2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 struct pipe_inode_info *pipe, size_t len,
139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 * in the operation structures but are done directly via the socketcall() multiplexor.
143 static const struct file_operations socket_file_ops = {
144 .owner = THIS_MODULE,
146 .aio_read = sock_aio_read,
147 .aio_write = sock_aio_write,
149 .unlocked_ioctl = sock_ioctl,
151 .compat_ioctl = compat_sock_ioctl,
154 .open = sock_no_open, /* special open code to disallow open via /proc */
155 .release = sock_close,
156 .fasync = sock_fasync,
157 .sendpage = sock_sendpage,
158 .splice_write = generic_splice_sendpage,
159 .splice_read = sock_splice_read,
163 * The protocol list. Each protocol is registered in here.
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
170 * Statistics counters of the socket lists
173 static DEFINE_PER_CPU(int, sockets_in_use);
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
198 if (copy_from_user(kaddr, uaddr, ulen))
200 return audit_sockaddr(ulen, kaddr);
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
235 if (audit_sockaddr(klen, kaddr))
237 if (copy_to_user(uaddr, kaddr, len))
241 * "fromlen shall refer to the value before truncation.."
244 return __put_user(klen, ulen);
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
249 static struct inode *sock_alloc_inode(struct super_block *sb)
251 struct socket_alloc *ei;
252 struct socket_wq *wq;
254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
257 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
259 kmem_cache_free(sock_inode_cachep, ei);
262 init_waitqueue_head(&wq->wait);
263 wq->fasync_list = NULL;
264 RCU_INIT_POINTER(ei->socket.wq, wq);
266 ei->socket.state = SS_UNCONNECTED;
267 ei->socket.flags = 0;
268 ei->socket.ops = NULL;
269 ei->socket.sk = NULL;
270 ei->socket.file = NULL;
272 return &ei->vfs_inode;
275 static void sock_destroy_inode(struct inode *inode)
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
283 kmem_cache_free(sock_inode_cachep, ei);
286 static void init_once(void *foo)
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
290 inode_init_once(&ei->vfs_inode);
293 static int init_inodecache(void)
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
302 if (sock_inode_cachep == NULL)
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
314 * sockfs_dname() is called from d_path().
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
333 static struct vfsmount *sock_mnt __read_mostly;
335 static struct file_system_type sock_fs_type = {
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
342 * Obtains the first available file descriptor and sets it up for use.
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
360 struct qstr name = { .name = "" };
366 name.len = strlen(name.name);
367 } else if (sock->sk) {
368 name.name = sock->sk->sk_prot_creator->name;
369 name.len = strlen(name.name);
371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 if (unlikely(!path.dentry))
373 return ERR_PTR(-ENOMEM);
374 path.mnt = mntget(sock_mnt);
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
381 if (unlikely(IS_ERR(file))) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
389 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 file->private_data = sock;
393 EXPORT_SYMBOL(sock_alloc_file);
395 static int sock_map_fd(struct socket *sock, int flags)
397 struct file *newfile;
398 int fd = get_unused_fd_flags(flags);
399 if (unlikely(fd < 0))
402 newfile = sock_alloc_file(sock, flags, NULL);
403 if (likely(!IS_ERR(newfile))) {
404 fd_install(fd, newfile);
409 return PTR_ERR(newfile);
412 struct socket *sock_from_file(struct file *file, int *err)
414 if (file->f_op == &socket_file_ops)
415 return file->private_data; /* set in sock_map_fd */
420 EXPORT_SYMBOL(sock_from_file);
423 * sockfd_lookup - Go from a file number to its socket slot
425 * @err: pointer to an error code return
427 * The file handle passed in is locked and the socket it is bound
428 * too is returned. If an error occurs the err pointer is overwritten
429 * with a negative errno code and NULL is returned. The function checks
430 * for both invalid handles and passing a handle which is not a socket.
432 * On a success the socket object pointer is returned.
435 struct socket *sockfd_lookup(int fd, int *err)
446 sock = sock_from_file(file, err);
451 EXPORT_SYMBOL(sockfd_lookup);
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
455 struct fd f = fdget(fd);
460 sock = sock_from_file(f.file, err);
462 *fput_needed = f.flags;
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 const char *name, void *value, size_t size)
476 const char *proto_name;
481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 proto_name = dentry->d_name.name;
483 proto_size = strlen(proto_name);
487 if (proto_size + 1 > size)
490 strncpy(value, proto_name, proto_size + 1);
492 error = proto_size + 1;
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
505 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
527 static const struct inode_operations sockfs_inode_ops = {
528 .getxattr = sockfs_getxattr,
529 .listxattr = sockfs_listxattr,
533 * sock_alloc - allocate a socket
535 * Allocate a new inode and socket object. The two are bound together
536 * and initialised. The socket is then returned. If we are out of inodes
540 static struct socket *sock_alloc(void)
545 inode = new_inode_pseudo(sock_mnt->mnt_sb);
549 sock = SOCKET_I(inode);
551 kmemcheck_annotate_bitfield(sock, type);
552 inode->i_ino = get_next_ino();
553 inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 inode->i_uid = current_fsuid();
555 inode->i_gid = current_fsgid();
556 inode->i_op = &sockfs_inode_ops;
558 this_cpu_add(sockets_in_use, 1);
563 * In theory you can't get an open on this inode, but /proc provides
564 * a back door. Remember to keep it shut otherwise you'll let the
565 * creepy crawlies in.
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
573 const struct file_operations bad_sock_fops = {
574 .owner = THIS_MODULE,
575 .open = sock_no_open,
576 .llseek = noop_llseek,
580 * sock_release - close a socket
581 * @sock: socket to close
583 * The socket is released from the protocol stack if it has a release
584 * callback, and the inode is then released if the socket is bound to
585 * an inode not a file.
