2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/module.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
64 static struct proto *saved_tcpv6_prot;
65 static DEFINE_MUTEX(tcpv6_prot_mutex);
66 static LIST_HEAD(device_list);
67 static DEFINE_MUTEX(device_mutex);
68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
69 static struct proto_ops tls_sw_proto_ops;
71 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
73 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
75 sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
83 add_wait_queue(sk_sleep(sk), &wait);
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
98 remove_wait_queue(sk_sleep(sk), &wait);
102 int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
112 int offset = first_offset;
114 size = sg->length - offset;
115 offset += sg->offset;
119 sendpage_flags = flags;
121 /* is sending application-limited? */
122 tcp_rate_check_app_limited(sk);
125 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
134 offset -= sg->offset;
135 ctx->partially_sent_offset = offset;
136 ctx->partially_sent_record = (void *)sg;
141 sk_mem_uncharge(sk, sg->length);
150 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
155 static int tls_handle_open_record(struct sock *sk, int flags)
157 struct tls_context *ctx = tls_get_ctx(sk);
159 if (tls_is_pending_open_record(ctx))
160 return ctx->push_pending_record(sk, flags);
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 unsigned char *record_type)
168 struct cmsghdr *cmsg;
171 for_each_cmsghdr(cmsg, msg) {
172 if (!CMSG_OK(msg, cmsg))
174 if (cmsg->cmsg_level != SOL_TLS)
177 switch (cmsg->cmsg_type) {
178 case TLS_SET_RECORD_TYPE:
179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
182 if (msg->msg_flags & MSG_MORE)
185 rc = tls_handle_open_record(sk, msg->msg_flags);
189 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
200 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
201 int flags, long *timeo)
203 struct scatterlist *sg;
206 if (!tls_is_partially_sent_record(ctx))
207 return ctx->push_pending_record(sk, flags);
209 sg = ctx->partially_sent_record;
210 offset = ctx->partially_sent_offset;
212 ctx->partially_sent_record = NULL;
213 return tls_push_sg(sk, ctx, sg, offset, flags);
216 static void tls_write_space(struct sock *sk)
218 struct tls_context *ctx = tls_get_ctx(sk);
220 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
221 gfp_t sk_allocation = sk->sk_allocation;
225 sk->sk_allocation = GFP_ATOMIC;
226 rc = tls_push_pending_closed_record(sk, ctx,
230 sk->sk_allocation = sk_allocation;
236 ctx->sk_write_space(sk);
239 static void tls_sk_proto_close(struct sock *sk, long timeout)
241 struct tls_context *ctx = tls_get_ctx(sk);
242 long timeo = sock_sndtimeo(sk, 0);
243 void (*sk_proto_close)(struct sock *sk, long timeout);
246 sk_proto_close = ctx->sk_proto_close;
248 if (ctx->conf == TLS_HW_RECORD)
249 goto skip_tx_cleanup;
251 if (ctx->conf == TLS_BASE) {
254 goto skip_tx_cleanup;
257 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
258 tls_handle_open_record(sk, 0);
260 if (ctx->partially_sent_record) {
261 struct scatterlist *sg = ctx->partially_sent_record;
264 put_page(sg_page(sg));
265 sk_mem_uncharge(sk, sg->length);
273 kfree(ctx->tx.rec_seq);
275 kfree(ctx->rx.rec_seq);
278 if (ctx->conf == TLS_SW_TX ||
279 ctx->conf == TLS_SW_RX ||
280 ctx->conf == TLS_SW_RXTX) {
281 tls_sw_free_resources(sk);
286 sk_proto_close(sk, timeout);
287 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
288 * for sk->sk_prot->unhash [tls_hw_unhash]
290 if (ctx && ctx->conf == TLS_HW_RECORD)
294 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
298 struct tls_context *ctx = tls_get_ctx(sk);
