1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43 #include "internals.h"
45 static DEFINE_IDR(spi_master_idr);
47 static void spidev_release(struct device *dev)
49 struct spi_device *spi = to_spi_device(dev);
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
75 struct spi_device *spi = to_spi_device(dev);
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
88 const struct spi_device *spi = to_spi_device(dev);
92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
96 static DEVICE_ATTR_RW(driver_override);
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 struct spi_statistics __percpu *pcpu_stats;
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
135 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 inc = u64_stats_read(field);
137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
140 return sysfs_emit(buf, "%llu\n", val);
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
175 SPI_STATISTICS_ATTRS(name, file)
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
218 static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
224 static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
228 static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
260 static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
265 static const struct attribute_group *spi_dev_groups[] = {
267 &spi_device_statistics_group,
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
303 static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
308 static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_message *msg)
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(&stats->syncp);
327 u64_stats_inc(&stats->transfers);
328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
330 u64_stats_add(&stats->bytes, xfer->len);
331 if (spi_valid_txbuf(msg, xfer))
332 u64_stats_add(&stats->bytes_tx, xfer->len);
333 if (spi_valid_rxbuf(msg, xfer))
334 u64_stats_add(&stats->bytes_rx, xfer->len);
336 u64_stats_update_end(&stats->syncp);
341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342 * and the sysfs version makes coldplug work too.
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 while (id->name[0]) {
347 if (!strcmp(name, id->name))
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358 return spi_match_id(sdrv->id_table, sdev->modalias);
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
366 match = device_get_match_data(&sdev->dev);
370 return (const void *)spi_get_device_id(sdev)->driver_data;
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374 static int spi_match_device(struct device *dev, const struct device_driver *drv)
376 const struct spi_device *spi = to_spi_device(dev);
377 const struct spi_driver *sdrv = to_spi_driver(drv);
379 /* Check override first, and if set, only use the named driver */
380 if (spi->driver_override)
381 return strcmp(spi->driver_override, drv->name) == 0;
383 /* Attempt an OF style match */
384 if (of_driver_match_device(dev, drv))
388 if (acpi_driver_match_device(dev, drv))
392 return !!spi_match_id(sdrv->id_table, spi->modalias);
394 return strcmp(spi->modalias, drv->name) == 0;
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
399 const struct spi_device *spi = to_spi_device(dev);
402 rc = acpi_device_uevent_modalias(dev, env);
406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 static int spi_probe(struct device *dev)
411 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
412 struct spi_device *spi = to_spi_device(dev);
413 struct fwnode_handle *fwnode = dev_fwnode(dev);
416 ret = of_clk_set_defaults(dev->of_node, false);
420 if (is_of_node(fwnode))
421 spi->irq = of_irq_get(dev->of_node, 0);
422 else if (is_acpi_device_node(fwnode) && spi->irq < 0)
423 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0);
424 if (spi->irq == -EPROBE_DEFER)
425 return dev_err_probe(dev, spi->irq, "Failed to get irq\n");
429 ret = dev_pm_domain_attach(dev, true);
434 ret = sdrv->probe(spi);
436 dev_pm_domain_detach(dev, true);
442 static void spi_remove(struct device *dev)
444 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
447 sdrv->remove(to_spi_device(dev));
449 dev_pm_domain_detach(dev, true);
452 static void spi_shutdown(struct device *dev)
455 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
458 sdrv->shutdown(to_spi_device(dev));
462 const struct bus_type spi_bus_type = {
464 .dev_groups = spi_dev_groups,
465 .match = spi_match_device,
466 .uevent = spi_uevent,
468 .remove = spi_remove,
469 .shutdown = spi_shutdown,
471 EXPORT_SYMBOL_GPL(spi_bus_type);
474 * __spi_register_driver - register a SPI driver
475 * @owner: owner module of the driver to register
476 * @sdrv: the driver to register
479 * Return: zero on success, else a negative error code.
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
483 sdrv->driver.owner = owner;
484 sdrv->driver.bus = &spi_bus_type;
487 * For Really Good Reasons we use spi: modaliases not of:
488 * modaliases for DT so module autoloading won't work if we
489 * don't have a spi_device_id as well as a compatible string.
491 if (sdrv->driver.of_match_table) {
492 const struct of_device_id *of_id;
494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
498 /* Strip off any vendor prefix */
499 of_name = strnchr(of_id->compatible,
500 sizeof(of_id->compatible), ',');
504 of_name = of_id->compatible;
506 if (sdrv->id_table) {
507 const struct spi_device_id *spi_id;
509 spi_id = spi_match_id(sdrv->id_table, of_name);
513 if (strcmp(sdrv->driver.name, of_name) == 0)
517 pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 sdrv->driver.name, of_id->compatible);
522 return driver_register(&sdrv->driver);
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
526 /*-------------------------------------------------------------------------*/
529 * SPI devices should normally not be created by SPI device drivers; that
530 * would make them board-specific. Similarly with SPI controller drivers.
531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
532 * with other readonly (flashable) information about mainboard devices.
536 struct list_head list;
537 struct spi_board_info board_info;
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
544 * Used to protect add/del operation for board_info list and
545 * spi_controller list, and their matching process also used
546 * to protect object of type struct idr.
548 static DEFINE_MUTEX(board_lock);
551 * spi_alloc_device - Allocate a new SPI device
552 * @ctlr: Controller to which device is connected
555 * Allows a driver to allocate and initialize a spi_device without
556 * registering it immediately. This allows a driver to directly
557 * fill the spi_device with device parameters before calling
558 * spi_add_device() on it.
560 * Caller is responsible to call spi_add_device() on the returned
561 * spi_device structure to add it to the SPI controller. If the caller
562 * needs to discard the spi_device without adding it, then it should
563 * call spi_dev_put() on it.
565 * Return: a pointer to the new device, or NULL.
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
569 struct spi_device *spi;
571 if (!spi_controller_get(ctlr))
574 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
576 spi_controller_put(ctlr);
580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 if (!spi->pcpu_statistics) {
583 spi_controller_put(ctlr);
587 spi->controller = ctlr;
588 spi->dev.parent = &ctlr->dev;
589 spi->dev.bus = &spi_bus_type;
590 spi->dev.release = spidev_release;
591 spi->mode = ctlr->buswidth_override_bits;
593 device_initialize(&spi->dev);
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
598 static void spi_dev_set_name(struct spi_device *spi)
600 struct device *dev = &spi->dev;
601 struct fwnode_handle *fwnode = dev_fwnode(dev);
603 if (is_acpi_device_node(fwnode)) {
604 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
608 if (is_software_node(fwnode)) {
609 dev_set_name(dev, "spi-%pfwP", fwnode);
613 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
614 spi_get_chipselect(spi, 0));
618 * Zero(0) is a valid physical CS value and can be located at any
619 * logical CS in the spi->chip_select[]. If all the physical CS
620 * are initialized to 0 then It would be difficult to differentiate
621 * between a valid physical CS 0 & an unused logical CS whose physical
622 * CS can be 0. As a solution to this issue initialize all the CS to -1.
623 * Now all the unused logical CS will have -1 physical CS value & can be
624 * ignored while performing physical CS validity checks.
626 #define SPI_INVALID_CS ((s8)-1)
628 static inline bool is_valid_cs(s8 chip_select)
630 return chip_select != SPI_INVALID_CS;
633 static inline int spi_dev_check_cs(struct device *dev,
634 struct spi_device *spi, u8 idx,
635 struct spi_device *new_spi, u8 new_idx)
640 cs = spi_get_chipselect(spi, idx);
641 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
642 cs_new = spi_get_chipselect(new_spi, idx_new);
643 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
644 dev_err(dev, "chipselect %u already in use\n", cs_new);
651 static int spi_dev_check(struct device *dev, void *data)
653 struct spi_device *spi = to_spi_device(dev);
654 struct spi_device *new_spi = data;
657 if (spi->controller == new_spi->controller) {
658 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
659 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
667 static void spi_cleanup(struct spi_device *spi)
669 if (spi->controller->cleanup)
670 spi->controller->cleanup(spi);
673 static int __spi_add_device(struct spi_device *spi)
675 struct spi_controller *ctlr = spi->controller;
676 struct device *dev = ctlr->dev.parent;
680 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
681 /* Chipselects are numbered 0..max; validate. */
682 cs = spi_get_chipselect(spi, idx);
683 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
684 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
685 ctlr->num_chipselect);
691 * Make sure that multiple logical CS doesn't map to the same physical CS.
692 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
694 if (!spi_controller_is_target(ctlr)) {
695 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
696 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
702 /* Set the bus ID string */
703 spi_dev_set_name(spi);
706 * We need to make sure there's no other device with this
707 * chipselect **BEFORE** we call setup(), else we'll trash
710 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
714 /* Controller may unregister concurrently */
715 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
716 !device_is_registered(&ctlr->dev)) {
720 if (ctlr->cs_gpiods) {
723 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
724 cs = spi_get_chipselect(spi, idx);
726 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
731 * Drivers may modify this initial i/o setup, but will
732 * normally rely on the device being setup. Devices
733 * using SPI_CS_HIGH can't coexist well otherwise...
735 status = spi_setup(spi);
737 dev_err(dev, "can't setup %s, status %d\n",
738 dev_name(&spi->dev), status);
742 /* Device may be bound to an active driver when this returns */
743 status = device_add(&spi->dev);
745 dev_err(dev, "can't add %s, status %d\n",
746 dev_name(&spi->dev), status);
749 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
756 * spi_add_device - Add spi_device allocated with spi_alloc_device
757 * @spi: spi_device to register
759 * Companion function to spi_alloc_device. Devices allocated with
760 * spi_alloc_device can be added onto the SPI bus with this function.
762 * Return: 0 on success; negative errno on failure
764 int spi_add_device(struct spi_device *spi)
766 struct spi_controller *ctlr = spi->controller;
769 /* Set the bus ID string */
770 spi_dev_set_name(spi);
772 mutex_lock(&ctlr->add_lock);
773 status = __spi_add_device(spi);
774 mutex_unlock(&ctlr->add_lock);
777 EXPORT_SYMBOL_GPL(spi_add_device);
779 static void spi_set_all_cs_unused(struct spi_device *spi)
783 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
784 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
788 * spi_new_device - instantiate one new SPI device
789 * @ctlr: Controller to which device is connected
790 * @chip: Describes the SPI device
793 * On typical mainboards, this is purely internal; and it's not needed
794 * after board init creates the hard-wired devices. Some development
795 * platforms may not be able to use spi_register_board_info though, and
796 * this is exported so that for example a USB or parport based adapter
797 * driver could add devices (which it would learn about out-of-band).
799 * Return: the new device, or NULL.
801 struct spi_device *spi_new_device(struct spi_controller *ctlr,
802 struct spi_board_info *chip)
804 struct spi_device *proxy;
808 * NOTE: caller did any chip->bus_num checks necessary.
810 * Also, unless we change the return value convention to use
811 * error-or-pointer (not NULL-or-pointer), troubleshootability
812 * suggests syslogged diagnostics are best here (ugh).
815 proxy = spi_alloc_device(ctlr);
819 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
821 /* Use provided chip-select for proxy device */
822 spi_set_all_cs_unused(proxy);
823 spi_set_chipselect(proxy, 0, chip->chip_select);
825 proxy->max_speed_hz = chip->max_speed_hz;
826 proxy->mode = chip->mode;
827 proxy->irq = chip->irq;
828 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
829 proxy->dev.platform_data = (void *) chip->platform_data;
830 proxy->controller_data = chip->controller_data;
831 proxy->controller_state = NULL;
833 * By default spi->chip_select[0] will hold the physical CS number,
834 * so set bit 0 in spi->cs_index_mask.
836 proxy->cs_index_mask = BIT(0);
839 status = device_add_software_node(&proxy->dev, chip->swnode);
841 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
842 chip->modalias, status);
847 status = spi_add_device(proxy);
854 device_remove_software_node(&proxy->dev);
858 EXPORT_SYMBOL_GPL(spi_new_device);
861 * spi_unregister_device - unregister a single SPI device
862 * @spi: spi_device to unregister
864 * Start making the passed SPI device vanish. Normally this would be handled
865 * by spi_unregister_controller().
867 void spi_unregister_device(struct spi_device *spi)
869 struct fwnode_handle *fwnode;
874 fwnode = dev_fwnode(&spi->dev);
875 if (is_of_node(fwnode)) {
876 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED);
877 of_node_put(to_of_node(fwnode));
878 } else if (is_acpi_device_node(fwnode)) {
879 acpi_device_clear_enumerated(to_acpi_device_node(fwnode));
881 device_remove_software_node(&spi->dev);
882 device_del(&spi->dev);
884 put_device(&spi->dev);
886 EXPORT_SYMBOL_GPL(spi_unregister_device);
888 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
889 struct spi_board_info *bi)
891 struct spi_device *dev;
893 if (ctlr->bus_num != bi->bus_num)
896 dev = spi_new_device(ctlr, bi);
898 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
903 * spi_register_board_info - register SPI devices for a given board
904 * @info: array of chip descriptors
905 * @n: how many descriptors are provided
908 * Board-specific early init code calls this (probably during arch_initcall)
909 * with segments of the SPI device table. Any device nodes are created later,
910 * after the relevant parent SPI controller (bus_num) is defined. We keep
911 * this table of devices forever, so that reloading a controller driver will
912 * not make Linux forget about these hard-wired devices.
