tmp_pa->pa_lock);
5959 lg_prealloc_count++;
5962 list_add_tail_rcu(&pa->pa_node.lg_list,
5963 &lg->lg_prealloc_list[order]);
5964 spin_unlock(&lg->lg_prealloc_lock);
5966 /* Now trim the list to be not more than 8 elements */
5967 if (lg_prealloc_count > 8)
5968 ext4_mb_discard_lg_preallocations(sb, lg,
5969 order, lg_prealloc_count);
5973 * release all resource we used in allocation
5975 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5977 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5978 struct ext4_prealloc_space *pa = ac->ac_pa;
5980 if (pa->pa_type == MB_GROUP_PA) {
5981 /* see comment in ext4_mb_use_group_pa() */
5982 spin_lock(&pa->pa_lock);
5983 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5984 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5985 pa->pa_free -= ac->ac_b_ex.fe_len;
5986 pa->pa_len -= ac->ac_b_ex.fe_len;
5987 spin_unlock(&pa->pa_lock);
5990 * We want to add the pa to the right bucket.
5991 * Remove it from the list and while adding
5992 * make sure the list to which we are adding
5995 if (likely(pa->pa_free)) {
5996 spin_lock(pa->pa_node_lock.lg_lock);
5997 list_del_rcu(&pa->pa_node.lg_list);
5998 spin_unlock(pa->pa_node_lock.lg_lock);
5999 ext4_mb_add_n_trim(ac);
6003 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6005 if (ac->ac_bitmap_folio)
6006 folio_put(ac->ac_bitmap_folio);
6007 if (ac->ac_buddy_folio)
6008 folio_put(ac->ac_buddy_folio);
6009 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6010 mutex_unlock(&ac->ac_lg->lg_mutex);
6011 ext4_mb_collect_stats(ac);
6014 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6016 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6018 int freed = 0, busy = 0;
6021 trace_ext4_mb_discard_preallocations(sb, needed);
6024 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6026 for (i = 0; i < ngroups && needed > 0; i++) {
6027 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6033 if (needed > 0 && busy && ++retry < 3) {
6041 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6042 struct ext4_allocation_context *ac, u64 *seq)
6048 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6053 seq_retry = ext4_get_discard_pa_seq_sum();
6054 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6055 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6061 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6066 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6067 * linearly starting at the goal block and also excludes the blocks which
6068 * are going to be in use after fast commit replay.
6071 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6073 struct buffer_head *bitmap_bh;
6074 struct super_block *sb = ar->inode->i_sb;
6075 struct ext4_sb_info *sbi = EXT4_SB(sb);
6076 ext4_group_t group, nr;
6077 ext4_grpblk_t blkoff;
6078 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6079 ext4_grpblk_t i = 0;
6080 ext4_fsblk_t goal, block;
6081 struct ext4_super_block *es = sbi->s_es;
6084 if (goal < le32_to_cpu(es->s_first_data_block) ||
6085 goal >= ext4_blocks_count(es))
6086 goal = le32_to_cpu(es->s_first_data_block);
6089 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6090 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6091 bitmap_bh = ext4_read_block_bitmap(sb, group);
6092 if (IS_ERR(bitmap_bh)) {
6093 *errp = PTR_ERR(bitmap_bh);
6094 pr_warn("Failed to read block bitmap\n");
6099 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6103 if (ext4_fc_replay_check_excluded(sb,
6104 ext4_group_first_block_no(sb, group) +
6105 EXT4_C2B(sbi, i))) {
6114 if (++group >= ext4_get_groups_count(sb))
6125 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6126 ext4_mb_mark_bb(sb, block, 1, true);
6134 * Main entry point into mballoc to allocate blocks
6135 * it tries to use preallocation first, then falls back
6136 * to usual allocation
6138 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6139 struct ext4_allocation_request *ar, int *errp)
6141 struct ext4_allocation_context *ac = NULL;
6142 struct ext4_sb_info *sbi;
6143 struct super_block *sb;
6144 ext4_fsblk_t block = 0;
6145 unsigned int inquota = 0;
6146 unsigned int reserv_clstrs = 0;
6151 sb = ar->inode->i_sb;
6154 trace_ext4_request_blocks(ar);
6155 if (sbi->s_mount_state & EXT4_FC_REPLAY)
6156 return ext4_mb_new_blocks_simple(ar, errp);
6158 /* Allow to use superuser reservation for quota file */
6159 if (ext4_is_quota_file(ar->inode))
6160 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6162 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6163 /* Without delayed allocation we need to verify
6164 * there is enough free blocks to do block allocation
6165 * and verify allocation doesn't exceed the quota limits.
