1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
37 #include "inode-map.h"
39 #include "rcu-string.h"
41 #include "dev-replace.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53 * structures are incorrect, as the timespec structure from userspace
54 * is 4 bytes too small. We define these alternatives here to teach
55 * the kernel about the 32-bit struct packing.
57 struct btrfs_ioctl_timespec_32 {
60 } __attribute__ ((__packed__));
62 struct btrfs_ioctl_received_subvol_args_32 {
63 char uuid[BTRFS_UUID_SIZE]; /* in */
64 __u64 stransid; /* in */
65 __u64 rtransid; /* out */
66 struct btrfs_ioctl_timespec_32 stime; /* in */
67 struct btrfs_ioctl_timespec_32 rtime; /* out */
69 __u64 reserved[16]; /* in */
70 } __attribute__ ((__packed__));
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 struct btrfs_ioctl_received_subvol_args_32)
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 __s64 send_fd; /* in */
79 __u64 clone_sources_count; /* in */
80 compat_uptr_t clone_sources; /* in */
81 __u64 parent_root; /* in */
83 __u64 reserved[4]; /* in */
84 } __attribute__ ((__packed__));
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 struct btrfs_ioctl_send_args_32)
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
94 if (S_ISDIR(inode->i_mode))
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
108 unsigned int iflags = 0;
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
134 * Update inode->i_flags based on the btrfs internal flags.
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
141 if (binode->flags & BTRFS_INODE_SYNC)
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
147 if (binode->flags & BTRFS_INODE_NOATIME)
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
162 if (copy_to_user(arg, &flags, sizeof(flags)))
168 * Check if @flags are a supported and valid set of FS_*_FL flags and that
169 * the old and new flags are not conflicting
171 static int check_fsflags(unsigned int old_flags, unsigned int flags)
173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 FS_NOATIME_FL | FS_NODUMP_FL | \
175 FS_SYNC_FL | FS_DIRSYNC_FL | \
176 FS_NOCOMP_FL | FS_COMPR_FL |
180 /* COMPR and NOCOMP on new/old are valid */
181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
187 /* NOCOW and compression options are mutually exclusive */
188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
198 struct inode *inode = file_inode(file);
199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 struct btrfs_inode *binode = BTRFS_I(inode);
201 struct btrfs_root *root = binode->root;
202 struct btrfs_trans_handle *trans;
203 unsigned int fsflags, old_fsflags;
205 const char *comp = NULL;
208 if (!inode_owner_or_capable(inode))
211 if (btrfs_root_readonly(root))
214 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
217 ret = mnt_want_write_file(file);
222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
229 ret = check_fsflags(old_fsflags, fsflags);
233 binode_flags = binode->flags;
234 if (fsflags & FS_SYNC_FL)
235 binode_flags |= BTRFS_INODE_SYNC;
237 binode_flags &= ~BTRFS_INODE_SYNC;
238 if (fsflags & FS_IMMUTABLE_FL)
239 binode_flags |= BTRFS_INODE_IMMUTABLE;
241 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 if (fsflags & FS_APPEND_FL)
243 binode_flags |= BTRFS_INODE_APPEND;
245 binode_flags &= ~BTRFS_INODE_APPEND;
246 if (fsflags & FS_NODUMP_FL)
247 binode_flags |= BTRFS_INODE_NODUMP;
249 binode_flags &= ~BTRFS_INODE_NODUMP;
250 if (fsflags & FS_NOATIME_FL)
251 binode_flags |= BTRFS_INODE_NOATIME;
253 binode_flags &= ~BTRFS_INODE_NOATIME;
254 if (fsflags & FS_DIRSYNC_FL)
255 binode_flags |= BTRFS_INODE_DIRSYNC;
257 binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 if (fsflags & FS_NOCOW_FL) {
259 if (S_ISREG(inode->i_mode)) {
261 * It's safe to turn csums off here, no extents exist.
262 * Otherwise we want the flag to reflect the real COW
263 * status of the file and will not set it.
265 if (inode->i_size == 0)
266 binode_flags |= BTRFS_INODE_NODATACOW |
267 BTRFS_INODE_NODATASUM;
269 binode_flags |= BTRFS_INODE_NODATACOW;
273 * Revert back under same assumptions as above
275 if (S_ISREG(inode->i_mode)) {
276 if (inode->i_size == 0)
277 binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 BTRFS_INODE_NODATASUM);
280 binode_flags &= ~BTRFS_INODE_NODATACOW;
285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 * flag may be changed automatically if compression code won't make
289 if (fsflags & FS_NOCOMP_FL) {
290 binode_flags &= ~BTRFS_INODE_COMPRESS;
291 binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 } else if (fsflags & FS_COMPR_FL) {
294 if (IS_SWAPFILE(inode)) {
299 binode_flags |= BTRFS_INODE_COMPRESS;
300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
302 comp = btrfs_compress_type2str(fs_info->compress_type);
303 if (!comp || comp[0] == 0)
304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
313 trans = btrfs_start_transaction(root, 3);
315 ret = PTR_ERR(trans);
320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
323 btrfs_abort_transaction(trans, ret);
327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
329 if (ret && ret != -ENODATA) {
330 btrfs_abort_transaction(trans, ret);
335 binode->flags = binode_flags;
336 btrfs_sync_inode_flags_to_i_flags(inode);
337 inode_inc_iversion(inode);
338 inode->i_ctime = current_time(inode);
339 ret = btrfs_update_inode(trans, root, inode);
342 btrfs_end_transaction(trans);
345 mnt_drop_write_file(file);
350 * Translate btrfs internal inode flags to xflags as expected by the
351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
356 unsigned int xflags = 0;
358 if (flags & BTRFS_INODE_APPEND)
359 xflags |= FS_XFLAG_APPEND;
360 if (flags & BTRFS_INODE_IMMUTABLE)
361 xflags |= FS_XFLAG_IMMUTABLE;
362 if (flags & BTRFS_INODE_NOATIME)
363 xflags |= FS_XFLAG_NOATIME;
364 if (flags & BTRFS_INODE_NODUMP)
365 xflags |= FS_XFLAG_NODUMP;
366 if (flags & BTRFS_INODE_SYNC)
367 xflags |= FS_XFLAG_SYNC;
372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
373 static int check_xflags(unsigned int flags)
375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
382 enum btrfs_exclusive_operation type)
384 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
389 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
390 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
394 * Set the xflags from the internal inode flags. The remaining items of fsxattr
397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
399 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
402 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
403 if (copy_to_user(arg, &fa, sizeof(fa)))
409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
411 struct inode *inode = file_inode(file);
412 struct btrfs_inode *binode = BTRFS_I(inode);
413 struct btrfs_root *root = binode->root;
414 struct btrfs_trans_handle *trans;
415 struct fsxattr fa, old_fa;
417 unsigned old_i_flags;
420 if (!inode_owner_or_capable(inode))
423 if (btrfs_root_readonly(root))
426 if (copy_from_user(&fa, arg, sizeof(fa)))
429 ret = check_xflags(fa.fsx_xflags);
433 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
436 ret = mnt_want_write_file(file);
442 old_flags = binode->flags;
443 old_i_flags = inode->i_flags;
445 simple_fill_fsxattr(&old_fa,
446 btrfs_inode_flags_to_xflags(binode->flags));
447 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
451 if (fa.fsx_xflags & FS_XFLAG_SYNC)
452 binode->flags |= BTRFS_INODE_SYNC;
454 binode->flags &= ~BTRFS_INODE_SYNC;
455 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
456 binode->flags |= BTRFS_INODE_IMMUTABLE;
458 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
459 if (fa.fsx_xflags & FS_XFLAG_APPEND)
460 binode->flags |= BTRFS_INODE_APPEND;
462 binode->flags &= ~BTRFS_INODE_APPEND;
463 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
464 binode->flags |= BTRFS_INODE_NODUMP;
466 binode->flags &= ~BTRFS_INODE_NODUMP;
467 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
468 binode->flags |= BTRFS_INODE_NOATIME;
470 binode->flags &= ~BTRFS_INODE_NOATIME;
472 /* 1 item for the inode */
473 trans = btrfs_start_transaction(root, 1);
475 ret = PTR_ERR(trans);
479 btrfs_sync_inode_flags_to_i_flags(inode);
480 inode_inc_iversion(inode);
481 inode->i_ctime = current_time(inode);
482 ret = btrfs_update_inode(trans, root, inode);
484 btrfs_end_transaction(trans);
488 binode->flags = old_flags;
489 inode->i_flags = old_i_flags;
493 mnt_drop_write_file(file);
498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
500 struct inode *inode = file_inode(file);
502 return put_user(inode->i_generation, arg);
505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
508 struct btrfs_device *device;
509 struct request_queue *q;
510 struct fstrim_range range;
511 u64 minlen = ULLONG_MAX;
515 if (!capable(CAP_SYS_ADMIN))
519 * If the fs is mounted with nologreplay, which requires it to be
520 * mounted in RO mode as well, we can not allow discard on free space
521 * inside block groups, because log trees refer to extents that are not
522 * pinned in a block group's free space cache (pinning the extents is
523 * precisely the first phase of replaying a log tree).
525 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
529 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
533 q = bdev_get_queue(device->bdev);
534 if (blk_queue_discard(q)) {
536 minlen = min_t(u64, q->limits.discard_granularity,
544 if (copy_from_user(&range, arg, sizeof(range)))
548 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
549 * block group is in the logical address space, which can be any
550 * sectorsize aligned bytenr in the range [0, U64_MAX].
552 if (range.len < fs_info->sb->s_blocksize)
555 range.minlen = max(range.minlen, minlen);
556 ret = btrfs_trim_fs(fs_info, &range);
560 if (copy_to_user(arg, &range, sizeof(range)))
566 int __pure btrfs_is_empty_uuid(u8 *uuid)
570 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
577 static noinline int create_subvol(struct inode *dir,
578 struct dentry *dentry,
579 const char *name, int namelen,
580 struct btrfs_qgroup_inherit *inherit)
582 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
583 struct btrfs_trans_handle *trans;
584 struct btrfs_key key;
585 struct btrfs_root_item *root_item;
586 struct btrfs_inode_item *inode_item;
587 struct extent_buffer *leaf;
588 struct btrfs_root *root = BTRFS_I(dir)->root;
589 struct btrfs_root *new_root;
590 struct btrfs_block_rsv block_rsv;
591 struct timespec64 cur_time = current_time(dir);
597 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
600 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
604 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
608 ret = get_anon_bdev(&anon_dev);
613 * Don't create subvolume whose level is not zero. Or qgroup will be
614 * screwed up since it assumes subvolume qgroup's level to be 0.
616 if (btrfs_qgroup_level(objectid)) {
621 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
623 * The same as the snapshot creation, please see the comment
624 * of create_snapshot().
