2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
44 #include <asm/uaccess.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 static cpumask_t cpus_hardware_enabled;
55 struct kvm_arch_ops *kvm_arch_ops;
56 struct kmem_cache *kvm_vcpu_cache;
57 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59 static __read_mostly struct preempt_ops kvm_preempt_ops;
61 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
63 static struct kvm_stats_debugfs_item {
66 struct dentry *dentry;
67 } debugfs_entries[] = {
68 { "pf_fixed", STAT_OFFSET(pf_fixed) },
69 { "pf_guest", STAT_OFFSET(pf_guest) },
70 { "tlb_flush", STAT_OFFSET(tlb_flush) },
71 { "invlpg", STAT_OFFSET(invlpg) },
72 { "exits", STAT_OFFSET(exits) },
73 { "io_exits", STAT_OFFSET(io_exits) },
74 { "mmio_exits", STAT_OFFSET(mmio_exits) },
75 { "signal_exits", STAT_OFFSET(signal_exits) },
76 { "irq_window", STAT_OFFSET(irq_window_exits) },
77 { "halt_exits", STAT_OFFSET(halt_exits) },
78 { "request_irq", STAT_OFFSET(request_irq_exits) },
79 { "irq_exits", STAT_OFFSET(irq_exits) },
80 { "light_exits", STAT_OFFSET(light_exits) },
81 { "efer_reload", STAT_OFFSET(efer_reload) },
85 static struct dentry *debugfs_dir;
87 #define MAX_IO_MSRS 256
89 #define CR0_RESERVED_BITS \
90 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
91 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
92 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
93 #define CR4_RESERVED_BITS \
94 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
95 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
96 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
97 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
99 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
100 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
103 // LDT or TSS descriptor in the GDT. 16 bytes.
104 struct segment_descriptor_64 {
105 struct segment_descriptor s;
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long segment_base(u16 selector)
117 struct descriptor_table gdt;
118 struct segment_descriptor *d;
119 unsigned long table_base;
120 typedef unsigned long ul;
126 asm ("sgdt %0" : "=m"(gdt));
127 table_base = gdt.base;
129 if (selector & 4) { /* from ldt */
132 asm ("sldt %0" : "=g"(ldt_selector));
133 table_base = segment_base(ldt_selector);
135 d = (struct segment_descriptor *)(table_base + (selector & ~7));
136 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
139 && (d->type == 2 || d->type == 9 || d->type == 11))
140 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
144 EXPORT_SYMBOL_GPL(segment_base);
146 static inline int valid_vcpu(int n)
148 return likely(n >= 0 && n < KVM_MAX_VCPUS);
151 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
153 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
156 vcpu->guest_fpu_loaded = 1;
157 fx_save(&vcpu->host_fx_image);
158 fx_restore(&vcpu->guest_fx_image);
160 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
162 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
164 if (!vcpu->guest_fpu_loaded)
167 vcpu->guest_fpu_loaded = 0;
168 fx_save(&vcpu->guest_fx_image);
169 fx_restore(&vcpu->host_fx_image);
171 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
174 * Switches to specified vcpu, until a matching vcpu_put()
176 static void vcpu_load(struct kvm_vcpu *vcpu)
180 mutex_lock(&vcpu->mutex);
182 preempt_notifier_register(&vcpu->preempt_notifier);
183 kvm_arch_ops->vcpu_load(vcpu, cpu);
187 static void vcpu_put(struct kvm_vcpu *vcpu)
190 kvm_arch_ops->vcpu_put(vcpu);
191 preempt_notifier_unregister(&vcpu->preempt_notifier);
193 mutex_unlock(&vcpu->mutex);
196 static void ack_flush(void *_completed)
198 atomic_t *completed = _completed;
200 atomic_inc(completed);
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
207 struct kvm_vcpu *vcpu;
210 atomic_set(&completed, 0);
213 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
214 vcpu = kvm->vcpus[i];
217 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
220 if (cpu != -1 && cpu != raw_smp_processor_id())
221 if (!cpu_isset(cpu, cpus)) {
228 * We really want smp_call_function_mask() here. But that's not
229 * available, so ipi all cpus in parallel and wait for them
232 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
233 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
234 while (atomic_read(&completed) != needed) {
240 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
245 mutex_init(&vcpu->mutex);
247 vcpu->mmu.root_hpa = INVALID_PAGE;
251 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
256 vcpu->run = page_address(page);
258 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
263 vcpu->pio_data = page_address(page);
265 r = kvm_mmu_create(vcpu);
267 goto fail_free_pio_data;
272 free_page((unsigned long)vcpu->pio_data);
274 free_page((unsigned long)vcpu->run);
278 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
280 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
282 kvm_mmu_destroy(vcpu);
283 free_page((unsigned long)vcpu->pio_data);
284 free_page((unsigned long)vcpu->run);
286 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
288 static struct kvm *kvm_create_vm(void)
290 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
293 return ERR_PTR(-ENOMEM);
295 kvm_io_bus_init(&kvm->pio_bus);
296 mutex_init(&kvm->lock);
297 INIT_LIST_HEAD(&kvm->active_mmu_pages);
298 kvm_io_bus_init(&kvm->mmio_bus);
299 spin_lock(&kvm_lock);
300 list_add(&kvm->vm_list, &vm_list);
301 spin_unlock(&kvm_lock);
305 static int kvm_dev_open(struct inode *inode, struct file *filp)
311 * Free any memory in @free but not in @dont.
313 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
314 struct kvm_memory_slot *dont)
318 if (!dont || free->phys_mem != dont->phys_mem)
319 if (free->phys_mem) {
320 for (i = 0; i < free->npages; ++i)
321 if (free->phys_mem[i])
322 __free_page(free->phys_mem[i]);
323 vfree(free->phys_mem);
326 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
327 vfree(free->dirty_bitmap);
329 free->phys_mem = NULL;
331 free->dirty_bitmap = NULL;
334 static void kvm_free_physmem(struct kvm *kvm)
338 for (i = 0; i < kvm->nmemslots; ++i)
339 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
342 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
346 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
347 if (vcpu->pio.guest_pages[i]) {
348 __free_page(vcpu->pio.guest_pages[i]);
349 vcpu->pio.guest_pages[i] = NULL;
353 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
356 kvm_mmu_unload(vcpu);
360 static void kvm_free_vcpus(struct kvm *kvm)
365 * Unpin any mmu pages first.
367 for (i = 0; i < KVM_MAX_VCPUS; ++i)
369 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
370 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
372 kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
373 kvm->vcpus[i] = NULL;
379 static int kvm_dev_release(struct inode *inode, struct file *filp)
384 static void kvm_destroy_vm(struct kvm *kvm)
386 spin_lock(&kvm_lock);
387 list_del(&kvm->vm_list);
388 spin_unlock(&kvm_lock);
389 kvm_io_bus_destroy(&kvm->pio_bus);
390 kvm_io_bus_destroy(&kvm->mmio_bus);
392 kvm_free_physmem(kvm);
396 static int kvm_vm_release(struct inode *inode, struct file *filp)
398 struct kvm *kvm = filp->private_data;
404 static void inject_gp(struct kvm_vcpu *vcpu)
406 kvm_arch_ops->inject_gp(vcpu, 0);
410 * Load the pae pdptrs. Return true is they are all valid.
