1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // core.c -- Voltage/Current Regulator framework.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
56 static struct dentry *debugfs_root;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
67 struct regulator_dev *regulator;
71 * struct regulator_enable_gpio
73 * Management for shared enable GPIO pin
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
83 * struct regulator_supply_alias
85 * Used to map lookups for a supply onto an alternative device.
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
111 const char *rdev_get_name(struct regulator_dev *rdev)
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
121 static bool have_full_constraints(void)
123 return has_full_constraints || of_have_populated_dt();
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
133 if (rdev->constraints->valid_ops_mask & ops)
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
156 mutex_lock(®ulator_nesting_mutex);
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
173 if (lock && ret != -EDEADLK) {
175 rdev->mutex_owner = current;
178 mutex_unlock(®ulator_nesting_mutex);
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
193 static void regulator_lock(struct regulator_dev *rdev)
195 regulator_lock_nested(rdev, NULL);
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
205 static void regulator_unlock(struct regulator_dev *rdev)
207 mutex_lock(®ulator_nesting_mutex);
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
216 mutex_unlock(®ulator_nesting_mutex);
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221 struct regulator_dev *c_rdev;
224 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227 if (rdev->supply->rdev == c_rdev)
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235 unsigned int n_coupled)
237 struct regulator_dev *c_rdev, *supply_rdev;
238 int i, supply_n_coupled;
240 for (i = n_coupled; i > 0; i--) {
241 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
246 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247 supply_rdev = c_rdev->supply->rdev;
248 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
250 regulator_unlock_recursive(supply_rdev,
254 regulator_unlock(c_rdev);
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259 struct regulator_dev **new_contended_rdev,
260 struct regulator_dev **old_contended_rdev,
261 struct ww_acquire_ctx *ww_ctx)
263 struct regulator_dev *c_rdev;
266 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
272 if (c_rdev != *old_contended_rdev) {
273 err = regulator_lock_nested(c_rdev, ww_ctx);
275 if (err == -EDEADLK) {
276 *new_contended_rdev = c_rdev;
280 /* shouldn't happen */
281 WARN_ON_ONCE(err != -EALREADY);
284 *old_contended_rdev = NULL;
287 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288 err = regulator_lock_recursive(c_rdev->supply->rdev,
293 regulator_unlock(c_rdev);
302 regulator_unlock_recursive(rdev, i);
308 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
310 * @rdev: regulator source
311 * @ww_ctx: w/w mutex acquire context
313 * Unlock all regulators related with rdev by coupling or supplying.
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316 struct ww_acquire_ctx *ww_ctx)
318 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319 ww_acquire_fini(ww_ctx);
323 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324 * @rdev: regulator source
325 * @ww_ctx: w/w mutex acquire context
327 * This function as a wrapper on regulator_lock_recursive(), which locks
328 * all regulators related with rdev by coupling or supplying.
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331 struct ww_acquire_ctx *ww_ctx)
333 struct regulator_dev *new_contended_rdev = NULL;
334 struct regulator_dev *old_contended_rdev = NULL;
337 mutex_lock(®ulator_list_mutex);
339 ww_acquire_init(ww_ctx, ®ulator_ww_class);
342 if (new_contended_rdev) {
343 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344 old_contended_rdev = new_contended_rdev;
345 old_contended_rdev->ref_cnt++;
348 err = regulator_lock_recursive(rdev,
353 if (old_contended_rdev)
354 regulator_unlock(old_contended_rdev);
356 } while (err == -EDEADLK);
358 ww_acquire_done(ww_ctx);
360 mutex_unlock(®ulator_list_mutex);
364 * of_get_child_regulator - get a child regulator device node
365 * based on supply name
366 * @parent: Parent device node
367 * @prop_name: Combination regulator supply name and "-supply"
369 * Traverse all child nodes.
370 * Extract the child regulator device node corresponding to the supply name.
371 * returns the device node corresponding to the regulator if found, else
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375 const char *prop_name)
377 struct device_node *regnode = NULL;
378 struct device_node *child = NULL;
380 for_each_child_of_node(parent, child) {
381 regnode = of_parse_phandle(child, prop_name, 0);
384 regnode = of_get_child_regulator(child, prop_name);
399 * of_get_regulator - get a regulator device node based on supply name
400 * @dev: Device pointer for the consumer (of regulator) device
401 * @supply: regulator supply name
403 * Extract the regulator device node corresponding to the supply name.
404 * returns the device node corresponding to the regulator if found, else
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
409 struct device_node *regnode = NULL;
410 char prop_name[64]; /* 64 is max size of property name */
412 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
414 snprintf(prop_name, 64, "%s-supply", supply);
415 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418 regnode = of_get_child_regulator(dev->of_node, prop_name);
422 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423 prop_name, dev->of_node);
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431 int *min_uV, int *max_uV)
433 BUG_ON(*min_uV > *max_uV);
435 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436 rdev_err(rdev, "voltage operation not allowed\n");
440 if (*max_uV > rdev->constraints->max_uV)
441 *max_uV = rdev->constraints->max_uV;
442 if (*min_uV < rdev->constraints->min_uV)
443 *min_uV = rdev->constraints->min_uV;
445 if (*min_uV > *max_uV) {
446 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
457 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460 /* Make sure we select a voltage that suits the needs of all
461 * regulator consumers
463 int regulator_check_consumers(struct regulator_dev *rdev,
464 int *min_uV, int *max_uV,
465 suspend_state_t state)
467 struct regulator *regulator;
468 struct regulator_voltage *voltage;
470 list_for_each_entry(regulator, &rdev->consumer_list, list) {
471 voltage = ®ulator->voltage[state];
473 * Assume consumers that didn't say anything are OK
474 * with anything in the constraint range.
476 if (!voltage->min_uV && !voltage->max_uV)
479 if (*max_uV > voltage->max_uV)
480 *max_uV = voltage->max_uV;
481 if (*min_uV < voltage->min_uV)
482 *min_uV = voltage->min_uV;
485 if (*min_uV > *max_uV) {
486 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496 int *min_uA, int *max_uA)
498 BUG_ON(*min_uA > *max_uA);
500 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501 rdev_err(rdev, "current operation not allowed\n");
505 if (*max_uA > rdev->constraints->max_uA)
506 *max_uA = rdev->constraints->max_uA;
507 if (*min_uA < rdev->constraints->min_uA)
508 *min_uA = rdev->constraints->min_uA;
510 if (*min_uA > *max_uA) {
511 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
524 case REGULATOR_MODE_FAST:
525 case REGULATOR_MODE_NORMAL:
526 case REGULATOR_MODE_IDLE:
527 case REGULATOR_MODE_STANDBY:
530 rdev_err(rdev, "invalid mode %x specified\n", *mode);
534 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535 rdev_err(rdev, "mode operation not allowed\n");
539 /* The modes are bitmasks, the most power hungry modes having
540 * the lowest values. If the requested mode isn't supported
541 * try higher modes. */
543 if (rdev->constraints->valid_modes_mask & *mode)
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
554 if (rdev->constraints == NULL)
558 case PM_SUSPEND_STANDBY:
559 return &rdev->constraints->state_standby;
561 return &rdev->constraints->state_mem;
563 return &rdev->constraints->state_disk;
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
572 const struct regulator_state *rstate;
574 rstate = regulator_get_suspend_state(rdev, state);
578 /* If we have no suspend mode configuration don't set anything;
579 * only warn if the driver implements set_suspend_voltage or
580 * set_suspend_mode callback.
582 if (rstate->enabled != ENABLE_IN_SUSPEND &&
583 rstate->enabled != DISABLE_IN_SUSPEND) {
584 if (rdev->desc->ops->set_suspend_voltage ||
585 rdev->desc->ops->set_suspend_mode)
586 rdev_warn(rdev, "No configuration\n");
593 static ssize_t regulator_uV_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
599 regulator_lock(rdev);
600 uV = regulator_get_voltage_rdev(rdev);
601 regulator_unlock(rdev);
605 return sprintf(buf, "%d\n", uV);
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
609 static ssize_t regulator_uA_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
614 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
623 return sprintf(buf, "%s\n", rdev_get_name(rdev));
625 static DEVICE_ATTR_RO(name);
627 static const char *regulator_opmode_to_str(int mode)
630 case REGULATOR_MODE_FAST:
632 case REGULATOR_MODE_NORMAL:
634 case REGULATOR_MODE_IDLE:
636 case REGULATOR_MODE_STANDBY:
642 static ssize_t regulator_print_opmode(char *buf, int mode)
644 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
647 static ssize_t regulator_opmode_show(struct device *dev,
648 struct device_attribute *attr, char *buf)
650 struct regulator_dev *rdev = dev_get_drvdata(dev);
652 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
656 static ssize_t regulator_print_state(char *buf, int state)
659 return sprintf(buf, "enabled\n");
661 return sprintf(buf, "disabled\n");
663 return sprintf(buf, "unknown\n");
666 static ssize_t regulator_state_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
669 struct regulator_dev *rdev = dev_get_drvdata(dev);
672 regulator_lock(rdev);
673 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674 regulator_unlock(rdev);
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
680 static ssize_t regulator_status_show(struct device *dev,
681 struct device_attribute *attr, char *buf)
683 struct regulator_dev *rdev = dev_get_drvdata(dev);
687 status = rdev->desc->ops->get_status(rdev);
692 case REGULATOR_STATUS_OFF:
695 case REGULATOR_STATUS_ON:
698 case REGULATOR_STATUS_ERROR:
701 case REGULATOR_STATUS_FAST:
704 case REGULATOR_STATUS_NORMAL:
707 case REGULATOR_STATUS_IDLE:
710 case REGULATOR_STATUS_STANDBY:
713 case REGULATOR_STATUS_BYPASS:
716 case REGULATOR_STATUS_UNDEFINED:
723 return sprintf(buf, "%s\n", label);
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
727 static ssize_t regulator_min_uA_show(struct device *dev,
728 struct device_attribute *attr, char *buf)
730 struct regulator_dev *rdev = dev_get_drvdata(dev);
732 if (!rdev->constraints)
733 return sprintf(buf, "constraint not defined\n");
735 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
739 static ssize_t regulator_max_uA_show(struct device *dev,
740 struct device_attribute *attr, char *buf)
742 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 if (!rdev->constraints)
745 return sprintf(buf, "constraint not defined\n");
747 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
751 static ssize_t regulator_min_uV_show(struct device *dev,
752 struct device_attribute *attr, char *buf)
754 struct regulator_dev *rdev = dev_get_drvdata(dev);
756 if (!rdev->constraints)
757 return sprintf(buf, "constraint not defined\n");
759 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
763 static ssize_t regulator_max_uV_show(struct device *dev,
764 struct device_attribute *attr, char *buf)
766 struct regulator_dev *rdev = dev_get_drvdata(dev);
768 if (!rdev->constraints)
769 return sprintf(buf, "constraint not defined\n");
771 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
775 static ssize_t regulator_total_uA_show(struct device *dev,
776 struct device_attribute *attr, char *buf)
778 struct regulator_dev *rdev = dev_get_drvdata(dev);
779 struct regulator *regulator;
782 regulator_lock(rdev);
783 list_for_each_entry(regulator, &rdev->consumer_list, list) {
784 if (regulator->enable_count)
785 uA += regulator->uA_load;
787 regulator_unlock(rdev);
788 return sprintf(buf, "%d\n", uA);
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
795 struct regulator_dev *rdev = dev_get_drvdata(dev);
796 return sprintf(buf, "%d\n", rdev->use_count);
798 static DEVICE_ATTR_RO(num_users);
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
803 struct regulator_dev *rdev = dev_get_drvdata(dev);
805 switch (rdev->desc->type) {
806 case REGULATOR_VOLTAGE:
807 return sprintf(buf, "voltage\n");
808 case REGULATOR_CURRENT:
809 return sprintf(buf, "current\n");
811 return sprintf(buf, "unknown\n");
813 static DEVICE_ATTR_RO(type);
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
820 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823 regulator_suspend_mem_uV_show, NULL);
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826 struct device_attribute *attr, char *buf)
828 struct regulator_dev *rdev = dev_get_drvdata(dev);
830 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833 regulator_suspend_disk_uV_show, NULL);
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
840 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843 regulator_suspend_standby_uV_show, NULL);
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_mem.mode);
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854 regulator_suspend_mem_mode_show, NULL);
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
861 return regulator_print_opmode(buf,
862 rdev->constraints->state_disk.mode);
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865 regulator_suspend_disk_mode_show, NULL);
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
872 return regulator_print_opmode(buf,
873 rdev->constraints->state_standby.mode);
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876 regulator_suspend_standby_mode_show, NULL);
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
883 return regulator_print_state(buf,
884 rdev->constraints->state_mem.enabled);
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887 regulator_suspend_mem_state_show, NULL);
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
894 return regulator_print_state(buf,
895 rdev->constraints->state_disk.enabled);
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898 regulator_suspend_disk_state_show, NULL);
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
905 return regulator_print_state(buf,
906 rdev->constraints->state_standby.enabled);
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909 regulator_suspend_standby_state_show, NULL);
911 static ssize_t regulator_bypass_show(struct device *dev,
912 struct device_attribute *attr, char *buf)
914 struct regulator_dev *rdev = dev_get_drvdata(dev);
919 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
928 return sprintf(buf, "%s\n", report);
930 static DEVICE_ATTR(bypass, 0444,
931 regulator_bypass_show, NULL);
933 /* Calculate the new optimum regulator operating mode based on the new total
934 * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
937 struct regulator *sibling;
938 int current_uA = 0, output_uV, input_uV, err;
942 * first check to see if we can set modes at all, otherwise just
943 * tell the consumer everything is OK.