588 void sock_release(struct socket *sock)
591 struct module *owner = sock->ops->owner;
593 sock->ops->release(sock);
598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 pr_err("%s: fasync list not empty!\n", __func__);
601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
604 this_cpu_sub(sockets_in_use, 1);
606 iput(SOCK_INODE(sock));
611 EXPORT_SYMBOL(sock_release);
613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
615 u8 flags = *tx_flags;
617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 flags |= SKBTX_HW_TSTAMP;
620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 flags |= SKBTX_SW_TSTAMP;
623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 flags |= SKBTX_SCHED_TSTAMP;
626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 flags |= SKBTX_ACK_TSTAMP;
631 EXPORT_SYMBOL(__sock_tx_timestamp);
633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
634 struct msghdr *msg, size_t size)
636 struct sock_iocb *si = kiocb_to_siocb(iocb);
643 return sock->ops->sendmsg(iocb, sock, msg, size);
646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
647 struct msghdr *msg, size_t size)
649 int err = security_socket_sendmsg(sock, msg, size);
651 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
654 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
655 size_t size, bool nosec)
658 struct sock_iocb siocb;
661 init_sync_kiocb(&iocb, NULL);
662 iocb.private = &siocb;
663 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
664 __sock_sendmsg(&iocb, sock, msg, size);
665 if (-EIOCBQUEUED == ret)
666 ret = wait_on_sync_kiocb(&iocb);
670 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
672 return do_sock_sendmsg(sock, msg, size, false);
674 EXPORT_SYMBOL(sock_sendmsg);
676 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
678 return do_sock_sendmsg(sock, msg, size, true);
681 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
682 struct kvec *vec, size_t num, size_t size)
684 mm_segment_t oldfs = get_fs();
689 * the following is safe, since for compiler definitions of kvec and
690 * iovec are identical, yielding the same in-core layout and alignment
692 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
693 result = sock_sendmsg(sock, msg, size);
697 EXPORT_SYMBOL(kernel_sendmsg);
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 struct scm_timestamping tss;
708 struct skb_shared_hwtstamps *shhwtstamps =
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp && skb->tstamp.tv64 == 0)
714 __net_timestamp(skb);
716 if (need_software_tstamp) {
717 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
719 skb_get_timestamp(skb, &tv);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
724 skb_get_timestampns(skb, &ts);
725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
730 memset(&tss, 0, sizeof(tss));
731 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
732 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
735 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
736 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
739 put_cmsg(msg, SOL_SOCKET,
740 SCM_TIMESTAMPING, sizeof(tss), &tss);
742 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
744 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
749 if (!sock_flag(sk, SOCK_WIFI_STATUS))
751 if (!skb->wifi_acked_valid)
754 ack = skb->wifi_acked;
756 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
758 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
760 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
763 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
764 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
765 sizeof(__u32), &skb->dropcount);
768 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
771 sock_recv_timestamp(msg, sk, skb);
772 sock_recv_drops(msg, sk, skb);
774 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
776 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
777 struct msghdr *msg, size_t size, int flags)
779 struct sock_iocb *si = kiocb_to_siocb(iocb);
787 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
790 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
791 struct msghdr *msg, size_t size, int flags)
793 int err = security_socket_recvmsg(sock, msg, size, flags);
795 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
798 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
799 size_t size, int flags)
802 struct sock_iocb siocb;
805 init_sync_kiocb(&iocb, NULL);
806 iocb.private = &siocb;
807 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
808 if (-EIOCBQUEUED == ret)
809 ret = wait_on_sync_kiocb(&iocb);
812 EXPORT_SYMBOL(sock_recvmsg);
814 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
815 size_t size, int flags)
818 struct sock_iocb siocb;
821 init_sync_kiocb(&iocb, NULL);
822 iocb.private = &siocb;
823 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
824 if (-EIOCBQUEUED == ret)
825 ret = wait_on_sync_kiocb(&iocb);
830 * kernel_recvmsg - Receive a message from a socket (kernel space)
831 * @sock: The socket to receive the message from
832 * @msg: Received message
833 * @vec: Input s/g array for message data
834 * @num: Size of input s/g array
835 * @size: Number of bytes to read
836 * @flags: Message flags (MSG_DONTWAIT, etc...)
838 * On return the msg structure contains the scatter/gather array passed in the
839 * vec argument. The array is modified so that it consists of the unfilled
840 * portion of the original array.
842 * The returned value is the total number of bytes received, or an error.
844 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
845 struct kvec *vec, size_t num, size_t size, int flags)
847 mm_segment_t oldfs = get_fs();
852 * the following is safe, since for compiler definitions of kvec and
853 * iovec are identical, yielding the same in-core layout and alignment
855 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
856 result = sock_recvmsg(sock, msg, size, flags);
860 EXPORT_SYMBOL(kernel_recvmsg);
862 static ssize_t sock_sendpage(struct file *file, struct page *page,
863 int offset, size_t size, loff_t *ppos, int more)
868 sock = file->private_data;
870 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
874 return kernel_sendpage(sock, page, offset, size, flags);
877 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
878 struct pipe_inode_info *pipe, size_t len,
881 struct socket *sock = file->private_data;
883 if (unlikely(!sock->ops->splice_read))
886 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
889 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
890 struct sock_iocb *siocb)
892 if (!is_sync_kiocb(iocb))
896 iocb->private = siocb;
900 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
901 struct file *file, const struct iovec *iov,
902 unsigned long nr_segs)
904 struct socket *sock = file->private_data;
908 for (i = 0; i < nr_segs; i++)
909 size += iov[i].iov_len;
911 msg->msg_name = NULL;
912 msg->msg_namelen = 0;
913 msg->msg_control = NULL;
914 msg->msg_controllen = 0;
915 iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size);
916 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
918 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
921 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
922 unsigned long nr_segs, loff_t pos)
924 struct sock_iocb siocb, *x;
929 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
933 x = alloc_sock_iocb(iocb, &siocb);
936 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
939 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
940 struct file *file, const struct iovec *iov,
941 unsigned long nr_segs)
943 struct socket *sock = file->private_data;
947 for (i = 0; i < nr_segs; i++)
948 size += iov[i].iov_len;
950 msg->msg_name = NULL;
951 msg->msg_namelen = 0;
952 msg->msg_control = NULL;
953 msg->msg_controllen = 0;
954 iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size);
955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 if (sock->type == SOCK_SEQPACKET)
957 msg->msg_flags |= MSG_EOR;
959 return __sock_sendmsg(iocb, sock, msg, size);
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 unsigned long nr_segs, loff_t pos)
965 struct sock_iocb siocb, *x;
970 x = alloc_sock_iocb(iocb, &siocb);
974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
978 * Atomic setting of ioctl hooks to avoid race
979 * with module unload.
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
987 mutex_lock(&br_ioctl_mutex);
988 br_ioctl_hook = hook;
989 mutex_unlock(&br_ioctl_mutex);
991 EXPORT_SYMBOL(brioctl_set);
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
998 mutex_lock(&vlan_ioctl_mutex);
999 vlan_ioctl_hook = hook;
1000 mutex_unlock(&vlan_ioctl_mutex);
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1009 mutex_lock(&dlci_ioctl_mutex);
1010 dlci_ioctl_hook = hook;
1011 mutex_unlock(&dlci_ioctl_mutex);
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 unsigned int cmd, unsigned long arg)
1019 void __user *argp = (void __user *)arg;
1021 err = sock->ops->ioctl(sock, cmd, arg);
1024 * If this ioctl is unknown try to hand it down
1025 * to the NIC driver.
1027 if (err == -ENOIOCTLCMD)
1028 err = dev_ioctl(net, cmd, argp);
1034 * With an ioctl, arg may well be a user mode pointer, but we don't know
1035 * what to do with it - that's up to the protocol still.