412 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
414 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
415 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
420 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
422 mutex_lock(&vcpu->kvm->lock);
423 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
429 pdpt = kmap_atomic(page, KM_USER0);
430 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
431 kunmap_atomic(pdpt, KM_USER0);
433 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
434 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
441 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
443 mutex_unlock(&vcpu->kvm->lock);
448 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
450 if (cr0 & CR0_RESERVED_BITS) {
451 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
457 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
458 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
463 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
464 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
465 "and a clear PE flag\n");
470 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
472 if ((vcpu->shadow_efer & EFER_LME)) {
476 printk(KERN_DEBUG "set_cr0: #GP, start paging "
477 "in long mode while PAE is disabled\n");
481 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
483 printk(KERN_DEBUG "set_cr0: #GP, start paging "
484 "in long mode while CS.L == 1\n");
491 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
492 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
500 kvm_arch_ops->set_cr0(vcpu, cr0);
503 mutex_lock(&vcpu->kvm->lock);
504 kvm_mmu_reset_context(vcpu);
505 mutex_unlock(&vcpu->kvm->lock);
508 EXPORT_SYMBOL_GPL(set_cr0);
510 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
512 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
514 EXPORT_SYMBOL_GPL(lmsw);
516 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
518 if (cr4 & CR4_RESERVED_BITS) {
519 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
524 if (is_long_mode(vcpu)) {
525 if (!(cr4 & X86_CR4_PAE)) {
526 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
531 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
532 && !load_pdptrs(vcpu, vcpu->cr3)) {
533 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
538 if (cr4 & X86_CR4_VMXE) {
539 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
543 kvm_arch_ops->set_cr4(vcpu, cr4);
544 mutex_lock(&vcpu->kvm->lock);
545 kvm_mmu_reset_context(vcpu);
546 mutex_unlock(&vcpu->kvm->lock);
548 EXPORT_SYMBOL_GPL(set_cr4);
550 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
552 if (is_long_mode(vcpu)) {
553 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
554 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
560 if (cr3 & CR3_PAE_RESERVED_BITS) {
562 "set_cr3: #GP, reserved bits\n");
566 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
567 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
573 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
575 "set_cr3: #GP, reserved bits\n");
583 mutex_lock(&vcpu->kvm->lock);
585 * Does the new cr3 value map to physical memory? (Note, we
586 * catch an invalid cr3 even in real-mode, because it would
587 * cause trouble later on when we turn on paging anyway.)
589 * A real CPU would silently accept an invalid cr3 and would
590 * attempt to use it - with largely undefined (and often hard
591 * to debug) behavior on the guest side.
593 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
596 vcpu->mmu.new_cr3(vcpu);
597 mutex_unlock(&vcpu->kvm->lock);
599 EXPORT_SYMBOL_GPL(set_cr3);
601 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
603 if (cr8 & CR8_RESERVED_BITS) {
604 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
610 EXPORT_SYMBOL_GPL(set_cr8);
612 void fx_init(struct kvm_vcpu *vcpu)
614 unsigned after_mxcsr_mask;
616 /* Initialize guest FPU by resetting ours and saving into guest's */
618 fx_save(&vcpu->host_fx_image);
620 fx_save(&vcpu->guest_fx_image);
621 fx_restore(&vcpu->host_fx_image);
624 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
625 vcpu->guest_fx_image.mxcsr = 0x1f80;
626 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
627 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
629 EXPORT_SYMBOL_GPL(fx_init);
632 * Allocate some memory and give it an address in the guest physical address
635 * Discontiguous memory is allowed, mostly for framebuffers.
637 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
638 struct kvm_memory_region *mem)
642 unsigned long npages;
644 struct kvm_memory_slot *memslot;
645 struct kvm_memory_slot old, new;
646 int memory_config_version;
649 /* General sanity checks */
650 if (mem->memory_size & (PAGE_SIZE - 1))
652 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
654 if (mem->slot >= KVM_MEMORY_SLOTS)
656 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
659 memslot = &kvm->memslots[mem->slot];
660 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
661 npages = mem->memory_size >> PAGE_SHIFT;
664 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
667 mutex_lock(&kvm->lock);
669 memory_config_version = kvm->memory_config_version;
670 new = old = *memslot;
672 new.base_gfn = base_gfn;
674 new.flags = mem->flags;
676 /* Disallow changing a memory slot's size. */
678 if (npages && old.npages && npages != old.npages)
681 /* Check for overlaps */
683 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
684 struct kvm_memory_slot *s = &kvm->memslots[i];
688 if (!((base_gfn + npages <= s->base_gfn) ||
689 (base_gfn >= s->base_gfn + s->npages)))
693 * Do memory allocations outside lock. memory_config_version will
696 mutex_unlock(&kvm->lock);
698 /* Deallocate if slot is being removed */
702 /* Free page dirty bitmap if unneeded */
703 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
704 new.dirty_bitmap = NULL;
708 /* Allocate if a slot is being created */
709 if (npages && !new.phys_mem) {
710 new.phys_mem = vmalloc(npages * sizeof(struct page *));
715 memset(new.phys_mem, 0, npages * sizeof(struct page *));
716 for (i = 0; i < npages; ++i) {
717 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
719 if (!new.phys_mem[i])
721 set_page_private(new.phys_mem[i],0);
725 /* Allocate page dirty bitmap if needed */
726 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
727 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
729 new.dirty_bitmap = vmalloc(dirty_bytes);
730 if (!new.dirty_bitmap)
732 memset(new.dirty_bitmap, 0, dirty_bytes);
735 mutex_lock(&kvm->lock);
737 if (memory_config_version != kvm->memory_config_version) {
738 mutex_unlock(&kvm->lock);
739 kvm_free_physmem_slot(&new, &old);
747 if (mem->slot >= kvm->nmemslots)
748 kvm->nmemslots = mem->slot + 1;
751 ++kvm->memory_config_version;
753 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
754 kvm_flush_remote_tlbs(kvm);
756 mutex_unlock(&kvm->lock);
758 kvm_free_physmem_slot(&old, &new);
762 mutex_unlock(&kvm->lock);
764 kvm_free_physmem_slot(&new, &old);
770 * Get (and clear) the dirty memory log for a memory slot.