945 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946 rdev_dbg(rdev, "DRMS operation not allowed\n");
950 if (!rdev->desc->ops->get_optimum_mode &&
951 !rdev->desc->ops->set_load)
954 if (!rdev->desc->ops->set_mode &&
955 !rdev->desc->ops->set_load)
958 /* calc total requested load */
959 list_for_each_entry(sibling, &rdev->consumer_list, list) {
960 if (sibling->enable_count)
961 current_uA += sibling->uA_load;
964 current_uA += rdev->constraints->system_load;
966 if (rdev->desc->ops->set_load) {
967 /* set the optimum mode for our new total regulator load */
968 err = rdev->desc->ops->set_load(rdev, current_uA);
970 rdev_err(rdev, "failed to set load %d: %pe\n",
971 current_uA, ERR_PTR(err));
973 /* get output voltage */
974 output_uV = regulator_get_voltage_rdev(rdev);
975 if (output_uV <= 0) {
976 rdev_err(rdev, "invalid output voltage found\n");
980 /* get input voltage */
983 input_uV = regulator_get_voltage(rdev->supply);
985 input_uV = rdev->constraints->input_uV;
987 rdev_err(rdev, "invalid input voltage found\n");
991 /* now get the optimum mode for our new total regulator load */
992 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993 output_uV, current_uA);
995 /* check the new mode is allowed */
996 err = regulator_mode_constrain(rdev, &mode);
998 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999 current_uA, input_uV, output_uV, ERR_PTR(err));
1003 err = rdev->desc->ops->set_mode(rdev, mode);
1005 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006 mode, ERR_PTR(err));
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013 const struct regulator_state *rstate)
1017 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018 rdev->desc->ops->set_suspend_enable)
1019 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021 rdev->desc->ops->set_suspend_disable)
1022 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1027 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1031 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1034 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1039 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1042 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1052 const struct regulator_state *rstate;
1054 rstate = regulator_get_suspend_state_check(rdev,
1055 rdev->constraints->initial_state);
1059 return __suspend_set_state(rdev, rstate);
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1065 struct regulation_constraints *constraints = rdev->constraints;
1067 size_t len = sizeof(buf) - 1;
1071 if (constraints->min_uV && constraints->max_uV) {
1072 if (constraints->min_uV == constraints->max_uV)
1073 count += scnprintf(buf + count, len - count, "%d mV ",
1074 constraints->min_uV / 1000);
1076 count += scnprintf(buf + count, len - count,
1078 constraints->min_uV / 1000,
1079 constraints->max_uV / 1000);
1082 if (!constraints->min_uV ||
1083 constraints->min_uV != constraints->max_uV) {
1084 ret = regulator_get_voltage_rdev(rdev);
1086 count += scnprintf(buf + count, len - count,
1087 "at %d mV ", ret / 1000);
1090 if (constraints->uV_offset)
1091 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092 constraints->uV_offset / 1000);
1094 if (constraints->min_uA && constraints->max_uA) {
1095 if (constraints->min_uA == constraints->max_uA)
1096 count += scnprintf(buf + count, len - count, "%d mA ",
1097 constraints->min_uA / 1000);
1099 count += scnprintf(buf + count, len - count,
1101 constraints->min_uA / 1000,
1102 constraints->max_uA / 1000);
1105 if (!constraints->min_uA ||
1106 constraints->min_uA != constraints->max_uA) {
1107 ret = _regulator_get_current_limit(rdev);
1109 count += scnprintf(buf + count, len - count,
1110 "at %d mA ", ret / 1000);
1113 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114 count += scnprintf(buf + count, len - count, "fast ");
1115 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116 count += scnprintf(buf + count, len - count, "normal ");
1117 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118 count += scnprintf(buf + count, len - count, "idle ");
1119 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120 count += scnprintf(buf + count, len - count, "standby ");
1123 count = scnprintf(buf, len, "no parameters");
1127 count += scnprintf(buf + count, len - count, ", %s",
1128 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1130 rdev_dbg(rdev, "%s\n", buf);
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1136 static void print_constraints(struct regulator_dev *rdev)
1138 struct regulation_constraints *constraints = rdev->constraints;
1140 print_constraints_debug(rdev);
1142 if ((constraints->min_uV != constraints->max_uV) &&
1143 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1145 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149 struct regulation_constraints *constraints)
1151 const struct regulator_ops *ops = rdev->desc->ops;
1154 /* do we need to apply the constraint voltage */
1155 if (rdev->constraints->apply_uV &&
1156 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157 int target_min, target_max;
1158 int current_uV = regulator_get_voltage_rdev(rdev);
1160 if (current_uV == -ENOTRECOVERABLE) {
1161 /* This regulator can't be read and must be initialized */
1162 rdev_info(rdev, "Setting %d-%duV\n",
1163 rdev->constraints->min_uV,
1164 rdev->constraints->max_uV);
1165 _regulator_do_set_voltage(rdev,
1166 rdev->constraints->min_uV,
1167 rdev->constraints->max_uV);
1168 current_uV = regulator_get_voltage_rdev(rdev);
1171 if (current_uV < 0) {
1173 "failed to get the current voltage: %pe\n",
1174 ERR_PTR(current_uV));
1179 * If we're below the minimum voltage move up to the
1180 * minimum voltage, if we're above the maximum voltage
1181 * then move down to the maximum.
1183 target_min = current_uV;
1184 target_max = current_uV;
1186 if (current_uV < rdev->constraints->min_uV) {
1187 target_min = rdev->constraints->min_uV;
1188 target_max = rdev->constraints->min_uV;
1191 if (current_uV > rdev->constraints->max_uV) {
1192 target_min = rdev->constraints->max_uV;
1193 target_max = rdev->constraints->max_uV;
1196 if (target_min != current_uV || target_max != current_uV) {
1197 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198 current_uV, target_min, target_max);
1199 ret = _regulator_do_set_voltage(
1200 rdev, target_min, target_max);
1203 "failed to apply %d-%duV constraint: %pe\n",
1204 target_min, target_max, ERR_PTR(ret));
1210 /* constrain machine-level voltage specs to fit
1211 * the actual range supported by this regulator.
1213 if (ops->list_voltage && rdev->desc->n_voltages) {
1214 int count = rdev->desc->n_voltages;
1216 int min_uV = INT_MAX;
1217 int max_uV = INT_MIN;
1218 int cmin = constraints->min_uV;
1219 int cmax = constraints->max_uV;
1221 /* it's safe to autoconfigure fixed-voltage supplies
1222 and the constraints are used by list_voltage. */
1223 if (count == 1 && !cmin) {
1226 constraints->min_uV = cmin;
1227 constraints->max_uV = cmax;
1230 /* voltage constraints are optional */
1231 if ((cmin == 0) && (cmax == 0))
1234 /* else require explicit machine-level constraints */
1235 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236 rdev_err(rdev, "invalid voltage constraints\n");
1240 /* no need to loop voltages if range is continuous */
1241 if (rdev->desc->continuous_voltage_range)
1244 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245 for (i = 0; i < count; i++) {
1248 value = ops->list_voltage(rdev, i);
1252 /* maybe adjust [min_uV..max_uV] */
1253 if (value >= cmin && value < min_uV)
1255 if (value <= cmax && value > max_uV)
1259 /* final: [min_uV..max_uV] valid iff constraints valid */
1260 if (max_uV < min_uV) {
1262 "unsupportable voltage constraints %u-%uuV\n",
1267 /* use regulator's subset of machine constraints */
1268 if (constraints->min_uV < min_uV) {
1269 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270 constraints->min_uV, min_uV);
1271 constraints->min_uV = min_uV;
1273 if (constraints->max_uV > max_uV) {
1274 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275 constraints->max_uV, max_uV);
1276 constraints->max_uV = max_uV;
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284 struct regulation_constraints *constraints)
1286 const struct regulator_ops *ops = rdev->desc->ops;
1289 if (!constraints->min_uA && !constraints->max_uA)
1292 if (constraints->min_uA > constraints->max_uA) {
1293 rdev_err(rdev, "Invalid current constraints\n");
1297 if (!ops->set_current_limit || !ops->get_current_limit) {
1298 rdev_warn(rdev, "Operation of current configuration missing\n");
1302 /* Set regulator current in constraints range */
1303 ret = ops->set_current_limit(rdev, constraints->min_uA,
1304 constraints->max_uA);
1306 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1316 * set_machine_constraints - sets regulator constraints
1317 * @rdev: regulator source
1319 * Allows platform initialisation code to define and constrain
1320 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1321 * Constraints *must* be set by platform code in order for some
1322 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1325 static int set_machine_constraints(struct regulator_dev *rdev)
1328 const struct regulator_ops *ops = rdev->desc->ops;
1330 ret = machine_constraints_voltage(rdev, rdev->constraints);
1334 ret = machine_constraints_current(rdev, rdev->constraints);
1338 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1339 ret = ops->set_input_current_limit(rdev,
1340 rdev->constraints->ilim_uA);
1342 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1347 /* do we need to setup our suspend state */
1348 if (rdev->constraints->initial_state) {
1349 ret = suspend_set_initial_state(rdev);
1351 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1356 if (rdev->constraints->initial_mode) {
1357 if (!ops->set_mode) {
1358 rdev_err(rdev, "no set_mode operation\n");
1362 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1364 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1367 } else if (rdev->constraints->system_load) {
1369 * We'll only apply the initial system load if an
1370 * initial mode wasn't specified.
1372 drms_uA_update(rdev);
1375 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1376 && ops->set_ramp_delay) {
1377 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1379 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1384 if (rdev->constraints->pull_down && ops->set_pull_down) {
1385 ret = ops->set_pull_down(rdev);
1387 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1392 if (rdev->constraints->soft_start && ops->set_soft_start) {
1393 ret = ops->set_soft_start(rdev);
1395 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1400 if (rdev->constraints->over_current_protection
1401 && ops->set_over_current_protection) {
1402 ret = ops->set_over_current_protection(rdev);
1404 rdev_err(rdev, "failed to set over current protection: %pe\n",
1410 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1411 bool ad_state = (rdev->constraints->active_discharge ==
1412 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1414 ret = ops->set_active_discharge(rdev, ad_state);
1416 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1421 /* If the constraints say the regulator should be on at this point
1422 * and we have control then make sure it is enabled.
1424 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1426 ret = regulator_enable(rdev->supply);
1428 _regulator_put(rdev->supply);
1429 rdev->supply = NULL;
1434 ret = _regulator_do_enable(rdev);
1435 if (ret < 0 && ret != -EINVAL) {
1436 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1440 if (rdev->constraints->always_on)
1444 print_constraints(rdev);
1449 * set_supply - set regulator supply regulator
1450 * @rdev: regulator name
1451 * @supply_rdev: supply regulator name
1453 * Called by platform initialisation code to set the supply regulator for this
1454 * regulator. This ensures that a regulators supply will also be enabled by the
1455 * core if it's child is enabled.
1457 static int set_supply(struct regulator_dev *rdev,
1458 struct regulator_dev *supply_rdev)
1462 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1464 if (!try_module_get(supply_rdev->owner))
1467 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1468 if (rdev->supply == NULL) {
1472 supply_rdev->open_count++;
1478 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1479 * @rdev: regulator source
1480 * @consumer_dev_name: dev_name() string for device supply applies to
1481 * @supply: symbolic name for supply
1483 * Allows platform initialisation code to map physical regulator
1484 * sources to symbolic names for supplies for use by devices. Devices
1485 * should use these symbolic names to request regulators, avoiding the
1486 * need to provide board-specific regulator names as platform data.
1488 static int set_consumer_device_supply(struct regulator_dev *rdev,
1489 const char *consumer_dev_name,
1492 struct regulator_map *node, *new_node;
1498 if (consumer_dev_name != NULL)
1503 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1504 if (new_node == NULL)
1507 new_node->regulator = rdev;
1508 new_node->supply = supply;
1511 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1512 if (new_node->dev_name == NULL) {
1518 mutex_lock(®ulator_list_mutex);
1519 list_for_each_entry(node, ®ulator_map_list, list) {
1520 if (node->dev_name && consumer_dev_name) {
1521 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1523 } else if (node->dev_name || consumer_dev_name) {
1527 if (strcmp(node->supply, supply) != 0)
1530 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1532 dev_name(&node->regulator->dev),
1533 node->regulator->desc->name,
1535 dev_name(&rdev->dev), rdev_get_name(rdev));
1539 list_add(&new_node->list, ®ulator_map_list);
1540 mutex_unlock(®ulator_list_mutex);
1545 mutex_unlock(®ulator_list_mutex);
1546 kfree(new_node->dev_name);
1551 static void unset_regulator_supplies(struct regulator_dev *rdev)
1553 struct regulator_map *node, *n;
1555 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1556 if (rdev == node->regulator) {
1557 list_del(&node->list);
1558 kfree(node->dev_name);
1564 #ifdef CONFIG_DEBUG_FS
1565 static ssize_t constraint_flags_read_file(struct file *file,
1566 char __user *user_buf,
1567 size_t count, loff_t *ppos)
1569 const struct regulator *regulator = file->private_data;
1570 const struct regulation_constraints *c = regulator->rdev->constraints;
1577 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1581 ret = snprintf(buf, PAGE_SIZE,
1585 "ramp_disable: %u\n"
1588 "over_current_protection: %u\n",
1595 c->over_current_protection);
1597 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1605 static const struct file_operations constraint_flags_fops = {
1606 #ifdef CONFIG_DEBUG_FS
1607 .open = simple_open,
1608 .read = constraint_flags_read_file,
1609 .llseek = default_llseek,
1613 #define REG_STR_SIZE 64
1615 static struct regulator *create_regulator(struct regulator_dev *rdev,
1617 const char *supply_name)
1619 struct regulator *regulator;
1623 char buf[REG_STR_SIZE];
1626 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1627 dev->kobj.name, supply_name);
1628 if (size >= REG_STR_SIZE)
1631 supply_name = kstrdup(buf, GFP_KERNEL);
1632 if (supply_name == NULL)
1635 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1636 if (supply_name == NULL)
1640 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1641 if (regulator == NULL) {
1646 regulator->rdev = rdev;
1647 regulator->supply_name = supply_name;
1649 regulator_lock(rdev);
1650 list_add(®ulator->list, &rdev->consumer_list);
1651 regulator_unlock(rdev);
1654 regulator->dev = dev;
1656 /* Add a link to the device sysfs entry */
1657 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1660 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1661 dev->kobj.name, ERR_PTR(err));
1667 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1668 if (!regulator->debugfs) {
1669 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1671 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1672 ®ulator->uA_load);
1673 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1674 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1675 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1676 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1677 debugfs_create_file("constraint_flags", 0444,
1678 regulator->debugfs, regulator,
1679 &constraint_flags_fops);
1683 * Check now if the regulator is an always on regulator - if
1684 * it is then we don't need to do nearly so much work for
1685 * enable/disable calls.
1687 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1688 _regulator_is_enabled(rdev))
1689 regulator->always_on = true;
1694 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1696 if (rdev->constraints && rdev->constraints->enable_time)
1697 return rdev->constraints->enable_time;
1698 if (rdev->desc->ops->enable_time)
1699 return rdev->desc->ops->enable_time(rdev);
1700 return rdev->desc->enable_time;
1703 static struct regulator_supply_alias *regulator_find_supply_alias(
1704 struct device *dev, const char *supply)
1706 struct regulator_supply_alias *map;
1708 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1709 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1715 static void regulator_supply_alias(struct device **dev, const char **supply)
1717 struct regulator_supply_alias *map;
1719 map = regulator_find_supply_alias(*dev, *supply);
1721 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1722 *supply, map->alias_supply,
1723 dev_name(map->alias_dev));
1724 *dev = map->alias_dev;
1725 *supply = map->alias_supply;
1729 static int regulator_match(struct device *dev, const void *data)
1731 struct regulator_dev *r = dev_to_rdev(dev);
1733 return strcmp(rdev_get_name(r), data) == 0;
1736 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1740 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1742 return dev ? dev_to_rdev(dev) : NULL;
1746 * regulator_dev_lookup - lookup a regulator device.
1747 * @dev: device for regulator "consumer".
1748 * @supply: Supply name or regulator ID.
1750 * If successful, returns a struct regulator_dev that corresponds to the name
1751 * @supply and with the embedded struct device refcount incremented by one.
1752 * The refcount must be dropped by calling put_device().
1753 * On failure one of the following ERR-PTR-encoded values is returned:
1754 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1757 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1760 struct regulator_dev *r = NULL;
1761 struct device_node *node;
1762 struct regulator_map *map;
1763 const char *devname = NULL;
1765 regulator_supply_alias(&dev, &supply);
1767 /* first do a dt based lookup */
1768 if (dev && dev->of_node) {
1769 node = of_get_regulator(dev, supply);
1771 r = of_find_regulator_by_node(node);
1776 * We have a node, but there is no device.
1777 * assume it has not registered yet.
1779 return ERR_PTR(-EPROBE_DEFER);
1783 /* if not found, try doing it non-dt way */
1785 devname = dev_name(dev);
1787 mutex_lock(®ulator_list_mutex);
1788 list_for_each_entry(map, ®ulator_map_list, list) {
1789 /* If the mapping has a device set up it must match */
1790 if (map->dev_name &&
1791 (!devname || strcmp(map->dev_name, devname)))
1794 if (strcmp(map->supply, supply) == 0 &&
1795 get_device(&map->regulator->dev)) {
1800 mutex_unlock(®ulator_list_mutex);
1805 r = regulator_lookup_by_name(supply);
1809 return ERR_PTR(-ENODEV);
1812 static int regulator_resolve_supply(struct regulator_dev *rdev)
1814 struct regulator_dev *r;
1815 struct device *dev = rdev->dev.parent;
1818 /* No supply to resolve? */
1819 if (!rdev->supply_name)
1822 /* Supply already resolved? (fast-path without locking contention) */
1826 r = regulator_dev_lookup(dev, rdev->supply_name);
1830 /* Did the lookup explicitly defer for us? */
1831 if (ret == -EPROBE_DEFER)
1834 if (have_full_constraints()) {
1835 r = dummy_regulator_rdev;
1836 get_device(&r->dev);
1838 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1839 rdev->supply_name, rdev->desc->name);
1840 ret = -EPROBE_DEFER;
1846 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1847 rdev->desc->name, rdev->supply_name);
1848 if (!have_full_constraints()) {
1852 r = dummy_regulator_rdev;
1853 get_device(&r->dev);
1857 * If the supply's parent device is not the same as the
1858 * regulator's parent device, then ensure the parent device
1859 * is bound before we resolve the supply, in case the parent
1860 * device get probe deferred and unregisters the supply.