299 struct tls_crypto_info *crypto_info;
302 if (get_user(len, optlen))
305 if (!optval || (len < sizeof(*crypto_info))) {
315 /* get user crypto info */
316 crypto_info = &ctx->crypto_send;
318 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
323 if (len == sizeof(*crypto_info)) {
324 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
329 switch (crypto_info->cipher_type) {
330 case TLS_CIPHER_AES_GCM_128: {
331 struct tls12_crypto_info_aes_gcm_128 *
332 crypto_info_aes_gcm_128 =
333 container_of(crypto_info,
334 struct tls12_crypto_info_aes_gcm_128,
337 if (len != sizeof(*crypto_info_aes_gcm_128)) {
342 memcpy(crypto_info_aes_gcm_128->iv,
343 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
344 TLS_CIPHER_AES_GCM_128_IV_SIZE);
345 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
346 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
348 if (copy_to_user(optval,
349 crypto_info_aes_gcm_128,
350 sizeof(*crypto_info_aes_gcm_128)))
362 static int do_tls_getsockopt(struct sock *sk, int optname,
363 char __user *optval, int __user *optlen)
369 rc = do_tls_getsockopt_tx(sk, optval, optlen);
378 static int tls_getsockopt(struct sock *sk, int level, int optname,
379 char __user *optval, int __user *optlen)
381 struct tls_context *ctx = tls_get_ctx(sk);
383 if (level != SOL_TLS)
384 return ctx->getsockopt(sk, level, optname, optval, optlen);
386 return do_tls_getsockopt(sk, optname, optval, optlen);
389 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
390 unsigned int optlen, int tx)
392 struct tls_crypto_info *crypto_info;
393 struct tls_context *ctx = tls_get_ctx(sk);
397 if (!optval || (optlen < sizeof(*crypto_info))) {
403 crypto_info = &ctx->crypto_send;
405 crypto_info = &ctx->crypto_recv;
407 /* Currently we don't support set crypto info more than one time */
408 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
413 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
416 goto err_crypto_info;
420 if (crypto_info->version != TLS_1_2_VERSION) {
422 goto err_crypto_info;
425 switch (crypto_info->cipher_type) {
426 case TLS_CIPHER_AES_GCM_128: {
427 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
429 goto err_crypto_info;
431 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
432 optlen - sizeof(*crypto_info));
435 goto err_crypto_info;
441 goto err_crypto_info;
444 /* currently SW is default, we will have ethtool in future */
446 rc = tls_set_sw_offload(sk, ctx, 1);
447 if (ctx->conf == TLS_SW_RX)
452 rc = tls_set_sw_offload(sk, ctx, 0);
453 if (ctx->conf == TLS_SW_TX)
460 goto err_crypto_info;
463 update_sk_prot(sk, ctx);
465 ctx->sk_write_space = sk->sk_write_space;
466 sk->sk_write_space = tls_write_space;
468 sk->sk_socket->ops = &tls_sw_proto_ops;
473 memset(crypto_info, 0, sizeof(*crypto_info));
478 static int do_tls_setsockopt(struct sock *sk, int optname,
479 char __user *optval, unsigned int optlen)
487 rc = do_tls_setsockopt_conf(sk, optval, optlen,
498 static int tls_setsockopt(struct sock *sk, int level, int optname,
499 char __user *optval, unsigned int optlen)
501 struct tls_context *ctx = tls_get_ctx(sk);
503 if (level != SOL_TLS)
504 return ctx->setsockopt(sk, level, optname, optval, optlen);
506 return do_tls_setsockopt(sk, optname, optval, optlen);
509 static struct tls_context *create_ctx(struct sock *sk)
511 struct inet_connection_sock *icsk = inet_csk(sk);
512 struct tls_context *ctx;
514 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
518 icsk->icsk_ulp_data = ctx;
522 static int tls_hw_prot(struct sock *sk)
524 struct tls_context *ctx;
525 struct tls_device *dev;
528 mutex_lock(&device_mutex);
529 list_for_each_entry(dev, &device_list, dev_list) {