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1040 struct socket *sock;
1042 void __user *argp = (void __user *)arg;
1046 sock = file->private_data;
1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 err = dev_ioctl(net, cmd, argp);
1052 #ifdef CONFIG_WEXT_CORE
1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 err = dev_ioctl(net, cmd, argp);
1061 if (get_user(pid, (int __user *)argp))
1063 f_setown(sock->file, pid, 1);
1068 err = put_user(f_getown(sock->file),
1069 (int __user *)argp);
1077 request_module("bridge");
1079 mutex_lock(&br_ioctl_mutex);
1081 err = br_ioctl_hook(net, cmd, argp);
1082 mutex_unlock(&br_ioctl_mutex);
1087 if (!vlan_ioctl_hook)
1088 request_module("8021q");
1090 mutex_lock(&vlan_ioctl_mutex);
1091 if (vlan_ioctl_hook)
1092 err = vlan_ioctl_hook(net, argp);
1093 mutex_unlock(&vlan_ioctl_mutex);
1098 if (!dlci_ioctl_hook)
1099 request_module("dlci");
1101 mutex_lock(&dlci_ioctl_mutex);
1102 if (dlci_ioctl_hook)
1103 err = dlci_ioctl_hook(cmd, argp);
1104 mutex_unlock(&dlci_ioctl_mutex);
1107 err = sock_do_ioctl(net, sock, cmd, arg);
1113 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1116 struct socket *sock = NULL;
1118 err = security_socket_create(family, type, protocol, 1);
1122 sock = sock_alloc();
1129 err = security_socket_post_create(sock, family, type, protocol, 1);
1141 EXPORT_SYMBOL(sock_create_lite);
1143 /* No kernel lock held - perfect */
1144 static unsigned int sock_poll(struct file *file, poll_table *wait)
1146 unsigned int busy_flag = 0;
1147 struct socket *sock;
1150 * We can't return errors to poll, so it's either yes or no.
1152 sock = file->private_data;
1154 if (sk_can_busy_loop(sock->sk)) {
1155 /* this socket can poll_ll so tell the system call */
1156 busy_flag = POLL_BUSY_LOOP;
1158 /* once, only if requested by syscall */
1159 if (wait && (wait->_key & POLL_BUSY_LOOP))
1160 sk_busy_loop(sock->sk, 1);
1163 return busy_flag | sock->ops->poll(file, sock, wait);
1166 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1168 struct socket *sock = file->private_data;
1170 return sock->ops->mmap(file, sock, vma);
1173 static int sock_close(struct inode *inode, struct file *filp)
1175 sock_release(SOCKET_I(inode));
1180 * Update the socket async list
1182 * Fasync_list locking strategy.
1184 * 1. fasync_list is modified only under process context socket lock
1185 * i.e. under semaphore.
1186 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1187 * or under socket lock
1190 static int sock_fasync(int fd, struct file *filp, int on)
1192 struct socket *sock = filp->private_data;
1193 struct sock *sk = sock->sk;
1194 struct socket_wq *wq;
1200 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1201 fasync_helper(fd, filp, on, &wq->fasync_list);
1203 if (!wq->fasync_list)
1204 sock_reset_flag(sk, SOCK_FASYNC);
1206 sock_set_flag(sk, SOCK_FASYNC);
1212 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1214 int sock_wake_async(struct socket *sock, int how, int band)
1216 struct socket_wq *wq;
1221 wq = rcu_dereference(sock->wq);
1222 if (!wq || !wq->fasync_list) {
1227 case SOCK_WAKE_WAITD:
1228 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1231 case SOCK_WAKE_SPACE:
1232 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1237 kill_fasync(&wq->fasync_list, SIGIO, band);
1240 kill_fasync(&wq->fasync_list, SIGURG, band);
1245 EXPORT_SYMBOL(sock_wake_async);
1247 int __sock_create(struct net *net, int family, int type, int protocol,
1248 struct socket **res, int kern)
1251 struct socket *sock;
1252 const struct net_proto_family *pf;
1255 * Check protocol is in range
1257 if (family < 0 || family >= NPROTO)
1258 return -EAFNOSUPPORT;
1259 if (type < 0 || type >= SOCK_MAX)
1264 This uglymoron is moved from INET layer to here to avoid
1265 deadlock in module load.
1267 if (family == PF_INET && type == SOCK_PACKET) {
1271 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1277 err = security_socket_create(family, type, protocol, kern);
1282 * Allocate the socket and allow the family to set things up. if
1283 * the protocol is 0, the family is instructed to select an appropriate
1286 sock = sock_alloc();
1288 net_warn_ratelimited("socket: no more sockets\n");
1289 return -ENFILE; /* Not exactly a match, but its the
1290 closest posix thing */
1295 #ifdef CONFIG_MODULES
1296 /* Attempt to load a protocol module if the find failed.
1298 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1299 * requested real, full-featured networking support upon configuration.
1300 * Otherwise module support will break!
1302 if (rcu_access_pointer(net_families[family]) == NULL)
1303 request_module("net-pf-%d", family);
1307 pf = rcu_dereference(net_families[family]);
1308 err = -EAFNOSUPPORT;
1313 * We will call the ->create function, that possibly is in a loadable
1314 * module, so we have to bump that loadable module refcnt first.
1316 if (!try_module_get(pf->owner))
1319 /* Now protected by module ref count */
1322 err = pf->create(net, sock, protocol, kern);
1324 goto out_module_put;
1327 * Now to bump the refcnt of the [loadable] module that owns this
1328 * socket at sock_release time we decrement its refcnt.
1330 if (!try_module_get(sock->ops->owner))
1331 goto out_module_busy;
1334 * Now that we're done with the ->create function, the [loadable]
1335 * module can have its refcnt decremented
1337 module_put(pf->owner);
1338 err = security_socket_post_create(sock, family, type, protocol, kern);
1340 goto out_sock_release;
1346 err = -EAFNOSUPPORT;
1349 module_put(pf->owner);
1356 goto out_sock_release;
1358 EXPORT_SYMBOL(__sock_create);
1360 int sock_create(int family, int type, int protocol, struct socket **res)
1362 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1364 EXPORT_SYMBOL(sock_create);
1366 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1368 return __sock_create(&init_net, family, type, protocol, res, 1);
1370 EXPORT_SYMBOL(sock_create_kern);
1372 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1375 struct socket *sock;
1378 /* Check the SOCK_* constants for consistency. */
1379 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1380 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1381 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1382 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1384 flags = type & ~SOCK_TYPE_MASK;
1385 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1387 type &= SOCK_TYPE_MASK;
1389 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1390 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1392 retval = sock_create(family, type, protocol, &sock);
1396 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1401 /* It may be already another descriptor 8) Not kernel problem. */
1410 * Create a pair of connected sockets.
1413 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1414 int __user *, usockvec)
1416 struct socket *sock1, *sock2;
1418 struct file *newfile1, *newfile2;
1421 flags = type & ~SOCK_TYPE_MASK;
1422 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1424 type &= SOCK_TYPE_MASK;
1426 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1427 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1430 * Obtain the first socket and check if the underlying protocol
1431 * supports the socketpair call.