1862 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1863 if (!device_is_bound(r->dev.parent)) {
1864 put_device(&r->dev);
1865 ret = -EPROBE_DEFER;
1870 /* Recursively resolve the supply of the supply */
1871 ret = regulator_resolve_supply(r);
1873 put_device(&r->dev);
1878 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1879 * between rdev->supply null check and setting rdev->supply in
1880 * set_supply() from concurrent tasks.
1882 regulator_lock(rdev);
1884 /* Supply just resolved by a concurrent task? */
1886 regulator_unlock(rdev);
1887 put_device(&r->dev);
1891 ret = set_supply(rdev, r);
1893 regulator_unlock(rdev);
1894 put_device(&r->dev);
1898 regulator_unlock(rdev);
1901 * In set_machine_constraints() we may have turned this regulator on
1902 * but we couldn't propagate to the supply if it hadn't been resolved
1905 if (rdev->use_count) {
1906 ret = regulator_enable(rdev->supply);
1908 _regulator_put(rdev->supply);
1909 rdev->supply = NULL;
1918 /* Internal regulator request function */
1919 struct regulator *_regulator_get(struct device *dev, const char *id,
1920 enum regulator_get_type get_type)
1922 struct regulator_dev *rdev;
1923 struct regulator *regulator;
1924 struct device_link *link;
1927 if (get_type >= MAX_GET_TYPE) {
1928 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1929 return ERR_PTR(-EINVAL);
1933 pr_err("get() with no identifier\n");
1934 return ERR_PTR(-EINVAL);
1937 rdev = regulator_dev_lookup(dev, id);
1939 ret = PTR_ERR(rdev);
1942 * If regulator_dev_lookup() fails with error other
1943 * than -ENODEV our job here is done, we simply return it.
1946 return ERR_PTR(ret);
1948 if (!have_full_constraints()) {
1950 "incomplete constraints, dummy supplies not allowed\n");
1951 return ERR_PTR(-ENODEV);
1957 * Assume that a regulator is physically present and
1958 * enabled, even if it isn't hooked up, and just
1961 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1962 rdev = dummy_regulator_rdev;
1963 get_device(&rdev->dev);
1968 "dummy supplies not allowed for exclusive requests\n");
1972 return ERR_PTR(-ENODEV);
1976 if (rdev->exclusive) {
1977 regulator = ERR_PTR(-EPERM);
1978 put_device(&rdev->dev);
1982 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1983 regulator = ERR_PTR(-EBUSY);
1984 put_device(&rdev->dev);
1988 mutex_lock(®ulator_list_mutex);
1989 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1990 mutex_unlock(®ulator_list_mutex);
1993 regulator = ERR_PTR(-EPROBE_DEFER);
1994 put_device(&rdev->dev);
1998 ret = regulator_resolve_supply(rdev);
2000 regulator = ERR_PTR(ret);
2001 put_device(&rdev->dev);
2005 if (!try_module_get(rdev->owner)) {
2006 regulator = ERR_PTR(-EPROBE_DEFER);
2007 put_device(&rdev->dev);
2011 regulator = create_regulator(rdev, dev, id);
2012 if (regulator == NULL) {
2013 regulator = ERR_PTR(-ENOMEM);
2014 module_put(rdev->owner);
2015 put_device(&rdev->dev);
2020 if (get_type == EXCLUSIVE_GET) {
2021 rdev->exclusive = 1;
2023 ret = _regulator_is_enabled(rdev);
2025 rdev->use_count = 1;
2027 rdev->use_count = 0;
2030 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2031 if (!IS_ERR_OR_NULL(link))
2032 regulator->device_link = true;
2038 * regulator_get - lookup and obtain a reference to a regulator.
2039 * @dev: device for regulator "consumer"
2040 * @id: Supply name or regulator ID.
2042 * Returns a struct regulator corresponding to the regulator producer,
2043 * or IS_ERR() condition containing errno.
2045 * Use of supply names configured via set_consumer_device_supply() is
2046 * strongly encouraged. It is recommended that the supply name used
2047 * should match the name used for the supply and/or the relevant
2048 * device pins in the datasheet.
2050 struct regulator *regulator_get(struct device *dev, const char *id)
2052 return _regulator_get(dev, id, NORMAL_GET);
2054 EXPORT_SYMBOL_GPL(regulator_get);
2057 * regulator_get_exclusive - obtain exclusive access to a regulator.
2058 * @dev: device for regulator "consumer"
2059 * @id: Supply name or regulator ID.
2061 * Returns a struct regulator corresponding to the regulator producer,
2062 * or IS_ERR() condition containing errno. Other consumers will be
2063 * unable to obtain this regulator while this reference is held and the
2064 * use count for the regulator will be initialised to reflect the current
2065 * state of the regulator.
2067 * This is intended for use by consumers which cannot tolerate shared
2068 * use of the regulator such as those which need to force the
2069 * regulator off for correct operation of the hardware they are
2072 * Use of supply names configured via set_consumer_device_supply() is
2073 * strongly encouraged. It is recommended that the supply name used
2074 * should match the name used for the supply and/or the relevant
2075 * device pins in the datasheet.
2077 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2079 return _regulator_get(dev, id, EXCLUSIVE_GET);
2081 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2084 * regulator_get_optional - obtain optional access to a regulator.
2085 * @dev: device for regulator "consumer"
2086 * @id: Supply name or regulator ID.
2088 * Returns a struct regulator corresponding to the regulator producer,
2089 * or IS_ERR() condition containing errno.
2091 * This is intended for use by consumers for devices which can have
2092 * some supplies unconnected in normal use, such as some MMC devices.
2093 * It can allow the regulator core to provide stub supplies for other
2094 * supplies requested using normal regulator_get() calls without
2095 * disrupting the operation of drivers that can handle absent
2098 * Use of supply names configured via set_consumer_device_supply() is
2099 * strongly encouraged. It is recommended that the supply name used
2100 * should match the name used for the supply and/or the relevant
2101 * device pins in the datasheet.
2103 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2105 return _regulator_get(dev, id, OPTIONAL_GET);
2107 EXPORT_SYMBOL_GPL(regulator_get_optional);
2109 static void destroy_regulator(struct regulator *regulator)
2111 struct regulator_dev *rdev = regulator->rdev;
2113 debugfs_remove_recursive(regulator->debugfs);
2115 if (regulator->dev) {
2116 if (regulator->device_link)
2117 device_link_remove(regulator->dev, &rdev->dev);
2119 /* remove any sysfs entries */
2120 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2123 regulator_lock(rdev);
2124 list_del(®ulator->list);
2127 rdev->exclusive = 0;
2128 regulator_unlock(rdev);
2130 kfree_const(regulator->supply_name);
2134 /* regulator_list_mutex lock held by regulator_put() */
2135 static void _regulator_put(struct regulator *regulator)
2137 struct regulator_dev *rdev;
2139 if (IS_ERR_OR_NULL(regulator))
2142 lockdep_assert_held_once(®ulator_list_mutex);
2144 /* Docs say you must disable before calling regulator_put() */
2145 WARN_ON(regulator->enable_count);
2147 rdev = regulator->rdev;
2149 destroy_regulator(regulator);
2151 module_put(rdev->owner);
2152 put_device(&rdev->dev);
2156 * regulator_put - "free" the regulator source
2157 * @regulator: regulator source
2159 * Note: drivers must ensure that all regulator_enable calls made on this
2160 * regulator source are balanced by regulator_disable calls prior to calling
2163 void regulator_put(struct regulator *regulator)
2165 mutex_lock(®ulator_list_mutex);
2166 _regulator_put(regulator);
2167 mutex_unlock(®ulator_list_mutex);
2169 EXPORT_SYMBOL_GPL(regulator_put);
2172 * regulator_register_supply_alias - Provide device alias for supply lookup
2174 * @dev: device that will be given as the regulator "consumer"
2175 * @id: Supply name or regulator ID
2176 * @alias_dev: device that should be used to lookup the supply
2177 * @alias_id: Supply name or regulator ID that should be used to lookup the
2180 * All lookups for id on dev will instead be conducted for alias_id on
2183 int regulator_register_supply_alias(struct device *dev, const char *id,
2184 struct device *alias_dev,
2185 const char *alias_id)
2187 struct regulator_supply_alias *map;
2189 map = regulator_find_supply_alias(dev, id);
2193 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2198 map->src_supply = id;
2199 map->alias_dev = alias_dev;
2200 map->alias_supply = alias_id;
2202 list_add(&map->list, ®ulator_supply_alias_list);
2204 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2205 id, dev_name(dev), alias_id, dev_name(alias_dev));
2209 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2212 * regulator_unregister_supply_alias - Remove device alias
2214 * @dev: device that will be given as the regulator "consumer"
2215 * @id: Supply name or regulator ID
2217 * Remove a lookup alias if one exists for id on dev.
2219 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2221 struct regulator_supply_alias *map;
2223 map = regulator_find_supply_alias(dev, id);
2225 list_del(&map->list);
2229 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2232 * regulator_bulk_register_supply_alias - register multiple aliases
2234 * @dev: device that will be given as the regulator "consumer"
2235 * @id: List of supply names or regulator IDs
2236 * @alias_dev: device that should be used to lookup the supply
2237 * @alias_id: List of supply names or regulator IDs that should be used to
2239 * @num_id: Number of aliases to register
2241 * @return 0 on success, an errno on failure.
2243 * This helper function allows drivers to register several supply
2244 * aliases in one operation. If any of the aliases cannot be
2245 * registered any aliases that were registered will be removed
2246 * before returning to the caller.
2248 int regulator_bulk_register_supply_alias(struct device *dev,
2249 const char *const *id,
2250 struct device *alias_dev,
2251 const char *const *alias_id,
2257 for (i = 0; i < num_id; ++i) {
2258 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2268 "Failed to create supply alias %s,%s -> %s,%s\n",
2269 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2272 regulator_unregister_supply_alias(dev, id[i]);
2276 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2279 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2281 * @dev: device that will be given as the regulator "consumer"
2282 * @id: List of supply names or regulator IDs
2283 * @num_id: Number of aliases to unregister
2285 * This helper function allows drivers to unregister several supply
2286 * aliases in one operation.
2288 void regulator_bulk_unregister_supply_alias(struct device *dev,
2289 const char *const *id,
2294 for (i = 0; i < num_id; ++i)
2295 regulator_unregister_supply_alias(dev, id[i]);
2297 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2300 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2301 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2302 const struct regulator_config *config)
2304 struct regulator_enable_gpio *pin, *new_pin;
2305 struct gpio_desc *gpiod;
2307 gpiod = config->ena_gpiod;
2308 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2310 mutex_lock(®ulator_list_mutex);
2312 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2313 if (pin->gpiod == gpiod) {
2314 rdev_dbg(rdev, "GPIO is already used\n");
2315 goto update_ena_gpio_to_rdev;
2319 if (new_pin == NULL) {
2320 mutex_unlock(®ulator_list_mutex);
2328 list_add(&pin->list, ®ulator_ena_gpio_list);
2330 update_ena_gpio_to_rdev:
2331 pin->request_count++;
2332 rdev->ena_pin = pin;
2334 mutex_unlock(®ulator_list_mutex);
2340 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2342 struct regulator_enable_gpio *pin, *n;
2347 /* Free the GPIO only in case of no use */
2348 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2349 if (pin != rdev->ena_pin)
2352 if (--pin->request_count)
2355 gpiod_put(pin->gpiod);
2356 list_del(&pin->list);
2361 rdev->ena_pin = NULL;
2365 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2366 * @rdev: regulator_dev structure
2367 * @enable: enable GPIO at initial use?
2369 * GPIO is enabled in case of initial use. (enable_count is 0)
2370 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2372 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2374 struct regulator_enable_gpio *pin = rdev->ena_pin;
2380 /* Enable GPIO at initial use */
2381 if (pin->enable_count == 0)
2382 gpiod_set_value_cansleep(pin->gpiod, 1);
2384 pin->enable_count++;
2386 if (pin->enable_count > 1) {
2387 pin->enable_count--;
2391 /* Disable GPIO if not used */
2392 if (pin->enable_count <= 1) {
2393 gpiod_set_value_cansleep(pin->gpiod, 0);
2394 pin->enable_count = 0;
2402 * _regulator_enable_delay - a delay helper function
2403 * @delay: time to delay in microseconds
2405 * Delay for the requested amount of time as per the guidelines in:
2407 * Documentation/timers/timers-howto.rst
2409 * The assumption here is that regulators will never be enabled in
2410 * atomic context and therefore sleeping functions can be used.
2412 static void _regulator_enable_delay(unsigned int delay)
2414 unsigned int ms = delay / 1000;
2415 unsigned int us = delay % 1000;
2419 * For small enough values, handle super-millisecond
2420 * delays in the usleep_range() call below.
2429 * Give the scheduler some room to coalesce with any other
2430 * wakeup sources. For delays shorter than 10 us, don't even
2431 * bother setting up high-resolution timers and just busy-
2435 usleep_range(us, us + 100);
2441 * _regulator_check_status_enabled
2443 * A helper function to check if the regulator status can be interpreted
2444 * as 'regulator is enabled'.
2445 * @rdev: the regulator device to check
2448 * * 1 - if status shows regulator is in enabled state
2449 * * 0 - if not enabled state
2450 * * Error Value - as received from ops->get_status()
2452 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2454 int ret = rdev->desc->ops->get_status(rdev);
2457 rdev_info(rdev, "get_status returned error: %d\n", ret);
2462 case REGULATOR_STATUS_OFF:
2463 case REGULATOR_STATUS_ERROR:
2464 case REGULATOR_STATUS_UNDEFINED:
2471 static int _regulator_do_enable(struct regulator_dev *rdev)
2475 /* Query before enabling in case configuration dependent. */
2476 ret = _regulator_get_enable_time(rdev);
2480 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2484 trace_regulator_enable(rdev_get_name(rdev));
2486 if (rdev->desc->off_on_delay) {
2487 /* if needed, keep a distance of off_on_delay from last time
2488 * this regulator was disabled.
2490 unsigned long start_jiffy = jiffies;
2491 unsigned long intended, max_delay, remaining;
2493 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2494 intended = rdev->last_off_jiffy + max_delay;
2496 if (time_before(start_jiffy, intended)) {
2497 /* calc remaining jiffies to deal with one-time
2499 * in case of multiple timer wrapping, either it can be
2500 * detected by out-of-range remaining, or it cannot be
2501 * detected and we get a penalty of
2502 * _regulator_enable_delay().
2504 remaining = intended - start_jiffy;
2505 if (remaining <= max_delay)
2506 _regulator_enable_delay(
2507 jiffies_to_usecs(remaining));
2511 if (rdev->ena_pin) {
2512 if (!rdev->ena_gpio_state) {
2513 ret = regulator_ena_gpio_ctrl(rdev, true);
2516 rdev->ena_gpio_state = 1;
2518 } else if (rdev->desc->ops->enable) {
2519 ret = rdev->desc->ops->enable(rdev);
2526 /* Allow the regulator to ramp; it would be useful to extend
2527 * this for bulk operations so that the regulators can ramp
2529 trace_regulator_enable_delay(rdev_get_name(rdev));
2531 /* If poll_enabled_time is set, poll upto the delay calculated
2532 * above, delaying poll_enabled_time uS to check if the regulator
2533 * actually got enabled.
2534 * If the regulator isn't enabled after enable_delay has
2535 * expired, return -ETIMEDOUT.
