2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h" /* audit_signal_info() */
55 * SLAB caches for signal bits.
58 static struct kmem_cache *sigqueue_cachep;
60 int print_fatal_signals __read_mostly;
62 static void __user *sig_handler(struct task_struct *t, int sig)
64 return t->sighand->action[sig - 1].sa.sa_handler;
67 static int sig_handler_ignored(void __user *handler, int sig)
69 /* Is it explicitly or implicitly ignored? */
70 return handler == SIG_IGN ||
71 (handler == SIG_DFL && sig_kernel_ignore(sig));
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
78 handler = sig_handler(t, sig);
80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 handler == SIG_DFL && !force)
84 return sig_handler_ignored(handler, sig);
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
90 * Blocked signals are never ignored, since the
91 * signal handler may change by the time it is
94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
97 if (!sig_task_ignored(t, sig, force))
101 * Tracers may want to know about even ignored signals.
107 * Re-calculate pending state from the set of locally pending
108 * signals, globally pending signals, and blocked signals.
110 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
115 switch (_NSIG_WORDS) {
117 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
118 ready |= signal->sig[i] &~ blocked->sig[i];
121 case 4: ready = signal->sig[3] &~ blocked->sig[3];
122 ready |= signal->sig[2] &~ blocked->sig[2];
123 ready |= signal->sig[1] &~ blocked->sig[1];
124 ready |= signal->sig[0] &~ blocked->sig[0];
127 case 2: ready = signal->sig[1] &~ blocked->sig[1];
128 ready |= signal->sig[0] &~ blocked->sig[0];
131 case 1: ready = signal->sig[0] &~ blocked->sig[0];
136 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
138 static int recalc_sigpending_tsk(struct task_struct *t)
140 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
141 PENDING(&t->pending, &t->blocked) ||
142 PENDING(&t->signal->shared_pending, &t->blocked)) {
143 set_tsk_thread_flag(t, TIF_SIGPENDING);
147 * We must never clear the flag in another thread, or in current
148 * when it's possible the current syscall is returning -ERESTART*.
149 * So we don't clear it here, and only callers who know they should do.
155 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
156 * This is superfluous when called on current, the wakeup is a harmless no-op.
158 void recalc_sigpending_and_wake(struct task_struct *t)
160 if (recalc_sigpending_tsk(t))
161 signal_wake_up(t, 0);
164 void recalc_sigpending(void)
166 if (!recalc_sigpending_tsk(current) && !freezing(current))
167 clear_thread_flag(TIF_SIGPENDING);
171 /* Given the mask, find the first available signal that should be serviced. */
173 #define SYNCHRONOUS_MASK \
174 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
175 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
177 int next_signal(struct sigpending *pending, sigset_t *mask)
179 unsigned long i, *s, *m, x;
182 s = pending->signal.sig;
186 * Handle the first word specially: it contains the
187 * synchronous signals that need to be dequeued first.
191 if (x & SYNCHRONOUS_MASK)
192 x &= SYNCHRONOUS_MASK;
197 switch (_NSIG_WORDS) {
199 for (i = 1; i < _NSIG_WORDS; ++i) {
203 sig = ffz(~x) + i*_NSIG_BPW + 1;
212 sig = ffz(~x) + _NSIG_BPW + 1;
223 static inline void print_dropped_signal(int sig)
225 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
227 if (!print_fatal_signals)
230 if (!__ratelimit(&ratelimit_state))
233 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
234 current->comm, current->pid, sig);
238 * task_set_jobctl_pending - set jobctl pending bits
240 * @mask: pending bits to set
242 * Clear @mask from @task->jobctl. @mask must be subset of
243 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
244 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
245 * cleared. If @task is already being killed or exiting, this function
249 * Must be called with @task->sighand->siglock held.
252 * %true if @mask is set, %false if made noop because @task was dying.
254 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
256 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
257 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
258 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
260 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
263 if (mask & JOBCTL_STOP_SIGMASK)
264 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
266 task->jobctl |= mask;
271 * task_clear_jobctl_trapping - clear jobctl trapping bit
274 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
275 * Clear it and wake up the ptracer. Note that we don't need any further
276 * locking. @task->siglock guarantees that @task->parent points to the
280 * Must be called with @task->sighand->siglock held.
282 void task_clear_jobctl_trapping(struct task_struct *task)
284 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
285 task->jobctl &= ~JOBCTL_TRAPPING;
286 smp_mb(); /* advised by wake_up_bit() */
287 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
292 * task_clear_jobctl_pending - clear jobctl pending bits
294 * @mask: pending bits to clear
296 * Clear @mask from @task->jobctl. @mask must be subset of
297 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
298 * STOP bits are cleared together.
300 * If clearing of @mask leaves no stop or trap pending, this function calls
301 * task_clear_jobctl_trapping().
304 * Must be called with @task->sighand->siglock held.
306 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
308 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
310 if (mask & JOBCTL_STOP_PENDING)
311 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
313 task->jobctl &= ~mask;
315 if (!(task->jobctl & JOBCTL_PENDING_MASK))
316 task_clear_jobctl_trapping(task);
320 * task_participate_group_stop - participate in a group stop
321 * @task: task participating in a group stop
323 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
324 * Group stop states are cleared and the group stop count is consumed if
325 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
326 * stop, the appropriate %SIGNAL_* flags are set.
329 * Must be called with @task->sighand->siglock held.
332 * %true if group stop completion should be notified to the parent, %false
335 static bool task_participate_group_stop(struct task_struct *task)
337 struct signal_struct *sig = task->signal;
338 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
340 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
342 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
347 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
348 sig->group_stop_count--;
351 * Tell the caller to notify completion iff we are entering into a
352 * fresh group stop. Read comment in do_signal_stop() for details.
354 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
355 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
362 * allocate a new signal queue record
363 * - this may be called without locks if and only if t == current, otherwise an
364 * appropriate lock must be held to stop the target task from exiting
366 static struct sigqueue *
367 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
369 struct sigqueue *q = NULL;
370 struct user_struct *user;
373 * Protect access to @t credentials. This can go away when all
374 * callers hold rcu read lock.
377 user = get_uid(__task_cred(t)->user);
378 atomic_inc(&user->sigpending);
381 if (override_rlimit ||
382 atomic_read(&user->sigpending) <=
383 task_rlimit(t, RLIMIT_SIGPENDING)) {
384 q = kmem_cache_alloc(sigqueue_cachep, flags);
386 print_dropped_signal(sig);
389 if (unlikely(q == NULL)) {
390 atomic_dec(&user->sigpending);
393 INIT_LIST_HEAD(&q->list);
401 static void __sigqueue_free(struct sigqueue *q)
403 if (q->flags & SIGQUEUE_PREALLOC)
405 atomic_dec(&q->user->sigpending);
407 kmem_cache_free(sigqueue_cachep, q);
410 void flush_sigqueue(struct sigpending *queue)
414 sigemptyset(&queue->signal);
415 while (!list_empty(&queue->list)) {
416 q = list_entry(queue->list.next, struct sigqueue , list);
417 list_del_init(&q->list);
423 * Flush all pending signals for this kthread.
425 void flush_signals(struct task_struct *t)
429 spin_lock_irqsave(&t->sighand->siglock, flags);
430 clear_tsk_thread_flag(t, TIF_SIGPENDING);
431 flush_sigqueue(&t->pending);
432 flush_sigqueue(&t->signal->shared_pending);
433 spin_unlock_irqrestore(&t->sighand->siglock, flags);
436 #ifdef CONFIG_POSIX_TIMERS
437 static void __flush_itimer_signals(struct sigpending *pending)
439 sigset_t signal, retain;
440 struct sigqueue *q, *n;
442 signal = pending->signal;
443 sigemptyset(&retain);
445 list_for_each_entry_safe(q, n, &pending->list, list) {
446 int sig = q->info.si_signo;
448 if (likely(q->info.si_code != SI_TIMER)) {
449 sigaddset(&retain, sig);
451 sigdelset(&signal, sig);
452 list_del_init(&q->list);
457 sigorsets(&pending->signal, &signal, &retain);
460 void flush_itimer_signals(void)
462 struct task_struct *tsk = current;
465 spin_lock_irqsave(&tsk->sighand->siglock, flags);
466 __flush_itimer_signals(&tsk->pending);
467 __flush_itimer_signals(&tsk->signal->shared_pending);
468 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
472 void ignore_signals(struct task_struct *t)
476 for (i = 0; i < _NSIG; ++i)
477 t->sighand->action[i].sa.sa_handler = SIG_IGN;
483 * Flush all handlers for a task.
487 flush_signal_handlers(struct task_struct *t, int force_default)
490 struct k_sigaction *ka = &t->sighand->action[0];
491 for (i = _NSIG ; i != 0 ; i--) {
492 if (force_default || ka->sa.sa_handler != SIG_IGN)
493 ka->sa.sa_handler = SIG_DFL;
495 #ifdef __ARCH_HAS_SA_RESTORER
496 ka->sa.sa_restorer = NULL;
498 sigemptyset(&ka->sa.sa_mask);
503 int unhandled_signal(struct task_struct *tsk, int sig)
505 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
506 if (is_global_init(tsk))
508 if (handler != SIG_IGN && handler != SIG_DFL)
510 /* if ptraced, let the tracer determine */
514 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
516 struct sigqueue *q, *first = NULL;
519 * Collect the siginfo appropriate to this signal. Check if
520 * there is another siginfo for the same signal.
522 list_for_each_entry(q, &list->list, list) {
523 if (q->info.si_signo == sig) {
530 sigdelset(&list->signal, sig);
534 list_del_init(&first->list);
535 copy_siginfo(info, &first->info);
536 __sigqueue_free(first);
539 * Ok, it wasn't in the queue. This must be
540 * a fast-pathed signal or we must have been
541 * out of queue space. So zero out the info.
543 info->si_signo = sig;
545 info->si_code = SI_USER;
551 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
554 int sig = next_signal(pending, mask);
557 collect_signal(sig, pending, info);
562 * Dequeue a signal and return the element to the caller, which is
563 * expected to free it.
565 * All callers have to hold the siglock.