1434 err = sock_create(family, type, protocol, &sock1);
1438 err = sock_create(family, type, protocol, &sock2);
1442 err = sock1->ops->socketpair(sock1, sock2);
1444 goto out_release_both;
1446 fd1 = get_unused_fd_flags(flags);
1447 if (unlikely(fd1 < 0)) {
1449 goto out_release_both;
1452 fd2 = get_unused_fd_flags(flags);
1453 if (unlikely(fd2 < 0)) {
1455 goto out_put_unused_1;
1458 newfile1 = sock_alloc_file(sock1, flags, NULL);
1459 if (unlikely(IS_ERR(newfile1))) {
1460 err = PTR_ERR(newfile1);
1461 goto out_put_unused_both;
1464 newfile2 = sock_alloc_file(sock2, flags, NULL);
1465 if (IS_ERR(newfile2)) {
1466 err = PTR_ERR(newfile2);
1470 err = put_user(fd1, &usockvec[0]);
1474 err = put_user(fd2, &usockvec[1]);
1478 audit_fd_pair(fd1, fd2);
1480 fd_install(fd1, newfile1);
1481 fd_install(fd2, newfile2);
1482 /* fd1 and fd2 may be already another descriptors.
1483 * Not kernel problem.
1499 sock_release(sock2);
1502 out_put_unused_both:
1507 sock_release(sock2);
1509 sock_release(sock1);
1515 * Bind a name to a socket. Nothing much to do here since it's
1516 * the protocol's responsibility to handle the local address.
1518 * We move the socket address to kernel space before we call
1519 * the protocol layer (having also checked the address is ok).
1522 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1524 struct socket *sock;
1525 struct sockaddr_storage address;
1526 int err, fput_needed;
1528 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1530 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1532 err = security_socket_bind(sock,
1533 (struct sockaddr *)&address,
1536 err = sock->ops->bind(sock,
1540 fput_light(sock->file, fput_needed);
1546 * Perform a listen. Basically, we allow the protocol to do anything
1547 * necessary for a listen, and if that works, we mark the socket as
1548 * ready for listening.
1551 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1553 struct socket *sock;
1554 int err, fput_needed;
1557 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1559 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1560 if ((unsigned int)backlog > somaxconn)
1561 backlog = somaxconn;
1563 err = security_socket_listen(sock, backlog);
1565 err = sock->ops->listen(sock, backlog);
1567 fput_light(sock->file, fput_needed);
1573 * For accept, we attempt to create a new socket, set up the link
1574 * with the client, wake up the client, then return the new
1575 * connected fd. We collect the address of the connector in kernel
1576 * space and move it to user at the very end. This is unclean because
1577 * we open the socket then return an error.
1579 * 1003.1g adds the ability to recvmsg() to query connection pending
1580 * status to recvmsg. We need to add that support in a way thats
1581 * clean when we restucture accept also.
1584 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1585 int __user *, upeer_addrlen, int, flags)
1587 struct socket *sock, *newsock;
1588 struct file *newfile;
1589 int err, len, newfd, fput_needed;
1590 struct sockaddr_storage address;
1592 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1595 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1596 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1598 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1603 newsock = sock_alloc();
1607 newsock->type = sock->type;
1608 newsock->ops = sock->ops;
1611 * We don't need try_module_get here, as the listening socket (sock)
1612 * has the protocol module (sock->ops->owner) held.
1614 __module_get(newsock->ops->owner);
1616 newfd = get_unused_fd_flags(flags);
1617 if (unlikely(newfd < 0)) {
1619 sock_release(newsock);
1622 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1623 if (unlikely(IS_ERR(newfile))) {
1624 err = PTR_ERR(newfile);
1625 put_unused_fd(newfd);
1626 sock_release(newsock);
1630 err = security_socket_accept(sock, newsock);
1634 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1638 if (upeer_sockaddr) {
1639 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1641 err = -ECONNABORTED;
1644 err = move_addr_to_user(&address,
1645 len, upeer_sockaddr, upeer_addrlen);
1650 /* File flags are not inherited via accept() unlike another OSes. */
1652 fd_install(newfd, newfile);
1656 fput_light(sock->file, fput_needed);
1661 put_unused_fd(newfd);
1665 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1666 int __user *, upeer_addrlen)
1668 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1672 * Attempt to connect to a socket with the server address. The address
1673 * is in user space so we verify it is OK and move it to kernel space.
1675 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1678 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1679 * other SEQPACKET protocols that take time to connect() as it doesn't
1680 * include the -EINPROGRESS status for such sockets.
1683 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1686 struct socket *sock;
1687 struct sockaddr_storage address;
1688 int err, fput_needed;
1690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1693 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1698 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1702 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1703 sock->file->f_flags);
1705 fput_light(sock->file, fput_needed);
1711 * Get the local address ('name') of a socket object. Move the obtained
1712 * name to user space.
1715 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1716 int __user *, usockaddr_len)
1718 struct socket *sock;
1719 struct sockaddr_storage address;
1720 int len, err, fput_needed;
1722 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 err = security_socket_getsockname(sock);
1730 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1733 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1736 fput_light(sock->file, fput_needed);
1742 * Get the remote address ('name') of a socket object. Move the obtained
1743 * name to user space.
1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1747 int __user *, usockaddr_len)
1749 struct socket *sock;
1750 struct sockaddr_storage address;
1751 int len, err, fput_needed;
1753 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1755 err = security_socket_getpeername(sock);
1757 fput_light(sock->file, fput_needed);
1762 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1765 err = move_addr_to_user(&address, len, usockaddr,
1767 fput_light(sock->file, fput_needed);
1773 * Send a datagram to a given address. We move the address into kernel
1774 * space and check the user space data area is readable before invoking
1778 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1779 unsigned int, flags, struct sockaddr __user *, addr,
1782 struct socket *sock;
1783 struct sockaddr_storage address;
1791 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1795 iov.iov_base = buff;
1797 msg.msg_name = NULL;
1798 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1799 msg.msg_control = NULL;
1800 msg.msg_controllen = 0;
1801 msg.msg_namelen = 0;
1803 err = move_addr_to_kernel(addr, addr_len, &address);
1806 msg.msg_name = (struct sockaddr *)&address;
1807 msg.msg_namelen = addr_len;
1809 if (sock->file->f_flags & O_NONBLOCK)
1810 flags |= MSG_DONTWAIT;
1811 msg.msg_flags = flags;
1812 err = sock_sendmsg(sock, &msg, len);
1815 fput_light(sock->file, fput_needed);
1821 * Send a datagram down a socket.
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 unsigned int, flags)
1827 return sys_sendto(fd, buff, len, flags, NULL, 0);
1831 * Receive a frame from the socket and optionally record the address of the
1832 * sender. We verify the buffers are writable and if needed move the
1833 * sender address from kernel to user space.
1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 unsigned int, flags, struct sockaddr __user *, addr,
1838 int __user *, addr_len)
1840 struct socket *sock;
1843 struct sockaddr_storage address;
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1853 msg.msg_control = NULL;
1854 msg.msg_controllen = 0;
1856 iov.iov_base = ubuf;
1857 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1858 /* Save some cycles and don't copy the address if not needed */
1859 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1860 /* We assume all kernel code knows the size of sockaddr_storage */
1861 msg.msg_namelen = 0;
1862 if (sock->file->f_flags & O_NONBLOCK)
1863 flags |= MSG_DONTWAIT;
1864 err = sock_recvmsg(sock, &msg, size, flags);
1866 if (err >= 0 && addr != NULL) {
1867 err2 = move_addr_to_user(&address,
1868 msg.msg_namelen, addr, addr_len);
1873 fput_light(sock->file, fput_needed);
1879 * Receive a datagram from a socket.
