4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/slab.h>
33 #include <linux/mod_devicetable.h>
34 #include <linux/spi/spi.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/export.h>
38 #include <linux/sched/rt.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/spi.h>
47 static void spidev_release(struct device *dev)
49 struct spi_device *spi = to_spi_device(dev);
51 /* spi masters may cleanup for released devices */
52 if (spi->master->cleanup)
53 spi->master->cleanup(spi);
55 spi_master_put(spi->master);
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 const struct spi_device *spi = to_spi_device(dev);
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 static DEVICE_ATTR_RO(modalias);
73 static struct attribute *spi_dev_attrs[] = {
74 &dev_attr_modalias.attr,
77 ATTRIBUTE_GROUPS(spi_dev);
79 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
80 * and the sysfs version makes coldplug work too.
83 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
84 const struct spi_device *sdev)
87 if (!strcmp(sdev->modalias, id->name))
94 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
96 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
98 return spi_match_id(sdrv->id_table, sdev);
100 EXPORT_SYMBOL_GPL(spi_get_device_id);
102 static int spi_match_device(struct device *dev, struct device_driver *drv)
104 const struct spi_device *spi = to_spi_device(dev);
105 const struct spi_driver *sdrv = to_spi_driver(drv);
107 /* Attempt an OF style match */
108 if (of_driver_match_device(dev, drv))
112 if (acpi_driver_match_device(dev, drv))
116 return !!spi_match_id(sdrv->id_table, spi);
118 return strcmp(spi->modalias, drv->name) == 0;
121 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
123 const struct spi_device *spi = to_spi_device(dev);
126 rc = acpi_device_uevent_modalias(dev, env);
130 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
134 #ifdef CONFIG_PM_SLEEP
135 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
138 struct spi_driver *drv = to_spi_driver(dev->driver);
140 /* suspend will stop irqs and dma; no more i/o */
143 value = drv->suspend(to_spi_device(dev), message);
145 dev_dbg(dev, "... can't suspend\n");
150 static int spi_legacy_resume(struct device *dev)
153 struct spi_driver *drv = to_spi_driver(dev->driver);
155 /* resume may restart the i/o queue */
158 value = drv->resume(to_spi_device(dev));
160 dev_dbg(dev, "... can't resume\n");
165 static int spi_pm_suspend(struct device *dev)
167 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
170 return pm_generic_suspend(dev);
172 return spi_legacy_suspend(dev, PMSG_SUSPEND);
175 static int spi_pm_resume(struct device *dev)
177 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
180 return pm_generic_resume(dev);
182 return spi_legacy_resume(dev);
185 static int spi_pm_freeze(struct device *dev)
187 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
190 return pm_generic_freeze(dev);
192 return spi_legacy_suspend(dev, PMSG_FREEZE);
195 static int spi_pm_thaw(struct device *dev)
197 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
200 return pm_generic_thaw(dev);
202 return spi_legacy_resume(dev);
205 static int spi_pm_poweroff(struct device *dev)
207 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
210 return pm_generic_poweroff(dev);
212 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
215 static int spi_pm_restore(struct device *dev)
217 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
220 return pm_generic_restore(dev);
222 return spi_legacy_resume(dev);
225 #define spi_pm_suspend NULL
226 #define spi_pm_resume NULL
227 #define spi_pm_freeze NULL
228 #define spi_pm_thaw NULL
229 #define spi_pm_poweroff NULL
230 #define spi_pm_restore NULL
233 static const struct dev_pm_ops spi_pm = {
234 .suspend = spi_pm_suspend,
235 .resume = spi_pm_resume,
236 .freeze = spi_pm_freeze,
238 .poweroff = spi_pm_poweroff,
239 .restore = spi_pm_restore,
241 pm_generic_runtime_suspend,
242 pm_generic_runtime_resume,
247 struct bus_type spi_bus_type = {
249 .dev_groups = spi_dev_groups,
250 .match = spi_match_device,
251 .uevent = spi_uevent,
254 EXPORT_SYMBOL_GPL(spi_bus_type);
257 static int spi_drv_probe(struct device *dev)
259 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
260 struct spi_device *spi = to_spi_device(dev);
263 acpi_dev_pm_attach(&spi->dev, true);
264 ret = sdrv->probe(spi);
266 acpi_dev_pm_detach(&spi->dev, true);
271 static int spi_drv_remove(struct device *dev)
273 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
274 struct spi_device *spi = to_spi_device(dev);
277 ret = sdrv->remove(spi);
278 acpi_dev_pm_detach(&spi->dev, true);
283 static void spi_drv_shutdown(struct device *dev)
285 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
287 sdrv->shutdown(to_spi_device(dev));
291 * spi_register_driver - register a SPI driver
292 * @sdrv: the driver to register
295 int spi_register_driver(struct spi_driver *sdrv)
297 sdrv->driver.bus = &spi_bus_type;
299 sdrv->driver.probe = spi_drv_probe;
301 sdrv->driver.remove = spi_drv_remove;
303 sdrv->driver.shutdown = spi_drv_shutdown;
304 return driver_register(&sdrv->driver);
306 EXPORT_SYMBOL_GPL(spi_register_driver);
308 /*-------------------------------------------------------------------------*/
310 /* SPI devices should normally not be created by SPI device drivers; that
311 * would make them board-specific. Similarly with SPI master drivers.
312 * Device registration normally goes into like arch/.../mach.../board-YYY.c
313 * with other readonly (flashable) information about mainboard devices.
317 struct list_head list;
318 struct spi_board_info board_info;
321 static LIST_HEAD(board_list);
322 static LIST_HEAD(spi_master_list);
325 * Used to protect add/del opertion for board_info list and
326 * spi_master list, and their matching process
328 static DEFINE_MUTEX(board_lock);
331 * spi_alloc_device - Allocate a new SPI device
332 * @master: Controller to which device is connected
335 * Allows a driver to allocate and initialize a spi_device without
336 * registering it immediately. This allows a driver to directly
337 * fill the spi_device with device parameters before calling
338 * spi_add_device() on it.
340 * Caller is responsible to call spi_add_device() on the returned
341 * spi_device structure to add it to the SPI master. If the caller
342 * needs to discard the spi_device without adding it, then it should
343 * call spi_dev_put() on it.
345 * Returns a pointer to the new device, or NULL.