626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
630 trans = btrfs_start_transaction(root, 0);
632 ret = PTR_ERR(trans);
633 btrfs_subvolume_release_metadata(root, &block_rsv);
636 trans->block_rsv = &block_rsv;
637 trans->bytes_reserved = block_rsv.size;
639 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
643 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
644 BTRFS_NESTING_NORMAL);
650 btrfs_mark_buffer_dirty(leaf);
652 inode_item = &root_item->inode;
653 btrfs_set_stack_inode_generation(inode_item, 1);
654 btrfs_set_stack_inode_size(inode_item, 3);
655 btrfs_set_stack_inode_nlink(inode_item, 1);
656 btrfs_set_stack_inode_nbytes(inode_item,
658 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
660 btrfs_set_root_flags(root_item, 0);
661 btrfs_set_root_limit(root_item, 0);
662 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
664 btrfs_set_root_bytenr(root_item, leaf->start);
665 btrfs_set_root_generation(root_item, trans->transid);
666 btrfs_set_root_level(root_item, 0);
667 btrfs_set_root_refs(root_item, 1);
668 btrfs_set_root_used(root_item, leaf->len);
669 btrfs_set_root_last_snapshot(root_item, 0);
671 btrfs_set_root_generation_v2(root_item,
672 btrfs_root_generation(root_item));
673 generate_random_guid(root_item->uuid);
674 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
675 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
676 root_item->ctime = root_item->otime;
677 btrfs_set_root_ctransid(root_item, trans->transid);
678 btrfs_set_root_otransid(root_item, trans->transid);
680 btrfs_tree_unlock(leaf);
681 free_extent_buffer(leaf);
684 btrfs_set_root_dirid(root_item, new_dirid);
686 key.objectid = objectid;
688 key.type = BTRFS_ROOT_ITEM_KEY;
689 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
694 key.offset = (u64)-1;
695 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
696 if (IS_ERR(new_root)) {
697 free_anon_bdev(anon_dev);
698 ret = PTR_ERR(new_root);
699 btrfs_abort_transaction(trans, ret);
702 /* Freeing will be done in btrfs_put_root() of new_root */
705 btrfs_record_root_in_trans(trans, new_root);
707 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
708 btrfs_put_root(new_root);
710 /* We potentially lose an unused inode item here */
711 btrfs_abort_transaction(trans, ret);
715 mutex_lock(&new_root->objectid_mutex);
716 new_root->highest_objectid = new_dirid;
717 mutex_unlock(&new_root->objectid_mutex);
720 * insert the directory item
722 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
724 btrfs_abort_transaction(trans, ret);
728 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
729 BTRFS_FT_DIR, index);
731 btrfs_abort_transaction(trans, ret);
735 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
736 ret = btrfs_update_inode(trans, root, dir);
738 btrfs_abort_transaction(trans, ret);
742 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
743 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
745 btrfs_abort_transaction(trans, ret);
749 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
750 BTRFS_UUID_KEY_SUBVOL, objectid);
752 btrfs_abort_transaction(trans, ret);
756 trans->block_rsv = NULL;
757 trans->bytes_reserved = 0;
758 btrfs_subvolume_release_metadata(root, &block_rsv);
760 err = btrfs_commit_transaction(trans);
765 inode = btrfs_lookup_dentry(dir, dentry);
767 return PTR_ERR(inode);
768 d_instantiate(dentry, inode);
774 free_anon_bdev(anon_dev);
779 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
780 struct dentry *dentry, bool readonly,
781 struct btrfs_qgroup_inherit *inherit)
783 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
785 struct btrfs_pending_snapshot *pending_snapshot;
786 struct btrfs_trans_handle *trans;
789 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
792 if (atomic_read(&root->nr_swapfiles)) {
794 "cannot snapshot subvolume with active swapfile");
798 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
799 if (!pending_snapshot)
802 ret = get_anon_bdev(&pending_snapshot->anon_dev);
805 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
807 pending_snapshot->path = btrfs_alloc_path();
808 if (!pending_snapshot->root_item || !pending_snapshot->path) {
813 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
814 BTRFS_BLOCK_RSV_TEMP);
816 * 1 - parent dir inode
819 * 2 - root ref/backref
820 * 1 - root of snapshot
823 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
824 &pending_snapshot->block_rsv, 8,
829 pending_snapshot->dentry = dentry;
830 pending_snapshot->root = root;
831 pending_snapshot->readonly = readonly;
832 pending_snapshot->dir = dir;
833 pending_snapshot->inherit = inherit;
835 trans = btrfs_start_transaction(root, 0);
837 ret = PTR_ERR(trans);
841 spin_lock(&fs_info->trans_lock);
842 list_add(&pending_snapshot->list,
843 &trans->transaction->pending_snapshots);
844 spin_unlock(&fs_info->trans_lock);
846 ret = btrfs_commit_transaction(trans);
850 ret = pending_snapshot->error;
854 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
858 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
860 ret = PTR_ERR(inode);
864 d_instantiate(dentry, inode);
866 pending_snapshot->anon_dev = 0;
868 /* Prevent double freeing of anon_dev */
869 if (ret && pending_snapshot->snap)
870 pending_snapshot->snap->anon_dev = 0;
871 btrfs_put_root(pending_snapshot->snap);
872 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
874 if (pending_snapshot->anon_dev)
875 free_anon_bdev(pending_snapshot->anon_dev);
876 kfree(pending_snapshot->root_item);
877 btrfs_free_path(pending_snapshot->path);
878 kfree(pending_snapshot);
883 /* copy of may_delete in fs/namei.c()
884 * Check whether we can remove a link victim from directory dir, check
885 * whether the type of victim is right.
886 * 1. We can't do it if dir is read-only (done in permission())
887 * 2. We should have write and exec permissions on dir
888 * 3. We can't remove anything from append-only dir
889 * 4. We can't do anything with immutable dir (done in permission())
890 * 5. If the sticky bit on dir is set we should either
891 * a. be owner of dir, or
892 * b. be owner of victim, or
893 * c. have CAP_FOWNER capability
894 * 6. If the victim is append-only or immutable we can't do anything with
895 * links pointing to it.
896 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
897 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
898 * 9. We can't remove a root or mountpoint.
899 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
900 * nfs_async_unlink().
903 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
907 if (d_really_is_negative(victim))
910 BUG_ON(d_inode(victim->d_parent) != dir);
911 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
913 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
918 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
919 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
922 if (!d_is_dir(victim))
926 } else if (d_is_dir(victim))
930 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
935 /* copy of may_create in fs/namei.c() */
936 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
938 if (d_really_is_positive(child))
942 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
946 * Create a new subvolume below @parent. This is largely modeled after
947 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
948 * inside this filesystem so it's quite a bit simpler.
950 static noinline int btrfs_mksubvol(const struct path *parent,
951 const char *name, int namelen,
952 struct btrfs_root *snap_src,
954 struct btrfs_qgroup_inherit *inherit)
956 struct inode *dir = d_inode(parent->dentry);
957 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
958 struct dentry *dentry;
961 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
965 dentry = lookup_one_len(name, parent->dentry, namelen);
966 error = PTR_ERR(dentry);
970 error = btrfs_may_create(dir, dentry);
975 * even if this name doesn't exist, we may get hash collisions.
976 * check for them now when we can safely fail
978 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
984 down_read(&fs_info->subvol_sem);
986 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
990 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
992 error = create_subvol(dir, dentry, name, namelen, inherit);
995 fsnotify_mkdir(dir, dentry);
997 up_read(&fs_info->subvol_sem);
1005 static noinline int btrfs_mksnapshot(const struct path *parent,
1006 const char *name, int namelen,
1007 struct btrfs_root *root,
1009 struct btrfs_qgroup_inherit *inherit)
1012 bool snapshot_force_cow = false;
1015 * Force new buffered writes to reserve space even when NOCOW is
1016 * possible. This is to avoid later writeback (running dealloc) to
1017 * fallback to COW mode and unexpectedly fail with ENOSPC.
1019 btrfs_drew_read_lock(&root->snapshot_lock);
1021 ret = btrfs_start_delalloc_snapshot(root);
1026 * All previous writes have started writeback in NOCOW mode, so now
1027 * we force future writes to fallback to COW mode during snapshot
1030 atomic_inc(&root->snapshot_force_cow);
1031 snapshot_force_cow = true;
1033 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1035 ret = btrfs_mksubvol(parent, name, namelen,
1036 root, readonly, inherit);
1038 if (snapshot_force_cow)
1039 atomic_dec(&root->snapshot_force_cow);
1040 btrfs_drew_read_unlock(&root->snapshot_lock);
1045 * When we're defragging a range, we don't want to kick it off again
1046 * if it is really just waiting for delalloc to send it down.
1047 * If we find a nice big extent or delalloc range for the bytes in the
1048 * file you want to defrag, we return 0 to let you know to skip this
1051 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1053 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1054 struct extent_map *em = NULL;
1055 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1058 read_lock(&em_tree->lock);
1059 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1060 read_unlock(&em_tree->lock);
1063 end = extent_map_end(em);
1064 free_extent_map(em);
1065 if (end - offset > thresh)
1068 /* if we already have a nice delalloc here, just stop */
1070 end = count_range_bits(io_tree, &offset, offset + thresh,
1071 thresh, EXTENT_DELALLOC, 1);
1078 * helper function to walk through a file and find extents
1079 * newer than a specific transid, and smaller than thresh.
1081 * This is used by the defragging code to find new and small
1084 static int find_new_extents(struct btrfs_root *root,
1085 struct inode *inode, u64 newer_than,
1086 u64 *off, u32 thresh)
1088 struct btrfs_path *path;
1089 struct btrfs_key min_key;
1090 struct extent_buffer *leaf;
1091 struct btrfs_file_extent_item *extent;
1094 u64 ino = btrfs_ino(BTRFS_I(inode));
1096 path = btrfs_alloc_path();
1100 min_key.objectid = ino;
1101 min_key.type = BTRFS_EXTENT_DATA_KEY;
1102 min_key.offset = *off;
1105 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1109 if (min_key.objectid != ino)
1111 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1114 leaf = path->nodes[0];
1115 extent = btrfs_item_ptr(leaf, path->slots[0],
1116 struct btrfs_file_extent_item);
1118 type = btrfs_file_extent_type(leaf, extent);
1119 if (type == BTRFS_FILE_EXTENT_REG &&
1120 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1121 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1122 *off = min_key.offset;
1123 btrfs_free_path(path);
1128 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1129 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1133 if (min_key.offset == (u64)-1)
1137 btrfs_release_path(path);
1140 btrfs_free_path(path);
1144 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1146 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1147 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1148 struct extent_map *em;
1149 u64 len = PAGE_SIZE;
1152 * hopefully we have this extent in the tree already, try without
1153 * the full extent lock
1155 read_lock(&em_tree->lock);
1156 em = lookup_extent_mapping(em_tree, start, len);
1157 read_unlock(&em_tree->lock);
1160 struct extent_state *cached = NULL;
1161 u64 end = start + len - 1;
1163 /* get the big lock and read metadata off disk */
1164 lock_extent_bits(io_tree, start, end, &cached);
1165 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1166 unlock_extent_cached(io_tree, start, end, &cached);
1175 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1177 struct extent_map *next;
1180 /* this is the last extent */
1181 if (em->start + em->len >= i_size_read(inode))
1184 next = defrag_lookup_extent(inode, em->start + em->len);
1185 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1187 else if ((em->block_start + em->block_len == next->block_start) &&
1188 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1191 free_extent_map(next);
1195 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1196 u64 *last_len, u64 *skip, u64 *defrag_end,
1199 struct extent_map *em;
1201 bool next_mergeable = true;
1202 bool prev_mergeable = true;
1205 * make sure that once we start defragging an extent, we keep on
1208 if (start < *defrag_end)
1213 em = defrag_lookup_extent(inode, start);
1217 /* this will cover holes, and inline extents */
1218 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1224 prev_mergeable = false;
1226 next_mergeable = defrag_check_next_extent(inode, em);
1228 * we hit a real extent, if it is big or the next extent is not a
1229 * real extent, don't bother defragging it
1231 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1232 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1236 * last_len ends up being a counter of how many bytes we've defragged.
1237 * every time we choose not to defrag an extent, we reset *last_len
1238 * so that the next tiny extent will force a defrag.
1240 * The end result of this is that tiny extents before a single big
1241 * extent will force at least part of that big extent to be defragged.