2537 if (rdev->desc->poll_enabled_time) {
2538 unsigned int time_remaining = delay;
2540 while (time_remaining > 0) {
2541 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2543 if (rdev->desc->ops->get_status) {
2544 ret = _regulator_check_status_enabled(rdev);
2549 } else if (rdev->desc->ops->is_enabled(rdev))
2552 time_remaining -= rdev->desc->poll_enabled_time;
2555 if (time_remaining <= 0) {
2556 rdev_err(rdev, "Enabled check timed out\n");
2560 _regulator_enable_delay(delay);
2563 trace_regulator_enable_complete(rdev_get_name(rdev));
2569 * _regulator_handle_consumer_enable - handle that a consumer enabled
2570 * @regulator: regulator source
2572 * Some things on a regulator consumer (like the contribution towards total
2573 * load on the regulator) only have an effect when the consumer wants the
2574 * regulator enabled. Explained in example with two consumers of the same
2576 * consumer A: set_load(100); => total load = 0
2577 * consumer A: regulator_enable(); => total load = 100
2578 * consumer B: set_load(1000); => total load = 100
2579 * consumer B: regulator_enable(); => total load = 1100
2580 * consumer A: regulator_disable(); => total_load = 1000
2582 * This function (together with _regulator_handle_consumer_disable) is
2583 * responsible for keeping track of the refcount for a given regulator consumer
2584 * and applying / unapplying these things.
2586 * Returns 0 upon no error; -error upon error.
2588 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2590 struct regulator_dev *rdev = regulator->rdev;
2592 lockdep_assert_held_once(&rdev->mutex.base);
2594 regulator->enable_count++;
2595 if (regulator->uA_load && regulator->enable_count == 1)
2596 return drms_uA_update(rdev);
2602 * _regulator_handle_consumer_disable - handle that a consumer disabled
2603 * @regulator: regulator source
2605 * The opposite of _regulator_handle_consumer_enable().
2607 * Returns 0 upon no error; -error upon error.
2609 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2611 struct regulator_dev *rdev = regulator->rdev;
2613 lockdep_assert_held_once(&rdev->mutex.base);
2615 if (!regulator->enable_count) {
2616 rdev_err(rdev, "Underflow of regulator enable count\n");
2620 regulator->enable_count--;
2621 if (regulator->uA_load && regulator->enable_count == 0)
2622 return drms_uA_update(rdev);
2627 /* locks held by regulator_enable() */
2628 static int _regulator_enable(struct regulator *regulator)
2630 struct regulator_dev *rdev = regulator->rdev;
2633 lockdep_assert_held_once(&rdev->mutex.base);
2635 if (rdev->use_count == 0 && rdev->supply) {
2636 ret = _regulator_enable(rdev->supply);
2641 /* balance only if there are regulators coupled */
2642 if (rdev->coupling_desc.n_coupled > 1) {
2643 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2645 goto err_disable_supply;
2648 ret = _regulator_handle_consumer_enable(regulator);
2650 goto err_disable_supply;
2652 if (rdev->use_count == 0) {
2653 /* The regulator may on if it's not switchable or left on */
2654 ret = _regulator_is_enabled(rdev);
2655 if (ret == -EINVAL || ret == 0) {
2656 if (!regulator_ops_is_valid(rdev,
2657 REGULATOR_CHANGE_STATUS)) {
2659 goto err_consumer_disable;
2662 ret = _regulator_do_enable(rdev);
2664 goto err_consumer_disable;
2666 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2668 } else if (ret < 0) {
2669 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2670 goto err_consumer_disable;
2672 /* Fallthrough on positive return values - already enabled */
2679 err_consumer_disable:
2680 _regulator_handle_consumer_disable(regulator);
2683 if (rdev->use_count == 0 && rdev->supply)
2684 _regulator_disable(rdev->supply);
2690 * regulator_enable - enable regulator output
2691 * @regulator: regulator source
2693 * Request that the regulator be enabled with the regulator output at
2694 * the predefined voltage or current value. Calls to regulator_enable()
2695 * must be balanced with calls to regulator_disable().
2697 * NOTE: the output value can be set by other drivers, boot loader or may be
2698 * hardwired in the regulator.
2700 int regulator_enable(struct regulator *regulator)
2702 struct regulator_dev *rdev = regulator->rdev;
2703 struct ww_acquire_ctx ww_ctx;
2706 regulator_lock_dependent(rdev, &ww_ctx);
2707 ret = _regulator_enable(regulator);
2708 regulator_unlock_dependent(rdev, &ww_ctx);
2712 EXPORT_SYMBOL_GPL(regulator_enable);
2714 static int _regulator_do_disable(struct regulator_dev *rdev)
2718 trace_regulator_disable(rdev_get_name(rdev));
2720 if (rdev->ena_pin) {
2721 if (rdev->ena_gpio_state) {
2722 ret = regulator_ena_gpio_ctrl(rdev, false);
2725 rdev->ena_gpio_state = 0;
2728 } else if (rdev->desc->ops->disable) {
2729 ret = rdev->desc->ops->disable(rdev);
2734 /* cares about last_off_jiffy only if off_on_delay is required by
2737 if (rdev->desc->off_on_delay)
2738 rdev->last_off_jiffy = jiffies;
2740 trace_regulator_disable_complete(rdev_get_name(rdev));
2745 /* locks held by regulator_disable() */
2746 static int _regulator_disable(struct regulator *regulator)
2748 struct regulator_dev *rdev = regulator->rdev;
2751 lockdep_assert_held_once(&rdev->mutex.base);
2753 if (WARN(rdev->use_count <= 0,
2754 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2757 /* are we the last user and permitted to disable ? */
2758 if (rdev->use_count == 1 &&
2759 (rdev->constraints && !rdev->constraints->always_on)) {
2761 /* we are last user */
2762 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2763 ret = _notifier_call_chain(rdev,
2764 REGULATOR_EVENT_PRE_DISABLE,
2766 if (ret & NOTIFY_STOP_MASK)
2769 ret = _regulator_do_disable(rdev);
2771 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2772 _notifier_call_chain(rdev,
2773 REGULATOR_EVENT_ABORT_DISABLE,
2777 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2781 rdev->use_count = 0;
2782 } else if (rdev->use_count > 1) {
2787 ret = _regulator_handle_consumer_disable(regulator);
2789 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2790 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2792 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2793 ret = _regulator_disable(rdev->supply);
2799 * regulator_disable - disable regulator output
2800 * @regulator: regulator source
2802 * Disable the regulator output voltage or current. Calls to
2803 * regulator_enable() must be balanced with calls to
2804 * regulator_disable().
2806 * NOTE: this will only disable the regulator output if no other consumer
2807 * devices have it enabled, the regulator device supports disabling and
2808 * machine constraints permit this operation.
2810 int regulator_disable(struct regulator *regulator)
2812 struct regulator_dev *rdev = regulator->rdev;
2813 struct ww_acquire_ctx ww_ctx;
2816 regulator_lock_dependent(rdev, &ww_ctx);
2817 ret = _regulator_disable(regulator);
2818 regulator_unlock_dependent(rdev, &ww_ctx);
2822 EXPORT_SYMBOL_GPL(regulator_disable);
2824 /* locks held by regulator_force_disable() */
2825 static int _regulator_force_disable(struct regulator_dev *rdev)
2829 lockdep_assert_held_once(&rdev->mutex.base);
2831 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2832 REGULATOR_EVENT_PRE_DISABLE, NULL);
2833 if (ret & NOTIFY_STOP_MASK)
2836 ret = _regulator_do_disable(rdev);
2838 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2839 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2840 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2844 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2845 REGULATOR_EVENT_DISABLE, NULL);
2851 * regulator_force_disable - force disable regulator output
2852 * @regulator: regulator source
2854 * Forcibly disable the regulator output voltage or current.
2855 * NOTE: this *will* disable the regulator output even if other consumer
2856 * devices have it enabled. This should be used for situations when device
2857 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2859 int regulator_force_disable(struct regulator *regulator)
2861 struct regulator_dev *rdev = regulator->rdev;
2862 struct ww_acquire_ctx ww_ctx;
2865 regulator_lock_dependent(rdev, &ww_ctx);
2867 ret = _regulator_force_disable(regulator->rdev);
2869 if (rdev->coupling_desc.n_coupled > 1)
2870 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2872 if (regulator->uA_load) {
2873 regulator->uA_load = 0;
2874 ret = drms_uA_update(rdev);
2877 if (rdev->use_count != 0 && rdev->supply)
2878 _regulator_disable(rdev->supply);
2880 regulator_unlock_dependent(rdev, &ww_ctx);
2884 EXPORT_SYMBOL_GPL(regulator_force_disable);
2886 static void regulator_disable_work(struct work_struct *work)
2888 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2890 struct ww_acquire_ctx ww_ctx;
2892 struct regulator *regulator;
2893 int total_count = 0;
2895 regulator_lock_dependent(rdev, &ww_ctx);
2898 * Workqueue functions queue the new work instance while the previous
2899 * work instance is being processed. Cancel the queued work instance
2900 * as the work instance under processing does the job of the queued
2903 cancel_delayed_work(&rdev->disable_work);
2905 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2906 count = regulator->deferred_disables;
2911 total_count += count;
2912 regulator->deferred_disables = 0;
2914 for (i = 0; i < count; i++) {
2915 ret = _regulator_disable(regulator);
2917 rdev_err(rdev, "Deferred disable failed: %pe\n",
2921 WARN_ON(!total_count);
2923 if (rdev->coupling_desc.n_coupled > 1)
2924 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2926 regulator_unlock_dependent(rdev, &ww_ctx);
2930 * regulator_disable_deferred - disable regulator output with delay
2931 * @regulator: regulator source
2932 * @ms: milliseconds until the regulator is disabled
2934 * Execute regulator_disable() on the regulator after a delay. This
2935 * is intended for use with devices that require some time to quiesce.
2937 * NOTE: this will only disable the regulator output if no other consumer
2938 * devices have it enabled, the regulator device supports disabling and
2939 * machine constraints permit this operation.
2941 int regulator_disable_deferred(struct regulator *regulator, int ms)
2943 struct regulator_dev *rdev = regulator->rdev;
2946 return regulator_disable(regulator);
2948 regulator_lock(rdev);
2949 regulator->deferred_disables++;
2950 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2951 msecs_to_jiffies(ms));
2952 regulator_unlock(rdev);
2956 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2958 static int _regulator_is_enabled(struct regulator_dev *rdev)
2960 /* A GPIO control always takes precedence */
2962 return rdev->ena_gpio_state;
2964 /* If we don't know then assume that the regulator is always on */
2965 if (!rdev->desc->ops->is_enabled)
2968 return rdev->desc->ops->is_enabled(rdev);
2971 static int _regulator_list_voltage(struct regulator_dev *rdev,
2972 unsigned selector, int lock)
2974 const struct regulator_ops *ops = rdev->desc->ops;
2977 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2978 return rdev->desc->fixed_uV;
2980 if (ops->list_voltage) {
2981 if (selector >= rdev->desc->n_voltages)
2983 if (selector < rdev->desc->linear_min_sel)
2986 regulator_lock(rdev);
2987 ret = ops->list_voltage(rdev, selector);
2989 regulator_unlock(rdev);
2990 } else if (rdev->is_switch && rdev->supply) {
2991 ret = _regulator_list_voltage(rdev->supply->rdev,
2998 if (ret < rdev->constraints->min_uV)
3000 else if (ret > rdev->constraints->max_uV)
3008 * regulator_is_enabled - is the regulator output enabled
3009 * @regulator: regulator source
3011 * Returns positive if the regulator driver backing the source/client
3012 * has requested that the device be enabled, zero if it hasn't, else a
3013 * negative errno code.
3015 * Note that the device backing this regulator handle can have multiple
3016 * users, so it might be enabled even if regulator_enable() was never
3017 * called for this particular source.
3019 int regulator_is_enabled(struct regulator *regulator)
3023 if (regulator->always_on)
3026 regulator_lock(regulator->rdev);
3027 ret = _regulator_is_enabled(regulator->rdev);
3028 regulator_unlock(regulator->rdev);
3032 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3035 * regulator_count_voltages - count regulator_list_voltage() selectors
3036 * @regulator: regulator source
3038 * Returns number of selectors, or negative errno. Selectors are
3039 * numbered starting at zero, and typically correspond to bitfields
3040 * in hardware registers.
3042 int regulator_count_voltages(struct regulator *regulator)
3044 struct regulator_dev *rdev = regulator->rdev;
3046 if (rdev->desc->n_voltages)
3047 return rdev->desc->n_voltages;
3049 if (!rdev->is_switch || !rdev->supply)
3052 return regulator_count_voltages(rdev->supply);
3054 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3057 * regulator_list_voltage - enumerate supported voltages
3058 * @regulator: regulator source
3059 * @selector: identify voltage to list
3060 * Context: can sleep
3062 * Returns a voltage that can be passed to @regulator_set_voltage(),
3063 * zero if this selector code can't be used on this system, or a
3066 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3068 return _regulator_list_voltage(regulator->rdev, selector, 1);
3070 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3073 * regulator_get_regmap - get the regulator's register map
3074 * @regulator: regulator source
3076 * Returns the register map for the given regulator, or an ERR_PTR value
3077 * if the regulator doesn't use regmap.
3079 struct regmap *regulator_get_regmap(struct regulator *regulator)
3081 struct regmap *map = regulator->rdev->regmap;
3083 return map ? map : ERR_PTR(-EOPNOTSUPP);
3087 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3088 * @regulator: regulator source
3089 * @vsel_reg: voltage selector register, output parameter
3090 * @vsel_mask: mask for voltage selector bitfield, output parameter
3092 * Returns the hardware register offset and bitmask used for setting the
3093 * regulator voltage. This might be useful when configuring voltage-scaling
3094 * hardware or firmware that can make I2C requests behind the kernel's back,
3097 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3098 * and 0 is returned, otherwise a negative errno is returned.
3100 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3102 unsigned *vsel_mask)
3104 struct regulator_dev *rdev = regulator->rdev;
3105 const struct regulator_ops *ops = rdev->desc->ops;
3107 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3110 *vsel_reg = rdev->desc->vsel_reg;
3111 *vsel_mask = rdev->desc->vsel_mask;
3115 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3118 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3119 * @regulator: regulator source
3120 * @selector: identify voltage to list
3122 * Converts the selector to a hardware-specific voltage selector that can be
3123 * directly written to the regulator registers. The address of the voltage
3124 * register can be determined by calling @regulator_get_hardware_vsel_register.
3126 * On error a negative errno is returned.
3128 int regulator_list_hardware_vsel(struct regulator *regulator,
3131 struct regulator_dev *rdev = regulator->rdev;
3132 const struct regulator_ops *ops = rdev->desc->ops;
3134 if (selector >= rdev->desc->n_voltages)
3136 if (selector < rdev->desc->linear_min_sel)
3138 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3143 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3146 * regulator_get_linear_step - return the voltage step size between VSEL values
3147 * @regulator: regulator source
3149 * Returns the voltage step size between VSEL values for linear
3150 * regulators, or return 0 if the regulator isn't a linear regulator.
3152 unsigned int regulator_get_linear_step(struct regulator *regulator)
3154 struct regulator_dev *rdev = regulator->rdev;
3156 return rdev->desc->uV_step;
3158 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3161 * regulator_is_supported_voltage - check if a voltage range can be supported
3163 * @regulator: Regulator to check.
3164 * @min_uV: Minimum required voltage in uV.
3165 * @max_uV: Maximum required voltage in uV.
3167 * Returns a boolean.