347 struct spi_device *spi_alloc_device(struct spi_master *master)
349 struct spi_device *spi;
350 struct device *dev = master->dev.parent;
352 if (!spi_master_get(master))
355 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
357 dev_err(dev, "cannot alloc spi_device\n");
358 spi_master_put(master);
362 spi->master = master;
363 spi->dev.parent = &master->dev;
364 spi->dev.bus = &spi_bus_type;
365 spi->dev.release = spidev_release;
366 spi->cs_gpio = -ENOENT;
367 device_initialize(&spi->dev);
370 EXPORT_SYMBOL_GPL(spi_alloc_device);
372 static void spi_dev_set_name(struct spi_device *spi)
374 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
377 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
381 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
385 static int spi_dev_check(struct device *dev, void *data)
387 struct spi_device *spi = to_spi_device(dev);
388 struct spi_device *new_spi = data;
390 if (spi->master == new_spi->master &&
391 spi->chip_select == new_spi->chip_select)
397 * spi_add_device - Add spi_device allocated with spi_alloc_device
398 * @spi: spi_device to register
400 * Companion function to spi_alloc_device. Devices allocated with
401 * spi_alloc_device can be added onto the spi bus with this function.
403 * Returns 0 on success; negative errno on failure
405 int spi_add_device(struct spi_device *spi)
407 static DEFINE_MUTEX(spi_add_lock);
408 struct spi_master *master = spi->master;
409 struct device *dev = master->dev.parent;
412 /* Chipselects are numbered 0..max; validate. */
413 if (spi->chip_select >= master->num_chipselect) {
414 dev_err(dev, "cs%d >= max %d\n",
416 master->num_chipselect);
420 /* Set the bus ID string */
421 spi_dev_set_name(spi);
423 /* We need to make sure there's no other device with this
424 * chipselect **BEFORE** we call setup(), else we'll trash
425 * its configuration. Lock against concurrent add() calls.
427 mutex_lock(&spi_add_lock);
429 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
431 dev_err(dev, "chipselect %d already in use\n",
436 if (master->cs_gpios)
437 spi->cs_gpio = master->cs_gpios[spi->chip_select];
439 /* Drivers may modify this initial i/o setup, but will
440 * normally rely on the device being setup. Devices
441 * using SPI_CS_HIGH can't coexist well otherwise...
443 status = spi_setup(spi);
445 dev_err(dev, "can't setup %s, status %d\n",
446 dev_name(&spi->dev), status);
450 /* Device may be bound to an active driver when this returns */
451 status = device_add(&spi->dev);
453 dev_err(dev, "can't add %s, status %d\n",
454 dev_name(&spi->dev), status);
456 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
459 mutex_unlock(&spi_add_lock);
462 EXPORT_SYMBOL_GPL(spi_add_device);
465 * spi_new_device - instantiate one new SPI device
466 * @master: Controller to which device is connected
467 * @chip: Describes the SPI device
470 * On typical mainboards, this is purely internal; and it's not needed
471 * after board init creates the hard-wired devices. Some development
472 * platforms may not be able to use spi_register_board_info though, and
473 * this is exported so that for example a USB or parport based adapter
474 * driver could add devices (which it would learn about out-of-band).
476 * Returns the new device, or NULL.
478 struct spi_device *spi_new_device(struct spi_master *master,
479 struct spi_board_info *chip)
481 struct spi_device *proxy;
484 /* NOTE: caller did any chip->bus_num checks necessary.
486 * Also, unless we change the return value convention to use
487 * error-or-pointer (not NULL-or-pointer), troubleshootability
488 * suggests syslogged diagnostics are best here (ugh).
491 proxy = spi_alloc_device(master);
495 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
497 proxy->chip_select = chip->chip_select;
498 proxy->max_speed_hz = chip->max_speed_hz;
499 proxy->mode = chip->mode;
500 proxy->irq = chip->irq;
501 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
502 proxy->dev.platform_data = (void *) chip->platform_data;
503 proxy->controller_data = chip->controller_data;
504 proxy->controller_state = NULL;
506 status = spi_add_device(proxy);
514 EXPORT_SYMBOL_GPL(spi_new_device);
516 static void spi_match_master_to_boardinfo(struct spi_master *master,
517 struct spi_board_info *bi)
519 struct spi_device *dev;
521 if (master->bus_num != bi->bus_num)
524 dev = spi_new_device(master, bi);
526 dev_err(master->dev.parent, "can't create new device for %s\n",
531 * spi_register_board_info - register SPI devices for a given board
532 * @info: array of chip descriptors
533 * @n: how many descriptors are provided
536 * Board-specific early init code calls this (probably during arch_initcall)
537 * with segments of the SPI device table. Any device nodes are created later,
538 * after the relevant parent SPI controller (bus_num) is defined. We keep
539 * this table of devices forever, so that reloading a controller driver will
540 * not make Linux forget about these hard-wired devices.
542 * Other code can also call this, e.g. a particular add-on board might provide
543 * SPI devices through its expansion connector, so code initializing that board
544 * would naturally declare its SPI devices.
546 * The board info passed can safely be __initdata ... but be careful of
547 * any embedded pointers (platform_data, etc), they're copied as-is.