6168 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6170 /* let others to free the space */
6172 ar->len = ar->len >> 1;
6175 ext4_mb_show_pa(sb);
6179 reserv_clstrs = ar->len;
6180 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6181 dquot_alloc_block_nofail(ar->inode,
6182 EXT4_C2B(sbi, ar->len));
6185 dquot_alloc_block(ar->inode,
6186 EXT4_C2B(sbi, ar->len))) {
6188 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6199 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6206 ext4_mb_initialize_context(ac, ar);
6208 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6209 seq = this_cpu_read(discard_pa_seq);
6210 if (!ext4_mb_use_preallocated(ac)) {
6211 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6212 ext4_mb_normalize_request(ac, ar);
6214 *errp = ext4_mb_pa_alloc(ac);
6218 /* allocate space in core */
6219 *errp = ext4_mb_regular_allocator(ac);
6221 * pa allocated above is added to grp->bb_prealloc_list only
6222 * when we were able to allocate some block i.e. when
6223 * ac->ac_status == AC_STATUS_FOUND.
6224 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6225 * So we have to free this pa here itself.
6228 ext4_mb_pa_put_free(ac);
6229 ext4_discard_allocated_blocks(ac);
6232 if (ac->ac_status == AC_STATUS_FOUND &&
6233 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6234 ext4_mb_pa_put_free(ac);
6236 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6237 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6239 ext4_discard_allocated_blocks(ac);
6242 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6243 ar->len = ac->ac_b_ex.fe_len;
6246 if (++retries < 3 &&
6247 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6250 * If block allocation fails then the pa allocated above
6251 * needs to be freed here itself.
6253 ext4_mb_pa_put_free(ac);
6259 ac->ac_b_ex.fe_len = 0;
6261 ext4_mb_show_ac(ac);
6263 ext4_mb_release_context(ac);
6264 kmem_cache_free(ext4_ac_cachep, ac);
6266 if (inquota && ar->len < inquota)
6267 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6269 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6270 /* release all the reserved blocks if non delalloc */
6271 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6275 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6281 * We can merge two free data extents only if the physical blocks
6282 * are contiguous, AND the extents were freed by the same transaction,
6283 * AND the blocks are associated with the same group.
6285 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6286 struct ext4_free_data *entry,
6287 struct ext4_free_data *new_entry,
6288 struct rb_root *entry_rb_root)
6290 if ((entry->efd_tid != new_entry->efd_tid) ||
6291 (entry->efd_group != new_entry->efd_group))
6293 if (entry->efd_start_cluster + entry->efd_count ==
6294 new_entry->efd_start_cluster) {
6295 new_entry->efd_start_cluster = entry->efd_start_cluster;
6296 new_entry->efd_count += entry->efd_count;
6297 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6298 entry->efd_start_cluster) {
6299 new_entry->efd_count += entry->efd_count;
6302 spin_lock(&sbi->s_md_lock);
6303 list_del(&entry->efd_list);
6304 spin_unlock(&sbi->s_md_lock);
6305 rb_erase(&entry->efd_node, entry_rb_root);
6306 kmem_cache_free(ext4_free_data_cachep, entry);
6309 static noinline_for_stack void
6310 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6311 struct ext4_free_data *new_entry)
6313 ext4_group_t group = e4b->bd_group;
6314 ext4_grpblk_t cluster;
6315 ext4_grpblk_t clusters = new_entry->efd_count;
6316 struct ext4_free_data *entry;
6317 struct ext4_group_info *db = e4b->bd_info;
6318 struct super_block *sb = e4b->bd_sb;
6319 struct ext4_sb_info *sbi = EXT4_SB(sb);
6320 struct rb_node **n = &db->bb_free_root.rb_node, *node;
6321 struct rb_node *parent = NULL, *new_node;
6323 BUG_ON(!ext4_handle_valid(handle));
6324 BUG_ON(e4b->bd_bitmap_folio == NULL);
6325 BUG_ON(e4b->bd_buddy_folio == NULL);
6327 new_node = &new_entry->efd_node;
6328 cluster = new_entry->efd_start_cluster;
6331 /* first free block exent. We need to