3169 int regulator_is_supported_voltage(struct regulator *regulator,
3170 int min_uV, int max_uV)
3172 struct regulator_dev *rdev = regulator->rdev;
3173 int i, voltages, ret;
3175 /* If we can't change voltage check the current voltage */
3176 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3177 ret = regulator_get_voltage(regulator);
3179 return min_uV <= ret && ret <= max_uV;
3184 /* Any voltage within constrains range is fine? */
3185 if (rdev->desc->continuous_voltage_range)
3186 return min_uV >= rdev->constraints->min_uV &&
3187 max_uV <= rdev->constraints->max_uV;
3189 ret = regulator_count_voltages(regulator);
3194 for (i = 0; i < voltages; i++) {
3195 ret = regulator_list_voltage(regulator, i);
3197 if (ret >= min_uV && ret <= max_uV)
3203 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3205 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3208 const struct regulator_desc *desc = rdev->desc;
3210 if (desc->ops->map_voltage)
3211 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3213 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3214 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3216 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3217 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3219 if (desc->ops->list_voltage ==
3220 regulator_list_voltage_pickable_linear_range)
3221 return regulator_map_voltage_pickable_linear_range(rdev,
3224 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3227 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3228 int min_uV, int max_uV,
3231 struct pre_voltage_change_data data;
3234 data.old_uV = regulator_get_voltage_rdev(rdev);
3235 data.min_uV = min_uV;
3236 data.max_uV = max_uV;
3237 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3239 if (ret & NOTIFY_STOP_MASK)
3242 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3246 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3247 (void *)data.old_uV);
3252 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3253 int uV, unsigned selector)
3255 struct pre_voltage_change_data data;
3258 data.old_uV = regulator_get_voltage_rdev(rdev);
3261 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3263 if (ret & NOTIFY_STOP_MASK)
3266 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3270 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3271 (void *)data.old_uV);
3276 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3277 int uV, int new_selector)
3279 const struct regulator_ops *ops = rdev->desc->ops;
3280 int diff, old_sel, curr_sel, ret;
3282 /* Stepping is only needed if the regulator is enabled. */
3283 if (!_regulator_is_enabled(rdev))
3286 if (!ops->get_voltage_sel)
3289 old_sel = ops->get_voltage_sel(rdev);
3293 diff = new_selector - old_sel;
3295 return 0; /* No change needed. */
3299 for (curr_sel = old_sel + rdev->desc->vsel_step;
3300 curr_sel < new_selector;
3301 curr_sel += rdev->desc->vsel_step) {
3303 * Call the callback directly instead of using
3304 * _regulator_call_set_voltage_sel() as we don't
3305 * want to notify anyone yet. Same in the branch
3308 ret = ops->set_voltage_sel(rdev, curr_sel);
3313 /* Stepping down. */
3314 for (curr_sel = old_sel - rdev->desc->vsel_step;
3315 curr_sel > new_selector;
3316 curr_sel -= rdev->desc->vsel_step) {
3317 ret = ops->set_voltage_sel(rdev, curr_sel);
3324 /* The final selector will trigger the notifiers. */
3325 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3329 * At least try to return to the previous voltage if setting a new
3332 (void)ops->set_voltage_sel(rdev, old_sel);
3336 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3337 int old_uV, int new_uV)
3339 unsigned int ramp_delay = 0;
3341 if (rdev->constraints->ramp_delay)
3342 ramp_delay = rdev->constraints->ramp_delay;
3343 else if (rdev->desc->ramp_delay)
3344 ramp_delay = rdev->desc->ramp_delay;
3345 else if (rdev->constraints->settling_time)
3346 return rdev->constraints->settling_time;
3347 else if (rdev->constraints->settling_time_up &&
3349 return rdev->constraints->settling_time_up;
3350 else if (rdev->constraints->settling_time_down &&
3352 return rdev->constraints->settling_time_down;
3354 if (ramp_delay == 0) {
3355 rdev_dbg(rdev, "ramp_delay not set\n");
3359 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3362 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3363 int min_uV, int max_uV)
3368 unsigned int selector;
3369 int old_selector = -1;
3370 const struct regulator_ops *ops = rdev->desc->ops;
3371 int old_uV = regulator_get_voltage_rdev(rdev);
3373 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3375 min_uV += rdev->constraints->uV_offset;
3376 max_uV += rdev->constraints->uV_offset;
3379 * If we can't obtain the old selector there is not enough
3380 * info to call set_voltage_time_sel().
3382 if (_regulator_is_enabled(rdev) &&
3383 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3384 old_selector = ops->get_voltage_sel(rdev);
3385 if (old_selector < 0)
3386 return old_selector;
3389 if (ops->set_voltage) {
3390 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3394 if (ops->list_voltage)
3395 best_val = ops->list_voltage(rdev,
3398 best_val = regulator_get_voltage_rdev(rdev);
3401 } else if (ops->set_voltage_sel) {
3402 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3404 best_val = ops->list_voltage(rdev, ret);
3405 if (min_uV <= best_val && max_uV >= best_val) {
3407 if (old_selector == selector)
3409 else if (rdev->desc->vsel_step)
3410 ret = _regulator_set_voltage_sel_step(
3411 rdev, best_val, selector);
3413 ret = _regulator_call_set_voltage_sel(
3414 rdev, best_val, selector);
3426 if (ops->set_voltage_time_sel) {
3428 * Call set_voltage_time_sel if successfully obtained
3431 if (old_selector >= 0 && old_selector != selector)
3432 delay = ops->set_voltage_time_sel(rdev, old_selector,
3435 if (old_uV != best_val) {
3436 if (ops->set_voltage_time)
3437 delay = ops->set_voltage_time(rdev, old_uV,
3440 delay = _regulator_set_voltage_time(rdev,
3447 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3451 /* Insert any necessary delays */
3452 if (delay >= 1000) {
3453 mdelay(delay / 1000);
3454 udelay(delay % 1000);
3459 if (best_val >= 0) {
3460 unsigned long data = best_val;
3462 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3467 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3472 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3473 int min_uV, int max_uV, suspend_state_t state)
3475 struct regulator_state *rstate;
3478 rstate = regulator_get_suspend_state(rdev, state);
3482 if (min_uV < rstate->min_uV)
3483 min_uV = rstate->min_uV;
3484 if (max_uV > rstate->max_uV)
3485 max_uV = rstate->max_uV;
3487 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3491 uV = rdev->desc->ops->list_voltage(rdev, sel);
3492 if (uV >= min_uV && uV <= max_uV)
3498 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3499 int min_uV, int max_uV,
3500 suspend_state_t state)
3502 struct regulator_dev *rdev = regulator->rdev;
3503 struct regulator_voltage *voltage = ®ulator->voltage[state];
3505 int old_min_uV, old_max_uV;
3508 /* If we're setting the same range as last time the change
3509 * should be a noop (some cpufreq implementations use the same
3510 * voltage for multiple frequencies, for example).
3512 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3515 /* If we're trying to set a range that overlaps the current voltage,
3516 * return successfully even though the regulator does not support
3517 * changing the voltage.
3519 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3520 current_uV = regulator_get_voltage_rdev(rdev);
3521 if (min_uV <= current_uV && current_uV <= max_uV) {
3522 voltage->min_uV = min_uV;
3523 voltage->max_uV = max_uV;
3529 if (!rdev->desc->ops->set_voltage &&
3530 !rdev->desc->ops->set_voltage_sel) {
3535 /* constraints check */
3536 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3540 /* restore original values in case of error */
3541 old_min_uV = voltage->min_uV;
3542 old_max_uV = voltage->max_uV;
3543 voltage->min_uV = min_uV;
3544 voltage->max_uV = max_uV;
3546 /* for not coupled regulators this will just set the voltage */
3547 ret = regulator_balance_voltage(rdev, state);
3549 voltage->min_uV = old_min_uV;
3550 voltage->max_uV = old_max_uV;
3557 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3558 int max_uV, suspend_state_t state)
3560 int best_supply_uV = 0;
3561 int supply_change_uV = 0;
3565 regulator_ops_is_valid(rdev->supply->rdev,
3566 REGULATOR_CHANGE_VOLTAGE) &&
3567 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3568 rdev->desc->ops->get_voltage_sel))) {
3569 int current_supply_uV;
3572 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3578 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3579 if (best_supply_uV < 0) {
3580 ret = best_supply_uV;
3584 best_supply_uV += rdev->desc->min_dropout_uV;
3586 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3587 if (current_supply_uV < 0) {
3588 ret = current_supply_uV;
3592 supply_change_uV = best_supply_uV - current_supply_uV;
3595 if (supply_change_uV > 0) {
3596 ret = regulator_set_voltage_unlocked(rdev->supply,
3597 best_supply_uV, INT_MAX, state);
3599 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3605 if (state == PM_SUSPEND_ON)
3606 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3608 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3613 if (supply_change_uV < 0) {
3614 ret = regulator_set_voltage_unlocked(rdev->supply,
3615 best_supply_uV, INT_MAX, state);
3617 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3619 /* No need to fail here */
3626 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3628 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3629 int *current_uV, int *min_uV)
3631 struct regulation_constraints *constraints = rdev->constraints;
3633 /* Limit voltage change only if necessary */
3634 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3637 if (*current_uV < 0) {
3638 *current_uV = regulator_get_voltage_rdev(rdev);
3640 if (*current_uV < 0)
3644 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3647 /* Clamp target voltage within the given step */
3648 if (*current_uV < *min_uV)
3649 *min_uV = min(*current_uV + constraints->max_uV_step,
3652 *min_uV = max(*current_uV - constraints->max_uV_step,
3658 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3660 int *min_uV, int *max_uV,
3661 suspend_state_t state,
3664 struct coupling_desc *c_desc = &rdev->coupling_desc;
3665 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3666 struct regulation_constraints *constraints = rdev->constraints;
3667 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3668 int max_current_uV = 0, min_current_uV = INT_MAX;
3669 int highest_min_uV = 0, target_uV, possible_uV;
3670 int i, ret, max_spread;
3676 * If there are no coupled regulators, simply set the voltage
3677 * demanded by consumers.
3679 if (n_coupled == 1) {
3681 * If consumers don't provide any demands, set voltage
3684 desired_min_uV = constraints->min_uV;
3685 desired_max_uV = constraints->max_uV;
3687 ret = regulator_check_consumers(rdev,
3689 &desired_max_uV, state);
3693 possible_uV = desired_min_uV;
3699 /* Find highest min desired voltage */
3700 for (i = 0; i < n_coupled; i++) {
3702 int tmp_max = INT_MAX;
3704 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3706 ret = regulator_check_consumers(c_rdevs[i],
3712 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3716 highest_min_uV = max(highest_min_uV, tmp_min);
3719 desired_min_uV = tmp_min;
3720 desired_max_uV = tmp_max;
3724 max_spread = constraints->max_spread[0];
3727 * Let target_uV be equal to the desired one if possible.
3728 * If not, set it to minimum voltage, allowed by other coupled
3731 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3734 * Find min and max voltages, which currently aren't violating
3737 for (i = 1; i < n_coupled; i++) {
3740 if (!_regulator_is_enabled(c_rdevs[i]))
3743 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3747 min_current_uV = min(tmp_act, min_current_uV);
3748 max_current_uV = max(tmp_act, max_current_uV);
3751 /* There aren't any other regulators enabled */
3752 if (max_current_uV == 0) {
3753 possible_uV = target_uV;
3756 * Correct target voltage, so as it currently isn't
3757 * violating max_spread
3759 possible_uV = max(target_uV, max_current_uV - max_spread);
3760 possible_uV = min(possible_uV, min_current_uV + max_spread);
3763 if (possible_uV > desired_max_uV)
3766 done = (possible_uV == target_uV);
3767 desired_min_uV = possible_uV;
3770 /* Apply max_uV_step constraint if necessary */
3771 if (state == PM_SUSPEND_ON) {
3772 ret = regulator_limit_voltage_step(rdev, current_uV,
3781 /* Set current_uV if wasn't done earlier in the code and if necessary */
3782 if (n_coupled > 1 && *current_uV == -1) {
3784 if (_regulator_is_enabled(rdev)) {
3785 ret = regulator_get_voltage_rdev(rdev);
3791 *current_uV = desired_min_uV;
3795 *min_uV = desired_min_uV;
3796 *max_uV = desired_max_uV;
3801 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3802 suspend_state_t state, bool skip_coupled)
3804 struct regulator_dev **c_rdevs;
3805 struct regulator_dev *best_rdev;
3806 struct coupling_desc *c_desc = &rdev->coupling_desc;
3807 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3808 unsigned int delta, best_delta;
3809 unsigned long c_rdev_done = 0;
3810 bool best_c_rdev_done;
3812 c_rdevs = c_desc->coupled_rdevs;
3813 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3816 * Find the best possible voltage change on each loop. Leave the loop
3817 * if there isn't any possible change.
3820 best_c_rdev_done = false;
3828 * Find highest difference between optimal voltage
3829 * and current voltage.
3831 for (i = 0; i < n_coupled; i++) {
3833 * optimal_uV is the best voltage that can be set for
3834 * i-th regulator at the moment without violating
3835 * max_spread constraint in order to balance
3836 * the coupled voltages.
3838 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3840 if (test_bit(i, &c_rdev_done))
3843 ret = regulator_get_optimal_voltage(c_rdevs[i],
3851 delta = abs(optimal_uV - current_uV);
3853 if (delta && best_delta <= delta) {
3854 best_c_rdev_done = ret;
3856 best_rdev = c_rdevs[i];
3857 best_min_uV = optimal_uV;
3858 best_max_uV = optimal_max_uV;
3863 /* Nothing to change, return successfully */
3869 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3870 best_max_uV, state);
3875 if (best_c_rdev_done)
3876 set_bit(best_c_rdev, &c_rdev_done);
3878 } while (n_coupled > 1);
3884 static int regulator_balance_voltage(struct regulator_dev *rdev,
3885 suspend_state_t state)
3887 struct coupling_desc *c_desc = &rdev->coupling_desc;
3888 struct regulator_coupler *coupler = c_desc->coupler;
3889 bool skip_coupled = false;
3892 * If system is in a state other than PM_SUSPEND_ON, don't check
3893 * other coupled regulators.
3895 if (state != PM_SUSPEND_ON)
3896 skip_coupled = true;
3898 if (c_desc->n_resolved < c_desc->n_coupled) {
3899 rdev_err(rdev, "Not all coupled regulators registered\n");
3903 /* Invoke custom balancer for customized couplers */
3904 if (coupler && coupler->balance_voltage)
3905 return coupler->balance_voltage(coupler, rdev, state);
3907 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3911 * regulator_set_voltage - set regulator output voltage
3912 * @regulator: regulator source
3913 * @min_uV: Minimum required voltage in uV
3914 * @max_uV: Maximum acceptable voltage in uV
3916 * Sets a voltage regulator to the desired output voltage. This can be set
3917 * during any regulator state. IOW, regulator can be disabled or enabled.
3919 * If the regulator is enabled then the voltage will change to the new value
3920 * immediately otherwise if the regulator is disabled the regulator will
3921 * output at the new voltage when enabled.
3923 * NOTE: If the regulator is shared between several devices then the lowest
3924 * request voltage that meets the system constraints will be used.
3925 * Regulator system constraints must be set for this regulator before
3926 * calling this function otherwise this call will fail.
3928 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3930 struct ww_acquire_ctx ww_ctx;
3933 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3935 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3938 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3942 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3944 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3945 suspend_state_t state, bool en)
3947 struct regulator_state *rstate;
3949 rstate = regulator_get_suspend_state(rdev, state);
3953 if (!rstate->changeable)
3956 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3961 int regulator_suspend_enable(struct regulator_dev *rdev,
3962 suspend_state_t state)
3964 return regulator_suspend_toggle(rdev, state, true);
3966 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3968 int regulator_suspend_disable(struct regulator_dev *rdev,
3969 suspend_state_t state)
3971 struct regulator *regulator;
3972 struct regulator_voltage *voltage;
3975 * if any consumer wants this regulator device keeping on in
3976 * suspend states, don't set it as disabled.