549 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
551 struct boardinfo *bi;
554 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
558 for (i = 0; i < n; i++, bi++, info++) {
559 struct spi_master *master;
561 memcpy(&bi->board_info, info, sizeof(*info));
562 mutex_lock(&board_lock);
563 list_add_tail(&bi->list, &board_list);
564 list_for_each_entry(master, &spi_master_list, list)
565 spi_match_master_to_boardinfo(master, &bi->board_info);
566 mutex_unlock(&board_lock);
572 /*-------------------------------------------------------------------------*/
574 static void spi_set_cs(struct spi_device *spi, bool enable)
576 if (spi->mode & SPI_CS_HIGH)
579 if (spi->cs_gpio >= 0)
580 gpio_set_value(spi->cs_gpio, !enable);
581 else if (spi->master->set_cs)
582 spi->master->set_cs(spi, !enable);
585 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
587 struct device *dev = master->dev.parent;
588 struct device *tx_dev, *rx_dev;
589 struct spi_transfer *xfer;
591 size_t max_tx, max_rx;
593 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
597 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
598 if ((master->flags & SPI_MASTER_MUST_TX) &&
600 max_tx = max(xfer->len, max_tx);
601 if ((master->flags & SPI_MASTER_MUST_RX) &&
603 max_rx = max(xfer->len, max_rx);
607 tmp = krealloc(master->dummy_tx, max_tx,
608 GFP_KERNEL | GFP_DMA);
611 master->dummy_tx = tmp;
612 memset(tmp, 0, max_tx);
616 tmp = krealloc(master->dummy_rx, max_rx,
617 GFP_KERNEL | GFP_DMA);
620 master->dummy_rx = tmp;
623 if (max_tx || max_rx) {
624 list_for_each_entry(xfer, &msg->transfers,
627 xfer->tx_buf = master->dummy_tx;
629 xfer->rx_buf = master->dummy_rx;
634 if (msg->is_dma_mapped || !master->can_dma)
637 tx_dev = &master->dma_tx->dev->device;
638 rx_dev = &master->dma_rx->dev->device;
640 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
641 if (!master->can_dma(master, msg->spi, xfer))
644 if (xfer->tx_buf != NULL) {
645 xfer->tx_dma = dma_map_single(tx_dev,
646 (void *)xfer->tx_buf,
649 if (dma_mapping_error(dev, xfer->tx_dma)) {
650 dev_err(dev, "dma_map_single Tx failed\n");
655 if (xfer->rx_buf != NULL) {
656 xfer->rx_dma = dma_map_single(rx_dev,
657 xfer->rx_buf, xfer->len,
659 if (dma_mapping_error(dev, xfer->rx_dma)) {
660 dev_err(dev, "dma_map_single Rx failed\n");
661 dma_unmap_single(tx_dev, xfer->tx_dma,
662 xfer->len, DMA_TO_DEVICE);
668 master->cur_msg_mapped = true;
673 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
675 struct spi_transfer *xfer;
676 struct device *tx_dev, *rx_dev;
678 if (!master->cur_msg_mapped || msg->is_dma_mapped || !master->can_dma)
681 tx_dev = &master->dma_tx->dev->device;
682 rx_dev = &master->dma_rx->dev->device;
684 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
685 if (!master->can_dma(master, msg->spi, xfer))
689 dma_unmap_single(rx_dev, xfer->rx_dma, xfer->len,
692 dma_unmap_single(tx_dev, xfer->tx_dma, xfer->len,
700 * spi_transfer_one_message - Default implementation of transfer_one_message()
702 * This is a standard implementation of transfer_one_message() for
703 * drivers which impelment a transfer_one() operation. It provides
704 * standard handling of delays and chip select management.
706 static int spi_transfer_one_message(struct spi_master *master,
707 struct spi_message *msg)
709 struct spi_transfer *xfer;
711 bool keep_cs = false;
714 spi_set_cs(msg->spi, true);
716 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
717 trace_spi_transfer_start(msg, xfer);
719 reinit_completion(&master->xfer_completion);
721 ret = master->transfer_one(master, msg->spi, xfer);
723 dev_err(&msg->spi->dev,
724 "SPI transfer failed: %d\n", ret);
730 wait_for_completion(&master->xfer_completion);
733 trace_spi_transfer_stop(msg, xfer);
735 if (msg->status != -EINPROGRESS)
738 if (xfer->delay_usecs)
739 udelay(xfer->delay_usecs);
741 if (xfer->cs_change) {
742 if (list_is_last(&xfer->transfer_list,
747 spi_set_cs(msg->spi, cur_cs);
751 msg->actual_length += xfer->len;
755 if (ret != 0 || !keep_cs)
756 spi_set_cs(msg->spi, false);
758 if (msg->status == -EINPROGRESS)
761 spi_finalize_current_message(master);
767 * spi_finalize_current_transfer - report completion of a transfer
769 * Called by SPI drivers using the core transfer_one_message()
770 * implementation to notify it that the current interrupt driven
771 * transfer has finished and the next one may be scheduled.
773 void spi_finalize_current_transfer(struct spi_master *master)
775 complete(&master->xfer_completion);
777 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
780 * spi_pump_messages - kthread work function which processes spi message queue
781 * @work: pointer to kthread work struct contained in the master struct
783 * This function checks if there is any spi message in the queue that
784 * needs processing and if so call out to the driver to initialize hardware
785 * and transfer each message.
788 static void spi_pump_messages(struct kthread_work *work)
790 struct spi_master *master =
791 container_of(work, struct spi_master, pump_messages);
793 bool was_busy = false;
796 /* Lock queue and check for queue work */
797 spin_lock_irqsave(&master->queue_lock, flags);
798 if (list_empty(&master->queue) || !master->running) {
800 spin_unlock_irqrestore(&master->queue_lock, flags);
803 master->busy = false;
804 spin_unlock_irqrestore(&master->queue_lock, flags);
805 kfree(master->dummy_rx);
806 master->dummy_rx = NULL;
807 kfree(master->dummy_tx);
808 master->dummy_tx = NULL;
809 if (master->unprepare_transfer_hardware &&
810 master->unprepare_transfer_hardware(master))
811 dev_err(&master->dev,
812 "failed to unprepare transfer hardware\n");
813 if (master->auto_runtime_pm) {
814 pm_runtime_mark_last_busy(master->dev.parent);
815 pm_runtime_put_autosuspend(master->dev.parent);
817 trace_spi_master_idle(master);
821 /* Make sure we are not already running a message */
822 if (master->cur_msg) {
823 spin_unlock_irqrestore(&master->queue_lock, flags);
826 /* Extract head of queue */
828 list_first_entry(&master->queue, struct spi_message, queue);
830 list_del_init(&master->cur_msg->queue);
835 spin_unlock_irqrestore(&master->queue_lock, flags);
837 if (!was_busy && master->auto_runtime_pm) {
838 ret = pm_runtime_get_sync(master->dev.parent);
840 dev_err(&master->dev, "Failed to power device: %d\n",
847 trace_spi_master_busy(master);
849 if (!was_busy && master->prepare_transfer_hardware) {
850 ret = master->prepare_transfer_hardware(master);
852 dev_err(&master->dev,
853 "failed to prepare transfer hardware\n");
855 if (master->auto_runtime_pm)
856 pm_runtime_put(master->dev.parent);
861 trace_spi_message_start(master->cur_msg);
863 if (master->prepare_message) {
864 ret = master->prepare_message(master, master->cur_msg);
866 dev_err(&master->dev,
867 "failed to prepare message: %d\n", ret);
868 master->cur_msg->status = ret;
869 spi_finalize_current_message(master);
872 master->cur_msg_prepared = true;
875 ret = spi_map_msg(master, master->cur_msg);
877 master->cur_msg->status = ret;
878 spi_finalize_current_message(master);
882 ret = master->transfer_one_message(master, master->cur_msg);
884 dev_err(&master->dev,
885 "failed to transfer one message from queue: %d\n", ret);
886 master->cur_msg->status = ret;
887 spi_finalize_current_message(master);
892 static int spi_init_queue(struct spi_master *master)
894 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
896 INIT_LIST_HEAD(&master->queue);
897 spin_lock_init(&master->queue_lock);
899 master->running = false;
900 master->busy = false;
902 init_kthread_worker(&master->kworker);
903 master->kworker_task = kthread_run(kthread_worker_fn,
904 &master->kworker, "%s",
905 dev_name(&master->dev));
906 if (IS_ERR(master->kworker_task)) {
907 dev_err(&master->dev, "failed to create message pump task\n");
910 init_kthread_work(&master->pump_messages, spi_pump_messages);
913 * Master config will indicate if this controller should run the
914 * message pump with high (realtime) priority to reduce the transfer
915 * latency on the bus by minimising the delay between a transfer
916 * request and the scheduling of the message pump thread. Without this
917 * setting the message pump thread will remain at default priority.