6332 protect buddy cache from being freed,
6333 * otherwise we'll refresh it from
6334 * on-disk bitmap and lose not-yet-available
6336 folio_get(e4b->bd_buddy_folio);
6337 folio_get(e4b->bd_bitmap_folio);
6341 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6342 if (cluster < entry->efd_start_cluster)
6344 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6345 n = &(*n)->rb_right;
6347 ext4_grp_locked_error(sb, group, 0,
6348 ext4_group_first_block_no(sb, group) +
6349 EXT4_C2B(sbi, cluster),
6350 "Block already on to-be-freed list");
6351 kmem_cache_free(ext4_free_data_cachep, new_entry);
6356 rb_link_node(new_node, parent, n);
6357 rb_insert_color(new_node, &db->bb_free_root);
6359 /* Now try to see the extent can be merged to left and right */
6360 node = rb_prev(new_node);
6362 entry = rb_entry(node, struct ext4_free_data, efd_node);
6363 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6364 &(db->bb_free_root));
6367 node = rb_next(new_node);
6369 entry = rb_entry(node, struct ext4_free_data, efd_node);
6370 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6371 &(db->bb_free_root));
6374 spin_lock(&sbi->s_md_lock);
6375 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6376 sbi->s_mb_free_pending += clusters;
6377 spin_unlock(&sbi->s_md_lock);
6380 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6381 unsigned long count)
6383 struct super_block *sb = inode->i_sb;
6385 ext4_grpblk_t blkoff;
6387 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6388 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6389 EXT4_MB_BITMAP_MARKED_CHECK |
6390 EXT4_MB_SYNC_UPDATE,
6395 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6396 * Used by ext4_free_blocks()
6397 * @handle: handle for this transaction
6399 * @block: starting physical block to be freed
6400 * @count: number of blocks to be freed
6401 * @flags: flags used by ext4_free_blocks
6403 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6404 ext4_fsblk_t block, unsigned long count,
6407 struct super_block *sb = inode->i_sb;
6408 struct ext4_group_info *grp;
6409 unsigned int overflow;
6411 ext4_group_t block_group;
6412 struct ext4_sb_info *sbi;
6413 struct ext4_buddy e4b;
6414 unsigned int count_clusters;
6417 ext4_grpblk_t changed;
6421 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6422 !ext4_inode_block_valid(inode, block, count)) {
6423 ext4_error(sb, "Freeing blocks in system zone - "
6424 "Block = %llu, count = %lu", block, count);
6425 /* err = 0. ext4_std_error should be a no op */
6428 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6432 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6434 grp = ext4_get_group_info(sb, block_group);
6435 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6439 * Check to see if we are freeing blocks across a group
6442 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6443 overflow = EXT4_C2B(sbi, bit) + count -
6444 EXT4_BLOCKS_PER_GROUP(sb);
6446 /* The range changed so it's no longer validated */
6447 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6449 count_clusters = EXT4_NUM_B2C(sbi, count);
6450 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6452 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6453 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6454 GFP_NOFS|__GFP_NOFAIL);
6458 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6459 !ext4_inode_block_valid(inode, block, count)) {
6460 ext4_error(sb, "Freeing blocks in system zone - "
6461 "Block = %llu, count = %lu", block, count);
6462 /* err = 0. ext4_std_error should be a no op */
6466 #ifdef AGGRESSIVE_CHECK
6467 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6469 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6470 count_clusters, mark_flags, &changed);
6473 if (err && changed == 0)
6476 #ifdef AGGRESSIVE_CHECK
6477 BUG_ON(changed != count_clusters);
6481 * We need to make sure we don't reuse the freed block until after the
6482 * transaction is committed. We make an exception if the inode is to be
6483 * written in writeback mode since writeback mode has weak data
6484 * consistency guarantees.