1244 *defrag_end = extent_map_end(em);
1247 *skip = extent_map_end(em);
1251 free_extent_map(em);
1256 * it doesn't do much good to defrag one or two pages
1257 * at a time. This pulls in a nice chunk of pages
1258 * to COW and defrag.
1260 * It also makes sure the delalloc code has enough
1261 * dirty data to avoid making new small extents as part
1264 * It's a good idea to start RA on this range
1265 * before calling this.
1267 static int cluster_pages_for_defrag(struct inode *inode,
1268 struct page **pages,
1269 unsigned long start_index,
1270 unsigned long num_pages)
1272 unsigned long file_end;
1273 u64 isize = i_size_read(inode);
1277 u64 start = (u64)start_index << PAGE_SHIFT;
1281 struct btrfs_ordered_extent *ordered;
1282 struct extent_state *cached_state = NULL;
1283 struct extent_io_tree *tree;
1284 struct extent_changeset *data_reserved = NULL;
1285 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1287 file_end = (isize - 1) >> PAGE_SHIFT;
1288 if (!isize || start_index > file_end)
1291 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1293 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1294 start, page_cnt << PAGE_SHIFT);
1298 tree = &BTRFS_I(inode)->io_tree;
1300 /* step one, lock all the pages */
1301 for (i = 0; i < page_cnt; i++) {
1304 page = find_or_create_page(inode->i_mapping,
1305 start_index + i, mask);
1309 page_start = page_offset(page);
1310 page_end = page_start + PAGE_SIZE - 1;
1312 lock_extent_bits(tree, page_start, page_end,
1314 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1316 unlock_extent_cached(tree, page_start, page_end,
1322 btrfs_start_ordered_extent(ordered, 1);
1323 btrfs_put_ordered_extent(ordered);
1326 * we unlocked the page above, so we need check if
1327 * it was released or not.
1329 if (page->mapping != inode->i_mapping) {
1336 if (!PageUptodate(page)) {
1337 btrfs_readpage(NULL, page);
1339 if (!PageUptodate(page)) {
1347 if (page->mapping != inode->i_mapping) {
1359 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1363 * so now we have a nice long stream of locked
1364 * and up to date pages, lets wait on them
1366 for (i = 0; i < i_done; i++)
1367 wait_on_page_writeback(pages[i]);
1369 page_start = page_offset(pages[0]);
1370 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1372 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1373 page_start, page_end - 1, &cached_state);
1374 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1375 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1376 EXTENT_DEFRAG, 0, 0, &cached_state);
1378 if (i_done != page_cnt) {
1379 spin_lock(&BTRFS_I(inode)->lock);
1380 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1381 spin_unlock(&BTRFS_I(inode)->lock);
1382 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1383 start, (page_cnt - i_done) << PAGE_SHIFT, true);
1387 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1390 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1391 page_start, page_end - 1, &cached_state);
1393 for (i = 0; i < i_done; i++) {
1394 clear_page_dirty_for_io(pages[i]);
1395 ClearPageChecked(pages[i]);
1396 set_page_extent_mapped(pages[i]);
1397 set_page_dirty(pages[i]);
1398 unlock_page(pages[i]);
1401 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1402 extent_changeset_free(data_reserved);
1405 for (i = 0; i < i_done; i++) {
1406 unlock_page(pages[i]);
1409 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1410 start, page_cnt << PAGE_SHIFT, true);
1411 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1412 extent_changeset_free(data_reserved);
1417 int btrfs_defrag_file(struct inode *inode, struct file *file,
1418 struct btrfs_ioctl_defrag_range_args *range,
1419 u64 newer_than, unsigned long max_to_defrag)
1421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1422 struct btrfs_root *root = BTRFS_I(inode)->root;
1423 struct file_ra_state *ra = NULL;
1424 unsigned long last_index;
1425 u64 isize = i_size_read(inode);
1429 u64 newer_off = range->start;
1431 unsigned long ra_index = 0;
1433 int defrag_count = 0;
1434 int compress_type = BTRFS_COMPRESS_ZLIB;
1435 u32 extent_thresh = range->extent_thresh;
1436 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1437 unsigned long cluster = max_cluster;
1438 u64 new_align = ~((u64)SZ_128K - 1);
1439 struct page **pages = NULL;
1440 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1445 if (range->start >= isize)
1449 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1451 if (range->compress_type)
1452 compress_type = range->compress_type;
1455 if (extent_thresh == 0)
1456 extent_thresh = SZ_256K;
1459 * If we were not given a file, allocate a readahead context. As
1460 * readahead is just an optimization, defrag will work without it so
1461 * we don't error out.
1464 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1466 file_ra_state_init(ra, inode->i_mapping);
1471 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1477 /* find the last page to defrag */
1478 if (range->start + range->len > range->start) {
1479 last_index = min_t(u64, isize - 1,
1480 range->start + range->len - 1) >> PAGE_SHIFT;
1482 last_index = (isize - 1) >> PAGE_SHIFT;
1486 ret = find_new_extents(root, inode, newer_than,
1487 &newer_off, SZ_64K);
1489 range->start = newer_off;
1491 * we always align our defrag to help keep
1492 * the extents in the file evenly spaced
1494 i = (newer_off & new_align) >> PAGE_SHIFT;
1498 i = range->start >> PAGE_SHIFT;
1501 max_to_defrag = last_index - i + 1;
1504 * make writeback starts from i, so the defrag range can be
1505 * written sequentially.
1507 if (i < inode->i_mapping->writeback_index)
1508 inode->i_mapping->writeback_index = i;
1510 while (i <= last_index && defrag_count < max_to_defrag &&
1511 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1513 * make sure we stop running if someone unmounts
1516 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1519 if (btrfs_defrag_cancelled(fs_info)) {
1520 btrfs_debug(fs_info, "defrag_file cancelled");
1525 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1526 extent_thresh, &last_len, &skip,
1527 &defrag_end, do_compress)){
1530 * the should_defrag function tells us how much to skip
1531 * bump our counter by the suggested amount
1533 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1534 i = max(i + 1, next);
1539 cluster = (PAGE_ALIGN(defrag_end) >>
1541 cluster = min(cluster, max_cluster);
1543 cluster = max_cluster;
1546 if (i + cluster > ra_index) {
1547 ra_index = max(i, ra_index);
1549 page_cache_sync_readahead(inode->i_mapping, ra,
1550 file, ra_index, cluster);
1551 ra_index += cluster;
1555 if (IS_SWAPFILE(inode)) {
1559 BTRFS_I(inode)->defrag_compress = compress_type;
1560 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1563 inode_unlock(inode);
1567 defrag_count += ret;
1568 balance_dirty_pages_ratelimited(inode->i_mapping);
1569 inode_unlock(inode);
1572 if (newer_off == (u64)-1)
1578 newer_off = max(newer_off + 1,
1579 (u64)i << PAGE_SHIFT);
1581 ret = find_new_extents(root, inode, newer_than,
1582 &newer_off, SZ_64K);
1584 range->start = newer_off;
1585 i = (newer_off & new_align) >> PAGE_SHIFT;
1592 last_len += ret << PAGE_SHIFT;
1600 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1601 filemap_flush(inode->i_mapping);
1602 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 &BTRFS_I(inode)->runtime_flags))
1604 filemap_flush(inode->i_mapping);
1607 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1608 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1609 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1610 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1618 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1619 inode_unlock(inode);
1627 static noinline int btrfs_ioctl_resize(struct file *file,
1630 struct inode *inode = file_inode(file);
1631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1635 struct btrfs_root *root = BTRFS_I(inode)->root;
1636 struct btrfs_ioctl_vol_args *vol_args;
1637 struct btrfs_trans_handle *trans;
1638 struct btrfs_device *device = NULL;
1641 char *devstr = NULL;
1645 if (!capable(CAP_SYS_ADMIN))
1648 ret = mnt_want_write_file(file);
1652 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1653 mnt_drop_write_file(file);
1654 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1657 vol_args = memdup_user(arg, sizeof(*vol_args));
1658 if (IS_ERR(vol_args)) {
1659 ret = PTR_ERR(vol_args);
1663 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1665 sizestr = vol_args->name;
1666 devstr = strchr(sizestr, ':');
1668 sizestr = devstr + 1;
1670 devstr = vol_args->name;
1671 ret = kstrtoull(devstr, 10, &devid);
1678 btrfs_info(fs_info, "resizing devid %llu", devid);
1681 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1683 btrfs_info(fs_info, "resizer unable to find device %llu",
1689 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1691 "resizer unable to apply on readonly device %llu",
1697 if (!strcmp(sizestr, "max"))
1698 new_size = device->bdev->bd_inode->i_size;
1700 if (sizestr[0] == '-') {
1703 } else if (sizestr[0] == '+') {
1707 new_size = memparse(sizestr, &retptr);
1708 if (*retptr != '\0' || new_size == 0) {
1714 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1719 old_size = btrfs_device_get_total_bytes(device);
1722 if (new_size > old_size) {
1726 new_size = old_size - new_size;
1727 } else if (mod > 0) {
1728 if (new_size > ULLONG_MAX - old_size) {
1732 new_size = old_size + new_size;
1735 if (new_size < SZ_256M) {
1739 if (new_size > device->bdev->bd_inode->i_size) {
1744 new_size = round_down(new_size, fs_info->sectorsize);
1746 if (new_size > old_size) {
1747 trans = btrfs_start_transaction(root, 0);
1748 if (IS_ERR(trans)) {
1749 ret = PTR_ERR(trans);
1752 ret = btrfs_grow_device(trans, device, new_size);
1753 btrfs_commit_transaction(trans);
1754 } else if (new_size < old_size) {
1755 ret = btrfs_shrink_device(device, new_size);
1756 } /* equal, nothing need to do */
1758 if (ret == 0 && new_size != old_size)
1759 btrfs_info_in_rcu(fs_info,
1760 "resize device %s (devid %llu) from %llu to %llu",
1761 rcu_str_deref(device->name), device->devid,
1762 old_size, new_size);
1766 btrfs_exclop_finish(fs_info);
1767 mnt_drop_write_file(file);
1771 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1772 const char *name, unsigned long fd, int subvol,
1774 struct btrfs_qgroup_inherit *inherit)
1779 if (!S_ISDIR(file_inode(file)->i_mode))
1782 ret = mnt_want_write_file(file);
1786 namelen = strlen(name);
1787 if (strchr(name, '/')) {
1789 goto out_drop_write;
1792 if (name[0] == '.' &&
1793 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1795 goto out_drop_write;
1799 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1800 NULL, readonly, inherit);
1802 struct fd src = fdget(fd);
1803 struct inode *src_inode;
1806 goto out_drop_write;
1809 src_inode = file_inode(src.file);
1810 if (src_inode->i_sb != file_inode(file)->i_sb) {
1811 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1812 "Snapshot src from another FS");
1814 } else if (!inode_owner_or_capable(src_inode)) {
1816 * Subvolume creation is not restricted, but snapshots
1817 * are limited to own subvolumes only