3978 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3979 voltage = ®ulator->voltage[state];
3980 if (voltage->min_uV || voltage->max_uV)
3984 return regulator_suspend_toggle(rdev, state, false);
3986 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3988 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3989 int min_uV, int max_uV,
3990 suspend_state_t state)
3992 struct regulator_dev *rdev = regulator->rdev;
3993 struct regulator_state *rstate;
3995 rstate = regulator_get_suspend_state(rdev, state);
3999 if (rstate->min_uV == rstate->max_uV) {
4000 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4004 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4007 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4008 int max_uV, suspend_state_t state)
4010 struct ww_acquire_ctx ww_ctx;
4013 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4014 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4017 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4019 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4022 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4026 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4029 * regulator_set_voltage_time - get raise/fall time
4030 * @regulator: regulator source
4031 * @old_uV: starting voltage in microvolts
4032 * @new_uV: target voltage in microvolts
4034 * Provided with the starting and ending voltage, this function attempts to
4035 * calculate the time in microseconds required to rise or fall to this new
4038 int regulator_set_voltage_time(struct regulator *regulator,
4039 int old_uV, int new_uV)
4041 struct regulator_dev *rdev = regulator->rdev;
4042 const struct regulator_ops *ops = rdev->desc->ops;
4048 if (ops->set_voltage_time)
4049 return ops->set_voltage_time(rdev, old_uV, new_uV);
4050 else if (!ops->set_voltage_time_sel)
4051 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4053 /* Currently requires operations to do this */
4054 if (!ops->list_voltage || !rdev->desc->n_voltages)
4057 for (i = 0; i < rdev->desc->n_voltages; i++) {
4058 /* We only look for exact voltage matches here */
4059 if (i < rdev->desc->linear_min_sel)
4062 if (old_sel >= 0 && new_sel >= 0)
4065 voltage = regulator_list_voltage(regulator, i);
4070 if (voltage == old_uV)
4072 if (voltage == new_uV)
4076 if (old_sel < 0 || new_sel < 0)
4079 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4081 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4084 * regulator_set_voltage_time_sel - get raise/fall time
4085 * @rdev: regulator source device
4086 * @old_selector: selector for starting voltage
4087 * @new_selector: selector for target voltage
4089 * Provided with the starting and target voltage selectors, this function
4090 * returns time in microseconds required to rise or fall to this new voltage
4092 * Drivers providing ramp_delay in regulation_constraints can use this as their
4093 * set_voltage_time_sel() operation.
4095 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4096 unsigned int old_selector,
4097 unsigned int new_selector)
4099 int old_volt, new_volt;
4102 if (!rdev->desc->ops->list_voltage)
4105 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4106 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4108 if (rdev->desc->ops->set_voltage_time)
4109 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4112 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4114 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4117 * regulator_sync_voltage - re-apply last regulator output voltage
4118 * @regulator: regulator source
4120 * Re-apply the last configured voltage. This is intended to be used
4121 * where some external control source the consumer is cooperating with
4122 * has caused the configured voltage to change.
4124 int regulator_sync_voltage(struct regulator *regulator)
4126 struct regulator_dev *rdev = regulator->rdev;
4127 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4128 int ret, min_uV, max_uV;
4130 regulator_lock(rdev);
4132 if (!rdev->desc->ops->set_voltage &&
4133 !rdev->desc->ops->set_voltage_sel) {
4138 /* This is only going to work if we've had a voltage configured. */
4139 if (!voltage->min_uV && !voltage->max_uV) {
4144 min_uV = voltage->min_uV;
4145 max_uV = voltage->max_uV;
4147 /* This should be a paranoia check... */
4148 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4152 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4156 /* balance only, if regulator is coupled */
4157 if (rdev->coupling_desc.n_coupled > 1)
4158 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4160 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4163 regulator_unlock(rdev);
4166 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4168 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4173 if (rdev->desc->ops->get_bypass) {
4174 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4178 /* if bypassed the regulator must have a supply */
4179 if (!rdev->supply) {
4181 "bypassed regulator has no supply!\n");
4182 return -EPROBE_DEFER;
4185 return regulator_get_voltage_rdev(rdev->supply->rdev);
4189 if (rdev->desc->ops->get_voltage_sel) {
4190 sel = rdev->desc->ops->get_voltage_sel(rdev);
4193 ret = rdev->desc->ops->list_voltage(rdev, sel);
4194 } else if (rdev->desc->ops->get_voltage) {
4195 ret = rdev->desc->ops->get_voltage(rdev);
4196 } else if (rdev->desc->ops->list_voltage) {
4197 ret = rdev->desc->ops->list_voltage(rdev, 0);
4198 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4199 ret = rdev->desc->fixed_uV;
4200 } else if (rdev->supply) {
4201 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4202 } else if (rdev->supply_name) {
4203 return -EPROBE_DEFER;
4210 return ret - rdev->constraints->uV_offset;
4212 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4215 * regulator_get_voltage - get regulator output voltage
4216 * @regulator: regulator source
4218 * This returns the current regulator voltage in uV.
4220 * NOTE: If the regulator is disabled it will return the voltage value. This
4221 * function should not be used to determine regulator state.
4223 int regulator_get_voltage(struct regulator *regulator)
4225 struct ww_acquire_ctx ww_ctx;
4228 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4229 ret = regulator_get_voltage_rdev(regulator->rdev);
4230 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4234 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4237 * regulator_set_current_limit - set regulator output current limit
4238 * @regulator: regulator source
4239 * @min_uA: Minimum supported current in uA
4240 * @max_uA: Maximum supported current in uA
4242 * Sets current sink to the desired output current. This can be set during
4243 * any regulator state. IOW, regulator can be disabled or enabled.
4245 * If the regulator is enabled then the current will change to the new value
4246 * immediately otherwise if the regulator is disabled the regulator will
4247 * output at the new current when enabled.
4249 * NOTE: Regulator system constraints must be set for this regulator before
4250 * calling this function otherwise this call will fail.
4252 int regulator_set_current_limit(struct regulator *regulator,
4253 int min_uA, int max_uA)
4255 struct regulator_dev *rdev = regulator->rdev;
4258 regulator_lock(rdev);
4261 if (!rdev->desc->ops->set_current_limit) {
4266 /* constraints check */
4267 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4271 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4273 regulator_unlock(rdev);
4276 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4278 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4281 if (!rdev->desc->ops->get_current_limit)
4284 return rdev->desc->ops->get_current_limit(rdev);
4287 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4291 regulator_lock(rdev);
4292 ret = _regulator_get_current_limit_unlocked(rdev);
4293 regulator_unlock(rdev);
4299 * regulator_get_current_limit - get regulator output current
4300 * @regulator: regulator source
4302 * This returns the current supplied by the specified current sink in uA.
4304 * NOTE: If the regulator is disabled it will return the current value. This
4305 * function should not be used to determine regulator state.
4307 int regulator_get_current_limit(struct regulator *regulator)
4309 return _regulator_get_current_limit(regulator->rdev);
4311 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4314 * regulator_set_mode - set regulator operating mode
4315 * @regulator: regulator source
4316 * @mode: operating mode - one of the REGULATOR_MODE constants
4318 * Set regulator operating mode to increase regulator efficiency or improve
4319 * regulation performance.
4321 * NOTE: Regulator system constraints must be set for this regulator before
4322 * calling this function otherwise this call will fail.
4324 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4326 struct regulator_dev *rdev = regulator->rdev;
4328 int regulator_curr_mode;
4330 regulator_lock(rdev);
4333 if (!rdev->desc->ops->set_mode) {
4338 /* return if the same mode is requested */
4339 if (rdev->desc->ops->get_mode) {
4340 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4341 if (regulator_curr_mode == mode) {
4347 /* constraints check */
4348 ret = regulator_mode_constrain(rdev, &mode);
4352 ret = rdev->desc->ops->set_mode(rdev, mode);
4354 regulator_unlock(rdev);
4357 EXPORT_SYMBOL_GPL(regulator_set_mode);
4359 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4362 if (!rdev->desc->ops->get_mode)
4365 return rdev->desc->ops->get_mode(rdev);
4368 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4372 regulator_lock(rdev);
4373 ret = _regulator_get_mode_unlocked(rdev);
4374 regulator_unlock(rdev);
4380 * regulator_get_mode - get regulator operating mode
4381 * @regulator: regulator source
4383 * Get the current regulator operating mode.
4385 unsigned int regulator_get_mode(struct regulator *regulator)
4387 return _regulator_get_mode(regulator->rdev);
4389 EXPORT_SYMBOL_GPL(regulator_get_mode);
4391 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4392 unsigned int *flags)
4396 regulator_lock(rdev);
4399 if (!rdev->desc->ops->get_error_flags) {
4404 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4406 regulator_unlock(rdev);
4411 * regulator_get_error_flags - get regulator error information
4412 * @regulator: regulator source
4413 * @flags: pointer to store error flags
4415 * Get the current regulator error information.
4417 int regulator_get_error_flags(struct regulator *regulator,
4418 unsigned int *flags)
4420 return _regulator_get_error_flags(regulator->rdev, flags);
4422 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4425 * regulator_set_load - set regulator load
4426 * @regulator: regulator source
4427 * @uA_load: load current
4429 * Notifies the regulator core of a new device load. This is then used by
4430 * DRMS (if enabled by constraints) to set the most efficient regulator
4431 * operating mode for the new regulator loading.
4433 * Consumer devices notify their supply regulator of the maximum power
4434 * they will require (can be taken from device datasheet in the power
4435 * consumption tables) when they change operational status and hence power
4436 * state. Examples of operational state changes that can affect power
4437 * consumption are :-
4439 * o Device is opened / closed.
4440 * o Device I/O is about to begin or has just finished.
4441 * o Device is idling in between work.
4443 * This information is also exported via sysfs to userspace.
4445 * DRMS will sum the total requested load on the regulator and change
4446 * to the most efficient operating mode if platform constraints allow.
4448 * NOTE: when a regulator consumer requests to have a regulator
4449 * disabled then any load that consumer requested no longer counts
4450 * toward the total requested load. If the regulator is re-enabled
4451 * then the previously requested load will start counting again.
4453 * If a regulator is an always-on regulator then an individual consumer's
4454 * load will still be removed if that consumer is fully disabled.
4456 * On error a negative errno is returned.
4458 int regulator_set_load(struct regulator *regulator, int uA_load)
4460 struct regulator_dev *rdev = regulator->rdev;
4464 regulator_lock(rdev);
4465 old_uA_load = regulator->uA_load;
4466 regulator->uA_load = uA_load;
4467 if (regulator->enable_count && old_uA_load != uA_load) {
4468 ret = drms_uA_update(rdev);
4470 regulator->uA_load = old_uA_load;
4472 regulator_unlock(rdev);
4476 EXPORT_SYMBOL_GPL(regulator_set_load);
4479 * regulator_allow_bypass - allow the regulator to go into bypass mode
4481 * @regulator: Regulator to configure
4482 * @enable: enable or disable bypass mode
4484 * Allow the regulator to go into bypass mode if all other consumers
4485 * for the regulator also enable bypass mode and the machine
4486 * constraints allow this. Bypass mode means that the regulator is
4487 * simply passing the input directly to the output with no regulation.
4489 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4491 struct regulator_dev *rdev = regulator->rdev;
4492 const char *name = rdev_get_name(rdev);
4495 if (!rdev->desc->ops->set_bypass)
4498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4501 regulator_lock(rdev);
4503 if (enable && !regulator->bypass) {
4504 rdev->bypass_count++;
4506 if (rdev->bypass_count == rdev->open_count) {
4507 trace_regulator_bypass_enable(name);
4509 ret = rdev->desc->ops->set_bypass(rdev, enable);
4511 rdev->bypass_count--;
4513 trace_regulator_bypass_enable_complete(name);
4516 } else if (!enable && regulator->bypass) {
4517 rdev->bypass_count--;
4519 if (rdev->bypass_count != rdev->open_count) {
4520 trace_regulator_bypass_disable(name);
4522 ret = rdev->desc->ops->set_bypass(rdev, enable);
4524 rdev->bypass_count++;
4526 trace_regulator_bypass_disable_complete(name);
4531 regulator->bypass = enable;
4533 regulator_unlock(rdev);
4537 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4540 * regulator_register_notifier - register regulator event notifier
4541 * @regulator: regulator source
4542 * @nb: notifier block
4544 * Register notifier block to receive regulator events.
4546 int regulator_register_notifier(struct regulator *regulator,
4547 struct notifier_block *nb)
4549 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4552 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4555 * regulator_unregister_notifier - unregister regulator event notifier
4556 * @regulator: regulator source
4557 * @nb: notifier block
4559 * Unregister regulator event notifier block.
4561 int regulator_unregister_notifier(struct regulator *regulator,
4562 struct notifier_block *nb)
4564 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4567 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4569 /* notify regulator consumers and downstream regulator consumers.
4570 * Note mutex must be held by caller.
4572 static int _notifier_call_chain(struct regulator_dev *rdev,
4573 unsigned long event, void *data)
4575 /* call rdev chain first */
4576 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4580 * regulator_bulk_get - get multiple regulator consumers
4582 * @dev: Device to supply
4583 * @num_consumers: Number of consumers to register
4584 * @consumers: Configuration of consumers; clients are stored here.
4586 * @return 0 on success, an errno on failure.
4588 * This helper function allows drivers to get several regulator
4589 * consumers in one operation. If any of the regulators cannot be
4590 * acquired then any regulators that were allocated will be freed
4591 * before returning to the caller.
4593 int regulator_bulk_get(struct device *dev, int num_consumers,
4594 struct regulator_bulk_data *consumers)
4599 for (i = 0; i < num_consumers; i++)
4600 consumers[i].consumer = NULL;
4602 for (i = 0; i < num_consumers; i++) {
4603 consumers[i].consumer = regulator_get(dev,
4604 consumers[i].supply);
4605 if (IS_ERR(consumers[i].consumer)) {
4606 ret = PTR_ERR(consumers[i].consumer);
4607 consumers[i].consumer = NULL;
4615 if (ret != -EPROBE_DEFER)
4616 dev_err(dev, "Failed to get supply '%s': %pe\n",
4617 consumers[i].supply, ERR_PTR(ret));
4619 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4620 consumers[i].supply);
4623 regulator_put(consumers[i].consumer);
4627 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4629 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4631 struct regulator_bulk_data *bulk = data;
4633 bulk->ret = regulator_enable(bulk->consumer);
4637 * regulator_bulk_enable - enable multiple regulator consumers
4639 * @num_consumers: Number of consumers
4640 * @consumers: Consumer data; clients are stored here.
4641 * @return 0 on success, an errno on failure
4643 * This convenience API allows consumers to enable multiple regulator
4644 * clients in a single API call. If any consumers cannot be enabled
4645 * then any others that were enabled will be disabled again prior to
4648 int regulator_bulk_enable(int num_consumers,
4649 struct regulator_bulk_data *consumers)
4651 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4655 for (i = 0; i < num_consumers; i++) {
4656 async_schedule_domain(regulator_bulk_enable_async,
4657 &consumers[i], &async_domain);
4660 async_synchronize_full_domain(&async_domain);
4662 /* If any consumer failed we need to unwind any that succeeded */
4663 for (i = 0; i < num_consumers; i++) {
4664 if (consumers[i].ret != 0) {
4665 ret = consumers[i].ret;
4673 for (i = 0; i < num_consumers; i++) {
4674 if (consumers[i].ret < 0)
4675 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4676 ERR_PTR(consumers[i].ret));
4678 regulator_disable(consumers[i].consumer);
4683 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4686 * regulator_bulk_disable - disable multiple regulator consumers
4688 * @num_consumers: Number of consumers
4689 * @consumers: Consumer data; clients are stored here.