6486 if (ext4_handle_valid(handle) &&
6487 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6488 !ext4_should_writeback_data(inode))) {
6489 struct ext4_free_data *new_entry;
6491 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6494 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6495 GFP_NOFS|__GFP_NOFAIL);
6496 new_entry->efd_start_cluster = bit;
6497 new_entry->efd_group = block_group;
6498 new_entry->efd_count = count_clusters;
6499 new_entry->efd_tid = handle->h_transaction->t_tid;
6501 ext4_lock_group(sb, block_group);
6502 ext4_mb_free_metadata(handle, &e4b, new_entry);
6504 if (test_opt(sb, DISCARD)) {
6505 err = ext4_issue_discard(sb, block_group, bit,
6508 * Ignore EOPNOTSUPP error. This is consistent with
6509 * what happens when using journal.
6511 if (err == -EOPNOTSUPP)
6514 ext4_msg(sb, KERN_WARNING, "discard request in"
6515 " group:%u block:%d count:%lu failed"
6516 " with %d", block_group, bit, count,
6519 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6521 ext4_lock_group(sb, block_group);
6522 mb_free_blocks(inode, &e4b, bit, count_clusters);
6525 ext4_unlock_group(sb, block_group);
6528 * on a bigalloc file system, defer the s_freeclusters_counter
6529 * update to the caller (ext4_remove_space and friends) so they
6530 * can determine if a cluster freed here should be rereserved
6532 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6533 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6534 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6535 percpu_counter_add(&sbi->s_freeclusters_counter,
6539 if (overflow && !err) {
6542 ext4_mb_unload_buddy(&e4b);
6543 /* The range changed so it's no longer validated */
6544 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6549 ext4_mb_unload_buddy(&e4b);
6551 ext4_std_error(sb, err);
6555 * ext4_free_blocks() -- Free given blocks and update quota
6556 * @handle: handle for this transaction
6558 * @bh: optional buffer of the block to be freed
6559 * @block: starting physical block to be freed
6560 * @count: number of blocks to be freed
6561 * @flags: flags used by ext4_free_blocks
6563 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6564 struct buffer_head *bh, ext4_fsblk_t block,
6565 unsigned long count, int flags)
6567 struct super_block *sb = inode->i_sb;
6568 unsigned int overflow;
6569 struct ext4_sb_info *sbi;
6575 BUG_ON(block != bh->b_blocknr);
6577 block = bh->b_blocknr;
6580 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6581 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6587 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6588 !ext4_inode_block_valid(inode, block, count)) {
6589 ext4_error(sb, "Freeing blocks not in datazone - "
6590 "block = %llu, count = %lu", block, count);
6593 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6595 ext4_debug("freeing block %llu\n", block);
6596 trace_ext4_free_blocks(inode, block, count, flags);
6598 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6601 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6606 * If the extent to be freed does not begin on a cluster
6607 * boundary, we need to deal with partial clusters at the
6608 * beginning and end of the extent. Normally we will free
6609 * blocks at the beginning or the end unless we are explicitly
6610 * requested to avoid doing so.
6612 overflow = EXT4_PBLK_COFF(sbi, block);
6614 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6615 overflow = sbi->s_cluster_ratio - overflow;
6617 if (count > overflow)
6625 /* The range changed so it's no longer validated */
6626 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6628 overflow = EXT4_LBLK_COFF(sbi, count);
6630 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6631 if (count > overflow)
6636 count += sbi->s_cluster_ratio - overflow;
6637 /* The range changed so it's no longer validated */
6638 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6641 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6643 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6645 for (i = 0; i < count; i++) {
6648 bh = sb_find_get_block(inode->i_sb, block + i);
6649 ext4_forget(handle, is_metadata, inode, bh, block + i);
6653 ext4_mb_clear_bb(handle, inode, block, count, flags);
6657 * ext4_group_add_blocks() -- Add given blocks to an existing group
6658 * @handle: handle to this transaction
6660 * @block: start physical block to add to the block group
6661 * @count: number of blocks to free
6663 * This marks the blocks as free in the bitmap and buddy.