1882 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1883 unsigned int, flags)
1885 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1889 * Set a socket option. Because we don't know the option lengths we have
1890 * to pass the user mode parameter for the protocols to sort out.
1893 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1894 char __user *, optval, int, optlen)
1896 int err, fput_needed;
1897 struct socket *sock;
1902 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904 err = security_socket_setsockopt(sock, level, optname);
1908 if (level == SOL_SOCKET)
1910 sock_setsockopt(sock, level, optname, optval,
1914 sock->ops->setsockopt(sock, level, optname, optval,
1917 fput_light(sock->file, fput_needed);
1923 * Get a socket option. Because we don't know the option lengths we have
1924 * to pass a user mode parameter for the protocols to sort out.
1927 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1928 char __user *, optval, int __user *, optlen)
1930 int err, fput_needed;
1931 struct socket *sock;
1933 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 err = security_socket_getsockopt(sock, level, optname);
1939 if (level == SOL_SOCKET)
1941 sock_getsockopt(sock, level, optname, optval,
1945 sock->ops->getsockopt(sock, level, optname, optval,
1948 fput_light(sock->file, fput_needed);
1954 * Shutdown a socket.
1957 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1959 int err, fput_needed;
1960 struct socket *sock;
1962 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964 err = security_socket_shutdown(sock, how);
1966 err = sock->ops->shutdown(sock, how);
1967 fput_light(sock->file, fput_needed);
1972 /* A couple of helpful macros for getting the address of the 32/64 bit
1973 * fields which are the same type (int / unsigned) on our platforms.
1975 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1976 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1977 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1979 struct used_address {
1980 struct sockaddr_storage name;
1981 unsigned int name_len;
1984 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1985 struct user_msghdr __user *umsg,
1986 struct sockaddr __user **save_addr,
1989 struct sockaddr __user *uaddr;
1990 struct iovec __user *uiov;
1994 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1995 __get_user(uaddr, &umsg->msg_name) ||
1996 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1997 __get_user(uiov, &umsg->msg_iov) ||
1998 __get_user(nr_segs, &umsg->msg_iovlen) ||
1999 __get_user(kmsg->msg_control, &umsg->msg_control) ||
2000 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
2001 __get_user(kmsg->msg_flags, &umsg->msg_flags))
2005 kmsg->msg_namelen = 0;
2007 if (kmsg->msg_namelen < 0)
2010 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2011 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2016 if (uaddr && kmsg->msg_namelen) {
2018 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
2024 kmsg->msg_name = NULL;
2025 kmsg->msg_namelen = 0;
2028 if (nr_segs > UIO_MAXIOV)
2031 err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2033 UIO_FASTIOV, *iov, iov);
2035 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
2036 *iov, nr_segs, err);
2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2041 struct msghdr *msg_sys, unsigned int flags,
2042 struct used_address *used_address)
2044 struct compat_msghdr __user *msg_compat =
2045 (struct compat_msghdr __user *)msg;
2046 struct sockaddr_storage address;
2047 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2048 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2049 __attribute__ ((aligned(sizeof(__kernel_size_t))));
2050 /* 20 is size of ipv6_pktinfo */
2051 unsigned char *ctl_buf = ctl;
2052 int ctl_len, total_len;
2055 msg_sys->msg_name = &address;
2057 if (MSG_CMSG_COMPAT & flags)
2058 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2060 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2067 if (msg_sys->msg_controllen > INT_MAX)
2069 ctl_len = msg_sys->msg_controllen;
2070 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2072 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2076 ctl_buf = msg_sys->msg_control;
2077 ctl_len = msg_sys->msg_controllen;
2078 } else if (ctl_len) {
2079 if (ctl_len > sizeof(ctl)) {
2080 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2081 if (ctl_buf == NULL)
2086 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2087 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2088 * checking falls down on this.
2090 if (copy_from_user(ctl_buf,
2091 (void __user __force *)msg_sys->msg_control,
2094 msg_sys->msg_control = ctl_buf;
2096 msg_sys->msg_flags = flags;
2098 if (sock->file->f_flags & O_NONBLOCK)
2099 msg_sys->msg_flags |= MSG_DONTWAIT;
2101 * If this is sendmmsg() and current destination address is same as
2102 * previously succeeded address, omit asking LSM's decision.
2103 * used_address->name_len is initialized to UINT_MAX so that the first
2104 * destination address never matches.
2106 if (used_address && msg_sys->msg_name &&
2107 used_address->name_len == msg_sys->msg_namelen &&
2108 !memcmp(&used_address->name, msg_sys->msg_name,
2109 used_address->name_len)) {
2110 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2113 err = sock_sendmsg(sock, msg_sys, total_len);
2115 * If this is sendmmsg() and sending to current destination address was
2116 * successful, remember it.