914 * Other code can also call this, e.g. a particular add-on board might provide
915 * SPI devices through its expansion connector, so code initializing that board
916 * would naturally declare its SPI devices.
918 * The board info passed can safely be __initdata ... but be careful of
919 * any embedded pointers (platform_data, etc), they're copied as-is.
921 * Return: zero on success, else a negative error code.
923 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
925 struct boardinfo *bi;
931 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
935 for (i = 0; i < n; i++, bi++, info++) {
936 struct spi_controller *ctlr;
938 memcpy(&bi->board_info, info, sizeof(*info));
940 mutex_lock(&board_lock);
941 list_add_tail(&bi->list, &board_list);
942 list_for_each_entry(ctlr, &spi_controller_list, list)
943 spi_match_controller_to_boardinfo(ctlr,
945 mutex_unlock(&board_lock);
951 /*-------------------------------------------------------------------------*/
953 /* Core methods for SPI resource management */
956 * spi_res_alloc - allocate a spi resource that is life-cycle managed
957 * during the processing of a spi_message while using
959 * @spi: the SPI device for which we allocate memory
960 * @release: the release code to execute for this resource
961 * @size: size to alloc and return
962 * @gfp: GFP allocation flags
964 * Return: the pointer to the allocated data
966 * This may get enhanced in the future to allocate from a memory pool
967 * of the @spi_device or @spi_controller to avoid repeated allocations.
969 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
970 size_t size, gfp_t gfp)
972 struct spi_res *sres;
974 sres = kzalloc(sizeof(*sres) + size, gfp);
978 INIT_LIST_HEAD(&sres->entry);
979 sres->release = release;
985 * spi_res_free - free an SPI resource
986 * @res: pointer to the custom data of a resource
988 static void spi_res_free(void *res)
990 struct spi_res *sres = container_of(res, struct spi_res, data);
992 WARN_ON(!list_empty(&sres->entry));
997 * spi_res_add - add a spi_res to the spi_message
998 * @message: the SPI message
999 * @res: the spi_resource
1001 static void spi_res_add(struct spi_message *message, void *res)
1003 struct spi_res *sres = container_of(res, struct spi_res, data);
1005 WARN_ON(!list_empty(&sres->entry));
1006 list_add_tail(&sres->entry, &message->resources);
1010 * spi_res_release - release all SPI resources for this message
1011 * @ctlr: the @spi_controller
1012 * @message: the @spi_message
1014 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1016 struct spi_res *res, *tmp;
1018 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1020 res->release(ctlr, message, res->data);
1022 list_del(&res->entry);
1028 /*-------------------------------------------------------------------------*/
1029 #define spi_for_each_valid_cs(spi, idx) \
1030 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \
1031 if (!(spi->cs_index_mask & BIT(idx))) {} else
1033 static inline bool spi_is_last_cs(struct spi_device *spi)
1038 spi_for_each_valid_cs(spi, idx) {
1039 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1045 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1048 * Historically ACPI has no means of the GPIO polarity and
1049 * thus the SPISerialBus() resource defines it on the per-chip
1050 * basis. In order to avoid a chain of negations, the GPIO
1051 * polarity is considered being Active High. Even for the cases
1052 * when _DSD() is involved (in the updated versions of ACPI)
1053 * the GPIO CS polarity must be defined Active High to avoid
1054 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1057 if (is_acpi_device_node(dev_fwnode(&spi->dev)))
1058 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1060 /* Polarity handled by GPIO library */
1061 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1064 spi_delay_exec(&spi->cs_setup, NULL);
1066 spi_delay_exec(&spi->cs_inactive, NULL);
1069 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1071 bool activate = enable;
1075 * Avoid calling into the driver (or doing delays) if the chip select
1076 * isn't actually changing from the last time this was called.
1078 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1079 spi_is_last_cs(spi)) ||
1080 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1081 !spi_is_last_cs(spi))) &&
1082 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1085 trace_spi_set_cs(spi, activate);
1087 spi->controller->last_cs_index_mask = spi->cs_index_mask;
1088 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1089 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1090 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1092 if (spi->mode & SPI_CS_HIGH)
1096 * Handle chip select delays for GPIO based CS or controllers without
1097 * programmable chip select timing.
1099 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1100 spi_delay_exec(&spi->cs_hold, NULL);
1102 if (spi_is_csgpiod(spi)) {
1103 if (!(spi->mode & SPI_NO_CS)) {
1104 spi_for_each_valid_cs(spi, idx) {
1105 if (spi_get_csgpiod(spi, idx))
1106 spi_toggle_csgpiod(spi, idx, enable, activate);
1109 /* Some SPI masters need both GPIO CS & slave_select */
1110 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1111 spi->controller->set_cs)
1112 spi->controller->set_cs(spi, !enable);
1113 } else if (spi->controller->set_cs) {
1114 spi->controller->set_cs(spi, !enable);
1117 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1119 spi_delay_exec(&spi->cs_setup, NULL);
1121 spi_delay_exec(&spi->cs_inactive, NULL);
1125 #ifdef CONFIG_HAS_DMA
1126 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1127 struct sg_table *sgt, void *buf, size_t len,
1128 enum dma_data_direction dir, unsigned long attrs)
1130 const bool vmalloced_buf = is_vmalloc_addr(buf);
1131 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1132 #ifdef CONFIG_HIGHMEM
1133 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1134 (unsigned long)buf < (PKMAP_BASE +
1135 (LAST_PKMAP * PAGE_SIZE)));
1137 const bool kmap_buf = false;
1141 struct page *vm_page;
1142 struct scatterlist *sg;
1147 if (vmalloced_buf || kmap_buf) {
1148 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1149 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1150 } else if (virt_addr_valid(buf)) {
1151 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1152 sgs = DIV_ROUND_UP(len, desc_len);
1157 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1162 for (i = 0; i < sgs; i++) {
1164 if (vmalloced_buf || kmap_buf) {
1166 * Next scatterlist entry size is the minimum between
1167 * the desc_len and the remaining buffer length that
1170 min = min_t(size_t, desc_len,
1172 PAGE_SIZE - offset_in_page(buf)));
1174 vm_page = vmalloc_to_page(buf);
1176 vm_page = kmap_to_page(buf);
1181 sg_set_page(sg, vm_page,
1182 min, offset_in_page(buf));
1184 min = min_t(size_t, len, desc_len);
1186 sg_set_buf(sg, sg_buf, min);
1194 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1203 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1204 struct sg_table *sgt, void *buf, size_t len,
1205 enum dma_data_direction dir)
1207 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1210 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1211 struct device *dev, struct sg_table *sgt,
1212 enum dma_data_direction dir,
1213 unsigned long attrs)
1215 dma_unmap_sgtable(dev, sgt, dir, attrs);
1217 sgt->orig_nents = 0;
1221 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1222 struct sg_table *sgt, enum dma_data_direction dir)
1224 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1227 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1229 struct device *tx_dev, *rx_dev;
1230 struct spi_transfer *xfer;
1237 tx_dev = ctlr->dma_tx->device->dev;
1238 else if (ctlr->dma_map_dev)
1239 tx_dev = ctlr->dma_map_dev;
1241 tx_dev = ctlr->dev.parent;
1244 rx_dev = ctlr->dma_rx->device->dev;
1245 else if (ctlr->dma_map_dev)
1246 rx_dev = ctlr->dma_map_dev;
1248 rx_dev = ctlr->dev.parent;
1251 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1252 /* The sync is done before each transfer. */
1253 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1255 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1258 if (xfer->tx_buf != NULL) {
1259 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1260 (void *)xfer->tx_buf,
1261 xfer->len, DMA_TO_DEVICE,
1266 xfer->tx_sg_mapped = true;
1269 if (xfer->rx_buf != NULL) {
1270 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1271 xfer->rx_buf, xfer->len,
1272 DMA_FROM_DEVICE, attrs);
1274 spi_unmap_buf_attrs(ctlr, tx_dev,
1275 &xfer->tx_sg, DMA_TO_DEVICE,
1281 xfer->rx_sg_mapped = true;
1284 /* No transfer has been mapped, bail out with success */
1288 ctlr->cur_rx_dma_dev = rx_dev;
1289 ctlr->cur_tx_dma_dev = tx_dev;
1294 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1296 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1297 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1298 struct spi_transfer *xfer;
1300 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1301 /* The sync has already been done after each transfer. */
1302 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1304 if (xfer->rx_sg_mapped)
1305 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1306 DMA_FROM_DEVICE, attrs);
1307 xfer->rx_sg_mapped = false;
1309 if (xfer->tx_sg_mapped)
1310 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1311 DMA_TO_DEVICE, attrs);
1312 xfer->tx_sg_mapped = false;
1318 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1319 struct spi_transfer *xfer)
1321 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1322 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1324 if (xfer->tx_sg_mapped)
1325 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1326 if (xfer->rx_sg_mapped)
1327 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1330 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1331 struct spi_transfer *xfer)
1333 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1334 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1336 if (xfer->rx_sg_mapped)
1337 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1338 if (xfer->tx_sg_mapped)
1339 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1341 #else /* !CONFIG_HAS_DMA */
1342 static inline int __spi_map_msg(struct spi_controller *ctlr,
1343 struct spi_message *msg)
1348 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1349 struct spi_message *msg)
1354 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1355 struct spi_transfer *xfer)
1359 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1360 struct spi_transfer *xfer)
1363 #endif /* !CONFIG_HAS_DMA */
1365 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1366 struct spi_message *msg)
1368 struct spi_transfer *xfer;
1370 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1372 * Restore the original value of tx_buf or rx_buf if they are
1375 if (xfer->tx_buf == ctlr->dummy_tx)
1376 xfer->tx_buf = NULL;
1377 if (xfer->rx_buf == ctlr->dummy_rx)
1378 xfer->rx_buf = NULL;
1381 return __spi_unmap_msg(ctlr, msg);
1384 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1386 struct spi_transfer *xfer;
1388 unsigned int max_tx, max_rx;
1390 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1391 && !(msg->spi->mode & SPI_3WIRE)) {
1395 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1396 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1398 max_tx = max(xfer->len, max_tx);
1399 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1401 max_rx = max(xfer->len, max_rx);
1405 tmp = krealloc(ctlr->dummy_tx, max_tx,
1406 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1409 ctlr->dummy_tx = tmp;
1413 tmp = krealloc(ctlr->dummy_rx, max_rx,
1414 GFP_KERNEL | GFP_DMA);
1417 ctlr->dummy_rx = tmp;
1420 if (max_tx || max_rx) {
1421 list_for_each_entry(xfer, &msg->transfers,
1426 xfer->tx_buf = ctlr->dummy_tx;
1428 xfer->rx_buf = ctlr->dummy_rx;
1433 return __spi_map_msg(ctlr, msg);
1436 static int spi_transfer_wait(struct spi_controller *ctlr,
1437 struct spi_message *msg,
1438 struct spi_transfer *xfer)
1440 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1441 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1442 u32 speed_hz = xfer->speed_hz;
1443 unsigned long long ms;
1445 if (spi_controller_is_target(ctlr)) {
1446 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1447 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1455 * For each byte we wait for 8 cycles of the SPI clock.
1456 * Since speed is defined in Hz and we want milliseconds,
1457 * use respective multiplier, but before the division,
1458 * otherwise we may get 0 for short transfers.
1460 ms = 8LL * MSEC_PER_SEC * xfer->len;
1461 do_div(ms, speed_hz);
1464 * Increase it twice and add 200 ms tolerance, use
1465 * predefined maximum in case of overflow.
1471 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1472 msecs_to_jiffies(ms));
1475 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1476 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1477 dev_err(&msg->spi->dev,
1478 "SPI transfer timed out\n");
1482 if (xfer->error & SPI_TRANS_FAIL_IO)
1489 static void _spi_transfer_delay_ns(u32 ns)
1493 if (ns <= NSEC_PER_USEC) {
1496 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1501 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1505 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1507 u32 delay = _delay->value;
1508 u32 unit = _delay->unit;
1515 case SPI_DELAY_UNIT_USECS:
1516 delay *= NSEC_PER_USEC;
1518 case SPI_DELAY_UNIT_NSECS:
1519 /* Nothing to do here */
1521 case SPI_DELAY_UNIT_SCK:
1522 /* Clock cycles need to be obtained from spi_transfer */
1526 * If there is unknown effective speed, approximate it
1527 * by underestimating with half of the requested Hz.