567 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
571 /* We only dequeue private signals from ourselves, we don't let
572 * signalfd steal them
574 signr = __dequeue_signal(&tsk->pending, mask, info);
576 signr = __dequeue_signal(&tsk->signal->shared_pending,
578 #ifdef CONFIG_POSIX_TIMERS
582 * itimers are process shared and we restart periodic
583 * itimers in the signal delivery path to prevent DoS
584 * attacks in the high resolution timer case. This is
585 * compliant with the old way of self-restarting
586 * itimers, as the SIGALRM is a legacy signal and only
587 * queued once. Changing the restart behaviour to
588 * restart the timer in the signal dequeue path is
589 * reducing the timer noise on heavy loaded !highres
592 if (unlikely(signr == SIGALRM)) {
593 struct hrtimer *tmr = &tsk->signal->real_timer;
595 if (!hrtimer_is_queued(tmr) &&
596 tsk->signal->it_real_incr != 0) {
597 hrtimer_forward(tmr, tmr->base->get_time(),
598 tsk->signal->it_real_incr);
599 hrtimer_restart(tmr);
609 if (unlikely(sig_kernel_stop(signr))) {
611 * Set a marker that we have dequeued a stop signal. Our
612 * caller might release the siglock and then the pending
613 * stop signal it is about to process is no longer in the
614 * pending bitmasks, but must still be cleared by a SIGCONT
615 * (and overruled by a SIGKILL). So those cases clear this
616 * shared flag after we've set it. Note that this flag may
617 * remain set after the signal we return is ignored or
618 * handled. That doesn't matter because its only purpose
619 * is to alert stop-signal processing code when another
620 * processor has come along and cleared the flag.
622 current->jobctl |= JOBCTL_STOP_DEQUEUED;
624 #ifdef CONFIG_POSIX_TIMERS
625 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
627 * Release the siglock to ensure proper locking order
628 * of timer locks outside of siglocks. Note, we leave
629 * irqs disabled here, since the posix-timers code is
630 * about to disable them again anyway.
632 spin_unlock(&tsk->sighand->siglock);
633 posixtimer_rearm(info);
634 spin_lock(&tsk->sighand->siglock);
641 * Tell a process that it has a new active signal..
643 * NOTE! we rely on the previous spin_lock to
644 * lock interrupts for us! We can only be called with
645 * "siglock" held, and the local interrupt must
646 * have been disabled when that got acquired!
648 * No need to set need_resched since signal event passing
649 * goes through ->blocked
651 void signal_wake_up_state(struct task_struct *t, unsigned int state)
653 set_tsk_thread_flag(t, TIF_SIGPENDING);
655 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
656 * case. We don't check t->state here because there is a race with it
657 * executing another processor and just now entering stopped state.
658 * By using wake_up_state, we ensure the process will wake up and
659 * handle its death signal.
661 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
666 * Remove signals in mask from the pending set and queue.
667 * Returns 1 if any signals were found.
669 * All callers must be holding the siglock.
671 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
673 struct sigqueue *q, *n;
676 sigandsets(&m, mask, &s->signal);
677 if (sigisemptyset(&m))
680 sigandnsets(&s->signal, &s->signal, mask);
681 list_for_each_entry_safe(q, n, &s->list, list) {
682 if (sigismember(mask, q->info.si_signo)) {
683 list_del_init(&q->list);
690 static inline int is_si_special(const struct siginfo *info)
692 return info <= SEND_SIG_FORCED;
695 static inline bool si_fromuser(const struct siginfo *info)
697 return info == SEND_SIG_NOINFO ||
698 (!is_si_special(info) && SI_FROMUSER(info));
702 * called with RCU read lock from check_kill_permission()
704 static int kill_ok_by_cred(struct task_struct *t)
706 const struct cred *cred = current_cred();
707 const struct cred *tcred = __task_cred(t);
709 if (uid_eq(cred->euid, tcred->suid) ||
710 uid_eq(cred->euid, tcred->uid) ||
711 uid_eq(cred->uid, tcred->suid) ||
712 uid_eq(cred->uid, tcred->uid))
715 if (ns_capable(tcred->user_ns, CAP_KILL))
722 * Bad permissions for sending the signal
723 * - the caller must hold the RCU read lock
725 static int check_kill_permission(int sig, struct siginfo *info,
726 struct task_struct *t)
731 if (!valid_signal(sig))
734 if (!si_fromuser(info))
737 error = audit_signal_info(sig, t); /* Let audit system see the signal */
741 if (!same_thread_group(current, t) &&
742 !kill_ok_by_cred(t)) {
745 sid = task_session(t);
747 * We don't return the error if sid == NULL. The
748 * task was unhashed, the caller must notice this.
750 if (!sid || sid == task_session(current))
757 return security_task_kill(t, info, sig, 0);
761 * ptrace_trap_notify - schedule trap to notify ptracer
762 * @t: tracee wanting to notify tracer
764 * This function schedules sticky ptrace trap which is cleared on the next
765 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
768 * If @t is running, STOP trap will be taken. If trapped for STOP and
769 * ptracer is listening for events, tracee is woken up so that it can
770 * re-trap for the new event. If trapped otherwise, STOP trap will be
771 * eventually taken without returning to userland after the existing traps
772 * are finished by PTRACE_CONT.
775 * Must be called with @task->sighand->siglock held.
777 static void ptrace_trap_notify(struct task_struct *t)
779 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
780 assert_spin_locked(&t->sighand->siglock);
782 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
783 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
787 * Handle magic process-wide effects of stop/continue signals. Unlike
788 * the signal actions, these happen immediately at signal-generation
789 * time regardless of blocking, ignoring, or handling. This does the
790 * actual continuing for SIGCONT, but not the actual stopping for stop
791 * signals. The process stop is done as a signal action for SIG_DFL.
793 * Returns true if the signal should be actually delivered, otherwise
794 * it should be dropped.
796 static bool prepare_signal(int sig, struct task_struct *p, bool force)
798 struct signal_struct *signal = p->signal;
799 struct task_struct *t;
802 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
803 if (!(signal->flags & SIGNAL_GROUP_EXIT))
804 return sig == SIGKILL;
806 * The process is in the middle of dying, nothing to do.
808 } else if (sig_kernel_stop(sig)) {
810 * This is a stop signal. Remove SIGCONT from all queues.
812 siginitset(&flush, sigmask(SIGCONT));
813 flush_sigqueue_mask(&flush, &signal->shared_pending);
814 for_each_thread(p, t)
815 flush_sigqueue_mask(&flush, &t->pending);
816 } else if (sig == SIGCONT) {
819 * Remove all stop signals from all queues, wake all threads.
821 siginitset(&flush, SIG_KERNEL_STOP_MASK);
822 flush_sigqueue_mask(&flush, &signal->shared_pending);
823 for_each_thread(p, t) {
824 flush_sigqueue_mask(&flush, &t->pending);
825 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
826 if (likely(!(t->ptrace & PT_SEIZED)))
827 wake_up_state(t, __TASK_STOPPED);
829 ptrace_trap_notify(t);
833 * Notify the parent with CLD_CONTINUED if we were stopped.
835 * If we were in the middle of a group stop, we pretend it
836 * was already finished, and then continued. Since SIGCHLD
837 * doesn't queue we report only CLD_STOPPED, as if the next
838 * CLD_CONTINUED was dropped.
841 if (signal->flags & SIGNAL_STOP_STOPPED)
842 why |= SIGNAL_CLD_CONTINUED;
843 else if (signal->group_stop_count)
844 why |= SIGNAL_CLD_STOPPED;
848 * The first thread which returns from do_signal_stop()
849 * will take ->siglock, notice SIGNAL_CLD_MASK, and
850 * notify its parent. See get_signal_to_deliver().
852 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
853 signal->group_stop_count = 0;
854 signal->group_exit_code = 0;
858 return !sig_ignored(p, sig, force);
862 * Test if P wants to take SIG. After we've checked all threads with this,
863 * it's equivalent to finding no threads not blocking SIG. Any threads not
864 * blocking SIG were ruled out because they are not running and already
865 * have pending signals. Such threads will dequeue from the shared queue
866 * as soon as they're available, so putting the signal on the shared queue
867 * will be equivalent to sending it to one such thread.
869 static inline int wants_signal(int sig, struct task_struct *p)
871 if (sigismember(&p->blocked, sig))
873 if (p->flags & PF_EXITING)
877 if (task_is_stopped_or_traced(p))
879 return task_curr(p) || !signal_pending(p);
882 static void complete_signal(int sig, struct task_struct *p, int group)
884 struct signal_struct *signal = p->signal;
885 struct task_struct *t;
888 * Now find a thread we can wake up to take the signal off the queue.
890 * If the main thread wants the signal, it gets first crack.
891 * Probably the least surprising to the average bear.
893 if (wants_signal(sig, p))
895 else if (!group || thread_group_empty(p))
897 * There is just one thread and it does not need to be woken.
898 * It will dequeue unblocked signals before it runs again.
903 * Otherwise try to find a suitable thread.
905 t = signal->curr_target;
906 while (!wants_signal(sig, t)) {
908 if (t == signal->curr_target)
910 * No thread needs to be woken.
911 * Any eligible threads will see
912 * the signal in the queue soon.
916 signal->curr_target = t;
920 * Found a killable thread. If the signal will be fatal,
921 * then start taking the whole group down immediately.
923 if (sig_fatal(p, sig) &&
924 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
925 !sigismember(&t->real_blocked, sig) &&
926 (sig == SIGKILL || !t->ptrace)) {
928 * This signal will be fatal to the whole group.
930 if (!sig_kernel_coredump(sig)) {
932 * Start a group exit and wake everybody up.
933 * This way we don't have other threads
934 * running and doing things after a slower
935 * thread has the fatal signal pending.
937 signal->flags = SIGNAL_GROUP_EXIT;
938 signal->group_exit_code = sig;
939 signal->group_stop_count = 0;
942 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
943 sigaddset(&t->pending.signal, SIGKILL);
944 signal_wake_up(t, 1);
945 } while_each_thread(p, t);
951 * The signal is already in the shared-pending queue.
952 * Tell the chosen thread to wake up and dequeue it.