772 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
773 struct kvm_dirty_log *log)
775 struct kvm_memory_slot *memslot;
778 unsigned long any = 0;
780 mutex_lock(&kvm->lock);
783 * Prevent changes to guest memory configuration even while the lock
787 mutex_unlock(&kvm->lock);
789 if (log->slot >= KVM_MEMORY_SLOTS)
792 memslot = &kvm->memslots[log->slot];
794 if (!memslot->dirty_bitmap)
797 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
799 for (i = 0; !any && i < n/sizeof(long); ++i)
800 any = memslot->dirty_bitmap[i];
803 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
806 /* If nothing is dirty, don't bother messing with page tables. */
808 mutex_lock(&kvm->lock);
809 kvm_mmu_slot_remove_write_access(kvm, log->slot);
810 kvm_flush_remote_tlbs(kvm);
811 memset(memslot->dirty_bitmap, 0, n);
812 mutex_unlock(&kvm->lock);
818 mutex_lock(&kvm->lock);
820 mutex_unlock(&kvm->lock);
825 * Set a new alias region. Aliases map a portion of physical memory into
826 * another portion. This is useful for memory windows, for example the PC
829 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
830 struct kvm_memory_alias *alias)
833 struct kvm_mem_alias *p;
836 /* General sanity checks */
837 if (alias->memory_size & (PAGE_SIZE - 1))
839 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
841 if (alias->slot >= KVM_ALIAS_SLOTS)
843 if (alias->guest_phys_addr + alias->memory_size
844 < alias->guest_phys_addr)
846 if (alias->target_phys_addr + alias->memory_size
847 < alias->target_phys_addr)
850 mutex_lock(&kvm->lock);
852 p = &kvm->aliases[alias->slot];
853 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
854 p->npages = alias->memory_size >> PAGE_SHIFT;
855 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
857 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
858 if (kvm->aliases[n - 1].npages)
862 kvm_mmu_zap_all(kvm);
864 mutex_unlock(&kvm->lock);
872 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
875 struct kvm_mem_alias *alias;
877 for (i = 0; i < kvm->naliases; ++i) {
878 alias = &kvm->aliases[i];
879 if (gfn >= alias->base_gfn
880 && gfn < alias->base_gfn + alias->npages)
881 return alias->target_gfn + gfn - alias->base_gfn;
886 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
890 for (i = 0; i < kvm->nmemslots; ++i) {
891 struct kvm_memory_slot *memslot = &kvm->memslots[i];
893 if (gfn >= memslot->base_gfn
894 && gfn < memslot->base_gfn + memslot->npages)
900 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
902 gfn = unalias_gfn(kvm, gfn);
903 return __gfn_to_memslot(kvm, gfn);
906 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
908 struct kvm_memory_slot *slot;
910 gfn = unalias_gfn(kvm, gfn);
911 slot = __gfn_to_memslot(kvm, gfn);
914 return slot->phys_mem[gfn - slot->base_gfn];
916 EXPORT_SYMBOL_GPL(gfn_to_page);
918 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
921 struct kvm_memory_slot *memslot;
922 unsigned long rel_gfn;
924 for (i = 0; i < kvm->nmemslots; ++i) {
925 memslot = &kvm->memslots[i];
927 if (gfn >= memslot->base_gfn
928 && gfn < memslot->base_gfn + memslot->npages) {
930 if (!memslot->dirty_bitmap)
933 rel_gfn = gfn - memslot->base_gfn;
936 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
937 set_bit(rel_gfn, memslot->dirty_bitmap);
943 int emulator_read_std(unsigned long addr,
946 struct kvm_vcpu *vcpu)
951 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
952 unsigned offset = addr & (PAGE_SIZE-1);
953 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
958 if (gpa == UNMAPPED_GVA)
959 return X86EMUL_PROPAGATE_FAULT;
960 pfn = gpa >> PAGE_SHIFT;
961 page = gfn_to_page(vcpu->kvm, pfn);
963 return X86EMUL_UNHANDLEABLE;
964 page_virt = kmap_atomic(page, KM_USER0);
966 memcpy(data, page_virt + offset, tocopy);
968 kunmap_atomic(page_virt, KM_USER0);
975 return X86EMUL_CONTINUE;
977 EXPORT_SYMBOL_GPL(emulator_read_std);
979 static int emulator_write_std(unsigned long addr,
982 struct kvm_vcpu *vcpu)
984 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
986 return X86EMUL_UNHANDLEABLE;
989 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
993 * Note that its important to have this wrapper function because
994 * in the very near future we will be checking for MMIOs against
995 * the LAPIC as well as the general MMIO bus
997 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1000 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1003 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1006 static int emulator_read_emulated(unsigned long addr,
1009 struct kvm_vcpu *vcpu)
1011 struct kvm_io_device *mmio_dev;
1014 if (vcpu->mmio_read_completed) {
1015 memcpy(val, vcpu->mmio_data, bytes);
1016 vcpu->mmio_read_completed = 0;
1017 return X86EMUL_CONTINUE;
1018 } else if (emulator_read_std(addr, val, bytes, vcpu)
1019 == X86EMUL_CONTINUE)
1020 return X86EMUL_CONTINUE;
1022 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1023 if (gpa == UNMAPPED_GVA)
1024 return X86EMUL_PROPAGATE_FAULT;
1027 * Is this MMIO handled locally?
1029 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1031 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1032 return X86EMUL_CONTINUE;
1035 vcpu->mmio_needed = 1;
1036 vcpu->mmio_phys_addr = gpa;
1037 vcpu->mmio_size = bytes;
1038 vcpu->mmio_is_write = 0;
1040 return X86EMUL_UNHANDLEABLE;
1043 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1044 const void *val, int bytes)
1049 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1051 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1054 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1055 virt = kmap_atomic(page, KM_USER0);
1056 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1057 memcpy(virt + offset_in_page(gpa), val, bytes);
1058 kunmap_atomic(virt, KM_USER0);
1062 static int emulator_write_emulated_onepage(unsigned long addr,
1065 struct kvm_vcpu *vcpu)
1067 struct kvm_io_device *mmio_dev;
1068 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1070 if (gpa == UNMAPPED_GVA) {
1071 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1072 return X86EMUL_PROPAGATE_FAULT;
1075 if (emulator_write_phys(vcpu, gpa, val, bytes))
1076 return X86EMUL_CONTINUE;
1079 * Is this MMIO handled locally?
1081 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1083 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1084 return X86EMUL_CONTINUE;
1087 vcpu->mmio_needed = 1;
1088 vcpu->mmio_phys_addr = gpa;
1089 vcpu->mmio_size = bytes;
1090 vcpu->mmio_is_write = 1;
1091 memcpy(vcpu->mmio_data, val, bytes);
1093 return X86EMUL_CONTINUE;
1096 int emulator_write_emulated(unsigned long addr,
1099 struct kvm_vcpu *vcpu)
1101 /* Crossing a page boundary? */
1102 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1105 now = -addr & ~PAGE_MASK;
1106 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1107 if (rc != X86EMUL_CONTINUE)
1113 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1115 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1117 static int emulator_cmpxchg_emulated(unsigned long addr,
1121 struct kvm_vcpu *vcpu)
1123 static int reported;
1127 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1129 return emulator_write_emulated(addr, new, bytes, vcpu);
1132 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1134 return kvm_arch_ops->get_segment_base(vcpu, seg);
1137 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1139 return X86EMUL_CONTINUE;
1142 int emulate_clts(struct kvm_vcpu *vcpu)
1146 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1147 kvm_arch_ops->set_cr0(vcpu, cr0);
1148 return X86EMUL_CONTINUE;
1151 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1153 struct kvm_vcpu *vcpu = ctxt->vcpu;
1157 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1158 return X86EMUL_CONTINUE;
1160 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1162 return X86EMUL_UNHANDLEABLE;
1166 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1168 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1171 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1173 /* FIXME: better handling */
1174 return X86EMUL_UNHANDLEABLE;
1176 return X86EMUL_CONTINUE;
1179 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1181 static int reported;
1183 unsigned long rip = ctxt->vcpu->rip;
1184 unsigned long rip_linear;
1186 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1191 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1193 printk(KERN_ERR "emulation failed but !mmio_needed?"