1529 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1533 /* Convert delay to nanoseconds */
1534 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1542 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1544 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1553 delay = spi_delay_to_ns(_delay, xfer);
1557 _spi_transfer_delay_ns(delay);
1561 EXPORT_SYMBOL_GPL(spi_delay_exec);
1563 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1564 struct spi_transfer *xfer)
1566 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1567 u32 delay = xfer->cs_change_delay.value;
1568 u32 unit = xfer->cs_change_delay.unit;
1571 /* Return early on "fast" mode - for everything but USECS */
1573 if (unit == SPI_DELAY_UNIT_USECS)
1574 _spi_transfer_delay_ns(default_delay_ns);
1578 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1580 dev_err_once(&msg->spi->dev,
1581 "Use of unsupported delay unit %i, using default of %luus\n",
1582 unit, default_delay_ns / NSEC_PER_USEC);
1583 _spi_transfer_delay_ns(default_delay_ns);
1587 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1588 struct spi_transfer *xfer)
1590 _spi_transfer_cs_change_delay(msg, xfer);
1592 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1595 * spi_transfer_one_message - Default implementation of transfer_one_message()
1597 * This is a standard implementation of transfer_one_message() for
1598 * drivers which implement a transfer_one() operation. It provides
1599 * standard handling of delays and chip select management.
1601 static int spi_transfer_one_message(struct spi_controller *ctlr,
1602 struct spi_message *msg)
1604 struct spi_transfer *xfer;
1605 bool keep_cs = false;
1607 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1608 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1610 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1611 spi_set_cs(msg->spi, !xfer->cs_off, false);
1613 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1614 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1616 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1617 trace_spi_transfer_start(msg, xfer);
1619 spi_statistics_add_transfer_stats(statm, xfer, msg);
1620 spi_statistics_add_transfer_stats(stats, xfer, msg);
1622 if (!ctlr->ptp_sts_supported) {
1623 xfer->ptp_sts_word_pre = 0;
1624 ptp_read_system_prets(xfer->ptp_sts);
1627 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1628 reinit_completion(&ctlr->xfer_completion);
1631 spi_dma_sync_for_device(ctlr, xfer);
1632 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1634 spi_dma_sync_for_cpu(ctlr, xfer);
1636 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1637 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1638 __spi_unmap_msg(ctlr, msg);
1639 ctlr->fallback = true;
1640 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1644 SPI_STATISTICS_INCREMENT_FIELD(statm,
1646 SPI_STATISTICS_INCREMENT_FIELD(stats,
1648 dev_err(&msg->spi->dev,
1649 "SPI transfer failed: %d\n", ret);
1654 ret = spi_transfer_wait(ctlr, msg, xfer);
1659 spi_dma_sync_for_cpu(ctlr, xfer);
1662 dev_err(&msg->spi->dev,
1663 "Bufferless transfer has length %u\n",
1667 if (!ctlr->ptp_sts_supported) {
1668 ptp_read_system_postts(xfer->ptp_sts);
1669 xfer->ptp_sts_word_post = xfer->len;
1672 trace_spi_transfer_stop(msg, xfer);
1674 if (msg->status != -EINPROGRESS)
1677 spi_transfer_delay_exec(xfer);
1679 if (xfer->cs_change) {
1680 if (list_is_last(&xfer->transfer_list,
1685 spi_set_cs(msg->spi, false, false);
1686 _spi_transfer_cs_change_delay(msg, xfer);
1687 if (!list_next_entry(xfer, transfer_list)->cs_off)
1688 spi_set_cs(msg->spi, true, false);
1690 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1691 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1692 spi_set_cs(msg->spi, xfer->cs_off, false);
1695 msg->actual_length += xfer->len;
1699 if (ret != 0 || !keep_cs)
1700 spi_set_cs(msg->spi, false, false);
1702 if (msg->status == -EINPROGRESS)
1705 if (msg->status && ctlr->handle_err)
1706 ctlr->handle_err(ctlr, msg);
1708 spi_finalize_current_message(ctlr);
1714 * spi_finalize_current_transfer - report completion of a transfer
1715 * @ctlr: the controller reporting completion
1717 * Called by SPI drivers using the core transfer_one_message()
1718 * implementation to notify it that the current interrupt driven
1719 * transfer has finished and the next one may be scheduled.
1721 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1723 complete(&ctlr->xfer_completion);
1725 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1727 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1729 if (ctlr->auto_runtime_pm) {
1730 pm_runtime_mark_last_busy(ctlr->dev.parent);
1731 pm_runtime_put_autosuspend(ctlr->dev.parent);
1735 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1736 struct spi_message *msg, bool was_busy)
1738 struct spi_transfer *xfer;
1741 if (!was_busy && ctlr->auto_runtime_pm) {
1742 ret = pm_runtime_get_sync(ctlr->dev.parent);
1744 pm_runtime_put_noidle(ctlr->dev.parent);
1745 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1749 spi_finalize_current_message(ctlr);
1756 trace_spi_controller_busy(ctlr);
1758 if (!was_busy && ctlr->prepare_transfer_hardware) {
1759 ret = ctlr->prepare_transfer_hardware(ctlr);
1762 "failed to prepare transfer hardware: %d\n",
1765 if (ctlr->auto_runtime_pm)
1766 pm_runtime_put(ctlr->dev.parent);
1769 spi_finalize_current_message(ctlr);
1775 trace_spi_message_start(msg);
1777 if (ctlr->prepare_message) {
1778 ret = ctlr->prepare_message(ctlr, msg);
1780 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1783 spi_finalize_current_message(ctlr);
1786 msg->prepared = true;
1789 ret = spi_map_msg(ctlr, msg);
1792 spi_finalize_current_message(ctlr);
1796 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1797 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1798 xfer->ptp_sts_word_pre = 0;
1799 ptp_read_system_prets(xfer->ptp_sts);
1804 * Drivers implementation of transfer_one_message() must arrange for
1805 * spi_finalize_current_message() to get called. Most drivers will do
1806 * this in the calling context, but some don't. For those cases, a
1807 * completion is used to guarantee that this function does not return
1808 * until spi_finalize_current_message() is done accessing
1810 * Use of the following two flags enable to opportunistically skip the
1811 * use of the completion since its use involves expensive spin locks.
1812 * In case of a race with the context that calls
1813 * spi_finalize_current_message() the completion will always be used,
1814 * due to strict ordering of these flags using barriers.
1816 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1817 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1818 reinit_completion(&ctlr->cur_msg_completion);
1819 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1821 ret = ctlr->transfer_one_message(ctlr, msg);
1824 "failed to transfer one message from queue\n");
1828 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1829 smp_mb(); /* See spi_finalize_current_message()... */
1830 if (READ_ONCE(ctlr->cur_msg_incomplete))
1831 wait_for_completion(&ctlr->cur_msg_completion);
1837 * __spi_pump_messages - function which processes SPI message queue
1838 * @ctlr: controller to process queue for
1839 * @in_kthread: true if we are in the context of the message pump thread
1841 * This function checks if there is any SPI message in the queue that
1842 * needs processing and if so call out to the driver to initialize hardware
1843 * and transfer each message.
1845 * Note that it is called both from the kthread itself and also from
1846 * inside spi_sync(); the queue extraction handling at the top of the
1847 * function should deal with this safely.
1849 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1851 struct spi_message *msg;
1852 bool was_busy = false;
1853 unsigned long flags;
1856 /* Take the I/O mutex */
1857 mutex_lock(&ctlr->io_mutex);
1860 spin_lock_irqsave(&ctlr->queue_lock, flags);
1862 /* Make sure we are not already running a message */
1866 /* Check if the queue is idle */
1867 if (list_empty(&ctlr->queue) || !ctlr->running) {
1871 /* Defer any non-atomic teardown to the thread */
1873 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1874 !ctlr->unprepare_transfer_hardware) {
1875 spi_idle_runtime_pm(ctlr);
1877 ctlr->queue_empty = true;
1878 trace_spi_controller_idle(ctlr);
1880 kthread_queue_work(ctlr->kworker,
1881 &ctlr->pump_messages);
1887 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1889 kfree(ctlr->dummy_rx);
1890 ctlr->dummy_rx = NULL;
1891 kfree(ctlr->dummy_tx);
1892 ctlr->dummy_tx = NULL;
1893 if (ctlr->unprepare_transfer_hardware &&
1894 ctlr->unprepare_transfer_hardware(ctlr))
1896 "failed to unprepare transfer hardware\n");
1897 spi_idle_runtime_pm(ctlr);
1898 trace_spi_controller_idle(ctlr);
1900 spin_lock_irqsave(&ctlr->queue_lock, flags);
1901 ctlr->queue_empty = true;
1905 /* Extract head of queue */
1906 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1907 ctlr->cur_msg = msg;
1909 list_del_init(&msg->queue);
1914 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1916 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1917 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1919 ctlr->cur_msg = NULL;
1920 ctlr->fallback = false;
1922 mutex_unlock(&ctlr->io_mutex);
1924 /* Prod the scheduler in case transfer_one() was busy waiting */
1930 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1931 mutex_unlock(&ctlr->io_mutex);
1935 * spi_pump_messages - kthread work function which processes spi message queue
1936 * @work: pointer to kthread work struct contained in the controller struct
1938 static void spi_pump_messages(struct kthread_work *work)
1940 struct spi_controller *ctlr =
1941 container_of(work, struct spi_controller, pump_messages);
1943 __spi_pump_messages(ctlr, true);
1947 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1948 * @ctlr: Pointer to the spi_controller structure of the driver
1949 * @xfer: Pointer to the transfer being timestamped
1950 * @progress: How many words (not bytes) have been transferred so far
1951 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1952 * transfer, for less jitter in time measurement. Only compatible
1953 * with PIO drivers. If true, must follow up with
1954 * spi_take_timestamp_post or otherwise system will crash.
1955 * WARNING: for fully predictable results, the CPU frequency must
1956 * also be under control (governor).
1958 * This is a helper for drivers to collect the beginning of the TX timestamp
1959 * for the requested byte from the SPI transfer. The frequency with which this
1960 * function must be called (once per word, once for the whole transfer, once
1961 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1962 * greater than or equal to the requested byte at the time of the call. The
1963 * timestamp is only taken once, at the first such call. It is assumed that
1964 * the driver advances its @tx buffer pointer monotonically.
1966 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1967 struct spi_transfer *xfer,
1968 size_t progress, bool irqs_off)
1973 if (xfer->timestamped)
1976 if (progress > xfer->ptp_sts_word_pre)
1979 /* Capture the resolution of the timestamp */
1980 xfer->ptp_sts_word_pre = progress;
1983 local_irq_save(ctlr->irq_flags);
1987 ptp_read_system_prets(xfer->ptp_sts);
1989 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1992 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1993 * @ctlr: Pointer to the spi_controller structure of the driver
1994 * @xfer: Pointer to the transfer being timestamped
1995 * @progress: How many words (not bytes) have been transferred so far
1996 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1998 * This is a helper for drivers to collect the end of the TX timestamp for
1999 * the requested byte from the SPI transfer. Can be called with an arbitrary
2000 * frequency: only the first call where @tx exceeds or is equal to the
2001 * requested word will be timestamped.
2003 void spi_take_timestamp_post(struct spi_controller *ctlr,
2004 struct spi_transfer *xfer,
2005 size_t progress, bool irqs_off)
2010 if (xfer->timestamped)
2013 if (progress < xfer->ptp_sts_word_post)
2016 ptp_read_system_postts(xfer->ptp_sts);
2019 local_irq_restore(ctlr->irq_flags);
2023 /* Capture the resolution of the timestamp */
2024 xfer->ptp_sts_word_post = progress;
2026 xfer->timestamped = 1;
2028 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2031 * spi_set_thread_rt - set the controller to pump at realtime priority
2032 * @ctlr: controller to boost priority of
2034 * This can be called because the controller requested realtime priority
2035 * (by setting the ->rt value before calling spi_register_controller()) or
2036 * because a device on the bus said that its transfers needed realtime
2039 * NOTE: at the moment if any device on a bus says it needs realtime then
2040 * the thread will be at realtime priority for all transfers on that
2041 * controller. If this eventually becomes a problem we may see if we can
2042 * find a way to boost the priority only temporarily during relevant
2045 static void spi_set_thread_rt(struct spi_controller *ctlr)
2047 dev_info(&ctlr->dev,
2048 "will run message pump with realtime priority\n");
2049 sched_set_fifo(ctlr->kworker->task);
2052 static int spi_init_queue(struct spi_controller *ctlr)
2054 ctlr->running = false;
2056 ctlr->queue_empty = true;
2058 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev));
2059 if (IS_ERR(ctlr->kworker)) {
2060 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2061 return PTR_ERR(ctlr->kworker);
2064 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2067 * Controller config will indicate if this controller should run the
2068 * message pump with high (realtime) priority to reduce the transfer
2069 * latency on the bus by minimising the delay between a transfer
2070 * request and the scheduling of the message pump thread. Without this
2071 * setting the message pump thread will remain at default priority.