954 signal_wake_up(t, sig == SIGKILL);
958 static inline int legacy_queue(struct sigpending *signals, int sig)
960 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
963 #ifdef CONFIG_USER_NS
964 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
966 if (current_user_ns() == task_cred_xxx(t, user_ns))
969 if (SI_FROMKERNEL(info))
973 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
974 make_kuid(current_user_ns(), info->si_uid));
978 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
984 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
985 int group, int from_ancestor_ns)
987 struct sigpending *pending;
992 assert_spin_locked(&t->sighand->siglock);
994 result = TRACE_SIGNAL_IGNORED;
995 if (!prepare_signal(sig, t,
996 from_ancestor_ns || (info == SEND_SIG_FORCED)))
999 pending = group ? &t->signal->shared_pending : &t->pending;
1001 * Short-circuit ignored signals and support queuing
1002 * exactly one non-rt signal, so that we can get more
1003 * detailed information about the cause of the signal.
1005 result = TRACE_SIGNAL_ALREADY_PENDING;
1006 if (legacy_queue(pending, sig))
1009 result = TRACE_SIGNAL_DELIVERED;
1011 * fast-pathed signals for kernel-internal things like SIGSTOP
1014 if (info == SEND_SIG_FORCED)
1018 * Real-time signals must be queued if sent by sigqueue, or
1019 * some other real-time mechanism. It is implementation
1020 * defined whether kill() does so. We attempt to do so, on
1021 * the principle of least surprise, but since kill is not
1022 * allowed to fail with EAGAIN when low on memory we just
1023 * make sure at least one signal gets delivered and don't
1024 * pass on the info struct.
1027 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1029 override_rlimit = 0;
1031 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1034 list_add_tail(&q->list, &pending->list);
1035 switch ((unsigned long) info) {
1036 case (unsigned long) SEND_SIG_NOINFO:
1037 q->info.si_signo = sig;
1038 q->info.si_errno = 0;
1039 q->info.si_code = SI_USER;
1040 q->info.si_pid = task_tgid_nr_ns(current,
1041 task_active_pid_ns(t));
1042 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1044 case (unsigned long) SEND_SIG_PRIV:
1045 q->info.si_signo = sig;
1046 q->info.si_errno = 0;
1047 q->info.si_code = SI_KERNEL;
1052 copy_siginfo(&q->info, info);
1053 if (from_ancestor_ns)
1058 userns_fixup_signal_uid(&q->info, t);
1060 } else if (!is_si_special(info)) {
1061 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1063 * Queue overflow, abort. We may abort if the
1064 * signal was rt and sent by user using something
1065 * other than kill().
1067 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1072 * This is a silent loss of information. We still
1073 * send the signal, but the *info bits are lost.
1075 result = TRACE_SIGNAL_LOSE_INFO;
1080 signalfd_notify(t, sig);
1081 sigaddset(&pending->signal, sig);
1082 complete_signal(sig, t, group);
1084 trace_signal_generate(sig, info, t, group, result);
1088 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1091 int from_ancestor_ns = 0;
1093 #ifdef CONFIG_PID_NS
1094 from_ancestor_ns = si_fromuser(info) &&
1095 !task_pid_nr_ns(current, task_active_pid_ns(t));
1098 return __send_signal(sig, info, t, group, from_ancestor_ns);
1101 static void print_fatal_signal(int signr)
1103 struct pt_regs *regs = signal_pt_regs();
1104 pr_info("potentially unexpected fatal signal %d.\n", signr);
1106 #if defined(__i386__) && !defined(__arch_um__)
1107 pr_info("code at %08lx: ", regs->ip);
1110 for (i = 0; i < 16; i++) {
1113 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1115 pr_cont("%02x ", insn);
1125 static int __init setup_print_fatal_signals(char *str)
1127 get_option (&str, &print_fatal_signals);
1132 __setup("print-fatal-signals=", setup_print_fatal_signals);
1135 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1137 return send_signal(sig, info, p, 1);
1141 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1143 return send_signal(sig, info, t, 0);
1146 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1149 unsigned long flags;
1152 if (lock_task_sighand(p, &flags)) {
1153 ret = send_signal(sig, info, p, group);
1154 unlock_task_sighand(p, &flags);
1161 * Force a signal that the process can't ignore: if necessary
1162 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1164 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1165 * since we do not want to have a signal handler that was blocked
1166 * be invoked when user space had explicitly blocked it.
1168 * We don't want to have recursive SIGSEGV's etc, for example,
1169 * that is why we also clear SIGNAL_UNKILLABLE.
1172 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1174 unsigned long int flags;
1175 int ret, blocked, ignored;
1176 struct k_sigaction *action;
1178 spin_lock_irqsave(&t->sighand->siglock, flags);
1179 action = &t->sighand->action[sig-1];
1180 ignored = action->sa.sa_handler == SIG_IGN;
1181 blocked = sigismember(&t->blocked, sig);
1182 if (blocked || ignored) {
1183 action->sa.sa_handler = SIG_DFL;
1185 sigdelset(&t->blocked, sig);
1186 recalc_sigpending_and_wake(t);
1189 if (action->sa.sa_handler == SIG_DFL)
1190 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1191 ret = specific_send_sig_info(sig, info, t);
1192 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1198 * Nuke all other threads in the group.
1200 int zap_other_threads(struct task_struct *p)
1202 struct task_struct *t = p;
1205 p->signal->group_stop_count = 0;
1207 while_each_thread(p, t) {
1208 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1211 /* Don't bother with already dead threads */
1214 sigaddset(&t->pending.signal, SIGKILL);
1215 signal_wake_up(t, 1);
1221 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1222 unsigned long *flags)
1224 struct sighand_struct *sighand;
1228 * Disable interrupts early to avoid deadlocks.
1229 * See rcu_read_unlock() comment header for details.
1231 local_irq_save(*flags);
1233 sighand = rcu_dereference(tsk->sighand);
1234 if (unlikely(sighand == NULL)) {
1236 local_irq_restore(*flags);
1240 * This sighand can be already freed and even reused, but
1241 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1242 * initializes ->siglock: this slab can't go away, it has
1243 * the same object type, ->siglock can't be reinitialized.
1245 * We need to ensure that tsk->sighand is still the same
1246 * after we take the lock, we can race with de_thread() or
1247 * __exit_signal(). In the latter case the next iteration
1248 * must see ->sighand == NULL.
1250 spin_lock(&sighand->siglock);
1251 if (likely(sighand == tsk->sighand)) {
1255 spin_unlock(&sighand->siglock);
1257 local_irq_restore(*flags);
1264 * send signal info to all the members of a group
1266 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1271 ret = check_kill_permission(sig, info, p);
1275 ret = do_send_sig_info(sig, info, p, true);
1281 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1282 * control characters do (^C, ^Z etc)
1283 * - the caller must hold at least a readlock on tasklist_lock
1285 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1287 struct task_struct *p = NULL;
1288 int retval, success;
1292 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1293 int err = group_send_sig_info(sig, info, p);
1296 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1297 return success ? 0 : retval;
1300 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1303 struct task_struct *p;
1307 p = pid_task(pid, PIDTYPE_PID);
1309 error = group_send_sig_info(sig, info, p);
1311 if (likely(!p || error != -ESRCH))
1315 * The task was unhashed in between, try again. If it
1316 * is dead, pid_task() will return NULL, if we race with
1317 * de_thread() it will find the new leader.
1322 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1326 error = kill_pid_info(sig, info, find_vpid(pid));
1331 static int kill_as_cred_perm(const struct cred *cred,
1332 struct task_struct *target)
1334 const struct cred *pcred = __task_cred(target);
1335 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1336 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1341 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1342 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1343 const struct cred *cred, u32 secid)
1346 struct task_struct *p;
1347 unsigned long flags;
1349 if (!valid_signal(sig))
1353 p = pid_task(pid, PIDTYPE_PID);
1358 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1362 ret = security_task_kill(p, info, sig, secid);
1367 if (lock_task_sighand(p, &flags)) {
1368 ret = __send_signal(sig, info, p, 1, 0);
1369 unlock_task_sighand(p, &flags);
1377 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1380 * kill_something_info() interprets pid in interesting ways just like kill(2).
1382 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1383 * is probably wrong. Should make it like BSD or SYSV.
1386 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1392 ret = kill_pid_info(sig, info, find_vpid(pid));
1397 read_lock(&tasklist_lock);
1399 ret = __kill_pgrp_info(sig, info,
1400 pid ? find_vpid(-pid) : task_pgrp(current));
1402 int retval = 0, count = 0;
1403 struct task_struct * p;
1405 for_each_process(p) {
1406 if (task_pid_vnr(p) > 1 &&
1407 !same_thread_group(p, current)) {
1408 int err = group_send_sig_info(sig, info, p);
1414 ret = count ? retval : -ESRCH;
1416 read_unlock(&tasklist_lock);
1422 * These are for backward compatibility with the rest of the kernel source.
1425 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1428 * Make sure legacy kernel users don't send in bad values
1429 * (normal paths check this in check_kill_permission).
1431 if (!valid_signal(sig))
1434 return do_send_sig_info(sig, info, p, false);
1437 #define __si_special(priv) \
1438 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1441 send_sig(int sig, struct task_struct *p, int priv)
1443 return send_sig_info(sig, __si_special(priv), p);
1447 force_sig(int sig, struct task_struct *p)
1449 force_sig_info(sig, SEND_SIG_PRIV, p);
1453 * When things go south during signal handling, we
1454 * will force a SIGSEGV. And if the signal that caused
1455 * the problem was already a SIGSEGV, we'll want to
1456 * make sure we don't even try to deliver the signal..