1821 ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1822 BTRFS_I(src_inode)->root,
1828 mnt_drop_write_file(file);
1833 static noinline int btrfs_ioctl_snap_create(struct file *file,
1834 void __user *arg, int subvol)
1836 struct btrfs_ioctl_vol_args *vol_args;
1839 if (!S_ISDIR(file_inode(file)->i_mode))
1842 vol_args = memdup_user(arg, sizeof(*vol_args));
1843 if (IS_ERR(vol_args))
1844 return PTR_ERR(vol_args);
1845 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1847 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1848 subvol, false, NULL);
1854 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1855 void __user *arg, int subvol)
1857 struct btrfs_ioctl_vol_args_v2 *vol_args;
1859 bool readonly = false;
1860 struct btrfs_qgroup_inherit *inherit = NULL;
1862 if (!S_ISDIR(file_inode(file)->i_mode))
1865 vol_args = memdup_user(arg, sizeof(*vol_args));
1866 if (IS_ERR(vol_args))
1867 return PTR_ERR(vol_args);
1868 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1870 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1875 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1877 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1878 if (vol_args->size > PAGE_SIZE) {
1882 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1883 if (IS_ERR(inherit)) {
1884 ret = PTR_ERR(inherit);
1889 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1890 subvol, readonly, inherit);
1900 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1903 struct inode *inode = file_inode(file);
1904 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1905 struct btrfs_root *root = BTRFS_I(inode)->root;
1909 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1912 down_read(&fs_info->subvol_sem);
1913 if (btrfs_root_readonly(root))
1914 flags |= BTRFS_SUBVOL_RDONLY;
1915 up_read(&fs_info->subvol_sem);
1917 if (copy_to_user(arg, &flags, sizeof(flags)))
1923 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1926 struct inode *inode = file_inode(file);
1927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1928 struct btrfs_root *root = BTRFS_I(inode)->root;
1929 struct btrfs_trans_handle *trans;
1934 if (!inode_owner_or_capable(inode))
1937 ret = mnt_want_write_file(file);
1941 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1943 goto out_drop_write;
1946 if (copy_from_user(&flags, arg, sizeof(flags))) {
1948 goto out_drop_write;
1951 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1953 goto out_drop_write;
1956 down_write(&fs_info->subvol_sem);
1959 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1962 root_flags = btrfs_root_flags(&root->root_item);
1963 if (flags & BTRFS_SUBVOL_RDONLY) {
1964 btrfs_set_root_flags(&root->root_item,
1965 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1968 * Block RO -> RW transition if this subvolume is involved in
1971 spin_lock(&root->root_item_lock);
1972 if (root->send_in_progress == 0) {
1973 btrfs_set_root_flags(&root->root_item,
1974 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1975 spin_unlock(&root->root_item_lock);
1977 spin_unlock(&root->root_item_lock);
1979 "Attempt to set subvolume %llu read-write during send",
1980 root->root_key.objectid);
1986 trans = btrfs_start_transaction(root, 1);
1987 if (IS_ERR(trans)) {
1988 ret = PTR_ERR(trans);
1992 ret = btrfs_update_root(trans, fs_info->tree_root,
1993 &root->root_key, &root->root_item);
1995 btrfs_end_transaction(trans);
1999 ret = btrfs_commit_transaction(trans);
2003 btrfs_set_root_flags(&root->root_item, root_flags);
2005 up_write(&fs_info->subvol_sem);
2007 mnt_drop_write_file(file);
2012 static noinline int key_in_sk(struct btrfs_key *key,
2013 struct btrfs_ioctl_search_key *sk)
2015 struct btrfs_key test;
2018 test.objectid = sk->min_objectid;
2019 test.type = sk->min_type;
2020 test.offset = sk->min_offset;
2022 ret = btrfs_comp_cpu_keys(key, &test);
2026 test.objectid = sk->max_objectid;
2027 test.type = sk->max_type;
2028 test.offset = sk->max_offset;
2030 ret = btrfs_comp_cpu_keys(key, &test);
2036 static noinline int copy_to_sk(struct btrfs_path *path,
2037 struct btrfs_key *key,
2038 struct btrfs_ioctl_search_key *sk,
2041 unsigned long *sk_offset,
2045 struct extent_buffer *leaf;
2046 struct btrfs_ioctl_search_header sh;
2047 struct btrfs_key test;
2048 unsigned long item_off;
2049 unsigned long item_len;
2055 leaf = path->nodes[0];
2056 slot = path->slots[0];
2057 nritems = btrfs_header_nritems(leaf);
2059 if (btrfs_header_generation(leaf) > sk->max_transid) {
2063 found_transid = btrfs_header_generation(leaf);
2065 for (i = slot; i < nritems; i++) {
2066 item_off = btrfs_item_ptr_offset(leaf, i);
2067 item_len = btrfs_item_size_nr(leaf, i);
2069 btrfs_item_key_to_cpu(leaf, key, i);
2070 if (!key_in_sk(key, sk))
2073 if (sizeof(sh) + item_len > *buf_size) {
2080 * return one empty item back for v1, which does not
2084 *buf_size = sizeof(sh) + item_len;
2089 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2094 sh.objectid = key->objectid;
2095 sh.offset = key->offset;
2096 sh.type = key->type;
2098 sh.transid = found_transid;
2101 * Copy search result header. If we fault then loop again so we
2102 * can fault in the pages and -EFAULT there if there's a
2103 * problem. Otherwise we'll fault and then copy the buffer in
2104 * properly this next time through
2106 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2111 *sk_offset += sizeof(sh);
2114 char __user *up = ubuf + *sk_offset;
2116 * Copy the item, same behavior as above, but reset the
2117 * * sk_offset so we copy the full thing again.
2119 if (read_extent_buffer_to_user_nofault(leaf, up,
2120 item_off, item_len)) {
2122 *sk_offset -= sizeof(sh);
2126 *sk_offset += item_len;
2130 if (ret) /* -EOVERFLOW from above */
2133 if (*num_found >= sk->nr_items) {
2140 test.objectid = sk->max_objectid;
2141 test.type = sk->max_type;
2142 test.offset = sk->max_offset;
2143 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2145 else if (key->offset < (u64)-1)
2147 else if (key->type < (u8)-1) {
2150 } else if (key->objectid < (u64)-1) {
2158 * 0: all items from this leaf copied, continue with next
2159 * 1: * more items can be copied, but unused buffer is too small
2160 * * all items were found
2161 * Either way, it will stops the loop which iterates to the next
2163 * -EOVERFLOW: item was to large for buffer
2164 * -EFAULT: could not copy extent buffer back to userspace
2169 static noinline int search_ioctl(struct inode *inode,
2170 struct btrfs_ioctl_search_key *sk,
2174 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2175 struct btrfs_root *root;
2176 struct btrfs_key key;
2177 struct btrfs_path *path;
2180 unsigned long sk_offset = 0;
2182 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2183 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2187 path = btrfs_alloc_path();
2191 if (sk->tree_id == 0) {
2192 /* search the root of the inode that was passed */
2193 root = btrfs_grab_root(BTRFS_I(inode)->root);
2195 root = btrfs_get_fs_root(info, sk->tree_id, true);
2197 btrfs_free_path(path);
2198 return PTR_ERR(root);
2202 key.objectid = sk->min_objectid;
2203 key.type = sk->min_type;
2204 key.offset = sk->min_offset;
2207 ret = fault_in_pages_writeable(ubuf + sk_offset,
2208 *buf_size - sk_offset);
2212 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2218 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2219 &sk_offset, &num_found);
2220 btrfs_release_path(path);
2228 sk->nr_items = num_found;
2229 btrfs_put_root(root);
2230 btrfs_free_path(path);
2234 static noinline int btrfs_ioctl_tree_search(struct file *file,
2237 struct btrfs_ioctl_search_args __user *uargs;
2238 struct btrfs_ioctl_search_key sk;
2239 struct inode *inode;
2243 if (!capable(CAP_SYS_ADMIN))
2246 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2248 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2251 buf_size = sizeof(uargs->buf);
2253 inode = file_inode(file);
2254 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2257 * In the origin implementation an overflow is handled by returning a
2258 * search header with a len of zero, so reset ret.
2260 if (ret == -EOVERFLOW)
2263 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2268 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2271 struct btrfs_ioctl_search_args_v2 __user *uarg;
2272 struct btrfs_ioctl_search_args_v2 args;
2273 struct inode *inode;
2276 const size_t buf_limit = SZ_16M;
2278 if (!capable(CAP_SYS_ADMIN))
2281 /* copy search header and buffer size */
2282 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2283 if (copy_from_user(&args, uarg, sizeof(args)))
2286 buf_size = args.buf_size;
2288 /* limit result size to 16MB */
2289 if (buf_size > buf_limit)
2290 buf_size = buf_limit;
2292 inode = file_inode(file);
2293 ret = search_ioctl(inode, &args.key, &buf_size,
2294 (char __user *)(&uarg->buf[0]));
2295 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2297 else if (ret == -EOVERFLOW &&
2298 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2305 * Search INODE_REFs to identify path name of 'dirid' directory
2306 * in a 'tree_id' tree. and sets path name to 'name'.
2308 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2309 u64 tree_id, u64 dirid, char *name)
2311 struct btrfs_root *root;
2312 struct btrfs_key key;
2318 struct btrfs_inode_ref *iref;
2319 struct extent_buffer *l;
2320 struct btrfs_path *path;
2322 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2327 path = btrfs_alloc_path();
2331 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2333 root = btrfs_get_fs_root(info, tree_id, true);
2335 ret = PTR_ERR(root);
2340 key.objectid = dirid;
2341 key.type = BTRFS_INODE_REF_KEY;
2342 key.offset = (u64)-1;
2345 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2349 ret = btrfs_previous_item(root, path, dirid,
2350 BTRFS_INODE_REF_KEY);
2360 slot = path->slots[0];
2361 btrfs_item_key_to_cpu(l, &key, slot);
2363 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2364 len = btrfs_inode_ref_name_len(l, iref);
2366 total_len += len + 1;
2368 ret = -ENAMETOOLONG;
2373 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2375 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2378 btrfs_release_path(path);
2379 key.objectid = key.offset;
2380 key.offset = (u64)-1;
2381 dirid = key.objectid;
2383 memmove(name, ptr, total_len);
2384 name[total_len] = '\0';
2387 btrfs_put_root(root);
2388 btrfs_free_path(path);
2392 static int btrfs_search_path_in_tree_user(struct inode *inode,
2393 struct btrfs_ioctl_ino_lookup_user_args *args)
2395 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2396 struct super_block *sb = inode->i_sb;
2397 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2398 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2399 u64 dirid = args->dirid;
2400 unsigned long item_off;
2401 unsigned long item_len;
2402 struct btrfs_inode_ref *iref;
2403 struct btrfs_root_ref *rref;
2404 struct btrfs_root *root = NULL;
2405 struct btrfs_path *path;
2406 struct btrfs_key key, key2;
2407 struct extent_buffer *leaf;
2408 struct inode *temp_inode;
2415 path = btrfs_alloc_path();
2420 * If the bottom subvolume does not exist directly under upper_limit,
2421 * construct the path in from the bottom up.