2074 spi_set_thread_rt(ctlr);
2080 * spi_get_next_queued_message() - called by driver to check for queued
2082 * @ctlr: the controller to check for queued messages
2084 * If there are more messages in the queue, the next message is returned from
2087 * Return: the next message in the queue, else NULL if the queue is empty.
2089 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2091 struct spi_message *next;
2092 unsigned long flags;
2094 /* Get a pointer to the next message, if any */
2095 spin_lock_irqsave(&ctlr->queue_lock, flags);
2096 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2098 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2102 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2105 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2106 * and spi_maybe_unoptimize_message()
2107 * @msg: the message to unoptimize
2109 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2110 * core should use spi_maybe_unoptimize_message() rather than calling this
2111 * function directly.
2113 * It is not valid to call this on a message that is not currently optimized.
2115 static void __spi_unoptimize_message(struct spi_message *msg)
2117 struct spi_controller *ctlr = msg->spi->controller;
2119 if (ctlr->unoptimize_message)
2120 ctlr->unoptimize_message(msg);
2122 spi_res_release(ctlr, msg);
2124 msg->optimized = false;
2125 msg->opt_state = NULL;
2129 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2130 * @msg: the message to unoptimize
2132 * This function is used to unoptimize a message if and only if it was
2133 * optimized by the core (via spi_maybe_optimize_message()).
2135 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2137 if (!msg->pre_optimized && msg->optimized &&
2138 !msg->spi->controller->defer_optimize_message)
2139 __spi_unoptimize_message(msg);
2143 * spi_finalize_current_message() - the current message is complete
2144 * @ctlr: the controller to return the message to
2146 * Called by the driver to notify the core that the message in the front of the
2147 * queue is complete and can be removed from the queue.
2149 void spi_finalize_current_message(struct spi_controller *ctlr)
2151 struct spi_transfer *xfer;
2152 struct spi_message *mesg;
2155 mesg = ctlr->cur_msg;
2157 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2158 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2159 ptp_read_system_postts(xfer->ptp_sts);
2160 xfer->ptp_sts_word_post = xfer->len;
2164 if (unlikely(ctlr->ptp_sts_supported))
2165 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2166 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2168 spi_unmap_msg(ctlr, mesg);
2170 if (mesg->prepared && ctlr->unprepare_message) {
2171 ret = ctlr->unprepare_message(ctlr, mesg);
2173 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2178 mesg->prepared = false;
2180 spi_maybe_unoptimize_message(mesg);
2182 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2183 smp_mb(); /* See __spi_pump_transfer_message()... */
2184 if (READ_ONCE(ctlr->cur_msg_need_completion))
2185 complete(&ctlr->cur_msg_completion);
2187 trace_spi_message_done(mesg);
2191 mesg->complete(mesg->context);
2193 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2195 static int spi_start_queue(struct spi_controller *ctlr)
2197 unsigned long flags;
2199 spin_lock_irqsave(&ctlr->queue_lock, flags);
2201 if (ctlr->running || ctlr->busy) {
2202 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2206 ctlr->running = true;
2207 ctlr->cur_msg = NULL;
2208 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2210 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2215 static int spi_stop_queue(struct spi_controller *ctlr)
2217 unsigned int limit = 500;
2218 unsigned long flags;
2221 * This is a bit lame, but is optimized for the common execution path.
2222 * A wait_queue on the ctlr->busy could be used, but then the common
2223 * execution path (pump_messages) would be required to call wake_up or
2224 * friends on every SPI message. Do this instead.
2227 spin_lock_irqsave(&ctlr->queue_lock, flags);
2228 if (list_empty(&ctlr->queue) && !ctlr->busy) {
2229 ctlr->running = false;
2230 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2233 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2234 usleep_range(10000, 11000);
2240 static int spi_destroy_queue(struct spi_controller *ctlr)
2244 ret = spi_stop_queue(ctlr);
2247 * kthread_flush_worker will block until all work is done.
2248 * If the reason that stop_queue timed out is that the work will never
2249 * finish, then it does no good to call flush/stop thread, so
2253 dev_err(&ctlr->dev, "problem destroying queue\n");
2257 kthread_destroy_worker(ctlr->kworker);
2262 static int __spi_queued_transfer(struct spi_device *spi,
2263 struct spi_message *msg,
2266 struct spi_controller *ctlr = spi->controller;
2267 unsigned long flags;
2269 spin_lock_irqsave(&ctlr->queue_lock, flags);
2271 if (!ctlr->running) {
2272 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2275 msg->actual_length = 0;
2276 msg->status = -EINPROGRESS;
2278 list_add_tail(&msg->queue, &ctlr->queue);
2279 ctlr->queue_empty = false;
2280 if (!ctlr->busy && need_pump)
2281 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2283 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2288 * spi_queued_transfer - transfer function for queued transfers
2289 * @spi: SPI device which is requesting transfer
2290 * @msg: SPI message which is to handled is queued to driver queue
2292 * Return: zero on success, else a negative error code.
2294 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2296 return __spi_queued_transfer(spi, msg, true);
2299 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2303 ctlr->transfer = spi_queued_transfer;
2304 if (!ctlr->transfer_one_message)
2305 ctlr->transfer_one_message = spi_transfer_one_message;
2307 /* Initialize and start queue */
2308 ret = spi_init_queue(ctlr);
2310 dev_err(&ctlr->dev, "problem initializing queue\n");
2311 goto err_init_queue;
2313 ctlr->queued = true;
2314 ret = spi_start_queue(ctlr);
2316 dev_err(&ctlr->dev, "problem starting queue\n");
2317 goto err_start_queue;
2323 spi_destroy_queue(ctlr);
2329 * spi_flush_queue - Send all pending messages in the queue from the callers'
2331 * @ctlr: controller to process queue for
2333 * This should be used when one wants to ensure all pending messages have been
2334 * sent before doing something. Is used by the spi-mem code to make sure SPI
2335 * memory operations do not preempt regular SPI transfers that have been queued
2336 * before the spi-mem operation.
2338 void spi_flush_queue(struct spi_controller *ctlr)
2340 if (ctlr->transfer == spi_queued_transfer)
2341 __spi_pump_messages(ctlr, false);
2344 /*-------------------------------------------------------------------------*/
2346 #if defined(CONFIG_OF)
2347 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2348 struct spi_delay *delay, const char *prop)
2352 if (!of_property_read_u32(nc, prop, &value)) {
2353 if (value > U16_MAX) {
2354 delay->value = DIV_ROUND_UP(value, 1000);
2355 delay->unit = SPI_DELAY_UNIT_USECS;
2357 delay->value = value;
2358 delay->unit = SPI_DELAY_UNIT_NSECS;
2363 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2364 struct device_node *nc)
2366 u32 value, cs[SPI_CS_CNT_MAX];
2369 /* Mode (clock phase/polarity/etc.) */
2370 if (of_property_read_bool(nc, "spi-cpha"))
2371 spi->mode |= SPI_CPHA;
2372 if (of_property_read_bool(nc, "spi-cpol"))
2373 spi->mode |= SPI_CPOL;
2374 if (of_property_read_bool(nc, "spi-3wire"))
2375 spi->mode |= SPI_3WIRE;
2376 if (of_property_read_bool(nc, "spi-lsb-first"))
2377 spi->mode |= SPI_LSB_FIRST;
2378 if (of_property_read_bool(nc, "spi-cs-high"))
2379 spi->mode |= SPI_CS_HIGH;
2381 /* Device DUAL/QUAD mode */
2382 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2385 spi->mode |= SPI_NO_TX;
2390 spi->mode |= SPI_TX_DUAL;
2393 spi->mode |= SPI_TX_QUAD;
2396 spi->mode |= SPI_TX_OCTAL;
2399 dev_warn(&ctlr->dev,
2400 "spi-tx-bus-width %d not supported\n",
2406 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2409 spi->mode |= SPI_NO_RX;
2414 spi->mode |= SPI_RX_DUAL;
2417 spi->mode |= SPI_RX_QUAD;
2420 spi->mode |= SPI_RX_OCTAL;
2423 dev_warn(&ctlr->dev,
2424 "spi-rx-bus-width %d not supported\n",
2430 if (spi_controller_is_target(ctlr)) {
2431 if (!of_node_name_eq(nc, "slave")) {
2432 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2439 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2440 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2444 spi_set_all_cs_unused(spi);
2446 /* Device address */
2447 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2450 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2454 if (rc > ctlr->num_chipselect) {
2455 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2459 if ((of_property_present(nc, "parallel-memories")) &&
2460 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2461 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2464 for (idx = 0; idx < rc; idx++)
2465 spi_set_chipselect(spi, idx, cs[idx]);
2468 * By default spi->chip_select[0] will hold the physical CS number,
2469 * so set bit 0 in spi->cs_index_mask.
2471 spi->cs_index_mask = BIT(0);
2474 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2475 spi->max_speed_hz = value;
2477 /* Device CS delays */
2478 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2479 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2480 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2485 static struct spi_device *
2486 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2488 struct spi_device *spi;
2491 /* Alloc an spi_device */
2492 spi = spi_alloc_device(ctlr);
2494 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2499 /* Select device driver */
2500 rc = of_alias_from_compatible(nc, spi->modalias,
2501 sizeof(spi->modalias));
2503 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2507 rc = of_spi_parse_dt(ctlr, spi, nc);
2511 /* Store a pointer to the node in the device structure */
2514 device_set_node(&spi->dev, of_fwnode_handle(nc));
2516 /* Register the new device */
2517 rc = spi_add_device(spi);
2519 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2520 goto err_of_node_put;
2533 * of_register_spi_devices() - Register child devices onto the SPI bus
2534 * @ctlr: Pointer to spi_controller device
2536 * Registers an spi_device for each child node of controller node which
2537 * represents a valid SPI slave.
2539 static void of_register_spi_devices(struct spi_controller *ctlr)
2541 struct spi_device *spi;
2542 struct device_node *nc;
2544 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2545 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2547 spi = of_register_spi_device(ctlr, nc);
2549 dev_warn(&ctlr->dev,
2550 "Failed to create SPI device for %pOF\n", nc);
2551 of_node_clear_flag(nc, OF_POPULATED);
2556 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2560 * spi_new_ancillary_device() - Register ancillary SPI device
2561 * @spi: Pointer to the main SPI device registering the ancillary device
2562 * @chip_select: Chip Select of the ancillary device
2564 * Register an ancillary SPI device; for example some chips have a chip-select
2565 * for normal device usage and another one for setup/firmware upload.
2567 * This may only be called from main SPI device's probe routine.
2569 * Return: 0 on success; negative errno on failure
2571 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2574 struct spi_controller *ctlr = spi->controller;
2575 struct spi_device *ancillary;
2578 /* Alloc an spi_device */
2579 ancillary = spi_alloc_device(ctlr);
2585 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2587 /* Use provided chip-select for ancillary device */
2588 spi_set_all_cs_unused(ancillary);
2589 spi_set_chipselect(ancillary, 0, chip_select);
2591 /* Take over SPI mode/speed from SPI main device */
2592 ancillary->max_speed_hz = spi->max_speed_hz;
2593 ancillary->mode = spi->mode;
2595 * By default spi->chip_select[0] will hold the physical CS number,
2596 * so set bit 0 in spi->cs_index_mask.
2598 ancillary->cs_index_mask = BIT(0);
2600 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2602 /* Register the new device */
2603 rc = __spi_add_device(ancillary);
2605 dev_err(&spi->dev, "failed to register ancillary device\n");
2612 spi_dev_put(ancillary);
2615 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2618 struct acpi_spi_lookup {
2619 struct spi_controller *ctlr;
2629 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2631 struct acpi_resource_spi_serialbus *sb;
2634 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2637 sb = &ares->data.spi_serial_bus;
2638 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2641 *count = *count + 1;
2647 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2648 * @adev: ACPI device
2650 * Return: the number of SpiSerialBus resources in the ACPI-device's
2651 * resource-list; or a negative error code.