920 dev_info(&master->dev,
921 "will run message pump with realtime priority\n");
922 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m);
929 * spi_get_next_queued_message() - called by driver to check for queued
931 * @master: the master to check for queued messages
933 * If there are more messages in the queue, the next message is returned from
936 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
938 struct spi_message *next;
941 /* get a pointer to the next message, if any */
942 spin_lock_irqsave(&master->queue_lock, flags);
943 next = list_first_entry_or_null(&master->queue, struct spi_message,
945 spin_unlock_irqrestore(&master->queue_lock, flags);
949 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
952 * spi_finalize_current_message() - the current message is complete
953 * @master: the master to return the message to
955 * Called by the driver to notify the core that the message in the front of the
956 * queue is complete and can be removed from the queue.
958 void spi_finalize_current_message(struct spi_master *master)
960 struct spi_message *mesg;
964 spin_lock_irqsave(&master->queue_lock, flags);
965 mesg = master->cur_msg;
966 master->cur_msg = NULL;
968 queue_kthread_work(&master->kworker, &master->pump_messages);
969 spin_unlock_irqrestore(&master->queue_lock, flags);
971 spi_unmap_msg(master, mesg);
973 if (master->cur_msg_prepared && master->unprepare_message) {
974 ret = master->unprepare_message(master, mesg);
976 dev_err(&master->dev,
977 "failed to unprepare message: %d\n", ret);
980 master->cur_msg_prepared = false;
984 mesg->complete(mesg->context);
986 trace_spi_message_done(mesg);
988 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
990 static int spi_start_queue(struct spi_master *master)
994 spin_lock_irqsave(&master->queue_lock, flags);
996 if (master->running || master->busy) {
997 spin_unlock_irqrestore(&master->queue_lock, flags);
1001 master->running = true;
1002 master->cur_msg = NULL;
1003 spin_unlock_irqrestore(&master->queue_lock, flags);
1005 queue_kthread_work(&master->kworker, &master->pump_messages);
1010 static int spi_stop_queue(struct spi_master *master)
1012 unsigned long flags;
1013 unsigned limit = 500;
1016 spin_lock_irqsave(&master->queue_lock, flags);
1019 * This is a bit lame, but is optimized for the common execution path.
1020 * A wait_queue on the master->busy could be used, but then the common
1021 * execution path (pump_messages) would be required to call wake_up or
1022 * friends on every SPI message. Do this instead.
1024 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1025 spin_unlock_irqrestore(&master->queue_lock, flags);
1027 spin_lock_irqsave(&master->queue_lock, flags);
1030 if (!list_empty(&master->queue) || master->busy)
1033 master->running = false;
1035 spin_unlock_irqrestore(&master->queue_lock, flags);
1038 dev_warn(&master->dev,
1039 "could not stop message queue\n");
1045 static int spi_destroy_queue(struct spi_master *master)
1049 ret = spi_stop_queue(master);
1052 * flush_kthread_worker will block until all work is done.
1053 * If the reason that stop_queue timed out is that the work will never
1054 * finish, then it does no good to call flush/stop thread, so
1058 dev_err(&master->dev, "problem destroying queue\n");
1062 flush_kthread_worker(&master->kworker);
1063 kthread_stop(master->kworker_task);
1069 * spi_queued_transfer - transfer function for queued transfers
1070 * @spi: spi device which is requesting transfer
1071 * @msg: spi message which is to handled is queued to driver queue
1073 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1075 struct spi_master *master = spi->master;
1076 unsigned long flags;
1078 spin_lock_irqsave(&master->queue_lock, flags);
1080 if (!master->running) {
1081 spin_unlock_irqrestore(&master->queue_lock, flags);
1084 msg->actual_length = 0;
1085 msg->status = -EINPROGRESS;
1087 list_add_tail(&msg->queue, &master->queue);
1089 queue_kthread_work(&master->kworker, &master->pump_messages);
1091 spin_unlock_irqrestore(&master->queue_lock, flags);
1095 static int spi_master_initialize_queue(struct spi_master *master)
1099 master->queued = true;
1100 master->transfer = spi_queued_transfer;
1101 if (!master->transfer_one_message)
1102 master->transfer_one_message = spi_transfer_one_message;
1104 /* Initialize and start queue */
1105 ret = spi_init_queue(master);
1107 dev_err(&master->dev, "problem initializing queue\n");
1108 goto err_init_queue;
1110 ret = spi_start_queue(master);
1112 dev_err(&master->dev, "problem starting queue\n");
1113 goto err_start_queue;
1120 spi_destroy_queue(master);
1124 /*-------------------------------------------------------------------------*/
1126 #if defined(CONFIG_OF)
1128 * of_register_spi_devices() - Register child devices onto the SPI bus
1129 * @master: Pointer to spi_master device
1131 * Registers an spi_device for each child node of master node which has a 'reg'
1134 static void of_register_spi_devices(struct spi_master *master)
1136 struct spi_device *spi;
1137 struct device_node *nc;
1141 if (!master->dev.of_node)
1144 for_each_available_child_of_node(master->dev.of_node, nc) {
1145 /* Alloc an spi_device */
1146 spi = spi_alloc_device(master);
1148 dev_err(&master->dev, "spi_device alloc error for %s\n",
1154 /* Select device driver */
1155 if (of_modalias_node(nc, spi->modalias,
1156 sizeof(spi->modalias)) < 0) {
1157 dev_err(&master->dev, "cannot find modalias for %s\n",
1163 /* Device address */
1164 rc = of_property_read_u32(nc, "reg", &value);
1166 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1171 spi->chip_select = value;
1173 /* Mode (clock phase/polarity/etc.) */
1174 if (of_find_property(nc, "spi-cpha", NULL))
1175 spi->mode |= SPI_CPHA;
1176 if (of_find_property(nc, "spi-cpol", NULL))
1177 spi->mode |= SPI_CPOL;
1178 if (of_find_property(nc, "spi-cs-high", NULL))
1179 spi->mode |= SPI_CS_HIGH;