1459 force_sigsegv(int sig, struct task_struct *p)
1461 if (sig == SIGSEGV) {
1462 unsigned long flags;
1463 spin_lock_irqsave(&p->sighand->siglock, flags);
1464 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1465 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1467 force_sig(SIGSEGV, p);
1471 int kill_pgrp(struct pid *pid, int sig, int priv)
1475 read_lock(&tasklist_lock);
1476 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1477 read_unlock(&tasklist_lock);
1481 EXPORT_SYMBOL(kill_pgrp);
1483 int kill_pid(struct pid *pid, int sig, int priv)
1485 return kill_pid_info(sig, __si_special(priv), pid);
1487 EXPORT_SYMBOL(kill_pid);
1490 * These functions support sending signals using preallocated sigqueue
1491 * structures. This is needed "because realtime applications cannot
1492 * afford to lose notifications of asynchronous events, like timer
1493 * expirations or I/O completions". In the case of POSIX Timers
1494 * we allocate the sigqueue structure from the timer_create. If this
1495 * allocation fails we are able to report the failure to the application
1496 * with an EAGAIN error.
1498 struct sigqueue *sigqueue_alloc(void)
1500 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1503 q->flags |= SIGQUEUE_PREALLOC;
1508 void sigqueue_free(struct sigqueue *q)
1510 unsigned long flags;
1511 spinlock_t *lock = ¤t->sighand->siglock;
1513 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1515 * We must hold ->siglock while testing q->list
1516 * to serialize with collect_signal() or with
1517 * __exit_signal()->flush_sigqueue().
1519 spin_lock_irqsave(lock, flags);
1520 q->flags &= ~SIGQUEUE_PREALLOC;
1522 * If it is queued it will be freed when dequeued,
1523 * like the "regular" sigqueue.
1525 if (!list_empty(&q->list))
1527 spin_unlock_irqrestore(lock, flags);
1533 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1535 int sig = q->info.si_signo;
1536 struct sigpending *pending;
1537 unsigned long flags;
1540 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1543 if (!likely(lock_task_sighand(t, &flags)))
1546 ret = 1; /* the signal is ignored */
1547 result = TRACE_SIGNAL_IGNORED;
1548 if (!prepare_signal(sig, t, false))
1552 if (unlikely(!list_empty(&q->list))) {
1554 * If an SI_TIMER entry is already queue just increment
1555 * the overrun count.
1557 BUG_ON(q->info.si_code != SI_TIMER);
1558 q->info.si_overrun++;
1559 result = TRACE_SIGNAL_ALREADY_PENDING;
1562 q->info.si_overrun = 0;
1564 signalfd_notify(t, sig);
1565 pending = group ? &t->signal->shared_pending : &t->pending;
1566 list_add_tail(&q->list, &pending->list);
1567 sigaddset(&pending->signal, sig);
1568 complete_signal(sig, t, group);
1569 result = TRACE_SIGNAL_DELIVERED;
1571 trace_signal_generate(sig, &q->info, t, group, result);
1572 unlock_task_sighand(t, &flags);
1578 * Let a parent know about the death of a child.
1579 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1581 * Returns true if our parent ignored us and so we've switched to
1584 bool do_notify_parent(struct task_struct *tsk, int sig)
1586 struct siginfo info;
1587 unsigned long flags;
1588 struct sighand_struct *psig;
1589 bool autoreap = false;
1594 /* do_notify_parent_cldstop should have been called instead. */
1595 BUG_ON(task_is_stopped_or_traced(tsk));
1597 BUG_ON(!tsk->ptrace &&
1598 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1600 if (sig != SIGCHLD) {
1602 * This is only possible if parent == real_parent.
1603 * Check if it has changed security domain.
1605 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1609 info.si_signo = sig;
1612 * We are under tasklist_lock here so our parent is tied to
1613 * us and cannot change.
1615 * task_active_pid_ns will always return the same pid namespace
1616 * until a task passes through release_task.
1618 * write_lock() currently calls preempt_disable() which is the
1619 * same as rcu_read_lock(), but according to Oleg, this is not
1620 * correct to rely on this
1623 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1624 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1628 task_cputime(tsk, &utime, &stime);
1629 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1630 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1632 info.si_status = tsk->exit_code & 0x7f;
1633 if (tsk->exit_code & 0x80)
1634 info.si_code = CLD_DUMPED;
1635 else if (tsk->exit_code & 0x7f)
1636 info.si_code = CLD_KILLED;
1638 info.si_code = CLD_EXITED;
1639 info.si_status = tsk->exit_code >> 8;
1642 psig = tsk->parent->sighand;
1643 spin_lock_irqsave(&psig->siglock, flags);
1644 if (!tsk->ptrace && sig == SIGCHLD &&
1645 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1646 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1648 * We are exiting and our parent doesn't care. POSIX.1
1649 * defines special semantics for setting SIGCHLD to SIG_IGN
1650 * or setting the SA_NOCLDWAIT flag: we should be reaped
1651 * automatically and not left for our parent's wait4 call.
1652 * Rather than having the parent do it as a magic kind of
1653 * signal handler, we just set this to tell do_exit that we
1654 * can be cleaned up without becoming a zombie. Note that
1655 * we still call __wake_up_parent in this case, because a
1656 * blocked sys_wait4 might now return -ECHILD.
1658 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1659 * is implementation-defined: we do (if you don't want
1660 * it, just use SIG_IGN instead).
1663 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1666 if (valid_signal(sig) && sig)
1667 __group_send_sig_info(sig, &info, tsk->parent);
1668 __wake_up_parent(tsk, tsk->parent);
1669 spin_unlock_irqrestore(&psig->siglock, flags);
1675 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1676 * @tsk: task reporting the state change
1677 * @for_ptracer: the notification is for ptracer
1678 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1680 * Notify @tsk's parent that the stopped/continued state has changed. If
1681 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1682 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1685 * Must be called with tasklist_lock at least read locked.
1687 static void do_notify_parent_cldstop(struct task_struct *tsk,
1688 bool for_ptracer, int why)
1690 struct siginfo info;
1691 unsigned long flags;
1692 struct task_struct *parent;
1693 struct sighand_struct *sighand;
1697 parent = tsk->parent;
1699 tsk = tsk->group_leader;
1700 parent = tsk->real_parent;
1703 info.si_signo = SIGCHLD;
1706 * see comment in do_notify_parent() about the following 4 lines
1709 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1710 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1713 task_cputime(tsk, &utime, &stime);
1714 info.si_utime = nsec_to_clock_t(utime);
1715 info.si_stime = nsec_to_clock_t(stime);
1720 info.si_status = SIGCONT;
1723 info.si_status = tsk->signal->group_exit_code & 0x7f;
1726 info.si_status = tsk->exit_code & 0x7f;
1732 sighand = parent->sighand;
1733 spin_lock_irqsave(&sighand->siglock, flags);
1734 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1735 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1736 __group_send_sig_info(SIGCHLD, &info, parent);
1738 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1740 __wake_up_parent(tsk, parent);
1741 spin_unlock_irqrestore(&sighand->siglock, flags);
1744 static inline int may_ptrace_stop(void)
1746 if (!likely(current->ptrace))
1749 * Are we in the middle of do_coredump?
1750 * If so and our tracer is also part of the coredump stopping
1751 * is a deadlock situation, and pointless because our tracer
1752 * is dead so don't allow us to stop.
1753 * If SIGKILL was already sent before the caller unlocked
1754 * ->siglock we must see ->core_state != NULL. Otherwise it
1755 * is safe to enter schedule().
1757 * This is almost outdated, a task with the pending SIGKILL can't
1758 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1759 * after SIGKILL was already dequeued.
1761 if (unlikely(current->mm->core_state) &&
1762 unlikely(current->mm == current->parent->mm))
1769 * Return non-zero if there is a SIGKILL that should be waking us up.
1770 * Called with the siglock held.
1772 static int sigkill_pending(struct task_struct *tsk)
1774 return sigismember(&tsk->pending.signal, SIGKILL) ||
1775 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1779 * This must be called with current->sighand->siglock held.
1781 * This should be the path for all ptrace stops.
1782 * We always set current->last_siginfo while stopped here.
1783 * That makes it a way to test a stopped process for
1784 * being ptrace-stopped vs being job-control-stopped.
1786 * If we actually decide not to stop at all because the tracer
1787 * is gone, we keep current->exit_code unless clear_code.
1789 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1790 __releases(¤t->sighand->siglock)
1791 __acquires(¤t->sighand->siglock)
1793 bool gstop_done = false;
1795 if (arch_ptrace_stop_needed(exit_code, info)) {
1797 * The arch code has something special to do before a
1798 * ptrace stop. This is allowed to block, e.g. for faults
1799 * on user stack pages. We can't keep the siglock while
1800 * calling arch_ptrace_stop, so we must release it now.
1801 * To preserve proper semantics, we must do this before
1802 * any signal bookkeeping like checking group_stop_count.
1803 * Meanwhile, a SIGKILL could come in before we retake the
1804 * siglock. That must prevent us from sleeping in TASK_TRACED.
1805 * So after regaining the lock, we must check for SIGKILL.
1807 spin_unlock_irq(¤t->sighand->siglock);
1808 arch_ptrace_stop(exit_code, info);
1809 spin_lock_irq(¤t->sighand->siglock);
1810 if (sigkill_pending(current))
1815 * We're committing to trapping. TRACED should be visible before
1816 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1817 * Also, transition to TRACED and updates to ->jobctl should be
1818 * atomic with respect to siglock and should be done after the arch
1819 * hook as siglock is released and regrabbed across it.
1821 set_current_state(TASK_TRACED);
1823 current->last_siginfo = info;
1824 current->exit_code = exit_code;
1827 * If @why is CLD_STOPPED, we're trapping to participate in a group
1828 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1829 * across siglock relocks since INTERRUPT was scheduled, PENDING
1830 * could be clear now. We act as if SIGCONT is received after
1831 * TASK_TRACED is entered - ignore it.
1833 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1834 gstop_done = task_participate_group_stop(current);
1836 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1837 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1838 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1839 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1841 /* entering a trap, clear TRAPPING */
1842 task_clear_jobctl_trapping(current);
1844 spin_unlock_irq(¤t->sighand->siglock);
1845 read_lock(&tasklist_lock);
1846 if (may_ptrace_stop()) {
1848 * Notify parents of the stop.
1850 * While ptraced, there are two parents - the ptracer and
1851 * the real_parent of the group_leader. The ptracer should
1852 * know about every stop while the real parent is only
1853 * interested in the completion of group stop. The states
1854 * for the two don't interact with each other. Notify
1855 * separately unless they're gonna be duplicates.