2653 int acpi_spi_count_resources(struct acpi_device *adev)
2659 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2663 acpi_dev_free_resource_list(&r);
2667 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2669 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2670 struct acpi_spi_lookup *lookup)
2672 const union acpi_object *obj;
2674 if (!x86_apple_machine)
2677 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2678 && obj->buffer.length >= 4)
2679 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2681 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2682 && obj->buffer.length == 8)
2683 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2685 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2686 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2687 lookup->mode |= SPI_LSB_FIRST;
2689 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2690 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2691 lookup->mode |= SPI_CPOL;
2693 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2694 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2695 lookup->mode |= SPI_CPHA;
2698 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2700 struct acpi_spi_lookup *lookup = data;
2701 struct spi_controller *ctlr = lookup->ctlr;
2703 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2704 struct acpi_resource_spi_serialbus *sb;
2705 acpi_handle parent_handle;
2708 sb = &ares->data.spi_serial_bus;
2709 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2711 if (lookup->index != -1 && lookup->n++ != lookup->index)
2714 status = acpi_get_handle(NULL,
2715 sb->resource_source.string_ptr,
2718 if (ACPI_FAILURE(status))
2722 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2725 struct acpi_device *adev;
2727 adev = acpi_fetch_acpi_dev(parent_handle);
2731 ctlr = acpi_spi_find_controller_by_adev(adev);
2733 return -EPROBE_DEFER;
2735 lookup->ctlr = ctlr;
2739 * ACPI DeviceSelection numbering is handled by the
2740 * host controller driver in Windows and can vary
2741 * from driver to driver. In Linux we always expect
2742 * 0 .. max - 1 so we need to ask the driver to
2743 * translate between the two schemes.
2745 if (ctlr->fw_translate_cs) {
2746 int cs = ctlr->fw_translate_cs(ctlr,
2747 sb->device_selection);
2750 lookup->chip_select = cs;
2752 lookup->chip_select = sb->device_selection;
2755 lookup->max_speed_hz = sb->connection_speed;
2756 lookup->bits_per_word = sb->data_bit_length;
2758 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2759 lookup->mode |= SPI_CPHA;
2760 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2761 lookup->mode |= SPI_CPOL;
2762 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2763 lookup->mode |= SPI_CS_HIGH;
2765 } else if (lookup->irq < 0) {
2768 if (acpi_dev_resource_interrupt(ares, 0, &r))
2769 lookup->irq = r.start;
2772 /* Always tell the ACPI core to skip this resource */
2777 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2778 * @ctlr: controller to which the spi device belongs
2779 * @adev: ACPI Device for the spi device
2780 * @index: Index of the spi resource inside the ACPI Node
2782 * This should be used to allocate a new SPI device from and ACPI Device node.
2783 * The caller is responsible for calling spi_add_device to register the SPI device.
2785 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2786 * using the resource.
2787 * If index is set to -1, index is not used.
2788 * Note: If index is -1, ctlr must be set.
2790 * Return: a pointer to the new device, or ERR_PTR on error.
2792 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2793 struct acpi_device *adev,
2796 acpi_handle parent_handle = NULL;
2797 struct list_head resource_list;
2798 struct acpi_spi_lookup lookup = {};
2799 struct spi_device *spi;
2802 if (!ctlr && index == -1)
2803 return ERR_PTR(-EINVAL);
2807 lookup.index = index;
2810 INIT_LIST_HEAD(&resource_list);
2811 ret = acpi_dev_get_resources(adev, &resource_list,
2812 acpi_spi_add_resource, &lookup);
2813 acpi_dev_free_resource_list(&resource_list);
2816 /* Found SPI in _CRS but it points to another controller */
2817 return ERR_PTR(ret);
2819 if (!lookup.max_speed_hz &&
2820 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2821 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2822 /* Apple does not use _CRS but nested devices for SPI slaves */
2823 acpi_spi_parse_apple_properties(adev, &lookup);
2826 if (!lookup.max_speed_hz)
2827 return ERR_PTR(-ENODEV);
2829 spi = spi_alloc_device(lookup.ctlr);
2831 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2832 dev_name(&adev->dev));
2833 return ERR_PTR(-ENOMEM);
2836 spi_set_all_cs_unused(spi);
2837 spi_set_chipselect(spi, 0, lookup.chip_select);
2839 ACPI_COMPANION_SET(&spi->dev, adev);
2840 spi->max_speed_hz = lookup.max_speed_hz;
2841 spi->mode |= lookup.mode;
2842 spi->irq = lookup.irq;
2843 spi->bits_per_word = lookup.bits_per_word;
2845 * By default spi->chip_select[0] will hold the physical CS number,
2846 * so set bit 0 in spi->cs_index_mask.
2848 spi->cs_index_mask = BIT(0);
2852 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2854 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2855 struct acpi_device *adev)
2857 struct spi_device *spi;
2859 if (acpi_bus_get_status(adev) || !adev->status.present ||
2860 acpi_device_enumerated(adev))
2863 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2865 if (PTR_ERR(spi) == -ENOMEM)
2866 return AE_NO_MEMORY;
2871 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2872 sizeof(spi->modalias));
2874 acpi_device_set_enumerated(adev);
2876 adev->power.flags.ignore_parent = true;
2877 if (spi_add_device(spi)) {
2878 adev->power.flags.ignore_parent = false;
2879 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2880 dev_name(&adev->dev));
2887 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2888 void *data, void **return_value)
2890 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2891 struct spi_controller *ctlr = data;
2896 return acpi_register_spi_device(ctlr, adev);
2899 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2901 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2906 handle = ACPI_HANDLE(ctlr->dev.parent);
2910 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2911 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2912 acpi_spi_add_device, NULL, ctlr, NULL);
2913 if (ACPI_FAILURE(status))
2914 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2917 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2918 #endif /* CONFIG_ACPI */
2920 static void spi_controller_release(struct device *dev)
2922 struct spi_controller *ctlr;
2924 ctlr = container_of(dev, struct spi_controller, dev);
2928 static const struct class spi_master_class = {
2929 .name = "spi_master",
2930 .dev_release = spi_controller_release,
2931 .dev_groups = spi_master_groups,
2934 #ifdef CONFIG_SPI_SLAVE
2936 * spi_target_abort - abort the ongoing transfer request on an SPI slave
2938 * @spi: device used for the current transfer
2940 int spi_target_abort(struct spi_device *spi)
2942 struct spi_controller *ctlr = spi->controller;
2944 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2945 return ctlr->target_abort(ctlr);
2949 EXPORT_SYMBOL_GPL(spi_target_abort);
2951 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2954 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2956 struct device *child;
2958 child = device_find_any_child(&ctlr->dev);
2959 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2962 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2963 const char *buf, size_t count)
2965 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2967 struct spi_device *spi;
2968 struct device *child;
2972 rc = sscanf(buf, "%31s", name);
2973 if (rc != 1 || !name[0])
2976 child = device_find_any_child(&ctlr->dev);
2978 /* Remove registered slave */
2979 device_unregister(child);
2983 if (strcmp(name, "(null)")) {
2984 /* Register new slave */
2985 spi = spi_alloc_device(ctlr);
2989 strscpy(spi->modalias, name, sizeof(spi->modalias));
2991 rc = spi_add_device(spi);
3001 static DEVICE_ATTR_RW(slave);
3003 static struct attribute *spi_slave_attrs[] = {
3004 &dev_attr_slave.attr,
3008 static const struct attribute_group spi_slave_group = {
3009 .attrs = spi_slave_attrs,
3012 static const struct attribute_group *spi_slave_groups[] = {
3013 &spi_controller_statistics_group,
3018 static const struct class spi_slave_class = {
3019 .name = "spi_slave",
3020 .dev_release = spi_controller_release,
3021 .dev_groups = spi_slave_groups,
3024 extern struct class spi_slave_class; /* dummy */
3028 * __spi_alloc_controller - allocate an SPI master or slave controller
3029 * @dev: the controller, possibly using the platform_bus
3030 * @size: how much zeroed driver-private data to allocate; the pointer to this
3031 * memory is in the driver_data field of the returned device, accessible
3032 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3033 * drivers granting DMA access to portions of their private data need to
3034 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3035 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3036 * slave (true) controller
3037 * Context: can sleep
3039 * This call is used only by SPI controller drivers, which are the
3040 * only ones directly touching chip registers. It's how they allocate
3041 * an spi_controller structure, prior to calling spi_register_controller().
3043 * This must be called from context that can sleep.
3045 * The caller is responsible for assigning the bus number and initializing the
3046 * controller's methods before calling spi_register_controller(); and (after
3047 * errors adding the device) calling spi_controller_put() to prevent a memory
3050 * Return: the SPI controller structure on success, else NULL.
3052 struct spi_controller *__spi_alloc_controller(struct device *dev,
3053 unsigned int size, bool slave)
3055 struct spi_controller *ctlr;
3056 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3061 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3065 device_initialize(&ctlr->dev);
3066 INIT_LIST_HEAD(&ctlr->queue);
3067 spin_lock_init(&ctlr->queue_lock);
3068 spin_lock_init(&ctlr->bus_lock_spinlock);
3069 mutex_init(&ctlr->bus_lock_mutex);
3070 mutex_init(&ctlr->io_mutex);
3071 mutex_init(&ctlr->add_lock);
3073 ctlr->num_chipselect = 1;
3074 ctlr->slave = slave;
3075 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3076 ctlr->dev.class = &spi_slave_class;
3078 ctlr->dev.class = &spi_master_class;
3079 ctlr->dev.parent = dev;
3080 pm_suspend_ignore_children(&ctlr->dev, true);
3081 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3085 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3087 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3089 spi_controller_put(*(struct spi_controller **)ctlr);
3093 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3094 * @dev: physical device of SPI controller
3095 * @size: how much zeroed driver-private data to allocate
3096 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3097 * Context: can sleep
3099 * Allocate an SPI controller and automatically release a reference on it
3100 * when @dev is unbound from its driver. Drivers are thus relieved from
3101 * having to call spi_controller_put().
3103 * The arguments to this function are identical to __spi_alloc_controller().
3105 * Return: the SPI controller structure on success, else NULL.
3107 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3111 struct spi_controller **ptr, *ctlr;
3113 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3118 ctlr = __spi_alloc_controller(dev, size, slave);
3120 ctlr->devm_allocated = true;
3122 devres_add(dev, ptr);
3129 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3132 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3133 * @ctlr: The SPI master to grab GPIO descriptors for
3135 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3138 struct gpio_desc **cs;
3139 struct device *dev = &ctlr->dev;
3140 unsigned long native_cs_mask = 0;
3141 unsigned int num_cs_gpios = 0;
3143 nb = gpiod_count(dev, "cs");
3145 /* No GPIOs at all is fine, else return the error */
3151 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3153 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3157 ctlr->cs_gpiods = cs;
3159 for (i = 0; i < nb; i++) {
3161 * Most chipselects are active low, the inverted
3162 * semantics are handled by special quirks in gpiolib,
3163 * so initializing them GPIOD_OUT_LOW here means
3164 * "unasserted", in most cases this will drive the physical
3167 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3170 return PTR_ERR(cs[i]);
3174 * If we find a CS GPIO, name it after the device and
3179 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3183 gpiod_set_consumer_name(cs[i], gpioname);
3188 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3189 dev_err(dev, "Invalid native chip select %d\n", i);
3192 native_cs_mask |= BIT(i);
3195 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3197 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3198 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3199 dev_err(dev, "No unused native chip select available\n");
3206 static int spi_controller_check_ops(struct spi_controller *ctlr)
3209 * The controller may implement only the high-level SPI-memory like
3210 * operations if it does not support regular SPI transfers, and this is
3212 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3213 * one of the ->transfer_xxx() method be implemented.
3215 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3216 if (!ctlr->transfer && !ctlr->transfer_one &&
3217 !ctlr->transfer_one_message) {
3225 /* Allocate dynamic bus number using Linux idr */
3226 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3230 mutex_lock(&board_lock);
3231 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3232 mutex_unlock(&board_lock);
3233 if (WARN(id < 0, "couldn't get idr"))
3234 return id == -ENOSPC ? -EBUSY : id;
3240 * spi_register_controller - register SPI host or target controller
3241 * @ctlr: initialized controller, originally from spi_alloc_host() or
3242 * spi_alloc_target()
3243 * Context: can sleep
3245 * SPI controllers connect to their drivers using some non-SPI bus,
3246 * such as the platform bus. The final stage of probe() in that code
3247 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3249 * SPI controllers use board specific (often SOC specific) bus numbers,
3250 * and board-specific addressing for SPI devices combines those numbers
3251 * with chip select numbers. Since SPI does not directly support dynamic
3252 * device identification, boards need configuration tables telling which
3253 * chip is at which address.
3255 * This must be called from context that can sleep. It returns zero on
3256 * success, else a negative error code (dropping the controller's refcount).
3257 * After a successful return, the caller is responsible for calling
3258 * spi_unregister_controller().
3260 * Return: zero on success, else a negative error code.
3262 int spi_register_controller(struct spi_controller *ctlr)
3264 struct device *dev = ctlr->dev.parent;
3265 struct boardinfo *bi;
3274 * Make sure all necessary hooks are implemented before registering
3275 * the SPI controller.