1180 if (of_find_property(nc, "spi-3wire", NULL))
1181 spi->mode |= SPI_3WIRE;
1183 /* Device DUAL/QUAD mode */
1184 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1189 spi->mode |= SPI_TX_DUAL;
1192 spi->mode |= SPI_TX_QUAD;
1195 dev_err(&master->dev,
1196 "spi-tx-bus-width %d not supported\n",
1203 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1208 spi->mode |= SPI_RX_DUAL;
1211 spi->mode |= SPI_RX_QUAD;
1214 dev_err(&master->dev,
1215 "spi-rx-bus-width %d not supported\n",
1223 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1225 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1230 spi->max_speed_hz = value;
1233 spi->irq = irq_of_parse_and_map(nc, 0);
1235 /* Store a pointer to the node in the device structure */
1237 spi->dev.of_node = nc;
1239 /* Register the new device */
1240 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1241 rc = spi_add_device(spi);
1243 dev_err(&master->dev, "spi_device register error %s\n",
1251 static void of_register_spi_devices(struct spi_master *master) { }
1255 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1257 struct spi_device *spi = data;
1259 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1260 struct acpi_resource_spi_serialbus *sb;
1262 sb = &ares->data.spi_serial_bus;
1263 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1264 spi->chip_select = sb->device_selection;
1265 spi->max_speed_hz = sb->connection_speed;
1267 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1268 spi->mode |= SPI_CPHA;
1269 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1270 spi->mode |= SPI_CPOL;
1271 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1272 spi->mode |= SPI_CS_HIGH;
1274 } else if (spi->irq < 0) {
1277 if (acpi_dev_resource_interrupt(ares, 0, &r))
1281 /* Always tell the ACPI core to skip this resource */
1285 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1286 void *data, void **return_value)
1288 struct spi_master *master = data;
1289 struct list_head resource_list;
1290 struct acpi_device *adev;
1291 struct spi_device *spi;
1294 if (acpi_bus_get_device(handle, &adev))
1296 if (acpi_bus_get_status(adev) || !adev->status.present)
1299 spi = spi_alloc_device(master);
1301 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1302 dev_name(&adev->dev));
1303 return AE_NO_MEMORY;
1306 ACPI_COMPANION_SET(&spi->dev, adev);
1309 INIT_LIST_HEAD(&resource_list);
1310 ret = acpi_dev_get_resources(adev, &resource_list,
1311 acpi_spi_add_resource, spi);
1312 acpi_dev_free_resource_list(&resource_list);
1314 if (ret < 0 || !spi->max_speed_hz) {
1319 adev->power.flags.ignore_parent = true;
1320 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1321 if (spi_add_device(spi)) {
1322 adev->power.flags.ignore_parent = false;
1323 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1324 dev_name(&adev->dev));
1331 static void acpi_register_spi_devices(struct spi_master *master)
1336 handle = ACPI_HANDLE(master->dev.parent);
1340 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1341 acpi_spi_add_device, NULL,
1343 if (ACPI_FAILURE(status))
1344 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1347 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1348 #endif /* CONFIG_ACPI */
1350 static void spi_master_release(struct device *dev)
1352 struct spi_master *master;
1354 master = container_of(dev, struct spi_master, dev);
1358 static struct class spi_master_class = {
1359 .name = "spi_master",
1360 .owner = THIS_MODULE,
1361 .dev_release = spi_master_release,
1367 * spi_alloc_master - allocate SPI master controller
1368 * @dev: the controller, possibly using the platform_bus
1369 * @size: how much zeroed driver-private data to allocate; the pointer to this
1370 * memory is in the driver_data field of the returned device,
1371 * accessible with spi_master_get_devdata().
1372 * Context: can sleep
1374 * This call is used only by SPI master controller drivers, which are the
1375 * only ones directly touching chip registers. It's how they allocate
1376 * an spi_master structure, prior to calling spi_register_master().
1378 * This must be called from context that can sleep. It returns the SPI
1379 * master structure on success, else NULL.
1381 * The caller is responsible for assigning the bus number and initializing
1382 * the master's methods before calling spi_register_master(); and (after errors
1383 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1386 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1388 struct spi_master *master;
1393 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1397 device_initialize(&master->dev);
1398 master->bus_num = -1;
1399 master->num_chipselect = 1;
1400 master->dev.class = &spi_master_class;
1401 master->dev.parent = get_device(dev);
1402 spi_master_set_devdata(master, &master[1]);
1406 EXPORT_SYMBOL_GPL(spi_alloc_master);
1409 static int of_spi_register_master(struct spi_master *master)
1412 struct device_node *np = master->dev.of_node;
1417 nb = of_gpio_named_count(np, "cs-gpios");
1418 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1420 /* Return error only for an incorrectly formed cs-gpios property */
1421 if (nb == 0 || nb == -ENOENT)
1426 cs = devm_kzalloc(&master->dev,
1427 sizeof(int) * master->num_chipselect,
1429 master->cs_gpios = cs;
1431 if (!master->cs_gpios)
1434 for (i = 0; i < master->num_chipselect; i++)
1437 for (i = 0; i < nb; i++)
1438 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1443 static int of_spi_register_master(struct spi_master *master)
1450 * spi_register_master - register SPI master controller
1451 * @master: initialized master, originally from spi_alloc_master()
1452 * Context: can sleep
1454 * SPI master controllers connect to their drivers using some non-SPI bus,
1455 * such as the platform bus. The final stage of probe() in that code
1456 * includes calling spi_register_master() to hook up to this SPI bus glue.