2423 if (dirid != upper_limit.objectid) {
2424 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2426 root = btrfs_get_fs_root(fs_info, treeid, true);
2428 ret = PTR_ERR(root);
2432 key.objectid = dirid;
2433 key.type = BTRFS_INODE_REF_KEY;
2434 key.offset = (u64)-1;
2436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2439 } else if (ret > 0) {
2440 ret = btrfs_previous_item(root, path, dirid,
2441 BTRFS_INODE_REF_KEY);
2444 } else if (ret > 0) {
2450 leaf = path->nodes[0];
2451 slot = path->slots[0];
2452 btrfs_item_key_to_cpu(leaf, &key, slot);
2454 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2455 len = btrfs_inode_ref_name_len(leaf, iref);
2457 total_len += len + 1;
2458 if (ptr < args->path) {
2459 ret = -ENAMETOOLONG;
2464 read_extent_buffer(leaf, ptr,
2465 (unsigned long)(iref + 1), len);
2467 /* Check the read+exec permission of this directory */
2468 ret = btrfs_previous_item(root, path, dirid,
2469 BTRFS_INODE_ITEM_KEY);
2472 } else if (ret > 0) {
2477 leaf = path->nodes[0];
2478 slot = path->slots[0];
2479 btrfs_item_key_to_cpu(leaf, &key2, slot);
2480 if (key2.objectid != dirid) {
2485 temp_inode = btrfs_iget(sb, key2.objectid, root);
2486 if (IS_ERR(temp_inode)) {
2487 ret = PTR_ERR(temp_inode);
2490 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2497 if (key.offset == upper_limit.objectid)
2499 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2504 btrfs_release_path(path);
2505 key.objectid = key.offset;
2506 key.offset = (u64)-1;
2507 dirid = key.objectid;
2510 memmove(args->path, ptr, total_len);
2511 args->path[total_len] = '\0';
2512 btrfs_put_root(root);
2514 btrfs_release_path(path);
2517 /* Get the bottom subvolume's name from ROOT_REF */
2518 key.objectid = treeid;
2519 key.type = BTRFS_ROOT_REF_KEY;
2520 key.offset = args->treeid;
2521 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2524 } else if (ret > 0) {
2529 leaf = path->nodes[0];
2530 slot = path->slots[0];
2531 btrfs_item_key_to_cpu(leaf, &key, slot);
2533 item_off = btrfs_item_ptr_offset(leaf, slot);
2534 item_len = btrfs_item_size_nr(leaf, slot);
2535 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2536 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2537 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2542 /* Copy subvolume's name */
2543 item_off += sizeof(struct btrfs_root_ref);
2544 item_len -= sizeof(struct btrfs_root_ref);
2545 read_extent_buffer(leaf, args->name, item_off, item_len);
2546 args->name[item_len] = 0;
2549 btrfs_put_root(root);
2551 btrfs_free_path(path);
2555 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2558 struct btrfs_ioctl_ino_lookup_args *args;
2559 struct inode *inode;
2562 args = memdup_user(argp, sizeof(*args));
2564 return PTR_ERR(args);
2566 inode = file_inode(file);
2569 * Unprivileged query to obtain the containing subvolume root id. The
2570 * path is reset so it's consistent with btrfs_search_path_in_tree.
2572 if (args->treeid == 0)
2573 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2575 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2580 if (!capable(CAP_SYS_ADMIN)) {
2585 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2586 args->treeid, args->objectid,
2590 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2598 * Version of ino_lookup ioctl (unprivileged)
2600 * The main differences from ino_lookup ioctl are:
2602 * 1. Read + Exec permission will be checked using inode_permission() during
2603 * path construction. -EACCES will be returned in case of failure.
2604 * 2. Path construction will be stopped at the inode number which corresponds
2605 * to the fd with which this ioctl is called. If constructed path does not
2606 * exist under fd's inode, -EACCES will be returned.
2607 * 3. The name of bottom subvolume is also searched and filled.
2609 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2611 struct btrfs_ioctl_ino_lookup_user_args *args;
2612 struct inode *inode;
2615 args = memdup_user(argp, sizeof(*args));
2617 return PTR_ERR(args);
2619 inode = file_inode(file);
2621 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2622 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2624 * The subvolume does not exist under fd with which this is
2631 ret = btrfs_search_path_in_tree_user(inode, args);
2633 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2640 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2641 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2643 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2644 struct btrfs_fs_info *fs_info;
2645 struct btrfs_root *root;
2646 struct btrfs_path *path;
2647 struct btrfs_key key;
2648 struct btrfs_root_item *root_item;
2649 struct btrfs_root_ref *rref;
2650 struct extent_buffer *leaf;
2651 unsigned long item_off;
2652 unsigned long item_len;
2653 struct inode *inode;
2657 path = btrfs_alloc_path();
2661 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2663 btrfs_free_path(path);
2667 inode = file_inode(file);
2668 fs_info = BTRFS_I(inode)->root->fs_info;
2670 /* Get root_item of inode's subvolume */
2671 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2672 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2674 ret = PTR_ERR(root);
2677 root_item = &root->root_item;
2679 subvol_info->treeid = key.objectid;
2681 subvol_info->generation = btrfs_root_generation(root_item);
2682 subvol_info->flags = btrfs_root_flags(root_item);
2684 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2685 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2687 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2690 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2691 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2692 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2694 subvol_info->otransid = btrfs_root_otransid(root_item);
2695 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2696 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2698 subvol_info->stransid = btrfs_root_stransid(root_item);
2699 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2700 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2702 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2703 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2704 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2706 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2707 /* Search root tree for ROOT_BACKREF of this subvolume */
2708 key.type = BTRFS_ROOT_BACKREF_KEY;
2710 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2713 } else if (path->slots[0] >=
2714 btrfs_header_nritems(path->nodes[0])) {
2715 ret = btrfs_next_leaf(fs_info->tree_root, path);
2718 } else if (ret > 0) {
2724 leaf = path->nodes[0];
2725 slot = path->slots[0];
2726 btrfs_item_key_to_cpu(leaf, &key, slot);
2727 if (key.objectid == subvol_info->treeid &&
2728 key.type == BTRFS_ROOT_BACKREF_KEY) {
2729 subvol_info->parent_id = key.offset;
2731 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2732 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2734 item_off = btrfs_item_ptr_offset(leaf, slot)
2735 + sizeof(struct btrfs_root_ref);
2736 item_len = btrfs_item_size_nr(leaf, slot)
2737 - sizeof(struct btrfs_root_ref);
2738 read_extent_buffer(leaf, subvol_info->name,
2739 item_off, item_len);
2746 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2750 btrfs_put_root(root);
2752 btrfs_free_path(path);
2758 * Return ROOT_REF information of the subvolume containing this inode
2759 * except the subvolume name.
2761 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2763 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2764 struct btrfs_root_ref *rref;
2765 struct btrfs_root *root;
2766 struct btrfs_path *path;
2767 struct btrfs_key key;
2768 struct extent_buffer *leaf;
2769 struct inode *inode;
2775 path = btrfs_alloc_path();
2779 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2780 if (IS_ERR(rootrefs)) {
2781 btrfs_free_path(path);
2782 return PTR_ERR(rootrefs);
2785 inode = file_inode(file);
2786 root = BTRFS_I(inode)->root->fs_info->tree_root;
2787 objectid = BTRFS_I(inode)->root->root_key.objectid;
2789 key.objectid = objectid;
2790 key.type = BTRFS_ROOT_REF_KEY;
2791 key.offset = rootrefs->min_treeid;
2794 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2797 } else if (path->slots[0] >=
2798 btrfs_header_nritems(path->nodes[0])) {
2799 ret = btrfs_next_leaf(root, path);
2802 } else if (ret > 0) {
2808 leaf = path->nodes[0];
2809 slot = path->slots[0];
2811 btrfs_item_key_to_cpu(leaf, &key, slot);
2812 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2817 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2822 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2823 rootrefs->rootref[found].treeid = key.offset;
2824 rootrefs->rootref[found].dirid =
2825 btrfs_root_ref_dirid(leaf, rref);
2828 ret = btrfs_next_item(root, path);
2831 } else if (ret > 0) {
2838 if (!ret || ret == -EOVERFLOW) {
2839 rootrefs->num_items = found;
2840 /* update min_treeid for next search */
2842 rootrefs->min_treeid =
2843 rootrefs->rootref[found - 1].treeid + 1;
2844 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2849 btrfs_free_path(path);
2854 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2858 struct dentry *parent = file->f_path.dentry;
2859 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2860 struct dentry *dentry;
2861 struct inode *dir = d_inode(parent);
2862 struct inode *inode;
2863 struct btrfs_root *root = BTRFS_I(dir)->root;
2864 struct btrfs_root *dest = NULL;
2865 struct btrfs_ioctl_vol_args *vol_args = NULL;
2866 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2867 char *subvol_name, *subvol_name_ptr = NULL;
2870 bool destroy_parent = false;
2873 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2874 if (IS_ERR(vol_args2))
2875 return PTR_ERR(vol_args2);
2877 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2883 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2884 * name, same as v1 currently does.
2886 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2887 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2888 subvol_name = vol_args2->name;
2890 err = mnt_want_write_file(file);
2894 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2899 err = mnt_want_write_file(file);
2903 dentry = btrfs_get_dentry(fs_info->sb,
2904 BTRFS_FIRST_FREE_OBJECTID,
2905 vol_args2->subvolid, 0, 0);
2906 if (IS_ERR(dentry)) {
2907 err = PTR_ERR(dentry);
2908 goto out_drop_write;
2912 * Change the default parent since the subvolume being
2913 * deleted can be outside of the current mount point.
2915 parent = btrfs_get_parent(dentry);
2918 * At this point dentry->d_name can point to '/' if the
2919 * subvolume we want to destroy is outsite of the
2920 * current mount point, so we need to release the
2921 * current dentry and execute the lookup to return a new
2922 * one with ->d_name pointing to the
2923 * <mount point>/subvol_name.
2926 if (IS_ERR(parent)) {
2927 err = PTR_ERR(parent);
2928 goto out_drop_write;
2930 dir = d_inode(parent);
2933 * If v2 was used with SPEC_BY_ID, a new parent was
2934 * allocated since the subvolume can be outside of the
2935 * current mount point. Later on we need to release this
2936 * new parent dentry.
2938 destroy_parent = true;
2940 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2941 fs_info, vol_args2->subvolid);
2942 if (IS_ERR(subvol_name_ptr)) {
2943 err = PTR_ERR(subvol_name_ptr);
2946 /* subvol_name_ptr is already NULL termined */
2947 subvol_name = (char *)kbasename(subvol_name_ptr);
2950 vol_args = memdup_user(arg, sizeof(*vol_args));
2951 if (IS_ERR(vol_args))
2952 return PTR_ERR(vol_args);
2954 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2955 subvol_name = vol_args->name;
2957 err = mnt_want_write_file(file);
2962 subvol_namelen = strlen(subvol_name);
2964 if (strchr(subvol_name, '/') ||
2965 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2967 goto free_subvol_name;
2970 if (!S_ISDIR(dir->i_mode)) {
2972 goto free_subvol_name;
2975 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2977 goto free_subvol_name;
2978 dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2979 if (IS_ERR(dentry)) {
2980 err = PTR_ERR(dentry);
2981 goto out_unlock_dir;
2984 if (d_really_is_negative(dentry)) {
2989 inode = d_inode(dentry);
2990 dest = BTRFS_I(inode)->root;
2991 if (!capable(CAP_SYS_ADMIN)) {
2993 * Regular user. Only allow this with a special mount
2994 * option, when the user has write+exec access to the
2995 * subvol root, and when rmdir(2) would have been
2998 * Note that this is _not_ check that the subvol is
2999 * empty or doesn't contain data that we wouldn't
3000 * otherwise be able to delete.
3002 * Users who want to delete empty subvols should try
3006 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3010 * Do not allow deletion if the parent dir is the same
3011 * as the dir to be deleted. That means the ioctl
3012 * must be called on the dentry referencing the root
3013 * of the subvol, not a random directory contained
3020 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3025 /* check if subvolume may be deleted by a user */
3026 err = btrfs_may_delete(dir, dentry, 1);
3030 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3036 err = btrfs_delete_subvolume(dir, dentry);
3037 inode_unlock(inode);
3039 fsnotify_rmdir(dir, dentry);
3048 kfree(subvol_name_ptr);
3053 mnt_drop_write_file(file);
3060 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3062 struct inode *inode = file_inode(file);
3063 struct btrfs_root *root = BTRFS_I(inode)->root;
3064 struct btrfs_ioctl_defrag_range_args *range;
3067 ret = mnt_want_write_file(file);
3071 if (btrfs_root_readonly(root)) {
3076 switch (inode->i_mode & S_IFMT) {
3078 if (!capable(CAP_SYS_ADMIN)) {
3082 ret = btrfs_defrag_root(root);
3086 * Note that this does not check the file descriptor for write
3087 * access. This prevents defragmenting executables that are
3088 * running and allows defrag on files open in read-only mode.