3277 status = spi_controller_check_ops(ctlr);
3281 if (ctlr->bus_num < 0)
3282 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3283 if (ctlr->bus_num >= 0) {
3284 /* Devices with a fixed bus num must check-in with the num */
3285 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3289 if (ctlr->bus_num < 0) {
3290 first_dynamic = of_alias_get_highest_id("spi");
3291 if (first_dynamic < 0)
3296 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3300 ctlr->bus_lock_flag = 0;
3301 init_completion(&ctlr->xfer_completion);
3302 init_completion(&ctlr->cur_msg_completion);
3303 if (!ctlr->max_dma_len)
3304 ctlr->max_dma_len = INT_MAX;
3307 * Register the device, then userspace will see it.
3308 * Registration fails if the bus ID is in use.
3310 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3312 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3313 status = spi_get_gpio_descs(ctlr);
3317 * A controller using GPIO descriptors always
3318 * supports SPI_CS_HIGH if need be.
3320 ctlr->mode_bits |= SPI_CS_HIGH;
3324 * Even if it's just one always-selected device, there must
3325 * be at least one chipselect.
3327 if (!ctlr->num_chipselect) {
3332 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3333 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3334 ctlr->last_cs[idx] = SPI_INVALID_CS;
3336 status = device_add(&ctlr->dev);
3339 dev_dbg(dev, "registered %s %s\n",
3340 spi_controller_is_target(ctlr) ? "target" : "host",
3341 dev_name(&ctlr->dev));
3344 * If we're using a queued driver, start the queue. Note that we don't
3345 * need the queueing logic if the driver is only supporting high-level
3346 * memory operations.
3348 if (ctlr->transfer) {
3349 dev_info(dev, "controller is unqueued, this is deprecated\n");
3350 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3351 status = spi_controller_initialize_queue(ctlr);
3353 device_del(&ctlr->dev);
3357 /* Add statistics */
3358 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3359 if (!ctlr->pcpu_statistics) {
3360 dev_err(dev, "Error allocating per-cpu statistics\n");
3365 mutex_lock(&board_lock);
3366 list_add_tail(&ctlr->list, &spi_controller_list);
3367 list_for_each_entry(bi, &board_list, list)
3368 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3369 mutex_unlock(&board_lock);
3371 /* Register devices from the device tree and ACPI */
3372 of_register_spi_devices(ctlr);
3373 acpi_register_spi_devices(ctlr);
3377 spi_destroy_queue(ctlr);
3379 mutex_lock(&board_lock);
3380 idr_remove(&spi_master_idr, ctlr->bus_num);
3381 mutex_unlock(&board_lock);
3384 EXPORT_SYMBOL_GPL(spi_register_controller);
3386 static void devm_spi_unregister(struct device *dev, void *res)
3388 spi_unregister_controller(*(struct spi_controller **)res);
3392 * devm_spi_register_controller - register managed SPI host or target
3394 * @dev: device managing SPI controller
3395 * @ctlr: initialized controller, originally from spi_alloc_host() or
3396 * spi_alloc_target()
3397 * Context: can sleep
3399 * Register a SPI device as with spi_register_controller() which will
3400 * automatically be unregistered and freed.
3402 * Return: zero on success, else a negative error code.
3404 int devm_spi_register_controller(struct device *dev,
3405 struct spi_controller *ctlr)
3407 struct spi_controller **ptr;
3410 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3414 ret = spi_register_controller(ctlr);
3417 devres_add(dev, ptr);
3424 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3426 static int __unregister(struct device *dev, void *null)
3428 spi_unregister_device(to_spi_device(dev));
3433 * spi_unregister_controller - unregister SPI master or slave controller
3434 * @ctlr: the controller being unregistered
3435 * Context: can sleep
3437 * This call is used only by SPI controller drivers, which are the
3438 * only ones directly touching chip registers.
3440 * This must be called from context that can sleep.
3442 * Note that this function also drops a reference to the controller.
3444 void spi_unregister_controller(struct spi_controller *ctlr)
3446 struct spi_controller *found;
3447 int id = ctlr->bus_num;
3449 /* Prevent addition of new devices, unregister existing ones */
3450 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3451 mutex_lock(&ctlr->add_lock);
3453 device_for_each_child(&ctlr->dev, NULL, __unregister);
3455 /* First make sure that this controller was ever added */
3456 mutex_lock(&board_lock);
3457 found = idr_find(&spi_master_idr, id);
3458 mutex_unlock(&board_lock);
3460 if (spi_destroy_queue(ctlr))
3461 dev_err(&ctlr->dev, "queue remove failed\n");
3463 mutex_lock(&board_lock);
3464 list_del(&ctlr->list);
3465 mutex_unlock(&board_lock);
3467 device_del(&ctlr->dev);
3470 mutex_lock(&board_lock);
3472 idr_remove(&spi_master_idr, id);
3473 mutex_unlock(&board_lock);
3475 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3476 mutex_unlock(&ctlr->add_lock);
3479 * Release the last reference on the controller if its driver
3480 * has not yet been converted to devm_spi_alloc_host/target().
3482 if (!ctlr->devm_allocated)
3483 put_device(&ctlr->dev);
3485 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3487 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3489 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3492 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3494 mutex_lock(&ctlr->bus_lock_mutex);
3495 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3496 mutex_unlock(&ctlr->bus_lock_mutex);
3499 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3501 mutex_lock(&ctlr->bus_lock_mutex);
3502 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3503 mutex_unlock(&ctlr->bus_lock_mutex);
3506 int spi_controller_suspend(struct spi_controller *ctlr)
3510 /* Basically no-ops for non-queued controllers */
3512 ret = spi_stop_queue(ctlr);
3514 dev_err(&ctlr->dev, "queue stop failed\n");
3517 __spi_mark_suspended(ctlr);
3520 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3522 int spi_controller_resume(struct spi_controller *ctlr)
3526 __spi_mark_resumed(ctlr);
3529 ret = spi_start_queue(ctlr);
3531 dev_err(&ctlr->dev, "queue restart failed\n");
3535 EXPORT_SYMBOL_GPL(spi_controller_resume);
3537 /*-------------------------------------------------------------------------*/
3539 /* Core methods for spi_message alterations */
3541 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3542 struct spi_message *msg,
3545 struct spi_replaced_transfers *rxfer = res;
3548 /* Call extra callback if requested */
3550 rxfer->release(ctlr, msg, res);
3552 /* Insert replaced transfers back into the message */
3553 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3555 /* Remove the formerly inserted entries */
3556 for (i = 0; i < rxfer->inserted; i++)
3557 list_del(&rxfer->inserted_transfers[i].transfer_list);
3561 * spi_replace_transfers - replace transfers with several transfers
3562 * and register change with spi_message.resources
3563 * @msg: the spi_message we work upon
3564 * @xfer_first: the first spi_transfer we want to replace
3565 * @remove: number of transfers to remove
3566 * @insert: the number of transfers we want to insert instead
3567 * @release: extra release code necessary in some circumstances
3568 * @extradatasize: extra data to allocate (with alignment guarantees
3569 * of struct @spi_transfer)
3572 * Returns: pointer to @spi_replaced_transfers,
3573 * PTR_ERR(...) in case of errors.
3575 static struct spi_replaced_transfers *spi_replace_transfers(
3576 struct spi_message *msg,
3577 struct spi_transfer *xfer_first,
3580 spi_replaced_release_t release,
3581 size_t extradatasize,
3584 struct spi_replaced_transfers *rxfer;
3585 struct spi_transfer *xfer;
3588 /* Allocate the structure using spi_res */
3589 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3590 struct_size(rxfer, inserted_transfers, insert)
3594 return ERR_PTR(-ENOMEM);
3596 /* The release code to invoke before running the generic release */
3597 rxfer->release = release;
3599 /* Assign extradata */
3602 &rxfer->inserted_transfers[insert];
3604 /* Init the replaced_transfers list */
3605 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3608 * Assign the list_entry after which we should reinsert
3609 * the @replaced_transfers - it may be spi_message.messages!
3611 rxfer->replaced_after = xfer_first->transfer_list.prev;
3613 /* Remove the requested number of transfers */
3614 for (i = 0; i < remove; i++) {
3616 * If the entry after replaced_after it is msg->transfers
3617 * then we have been requested to remove more transfers
3618 * than are in the list.
3620 if (rxfer->replaced_after->next == &msg->transfers) {
3621 dev_err(&msg->spi->dev,
3622 "requested to remove more spi_transfers than are available\n");
3623 /* Insert replaced transfers back into the message */
3624 list_splice(&rxfer->replaced_transfers,
3625 rxfer->replaced_after);
3627 /* Free the spi_replace_transfer structure... */
3628 spi_res_free(rxfer);
3630 /* ...and return with an error */
3631 return ERR_PTR(-EINVAL);
3635 * Remove the entry after replaced_after from list of
3636 * transfers and add it to list of replaced_transfers.
3638 list_move_tail(rxfer->replaced_after->next,
3639 &rxfer->replaced_transfers);
3643 * Create copy of the given xfer with identical settings
3644 * based on the first transfer to get removed.
3646 for (i = 0; i < insert; i++) {
3647 /* We need to run in reverse order */
3648 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3650 /* Copy all spi_transfer data */
3651 memcpy(xfer, xfer_first, sizeof(*xfer));
3654 list_add(&xfer->transfer_list, rxfer->replaced_after);
3656 /* Clear cs_change and delay for all but the last */
3658 xfer->cs_change = false;
3659 xfer->delay.value = 0;
3663 /* Set up inserted... */
3664 rxfer->inserted = insert;
3666 /* ...and register it with spi_res/spi_message */
3667 spi_res_add(msg, rxfer);
3672 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3673 struct spi_message *msg,
3674 struct spi_transfer **xferp,
3677 struct spi_transfer *xfer = *xferp, *xfers;
3678 struct spi_replaced_transfers *srt;
3682 /* Calculate how many we have to replace */
3683 count = DIV_ROUND_UP(xfer->len, maxsize);
3685 /* Create replacement */
3686 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3688 return PTR_ERR(srt);
3689 xfers = srt->inserted_transfers;
3692 * Now handle each of those newly inserted spi_transfers.
3693 * Note that the replacements spi_transfers all are preset
3694 * to the same values as *xferp, so tx_buf, rx_buf and len
3695 * are all identical (as well as most others)
3696 * so we just have to fix up len and the pointers.
3700 * The first transfer just needs the length modified, so we
3701 * run it outside the loop.
3703 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3705 /* All the others need rx_buf/tx_buf also set */
3706 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3707 /* Update rx_buf, tx_buf and DMA */
3708 if (xfers[i].rx_buf)
3709 xfers[i].rx_buf += offset;
3710 if (xfers[i].tx_buf)
3711 xfers[i].tx_buf += offset;
3714 xfers[i].len = min(maxsize, xfers[i].len - offset);
3718 * We set up xferp to the last entry we have inserted,
3719 * so that we skip those already split transfers.
3721 *xferp = &xfers[count - 1];
3723 /* Increment statistics counters */
3724 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3725 transfers_split_maxsize);
3726 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3727 transfers_split_maxsize);
3733 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3734 * when an individual transfer exceeds a
3736 * @ctlr: the @spi_controller for this transfer
3737 * @msg: the @spi_message to transform
3738 * @maxsize: the maximum when to apply this
3740 * This function allocates resources that are automatically freed during the
3741 * spi message unoptimize phase so this function should only be called from
3742 * optimize_message callbacks.
3744 * Return: status of transformation
3746 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3747 struct spi_message *msg,
3750 struct spi_transfer *xfer;
3754 * Iterate over the transfer_list,
3755 * but note that xfer is advanced to the last transfer inserted
3756 * to avoid checking sizes again unnecessarily (also xfer does
3757 * potentially belong to a different list by the time the
3758 * replacement has happened).
3760 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3761 if (xfer->len > maxsize) {
3762 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3771 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3775 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3776 * when an individual transfer exceeds a
3777 * certain number of SPI words
3778 * @ctlr: the @spi_controller for this transfer
3779 * @msg: the @spi_message to transform
3780 * @maxwords: the number of words to limit each transfer to
3782 * This function allocates resources that are automatically freed during the
3783 * spi message unoptimize phase so this function should only be called from
3784 * optimize_message callbacks.
3786 * Return: status of transformation
3788 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3789 struct spi_message *msg,
3792 struct spi_transfer *xfer;
3795 * Iterate over the transfer_list,
3796 * but note that xfer is advanced to the last transfer inserted
3797 * to avoid checking sizes again unnecessarily (also xfer does
3798 * potentially belong to a different list by the time the
3799 * replacement has happened).
3801 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3805 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3806 if (xfer->len > maxsize) {
3807 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3816 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3818 /*-------------------------------------------------------------------------*/
3821 * Core methods for SPI controller protocol drivers. Some of the
3822 * other core methods are currently defined as inline functions.