4690 * @return 0 on success, an errno on failure
4692 * This convenience API allows consumers to disable multiple regulator
4693 * clients in a single API call. If any consumers cannot be disabled
4694 * then any others that were disabled will be enabled again prior to
4697 int regulator_bulk_disable(int num_consumers,
4698 struct regulator_bulk_data *consumers)
4703 for (i = num_consumers - 1; i >= 0; --i) {
4704 ret = regulator_disable(consumers[i].consumer);
4712 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4713 for (++i; i < num_consumers; ++i) {
4714 r = regulator_enable(consumers[i].consumer);
4716 pr_err("Failed to re-enable %s: %pe\n",
4717 consumers[i].supply, ERR_PTR(r));
4722 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4725 * regulator_bulk_force_disable - force disable multiple regulator consumers
4727 * @num_consumers: Number of consumers
4728 * @consumers: Consumer data; clients are stored here.
4729 * @return 0 on success, an errno on failure
4731 * This convenience API allows consumers to forcibly disable multiple regulator
4732 * clients in a single API call.
4733 * NOTE: This should be used for situations when device damage will
4734 * likely occur if the regulators are not disabled (e.g. over temp).
4735 * Although regulator_force_disable function call for some consumers can
4736 * return error numbers, the function is called for all consumers.
4738 int regulator_bulk_force_disable(int num_consumers,
4739 struct regulator_bulk_data *consumers)
4744 for (i = 0; i < num_consumers; i++) {
4746 regulator_force_disable(consumers[i].consumer);
4748 /* Store first error for reporting */
4749 if (consumers[i].ret && !ret)
4750 ret = consumers[i].ret;
4755 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4758 * regulator_bulk_free - free multiple regulator consumers
4760 * @num_consumers: Number of consumers
4761 * @consumers: Consumer data; clients are stored here.
4763 * This convenience API allows consumers to free multiple regulator
4764 * clients in a single API call.
4766 void regulator_bulk_free(int num_consumers,
4767 struct regulator_bulk_data *consumers)
4771 for (i = 0; i < num_consumers; i++) {
4772 regulator_put(consumers[i].consumer);
4773 consumers[i].consumer = NULL;
4776 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4779 * regulator_notifier_call_chain - call regulator event notifier
4780 * @rdev: regulator source
4781 * @event: notifier block
4782 * @data: callback-specific data.
4784 * Called by regulator drivers to notify clients a regulator event has
4787 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4788 unsigned long event, void *data)
4790 _notifier_call_chain(rdev, event, data);
4794 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4797 * regulator_mode_to_status - convert a regulator mode into a status
4799 * @mode: Mode to convert
4801 * Convert a regulator mode into a status.
4803 int regulator_mode_to_status(unsigned int mode)
4806 case REGULATOR_MODE_FAST:
4807 return REGULATOR_STATUS_FAST;
4808 case REGULATOR_MODE_NORMAL:
4809 return REGULATOR_STATUS_NORMAL;
4810 case REGULATOR_MODE_IDLE:
4811 return REGULATOR_STATUS_IDLE;
4812 case REGULATOR_MODE_STANDBY:
4813 return REGULATOR_STATUS_STANDBY;
4815 return REGULATOR_STATUS_UNDEFINED;
4818 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4820 static struct attribute *regulator_dev_attrs[] = {
4821 &dev_attr_name.attr,
4822 &dev_attr_num_users.attr,
4823 &dev_attr_type.attr,
4824 &dev_attr_microvolts.attr,
4825 &dev_attr_microamps.attr,
4826 &dev_attr_opmode.attr,
4827 &dev_attr_state.attr,
4828 &dev_attr_status.attr,
4829 &dev_attr_bypass.attr,
4830 &dev_attr_requested_microamps.attr,
4831 &dev_attr_min_microvolts.attr,
4832 &dev_attr_max_microvolts.attr,
4833 &dev_attr_min_microamps.attr,
4834 &dev_attr_max_microamps.attr,
4835 &dev_attr_suspend_standby_state.attr,
4836 &dev_attr_suspend_mem_state.attr,
4837 &dev_attr_suspend_disk_state.attr,
4838 &dev_attr_suspend_standby_microvolts.attr,
4839 &dev_attr_suspend_mem_microvolts.attr,
4840 &dev_attr_suspend_disk_microvolts.attr,
4841 &dev_attr_suspend_standby_mode.attr,
4842 &dev_attr_suspend_mem_mode.attr,
4843 &dev_attr_suspend_disk_mode.attr,
4848 * To avoid cluttering sysfs (and memory) with useless state, only
4849 * create attributes that can be meaningfully displayed.
4851 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4852 struct attribute *attr, int idx)
4854 struct device *dev = kobj_to_dev(kobj);
4855 struct regulator_dev *rdev = dev_to_rdev(dev);
4856 const struct regulator_ops *ops = rdev->desc->ops;
4857 umode_t mode = attr->mode;
4859 /* these three are always present */
4860 if (attr == &dev_attr_name.attr ||
4861 attr == &dev_attr_num_users.attr ||
4862 attr == &dev_attr_type.attr)
4865 /* some attributes need specific methods to be displayed */
4866 if (attr == &dev_attr_microvolts.attr) {
4867 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4868 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4869 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4870 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4875 if (attr == &dev_attr_microamps.attr)
4876 return ops->get_current_limit ? mode : 0;
4878 if (attr == &dev_attr_opmode.attr)
4879 return ops->get_mode ? mode : 0;
4881 if (attr == &dev_attr_state.attr)
4882 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4884 if (attr == &dev_attr_status.attr)
4885 return ops->get_status ? mode : 0;
4887 if (attr == &dev_attr_bypass.attr)
4888 return ops->get_bypass ? mode : 0;
4890 /* constraints need specific supporting methods */
4891 if (attr == &dev_attr_min_microvolts.attr ||
4892 attr == &dev_attr_max_microvolts.attr)
4893 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4895 if (attr == &dev_attr_min_microamps.attr ||
4896 attr == &dev_attr_max_microamps.attr)
4897 return ops->set_current_limit ? mode : 0;
4899 if (attr == &dev_attr_suspend_standby_state.attr ||
4900 attr == &dev_attr_suspend_mem_state.attr ||
4901 attr == &dev_attr_suspend_disk_state.attr)
4904 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4905 attr == &dev_attr_suspend_mem_microvolts.attr ||
4906 attr == &dev_attr_suspend_disk_microvolts.attr)
4907 return ops->set_suspend_voltage ? mode : 0;
4909 if (attr == &dev_attr_suspend_standby_mode.attr ||
4910 attr == &dev_attr_suspend_mem_mode.attr ||
4911 attr == &dev_attr_suspend_disk_mode.attr)
4912 return ops->set_suspend_mode ? mode : 0;
4917 static const struct attribute_group regulator_dev_group = {
4918 .attrs = regulator_dev_attrs,
4919 .is_visible = regulator_attr_is_visible,
4922 static const struct attribute_group *regulator_dev_groups[] = {
4923 ®ulator_dev_group,
4927 static void regulator_dev_release(struct device *dev)
4929 struct regulator_dev *rdev = dev_get_drvdata(dev);
4931 kfree(rdev->constraints);
4932 of_node_put(rdev->dev.of_node);
4936 static void rdev_init_debugfs(struct regulator_dev *rdev)
4938 struct device *parent = rdev->dev.parent;
4939 const char *rname = rdev_get_name(rdev);
4940 char name[NAME_MAX];
4942 /* Avoid duplicate debugfs directory names */
4943 if (parent && rname == rdev->desc->name) {
4944 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4949 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4950 if (!rdev->debugfs) {
4951 rdev_warn(rdev, "Failed to create debugfs directory\n");
4955 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4957 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4959 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4960 &rdev->bypass_count);
4963 static int regulator_register_resolve_supply(struct device *dev, void *data)
4965 struct regulator_dev *rdev = dev_to_rdev(dev);
4967 if (regulator_resolve_supply(rdev))
4968 rdev_dbg(rdev, "unable to resolve supply\n");
4973 int regulator_coupler_register(struct regulator_coupler *coupler)
4975 mutex_lock(®ulator_list_mutex);
4976 list_add_tail(&coupler->list, ®ulator_coupler_list);
4977 mutex_unlock(®ulator_list_mutex);
4982 static struct regulator_coupler *
4983 regulator_find_coupler(struct regulator_dev *rdev)
4985 struct regulator_coupler *coupler;
4989 * Note that regulators are appended to the list and the generic
4990 * coupler is registered first, hence it will be attached at last
4993 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4994 err = coupler->attach_regulator(coupler, rdev);
4996 if (!coupler->balance_voltage &&
4997 rdev->coupling_desc.n_coupled > 2)
4998 goto err_unsupported;
5004 return ERR_PTR(err);
5012 return ERR_PTR(-EINVAL);
5015 if (coupler->detach_regulator)
5016 coupler->detach_regulator(coupler, rdev);
5019 "Voltage balancing for multiple regulator couples is unimplemented\n");
5021 return ERR_PTR(-EPERM);
5024 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5026 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5027 struct coupling_desc *c_desc = &rdev->coupling_desc;
5028 int n_coupled = c_desc->n_coupled;
5029 struct regulator_dev *c_rdev;
5032 for (i = 1; i < n_coupled; i++) {
5033 /* already resolved */
5034 if (c_desc->coupled_rdevs[i])
5037 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5042 if (c_rdev->coupling_desc.coupler != coupler) {
5043 rdev_err(rdev, "coupler mismatch with %s\n",
5044 rdev_get_name(c_rdev));
5048 c_desc->coupled_rdevs[i] = c_rdev;
5049 c_desc->n_resolved++;
5051 regulator_resolve_coupling(c_rdev);
5055 static void regulator_remove_coupling(struct regulator_dev *rdev)
5057 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5058 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5059 struct regulator_dev *__c_rdev, *c_rdev;
5060 unsigned int __n_coupled, n_coupled;
5064 n_coupled = c_desc->n_coupled;
5066 for (i = 1; i < n_coupled; i++) {
5067 c_rdev = c_desc->coupled_rdevs[i];
5072 regulator_lock(c_rdev);
5074 __c_desc = &c_rdev->coupling_desc;
5075 __n_coupled = __c_desc->n_coupled;
5077 for (k = 1; k < __n_coupled; k++) {
5078 __c_rdev = __c_desc->coupled_rdevs[k];
5080 if (__c_rdev == rdev) {
5081 __c_desc->coupled_rdevs[k] = NULL;
5082 __c_desc->n_resolved--;
5087 regulator_unlock(c_rdev);
5089 c_desc->coupled_rdevs[i] = NULL;
5090 c_desc->n_resolved--;
5093 if (coupler && coupler->detach_regulator) {
5094 err = coupler->detach_regulator(coupler, rdev);
5096 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5100 kfree(rdev->coupling_desc.coupled_rdevs);
5101 rdev->coupling_desc.coupled_rdevs = NULL;
5104 static int regulator_init_coupling(struct regulator_dev *rdev)
5106 struct regulator_dev **coupled;
5107 int err, n_phandles;
5109 if (!IS_ENABLED(CONFIG_OF))
5112 n_phandles = of_get_n_coupled(rdev);
5114 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5118 rdev->coupling_desc.coupled_rdevs = coupled;
5121 * Every regulator should always have coupling descriptor filled with
5122 * at least pointer to itself.
5124 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5125 rdev->coupling_desc.n_coupled = n_phandles + 1;
5126 rdev->coupling_desc.n_resolved++;
5128 /* regulator isn't coupled */
5129 if (n_phandles == 0)
5132 if (!of_check_coupling_data(rdev))
5135 mutex_lock(®ulator_list_mutex);
5136 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5137 mutex_unlock(®ulator_list_mutex);
5139 if (IS_ERR(rdev->coupling_desc.coupler)) {
5140 err = PTR_ERR(rdev->coupling_desc.coupler);
5141 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5148 static int generic_coupler_attach(struct regulator_coupler *coupler,
5149 struct regulator_dev *rdev)
5151 if (rdev->coupling_desc.n_coupled > 2) {
5153 "Voltage balancing for multiple regulator couples is unimplemented\n");
5157 if (!rdev->constraints->always_on) {
5159 "Coupling of a non always-on regulator is unimplemented\n");
5166 static struct regulator_coupler generic_regulator_coupler = {
5167 .attach_regulator = generic_coupler_attach,
5171 * regulator_register - register regulator
5172 * @regulator_desc: regulator to register
5173 * @cfg: runtime configuration for regulator
5175 * Called by regulator drivers to register a regulator.
5176 * Returns a valid pointer to struct regulator_dev on success
5177 * or an ERR_PTR() on error.
5179 struct regulator_dev *
5180 regulator_register(const struct regulator_desc *regulator_desc,
5181 const struct regulator_config *cfg)
5183 const struct regulator_init_data *init_data;
5184 struct regulator_config *config = NULL;
5185 static atomic_t regulator_no = ATOMIC_INIT(-1);
5186 struct regulator_dev *rdev;
5187 bool dangling_cfg_gpiod = false;
5188 bool dangling_of_gpiod = false;
5193 return ERR_PTR(-EINVAL);
5195 dangling_cfg_gpiod = true;
5196 if (regulator_desc == NULL) {
5204 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5209 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5210 regulator_desc->type != REGULATOR_CURRENT) {
5215 /* Only one of each should be implemented */
5216 WARN_ON(regulator_desc->ops->get_voltage &&
5217 regulator_desc->ops->get_voltage_sel);
5218 WARN_ON(regulator_desc->ops->set_voltage &&
5219 regulator_desc->ops->set_voltage_sel);
5221 /* If we're using selectors we must implement list_voltage. */
5222 if (regulator_desc->ops->get_voltage_sel &&
5223 !regulator_desc->ops->list_voltage) {
5227 if (regulator_desc->ops->set_voltage_sel &&
5228 !regulator_desc->ops->list_voltage) {
5233 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5238 device_initialize(&rdev->dev);
5241 * Duplicate the config so the driver could override it after
5242 * parsing init data.
5244 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5245 if (config == NULL) {
5250 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5251 &rdev->dev.of_node);
5254 * Sometimes not all resources are probed already so we need to take
5255 * that into account. This happens most the time if the ena_gpiod comes
5256 * from a gpio extender or something else.