3090 if (!capable(CAP_SYS_ADMIN) &&
3091 inode_permission(inode, MAY_WRITE)) {
3096 range = kzalloc(sizeof(*range), GFP_KERNEL);
3103 if (copy_from_user(range, argp,
3109 /* compression requires us to start the IO */
3110 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3111 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3112 range->extent_thresh = (u32)-1;
3115 /* the rest are all set to zero by kzalloc */
3116 range->len = (u64)-1;
3118 ret = btrfs_defrag_file(file_inode(file), file,
3119 range, BTRFS_OLDEST_GENERATION, 0);
3128 mnt_drop_write_file(file);
3132 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3134 struct btrfs_ioctl_vol_args *vol_args;
3137 if (!capable(CAP_SYS_ADMIN))
3140 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3141 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3143 vol_args = memdup_user(arg, sizeof(*vol_args));
3144 if (IS_ERR(vol_args)) {
3145 ret = PTR_ERR(vol_args);
3149 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3150 ret = btrfs_init_new_device(fs_info, vol_args->name);
3153 btrfs_info(fs_info, "disk added %s", vol_args->name);
3157 btrfs_exclop_finish(fs_info);
3161 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3163 struct inode *inode = file_inode(file);
3164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3165 struct btrfs_ioctl_vol_args_v2 *vol_args;
3168 if (!capable(CAP_SYS_ADMIN))
3171 ret = mnt_want_write_file(file);
3175 vol_args = memdup_user(arg, sizeof(*vol_args));
3176 if (IS_ERR(vol_args)) {
3177 ret = PTR_ERR(vol_args);
3181 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3186 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3187 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3191 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3192 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3194 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3195 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3197 btrfs_exclop_finish(fs_info);
3200 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3201 btrfs_info(fs_info, "device deleted: id %llu",
3204 btrfs_info(fs_info, "device deleted: %s",
3210 mnt_drop_write_file(file);
3214 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3216 struct inode *inode = file_inode(file);
3217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3218 struct btrfs_ioctl_vol_args *vol_args;
3221 if (!capable(CAP_SYS_ADMIN))
3224 ret = mnt_want_write_file(file);
3228 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3229 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3230 goto out_drop_write;
3233 vol_args = memdup_user(arg, sizeof(*vol_args));
3234 if (IS_ERR(vol_args)) {
3235 ret = PTR_ERR(vol_args);
3239 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3240 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3243 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3246 btrfs_exclop_finish(fs_info);
3248 mnt_drop_write_file(file);
3253 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3256 struct btrfs_ioctl_fs_info_args *fi_args;
3257 struct btrfs_device *device;
3258 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3262 fi_args = memdup_user(arg, sizeof(*fi_args));
3263 if (IS_ERR(fi_args))
3264 return PTR_ERR(fi_args);
3266 flags_in = fi_args->flags;
3267 memset(fi_args, 0, sizeof(*fi_args));
3270 fi_args->num_devices = fs_devices->num_devices;
3272 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3273 if (device->devid > fi_args->max_id)
3274 fi_args->max_id = device->devid;
3278 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3279 fi_args->nodesize = fs_info->nodesize;
3280 fi_args->sectorsize = fs_info->sectorsize;
3281 fi_args->clone_alignment = fs_info->sectorsize;
3283 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3284 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3285 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3286 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3289 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3290 fi_args->generation = fs_info->generation;
3291 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3294 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3295 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3296 sizeof(fi_args->metadata_uuid));
3297 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3300 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3307 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3310 struct btrfs_ioctl_dev_info_args *di_args;
3311 struct btrfs_device *dev;
3313 char *s_uuid = NULL;
3315 di_args = memdup_user(arg, sizeof(*di_args));
3316 if (IS_ERR(di_args))
3317 return PTR_ERR(di_args);
3319 if (!btrfs_is_empty_uuid(di_args->uuid))
3320 s_uuid = di_args->uuid;
3323 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3331 di_args->devid = dev->devid;
3332 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3333 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3334 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3336 strncpy(di_args->path, rcu_str_deref(dev->name),
3337 sizeof(di_args->path) - 1);
3338 di_args->path[sizeof(di_args->path) - 1] = 0;
3340 di_args->path[0] = '\0';
3345 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3352 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3354 struct inode *inode = file_inode(file);
3355 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3356 struct btrfs_root *root = BTRFS_I(inode)->root;
3357 struct btrfs_root *new_root;
3358 struct btrfs_dir_item *di;
3359 struct btrfs_trans_handle *trans;
3360 struct btrfs_path *path = NULL;
3361 struct btrfs_disk_key disk_key;
3366 if (!capable(CAP_SYS_ADMIN))
3369 ret = mnt_want_write_file(file);
3373 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3379 objectid = BTRFS_FS_TREE_OBJECTID;
3381 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3382 if (IS_ERR(new_root)) {
3383 ret = PTR_ERR(new_root);
3386 if (!is_fstree(new_root->root_key.objectid)) {
3391 path = btrfs_alloc_path();
3396 path->leave_spinning = 1;
3398 trans = btrfs_start_transaction(root, 1);
3399 if (IS_ERR(trans)) {
3400 ret = PTR_ERR(trans);
3404 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3405 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3406 dir_id, "default", 7, 1);
3407 if (IS_ERR_OR_NULL(di)) {
3408 btrfs_release_path(path);
3409 btrfs_end_transaction(trans);
3411 "Umm, you don't have the default diritem, this isn't going to work");
3416 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3417 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3418 btrfs_mark_buffer_dirty(path->nodes[0]);
3419 btrfs_release_path(path);
3421 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3422 btrfs_end_transaction(trans);
3424 btrfs_put_root(new_root);
3425 btrfs_free_path(path);
3427 mnt_drop_write_file(file);
3431 static void get_block_group_info(struct list_head *groups_list,
3432 struct btrfs_ioctl_space_info *space)
3434 struct btrfs_block_group *block_group;
3436 space->total_bytes = 0;
3437 space->used_bytes = 0;
3439 list_for_each_entry(block_group, groups_list, list) {
3440 space->flags = block_group->flags;
3441 space->total_bytes += block_group->length;
3442 space->used_bytes += block_group->used;
3446 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3449 struct btrfs_ioctl_space_args space_args;
3450 struct btrfs_ioctl_space_info space;
3451 struct btrfs_ioctl_space_info *dest;
3452 struct btrfs_ioctl_space_info *dest_orig;
3453 struct btrfs_ioctl_space_info __user *user_dest;
3454 struct btrfs_space_info *info;
3455 static const u64 types[] = {
3456 BTRFS_BLOCK_GROUP_DATA,
3457 BTRFS_BLOCK_GROUP_SYSTEM,
3458 BTRFS_BLOCK_GROUP_METADATA,
3459 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3467 if (copy_from_user(&space_args,
3468 (struct btrfs_ioctl_space_args __user *)arg,
3469 sizeof(space_args)))
3472 for (i = 0; i < num_types; i++) {
3473 struct btrfs_space_info *tmp;
3476 list_for_each_entry(tmp, &fs_info->space_info, list) {
3477 if (tmp->flags == types[i]) {
3486 down_read(&info->groups_sem);
3487 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3488 if (!list_empty(&info->block_groups[c]))
3491 up_read(&info->groups_sem);
3495 * Global block reserve, exported as a space_info
3499 /* space_slots == 0 means they are asking for a count */
3500 if (space_args.space_slots == 0) {
3501 space_args.total_spaces = slot_count;
3505 slot_count = min_t(u64, space_args.space_slots, slot_count);
3507 alloc_size = sizeof(*dest) * slot_count;
3509 /* we generally have at most 6 or so space infos, one for each raid
3510 * level. So, a whole page should be more than enough for everyone
3512 if (alloc_size > PAGE_SIZE)
3515 space_args.total_spaces = 0;
3516 dest = kmalloc(alloc_size, GFP_KERNEL);
3521 /* now we have a buffer to copy into */
3522 for (i = 0; i < num_types; i++) {
3523 struct btrfs_space_info *tmp;
3529 list_for_each_entry(tmp, &fs_info->space_info, list) {
3530 if (tmp->flags == types[i]) {
3538 down_read(&info->groups_sem);
3539 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3540 if (!list_empty(&info->block_groups[c])) {
3541 get_block_group_info(&info->block_groups[c],
3543 memcpy(dest, &space, sizeof(space));
3545 space_args.total_spaces++;
3551 up_read(&info->groups_sem);
3555 * Add global block reserve
3558 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3560 spin_lock(&block_rsv->lock);
3561 space.total_bytes = block_rsv->size;
3562 space.used_bytes = block_rsv->size - block_rsv->reserved;
3563 spin_unlock(&block_rsv->lock);
3564 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3565 memcpy(dest, &space, sizeof(space));
3566 space_args.total_spaces++;
3569 user_dest = (struct btrfs_ioctl_space_info __user *)
3570 (arg + sizeof(struct btrfs_ioctl_space_args));
3572 if (copy_to_user(user_dest, dest_orig, alloc_size))
3577 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3583 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3586 struct btrfs_trans_handle *trans;
3590 trans = btrfs_attach_transaction_barrier(root);
3591 if (IS_ERR(trans)) {
3592 if (PTR_ERR(trans) != -ENOENT)
3593 return PTR_ERR(trans);
3595 /* No running transaction, don't bother */
3596 transid = root->fs_info->last_trans_committed;
3599 transid = trans->transid;
3600 ret = btrfs_commit_transaction_async(trans, 0);
3602 btrfs_end_transaction(trans);
3607 if (copy_to_user(argp, &transid, sizeof(transid)))
3612 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3618 if (copy_from_user(&transid, argp, sizeof(transid)))
3621 transid = 0; /* current trans */
3623 return btrfs_wait_for_commit(fs_info, transid);
3626 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3628 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3629 struct btrfs_ioctl_scrub_args *sa;
3632 if (!capable(CAP_SYS_ADMIN))
3635 sa = memdup_user(arg, sizeof(*sa));
3639 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3640 ret = mnt_want_write_file(file);
3645 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3646 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3650 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3651 * error. This is important as it allows user space to know how much
3652 * progress scrub has done. For example, if scrub is canceled we get
3653 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3654 * space. Later user space can inspect the progress from the structure
3655 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3656 * previously (btrfs-progs does this).
3657 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3658 * then return -EFAULT to signal the structure was not copied or it may
3659 * be corrupt and unreliable due to a partial copy.