1194 " rip %lx %02x %02x %02x %02x\n",
1195 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1199 struct x86_emulate_ops emulate_ops = {
1200 .read_std = emulator_read_std,
1201 .write_std = emulator_write_std,
1202 .read_emulated = emulator_read_emulated,
1203 .write_emulated = emulator_write_emulated,
1204 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1207 int emulate_instruction(struct kvm_vcpu *vcpu,
1208 struct kvm_run *run,
1212 struct x86_emulate_ctxt emulate_ctxt;
1216 vcpu->mmio_fault_cr2 = cr2;
1217 kvm_arch_ops->cache_regs(vcpu);
1219 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1221 emulate_ctxt.vcpu = vcpu;
1222 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1223 emulate_ctxt.cr2 = cr2;
1224 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1225 ? X86EMUL_MODE_REAL : cs_l
1226 ? X86EMUL_MODE_PROT64 : cs_db
1227 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1229 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1230 emulate_ctxt.cs_base = 0;
1231 emulate_ctxt.ds_base = 0;
1232 emulate_ctxt.es_base = 0;
1233 emulate_ctxt.ss_base = 0;
1235 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1236 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1237 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1238 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1241 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1242 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1244 vcpu->mmio_is_write = 0;
1245 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1247 if ((r || vcpu->mmio_is_write) && run) {
1248 run->exit_reason = KVM_EXIT_MMIO;
1249 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1250 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1251 run->mmio.len = vcpu->mmio_size;
1252 run->mmio.is_write = vcpu->mmio_is_write;
1256 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1257 return EMULATE_DONE;
1258 if (!vcpu->mmio_needed) {
1259 report_emulation_failure(&emulate_ctxt);
1260 return EMULATE_FAIL;
1262 return EMULATE_DO_MMIO;
1265 kvm_arch_ops->decache_regs(vcpu);
1266 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1268 if (vcpu->mmio_is_write) {
1269 vcpu->mmio_needed = 0;
1270 return EMULATE_DO_MMIO;
1273 return EMULATE_DONE;
1275 EXPORT_SYMBOL_GPL(emulate_instruction);
1277 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1279 if (vcpu->irq_summary)
1282 vcpu->run->exit_reason = KVM_EXIT_HLT;
1283 ++vcpu->stat.halt_exits;
1286 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1288 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1290 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1292 kvm_arch_ops->cache_regs(vcpu);
1294 #ifdef CONFIG_X86_64
1295 if (is_long_mode(vcpu)) {
1296 nr = vcpu->regs[VCPU_REGS_RAX];
1297 a0 = vcpu->regs[VCPU_REGS_RDI];
1298 a1 = vcpu->regs[VCPU_REGS_RSI];
1299 a2 = vcpu->regs[VCPU_REGS_RDX];
1300 a3 = vcpu->regs[VCPU_REGS_RCX];
1301 a4 = vcpu->regs[VCPU_REGS_R8];
1302 a5 = vcpu->regs[VCPU_REGS_R9];
1306 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1307 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1308 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1309 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1310 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1311 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1312 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1316 run->hypercall.nr = nr;
1317 run->hypercall.args[0] = a0;
1318 run->hypercall.args[1] = a1;
1319 run->hypercall.args[2] = a2;
1320 run->hypercall.args[3] = a3;
1321 run->hypercall.args[4] = a4;
1322 run->hypercall.args[5] = a5;
1323 run->hypercall.ret = ret;
1324 run->hypercall.longmode = is_long_mode(vcpu);
1325 kvm_arch_ops->decache_regs(vcpu);
1328 vcpu->regs[VCPU_REGS_RAX] = ret;
1329 kvm_arch_ops->decache_regs(vcpu);
1332 EXPORT_SYMBOL_GPL(kvm_hypercall);
1334 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1336 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1339 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1341 struct descriptor_table dt = { limit, base };
1343 kvm_arch_ops->set_gdt(vcpu, &dt);
1346 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1348 struct descriptor_table dt = { limit, base };
1350 kvm_arch_ops->set_idt(vcpu, &dt);
1353 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1354 unsigned long *rflags)
1357 *rflags = kvm_arch_ops->get_rflags(vcpu);
1360 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1362 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1373 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1378 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1379 unsigned long *rflags)
1383 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1384 *rflags = kvm_arch_ops->get_rflags(vcpu);
1393 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1396 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1401 * Register the para guest with the host:
1403 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1405 struct kvm_vcpu_para_state *para_state;
1406 hpa_t para_state_hpa, hypercall_hpa;
1407 struct page *para_state_page;
1408 unsigned char *hypercall;
1409 gpa_t hypercall_gpa;
1411 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1412 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1415 * Needs to be page aligned:
1417 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1420 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1421 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1422 if (is_error_hpa(para_state_hpa))
1425 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1426 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1427 para_state = kmap(para_state_page);
1429 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1430 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1432 para_state->host_version = KVM_PARA_API_VERSION;
1434 * We cannot support guests that try to register themselves
1435 * with a newer API version than the host supports:
1437 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1438 para_state->ret = -KVM_EINVAL;
1439 goto err_kunmap_skip;
1442 hypercall_gpa = para_state->hypercall_gpa;
1443 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1444 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1445 if (is_error_hpa(hypercall_hpa)) {
1446 para_state->ret = -KVM_EINVAL;
1447 goto err_kunmap_skip;
1450 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1451 vcpu->para_state_page = para_state_page;
1452 vcpu->para_state_gpa = para_state_gpa;
1453 vcpu->hypercall_gpa = hypercall_gpa;
1455 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1456 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1457 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1458 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1459 kunmap_atomic(hypercall, KM_USER1);
1461 para_state->ret = 0;
1463 kunmap(para_state_page);
1469 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1474 case 0xc0010010: /* SYSCFG */
1475 case 0xc0010015: /* HWCR */
1476 case MSR_IA32_PLATFORM_ID:
1477 case MSR_IA32_P5_MC_ADDR:
1478 case MSR_IA32_P5_MC_TYPE:
1479 case MSR_IA32_MC0_CTL:
1480 case MSR_IA32_MCG_STATUS:
1481 case MSR_IA32_MCG_CAP:
1482 case MSR_IA32_MC0_MISC:
1483 case MSR_IA32_MC0_MISC+4:
1484 case MSR_IA32_MC0_MISC+8:
1485 case MSR_IA32_MC0_MISC+12:
1486 case MSR_IA32_MC0_MISC+16:
1487 case MSR_IA32_UCODE_REV:
1488 case MSR_IA32_PERF_STATUS:
1489 case MSR_IA32_EBL_CR_POWERON:
1490 /* MTRR registers */
1492 case 0x200 ... 0x2ff:
1495 case 0xcd: /* fsb frequency */
1498 case MSR_IA32_APICBASE:
1499 data = vcpu->apic_base;
1501 case MSR_IA32_MISC_ENABLE:
1502 data = vcpu->ia32_misc_enable_msr;
1504 #ifdef CONFIG_X86_64
1506 data = vcpu->shadow_efer;
1510 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1516 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1519 * Reads an msr value (of 'msr_index') into 'pdata'.
1520 * Returns 0 on success, non-0 otherwise.
1521 * Assumes vcpu_load() was already called.