5258 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5259 ret = -EPROBE_DEFER;
5264 * We need to keep track of any GPIO descriptor coming from the
5265 * device tree until we have handled it over to the core. If the
5266 * config that was passed in to this function DOES NOT contain
5267 * a descriptor, and the config after this call DOES contain
5268 * a descriptor, we definitely got one from parsing the device
5271 if (!cfg->ena_gpiod && config->ena_gpiod)
5272 dangling_of_gpiod = true;
5274 init_data = config->init_data;
5275 rdev->dev.of_node = of_node_get(config->of_node);
5278 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5279 rdev->reg_data = config->driver_data;
5280 rdev->owner = regulator_desc->owner;
5281 rdev->desc = regulator_desc;
5283 rdev->regmap = config->regmap;
5284 else if (dev_get_regmap(dev, NULL))
5285 rdev->regmap = dev_get_regmap(dev, NULL);
5286 else if (dev->parent)
5287 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5288 INIT_LIST_HEAD(&rdev->consumer_list);
5289 INIT_LIST_HEAD(&rdev->list);
5290 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5291 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5293 /* preform any regulator specific init */
5294 if (init_data && init_data->regulator_init) {
5295 ret = init_data->regulator_init(rdev->reg_data);
5300 if (config->ena_gpiod) {
5301 ret = regulator_ena_gpio_request(rdev, config);
5303 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5307 /* The regulator core took over the GPIO descriptor */
5308 dangling_cfg_gpiod = false;
5309 dangling_of_gpiod = false;
5312 /* register with sysfs */
5313 rdev->dev.class = ®ulator_class;
5314 rdev->dev.parent = dev;
5315 dev_set_name(&rdev->dev, "regulator.%lu",
5316 (unsigned long) atomic_inc_return(®ulator_no));
5317 dev_set_drvdata(&rdev->dev, rdev);
5319 /* set regulator constraints */
5321 rdev->constraints = kmemdup(&init_data->constraints,
5322 sizeof(*rdev->constraints),
5325 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5327 if (!rdev->constraints) {
5332 if (init_data && init_data->supply_regulator)
5333 rdev->supply_name = init_data->supply_regulator;
5334 else if (regulator_desc->supply_name)
5335 rdev->supply_name = regulator_desc->supply_name;
5337 ret = set_machine_constraints(rdev);
5338 if (ret == -EPROBE_DEFER) {
5339 /* Regulator might be in bypass mode and so needs its supply
5340 * to set the constraints */
5341 /* FIXME: this currently triggers a chicken-and-egg problem
5342 * when creating -SUPPLY symlink in sysfs to a regulator
5343 * that is just being created */
5344 rdev_dbg(rdev, "will resolve supply early: %s\n",
5346 ret = regulator_resolve_supply(rdev);
5348 ret = set_machine_constraints(rdev);
5350 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5356 ret = regulator_init_coupling(rdev);
5360 /* add consumers devices */
5362 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5363 ret = set_consumer_device_supply(rdev,
5364 init_data->consumer_supplies[i].dev_name,
5365 init_data->consumer_supplies[i].supply);
5367 dev_err(dev, "Failed to set supply %s\n",
5368 init_data->consumer_supplies[i].supply);
5369 goto unset_supplies;
5374 if (!rdev->desc->ops->get_voltage &&
5375 !rdev->desc->ops->list_voltage &&
5376 !rdev->desc->fixed_uV)
5377 rdev->is_switch = true;
5379 ret = device_add(&rdev->dev);
5381 goto unset_supplies;
5383 rdev_init_debugfs(rdev);
5385 /* try to resolve regulators coupling since a new one was registered */
5386 mutex_lock(®ulator_list_mutex);
5387 regulator_resolve_coupling(rdev);
5388 mutex_unlock(®ulator_list_mutex);
5390 /* try to resolve regulators supply since a new one was registered */
5391 class_for_each_device(®ulator_class, NULL, NULL,
5392 regulator_register_resolve_supply);
5397 mutex_lock(®ulator_list_mutex);
5398 unset_regulator_supplies(rdev);
5399 regulator_remove_coupling(rdev);
5400 mutex_unlock(®ulator_list_mutex);
5402 kfree(rdev->coupling_desc.coupled_rdevs);
5403 mutex_lock(®ulator_list_mutex);
5404 regulator_ena_gpio_free(rdev);
5405 mutex_unlock(®ulator_list_mutex);
5407 if (dangling_of_gpiod)
5408 gpiod_put(config->ena_gpiod);
5410 put_device(&rdev->dev);
5412 if (dangling_cfg_gpiod)
5413 gpiod_put(cfg->ena_gpiod);
5414 return ERR_PTR(ret);
5416 EXPORT_SYMBOL_GPL(regulator_register);
5419 * regulator_unregister - unregister regulator
5420 * @rdev: regulator to unregister
5422 * Called by regulator drivers to unregister a regulator.
5424 void regulator_unregister(struct regulator_dev *rdev)
5430 while (rdev->use_count--)
5431 regulator_disable(rdev->supply);
5432 regulator_put(rdev->supply);
5435 flush_work(&rdev->disable_work.work);
5437 mutex_lock(®ulator_list_mutex);
5439 debugfs_remove_recursive(rdev->debugfs);
5440 WARN_ON(rdev->open_count);
5441 regulator_remove_coupling(rdev);
5442 unset_regulator_supplies(rdev);
5443 list_del(&rdev->list);
5444 regulator_ena_gpio_free(rdev);
5445 device_unregister(&rdev->dev);
5447 mutex_unlock(®ulator_list_mutex);
5449 EXPORT_SYMBOL_GPL(regulator_unregister);
5451 #ifdef CONFIG_SUSPEND
5453 * regulator_suspend - prepare regulators for system wide suspend
5454 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5456 * Configure each regulator with it's suspend operating parameters for state.
5458 static int regulator_suspend(struct device *dev)
5460 struct regulator_dev *rdev = dev_to_rdev(dev);
5461 suspend_state_t state = pm_suspend_target_state;
5463 const struct regulator_state *rstate;
5465 rstate = regulator_get_suspend_state_check(rdev, state);
5469 regulator_lock(rdev);
5470 ret = __suspend_set_state(rdev, rstate);
5471 regulator_unlock(rdev);
5476 static int regulator_resume(struct device *dev)
5478 suspend_state_t state = pm_suspend_target_state;
5479 struct regulator_dev *rdev = dev_to_rdev(dev);
5480 struct regulator_state *rstate;
5483 rstate = regulator_get_suspend_state(rdev, state);
5487 /* Avoid grabbing the lock if we don't need to */
5488 if (!rdev->desc->ops->resume)
5491 regulator_lock(rdev);
5493 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5494 rstate->enabled == DISABLE_IN_SUSPEND)
5495 ret = rdev->desc->ops->resume(rdev);
5497 regulator_unlock(rdev);
5501 #else /* !CONFIG_SUSPEND */
5503 #define regulator_suspend NULL
5504 #define regulator_resume NULL
5506 #endif /* !CONFIG_SUSPEND */
5509 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5510 .suspend = regulator_suspend,
5511 .resume = regulator_resume,
5515 struct class regulator_class = {
5516 .name = "regulator",
5517 .dev_release = regulator_dev_release,
5518 .dev_groups = regulator_dev_groups,
5520 .pm = ®ulator_pm_ops,
5524 * regulator_has_full_constraints - the system has fully specified constraints
5526 * Calling this function will cause the regulator API to disable all
5527 * regulators which have a zero use count and don't have an always_on
5528 * constraint in a late_initcall.
5530 * The intention is that this will become the default behaviour in a
5531 * future kernel release so users are encouraged to use this facility
5534 void regulator_has_full_constraints(void)
5536 has_full_constraints = 1;
5538 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5541 * rdev_get_drvdata - get rdev regulator driver data
5544 * Get rdev regulator driver private data. This call can be used in the
5545 * regulator driver context.
5547 void *rdev_get_drvdata(struct regulator_dev *rdev)
5549 return rdev->reg_data;
5551 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5554 * regulator_get_drvdata - get regulator driver data
5555 * @regulator: regulator
5557 * Get regulator driver private data. This call can be used in the consumer
5558 * driver context when non API regulator specific functions need to be called.
5560 void *regulator_get_drvdata(struct regulator *regulator)
5562 return regulator->rdev->reg_data;
5564 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5567 * regulator_set_drvdata - set regulator driver data
5568 * @regulator: regulator
5571 void regulator_set_drvdata(struct regulator *regulator, void *data)
5573 regulator->rdev->reg_data = data;
5575 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5578 * rdev_get_id - get regulator ID
5581 int rdev_get_id(struct regulator_dev *rdev)
5583 return rdev->desc->id;
5585 EXPORT_SYMBOL_GPL(rdev_get_id);
5587 struct device *rdev_get_dev(struct regulator_dev *rdev)
5591 EXPORT_SYMBOL_GPL(rdev_get_dev);
5593 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5595 return rdev->regmap;
5597 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5599 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5601 return reg_init_data->driver_data;
5603 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5605 #ifdef CONFIG_DEBUG_FS
5606 static int supply_map_show(struct seq_file *sf, void *data)
5608 struct regulator_map *map;
5610 list_for_each_entry(map, ®ulator_map_list, list) {
5611 seq_printf(sf, "%s -> %s.%s\n",
5612 rdev_get_name(map->regulator), map->dev_name,
5618 DEFINE_SHOW_ATTRIBUTE(supply_map);
5620 struct summary_data {
5622 struct regulator_dev *parent;
5626 static void regulator_summary_show_subtree(struct seq_file *s,
5627 struct regulator_dev *rdev,
5630 static int regulator_summary_show_children(struct device *dev, void *data)
5632 struct regulator_dev *rdev = dev_to_rdev(dev);
5633 struct summary_data *summary_data = data;
5635 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5636 regulator_summary_show_subtree(summary_data->s, rdev,
5637 summary_data->level + 1);
5642 static void regulator_summary_show_subtree(struct seq_file *s,
5643 struct regulator_dev *rdev,
5646 struct regulation_constraints *c;
5647 struct regulator *consumer;
5648 struct summary_data summary_data;
5649 unsigned int opmode;
5654 opmode = _regulator_get_mode_unlocked(rdev);
5655 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5657 30 - level * 3, rdev_get_name(rdev),
5658 rdev->use_count, rdev->open_count, rdev->bypass_count,
5659 regulator_opmode_to_str(opmode));
5661 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5662 seq_printf(s, "%5dmA ",
5663 _regulator_get_current_limit_unlocked(rdev) / 1000);
5665 c = rdev->constraints;
5667 switch (rdev->desc->type) {
5668 case REGULATOR_VOLTAGE:
5669 seq_printf(s, "%5dmV %5dmV ",
5670 c->min_uV / 1000, c->max_uV / 1000);
5672 case REGULATOR_CURRENT:
5673 seq_printf(s, "%5dmA %5dmA ",
5674 c->min_uA / 1000, c->max_uA / 1000);
5681 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5682 if (consumer->dev && consumer->dev->class == ®ulator_class)
5685 seq_printf(s, "%*s%-*s ",
5686 (level + 1) * 3 + 1, "",
5687 30 - (level + 1) * 3,
5688 consumer->supply_name ? consumer->supply_name :
5689 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5691 switch (rdev->desc->type) {
5692 case REGULATOR_VOLTAGE:
5693 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5694 consumer->enable_count,
5695 consumer->uA_load / 1000,
5696 consumer->uA_load && !consumer->enable_count ?
5698 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5699 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5701 case REGULATOR_CURRENT:
5709 summary_data.level = level;
5710 summary_data.parent = rdev;
5712 class_for_each_device(®ulator_class, NULL, &summary_data,
5713 regulator_summary_show_children);
5716 struct summary_lock_data {
5717 struct ww_acquire_ctx *ww_ctx;
5718 struct regulator_dev **new_contended_rdev;
5719 struct regulator_dev **old_contended_rdev;
5722 static int regulator_summary_lock_one(struct device *dev, void *data)
5724 struct regulator_dev *rdev = dev_to_rdev(dev);
5725 struct summary_lock_data *lock_data = data;
5728 if (rdev != *lock_data->old_contended_rdev) {
5729 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5731 if (ret == -EDEADLK)
5732 *lock_data->new_contended_rdev = rdev;
5736 *lock_data->old_contended_rdev = NULL;
5742 static int regulator_summary_unlock_one(struct device *dev, void *data)
5744 struct regulator_dev *rdev = dev_to_rdev(dev);
5745 struct summary_lock_data *lock_data = data;
5748 if (rdev == *lock_data->new_contended_rdev)
5752 regulator_unlock(rdev);
5757 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5758 struct regulator_dev **new_contended_rdev,
5759 struct regulator_dev **old_contended_rdev)
5761 struct summary_lock_data lock_data;
5764 lock_data.ww_ctx = ww_ctx;
5765 lock_data.new_contended_rdev = new_contended_rdev;
5766 lock_data.old_contended_rdev = old_contended_rdev;
5768 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5769 regulator_summary_lock_one);
5771 class_for_each_device(®ulator_class, NULL, &lock_data,
5772 regulator_summary_unlock_one);
5777 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5779 struct regulator_dev *new_contended_rdev = NULL;
5780 struct regulator_dev *old_contended_rdev = NULL;
5783 mutex_lock(®ulator_list_mutex);
5785 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5788 if (new_contended_rdev) {
5789 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5790 old_contended_rdev = new_contended_rdev;
5791 old_contended_rdev->ref_cnt++;
5794 err = regulator_summary_lock_all(ww_ctx,
5795 &new_contended_rdev,
5796 &old_contended_rdev);
5798 if (old_contended_rdev)
5799 regulator_unlock(old_contended_rdev);
5801 } while (err == -EDEADLK);
5803 ww_acquire_done(ww_ctx);
5806 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5808 class_for_each_device(®ulator_class, NULL, NULL,
5809 regulator_summary_unlock_one);
5810 ww_acquire_fini(ww_ctx);
5812 mutex_unlock(®ulator_list_mutex);
5815 static int regulator_summary_show_roots(struct device *dev, void *data)
5817 struct regulator_dev *rdev = dev_to_rdev(dev);
5818 struct seq_file *s = data;
5821 regulator_summary_show_subtree(s, rdev, 0);
5826 static int regulator_summary_show(struct seq_file *s, void *data)
5828 struct ww_acquire_ctx ww_ctx;
5830 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5831 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5833 regulator_summary_lock(&ww_ctx);
5835 class_for_each_device(®ulator_class, NULL, s,
5836 regulator_summary_show_roots);
5838 regulator_summary_unlock(&ww_ctx);
5842 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5843 #endif /* CONFIG_DEBUG_FS */
5845 static int __init regulator_init(void)
5849 ret = class_register(®ulator_class);
5851 debugfs_root = debugfs_create_dir("regulator", NULL);
5853 pr_warn("regulator: Failed to create debugfs directory\n");
5855 #ifdef CONFIG_DEBUG_FS
5856 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5859 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5860 NULL, ®ulator_summary_fops);
5862 regulator_dummy_init();
5864 regulator_coupler_register(&generic_regulator_coupler);
5869 /* init early to allow our consumers to complete system booting */
5870 core_initcall(regulator_init);
5872 static int regulator_late_cleanup(struct device *dev, void *data)
5874 struct regulator_dev *rdev = dev_to_rdev(dev);
5875 const struct regulator_ops *ops = rdev->desc->ops;
5876 struct regulation_constraints *c = rdev->constraints;
5879 if (c && c->always_on)
5882 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5885 regulator_lock(rdev);
5887 if (rdev->use_count)
5890 /* If we can't read the status assume it's always on. */
5891 if (ops->is_enabled)
5892 enabled = ops->is_enabled(rdev);
5896 /* But if reading the status failed, assume that it's off. */
5900 if (have_full_constraints()) {
5901 /* We log since this may kill the system if it goes
5903 rdev_info(rdev, "disabling\n");
5904 ret = _regulator_do_disable(rdev);
5906 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5908 /* The intention is that in future we will
5909 * assume that full constraints are provided
5910 * so warn even if we aren't going to do
5913 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5917 regulator_unlock(rdev);
5922 static void regulator_init_complete_work_function(struct work_struct *work)
5925 * Regulators may had failed to resolve their input supplies
5926 * when were registered, either because the input supply was
5927 * not registered yet or because its parent device was not
5928 * bound yet. So attempt to resolve the input supplies for
5929 * pending regulators before trying to disable unused ones.
5931 class_for_each_device(®ulator_class, NULL, NULL,
5932 regulator_register_resolve_supply);
5934 /* If we have a full configuration then disable any regulators
5935 * we have permission to change the status for and which are
5936 * not in use or always_on. This is effectively the default
5937 * for DT and ACPI as they have full constraints.
5939 class_for_each_device(®ulator_class, NULL, NULL,
5940 regulator_late_cleanup);
5943 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5944 regulator_init_complete_work_function);
5946 static int __init regulator_init_complete(void)
5949 * Since DT doesn't provide an idiomatic mechanism for
5950 * enabling full constraints and since it's much more natural
5951 * with DT to provide them just assume that a DT enabled
5952 * system has full constraints.
5954 if (of_have_populated_dt())
5955 has_full_constraints = true;
5958 * We punt completion for an arbitrary amount of time since
5959 * systems like distros will load many drivers from userspace
5960 * so consumers might not always be ready yet, this is
5961 * particularly an issue with laptops where this might bounce
5962 * the display off then on. Ideally we'd get a notification
5963 * from userspace when this happens but we don't so just wait
5964 * a bit and hope we waited long enough. It'd be better if
5965 * we'd only do this on systems that need it, and a kernel
5966 * command line option might be useful.
5968 schedule_delayed_work(®ulator_init_complete_work,
5969 msecs_to_jiffies(30000));
5973 late_initcall_sync(regulator_init_complete);