3661 if (copy_to_user(arg, sa, sizeof(*sa)))
3664 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3665 mnt_drop_write_file(file);
3671 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3673 if (!capable(CAP_SYS_ADMIN))
3676 return btrfs_scrub_cancel(fs_info);
3679 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3682 struct btrfs_ioctl_scrub_args *sa;
3685 if (!capable(CAP_SYS_ADMIN))
3688 sa = memdup_user(arg, sizeof(*sa));
3692 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3694 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3701 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3704 struct btrfs_ioctl_get_dev_stats *sa;
3707 sa = memdup_user(arg, sizeof(*sa));
3711 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3716 ret = btrfs_get_dev_stats(fs_info, sa);
3718 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3725 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3728 struct btrfs_ioctl_dev_replace_args *p;
3731 if (!capable(CAP_SYS_ADMIN))
3734 p = memdup_user(arg, sizeof(*p));
3739 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3740 if (sb_rdonly(fs_info->sb)) {
3744 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3745 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3747 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3748 btrfs_exclop_finish(fs_info);
3751 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3752 btrfs_dev_replace_status(fs_info, p);
3755 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3756 p->result = btrfs_dev_replace_cancel(fs_info);
3764 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3771 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3777 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3778 struct inode_fs_paths *ipath = NULL;
3779 struct btrfs_path *path;
3781 if (!capable(CAP_DAC_READ_SEARCH))
3784 path = btrfs_alloc_path();
3790 ipa = memdup_user(arg, sizeof(*ipa));
3797 size = min_t(u32, ipa->size, 4096);
3798 ipath = init_ipath(size, root, path);
3799 if (IS_ERR(ipath)) {
3800 ret = PTR_ERR(ipath);
3805 ret = paths_from_inode(ipa->inum, ipath);
3809 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3810 rel_ptr = ipath->fspath->val[i] -
3811 (u64)(unsigned long)ipath->fspath->val;
3812 ipath->fspath->val[i] = rel_ptr;
3815 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3816 ipath->fspath, size);
3823 btrfs_free_path(path);
3830 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3832 struct btrfs_data_container *inodes = ctx;
3833 const size_t c = 3 * sizeof(u64);
3835 if (inodes->bytes_left >= c) {
3836 inodes->bytes_left -= c;
3837 inodes->val[inodes->elem_cnt] = inum;
3838 inodes->val[inodes->elem_cnt + 1] = offset;
3839 inodes->val[inodes->elem_cnt + 2] = root;
3840 inodes->elem_cnt += 3;
3842 inodes->bytes_missing += c - inodes->bytes_left;
3843 inodes->bytes_left = 0;
3844 inodes->elem_missed += 3;
3850 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3851 void __user *arg, int version)
3855 struct btrfs_ioctl_logical_ino_args *loi;
3856 struct btrfs_data_container *inodes = NULL;
3857 struct btrfs_path *path = NULL;
3860 if (!capable(CAP_SYS_ADMIN))
3863 loi = memdup_user(arg, sizeof(*loi));
3865 return PTR_ERR(loi);
3868 ignore_offset = false;
3869 size = min_t(u32, loi->size, SZ_64K);
3871 /* All reserved bits must be 0 for now */
3872 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3876 /* Only accept flags we have defined so far */
3877 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3881 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3882 size = min_t(u32, loi->size, SZ_16M);
3885 path = btrfs_alloc_path();
3891 inodes = init_data_container(size);
3892 if (IS_ERR(inodes)) {
3893 ret = PTR_ERR(inodes);
3898 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3899 build_ino_list, inodes, ignore_offset);
3905 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3911 btrfs_free_path(path);
3919 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3920 struct btrfs_ioctl_balance_args *bargs)
3922 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3924 bargs->flags = bctl->flags;
3926 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3927 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3928 if (atomic_read(&fs_info->balance_pause_req))
3929 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3930 if (atomic_read(&fs_info->balance_cancel_req))
3931 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3933 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3934 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3935 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3937 spin_lock(&fs_info->balance_lock);
3938 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3939 spin_unlock(&fs_info->balance_lock);
3942 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3944 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3945 struct btrfs_fs_info *fs_info = root->fs_info;
3946 struct btrfs_ioctl_balance_args *bargs;
3947 struct btrfs_balance_control *bctl;
3948 bool need_unlock; /* for mut. excl. ops lock */
3951 if (!capable(CAP_SYS_ADMIN))
3954 ret = mnt_want_write_file(file);
3959 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3960 mutex_lock(&fs_info->balance_mutex);
3966 * mut. excl. ops lock is locked. Three possibilities:
3967 * (1) some other op is running
3968 * (2) balance is running
3969 * (3) balance is paused -- special case (think resume)
3971 mutex_lock(&fs_info->balance_mutex);
3972 if (fs_info->balance_ctl) {
3973 /* this is either (2) or (3) */
3974 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3975 mutex_unlock(&fs_info->balance_mutex);
3977 * Lock released to allow other waiters to continue,
3978 * we'll reexamine the status again.
3980 mutex_lock(&fs_info->balance_mutex);
3982 if (fs_info->balance_ctl &&
3983 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3985 need_unlock = false;
3989 mutex_unlock(&fs_info->balance_mutex);
3993 mutex_unlock(&fs_info->balance_mutex);
3999 mutex_unlock(&fs_info->balance_mutex);
4000 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4007 bargs = memdup_user(arg, sizeof(*bargs));
4008 if (IS_ERR(bargs)) {
4009 ret = PTR_ERR(bargs);
4013 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4014 if (!fs_info->balance_ctl) {
4019 bctl = fs_info->balance_ctl;
4020 spin_lock(&fs_info->balance_lock);
4021 bctl->flags |= BTRFS_BALANCE_RESUME;
4022 spin_unlock(&fs_info->balance_lock);
4030 if (fs_info->balance_ctl) {
4035 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4042 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4043 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4044 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4046 bctl->flags = bargs->flags;
4048 /* balance everything - no filters */
4049 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4052 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4059 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4060 * bctl is freed in reset_balance_state, or, if restriper was paused
4061 * all the way until unmount, in free_fs_info. The flag should be
4062 * cleared after reset_balance_state.
4064 need_unlock = false;
4066 ret = btrfs_balance(fs_info, bctl, bargs);
4069 if ((ret == 0 || ret == -ECANCELED) && arg) {
4070 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4079 mutex_unlock(&fs_info->balance_mutex);
4081 btrfs_exclop_finish(fs_info);
4083 mnt_drop_write_file(file);
4087 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4089 if (!capable(CAP_SYS_ADMIN))
4093 case BTRFS_BALANCE_CTL_PAUSE:
4094 return btrfs_pause_balance(fs_info);
4095 case BTRFS_BALANCE_CTL_CANCEL:
4096 return btrfs_cancel_balance(fs_info);
4102 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4105 struct btrfs_ioctl_balance_args *bargs;
4108 if (!capable(CAP_SYS_ADMIN))
4111 mutex_lock(&fs_info->balance_mutex);
4112 if (!fs_info->balance_ctl) {
4117 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4123 btrfs_update_ioctl_balance_args(fs_info, bargs);
4125 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4130 mutex_unlock(&fs_info->balance_mutex);
4134 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4136 struct inode *inode = file_inode(file);
4137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4138 struct btrfs_ioctl_quota_ctl_args *sa;
4141 if (!capable(CAP_SYS_ADMIN))
4144 ret = mnt_want_write_file(file);
4148 sa = memdup_user(arg, sizeof(*sa));
4154 down_write(&fs_info->subvol_sem);
4157 case BTRFS_QUOTA_CTL_ENABLE:
4158 ret = btrfs_quota_enable(fs_info);
4160 case BTRFS_QUOTA_CTL_DISABLE:
4161 ret = btrfs_quota_disable(fs_info);
4169 up_write(&fs_info->subvol_sem);
4171 mnt_drop_write_file(file);
4175 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4177 struct inode *inode = file_inode(file);
4178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4179 struct btrfs_root *root = BTRFS_I(inode)->root;
4180 struct btrfs_ioctl_qgroup_assign_args *sa;
4181 struct btrfs_trans_handle *trans;
4185 if (!capable(CAP_SYS_ADMIN))
4188 ret = mnt_want_write_file(file);
4192 sa = memdup_user(arg, sizeof(*sa));
4198 trans = btrfs_join_transaction(root);
4199 if (IS_ERR(trans)) {
4200 ret = PTR_ERR(trans);
4205 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4207 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4210 /* update qgroup status and info */
4211 err = btrfs_run_qgroups(trans);
4213 btrfs_handle_fs_error(fs_info, err,
4214 "failed to update qgroup status and info");
4215 err = btrfs_end_transaction(trans);
4222 mnt_drop_write_file(file);
4226 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4228 struct inode *inode = file_inode(file);
4229 struct btrfs_root *root = BTRFS_I(inode)->root;
4230 struct btrfs_ioctl_qgroup_create_args *sa;
4231 struct btrfs_trans_handle *trans;
4235 if (!capable(CAP_SYS_ADMIN))
4238 ret = mnt_want_write_file(file);
4242 sa = memdup_user(arg, sizeof(*sa));
4248 if (!sa->qgroupid) {
4253 trans = btrfs_join_transaction(root);
4254 if (IS_ERR(trans)) {
4255 ret = PTR_ERR(trans);
4260 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4262 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4265 err = btrfs_end_transaction(trans);
4272 mnt_drop_write_file(file);
4276 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4278 struct inode *inode = file_inode(file);
4279 struct btrfs_root *root = BTRFS_I(inode)->root;
4280 struct btrfs_ioctl_qgroup_limit_args *sa;
4281 struct btrfs_trans_handle *trans;
4286 if (!capable(CAP_SYS_ADMIN))
4289 ret = mnt_want_write_file(file);
4293 sa = memdup_user(arg, sizeof(*sa));
4299 trans = btrfs_join_transaction(root);
4300 if (IS_ERR(trans)) {
4301 ret = PTR_ERR(trans);
4305 qgroupid = sa->qgroupid;
4307 /* take the current subvol as qgroup */
4308 qgroupid = root->root_key.objectid;
4311 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4313 err = btrfs_end_transaction(trans);
4320 mnt_drop_write_file(file);
4324 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4326 struct inode *inode = file_inode(file);
4327 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4328 struct btrfs_ioctl_quota_rescan_args *qsa;
4331 if (!capable(CAP_SYS_ADMIN))
4334 ret = mnt_want_write_file(file);
4338 qsa = memdup_user(arg, sizeof(*qsa));
4349 ret = btrfs_qgroup_rescan(fs_info);
4354 mnt_drop_write_file(file);
4358 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4361 struct btrfs_ioctl_quota_rescan_args *qsa;
4364 if (!capable(CAP_SYS_ADMIN))
4367 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4371 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4373 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4376 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4383 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4386 if (!capable(CAP_SYS_ADMIN))
4389 return btrfs_qgroup_wait_for_completion(fs_info, true);
4392 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4393 struct btrfs_ioctl_received_subvol_args *sa)
4395 struct inode *inode = file_inode(file);
4396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4397 struct btrfs_root *root = BTRFS_I(inode)->root;
4398 struct btrfs_root_item *root_item = &root->root_item;
4399 struct btrfs_trans_handle *trans;
4400 struct timespec64 ct = current_time(inode);
4402 int received_uuid_changed;
4404 if (!inode_owner_or_capable(inode))
4407 ret = mnt_want_write_file(file);
4411 down_write(&fs_info->subvol_sem);
4413 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4418 if (btrfs_root_readonly(root)) {