1523 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1525 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1528 #ifdef CONFIG_X86_64
1530 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1532 if (efer & EFER_RESERVED_BITS) {
1533 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1540 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1541 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1546 kvm_arch_ops->set_efer(vcpu, efer);
1549 efer |= vcpu->shadow_efer & EFER_LMA;
1551 vcpu->shadow_efer = efer;
1556 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1559 #ifdef CONFIG_X86_64
1561 set_efer(vcpu, data);
1564 case MSR_IA32_MC0_STATUS:
1565 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1566 __FUNCTION__, data);
1568 case MSR_IA32_MCG_STATUS:
1569 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1570 __FUNCTION__, data);
1572 case MSR_IA32_UCODE_REV:
1573 case MSR_IA32_UCODE_WRITE:
1574 case 0x200 ... 0x2ff: /* MTRRs */
1576 case MSR_IA32_APICBASE:
1577 vcpu->apic_base = data;
1579 case MSR_IA32_MISC_ENABLE:
1580 vcpu->ia32_misc_enable_msr = data;
1583 * This is the 'probe whether the host is KVM' logic:
1585 case MSR_KVM_API_MAGIC:
1586 return vcpu_register_para(vcpu, data);
1589 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1594 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1597 * Writes msr value into into the appropriate "register".
1598 * Returns 0 on success, non-0 otherwise.
1599 * Assumes vcpu_load() was already called.
1601 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1603 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1606 void kvm_resched(struct kvm_vcpu *vcpu)
1608 if (!need_resched())
1612 EXPORT_SYMBOL_GPL(kvm_resched);
1614 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1618 struct kvm_cpuid_entry *e, *best;
1620 kvm_arch_ops->cache_regs(vcpu);
1621 function = vcpu->regs[VCPU_REGS_RAX];
1622 vcpu->regs[VCPU_REGS_RAX] = 0;
1623 vcpu->regs[VCPU_REGS_RBX] = 0;
1624 vcpu->regs[VCPU_REGS_RCX] = 0;
1625 vcpu->regs[VCPU_REGS_RDX] = 0;
1627 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1628 e = &vcpu->cpuid_entries[i];
1629 if (e->function == function) {
1634 * Both basic or both extended?
1636 if (((e->function ^ function) & 0x80000000) == 0)
1637 if (!best || e->function > best->function)
1641 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1642 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1643 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1644 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1646 kvm_arch_ops->decache_regs(vcpu);
1647 kvm_arch_ops->skip_emulated_instruction(vcpu);
1649 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1651 static int pio_copy_data(struct kvm_vcpu *vcpu)
1653 void *p = vcpu->pio_data;
1656 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1658 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1661 free_pio_guest_pages(vcpu);
1664 q += vcpu->pio.guest_page_offset;
1665 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1667 memcpy(q, p, bytes);
1669 memcpy(p, q, bytes);
1670 q -= vcpu->pio.guest_page_offset;
1672 free_pio_guest_pages(vcpu);
1676 static int complete_pio(struct kvm_vcpu *vcpu)
1678 struct kvm_pio_request *io = &vcpu->pio;
1682 kvm_arch_ops->cache_regs(vcpu);
1686 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1690 r = pio_copy_data(vcpu);
1692 kvm_arch_ops->cache_regs(vcpu);
1699 delta *= io->cur_count;
1701 * The size of the register should really depend on
1702 * current address size.
1704 vcpu->regs[VCPU_REGS_RCX] -= delta;
1710 vcpu->regs[VCPU_REGS_RDI] += delta;
1712 vcpu->regs[VCPU_REGS_RSI] += delta;
1715 kvm_arch_ops->decache_regs(vcpu);
1717 io->count -= io->cur_count;
1721 kvm_arch_ops->skip_emulated_instruction(vcpu);
1725 static void kernel_pio(struct kvm_io_device *pio_dev,
1726 struct kvm_vcpu *vcpu,
1729 /* TODO: String I/O for in kernel device */
1732 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1736 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1741 static void pio_string_write(struct kvm_io_device *pio_dev,
1742 struct kvm_vcpu *vcpu)
1744 struct kvm_pio_request *io = &vcpu->pio;
1745 void *pd = vcpu->pio_data;
1748 for (i = 0; i < io->cur_count; i++) {
1749 kvm_iodevice_write(pio_dev, io->port,
1756 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1757 int size, unsigned long count, int string, int down,
1758 gva_t address, int rep, unsigned port)
1760 unsigned now, in_page;
1764 struct kvm_io_device *pio_dev;
1766 vcpu->run->exit_reason = KVM_EXIT_IO;
1767 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1768 vcpu->run->io.size = size;
1769 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1770 vcpu->run->io.count = count;
1771 vcpu->run->io.port = port;
1772 vcpu->pio.count = count;
1773 vcpu->pio.cur_count = count;
1774 vcpu->pio.size = size;
1776 vcpu->pio.port = port;
1777 vcpu->pio.string = string;
1778 vcpu->pio.down = down;
1779 vcpu->pio.guest_page_offset = offset_in_page(address);
1780 vcpu->pio.rep = rep;
1782 pio_dev = vcpu_find_pio_dev(vcpu, port);
1784 kvm_arch_ops->cache_regs(vcpu);
1785 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1786 kvm_arch_ops->decache_regs(vcpu);
1788 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1796 kvm_arch_ops->skip_emulated_instruction(vcpu);
1800 now = min(count, PAGE_SIZE / size);
1803 in_page = PAGE_SIZE - offset_in_page(address);
1805 in_page = offset_in_page(address) + size;
1806 now = min(count, (unsigned long)in_page / size);
1809 * String I/O straddles page boundary. Pin two guest pages
1810 * so that we satisfy atomicity constraints. Do just one
1811 * transaction to avoid complexity.
1818 * String I/O in reverse. Yuck. Kill the guest, fix later.
1820 printk(KERN_ERR "kvm: guest string pio down\n");
1824 vcpu->run->io.count = now;
1825 vcpu->pio.cur_count = now;
1827 for (i = 0; i < nr_pages; ++i) {
1828 mutex_lock(&vcpu->kvm->lock);
1829 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1832 vcpu->pio.guest_pages[i] = page;
1833 mutex_unlock(&vcpu->kvm->lock);
1836 free_pio_guest_pages(vcpu);
1841 if (!vcpu->pio.in) {
1842 /* string PIO write */
1843 ret = pio_copy_data(vcpu);
1844 if (ret >= 0 && pio_dev) {
1845 pio_string_write(pio_dev, vcpu);
1847 if (vcpu->pio.count == 0)
1851 printk(KERN_ERR "no string pio read support yet, "
1852 "port %x size %d count %ld\n",
1857 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1859 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1866 if (vcpu->sigset_active)
1867 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1869 /* re-sync apic's tpr */
1870 vcpu->cr8 = kvm_run->cr8;
1872 if (vcpu->pio.cur_count) {
1873 r = complete_pio(vcpu);
1878 if (vcpu->mmio_needed) {
1879 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1880 vcpu->mmio_read_completed = 1;
1881 vcpu->mmio_needed = 0;
1882 r = emulate_instruction(vcpu, kvm_run,
1883 vcpu->mmio_fault_cr2, 0);
1884 if (r == EMULATE_DO_MMIO) {
1886 * Read-modify-write. Back to userspace.