1857 do_notify_parent_cldstop(current, true, why);
1858 if (gstop_done && ptrace_reparented(current))
1859 do_notify_parent_cldstop(current, false, why);
1862 * Don't want to allow preemption here, because
1863 * sys_ptrace() needs this task to be inactive.
1865 * XXX: implement read_unlock_no_resched().
1868 read_unlock(&tasklist_lock);
1869 preempt_enable_no_resched();
1870 freezable_schedule();
1873 * By the time we got the lock, our tracer went away.
1874 * Don't drop the lock yet, another tracer may come.
1876 * If @gstop_done, the ptracer went away between group stop
1877 * completion and here. During detach, it would have set
1878 * JOBCTL_STOP_PENDING on us and we'll re-enter
1879 * TASK_STOPPED in do_signal_stop() on return, so notifying
1880 * the real parent of the group stop completion is enough.
1883 do_notify_parent_cldstop(current, false, why);
1885 /* tasklist protects us from ptrace_freeze_traced() */
1886 __set_current_state(TASK_RUNNING);
1888 current->exit_code = 0;
1889 read_unlock(&tasklist_lock);
1893 * We are back. Now reacquire the siglock before touching
1894 * last_siginfo, so that we are sure to have synchronized with
1895 * any signal-sending on another CPU that wants to examine it.
1897 spin_lock_irq(¤t->sighand->siglock);
1898 current->last_siginfo = NULL;
1900 /* LISTENING can be set only during STOP traps, clear it */
1901 current->jobctl &= ~JOBCTL_LISTENING;
1904 * Queued signals ignored us while we were stopped for tracing.
1905 * So check for any that we should take before resuming user mode.
1906 * This sets TIF_SIGPENDING, but never clears it.
1908 recalc_sigpending_tsk(current);
1911 static void ptrace_do_notify(int signr, int exit_code, int why)
1915 memset(&info, 0, sizeof info);
1916 info.si_signo = signr;
1917 info.si_code = exit_code;
1918 info.si_pid = task_pid_vnr(current);
1919 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1921 /* Let the debugger run. */
1922 ptrace_stop(exit_code, why, 1, &info);
1925 void ptrace_notify(int exit_code)
1927 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1928 if (unlikely(current->task_works))
1931 spin_lock_irq(¤t->sighand->siglock);
1932 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1933 spin_unlock_irq(¤t->sighand->siglock);
1937 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1938 * @signr: signr causing group stop if initiating
1940 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1941 * and participate in it. If already set, participate in the existing
1942 * group stop. If participated in a group stop (and thus slept), %true is
1943 * returned with siglock released.
1945 * If ptraced, this function doesn't handle stop itself. Instead,
1946 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1947 * untouched. The caller must ensure that INTERRUPT trap handling takes
1948 * places afterwards.
1951 * Must be called with @current->sighand->siglock held, which is released
1955 * %false if group stop is already cancelled or ptrace trap is scheduled.
1956 * %true if participated in group stop.
1958 static bool do_signal_stop(int signr)
1959 __releases(¤t->sighand->siglock)
1961 struct signal_struct *sig = current->signal;
1963 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1964 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1965 struct task_struct *t;
1967 /* signr will be recorded in task->jobctl for retries */
1968 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1970 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1971 unlikely(signal_group_exit(sig)))
1974 * There is no group stop already in progress. We must
1977 * While ptraced, a task may be resumed while group stop is
1978 * still in effect and then receive a stop signal and
1979 * initiate another group stop. This deviates from the
1980 * usual behavior as two consecutive stop signals can't
1981 * cause two group stops when !ptraced. That is why we
1982 * also check !task_is_stopped(t) below.
1984 * The condition can be distinguished by testing whether
1985 * SIGNAL_STOP_STOPPED is already set. Don't generate
1986 * group_exit_code in such case.
1988 * This is not necessary for SIGNAL_STOP_CONTINUED because
1989 * an intervening stop signal is required to cause two
1990 * continued events regardless of ptrace.
1992 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1993 sig->group_exit_code = signr;
1995 sig->group_stop_count = 0;
1997 if (task_set_jobctl_pending(current, signr | gstop))
1998 sig->group_stop_count++;
2001 while_each_thread(current, t) {
2003 * Setting state to TASK_STOPPED for a group
2004 * stop is always done with the siglock held,
2005 * so this check has no races.
2007 if (!task_is_stopped(t) &&
2008 task_set_jobctl_pending(t, signr | gstop)) {
2009 sig->group_stop_count++;
2010 if (likely(!(t->ptrace & PT_SEIZED)))
2011 signal_wake_up(t, 0);
2013 ptrace_trap_notify(t);
2018 if (likely(!current->ptrace)) {
2022 * If there are no other threads in the group, or if there
2023 * is a group stop in progress and we are the last to stop,
2024 * report to the parent.
2026 if (task_participate_group_stop(current))
2027 notify = CLD_STOPPED;
2029 __set_current_state(TASK_STOPPED);
2030 spin_unlock_irq(¤t->sighand->siglock);
2033 * Notify the parent of the group stop completion. Because
2034 * we're not holding either the siglock or tasklist_lock
2035 * here, ptracer may attach inbetween; however, this is for
2036 * group stop and should always be delivered to the real
2037 * parent of the group leader. The new ptracer will get
2038 * its notification when this task transitions into
2042 read_lock(&tasklist_lock);
2043 do_notify_parent_cldstop(current, false, notify);
2044 read_unlock(&tasklist_lock);
2047 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2048 freezable_schedule();
2052 * While ptraced, group stop is handled by STOP trap.
2053 * Schedule it and let the caller deal with it.
2055 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2061 * do_jobctl_trap - take care of ptrace jobctl traps
2063 * When PT_SEIZED, it's used for both group stop and explicit
2064 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2065 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2066 * the stop signal; otherwise, %SIGTRAP.
2068 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2069 * number as exit_code and no siginfo.
2072 * Must be called with @current->sighand->siglock held, which may be
2073 * released and re-acquired before returning with intervening sleep.
2075 static void do_jobctl_trap(void)
2077 struct signal_struct *signal = current->signal;
2078 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2080 if (current->ptrace & PT_SEIZED) {
2081 if (!signal->group_stop_count &&
2082 !(signal->flags & SIGNAL_STOP_STOPPED))
2084 WARN_ON_ONCE(!signr);
2085 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2088 WARN_ON_ONCE(!signr);
2089 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2090 current->exit_code = 0;
2094 static int ptrace_signal(int signr, siginfo_t *info)
2096 ptrace_signal_deliver();
2098 * We do not check sig_kernel_stop(signr) but set this marker
2099 * unconditionally because we do not know whether debugger will
2100 * change signr. This flag has no meaning unless we are going
2101 * to stop after return from ptrace_stop(). In this case it will
2102 * be checked in do_signal_stop(), we should only stop if it was
2103 * not cleared by SIGCONT while we were sleeping. See also the
2104 * comment in dequeue_signal().
2106 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2107 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2109 /* We're back. Did the debugger cancel the sig? */
2110 signr = current->exit_code;
2114 current->exit_code = 0;
2117 * Update the siginfo structure if the signal has
2118 * changed. If the debugger wanted something
2119 * specific in the siginfo structure then it should
2120 * have updated *info via PTRACE_SETSIGINFO.
2122 if (signr != info->si_signo) {
2123 info->si_signo = signr;
2125 info->si_code = SI_USER;
2127 info->si_pid = task_pid_vnr(current->parent);
2128 info->si_uid = from_kuid_munged(current_user_ns(),
2129 task_uid(current->parent));
2133 /* If the (new) signal is now blocked, requeue it. */
2134 if (sigismember(¤t->blocked, signr)) {
2135 specific_send_sig_info(signr, info, current);
2142 int get_signal(struct ksignal *ksig)
2144 struct sighand_struct *sighand = current->sighand;
2145 struct signal_struct *signal = current->signal;
2148 if (unlikely(current->task_works))
2151 if (unlikely(uprobe_deny_signal()))
2155 * Do this once, we can't return to user-mode if freezing() == T.
2156 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2157 * thus do not need another check after return.
2162 spin_lock_irq(&sighand->siglock);
2164 * Every stopped thread goes here after wakeup. Check to see if
2165 * we should notify the parent, prepare_signal(SIGCONT) encodes
2166 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2168 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2171 if (signal->flags & SIGNAL_CLD_CONTINUED)
2172 why = CLD_CONTINUED;
2176 signal->flags &= ~SIGNAL_CLD_MASK;
2178 spin_unlock_irq(&sighand->siglock);
2181 * Notify the parent that we're continuing. This event is
2182 * always per-process and doesn't make whole lot of sense
2183 * for ptracers, who shouldn't consume the state via
2184 * wait(2) either, but, for backward compatibility, notify
2185 * the ptracer of the group leader too unless it's gonna be
2188 read_lock(&tasklist_lock);
2189 do_notify_parent_cldstop(current, false, why);
2191 if (ptrace_reparented(current->group_leader))
2192 do_notify_parent_cldstop(current->group_leader,
2194 read_unlock(&tasklist_lock);
2200 struct k_sigaction *ka;
2202 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2206 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2208 spin_unlock_irq(&sighand->siglock);
2212 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2215 break; /* will return 0 */
2217 if (unlikely(current->ptrace) && signr != SIGKILL) {
2218 signr = ptrace_signal(signr, &ksig->info);
2223 ka = &sighand->action[signr-1];
2225 /* Trace actually delivered signals. */
2226 trace_signal_deliver(signr, &ksig->info, ka);
2228 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2230 if (ka->sa.sa_handler != SIG_DFL) {
2231 /* Run the handler. */
2234 if (ka->sa.sa_flags & SA_ONESHOT)
2235 ka->sa.sa_handler = SIG_DFL;
2237 break; /* will return non-zero "signr" value */
2241 * Now we are doing the default action for this signal.
2243 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2247 * Global init gets no signals it doesn't want.
2248 * Container-init gets no signals it doesn't want from same
2251 * Note that if global/container-init sees a sig_kernel_only()
2252 * signal here, the signal must have been generated internally
2253 * or must have come from an ancestor namespace. In either
2254 * case, the signal cannot be dropped.