3825 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3828 if (ctlr->bits_per_word_mask) {
3829 /* Only 32 bits fit in the mask */
3830 if (bits_per_word > 32)
3832 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3840 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3841 * @spi: the device that requires specific CS timing configuration
3843 * Return: zero on success, else a negative error code.
3845 static int spi_set_cs_timing(struct spi_device *spi)
3847 struct device *parent = spi->controller->dev.parent;
3850 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3851 if (spi->controller->auto_runtime_pm) {
3852 status = pm_runtime_get_sync(parent);
3854 pm_runtime_put_noidle(parent);
3855 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3860 status = spi->controller->set_cs_timing(spi);
3861 pm_runtime_mark_last_busy(parent);
3862 pm_runtime_put_autosuspend(parent);
3864 status = spi->controller->set_cs_timing(spi);
3871 * spi_setup - setup SPI mode and clock rate
3872 * @spi: the device whose settings are being modified
3873 * Context: can sleep, and no requests are queued to the device
3875 * SPI protocol drivers may need to update the transfer mode if the
3876 * device doesn't work with its default. They may likewise need
3877 * to update clock rates or word sizes from initial values. This function
3878 * changes those settings, and must be called from a context that can sleep.
3879 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3880 * effect the next time the device is selected and data is transferred to
3881 * or from it. When this function returns, the SPI device is deselected.
3883 * Note that this call will fail if the protocol driver specifies an option
3884 * that the underlying controller or its driver does not support. For
3885 * example, not all hardware supports wire transfers using nine bit words,
3886 * LSB-first wire encoding, or active-high chipselects.
3888 * Return: zero on success, else a negative error code.
3890 int spi_setup(struct spi_device *spi)
3892 unsigned bad_bits, ugly_bits;
3896 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3897 * are set at the same time.
3899 if ((hweight_long(spi->mode &
3900 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3901 (hweight_long(spi->mode &
3902 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3904 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3907 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3908 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3909 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3910 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3912 /* Check against conflicting MOSI idle configuration */
3913 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3915 "setup: MOSI configured to idle low and high at the same time.\n");
3919 * Help drivers fail *cleanly* when they need options
3920 * that aren't supported with their current controller.
3921 * SPI_CS_WORD has a fallback software implementation,
3922 * so it is ignored here.
3924 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3925 SPI_NO_TX | SPI_NO_RX);
3926 ugly_bits = bad_bits &
3927 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3928 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3931 "setup: ignoring unsupported mode bits %x\n",
3933 spi->mode &= ~ugly_bits;
3934 bad_bits &= ~ugly_bits;
3937 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3942 if (!spi->bits_per_word) {
3943 spi->bits_per_word = 8;
3946 * Some controllers may not support the default 8 bits-per-word
3947 * so only perform the check when this is explicitly provided.
3949 status = __spi_validate_bits_per_word(spi->controller,
3950 spi->bits_per_word);
3955 if (spi->controller->max_speed_hz &&
3956 (!spi->max_speed_hz ||
3957 spi->max_speed_hz > spi->controller->max_speed_hz))
3958 spi->max_speed_hz = spi->controller->max_speed_hz;
3960 mutex_lock(&spi->controller->io_mutex);
3962 if (spi->controller->setup) {
3963 status = spi->controller->setup(spi);
3965 mutex_unlock(&spi->controller->io_mutex);
3966 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3972 status = spi_set_cs_timing(spi);
3974 mutex_unlock(&spi->controller->io_mutex);
3978 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3979 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3981 mutex_unlock(&spi->controller->io_mutex);
3982 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3988 * We do not want to return positive value from pm_runtime_get,
3989 * there are many instances of devices calling spi_setup() and
3990 * checking for a non-zero return value instead of a negative
3995 spi_set_cs(spi, false, true);
3996 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3997 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3999 spi_set_cs(spi, false, true);
4002 mutex_unlock(&spi->controller->io_mutex);
4004 if (spi->rt && !spi->controller->rt) {
4005 spi->controller->rt = true;
4006 spi_set_thread_rt(spi->controller);
4009 trace_spi_setup(spi, status);
4011 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4012 spi->mode & SPI_MODE_X_MASK,
4013 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4014 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4015 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4016 (spi->mode & SPI_LOOP) ? "loopback, " : "",
4017 spi->bits_per_word, spi->max_speed_hz,
4022 EXPORT_SYMBOL_GPL(spi_setup);
4024 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4025 struct spi_device *spi)
4029 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4033 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4037 if (delay1 < delay2)
4038 memcpy(&xfer->word_delay, &spi->word_delay,
4039 sizeof(xfer->word_delay));
4044 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4046 struct spi_controller *ctlr = spi->controller;
4047 struct spi_transfer *xfer;
4050 if (list_empty(&message->transfers))
4056 * Half-duplex links include original MicroWire, and ones with
4057 * only one data pin like SPI_3WIRE (switches direction) or where
4058 * either MOSI or MISO is missing. They can also be caused by
4059 * software limitations.
4061 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4062 (spi->mode & SPI_3WIRE)) {
4063 unsigned flags = ctlr->flags;
4065 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4066 if (xfer->rx_buf && xfer->tx_buf)
4068 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4070 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4076 * Set transfer bits_per_word and max speed as spi device default if
4077 * it is not set for this transfer.
4078 * Set transfer tx_nbits and rx_nbits as single transfer default
4079 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4080 * Ensure transfer word_delay is at least as long as that required by
4083 message->frame_length = 0;
4084 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4085 xfer->effective_speed_hz = 0;
4086 message->frame_length += xfer->len;
4087 if (!xfer->bits_per_word)
4088 xfer->bits_per_word = spi->bits_per_word;
4090 if (!xfer->speed_hz)
4091 xfer->speed_hz = spi->max_speed_hz;
4093 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4094 xfer->speed_hz = ctlr->max_speed_hz;
4096 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4100 * SPI transfer length should be multiple of SPI word size
4101 * where SPI word size should be power-of-two multiple.
4103 if (xfer->bits_per_word <= 8)
4105 else if (xfer->bits_per_word <= 16)
4110 /* No partial transfers accepted */
4111 if (xfer->len % w_size)
4114 if (xfer->speed_hz && ctlr->min_speed_hz &&
4115 xfer->speed_hz < ctlr->min_speed_hz)
4118 if (xfer->tx_buf && !xfer->tx_nbits)
4119 xfer->tx_nbits = SPI_NBITS_SINGLE;
4120 if (xfer->rx_buf && !xfer->rx_nbits)
4121 xfer->rx_nbits = SPI_NBITS_SINGLE;
4123 * Check transfer tx/rx_nbits:
4124 * 1. check the value matches one of single, dual and quad
4125 * 2. check tx/rx_nbits match the mode in spi_device
4128 if (spi->mode & SPI_NO_TX)
4130 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4131 xfer->tx_nbits != SPI_NBITS_DUAL &&
4132 xfer->tx_nbits != SPI_NBITS_QUAD &&
4133 xfer->tx_nbits != SPI_NBITS_OCTAL)
4135 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4136 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4138 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4139 !(spi->mode & SPI_TX_QUAD))
4142 /* Check transfer rx_nbits */
4144 if (spi->mode & SPI_NO_RX)
4146 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4147 xfer->rx_nbits != SPI_NBITS_DUAL &&
4148 xfer->rx_nbits != SPI_NBITS_QUAD &&
4149 xfer->rx_nbits != SPI_NBITS_OCTAL)
4151 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4152 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4154 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4155 !(spi->mode & SPI_RX_QUAD))
4159 if (_spi_xfer_word_delay_update(xfer, spi))
4163 message->status = -EINPROGRESS;
4169 * spi_split_transfers - generic handling of transfer splitting
4170 * @msg: the message to split
4172 * Under certain conditions, a SPI controller may not support arbitrary
4173 * transfer sizes or other features required by a peripheral. This function
4174 * will split the transfers in the message into smaller transfers that are
4175 * supported by the controller.
4177 * Controllers with special requirements not covered here can also split
4178 * transfers in the optimize_message() callback.
4180 * Context: can sleep
4181 * Return: zero on success, else a negative error code
4183 static int spi_split_transfers(struct spi_message *msg)
4185 struct spi_controller *ctlr = msg->spi->controller;
4186 struct spi_transfer *xfer;
4190 * If an SPI controller does not support toggling the CS line on each
4191 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4192 * for the CS line, we can emulate the CS-per-word hardware function by
4193 * splitting transfers into one-word transfers and ensuring that
4194 * cs_change is set for each transfer.
4196 if ((msg->spi->mode & SPI_CS_WORD) &&
4197 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4198 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4202 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4203 /* Don't change cs_change on the last entry in the list */
4204 if (list_is_last(&xfer->transfer_list, &msg->transfers))
4207 xfer->cs_change = 1;
4210 ret = spi_split_transfers_maxsize(ctlr, msg,
4211 spi_max_transfer_size(msg->spi));
4220 * __spi_optimize_message - shared implementation for spi_optimize_message()
4221 * and spi_maybe_optimize_message()
4222 * @spi: the device that will be used for the message
4223 * @msg: the message to optimize
4225 * Peripheral drivers will call spi_optimize_message() and the spi core will
4226 * call spi_maybe_optimize_message() instead of calling this directly.
4228 * It is not valid to call this on a message that has already been optimized.
4230 * Return: zero on success, else a negative error code
4232 static int __spi_optimize_message(struct spi_device *spi,
4233 struct spi_message *msg)
4235 struct spi_controller *ctlr = spi->controller;
4238 ret = __spi_validate(spi, msg);
4242 ret = spi_split_transfers(msg);
4246 if (ctlr->optimize_message) {
4247 ret = ctlr->optimize_message(msg);
4249 spi_res_release(ctlr, msg);
4254 msg->optimized = true;
4260 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4261 * @spi: the device that will be used for the message
4262 * @msg: the message to optimize
4263 * Return: zero on success, else a negative error code
4265 static int spi_maybe_optimize_message(struct spi_device *spi,
4266 struct spi_message *msg)
4268 if (spi->controller->defer_optimize_message) {
4273 if (msg->pre_optimized)
4276 return __spi_optimize_message(spi, msg);
4280 * spi_optimize_message - do any one-time validation and setup for a SPI message
4281 * @spi: the device that will be used for the message
4282 * @msg: the message to optimize
4284 * Peripheral drivers that reuse the same message repeatedly may call this to
4285 * perform as much message prep as possible once, rather than repeating it each
4286 * time a message transfer is performed to improve throughput and reduce CPU
4289 * Once a message has been optimized, it cannot be modified with the exception
4290 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4291 * only the data in the memory it points to).
4293 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4294 * to avoid leaking resources.
4296 * Context: can sleep
4297 * Return: zero on success, else a negative error code
4299 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4304 * Pre-optimization is not supported and optimization is deferred e.g.
4305 * when using spi-mux.
4307 if (spi->controller->defer_optimize_message)
4310 ret = __spi_optimize_message(spi, msg);
4315 * This flag indicates that the peripheral driver called spi_optimize_message()
4316 * and therefore we shouldn't unoptimize message automatically when finalizing
4317 * the message but rather wait until spi_unoptimize_message() is called
4318 * by the peripheral driver.
4320 msg->pre_optimized = true;
4324 EXPORT_SYMBOL_GPL(spi_optimize_message);
4327 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4328 * @msg: the message to unoptimize
4330 * Calls to this function must be balanced with calls to spi_optimize_message().
4332 * Context: can sleep
4334 void spi_unoptimize_message(struct spi_message *msg)
4336 if (msg->spi->controller->defer_optimize_message)
4339 __spi_unoptimize_message(msg);
4340 msg->pre_optimized = false;
4342 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4344 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4346 struct spi_controller *ctlr = spi->controller;
4347 struct spi_transfer *xfer;
4350 * Some controllers do not support doing regular SPI transfers. Return
4351 * ENOTSUPP when this is the case.
4353 if (!ctlr->transfer)
4356 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4357 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4359 trace_spi_message_submit(message);
4361 if (!ctlr->ptp_sts_supported) {
4362 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4363 xfer->ptp_sts_word_pre = 0;
4364 ptp_read_system_prets(xfer->ptp_sts);
4368 return ctlr->transfer(spi, message);
4371 static void devm_spi_unoptimize_message(void *msg)
4373 spi_unoptimize_message(msg);
4377 * devm_spi_optimize_message - managed version of spi_optimize_message()
4378 * @dev: the device that manages @msg (usually @spi->dev)
4379 * @spi: the device that will be used for the message
4380 * @msg: the message to optimize
4381 * Return: zero on success, else a negative error code
4383 * spi_unoptimize_message() will automatically be called when the device is
4386 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4387 struct spi_message *msg)
4391 ret = spi_optimize_message(spi, msg);
4395 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4397 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4400 * spi_async - asynchronous SPI transfer
4401 * @spi: device with which data will be exchanged
4402 * @message: describes the data transfers, including completion callback
4403 * Context: any (IRQs may be blocked, etc)
4405 * This call may be used in_irq and other contexts which can't sleep,
4406 * as well as from task contexts which can sleep.