1458 * SPI controllers use board specific (often SOC specific) bus numbers,
1459 * and board-specific addressing for SPI devices combines those numbers
1460 * with chip select numbers. Since SPI does not directly support dynamic
1461 * device identification, boards need configuration tables telling which
1462 * chip is at which address.
1464 * This must be called from context that can sleep. It returns zero on
1465 * success, else a negative error code (dropping the master's refcount).
1466 * After a successful return, the caller is responsible for calling
1467 * spi_unregister_master().
1469 int spi_register_master(struct spi_master *master)
1471 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1472 struct device *dev = master->dev.parent;
1473 struct boardinfo *bi;
1474 int status = -ENODEV;
1480 status = of_spi_register_master(master);
1484 /* even if it's just one always-selected device, there must
1485 * be at least one chipselect
1487 if (master->num_chipselect == 0)
1490 if ((master->bus_num < 0) && master->dev.of_node)
1491 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1493 /* convention: dynamically assigned bus IDs count down from the max */
1494 if (master->bus_num < 0) {
1495 /* FIXME switch to an IDR based scheme, something like
1496 * I2C now uses, so we can't run out of "dynamic" IDs
1498 master->bus_num = atomic_dec_return(&dyn_bus_id);
1502 spin_lock_init(&master->bus_lock_spinlock);
1503 mutex_init(&master->bus_lock_mutex);
1504 master->bus_lock_flag = 0;
1505 init_completion(&master->xfer_completion);
1507 /* register the device, then userspace will see it.
1508 * registration fails if the bus ID is in use.
1510 dev_set_name(&master->dev, "spi%u", master->bus_num);
1511 status = device_add(&master->dev);
1514 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1515 dynamic ? " (dynamic)" : "");
1517 /* If we're using a queued driver, start the queue */
1518 if (master->transfer)
1519 dev_info(dev, "master is unqueued, this is deprecated\n");
1521 status = spi_master_initialize_queue(master);
1523 device_del(&master->dev);
1528 mutex_lock(&board_lock);
1529 list_add_tail(&master->list, &spi_master_list);
1530 list_for_each_entry(bi, &board_list, list)
1531 spi_match_master_to_boardinfo(master, &bi->board_info);
1532 mutex_unlock(&board_lock);
1534 /* Register devices from the device tree and ACPI */
1535 of_register_spi_devices(master);
1536 acpi_register_spi_devices(master);
1540 EXPORT_SYMBOL_GPL(spi_register_master);
1542 static void devm_spi_unregister(struct device *dev, void *res)
1544 spi_unregister_master(*(struct spi_master **)res);
1548 * dev_spi_register_master - register managed SPI master controller
1549 * @dev: device managing SPI master
1550 * @master: initialized master, originally from spi_alloc_master()
1551 * Context: can sleep
1553 * Register a SPI device as with spi_register_master() which will
1554 * automatically be unregister
1556 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1558 struct spi_master **ptr;
1561 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1565 ret = spi_register_master(master);
1568 devres_add(dev, ptr);
1575 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1577 static int __unregister(struct device *dev, void *null)
1579 spi_unregister_device(to_spi_device(dev));
1584 * spi_unregister_master - unregister SPI master controller
1585 * @master: the master being unregistered
1586 * Context: can sleep
1588 * This call is used only by SPI master controller drivers, which are the
1589 * only ones directly touching chip registers.
1591 * This must be called from context that can sleep.
1593 void spi_unregister_master(struct spi_master *master)
1597 if (master->queued) {
1598 if (spi_destroy_queue(master))
1599 dev_err(&master->dev, "queue remove failed\n");
1602 mutex_lock(&board_lock);
1603 list_del(&master->list);
1604 mutex_unlock(&board_lock);
1606 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1607 device_unregister(&master->dev);
1609 EXPORT_SYMBOL_GPL(spi_unregister_master);
1611 int spi_master_suspend(struct spi_master *master)
1615 /* Basically no-ops for non-queued masters */
1616 if (!master->queued)
1619 ret = spi_stop_queue(master);
1621 dev_err(&master->dev, "queue stop failed\n");
1625 EXPORT_SYMBOL_GPL(spi_master_suspend);
1627 int spi_master_resume(struct spi_master *master)
1631 if (!master->queued)
1634 ret = spi_start_queue(master);
1636 dev_err(&master->dev, "queue restart failed\n");
1640 EXPORT_SYMBOL_GPL(spi_master_resume);
1642 static int __spi_master_match(struct device *dev, const void *data)
1644 struct spi_master *m;
1645 const u16 *bus_num = data;
1647 m = container_of(dev, struct spi_master, dev);
1648 return m->bus_num == *bus_num;
1652 * spi_busnum_to_master - look up master associated with bus_num
1653 * @bus_num: the master's bus number
1654 * Context: can sleep
1656 * This call may be used with devices that are registered after
1657 * arch init time. It returns a refcounted pointer to the relevant
1658 * spi_master (which the caller must release), or NULL if there is
1659 * no such master registered.
1661 struct spi_master *spi_busnum_to_master(u16 bus_num)
1664 struct spi_master *master = NULL;
1666 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1667 __spi_master_match);
1669 master = container_of(dev, struct spi_master, dev);
1670 /* reference got in class_find_device */
1673 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1676 /*-------------------------------------------------------------------------*/
1678 /* Core methods for SPI master protocol drivers. Some of the
1679 * other core methods are currently defined as inline functions.
1683 * spi_setup - setup SPI mode and clock rate
1684 * @spi: the device whose settings are being modified
1685 * Context: can sleep, and no requests are queued to the device
1687 * SPI protocol drivers may need to update the transfer mode if the
1688 * device doesn't work with its default. They may likewise need
1689 * to update clock rates or word sizes from initial values. This function
1690 * changes those settings, and must be called from a context that can sleep.
1691 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1692 * effect the next time the device is selected and data is transferred to
1693 * or from it. When this function returns, the spi device is deselected.
1695 * Note that this call will fail if the protocol driver specifies an option
1696 * that the underlying controller or its driver does not support. For
1697 * example, not all hardware supports wire transfers using nine bit words,
1698 * LSB-first wire encoding, or active-high chipselects.