2256 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2257 !sig_kernel_only(signr))
2260 if (sig_kernel_stop(signr)) {
2262 * The default action is to stop all threads in
2263 * the thread group. The job control signals
2264 * do nothing in an orphaned pgrp, but SIGSTOP
2265 * always works. Note that siglock needs to be
2266 * dropped during the call to is_orphaned_pgrp()
2267 * because of lock ordering with tasklist_lock.
2268 * This allows an intervening SIGCONT to be posted.
2269 * We need to check for that and bail out if necessary.
2271 if (signr != SIGSTOP) {
2272 spin_unlock_irq(&sighand->siglock);
2274 /* signals can be posted during this window */
2276 if (is_current_pgrp_orphaned())
2279 spin_lock_irq(&sighand->siglock);
2282 if (likely(do_signal_stop(ksig->info.si_signo))) {
2283 /* It released the siglock. */
2288 * We didn't actually stop, due to a race
2289 * with SIGCONT or something like that.
2294 spin_unlock_irq(&sighand->siglock);
2297 * Anything else is fatal, maybe with a core dump.
2299 current->flags |= PF_SIGNALED;
2301 if (sig_kernel_coredump(signr)) {
2302 if (print_fatal_signals)
2303 print_fatal_signal(ksig->info.si_signo);
2304 proc_coredump_connector(current);
2306 * If it was able to dump core, this kills all
2307 * other threads in the group and synchronizes with
2308 * their demise. If we lost the race with another
2309 * thread getting here, it set group_exit_code
2310 * first and our do_group_exit call below will use
2311 * that value and ignore the one we pass it.
2313 do_coredump(&ksig->info);
2317 * Death signals, no core dump.
2319 do_group_exit(ksig->info.si_signo);
2322 spin_unlock_irq(&sighand->siglock);
2325 return ksig->sig > 0;
2329 * signal_delivered -
2330 * @ksig: kernel signal struct
2331 * @stepping: nonzero if debugger single-step or block-step in use
2333 * This function should be called when a signal has successfully been
2334 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2335 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2336 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2338 static void signal_delivered(struct ksignal *ksig, int stepping)
2342 /* A signal was successfully delivered, and the
2343 saved sigmask was stored on the signal frame,
2344 and will be restored by sigreturn. So we can
2345 simply clear the restore sigmask flag. */
2346 clear_restore_sigmask();
2348 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2349 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2350 sigaddset(&blocked, ksig->sig);
2351 set_current_blocked(&blocked);
2352 tracehook_signal_handler(stepping);
2355 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2358 force_sigsegv(ksig->sig, current);
2360 signal_delivered(ksig, stepping);
2364 * It could be that complete_signal() picked us to notify about the
2365 * group-wide signal. Other threads should be notified now to take
2366 * the shared signals in @which since we will not.
2368 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2371 struct task_struct *t;
2373 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2374 if (sigisemptyset(&retarget))
2378 while_each_thread(tsk, t) {
2379 if (t->flags & PF_EXITING)
2382 if (!has_pending_signals(&retarget, &t->blocked))
2384 /* Remove the signals this thread can handle. */
2385 sigandsets(&retarget, &retarget, &t->blocked);
2387 if (!signal_pending(t))
2388 signal_wake_up(t, 0);
2390 if (sigisemptyset(&retarget))
2395 void exit_signals(struct task_struct *tsk)
2401 * @tsk is about to have PF_EXITING set - lock out users which
2402 * expect stable threadgroup.
2404 cgroup_threadgroup_change_begin(tsk);
2406 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2407 tsk->flags |= PF_EXITING;
2408 cgroup_threadgroup_change_end(tsk);
2412 spin_lock_irq(&tsk->sighand->siglock);
2414 * From now this task is not visible for group-wide signals,
2415 * see wants_signal(), do_signal_stop().
2417 tsk->flags |= PF_EXITING;
2419 cgroup_threadgroup_change_end(tsk);
2421 if (!signal_pending(tsk))
2424 unblocked = tsk->blocked;
2425 signotset(&unblocked);
2426 retarget_shared_pending(tsk, &unblocked);
2428 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2429 task_participate_group_stop(tsk))
2430 group_stop = CLD_STOPPED;
2432 spin_unlock_irq(&tsk->sighand->siglock);
2435 * If group stop has completed, deliver the notification. This
2436 * should always go to the real parent of the group leader.
2438 if (unlikely(group_stop)) {
2439 read_lock(&tasklist_lock);
2440 do_notify_parent_cldstop(tsk, false, group_stop);
2441 read_unlock(&tasklist_lock);
2445 EXPORT_SYMBOL(recalc_sigpending);
2446 EXPORT_SYMBOL_GPL(dequeue_signal);
2447 EXPORT_SYMBOL(flush_signals);
2448 EXPORT_SYMBOL(force_sig);
2449 EXPORT_SYMBOL(send_sig);
2450 EXPORT_SYMBOL(send_sig_info);
2451 EXPORT_SYMBOL(sigprocmask);
2454 * System call entry points.
2458 * sys_restart_syscall - restart a system call
2460 SYSCALL_DEFINE0(restart_syscall)
2462 struct restart_block *restart = ¤t->restart_block;
2463 return restart->fn(restart);
2466 long do_no_restart_syscall(struct restart_block *param)
2471 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2473 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2474 sigset_t newblocked;
2475 /* A set of now blocked but previously unblocked signals. */
2476 sigandnsets(&newblocked, newset, ¤t->blocked);
2477 retarget_shared_pending(tsk, &newblocked);
2479 tsk->blocked = *newset;
2480 recalc_sigpending();
2484 * set_current_blocked - change current->blocked mask
2487 * It is wrong to change ->blocked directly, this helper should be used
2488 * to ensure the process can't miss a shared signal we are going to block.
2490 void set_current_blocked(sigset_t *newset)
2492 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2493 __set_current_blocked(newset);
2496 void __set_current_blocked(const sigset_t *newset)
2498 struct task_struct *tsk = current;
2501 * In case the signal mask hasn't changed, there is nothing we need
2502 * to do. The current->blocked shouldn't be modified by other task.
2504 if (sigequalsets(&tsk->blocked, newset))
2507 spin_lock_irq(&tsk->sighand->siglock);
2508 __set_task_blocked(tsk, newset);
2509 spin_unlock_irq(&tsk->sighand->siglock);
2513 * This is also useful for kernel threads that want to temporarily
2514 * (or permanently) block certain signals.
2516 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2517 * interface happily blocks "unblockable" signals like SIGKILL
2520 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2522 struct task_struct *tsk = current;
2525 /* Lockless, only current can change ->blocked, never from irq */
2527 *oldset = tsk->blocked;
2531 sigorsets(&newset, &tsk->blocked, set);
2534 sigandnsets(&newset, &tsk->blocked, set);
2543 __set_current_blocked(&newset);
2548 * sys_rt_sigprocmask - change the list of currently blocked signals
2549 * @how: whether to add, remove, or set signals
2550 * @nset: stores pending signals
2551 * @oset: previous value of signal mask if non-null
2552 * @sigsetsize: size of sigset_t type
2554 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2555 sigset_t __user *, oset, size_t, sigsetsize)
2557 sigset_t old_set, new_set;
2560 /* XXX: Don't preclude handling different sized sigset_t's. */
2561 if (sigsetsize != sizeof(sigset_t))
2564 old_set = current->blocked;
2567 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2569 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2571 error = sigprocmask(how, &new_set, NULL);
2577 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2584 #ifdef CONFIG_COMPAT
2585 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2586 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2589 sigset_t old_set = current->blocked;
2591 /* XXX: Don't preclude handling different sized sigset_t's. */
2592 if (sigsetsize != sizeof(sigset_t))
2596 compat_sigset_t new32;
2599 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2602 sigset_from_compat(&new_set, &new32);
2603 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2605 error = sigprocmask(how, &new_set, NULL);
2610 compat_sigset_t old32;
2611 sigset_to_compat(&old32, &old_set);
2612 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2617 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2618 (sigset_t __user *)oset, sigsetsize);
2623 static int do_sigpending(void *set, unsigned long sigsetsize)
2625 if (sigsetsize > sizeof(sigset_t))
2628 spin_lock_irq(¤t->sighand->siglock);
2629 sigorsets(set, ¤t->pending.signal,
2630 ¤t->signal->shared_pending.signal);
2631 spin_unlock_irq(¤t->sighand->siglock);
2633 /* Outside the lock because only this thread touches it. */
2634 sigandsets(set, ¤t->blocked, set);
2639 * sys_rt_sigpending - examine a pending signal that has been raised
2641 * @uset: stores pending signals
2642 * @sigsetsize: size of sigset_t type or larger
2644 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2647 int err = do_sigpending(&set, sigsetsize);
2648 if (!err && copy_to_user(uset, &set, sigsetsize))
2653 #ifdef CONFIG_COMPAT
2654 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2655 compat_size_t, sigsetsize)
2659 int err = do_sigpending(&set, sigsetsize);
2661 compat_sigset_t set32;
2662 sigset_to_compat(&set32, &set);
2663 /* we can get here only if sigsetsize <= sizeof(set) */
2664 if (copy_to_user(uset, &set32, sigsetsize))
2669 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2674 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2676 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2680 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2682 if (from->si_code < 0)
2683 return __copy_to_user(to, from, sizeof(siginfo_t))
2686 * If you change siginfo_t structure, please be sure
2687 * this code is fixed accordingly.
2688 * Please remember to update the signalfd_copyinfo() function
2689 * inside fs/signalfd.c too, in case siginfo_t changes.
2690 * It should never copy any pad contained in the structure
2691 * to avoid security leaks, but must copy the generic
2692 * 3 ints plus the relevant union member.