2118 if (used_address && err >= 0) {
2119 used_address->name_len = msg_sys->msg_namelen;
2120 if (msg_sys->msg_name)
2121 memcpy(&used_address->name, msg_sys->msg_name,
2122 used_address->name_len);
2127 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2129 if (iov != iovstack)
2135 * BSD sendmsg interface
2138 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2140 int fput_needed, err;
2141 struct msghdr msg_sys;
2142 struct socket *sock;
2144 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2148 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2150 fput_light(sock->file, fput_needed);
2155 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2157 if (flags & MSG_CMSG_COMPAT)
2159 return __sys_sendmsg(fd, msg, flags);
2163 * Linux sendmmsg interface
2166 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2169 int fput_needed, err, datagrams;
2170 struct socket *sock;
2171 struct mmsghdr __user *entry;
2172 struct compat_mmsghdr __user *compat_entry;
2173 struct msghdr msg_sys;
2174 struct used_address used_address;
2176 if (vlen > UIO_MAXIOV)
2181 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2185 used_address.name_len = UINT_MAX;
2187 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2190 while (datagrams < vlen) {
2191 if (MSG_CMSG_COMPAT & flags) {
2192 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2193 &msg_sys, flags, &used_address);
2196 err = __put_user(err, &compat_entry->msg_len);
2199 err = ___sys_sendmsg(sock,
2200 (struct user_msghdr __user *)entry,
2201 &msg_sys, flags, &used_address);
2204 err = put_user(err, &entry->msg_len);
2213 fput_light(sock->file, fput_needed);
2215 /* We only return an error if no datagrams were able to be sent */
2222 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2223 unsigned int, vlen, unsigned int, flags)
2225 if (flags & MSG_CMSG_COMPAT)
2227 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2230 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2231 struct msghdr *msg_sys, unsigned int flags, int nosec)
2233 struct compat_msghdr __user *msg_compat =
2234 (struct compat_msghdr __user *)msg;
2235 struct iovec iovstack[UIO_FASTIOV];
2236 struct iovec *iov = iovstack;
2237 unsigned long cmsg_ptr;
2241 /* kernel mode address */
2242 struct sockaddr_storage addr;
2244 /* user mode address pointers */
2245 struct sockaddr __user *uaddr;
2246 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2248 msg_sys->msg_name = &addr;
2250 if (MSG_CMSG_COMPAT & flags)
2251 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2253 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2258 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2259 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261 /* We assume all kernel code knows the size of sockaddr_storage */
2262 msg_sys->msg_namelen = 0;
2264 if (sock->file->f_flags & O_NONBLOCK)
2265 flags |= MSG_DONTWAIT;
2266 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2272 if (uaddr != NULL) {
2273 err = move_addr_to_user(&addr,
2274 msg_sys->msg_namelen, uaddr,
2279 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2283 if (MSG_CMSG_COMPAT & flags)
2284 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2285 &msg_compat->msg_controllen);
2287 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2288 &msg->msg_controllen);
2294 if (iov != iovstack)
2300 * BSD recvmsg interface
2303 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2305 int fput_needed, err;
2306 struct msghdr msg_sys;
2307 struct socket *sock;
2309 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2313 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2315 fput_light(sock->file, fput_needed);
2320 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2321 unsigned int, flags)
2323 if (flags & MSG_CMSG_COMPAT)
2325 return __sys_recvmsg(fd, msg, flags);
2329 * Linux recvmmsg interface
2332 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2333 unsigned int flags, struct timespec *timeout)
2335 int fput_needed, err, datagrams;
2336 struct socket *sock;
2337 struct mmsghdr __user *entry;
2338 struct compat_mmsghdr __user *compat_entry;
2339 struct msghdr msg_sys;
2340 struct timespec end_time;
2343 poll_select_set_timeout(&end_time, timeout->tv_sec,
2349 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2353 err = sock_error(sock->sk);
2358 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2360 while (datagrams < vlen) {
2362 * No need to ask LSM for more than the first datagram.
2364 if (MSG_CMSG_COMPAT & flags) {
2365 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2366 &msg_sys, flags & ~MSG_WAITFORONE,
2370 err = __put_user(err, &compat_entry->msg_len);
2373 err = ___sys_recvmsg(sock,
2374 (struct user_msghdr __user *)entry,
2375 &msg_sys, flags & ~MSG_WAITFORONE,
2379 err = put_user(err, &entry->msg_len);
2387 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2388 if (flags & MSG_WAITFORONE)
2389 flags |= MSG_DONTWAIT;
2392 ktime_get_ts(timeout);
2393 *timeout = timespec_sub(end_time, *timeout);
2394 if (timeout->tv_sec < 0) {
2395 timeout->tv_sec = timeout->tv_nsec = 0;
2399 /* Timeout, return less than vlen datagrams */
2400 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2404 /* Out of band data, return right away */
2405 if (msg_sys.msg_flags & MSG_OOB)
2410 fput_light(sock->file, fput_needed);
2415 if (datagrams != 0) {
2417 * We may return less entries than requested (vlen) if the
2418 * sock is non block and there aren't enough datagrams...
2420 if (err != -EAGAIN) {
2422 * ... or if recvmsg returns an error after we
2423 * received some datagrams, where we record the
2424 * error to return on the next call or if the
2425 * app asks about it using getsockopt(SO_ERROR).
2427 sock->sk->sk_err = -err;
2436 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2437 unsigned int, vlen, unsigned int, flags,
2438 struct timespec __user *, timeout)
2441 struct timespec timeout_sys;
2443 if (flags & MSG_CMSG_COMPAT)
2447 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2449 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2454 if (datagrams > 0 &&
2455 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2456 datagrams = -EFAULT;
2461 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2462 /* Argument list sizes for sys_socketcall */
2463 #define AL(x) ((x) * sizeof(unsigned long))
2464 static const unsigned char nargs[21] = {
2465 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2466 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2467 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2474 * System call vectors.
2476 * Argument checking cleaned up. Saved 20% in size.
2477 * This function doesn't need to set the kernel lock because
2478 * it is set by the callees.
2481 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2483 unsigned long a[AUDITSC_ARGS];
2484 unsigned long a0, a1;
2488 if (call < 1 || call > SYS_SENDMMSG)
2492 if (len > sizeof(a))
2495 /* copy_from_user should be SMP safe. */
2496 if (copy_from_user(a, args, len))
2499 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2508 err = sys_socket(a0, a1, a[2]);
2511 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517 err = sys_listen(a0, a1);
2520 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2521 (int __user *)a[2], 0);
2523 case SYS_GETSOCKNAME:
2525 sys_getsockname(a0, (struct sockaddr __user *)a1,
2526 (int __user *)a[2]);
2528 case SYS_GETPEERNAME:
2530 sys_getpeername(a0, (struct sockaddr __user *)a1,
2531 (int __user *)a[2]);
2533 case SYS_SOCKETPAIR:
2534 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2540 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2541 (struct sockaddr __user *)a[4], a[5]);
2544 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2547 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2548 (struct sockaddr __user *)a[4],
2549 (int __user *)a[5]);
2552 err = sys_shutdown(a0, a1);
2554 case SYS_SETSOCKOPT:
2555 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2557 case SYS_GETSOCKOPT:
2559 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2560 (int __user *)a[4]);
2563 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2566 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2569 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2572 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2573 (struct timespec __user *)a[4]);
2576 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2577 (int __user *)a[2], a[3]);
2586 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2589 * sock_register - add a socket protocol handler
2590 * @ops: description of protocol
2592 * This function is called by a protocol handler that wants to
2593 * advertise its address family, and have it linked into the
2594 * socket interface. The value ops->family corresponds to the
2595 * socket system call protocol family.
2597 int sock_register(const struct net_proto_family *ops)
2601 if (ops->family >= NPROTO) {
2602 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2606 spin_lock(&net_family_lock);
2607 if (rcu_dereference_protected(net_families[ops->family],
2608 lockdep_is_held(&net_family_lock)))
2611 rcu_assign_pointer(net_families[ops->family], ops);
2614 spin_unlock(&net_family_lock);
2616 pr_info("NET: Registered protocol family %d\n", ops->family);
2619 EXPORT_SYMBOL(sock_register);
2622 * sock_unregister - remove a protocol handler
2623 * @family: protocol family to remove
2625 * This function is called by a protocol handler that wants to
2626 * remove its address family, and have it unlinked from the
2627 * new socket creation.
2629 * If protocol handler is a module, then it can use module reference
2630 * counts to protect against new references. If protocol handler is not
2631 * a module then it needs to provide its own protection in
2632 * the ops->create routine.
2634 void sock_unregister(int family)
2636 BUG_ON(family < 0 || family >= NPROTO);
2638 spin_lock(&net_family_lock);
2639 RCU_INIT_POINTER(net_families[family], NULL);
2640 spin_unlock(&net_family_lock);
2644 pr_info("NET: Unregistered protocol family %d\n", family);
2646 EXPORT_SYMBOL(sock_unregister);
2648 static int __init sock_init(void)
2652 * Initialize the network sysctl infrastructure.