6665 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6666 ext4_fsblk_t block, unsigned long count)
6668 ext4_group_t block_group;
6670 struct ext4_sb_info *sbi = EXT4_SB(sb);
6671 struct ext4_buddy e4b;
6673 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6674 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6675 unsigned long cluster_count = last_cluster - first_cluster + 1;
6676 ext4_grpblk_t changed;
6678 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6680 if (cluster_count == 0)
6683 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6685 * Check to see if we are freeing blocks across a group
6688 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6689 ext4_warning(sb, "too many blocks added to group %u",
6695 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6699 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6700 ext4_error(sb, "Adding blocks in system zones - "
6701 "Block = %llu, count = %lu",
6707 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6708 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6710 if (err && changed == 0)
6713 if (changed != cluster_count)
6714 ext4_error(sb, "bit already cleared in group %u", block_group);
6716 ext4_lock_group(sb, block_group);
6717 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6718 ext4_unlock_group(sb, block_group);
6719 percpu_counter_add(&sbi->s_freeclusters_counter,
6723 ext4_mb_unload_buddy(&e4b);
6725 ext4_std_error(sb, err);
6730 * ext4_trim_extent -- function to TRIM one single free extent in the group
6731 * @sb: super block for the file system
6732 * @start: starting block of the free extent in the alloc. group
6733 * @count: number of blocks to TRIM
6734 * @e4b: ext4 buddy for the group
6736 * Trim "count" blocks starting at "start" in the "group". To assure that no
6737 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6738 * be called with under the group lock.
6740 static int ext4_trim_extent(struct super_block *sb,
6741 int start, int count, struct ext4_buddy *e4b)
6745 struct ext4_free_extent ex;
6746 ext4_group_t group = e4b->bd_group;
6749 trace_ext4_trim_extent(sb, group, start, count);
6751 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6753 ex.fe_start = start;
6754 ex.fe_group = group;
6758 * Mark blocks used, so no one can reuse them while
6761 mb_mark_used(e4b, &ex);
6762 ext4_unlock_group(sb, group);
6763 ret = ext4_issue_discard(sb, group, start, count);
6764 ext4_lock_group(sb, group);
6765 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6769 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6772 unsigned long nr_clusters_in_group;
6774 if (grp < (ext4_get_groups_count(sb) - 1))
6775 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6777 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6778 ext4_group_first_block_no(sb, grp))
6779 >> EXT4_CLUSTER_BITS(sb);
6781 return nr_clusters_in_group - 1;
6784 static bool ext4_trim_interrupted(void)
6786 return fatal_signal_pending(current) || freezing(current);
6789 static int ext4_try_to_trim_range(struct super_block *sb,
6790 struct ext4_buddy *e4b, ext4_grpblk_t start,
6791 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6792 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6793 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6795 ext4_grpblk_t next, count, free_count, last, origin_start;
6796 bool set_trimmed = false;
6799 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6802 last = ext4_last_grp_cluster(sb, e4b->bd_group);
6803 bitmap = e4b->bd_bitmap;
6804 if (start == 0 && max >= last)
6806 origin_start = start;
6807 start = max(e4b->bd_info->bb_first_free, start);
6811 while (start <= max) {
6812 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6816 next = mb_find_next_bit(bitmap, last + 1, start);
6817 if (origin_start == 0 && next >= last)
6820 if ((next - start) >= minblocks) {
6821 int ret = ext4_trim_extent(sb, start, next - start, e4b);
6823 if (ret && ret != -EOPNOTSUPP)
6825 count += next - start;
6827 free_count += next - start;
6830 if (ext4_trim_interrupted())
6833 if (need_resched()) {
6834 ext4_unlock_group(sb, e4b->bd_group);
6836 ext4_lock_group(sb, e4b->bd_group);
6839 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6844 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6850 * ext4_trim_all_free -- function to trim all free space in alloc. group
6851 * @sb: super block for file system
6852 * @group: group to be trimmed
6853 * @start: first group block to examine
6854 * @max: last group block to examine
6855 * @minblocks: minimum extent block count
6857 * ext4_trim_all_free walks through group's block bitmap searching for free
6858 * extents. When the free extent is found, mark it as used in group buddy
6859 * bitmap. Then issue a TRIM command on this extent and free the extent in
6860 * the group buddy bitmap.