1700 int spi_setup(struct spi_device *spi)
1705 /* check mode to prevent that DUAL and QUAD set at the same time
1707 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1708 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1710 "setup: can not select dual and quad at the same time\n");
1713 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1715 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1716 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1718 /* help drivers fail *cleanly* when they need options
1719 * that aren't supported with their current master
1721 bad_bits = spi->mode & ~spi->master->mode_bits;
1723 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1728 if (!spi->bits_per_word)
1729 spi->bits_per_word = 8;
1731 if (spi->master->setup)
1732 status = spi->master->setup(spi);
1734 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1735 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1736 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1737 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1738 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1739 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1740 spi->bits_per_word, spi->max_speed_hz,
1745 EXPORT_SYMBOL_GPL(spi_setup);
1747 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1749 struct spi_master *master = spi->master;
1750 struct spi_transfer *xfer;
1752 if (list_empty(&message->transfers))
1754 if (!message->complete)
1757 /* Half-duplex links include original MicroWire, and ones with
1758 * only one data pin like SPI_3WIRE (switches direction) or where
1759 * either MOSI or MISO is missing. They can also be caused by
1760 * software limitations.
1762 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1763 || (spi->mode & SPI_3WIRE)) {
1764 unsigned flags = master->flags;
1766 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1767 if (xfer->rx_buf && xfer->tx_buf)
1769 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1771 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1777 * Set transfer bits_per_word and max speed as spi device default if
1778 * it is not set for this transfer.
1779 * Set transfer tx_nbits and rx_nbits as single transfer default
1780 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1782 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1783 message->frame_length += xfer->len;
1784 if (!xfer->bits_per_word)
1785 xfer->bits_per_word = spi->bits_per_word;
1786 if (!xfer->speed_hz) {
1787 xfer->speed_hz = spi->max_speed_hz;
1788 if (master->max_speed_hz &&
1789 xfer->speed_hz > master->max_speed_hz)
1790 xfer->speed_hz = master->max_speed_hz;
1793 if (master->bits_per_word_mask) {
1794 /* Only 32 bits fit in the mask */
1795 if (xfer->bits_per_word > 32)
1797 if (!(master->bits_per_word_mask &
1798 BIT(xfer->bits_per_word - 1)))
1802 if (xfer->speed_hz && master->min_speed_hz &&
1803 xfer->speed_hz < master->min_speed_hz)
1805 if (xfer->speed_hz && master->max_speed_hz &&
1806 xfer->speed_hz > master->max_speed_hz)
1809 if (xfer->tx_buf && !xfer->tx_nbits)
1810 xfer->tx_nbits = SPI_NBITS_SINGLE;
1811 if (xfer->rx_buf && !xfer->rx_nbits)
1812 xfer->rx_nbits = SPI_NBITS_SINGLE;
1813 /* check transfer tx/rx_nbits:
1814 * 1. check the value matches one of single, dual and quad
1815 * 2. check tx/rx_nbits match the mode in spi_device
1818 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1819 xfer->tx_nbits != SPI_NBITS_DUAL &&
1820 xfer->tx_nbits != SPI_NBITS_QUAD)
1822 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1823 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1825 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1826 !(spi->mode & SPI_TX_QUAD))
1829 /* check transfer rx_nbits */
1831 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1832 xfer->rx_nbits != SPI_NBITS_DUAL &&
1833 xfer->rx_nbits != SPI_NBITS_QUAD)
1835 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1836 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1838 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1839 !(spi->mode & SPI_RX_QUAD))
1844 message->status = -EINPROGRESS;
1849 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1851 struct spi_master *master = spi->master;
1855 trace_spi_message_submit(message);
1857 return master->transfer(spi, message);
1861 * spi_async - asynchronous SPI transfer
1862 * @spi: device with which data will be exchanged
1863 * @message: describes the data transfers, including completion callback
1864 * Context: any (irqs may be blocked, etc)
1866 * This call may be used in_irq and other contexts which can't sleep,
1867 * as well as from task contexts which can sleep.
1869 * The completion callback is invoked in a context which can't sleep.
1870 * Before that invocation, the value of message->status is undefined.
1871 * When the callback is issued, message->status holds either zero (to
1872 * indicate complete success) or a negative error code. After that
1873 * callback returns, the driver which issued the transfer request may
1874 * deallocate the associated memory; it's no longer in use by any SPI
1875 * core or controller driver code.
1877 * Note that although all messages to a spi_device are handled in
1878 * FIFO order, messages may go to different devices in other orders.
1879 * Some device might be higher priority, or have various "hard" access
1880 * time requirements, for example.
1882 * On detection of any fault during the transfer, processing of
1883 * the entire message is aborted, and the device is deselected.
1884 * Until returning from the associated message completion callback,
1885 * no other spi_message queued to that device will be processed.
1886 * (This rule applies equally to all the synchronous transfer calls,
1887 * which are wrappers around this core asynchronous primitive.)
1889 int spi_async(struct spi_device *spi, struct spi_message *message)
1891 struct spi_master *master = spi->master;
1893 unsigned long flags;
1895 ret = __spi_validate(spi, message);
1899 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1901 if (master->bus_lock_flag)
1904 ret = __spi_async(spi, message);
1906 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1910 EXPORT_SYMBOL_GPL(spi_async);
1913 * spi_async_locked - version of spi_async with exclusive bus usage
1914 * @spi: device with which data will be exchanged
1915 * @message: describes the data transfers, including completion callback
1916 * Context: any (irqs may be blocked, etc)
1918 * This call may be used in_irq and other contexts which can't sleep,
1919 * as well as from task contexts which can sleep.
1921 * The completion callback is invoked in a context which can't sleep.
1922 * Before that invocation, the value of message->status is undefined.
1923 * When the callback is issued, message->status holds either zero (to
1924 * indicate complete success) or a negative error code. After that
1925 * callback returns, the driver which issued the transfer request may
1926 * deallocate the associated memory; it's no longer in use by any SPI
1927 * core or controller driver code.
1929 * Note that although all messages to a spi_device are handled in
1930 * FIFO order, messages may go to different devices in other orders.
1931 * Some device might be higher priority, or have various "hard" access
1932 * time requirements, for example.
1934 * On detection of any fault during the transfer, processing of
1935 * the entire message is aborted, and the device is deselected.
1936 * Until returning from the associated message completion callback,
1937 * no other spi_message queued to that device will be processed.
1938 * (This rule applies equally to all the synchronous transfer calls,
1939 * which are wrappers around this core asynchronous primitive.)