2654 err = net_sysctl_init();
2659 * Initialize skbuff SLAB cache
2664 * Initialize the protocols module.
2669 err = register_filesystem(&sock_fs_type);
2672 sock_mnt = kern_mount(&sock_fs_type);
2673 if (IS_ERR(sock_mnt)) {
2674 err = PTR_ERR(sock_mnt);
2678 /* The real protocol initialization is performed in later initcalls.
2681 #ifdef CONFIG_NETFILTER
2682 err = netfilter_init();
2687 ptp_classifier_init();
2693 unregister_filesystem(&sock_fs_type);
2698 core_initcall(sock_init); /* early initcall */
2700 #ifdef CONFIG_PROC_FS
2701 void socket_seq_show(struct seq_file *seq)
2706 for_each_possible_cpu(cpu)
2707 counter += per_cpu(sockets_in_use, cpu);
2709 /* It can be negative, by the way. 8) */
2713 seq_printf(seq, "sockets: used %d\n", counter);
2715 #endif /* CONFIG_PROC_FS */
2717 #ifdef CONFIG_COMPAT
2718 static int do_siocgstamp(struct net *net, struct socket *sock,
2719 unsigned int cmd, void __user *up)
2721 mm_segment_t old_fs = get_fs();
2726 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729 err = compat_put_timeval(&ktv, up);
2734 static int do_siocgstampns(struct net *net, struct socket *sock,
2735 unsigned int cmd, void __user *up)
2737 mm_segment_t old_fs = get_fs();
2738 struct timespec kts;
2742 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745 err = compat_put_timespec(&kts, up);
2750 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2752 struct ifreq __user *uifr;
2755 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2756 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2763 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2769 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2771 struct compat_ifconf ifc32;
2773 struct ifconf __user *uifc;
2774 struct compat_ifreq __user *ifr32;
2775 struct ifreq __user *ifr;
2779 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782 memset(&ifc, 0, sizeof(ifc));
2783 if (ifc32.ifcbuf == 0) {
2787 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2789 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2790 sizeof(struct ifreq);
2791 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2793 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2794 ifr32 = compat_ptr(ifc32.ifcbuf);
2795 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2796 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2802 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2809 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2813 ifr32 = compat_ptr(ifc32.ifcbuf);
2815 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2816 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2817 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2823 if (ifc32.ifcbuf == 0) {
2824 /* Translate from 64-bit structure multiple to
2828 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2833 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2839 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2841 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2842 bool convert_in = false, convert_out = false;
2843 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2844 struct ethtool_rxnfc __user *rxnfc;
2845 struct ifreq __user *ifr;
2846 u32 rule_cnt = 0, actual_rule_cnt;
2851 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854 compat_rxnfc = compat_ptr(data);
2856 if (get_user(ethcmd, &compat_rxnfc->cmd))
2859 /* Most ethtool structures are defined without padding.
2860 * Unfortunately struct ethtool_rxnfc is an exception.
2865 case ETHTOOL_GRXCLSRLALL:
2866 /* Buffer size is variable */
2867 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2869 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2871 buf_size += rule_cnt * sizeof(u32);
2873 case ETHTOOL_GRXRINGS:
2874 case ETHTOOL_GRXCLSRLCNT:
2875 case ETHTOOL_GRXCLSRULE:
2876 case ETHTOOL_SRXCLSRLINS:
2879 case ETHTOOL_SRXCLSRLDEL:
2880 buf_size += sizeof(struct ethtool_rxnfc);
2885 ifr = compat_alloc_user_space(buf_size);
2886 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2888 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2892 &ifr->ifr_ifru.ifru_data))
2896 /* We expect there to be holes between fs.m_ext and
2897 * fs.ring_cookie and at the end of fs, but nowhere else.
2899 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2900 sizeof(compat_rxnfc->fs.m_ext) !=
2901 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2902 sizeof(rxnfc->fs.m_ext));
2904 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2905 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2906 offsetof(struct ethtool_rxnfc, fs.location) -
2907 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2909 if (copy_in_user(rxnfc, compat_rxnfc,
2910 (void __user *)(&rxnfc->fs.m_ext + 1) -
2911 (void __user *)rxnfc) ||
2912 copy_in_user(&rxnfc->fs.ring_cookie,
2913 &compat_rxnfc->fs.ring_cookie,
2914 (void __user *)(&rxnfc->fs.location + 1) -
2915 (void __user *)&rxnfc->fs.ring_cookie) ||
2916 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2917 sizeof(rxnfc->rule_cnt)))
2921 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2926 if (copy_in_user(compat_rxnfc, rxnfc,
2927 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2928 (const void __user *)rxnfc) ||
2929 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2930 &rxnfc->fs.ring_cookie,
2931 (const void __user *)(&rxnfc->fs.location + 1) -
2932 (const void __user *)&rxnfc->fs.ring_cookie) ||
2933 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2934 sizeof(rxnfc->rule_cnt)))
2937 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2938 /* As an optimisation, we only copy the actual
2939 * number of rules that the underlying
2940 * function returned. Since Mallory might
2941 * change the rule count in user memory, we
2942 * check that it is less than the rule count
2943 * originally given (as the user buffer size),
2944 * which has been range-checked.