1893 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1894 kvm_arch_ops->cache_regs(vcpu);
1895 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1896 kvm_arch_ops->decache_regs(vcpu);
1899 r = kvm_arch_ops->run(vcpu, kvm_run);
1902 if (vcpu->sigset_active)
1903 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1909 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1910 struct kvm_regs *regs)
1914 kvm_arch_ops->cache_regs(vcpu);
1916 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1917 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1918 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1919 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1920 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1921 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1922 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1923 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1924 #ifdef CONFIG_X86_64
1925 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1926 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1927 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1928 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1929 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1930 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1931 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1932 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1935 regs->rip = vcpu->rip;
1936 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1939 * Don't leak debug flags in case they were set for guest debugging
1941 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1942 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1949 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1950 struct kvm_regs *regs)
1954 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1955 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1956 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1957 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1958 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1959 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1960 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1961 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1962 #ifdef CONFIG_X86_64
1963 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1964 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1965 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1966 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1967 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1968 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1969 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1970 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1973 vcpu->rip = regs->rip;
1974 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1976 kvm_arch_ops->decache_regs(vcpu);
1983 static void get_segment(struct kvm_vcpu *vcpu,
1984 struct kvm_segment *var, int seg)
1986 return kvm_arch_ops->get_segment(vcpu, var, seg);
1989 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1990 struct kvm_sregs *sregs)
1992 struct descriptor_table dt;
1996 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1997 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1998 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1999 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2000 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2001 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2003 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2004 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2006 kvm_arch_ops->get_idt(vcpu, &dt);
2007 sregs->idt.limit = dt.limit;
2008 sregs->idt.base = dt.base;
2009 kvm_arch_ops->get_gdt(vcpu, &dt);
2010 sregs->gdt.limit = dt.limit;
2011 sregs->gdt.base = dt.base;
2013 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2014 sregs->cr0 = vcpu->cr0;
2015 sregs->cr2 = vcpu->cr2;
2016 sregs->cr3 = vcpu->cr3;
2017 sregs->cr4 = vcpu->cr4;
2018 sregs->cr8 = vcpu->cr8;
2019 sregs->efer = vcpu->shadow_efer;
2020 sregs->apic_base = vcpu->apic_base;
2022 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2023 sizeof sregs->interrupt_bitmap);
2030 static void set_segment(struct kvm_vcpu *vcpu,
2031 struct kvm_segment *var, int seg)
2033 return kvm_arch_ops->set_segment(vcpu, var, seg);
2036 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2037 struct kvm_sregs *sregs)
2039 int mmu_reset_needed = 0;
2041 struct descriptor_table dt;
2045 dt.limit = sregs->idt.limit;
2046 dt.base = sregs->idt.base;
2047 kvm_arch_ops->set_idt(vcpu, &dt);
2048 dt.limit = sregs->gdt.limit;
2049 dt.base = sregs->gdt.base;
2050 kvm_arch_ops->set_gdt(vcpu, &dt);
2052 vcpu->cr2 = sregs->cr2;
2053 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2054 vcpu->cr3 = sregs->cr3;
2056 vcpu->cr8 = sregs->cr8;
2058 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2059 #ifdef CONFIG_X86_64
2060 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2062 vcpu->apic_base = sregs->apic_base;
2064 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2066 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2067 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2069 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2070 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2071 if (!is_long_mode(vcpu) && is_pae(vcpu))
2072 load_pdptrs(vcpu, vcpu->cr3);
2074 if (mmu_reset_needed)
2075 kvm_mmu_reset_context(vcpu);
2077 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2078 sizeof vcpu->irq_pending);
2079 vcpu->irq_summary = 0;
2080 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2081 if (vcpu->irq_pending[i])
2082 __set_bit(i, &vcpu->irq_summary);
2084 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2085 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2086 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2087 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2088 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2089 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2091 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2092 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2100 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2101 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2103 * This list is modified at module load time to reflect the
2104 * capabilities of the host cpu.
2106 static u32 msrs_to_save[] = {
2107 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2109 #ifdef CONFIG_X86_64
2110 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2112 MSR_IA32_TIME_STAMP_COUNTER,
2115 static unsigned num_msrs_to_save;
2117 static u32 emulated_msrs[] = {
2118 MSR_IA32_MISC_ENABLE,
2121 static __init void kvm_init_msr_list(void)
2126 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2127 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2130 msrs_to_save[j] = msrs_to_save[i];
2133 num_msrs_to_save = j;
2137 * Adapt set_msr() to msr_io()'s calling convention
2139 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2141 return kvm_set_msr(vcpu, index, *data);
2145 * Read or write a bunch of msrs. All parameters are kernel addresses.
2147 * @return number of msrs set successfully.
2149 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2150 struct kvm_msr_entry *entries,
2151 int (*do_msr)(struct kvm_vcpu *vcpu,
2152 unsigned index, u64 *data))
2158 for (i = 0; i < msrs->nmsrs; ++i)
2159 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2168 * Read or write a bunch of msrs. Parameters are user addresses.
2170 * @return number of msrs set successfully.
2172 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2173 int (*do_msr)(struct kvm_vcpu *vcpu,
2174 unsigned index, u64 *data),
2177 struct kvm_msrs msrs;
2178 struct kvm_msr_entry *entries;
2183 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2187 if (msrs.nmsrs >= MAX_IO_MSRS)
2191 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2192 entries = vmalloc(size);
2197 if (copy_from_user(entries, user_msrs->entries, size))
2200 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2205 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2217 * Translate a guest virtual address to a guest physical address.
2219 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2220 struct kvm_translation *tr)
2222 unsigned long vaddr = tr->linear_address;
2226 mutex_lock(&vcpu->kvm->lock);
2227 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2228 tr->physical_address = gpa;
2229 tr->valid = gpa != UNMAPPED_GVA;
2232 mutex_unlock(&vcpu->kvm->lock);
2238 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2239 struct kvm_interrupt *irq)
2241 if (irq->irq < 0 || irq->irq >= 256)
2245 set_bit(irq->irq, vcpu->irq_pending);
2246 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2253 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2254 struct kvm_debug_guest *dbg)
2260 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2267 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2268 unsigned long address,
2271 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2272 unsigned long pgoff;
2275 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2277 page = virt_to_page(vcpu->run);
2278 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2279 page = virt_to_page(vcpu->pio_data);
2281 return NOPAGE_SIGBUS;
2284 *type = VM_FAULT_MINOR;
2289 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2290 .nopage = kvm_vcpu_nopage,
2293 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2295 vma->vm_ops = &kvm_vcpu_vm_ops;
2299 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2301 struct kvm_vcpu *vcpu = filp->private_data;
2303 fput(vcpu->kvm->filp);
2307 static struct file_operations kvm_vcpu_fops = {
2308 .release = kvm_vcpu_release,
2309 .unlocked_ioctl = kvm_vcpu_ioctl,
2310 .compat_ioctl = kvm_vcpu_ioctl,
2311 .mmap = kvm_vcpu_mmap,
2315 * Allocates an inode for the vcpu.
2317 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2320 struct inode *inode;
2323 r = anon_inode_getfd(&fd, &inode, &file,
2324 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2327 atomic_inc(&vcpu->kvm->filp->f_count);
2332 * Creates some virtual cpus. Good luck creating more than one.