6862 static ext4_grpblk_t
6863 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6864 ext4_grpblk_t start, ext4_grpblk_t max,
6865 ext4_grpblk_t minblocks)
6867 struct ext4_buddy e4b;
6870 trace_ext4_trim_all_free(sb, group, start, max);
6872 ret = ext4_mb_load_buddy(sb, group, &e4b);
6874 ext4_warning(sb, "Error %d loading buddy information for %u",
6879 ext4_lock_group(sb, group);
6881 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6882 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6883 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6887 ext4_unlock_group(sb, group);
6888 ext4_mb_unload_buddy(&e4b);
6890 ext4_debug("trimmed %d blocks in the group %d\n",
6897 * ext4_trim_fs() -- trim ioctl handle function
6898 * @sb: superblock for filesystem
6899 * @range: fstrim_range structure
6901 * start: First Byte to trim
6902 * len: number of Bytes to trim from start
6903 * minlen: minimum extent length in Bytes
6904 * ext4_trim_fs goes through all allocation groups containing Bytes from
6905 * start to start+len. For each such a group ext4_trim_all_free function
6906 * is invoked to trim all free space.
6908 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6910 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6911 struct ext4_group_info *grp;
6912 ext4_group_t group, first_group, last_group;
6913 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6914 uint64_t start, end, minlen, trimmed = 0;
6915 ext4_fsblk_t first_data_blk =
6916 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6917 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6920 start = range->start >> sb->s_blocksize_bits;
6921 end = start + (range->len >> sb->s_blocksize_bits) - 1;
6922 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6923 range->minlen >> sb->s_blocksize_bits);
6925 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6926 start >= max_blks ||
6927 range->len < sb->s_blocksize)
6929 /* No point to try to trim less than discard granularity */
6930 if (range->minlen < discard_granularity) {
6931 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6932 discard_granularity >> sb->s_blocksize_bits);
6933 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6936 if (end >= max_blks - 1)
6938 if (end <= first_data_blk)
6940 if (start < first_data_blk)
6941 start = first_data_blk;
6943 /* Determine first and last group to examine based on start and end */
6944 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6945 &first_group, &first_cluster);
6946 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6947 &last_group, &last_cluster);
6949 /* end now represents the last cluster to discard in this group */
6950 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6952 for (group = first_group; group <= last_group; group++) {
6953 if (ext4_trim_interrupted())
6955 grp = ext4_get_group_info(sb, group);
6958 /* We only do this if the grp has never been initialized */
6959 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6960 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6966 * For all the groups except the last one, last cluster will
6967 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6968 * change it for the last group, note that last_cluster is
6969 * already computed earlier by ext4_get_group_no_and_offset()
6971 if (group == last_group)
6973 if (grp->bb_free >= minlen) {
6974 cnt = ext4_trim_all_free(sb, group, first_cluster,
6984 * For every group except the first one, we are sure
6985 * that the first cluster to discard will be cluster #0.
6991 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6994 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6998 /* Iterate all the free extents in the group. */
7000 ext4_mballoc_query_range(
7001 struct super_block *sb,
7003 ext4_grpblk_t start,
7005 ext4_mballoc_query_range_fn formatter,
7010 struct ext4_buddy e4b;
7013 error = ext4_mb_load_buddy(sb, group, &e4b);
7016 bitmap = e4b.bd_bitmap;
7018 ext4_lock_group(sb, group);
7020 start = max(e4b.bd_info->bb_first_free, start);
7021 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7022 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7024 while (start <= end) {
7025 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7028 next = mb_find_next_bit(bitmap, end + 1, start);
7030 ext4_unlock_group(sb, group);
7031 error = formatter(sb, group, start, next - start, priv);
7034 ext4_lock_group(sb, group);
7039 ext4_unlock_group(sb, group);
7041 ext4_mb_unload_buddy(&e4b);
7046 #ifdef CONFIG_EXT4_KUNIT_TESTS
7047 #include "mballoc-test.c"