2946 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2948 if (actual_rule_cnt < rule_cnt)
2949 rule_cnt = actual_rule_cnt;
2950 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2951 &rxnfc->rule_locs[0],
2952 rule_cnt * sizeof(u32)))
2960 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963 compat_uptr_t uptr32;
2964 struct ifreq __user *uifr;
2966 uifr = compat_alloc_user_space(sizeof(*uifr));
2967 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973 uptr = compat_ptr(uptr32);
2975 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978 return dev_ioctl(net, SIOCWANDEV, uifr);
2981 static int bond_ioctl(struct net *net, unsigned int cmd,
2982 struct compat_ifreq __user *ifr32)
2985 mm_segment_t old_fs;
2989 case SIOCBONDENSLAVE:
2990 case SIOCBONDRELEASE:
2991 case SIOCBONDSETHWADDR:
2992 case SIOCBONDCHANGEACTIVE:
2993 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2998 err = dev_ioctl(net, cmd,
2999 (struct ifreq __user __force *) &kifr);
3004 return -ENOIOCTLCMD;
3008 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3009 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3010 struct compat_ifreq __user *u_ifreq32)
3012 struct ifreq __user *u_ifreq64;
3013 char tmp_buf[IFNAMSIZ];
3014 void __user *data64;
3017 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3022 data64 = compat_ptr(data32);
3024 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3026 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032 return dev_ioctl(net, cmd, u_ifreq64);
3035 static int dev_ifsioc(struct net *net, struct socket *sock,
3036 unsigned int cmd, struct compat_ifreq __user *uifr32)
3038 struct ifreq __user *uifr;
3041 uifr = compat_alloc_user_space(sizeof(*uifr));
3042 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3056 case SIOCGIFBRDADDR:
3057 case SIOCGIFDSTADDR:
3058 case SIOCGIFNETMASK:
3063 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3071 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3072 struct compat_ifreq __user *uifr32)
3075 struct compat_ifmap __user *uifmap32;
3076 mm_segment_t old_fs;
3079 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3080 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3081 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3082 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3083 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3084 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3085 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3086 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3092 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3095 if (cmd == SIOCGIFMAP && !err) {
3096 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3097 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3098 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3099 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3100 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3101 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3102 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3111 struct sockaddr rt_dst; /* target address */
3112 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3113 struct sockaddr rt_genmask; /* target network mask (IP) */
3114 unsigned short rt_flags;
3117 unsigned char rt_tos;
3118 unsigned char rt_class;
3120 short rt_metric; /* +1 for binary compatibility! */
3121 /* char * */ u32 rt_dev; /* forcing the device at add */
3122 u32 rt_mtu; /* per route MTU/Window */
3123 u32 rt_window; /* Window clamping */
3124 unsigned short rt_irtt; /* Initial RTT */
3127 struct in6_rtmsg32 {
3128 struct in6_addr rtmsg_dst;
3129 struct in6_addr rtmsg_src;
3130 struct in6_addr rtmsg_gateway;
3140 static int routing_ioctl(struct net *net, struct socket *sock,
3141 unsigned int cmd, void __user *argp)
3145 struct in6_rtmsg r6;
3149 mm_segment_t old_fs = get_fs();
3151 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3152 struct in6_rtmsg32 __user *ur6 = argp;
3153 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3154 3 * sizeof(struct in6_addr));
3155 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3156 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3157 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3158 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3159 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3160 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3161 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3165 struct rtentry32 __user *ur4 = argp;
3166 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3167 3 * sizeof(struct sockaddr));
3168 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3169 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3170 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3171 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3172 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3173 ret |= get_user(rtdev, &(ur4->rt_dev));
3175 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3176 r4.rt_dev = (char __user __force *)devname;
3190 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3197 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3198 * for some operations; this forces use of the newer bridge-utils that
3199 * use compatible ioctls
3201 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3205 if (get_user(tmp, argp))
3207 if (tmp == BRCTL_GET_VERSION)
3208 return BRCTL_VERSION + 1;
3212 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3213 unsigned int cmd, unsigned long arg)
3215 void __user *argp = compat_ptr(arg);
3216 struct sock *sk = sock->sk;
3217 struct net *net = sock_net(sk);
3219 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3220 return compat_ifr_data_ioctl(net, cmd, argp);
3225 return old_bridge_ioctl(argp);
3227 return dev_ifname32(net, argp);
3229 return dev_ifconf(net, argp);
3231 return ethtool_ioctl(net, argp);
3233 return compat_siocwandev(net, argp);
3236 return compat_sioc_ifmap(net, cmd, argp);
3237 case SIOCBONDENSLAVE:
3238 case SIOCBONDRELEASE:
3239 case SIOCBONDSETHWADDR:
3240 case SIOCBONDCHANGEACTIVE:
3241 return bond_ioctl(net, cmd, argp);
3244 return routing_ioctl(net, sock, cmd, argp);
3246 return do_siocgstamp(net, sock, cmd, argp);
3248 return do_siocgstampns(net, sock, cmd, argp);
3249 case SIOCBONDSLAVEINFOQUERY:
3250 case SIOCBONDINFOQUERY:
3253 return compat_ifr_data_ioctl(net, cmd, argp);
3265 return sock_ioctl(file, cmd, arg);
3282 case SIOCSIFHWBROADCAST:
3284 case SIOCGIFBRDADDR:
3285 case SIOCSIFBRDADDR:
3286 case SIOCGIFDSTADDR:
3287 case SIOCSIFDSTADDR:
3288 case SIOCGIFNETMASK:
3289 case SIOCSIFNETMASK:
3300 return dev_ifsioc(net, sock, cmd, argp);
3306 return sock_do_ioctl(net, sock, cmd, arg);
3309 return -ENOIOCTLCMD;
3312 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315 struct socket *sock = file->private_data;
3316 int ret = -ENOIOCTLCMD;
3323 if (sock->ops->compat_ioctl)
3324 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3326 if (ret == -ENOIOCTLCMD &&
3327 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3328 ret = compat_wext_handle_ioctl(net, cmd, arg);
3330 if (ret == -ENOIOCTLCMD)
3331 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3337 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3339 return sock->ops->bind(sock, addr, addrlen);
3341 EXPORT_SYMBOL(kernel_bind);
3343 int kernel_listen(struct socket *sock, int backlog)
3345 return sock->ops->listen(sock, backlog);
3347 EXPORT_SYMBOL(kernel_listen);
3349 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3351 struct sock *sk = sock->sk;
3354 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3359 err = sock->ops->accept(sock, *newsock, flags);
3361 sock_release(*newsock);
3366 (*newsock)->ops = sock->ops;
3367 __module_get((*newsock)->ops->owner);
3372 EXPORT_SYMBOL(kernel_accept);
3374 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377 return sock->ops->connect(sock, addr, addrlen, flags);
3379 EXPORT_SYMBOL(kernel_connect);
3381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384 return sock->ops->getname(sock, addr, addrlen, 0);
3386 EXPORT_SYMBOL(kernel_getsockname);
3388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391 return sock->ops->getname(sock, addr, addrlen, 1);
3393 EXPORT_SYMBOL(kernel_getpeername);
3395 int kernel_getsockopt(struct socket *sock, int level, int optname,
3396 char *optval, int *optlen)
3398 mm_segment_t oldfs = get_fs();
3399 char __user *uoptval;
3400 int __user *uoptlen;
3403 uoptval = (char __user __force *) optval;
3404 uoptlen = (int __user __force *) optlen;
3407 if (level == SOL_SOCKET)
3408 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3410 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3415 EXPORT_SYMBOL(kernel_getsockopt);
3417 int kernel_setsockopt(struct socket *sock, int level, int optname,
3418 char *optval, unsigned int optlen)
3420 mm_segment_t oldfs = get_fs();
3421 char __user *uoptval;
3424 uoptval = (char __user __force *) optval;
3427 if (level == SOL_SOCKET)
3428 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3430 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3435 EXPORT_SYMBOL(kernel_setsockopt);
3437 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3438 size_t size, int flags)
3440 if (sock->ops->sendpage)
3441 return sock->ops->sendpage(sock, page, offset, size, flags);
3443 return sock_no_sendpage(sock, page, offset, size, flags);
3445 EXPORT_SYMBOL(kernel_sendpage);
3447 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3449 mm_segment_t oldfs = get_fs();
3453 err = sock->ops->ioctl(sock, cmd, arg);
3458 EXPORT_SYMBOL(kernel_sock_ioctl);
3460 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3462 return sock->ops->shutdown(sock, how);
3464 EXPORT_SYMBOL(kernel_sock_shutdown);