1941 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1943 struct spi_master *master = spi->master;
1945 unsigned long flags;
1947 ret = __spi_validate(spi, message);
1951 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1953 ret = __spi_async(spi, message);
1955 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1960 EXPORT_SYMBOL_GPL(spi_async_locked);
1963 /*-------------------------------------------------------------------------*/
1965 /* Utility methods for SPI master protocol drivers, layered on
1966 * top of the core. Some other utility methods are defined as
1970 static void spi_complete(void *arg)
1975 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1978 DECLARE_COMPLETION_ONSTACK(done);
1980 struct spi_master *master = spi->master;
1982 message->complete = spi_complete;
1983 message->context = &done;
1986 mutex_lock(&master->bus_lock_mutex);
1988 status = spi_async_locked(spi, message);
1991 mutex_unlock(&master->bus_lock_mutex);
1994 wait_for_completion(&done);
1995 status = message->status;
1997 message->context = NULL;
2002 * spi_sync - blocking/synchronous SPI data transfers
2003 * @spi: device with which data will be exchanged
2004 * @message: describes the data transfers
2005 * Context: can sleep
2007 * This call may only be used from a context that may sleep. The sleep
2008 * is non-interruptible, and has no timeout. Low-overhead controller
2009 * drivers may DMA directly into and out of the message buffers.
2011 * Note that the SPI device's chip select is active during the message,
2012 * and then is normally disabled between messages. Drivers for some
2013 * frequently-used devices may want to minimize costs of selecting a chip,
2014 * by leaving it selected in anticipation that the next message will go
2015 * to the same chip. (That may increase power usage.)
2017 * Also, the caller is guaranteeing that the memory associated with the
2018 * message will not be freed before this call returns.
2020 * It returns zero on success, else a negative error code.
2022 int spi_sync(struct spi_device *spi, struct spi_message *message)
2024 return __spi_sync(spi, message, 0);
2026 EXPORT_SYMBOL_GPL(spi_sync);
2029 * spi_sync_locked - version of spi_sync with exclusive bus usage
2030 * @spi: device with which data will be exchanged
2031 * @message: describes the data transfers
2032 * Context: can sleep
2034 * This call may only be used from a context that may sleep. The sleep
2035 * is non-interruptible, and has no timeout. Low-overhead controller
2036 * drivers may DMA directly into and out of the message buffers.
2038 * This call should be used by drivers that require exclusive access to the
2039 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2040 * be released by a spi_bus_unlock call when the exclusive access is over.
2042 * It returns zero on success, else a negative error code.
2044 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2046 return __spi_sync(spi, message, 1);
2048 EXPORT_SYMBOL_GPL(spi_sync_locked);
2051 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2052 * @master: SPI bus master that should be locked for exclusive bus access
2053 * Context: can sleep
2055 * This call may only be used from a context that may sleep. The sleep
2056 * is non-interruptible, and has no timeout.
2058 * This call should be used by drivers that require exclusive access to the
2059 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2060 * exclusive access is over. Data transfer must be done by spi_sync_locked
2061 * and spi_async_locked calls when the SPI bus lock is held.
2063 * It returns zero on success, else a negative error code.
2065 int spi_bus_lock(struct spi_master *master)
2067 unsigned long flags;
2069 mutex_lock(&master->bus_lock_mutex);
2071 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2072 master->bus_lock_flag = 1;
2073 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2075 /* mutex remains locked until spi_bus_unlock is called */
2079 EXPORT_SYMBOL_GPL(spi_bus_lock);
2082 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2083 * @master: SPI bus master that was locked for exclusive bus access
2084 * Context: can sleep
2086 * This call may only be used from a context that may sleep. The sleep
2087 * is non-interruptible, and has no timeout.
2089 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2092 * It returns zero on success, else a negative error code.
2094 int spi_bus_unlock(struct spi_master *master)
2096 master->bus_lock_flag = 0;
2098 mutex_unlock(&master->bus_lock_mutex);
2102 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2104 /* portable code must never pass more than 32 bytes */
2105 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2110 * spi_write_then_read - SPI synchronous write followed by read
2111 * @spi: device with which data will be exchanged
2112 * @txbuf: data to be written (need not be dma-safe)
2113 * @n_tx: size of txbuf, in bytes
2114 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2115 * @n_rx: size of rxbuf, in bytes
2116 * Context: can sleep
2118 * This performs a half duplex MicroWire style transaction with the
2119 * device, sending txbuf and then reading rxbuf. The return value
2120 * is zero for success, else a negative errno status code.
2121 * This call may only be used from a context that may sleep.
2123 * Parameters to this routine are always copied using a small buffer;
2124 * portable code should never use this for more than 32 bytes.
2125 * Performance-sensitive or bulk transfer code should instead use
2126 * spi_{async,sync}() calls with dma-safe buffers.
2128 int spi_write_then_read(struct spi_device *spi,
2129 const void *txbuf, unsigned n_tx,
2130 void *rxbuf, unsigned n_rx)
2132 static DEFINE_MUTEX(lock);
2135 struct spi_message message;
2136 struct spi_transfer x[2];
2139 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2140 * copying here, (as a pure convenience thing), but we can
2141 * keep heap costs out of the hot path unless someone else is
2142 * using the pre-allocated buffer or the transfer is too large.
2144 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2145 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2146 GFP_KERNEL | GFP_DMA);
2153 spi_message_init(&message);
2154 memset(x, 0, sizeof(x));
2157 spi_message_add_tail(&x[0], &message);
2161 spi_message_add_tail(&x[1], &message);
2164 memcpy(local_buf, txbuf, n_tx);
2165 x[0].tx_buf = local_buf;
2166 x[1].rx_buf = local_buf + n_tx;
2169 status = spi_sync(spi, &message);
2171 memcpy(rxbuf, x[1].rx_buf, n_rx);
2173 if (x[0].tx_buf == buf)
2174 mutex_unlock(&lock);
2180 EXPORT_SYMBOL_GPL(spi_write_then_read);
2182 /*-------------------------------------------------------------------------*/
2184 static int __init spi_init(void)
2188 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2194 status = bus_register(&spi_bus_type);
2198 status = class_register(&spi_master_class);
2204 bus_unregister(&spi_bus_type);
2212 /* board_info is normally registered in arch_initcall(),
2213 * but even essential drivers wait till later
2215 * REVISIT only boardinfo really needs static linking. the rest (device and
2216 * driver registration) _could_ be dynamically linked (modular) ... costs
2217 * include needing to have boardinfo data structures be much more public.
2219 postcore_initcall(spi_init);