2334 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2337 struct kvm_vcpu *vcpu;
2342 vcpu = kvm_arch_ops->vcpu_create(kvm, n);
2344 return PTR_ERR(vcpu);
2346 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2348 /* We do fxsave: this must be aligned. */
2349 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2352 r = kvm_mmu_setup(vcpu);
2357 mutex_lock(&kvm->lock);
2358 if (kvm->vcpus[n]) {
2360 mutex_unlock(&kvm->lock);
2363 kvm->vcpus[n] = vcpu;
2364 mutex_unlock(&kvm->lock);
2366 /* Now it's all set up, let userspace reach it */
2367 r = create_vcpu_fd(vcpu);
2373 mutex_lock(&kvm->lock);
2374 kvm->vcpus[n] = NULL;
2375 mutex_unlock(&kvm->lock);
2379 kvm_mmu_unload(vcpu);
2383 kvm_arch_ops->vcpu_free(vcpu);
2387 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2391 struct kvm_cpuid_entry *e, *entry;
2393 rdmsrl(MSR_EFER, efer);
2395 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2396 e = &vcpu->cpuid_entries[i];
2397 if (e->function == 0x80000001) {
2402 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2403 entry->edx &= ~(1 << 20);
2404 printk(KERN_INFO "kvm: guest NX capability removed\n");
2408 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2409 struct kvm_cpuid *cpuid,
2410 struct kvm_cpuid_entry __user *entries)
2415 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2418 if (copy_from_user(&vcpu->cpuid_entries, entries,
2419 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2421 vcpu->cpuid_nent = cpuid->nent;
2422 cpuid_fix_nx_cap(vcpu);
2429 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2432 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2433 vcpu->sigset_active = 1;
2434 vcpu->sigset = *sigset;
2436 vcpu->sigset_active = 0;
2441 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2442 * we have asm/x86/processor.h
2453 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2454 #ifdef CONFIG_X86_64
2455 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2457 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2461 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2463 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2467 memcpy(fpu->fpr, fxsave->st_space, 128);
2468 fpu->fcw = fxsave->cwd;
2469 fpu->fsw = fxsave->swd;
2470 fpu->ftwx = fxsave->twd;
2471 fpu->last_opcode = fxsave->fop;
2472 fpu->last_ip = fxsave->rip;
2473 fpu->last_dp = fxsave->rdp;
2474 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2481 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2483 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2487 memcpy(fxsave->st_space, fpu->fpr, 128);
2488 fxsave->cwd = fpu->fcw;
2489 fxsave->swd = fpu->fsw;
2490 fxsave->twd = fpu->ftwx;
2491 fxsave->fop = fpu->last_opcode;
2492 fxsave->rip = fpu->last_ip;
2493 fxsave->rdp = fpu->last_dp;
2494 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2501 static long kvm_vcpu_ioctl(struct file *filp,
2502 unsigned int ioctl, unsigned long arg)
2504 struct kvm_vcpu *vcpu = filp->private_data;
2505 void __user *argp = (void __user *)arg;
2513 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2515 case KVM_GET_REGS: {
2516 struct kvm_regs kvm_regs;
2518 memset(&kvm_regs, 0, sizeof kvm_regs);
2519 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2523 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2528 case KVM_SET_REGS: {
2529 struct kvm_regs kvm_regs;
2532 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2534 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2540 case KVM_GET_SREGS: {
2541 struct kvm_sregs kvm_sregs;
2543 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2544 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2548 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2553 case KVM_SET_SREGS: {
2554 struct kvm_sregs kvm_sregs;
2557 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2559 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2565 case KVM_TRANSLATE: {
2566 struct kvm_translation tr;
2569 if (copy_from_user(&tr, argp, sizeof tr))
2571 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2575 if (copy_to_user(argp, &tr, sizeof tr))
2580 case KVM_INTERRUPT: {
2581 struct kvm_interrupt irq;
2584 if (copy_from_user(&irq, argp, sizeof irq))
2586 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2592 case KVM_DEBUG_GUEST: {
2593 struct kvm_debug_guest dbg;
2596 if (copy_from_user(&dbg, argp, sizeof dbg))
2598 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2605 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2608 r = msr_io(vcpu, argp, do_set_msr, 0);
2610 case KVM_SET_CPUID: {
2611 struct kvm_cpuid __user *cpuid_arg = argp;
2612 struct kvm_cpuid cpuid;
2615 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2617 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2622 case KVM_SET_SIGNAL_MASK: {
2623 struct kvm_signal_mask __user *sigmask_arg = argp;
2624 struct kvm_signal_mask kvm_sigmask;
2625 sigset_t sigset, *p;
2630 if (copy_from_user(&kvm_sigmask, argp,
2631 sizeof kvm_sigmask))
2634 if (kvm_sigmask.len != sizeof sigset)
2637 if (copy_from_user(&sigset, sigmask_arg->sigset,
2642 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2648 memset(&fpu, 0, sizeof fpu);
2649 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2653 if (copy_to_user(argp, &fpu, sizeof fpu))
2662 if (copy_from_user(&fpu, argp, sizeof fpu))
2664 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2677 static long kvm_vm_ioctl(struct file *filp,
2678 unsigned int ioctl, unsigned long arg)
2680 struct kvm *kvm = filp->private_data;
2681 void __user *argp = (void __user *)arg;
2685 case KVM_CREATE_VCPU:
2686 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2690 case KVM_SET_MEMORY_REGION: {
2691 struct kvm_memory_region kvm_mem;
2694 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2696 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2701 case KVM_GET_DIRTY_LOG: {
2702 struct kvm_dirty_log log;
2705 if (copy_from_user(&log, argp, sizeof log))
2707 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2712 case KVM_SET_MEMORY_ALIAS: {
2713 struct kvm_memory_alias alias;
2716 if (copy_from_user(&alias, argp, sizeof alias))
2718 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2730 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2731 unsigned long address,
2734 struct kvm *kvm = vma->vm_file->private_data;
2735 unsigned long pgoff;
2738 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2739 page = gfn_to_page(kvm, pgoff);
2741 return NOPAGE_SIGBUS;
2744 *type = VM_FAULT_MINOR;
2749 static struct vm_operations_struct kvm_vm_vm_ops = {
2750 .nopage = kvm_vm_nopage,
2753 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2755 vma->vm_ops = &kvm_vm_vm_ops;
2759 static struct file_operations kvm_vm_fops = {
2760 .release = kvm_vm_release,
2761 .unlocked_ioctl = kvm_vm_ioctl,
2762 .compat_ioctl = kvm_vm_ioctl,
2763 .mmap = kvm_vm_mmap,
2766 static int kvm_dev_ioctl_create_vm(void)
2769 struct inode *inode;
2773 kvm = kvm_create_vm();
2775 return PTR_ERR(kvm);
2776 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2778 kvm_destroy_vm(kvm);
2787 static long kvm_dev_ioctl(struct file *filp,
2788 unsigned int ioctl, unsigned long arg)
2790 void __user *argp = (void __user *)arg;
2794 case KVM_GET_API_VERSION:
2798 r = KVM_API_VERSION;
2804 r = kvm_dev_ioctl_create_vm();
2806 case KVM_GET_MSR_INDEX_LIST: {
2807 struct kvm_msr_list __user *user_msr_list = argp;
2808 struct kvm_msr_list msr_list;
2812 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2815 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2816 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2819 if (n < num_msrs_to_save)
2822 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2823 num_msrs_to_save * sizeof(u32)))
2825 if (copy_to_user(user_msr_list->indices
2826 + num_msrs_to_save * sizeof(u32),
2828 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2833 case KVM_CHECK_EXTENSION:
2835 * No extensions defined at present.