530 if (dev->feature && dev->feature(dev)) {
531 ctx = create_ctx(sk);
535 ctx->hash = sk->sk_prot->hash;
536 ctx->unhash = sk->sk_prot->unhash;
537 ctx->sk_proto_close = sk->sk_prot->close;
538 ctx->conf = TLS_HW_RECORD;
539 update_sk_prot(sk, ctx);
545 mutex_unlock(&device_mutex);
549 static void tls_hw_unhash(struct sock *sk)
551 struct tls_context *ctx = tls_get_ctx(sk);
552 struct tls_device *dev;
554 mutex_lock(&device_mutex);
555 list_for_each_entry(dev, &device_list, dev_list) {
557 dev->unhash(dev, sk);
559 mutex_unlock(&device_mutex);
563 static int tls_hw_hash(struct sock *sk)
565 struct tls_context *ctx = tls_get_ctx(sk);
566 struct tls_device *dev;
570 mutex_lock(&device_mutex);
571 list_for_each_entry(dev, &device_list, dev_list) {
573 err |= dev->hash(dev, sk);
575 mutex_unlock(&device_mutex);
582 static void build_protos(struct proto *prot, struct proto *base)
584 prot[TLS_BASE] = *base;
585 prot[TLS_BASE].setsockopt = tls_setsockopt;
586 prot[TLS_BASE].getsockopt = tls_getsockopt;
587 prot[TLS_BASE].close = tls_sk_proto_close;
589 prot[TLS_SW_TX] = prot[TLS_BASE];
590 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
591 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
593 prot[TLS_SW_RX] = prot[TLS_BASE];
594 prot[TLS_SW_RX].recvmsg = tls_sw_recvmsg;
595 prot[TLS_SW_RX].close = tls_sk_proto_close;
597 prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
598 prot[TLS_SW_RXTX].recvmsg = tls_sw_recvmsg;
599 prot[TLS_SW_RXTX].close = tls_sk_proto_close;
601 prot[TLS_HW_RECORD] = *base;
602 prot[TLS_HW_RECORD].hash = tls_hw_hash;
603 prot[TLS_HW_RECORD].unhash = tls_hw_unhash;
604 prot[TLS_HW_RECORD].close = tls_sk_proto_close;
607 static int tls_init(struct sock *sk)
609 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
610 struct tls_context *ctx;
616 /* The TLS ulp is currently supported only for TCP sockets
617 * in ESTABLISHED state.
618 * Supporting sockets in LISTEN state will require us
619 * to modify the accept implementation to clone rather then
620 * share the ulp context.
622 if (sk->sk_state != TCP_ESTABLISHED)
625 /* allocate tls context */
626 ctx = create_ctx(sk);
631 ctx->setsockopt = sk->sk_prot->setsockopt;
632 ctx->getsockopt = sk->sk_prot->getsockopt;
633 ctx->sk_proto_close = sk->sk_prot->close;
635 /* Build IPv6 TLS whenever the address of tcpv6_prot changes */
636 if (ip_ver == TLSV6 &&
637 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
638 mutex_lock(&tcpv6_prot_mutex);
639 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
640 build_protos(tls_prots[TLSV6], sk->sk_prot);
641 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
643 mutex_unlock(&tcpv6_prot_mutex);
646 ctx->conf = TLS_BASE;
647 update_sk_prot(sk, ctx);
652 void tls_register_device(struct tls_device *device)
654 mutex_lock(&device_mutex);
655 list_add_tail(&device->dev_list, &device_list);
656 mutex_unlock(&device_mutex);
658 EXPORT_SYMBOL(tls_register_device);
660 void tls_unregister_device(struct tls_device *device)
662 mutex_lock(&device_mutex);
663 list_del(&device->dev_list);
664 mutex_unlock(&device_mutex);
666 EXPORT_SYMBOL(tls_unregister_device);
668 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
671 .user_visible = true,
672 .owner = THIS_MODULE,
676 static int __init tls_register(void)
678 build_protos(tls_prots[TLSV4], &tcp_prot);
680 tls_sw_proto_ops = inet_stream_ops;
681 tls_sw_proto_ops.poll = tls_sw_poll;
682 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
684 tcp_register_ulp(&tcp_tls_ulp_ops);
689 static void __exit tls_unregister(void)
691 tcp_unregister_ulp(&tcp_tls_ulp_ops);
694 module_init(tls_register);
695 module_exit(tls_unregister);