2694 err = __put_user(from->si_signo, &to->si_signo);
2695 err |= __put_user(from->si_errno, &to->si_errno);
2696 err |= __put_user((short)from->si_code, &to->si_code);
2697 switch (from->si_code & __SI_MASK) {
2699 err |= __put_user(from->si_pid, &to->si_pid);
2700 err |= __put_user(from->si_uid, &to->si_uid);
2703 err |= __put_user(from->si_tid, &to->si_tid);
2704 err |= __put_user(from->si_overrun, &to->si_overrun);
2705 err |= __put_user(from->si_ptr, &to->si_ptr);
2708 err |= __put_user(from->si_band, &to->si_band);
2709 err |= __put_user(from->si_fd, &to->si_fd);
2712 err |= __put_user(from->si_addr, &to->si_addr);
2713 #ifdef __ARCH_SI_TRAPNO
2714 err |= __put_user(from->si_trapno, &to->si_trapno);
2716 #ifdef BUS_MCEERR_AO
2718 * Other callers might not initialize the si_lsb field,
2719 * so check explicitly for the right codes here.
2721 if (from->si_signo == SIGBUS &&
2722 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2723 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2726 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2727 err |= __put_user(from->si_lower, &to->si_lower);
2728 err |= __put_user(from->si_upper, &to->si_upper);
2732 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2733 err |= __put_user(from->si_pkey, &to->si_pkey);
2737 err |= __put_user(from->si_pid, &to->si_pid);
2738 err |= __put_user(from->si_uid, &to->si_uid);
2739 err |= __put_user(from->si_status, &to->si_status);
2740 err |= __put_user(from->si_utime, &to->si_utime);
2741 err |= __put_user(from->si_stime, &to->si_stime);
2743 case __SI_RT: /* This is not generated by the kernel as of now. */
2744 case __SI_MESGQ: /* But this is */
2745 err |= __put_user(from->si_pid, &to->si_pid);
2746 err |= __put_user(from->si_uid, &to->si_uid);
2747 err |= __put_user(from->si_ptr, &to->si_ptr);
2749 #ifdef __ARCH_SIGSYS
2751 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2752 err |= __put_user(from->si_syscall, &to->si_syscall);
2753 err |= __put_user(from->si_arch, &to->si_arch);
2756 default: /* this is just in case for now ... */
2757 err |= __put_user(from->si_pid, &to->si_pid);
2758 err |= __put_user(from->si_uid, &to->si_uid);
2767 * do_sigtimedwait - wait for queued signals specified in @which
2768 * @which: queued signals to wait for
2769 * @info: if non-null, the signal's siginfo is returned here
2770 * @ts: upper bound on process time suspension
2772 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2773 const struct timespec *ts)
2775 ktime_t *to = NULL, timeout = KTIME_MAX;
2776 struct task_struct *tsk = current;
2777 sigset_t mask = *which;
2781 if (!timespec_valid(ts))
2783 timeout = timespec_to_ktime(*ts);
2788 * Invert the set of allowed signals to get those we want to block.
2790 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2793 spin_lock_irq(&tsk->sighand->siglock);
2794 sig = dequeue_signal(tsk, &mask, info);
2795 if (!sig && timeout) {
2797 * None ready, temporarily unblock those we're interested
2798 * while we are sleeping in so that we'll be awakened when
2799 * they arrive. Unblocking is always fine, we can avoid
2800 * set_current_blocked().
2802 tsk->real_blocked = tsk->blocked;
2803 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2804 recalc_sigpending();
2805 spin_unlock_irq(&tsk->sighand->siglock);
2807 __set_current_state(TASK_INTERRUPTIBLE);
2808 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2810 spin_lock_irq(&tsk->sighand->siglock);
2811 __set_task_blocked(tsk, &tsk->real_blocked);
2812 sigemptyset(&tsk->real_blocked);
2813 sig = dequeue_signal(tsk, &mask, info);
2815 spin_unlock_irq(&tsk->sighand->siglock);
2819 return ret ? -EINTR : -EAGAIN;
2823 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2825 * @uthese: queued signals to wait for
2826 * @uinfo: if non-null, the signal's siginfo is returned here
2827 * @uts: upper bound on process time suspension
2828 * @sigsetsize: size of sigset_t type
2830 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2831 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2839 /* XXX: Don't preclude handling different sized sigset_t's. */
2840 if (sigsetsize != sizeof(sigset_t))
2843 if (copy_from_user(&these, uthese, sizeof(these)))
2847 if (copy_from_user(&ts, uts, sizeof(ts)))
2851 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2853 if (ret > 0 && uinfo) {
2854 if (copy_siginfo_to_user(uinfo, &info))
2862 * sys_kill - send a signal to a process
2863 * @pid: the PID of the process
2864 * @sig: signal to be sent
2866 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2868 struct siginfo info;
2870 info.si_signo = sig;
2872 info.si_code = SI_USER;
2873 info.si_pid = task_tgid_vnr(current);
2874 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2876 return kill_something_info(sig, &info, pid);
2880 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2882 struct task_struct *p;
2886 p = find_task_by_vpid(pid);
2887 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2888 error = check_kill_permission(sig, info, p);
2890 * The null signal is a permissions and process existence
2891 * probe. No signal is actually delivered.
2893 if (!error && sig) {
2894 error = do_send_sig_info(sig, info, p, false);
2896 * If lock_task_sighand() failed we pretend the task
2897 * dies after receiving the signal. The window is tiny,
2898 * and the signal is private anyway.
2900 if (unlikely(error == -ESRCH))
2909 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2911 struct siginfo info = {};
2913 info.si_signo = sig;
2915 info.si_code = SI_TKILL;
2916 info.si_pid = task_tgid_vnr(current);
2917 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2919 return do_send_specific(tgid, pid, sig, &info);
2923 * sys_tgkill - send signal to one specific thread
2924 * @tgid: the thread group ID of the thread
2925 * @pid: the PID of the thread
2926 * @sig: signal to be sent
2928 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2929 * exists but it's not belonging to the target process anymore. This
2930 * method solves the problem of threads exiting and PIDs getting reused.
2932 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2934 /* This is only valid for single tasks */
2935 if (pid <= 0 || tgid <= 0)
2938 return do_tkill(tgid, pid, sig);
2942 * sys_tkill - send signal to one specific task
2943 * @pid: the PID of the task
2944 * @sig: signal to be sent
2946 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2948 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2950 /* This is only valid for single tasks */
2954 return do_tkill(0, pid, sig);
2957 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2959 /* Not even root can pretend to send signals from the kernel.
2960 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2962 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2963 (task_pid_vnr(current) != pid))
2966 info->si_signo = sig;
2968 /* POSIX.1b doesn't mention process groups. */
2969 return kill_proc_info(sig, info, pid);
2973 * sys_rt_sigqueueinfo - send signal information to a signal
2974 * @pid: the PID of the thread
2975 * @sig: signal to be sent
2976 * @uinfo: signal info to be sent
2978 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2979 siginfo_t __user *, uinfo)
2982 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2984 return do_rt_sigqueueinfo(pid, sig, &info);
2987 #ifdef CONFIG_COMPAT
2988 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2991 struct compat_siginfo __user *, uinfo)
2993 siginfo_t info = {};
2994 int ret = copy_siginfo_from_user32(&info, uinfo);
2997 return do_rt_sigqueueinfo(pid, sig, &info);
3001 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3003 /* This is only valid for single tasks */
3004 if (pid <= 0 || tgid <= 0)
3007 /* Not even root can pretend to send signals from the kernel.
3008 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3010 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3011 (task_pid_vnr(current) != pid))
3014 info->si_signo = sig;
3016 return do_send_specific(tgid, pid, sig, info);
3019 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3020 siginfo_t __user *, uinfo)
3024 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3027 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3030 #ifdef CONFIG_COMPAT
3031 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3035 struct compat_siginfo __user *, uinfo)
3037 siginfo_t info = {};
3039 if (copy_siginfo_from_user32(&info, uinfo))
3041 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3046 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3048 void kernel_sigaction(int sig, __sighandler_t action)
3050 spin_lock_irq(¤t->sighand->siglock);
3051 current->sighand->action[sig - 1].sa.sa_handler = action;
3052 if (action == SIG_IGN) {
3056 sigaddset(&mask, sig);
3058 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3059 flush_sigqueue_mask(&mask, ¤t->pending);
3060 recalc_sigpending();
3062 spin_unlock_irq(¤t->sighand->siglock);
3064 EXPORT_SYMBOL(kernel_sigaction);
3066 void __weak sigaction_compat_abi(struct k_sigaction *act,
3067 struct k_sigaction *oact)
3071 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3073 struct task_struct *p = current, *t;
3074 struct k_sigaction *k;
3077 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3080 k = &p->sighand->action[sig-1];
3082 spin_lock_irq(&p->sighand->siglock);
3086 sigaction_compat_abi(act, oact);
3089 sigdelsetmask(&act->sa.sa_mask,
3090 sigmask(SIGKILL) | sigmask(SIGSTOP));
3094 * "Setting a signal action to SIG_IGN for a signal that is
3095 * pending shall cause the pending signal to be discarded,
3096 * whether or not it is blocked."