2839 case KVM_GET_VCPU_MMAP_SIZE:
2852 static struct file_operations kvm_chardev_ops = {
2853 .open = kvm_dev_open,
2854 .release = kvm_dev_release,
2855 .unlocked_ioctl = kvm_dev_ioctl,
2856 .compat_ioctl = kvm_dev_ioctl,
2859 static struct miscdevice kvm_dev = {
2866 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2869 static void decache_vcpus_on_cpu(int cpu)
2872 struct kvm_vcpu *vcpu;
2875 spin_lock(&kvm_lock);
2876 list_for_each_entry(vm, &vm_list, vm_list)
2877 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2878 vcpu = vm->vcpus[i];
2882 * If the vcpu is locked, then it is running on some
2883 * other cpu and therefore it is not cached on the
2886 * If it's not locked, check the last cpu it executed
2889 if (mutex_trylock(&vcpu->mutex)) {
2890 if (vcpu->cpu == cpu) {
2891 kvm_arch_ops->vcpu_decache(vcpu);
2894 mutex_unlock(&vcpu->mutex);
2897 spin_unlock(&kvm_lock);
2900 static void hardware_enable(void *junk)
2902 int cpu = raw_smp_processor_id();
2904 if (cpu_isset(cpu, cpus_hardware_enabled))
2906 cpu_set(cpu, cpus_hardware_enabled);
2907 kvm_arch_ops->hardware_enable(NULL);
2910 static void hardware_disable(void *junk)
2912 int cpu = raw_smp_processor_id();
2914 if (!cpu_isset(cpu, cpus_hardware_enabled))
2916 cpu_clear(cpu, cpus_hardware_enabled);
2917 decache_vcpus_on_cpu(cpu);
2918 kvm_arch_ops->hardware_disable(NULL);
2921 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2928 case CPU_DYING_FROZEN:
2929 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2931 hardware_disable(NULL);
2933 case CPU_UP_CANCELED:
2934 case CPU_UP_CANCELED_FROZEN:
2935 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2937 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2940 case CPU_ONLINE_FROZEN:
2941 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2943 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
2949 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2952 if (val == SYS_RESTART) {
2954 * Some (well, at least mine) BIOSes hang on reboot if
2957 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2958 on_each_cpu(hardware_disable, NULL, 0, 1);
2963 static struct notifier_block kvm_reboot_notifier = {
2964 .notifier_call = kvm_reboot,
2968 void kvm_io_bus_init(struct kvm_io_bus *bus)
2970 memset(bus, 0, sizeof(*bus));
2973 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2977 for (i = 0; i < bus->dev_count; i++) {
2978 struct kvm_io_device *pos = bus->devs[i];
2980 kvm_iodevice_destructor(pos);
2984 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
2988 for (i = 0; i < bus->dev_count; i++) {
2989 struct kvm_io_device *pos = bus->devs[i];
2991 if (pos->in_range(pos, addr))
2998 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3000 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3002 bus->devs[bus->dev_count++] = dev;
3005 static struct notifier_block kvm_cpu_notifier = {
3006 .notifier_call = kvm_cpu_hotplug,
3007 .priority = 20, /* must be > scheduler priority */
3010 static u64 stat_get(void *_offset)
3012 unsigned offset = (long)_offset;
3015 struct kvm_vcpu *vcpu;
3018 spin_lock(&kvm_lock);
3019 list_for_each_entry(kvm, &vm_list, vm_list)
3020 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3021 vcpu = kvm->vcpus[i];
3023 total += *(u32 *)((void *)vcpu + offset);
3025 spin_unlock(&kvm_lock);
3029 static void stat_set(void *offset, u64 val)
3033 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3035 static __init void kvm_init_debug(void)
3037 struct kvm_stats_debugfs_item *p;
3039 debugfs_dir = debugfs_create_dir("kvm", NULL);
3040 for (p = debugfs_entries; p->name; ++p)
3041 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3042 (void *)(long)p->offset,
3046 static void kvm_exit_debug(void)
3048 struct kvm_stats_debugfs_item *p;
3050 for (p = debugfs_entries; p->name; ++p)
3051 debugfs_remove(p->dentry);
3052 debugfs_remove(debugfs_dir);
3055 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3057 hardware_disable(NULL);
3061 static int kvm_resume(struct sys_device *dev)
3063 hardware_enable(NULL);
3067 static struct sysdev_class kvm_sysdev_class = {
3068 set_kset_name("kvm"),
3069 .suspend = kvm_suspend,
3070 .resume = kvm_resume,
3073 static struct sys_device kvm_sysdev = {
3075 .cls = &kvm_sysdev_class,
3078 hpa_t bad_page_address;
3081 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3083 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3086 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3088 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3090 kvm_arch_ops->vcpu_load(vcpu, cpu);
3093 static void kvm_sched_out(struct preempt_notifier *pn,
3094 struct task_struct *next)
3096 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3098 kvm_arch_ops->vcpu_put(vcpu);
3101 int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
3102 struct module *module)
3107 printk(KERN_ERR "kvm: already loaded the other module\n");
3111 if (!ops->cpu_has_kvm_support()) {
3112 printk(KERN_ERR "kvm: no hardware support\n");
3115 if (ops->disabled_by_bios()) {
3116 printk(KERN_ERR "kvm: disabled by bios\n");
3122 r = kvm_arch_ops->hardware_setup();
3126 on_each_cpu(hardware_enable, NULL, 0, 1);
3127 r = register_cpu_notifier(&kvm_cpu_notifier);
3130 register_reboot_notifier(&kvm_reboot_notifier);
3132 r = sysdev_class_register(&kvm_sysdev_class);
3136 r = sysdev_register(&kvm_sysdev);
3140 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3141 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3142 __alignof__(struct kvm_vcpu), 0, 0);
3143 if (!kvm_vcpu_cache) {
3148 kvm_chardev_ops.owner = module;
3150 r = misc_register(&kvm_dev);
3152 printk (KERN_ERR "kvm: misc device register failed\n");
3156 kvm_preempt_ops.sched_in = kvm_sched_in;
3157 kvm_preempt_ops.sched_out = kvm_sched_out;
3162 kmem_cache_destroy(kvm_vcpu_cache);
3164 sysdev_unregister(&kvm_sysdev);
3166 sysdev_class_unregister(&kvm_sysdev_class);
3168 unregister_reboot_notifier(&kvm_reboot_notifier);
3169 unregister_cpu_notifier(&kvm_cpu_notifier);
3171 on_each_cpu(hardware_disable, NULL, 0, 1);
3172 kvm_arch_ops->hardware_unsetup();
3174 kvm_arch_ops = NULL;
3178 void kvm_exit_arch(void)
3180 misc_deregister(&kvm_dev);
3181 kmem_cache_destroy(kvm_vcpu_cache);
3182 sysdev_unregister(&kvm_sysdev);
3183 sysdev_class_unregister(&kvm_sysdev_class);
3184 unregister_reboot_notifier(&kvm_reboot_notifier);
3185 unregister_cpu_notifier(&kvm_cpu_notifier);
3186 on_each_cpu(hardware_disable, NULL, 0, 1);
3187 kvm_arch_ops->hardware_unsetup();
3188 kvm_arch_ops = NULL;
3191 static __init int kvm_init(void)
3193 static struct page *bad_page;
3196 r = kvm_mmu_module_init();
3202 kvm_init_msr_list();
3204 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3209 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3210 memset(__va(bad_page_address), 0, PAGE_SIZE);
3216 kvm_mmu_module_exit();
3221 static __exit void kvm_exit(void)
3224 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3225 kvm_mmu_module_exit();
3228 module_init(kvm_init)
3229 module_exit(kvm_exit)
3231 EXPORT_SYMBOL_GPL(kvm_init_arch);
3232 EXPORT_SYMBOL_GPL(kvm_exit_arch);