4408 * The completion callback is invoked in a context which can't sleep.
4409 * Before that invocation, the value of message->status is undefined.
4410 * When the callback is issued, message->status holds either zero (to
4411 * indicate complete success) or a negative error code. After that
4412 * callback returns, the driver which issued the transfer request may
4413 * deallocate the associated memory; it's no longer in use by any SPI
4414 * core or controller driver code.
4416 * Note that although all messages to a spi_device are handled in
4417 * FIFO order, messages may go to different devices in other orders.
4418 * Some device might be higher priority, or have various "hard" access
4419 * time requirements, for example.
4421 * On detection of any fault during the transfer, processing of
4422 * the entire message is aborted, and the device is deselected.
4423 * Until returning from the associated message completion callback,
4424 * no other spi_message queued to that device will be processed.
4425 * (This rule applies equally to all the synchronous transfer calls,
4426 * which are wrappers around this core asynchronous primitive.)
4428 * Return: zero on success, else a negative error code.
4430 int spi_async(struct spi_device *spi, struct spi_message *message)
4432 struct spi_controller *ctlr = spi->controller;
4434 unsigned long flags;
4436 ret = spi_maybe_optimize_message(spi, message);
4440 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4442 if (ctlr->bus_lock_flag)
4445 ret = __spi_async(spi, message);
4447 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4451 EXPORT_SYMBOL_GPL(spi_async);
4453 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4458 mutex_lock(&ctlr->io_mutex);
4460 was_busy = ctlr->busy;
4462 ctlr->cur_msg = msg;
4463 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4465 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4466 ctlr->cur_msg = NULL;
4467 ctlr->fallback = false;
4470 kfree(ctlr->dummy_rx);
4471 ctlr->dummy_rx = NULL;
4472 kfree(ctlr->dummy_tx);
4473 ctlr->dummy_tx = NULL;
4474 if (ctlr->unprepare_transfer_hardware &&
4475 ctlr->unprepare_transfer_hardware(ctlr))
4477 "failed to unprepare transfer hardware\n");
4478 spi_idle_runtime_pm(ctlr);
4481 mutex_unlock(&ctlr->io_mutex);
4484 /*-------------------------------------------------------------------------*/
4487 * Utility methods for SPI protocol drivers, layered on
4488 * top of the core. Some other utility methods are defined as
4492 static void spi_complete(void *arg)
4497 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4499 DECLARE_COMPLETION_ONSTACK(done);
4500 unsigned long flags;
4502 struct spi_controller *ctlr = spi->controller;
4504 if (__spi_check_suspended(ctlr)) {
4505 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4509 status = spi_maybe_optimize_message(spi, message);
4513 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4514 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4517 * Checking queue_empty here only guarantees async/sync message
4518 * ordering when coming from the same context. It does not need to
4519 * guard against reentrancy from a different context. The io_mutex
4520 * will catch those cases.
4522 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4523 message->actual_length = 0;
4524 message->status = -EINPROGRESS;
4526 trace_spi_message_submit(message);
4528 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4529 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4531 __spi_transfer_message_noqueue(ctlr, message);
4533 return message->status;
4537 * There are messages in the async queue that could have originated
4538 * from the same context, so we need to preserve ordering.
4539 * Therefor we send the message to the async queue and wait until they
4542 message->complete = spi_complete;
4543 message->context = &done;
4545 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4546 status = __spi_async(spi, message);
4547 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4550 wait_for_completion(&done);
4551 status = message->status;
4553 message->complete = NULL;
4554 message->context = NULL;
4560 * spi_sync - blocking/synchronous SPI data transfers
4561 * @spi: device with which data will be exchanged
4562 * @message: describes the data transfers
4563 * Context: can sleep
4565 * This call may only be used from a context that may sleep. The sleep
4566 * is non-interruptible, and has no timeout. Low-overhead controller
4567 * drivers may DMA directly into and out of the message buffers.
4569 * Note that the SPI device's chip select is active during the message,
4570 * and then is normally disabled between messages. Drivers for some
4571 * frequently-used devices may want to minimize costs of selecting a chip,
4572 * by leaving it selected in anticipation that the next message will go
4573 * to the same chip. (That may increase power usage.)
4575 * Also, the caller is guaranteeing that the memory associated with the
4576 * message will not be freed before this call returns.
4578 * Return: zero on success, else a negative error code.
4580 int spi_sync(struct spi_device *spi, struct spi_message *message)
4584 mutex_lock(&spi->controller->bus_lock_mutex);
4585 ret = __spi_sync(spi, message);
4586 mutex_unlock(&spi->controller->bus_lock_mutex);
4590 EXPORT_SYMBOL_GPL(spi_sync);
4593 * spi_sync_locked - version of spi_sync with exclusive bus usage
4594 * @spi: device with which data will be exchanged
4595 * @message: describes the data transfers
4596 * Context: can sleep
4598 * This call may only be used from a context that may sleep. The sleep
4599 * is non-interruptible, and has no timeout. Low-overhead controller
4600 * drivers may DMA directly into and out of the message buffers.
4602 * This call should be used by drivers that require exclusive access to the
4603 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4604 * be released by a spi_bus_unlock call when the exclusive access is over.
4606 * Return: zero on success, else a negative error code.
4608 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4610 return __spi_sync(spi, message);
4612 EXPORT_SYMBOL_GPL(spi_sync_locked);
4615 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4616 * @ctlr: SPI bus master that should be locked for exclusive bus access
4617 * Context: can sleep
4619 * This call may only be used from a context that may sleep. The sleep
4620 * is non-interruptible, and has no timeout.
4622 * This call should be used by drivers that require exclusive access to the
4623 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4624 * exclusive access is over. Data transfer must be done by spi_sync_locked
4625 * and spi_async_locked calls when the SPI bus lock is held.
4627 * Return: always zero.
4629 int spi_bus_lock(struct spi_controller *ctlr)
4631 unsigned long flags;
4633 mutex_lock(&ctlr->bus_lock_mutex);
4635 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4636 ctlr->bus_lock_flag = 1;
4637 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4639 /* Mutex remains locked until spi_bus_unlock() is called */
4643 EXPORT_SYMBOL_GPL(spi_bus_lock);
4646 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4647 * @ctlr: SPI bus master that was locked for exclusive bus access
4648 * Context: can sleep
4650 * This call may only be used from a context that may sleep. The sleep
4651 * is non-interruptible, and has no timeout.
4653 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4656 * Return: always zero.
4658 int spi_bus_unlock(struct spi_controller *ctlr)
4660 ctlr->bus_lock_flag = 0;
4662 mutex_unlock(&ctlr->bus_lock_mutex);
4666 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4668 /* Portable code must never pass more than 32 bytes */
4669 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4674 * spi_write_then_read - SPI synchronous write followed by read
4675 * @spi: device with which data will be exchanged
4676 * @txbuf: data to be written (need not be DMA-safe)
4677 * @n_tx: size of txbuf, in bytes
4678 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4679 * @n_rx: size of rxbuf, in bytes
4680 * Context: can sleep
4682 * This performs a half duplex MicroWire style transaction with the
4683 * device, sending txbuf and then reading rxbuf. The return value
4684 * is zero for success, else a negative errno status code.
4685 * This call may only be used from a context that may sleep.
4687 * Parameters to this routine are always copied using a small buffer.
4688 * Performance-sensitive or bulk transfer code should instead use
4689 * spi_{async,sync}() calls with DMA-safe buffers.
4691 * Return: zero on success, else a negative error code.
4693 int spi_write_then_read(struct spi_device *spi,
4694 const void *txbuf, unsigned n_tx,
4695 void *rxbuf, unsigned n_rx)
4697 static DEFINE_MUTEX(lock);
4700 struct spi_message message;
4701 struct spi_transfer x[2];
4705 * Use preallocated DMA-safe buffer if we can. We can't avoid
4706 * copying here, (as a pure convenience thing), but we can
4707 * keep heap costs out of the hot path unless someone else is
4708 * using the pre-allocated buffer or the transfer is too large.
4710 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4711 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4712 GFP_KERNEL | GFP_DMA);
4719 spi_message_init(&message);
4720 memset(x, 0, sizeof(x));
4723 spi_message_add_tail(&x[0], &message);
4727 spi_message_add_tail(&x[1], &message);
4730 memcpy(local_buf, txbuf, n_tx);
4731 x[0].tx_buf = local_buf;
4732 x[1].rx_buf = local_buf + n_tx;
4735 status = spi_sync(spi, &message);
4737 memcpy(rxbuf, x[1].rx_buf, n_rx);
4739 if (x[0].tx_buf == buf)
4740 mutex_unlock(&lock);
4746 EXPORT_SYMBOL_GPL(spi_write_then_read);
4748 /*-------------------------------------------------------------------------*/
4750 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4751 /* Must call put_device() when done with returned spi_device device */
4752 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4754 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4756 return dev ? to_spi_device(dev) : NULL;
4759 /* The spi controllers are not using spi_bus, so we find it with another way */
4760 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4764 dev = class_find_device_by_of_node(&spi_master_class, node);
4765 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4766 dev = class_find_device_by_of_node(&spi_slave_class, node);
4770 /* Reference got in class_find_device */
4771 return container_of(dev, struct spi_controller, dev);
4774 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4777 struct of_reconfig_data *rd = arg;
4778 struct spi_controller *ctlr;
4779 struct spi_device *spi;
4781 switch (of_reconfig_get_state_change(action, arg)) {
4782 case OF_RECONFIG_CHANGE_ADD:
4783 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4785 return NOTIFY_OK; /* Not for us */
4787 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4788 put_device(&ctlr->dev);
4793 * Clear the flag before adding the device so that fw_devlink
4794 * doesn't skip adding consumers to this device.
4796 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4797 spi = of_register_spi_device(ctlr, rd->dn);
4798 put_device(&ctlr->dev);
4801 pr_err("%s: failed to create for '%pOF'\n",
4803 of_node_clear_flag(rd->dn, OF_POPULATED);
4804 return notifier_from_errno(PTR_ERR(spi));
4808 case OF_RECONFIG_CHANGE_REMOVE:
4809 /* Already depopulated? */
4810 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4813 /* Find our device by node */
4814 spi = of_find_spi_device_by_node(rd->dn);
4816 return NOTIFY_OK; /* No? not meant for us */
4818 /* Unregister takes one ref away */
4819 spi_unregister_device(spi);
4821 /* And put the reference of the find */
4822 put_device(&spi->dev);
4829 static struct notifier_block spi_of_notifier = {
4830 .notifier_call = of_spi_notify,
4832 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4833 extern struct notifier_block spi_of_notifier;
4834 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4836 #if IS_ENABLED(CONFIG_ACPI)
4837 static int spi_acpi_controller_match(struct device *dev, const void *data)
4839 return device_match_acpi_dev(dev->parent, data);
4842 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4846 dev = class_find_device(&spi_master_class, NULL, adev,
4847 spi_acpi_controller_match);
4848 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4849 dev = class_find_device(&spi_slave_class, NULL, adev,
4850 spi_acpi_controller_match);
4854 return container_of(dev, struct spi_controller, dev);
4856 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4858 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4862 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4863 return to_spi_device(dev);
4866 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4869 struct acpi_device *adev = arg;
4870 struct spi_controller *ctlr;
4871 struct spi_device *spi;
4874 case ACPI_RECONFIG_DEVICE_ADD:
4875 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4879 acpi_register_spi_device(ctlr, adev);
4880 put_device(&ctlr->dev);
4882 case ACPI_RECONFIG_DEVICE_REMOVE:
4883 if (!acpi_device_enumerated(adev))
4886 spi = acpi_spi_find_device_by_adev(adev);
4890 spi_unregister_device(spi);
4891 put_device(&spi->dev);
4898 static struct notifier_block spi_acpi_notifier = {
4899 .notifier_call = acpi_spi_notify,
4902 extern struct notifier_block spi_acpi_notifier;
4905 static int __init spi_init(void)
4909 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4915 status = bus_register(&spi_bus_type);
4919 status = class_register(&spi_master_class);
4923 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4924 status = class_register(&spi_slave_class);
4929 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4930 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4931 if (IS_ENABLED(CONFIG_ACPI))
4932 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4937 class_unregister(&spi_master_class);
4939 bus_unregister(&spi_bus_type);
4948 * A board_info is normally registered in arch_initcall(),
4949 * but even essential drivers wait till later.
4951 * REVISIT only boardinfo really needs static linking. The rest (device and
4952 * driver registration) _could_ be dynamically linked (modular) ... Costs
4953 * include needing to have boardinfo data structures be much more public.
4955 postcore_initcall(spi_init);