3098 * "Setting a signal action to SIG_DFL for a signal that is
3099 * pending and whose default action is to ignore the signal
3100 * (for example, SIGCHLD), shall cause the pending signal to
3101 * be discarded, whether or not it is blocked"
3103 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3105 sigaddset(&mask, sig);
3106 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3107 for_each_thread(p, t)
3108 flush_sigqueue_mask(&mask, &t->pending);
3112 spin_unlock_irq(&p->sighand->siglock);
3117 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3122 oss.ss_sp = (void __user *) current->sas_ss_sp;
3123 oss.ss_size = current->sas_ss_size;
3124 oss.ss_flags = sas_ss_flags(sp) |
3125 (current->sas_ss_flags & SS_FLAG_BITS);
3134 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3136 error = __get_user(ss_sp, &uss->ss_sp) |
3137 __get_user(ss_flags, &uss->ss_flags) |
3138 __get_user(ss_size, &uss->ss_size);
3143 if (on_sig_stack(sp))
3146 ss_mode = ss_flags & ~SS_FLAG_BITS;
3148 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3152 if (ss_mode == SS_DISABLE) {
3157 if (ss_size < MINSIGSTKSZ)
3161 current->sas_ss_sp = (unsigned long) ss_sp;
3162 current->sas_ss_size = ss_size;
3163 current->sas_ss_flags = ss_flags;
3169 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3171 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3172 __put_user(oss.ss_size, &uoss->ss_size) |
3173 __put_user(oss.ss_flags, &uoss->ss_flags);
3179 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3181 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3184 int restore_altstack(const stack_t __user *uss)
3186 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3187 /* squash all but EFAULT for now */
3188 return err == -EFAULT ? err : 0;
3191 int __save_altstack(stack_t __user *uss, unsigned long sp)
3193 struct task_struct *t = current;
3194 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3195 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3196 __put_user(t->sas_ss_size, &uss->ss_size);
3199 if (t->sas_ss_flags & SS_AUTODISARM)
3204 #ifdef CONFIG_COMPAT
3205 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3206 const compat_stack_t __user *, uss_ptr,
3207 compat_stack_t __user *, uoss_ptr)
3214 compat_stack_t uss32;
3216 memset(&uss, 0, sizeof(stack_t));
3217 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3219 uss.ss_sp = compat_ptr(uss32.ss_sp);
3220 uss.ss_flags = uss32.ss_flags;
3221 uss.ss_size = uss32.ss_size;
3225 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3226 (stack_t __force __user *) &uoss,
3227 compat_user_stack_pointer());
3229 if (ret >= 0 && uoss_ptr) {
3230 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3231 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3232 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3233 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3239 int compat_restore_altstack(const compat_stack_t __user *uss)
3241 int err = compat_sys_sigaltstack(uss, NULL);
3242 /* squash all but -EFAULT for now */
3243 return err == -EFAULT ? err : 0;
3246 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3249 struct task_struct *t = current;
3250 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3252 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3253 __put_user(t->sas_ss_size, &uss->ss_size);
3256 if (t->sas_ss_flags & SS_AUTODISARM)
3262 #ifdef __ARCH_WANT_SYS_SIGPENDING
3265 * sys_sigpending - examine pending signals
3266 * @set: where mask of pending signal is returned
3268 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3270 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3275 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3277 * sys_sigprocmask - examine and change blocked signals
3278 * @how: whether to add, remove, or set signals
3279 * @nset: signals to add or remove (if non-null)
3280 * @oset: previous value of signal mask if non-null
3282 * Some platforms have their own version with special arguments;
3283 * others support only sys_rt_sigprocmask.
3286 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3287 old_sigset_t __user *, oset)
3289 old_sigset_t old_set, new_set;
3290 sigset_t new_blocked;
3292 old_set = current->blocked.sig[0];
3295 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3298 new_blocked = current->blocked;
3302 sigaddsetmask(&new_blocked, new_set);
3305 sigdelsetmask(&new_blocked, new_set);
3308 new_blocked.sig[0] = new_set;
3314 set_current_blocked(&new_blocked);
3318 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3324 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3326 #ifndef CONFIG_ODD_RT_SIGACTION
3328 * sys_rt_sigaction - alter an action taken by a process
3329 * @sig: signal to be sent
3330 * @act: new sigaction
3331 * @oact: used to save the previous sigaction
3332 * @sigsetsize: size of sigset_t type
3334 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3335 const struct sigaction __user *, act,
3336 struct sigaction __user *, oact,
3339 struct k_sigaction new_sa, old_sa;
3342 /* XXX: Don't preclude handling different sized sigset_t's. */
3343 if (sigsetsize != sizeof(sigset_t))
3347 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3351 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3354 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3360 #ifdef CONFIG_COMPAT
3361 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3362 const struct compat_sigaction __user *, act,
3363 struct compat_sigaction __user *, oact,
3364 compat_size_t, sigsetsize)
3366 struct k_sigaction new_ka, old_ka;
3367 compat_sigset_t mask;
3368 #ifdef __ARCH_HAS_SA_RESTORER
3369 compat_uptr_t restorer;
3373 /* XXX: Don't preclude handling different sized sigset_t's. */
3374 if (sigsetsize != sizeof(compat_sigset_t))
3378 compat_uptr_t handler;
3379 ret = get_user(handler, &act->sa_handler);
3380 new_ka.sa.sa_handler = compat_ptr(handler);
3381 #ifdef __ARCH_HAS_SA_RESTORER
3382 ret |= get_user(restorer, &act->sa_restorer);
3383 new_ka.sa.sa_restorer = compat_ptr(restorer);
3385 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3386 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3389 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3392 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3394 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3395 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3397 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3398 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3399 #ifdef __ARCH_HAS_SA_RESTORER
3400 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3401 &oact->sa_restorer);
3407 #endif /* !CONFIG_ODD_RT_SIGACTION */
3409 #ifdef CONFIG_OLD_SIGACTION
3410 SYSCALL_DEFINE3(sigaction, int, sig,
3411 const struct old_sigaction __user *, act,
3412 struct old_sigaction __user *, oact)
3414 struct k_sigaction new_ka, old_ka;
3419 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3420 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3421 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3422 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3423 __get_user(mask, &act->sa_mask))
3425 #ifdef __ARCH_HAS_KA_RESTORER
3426 new_ka.ka_restorer = NULL;
3428 siginitset(&new_ka.sa.sa_mask, mask);
3431 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3434 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3435 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3436 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3437 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3438 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3445 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3446 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3447 const struct compat_old_sigaction __user *, act,
3448 struct compat_old_sigaction __user *, oact)
3450 struct k_sigaction new_ka, old_ka;
3452 compat_old_sigset_t mask;
3453 compat_uptr_t handler, restorer;
3456 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3457 __get_user(handler, &act->sa_handler) ||
3458 __get_user(restorer, &act->sa_restorer) ||
3459 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3460 __get_user(mask, &act->sa_mask))
3463 #ifdef __ARCH_HAS_KA_RESTORER
3464 new_ka.ka_restorer = NULL;
3466 new_ka.sa.sa_handler = compat_ptr(handler);
3467 new_ka.sa.sa_restorer = compat_ptr(restorer);
3468 siginitset(&new_ka.sa.sa_mask, mask);
3471 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3474 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3475 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3476 &oact->sa_handler) ||
3477 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3478 &oact->sa_restorer) ||
3479 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3480 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3487 #ifdef CONFIG_SGETMASK_SYSCALL
3490 * For backwards compatibility. Functionality superseded by sigprocmask.
3492 SYSCALL_DEFINE0(sgetmask)
3495 return current->blocked.sig[0];
3498 SYSCALL_DEFINE1(ssetmask, int, newmask)
3500 int old = current->blocked.sig[0];
3503 siginitset(&newset, newmask);
3504 set_current_blocked(&newset);
3508 #endif /* CONFIG_SGETMASK_SYSCALL */
3510 #ifdef __ARCH_WANT_SYS_SIGNAL
3512 * For backwards compatibility. Functionality superseded by sigaction.
3514 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3516 struct k_sigaction new_sa, old_sa;
3519 new_sa.sa.sa_handler = handler;
3520 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3521 sigemptyset(&new_sa.sa.sa_mask);
3523 ret = do_sigaction(sig, &new_sa, &old_sa);
3525 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3527 #endif /* __ARCH_WANT_SYS_SIGNAL */
3529 #ifdef __ARCH_WANT_SYS_PAUSE
3531 SYSCALL_DEFINE0(pause)
3533 while (!signal_pending(current)) {
3534 __set_current_state(TASK_INTERRUPTIBLE);
3537 return -ERESTARTNOHAND;
3542 static int sigsuspend(sigset_t *set)
3544 current->saved_sigmask = current->blocked;
3545 set_current_blocked(set);
3547 while (!signal_pending(current)) {
3548 __set_current_state(TASK_INTERRUPTIBLE);
3551 set_restore_sigmask();
3552 return -ERESTARTNOHAND;
3556 * sys_rt_sigsuspend - replace the signal mask for a value with the
3557 * @unewset value until a signal is received
3558 * @unewset: new signal mask value
3559 * @sigsetsize: size of sigset_t type
3561 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3565 /* XXX: Don't preclude handling different sized sigset_t's. */
3566 if (sigsetsize != sizeof(sigset_t))
3569 if (copy_from_user(&newset, unewset, sizeof(newset)))
3571 return sigsuspend(&newset);
3574 #ifdef CONFIG_COMPAT
3575 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3579 compat_sigset_t newset32;
3581 /* XXX: Don't preclude handling different sized sigset_t's. */
3582 if (sigsetsize != sizeof(sigset_t))
3585 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3587 sigset_from_compat(&newset, &newset32);
3588 return sigsuspend(&newset);
3590 /* on little-endian bitmaps don't care about granularity */
3591 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3596 #ifdef CONFIG_OLD_SIGSUSPEND
3597 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3600 siginitset(&blocked, mask);
3601 return sigsuspend(&blocked);
3604 #ifdef CONFIG_OLD_SIGSUSPEND3
3605 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3608 siginitset(&blocked, mask);
3609 return sigsuspend(&blocked);
3613 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3618 void __init signals_init(void)
3620 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3621 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3622 != offsetof(struct siginfo, _sifields._pad));
3624 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3627 #ifdef CONFIG_KGDB_KDB
3628 #include <linux/kdb.h>
3630 * kdb_send_sig_info - Allows kdb to send signals without exposing
3631 * signal internals. This function checks if the required locks are
3632 * available before calling the main signal code, to avoid kdb
3636 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3638 static struct task_struct *kdb_prev_t;
3640 if (!spin_trylock(&t->sighand->siglock)) {
3641 kdb_printf("Can't do kill command now.\n"
3642 "The sigmask lock is held somewhere else in "
3643 "kernel, try again later\n");
3646 spin_unlock(&t->sighand->siglock);
3647 new_t = kdb_prev_t != t;
3649 if (t->state != TASK_RUNNING && new_t) {
3650 kdb_printf("Process is not RUNNING, sending a signal from "
3651 "kdb risks deadlock\n"
3652 "on the run queue locks. "
3653 "The signal has _not_ been sent.\n"
3654 "Reissue the kill command if you want to risk "
3658 sig = info->si_signo;
3659 if (send_sig_info(sig, info, t))
3660 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3663 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3665 #endif /* CONFIG_KGDB_KDB */