4425 * 2 - uuid items (received uuid + subvol uuid)
4427 trans = btrfs_start_transaction(root, 3);
4428 if (IS_ERR(trans)) {
4429 ret = PTR_ERR(trans);
4434 sa->rtransid = trans->transid;
4435 sa->rtime.sec = ct.tv_sec;
4436 sa->rtime.nsec = ct.tv_nsec;
4438 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4440 if (received_uuid_changed &&
4441 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4442 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4443 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4444 root->root_key.objectid);
4445 if (ret && ret != -ENOENT) {
4446 btrfs_abort_transaction(trans, ret);
4447 btrfs_end_transaction(trans);
4451 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4452 btrfs_set_root_stransid(root_item, sa->stransid);
4453 btrfs_set_root_rtransid(root_item, sa->rtransid);
4454 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4455 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4456 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4457 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4459 ret = btrfs_update_root(trans, fs_info->tree_root,
4460 &root->root_key, &root->root_item);
4462 btrfs_end_transaction(trans);
4465 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4466 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4467 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4468 root->root_key.objectid);
4469 if (ret < 0 && ret != -EEXIST) {
4470 btrfs_abort_transaction(trans, ret);
4471 btrfs_end_transaction(trans);
4475 ret = btrfs_commit_transaction(trans);
4477 up_write(&fs_info->subvol_sem);
4478 mnt_drop_write_file(file);
4483 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4486 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4487 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4490 args32 = memdup_user(arg, sizeof(*args32));
4492 return PTR_ERR(args32);
4494 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4500 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4501 args64->stransid = args32->stransid;
4502 args64->rtransid = args32->rtransid;
4503 args64->stime.sec = args32->stime.sec;
4504 args64->stime.nsec = args32->stime.nsec;
4505 args64->rtime.sec = args32->rtime.sec;
4506 args64->rtime.nsec = args32->rtime.nsec;
4507 args64->flags = args32->flags;
4509 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4513 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4514 args32->stransid = args64->stransid;
4515 args32->rtransid = args64->rtransid;
4516 args32->stime.sec = args64->stime.sec;
4517 args32->stime.nsec = args64->stime.nsec;
4518 args32->rtime.sec = args64->rtime.sec;
4519 args32->rtime.nsec = args64->rtime.nsec;
4520 args32->flags = args64->flags;
4522 ret = copy_to_user(arg, args32, sizeof(*args32));
4533 static long btrfs_ioctl_set_received_subvol(struct file *file,
4536 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4539 sa = memdup_user(arg, sizeof(*sa));
4543 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4548 ret = copy_to_user(arg, sa, sizeof(*sa));
4557 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4562 char label[BTRFS_LABEL_SIZE];
4564 spin_lock(&fs_info->super_lock);
4565 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4566 spin_unlock(&fs_info->super_lock);
4568 len = strnlen(label, BTRFS_LABEL_SIZE);
4570 if (len == BTRFS_LABEL_SIZE) {
4572 "label is too long, return the first %zu bytes",
4576 ret = copy_to_user(arg, label, len);
4578 return ret ? -EFAULT : 0;
4581 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4583 struct inode *inode = file_inode(file);
4584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4585 struct btrfs_root *root = BTRFS_I(inode)->root;
4586 struct btrfs_super_block *super_block = fs_info->super_copy;
4587 struct btrfs_trans_handle *trans;
4588 char label[BTRFS_LABEL_SIZE];
4591 if (!capable(CAP_SYS_ADMIN))
4594 if (copy_from_user(label, arg, sizeof(label)))
4597 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4599 "unable to set label with more than %d bytes",
4600 BTRFS_LABEL_SIZE - 1);
4604 ret = mnt_want_write_file(file);
4608 trans = btrfs_start_transaction(root, 0);
4609 if (IS_ERR(trans)) {
4610 ret = PTR_ERR(trans);
4614 spin_lock(&fs_info->super_lock);
4615 strcpy(super_block->label, label);
4616 spin_unlock(&fs_info->super_lock);
4617 ret = btrfs_commit_transaction(trans);
4620 mnt_drop_write_file(file);
4624 #define INIT_FEATURE_FLAGS(suffix) \
4625 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4626 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4627 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4629 int btrfs_ioctl_get_supported_features(void __user *arg)
4631 static const struct btrfs_ioctl_feature_flags features[3] = {
4632 INIT_FEATURE_FLAGS(SUPP),
4633 INIT_FEATURE_FLAGS(SAFE_SET),
4634 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4637 if (copy_to_user(arg, &features, sizeof(features)))
4643 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4646 struct btrfs_super_block *super_block = fs_info->super_copy;
4647 struct btrfs_ioctl_feature_flags features;
4649 features.compat_flags = btrfs_super_compat_flags(super_block);
4650 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4651 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4653 if (copy_to_user(arg, &features, sizeof(features)))
4659 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4660 enum btrfs_feature_set set,
4661 u64 change_mask, u64 flags, u64 supported_flags,
4662 u64 safe_set, u64 safe_clear)
4664 const char *type = btrfs_feature_set_name(set);
4666 u64 disallowed, unsupported;
4667 u64 set_mask = flags & change_mask;
4668 u64 clear_mask = ~flags & change_mask;
4670 unsupported = set_mask & ~supported_flags;
4672 names = btrfs_printable_features(set, unsupported);
4675 "this kernel does not support the %s feature bit%s",
4676 names, strchr(names, ',') ? "s" : "");
4680 "this kernel does not support %s bits 0x%llx",
4685 disallowed = set_mask & ~safe_set;
4687 names = btrfs_printable_features(set, disallowed);
4690 "can't set the %s feature bit%s while mounted",
4691 names, strchr(names, ',') ? "s" : "");
4695 "can't set %s bits 0x%llx while mounted",
4700 disallowed = clear_mask & ~safe_clear;
4702 names = btrfs_printable_features(set, disallowed);
4705 "can't clear the %s feature bit%s while mounted",
4706 names, strchr(names, ',') ? "s" : "");
4710 "can't clear %s bits 0x%llx while mounted",
4718 #define check_feature(fs_info, change_mask, flags, mask_base) \
4719 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4720 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4721 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4722 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4724 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4726 struct inode *inode = file_inode(file);
4727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4728 struct btrfs_root *root = BTRFS_I(inode)->root;
4729 struct btrfs_super_block *super_block = fs_info->super_copy;
4730 struct btrfs_ioctl_feature_flags flags[2];
4731 struct btrfs_trans_handle *trans;
4735 if (!capable(CAP_SYS_ADMIN))
4738 if (copy_from_user(flags, arg, sizeof(flags)))
4742 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4743 !flags[0].incompat_flags)
4746 ret = check_feature(fs_info, flags[0].compat_flags,
4747 flags[1].compat_flags, COMPAT);
4751 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4752 flags[1].compat_ro_flags, COMPAT_RO);
4756 ret = check_feature(fs_info, flags[0].incompat_flags,
4757 flags[1].incompat_flags, INCOMPAT);
4761 ret = mnt_want_write_file(file);
4765 trans = btrfs_start_transaction(root, 0);
4766 if (IS_ERR(trans)) {
4767 ret = PTR_ERR(trans);
4768 goto out_drop_write;
4771 spin_lock(&fs_info->super_lock);
4772 newflags = btrfs_super_compat_flags(super_block);
4773 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4774 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4775 btrfs_set_super_compat_flags(super_block, newflags);
4777 newflags = btrfs_super_compat_ro_flags(super_block);
4778 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4779 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4780 btrfs_set_super_compat_ro_flags(super_block, newflags);
4782 newflags = btrfs_super_incompat_flags(super_block);
4783 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4784 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4785 btrfs_set_super_incompat_flags(super_block, newflags);
4786 spin_unlock(&fs_info->super_lock);
4788 ret = btrfs_commit_transaction(trans);
4790 mnt_drop_write_file(file);
4795 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4797 struct btrfs_ioctl_send_args *arg;
4801 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4802 struct btrfs_ioctl_send_args_32 args32;
4804 ret = copy_from_user(&args32, argp, sizeof(args32));
4807 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4810 arg->send_fd = args32.send_fd;
4811 arg->clone_sources_count = args32.clone_sources_count;
4812 arg->clone_sources = compat_ptr(args32.clone_sources);
4813 arg->parent_root = args32.parent_root;
4814 arg->flags = args32.flags;
4815 memcpy(arg->reserved, args32.reserved,
4816 sizeof(args32.reserved));
4821 arg = memdup_user(argp, sizeof(*arg));
4823 return PTR_ERR(arg);
4825 ret = btrfs_ioctl_send(file, arg);
4830 long btrfs_ioctl(struct file *file, unsigned int
4831 cmd, unsigned long arg)
4833 struct inode *inode = file_inode(file);
4834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4835 struct btrfs_root *root = BTRFS_I(inode)->root;
4836 void __user *argp = (void __user *)arg;
4839 case FS_IOC_GETFLAGS:
4840 return btrfs_ioctl_getflags(file, argp);
4841 case FS_IOC_SETFLAGS:
4842 return btrfs_ioctl_setflags(file, argp);
4843 case FS_IOC_GETVERSION:
4844 return btrfs_ioctl_getversion(file, argp);
4845 case FS_IOC_GETFSLABEL:
4846 return btrfs_ioctl_get_fslabel(fs_info, argp);
4847 case FS_IOC_SETFSLABEL:
4848 return btrfs_ioctl_set_fslabel(file, argp);
4850 return btrfs_ioctl_fitrim(fs_info, argp);
4851 case BTRFS_IOC_SNAP_CREATE:
4852 return btrfs_ioctl_snap_create(file, argp, 0);
4853 case BTRFS_IOC_SNAP_CREATE_V2:
4854 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4855 case BTRFS_IOC_SUBVOL_CREATE:
4856 return btrfs_ioctl_snap_create(file, argp, 1);
4857 case BTRFS_IOC_SUBVOL_CREATE_V2:
4858 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4859 case BTRFS_IOC_SNAP_DESTROY:
4860 return btrfs_ioctl_snap_destroy(file, argp, false);
4861 case BTRFS_IOC_SNAP_DESTROY_V2:
4862 return btrfs_ioctl_snap_destroy(file, argp, true);
4863 case BTRFS_IOC_SUBVOL_GETFLAGS:
4864 return btrfs_ioctl_subvol_getflags(file, argp);
4865 case BTRFS_IOC_SUBVOL_SETFLAGS:
4866 return btrfs_ioctl_subvol_setflags(file, argp);
4867 case BTRFS_IOC_DEFAULT_SUBVOL:
4868 return btrfs_ioctl_default_subvol(file, argp);
4869 case BTRFS_IOC_DEFRAG:
4870 return btrfs_ioctl_defrag(file, NULL);
4871 case BTRFS_IOC_DEFRAG_RANGE:
4872 return btrfs_ioctl_defrag(file, argp);
4873 case BTRFS_IOC_RESIZE:
4874 return btrfs_ioctl_resize(file, argp);
4875 case BTRFS_IOC_ADD_DEV:
4876 return btrfs_ioctl_add_dev(fs_info, argp);
4877 case BTRFS_IOC_RM_DEV:
4878 return btrfs_ioctl_rm_dev(file, argp);
4879 case BTRFS_IOC_RM_DEV_V2:
4880 return btrfs_ioctl_rm_dev_v2(file, argp);
4881 case BTRFS_IOC_FS_INFO:
4882 return btrfs_ioctl_fs_info(fs_info, argp);
4883 case BTRFS_IOC_DEV_INFO:
4884 return btrfs_ioctl_dev_info(fs_info, argp);
4885 case BTRFS_IOC_BALANCE:
4886 return btrfs_ioctl_balance(file, NULL);
4887 case BTRFS_IOC_TREE_SEARCH:
4888 return btrfs_ioctl_tree_search(file, argp);
4889 case BTRFS_IOC_TREE_SEARCH_V2:
4890 return btrfs_ioctl_tree_search_v2(file, argp);
4891 case BTRFS_IOC_INO_LOOKUP:
4892 return btrfs_ioctl_ino_lookup(file, argp);
4893 case BTRFS_IOC_INO_PATHS:
4894 return btrfs_ioctl_ino_to_path(root, argp);
4895 case BTRFS_IOC_LOGICAL_INO:
4896 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4897 case BTRFS_IOC_LOGICAL_INO_V2:
4898 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4899 case BTRFS_IOC_SPACE_INFO:
4900 return btrfs_ioctl_space_info(fs_info, argp);
4901 case BTRFS_IOC_SYNC: {
4904 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX);
4907 ret = btrfs_sync_fs(inode->i_sb, 1);
4909 * The transaction thread may want to do more work,
4910 * namely it pokes the cleaner kthread that will start
4911 * processing uncleaned subvols.
4913 wake_up_process(fs_info->transaction_kthread);
4916 case BTRFS_IOC_START_SYNC:
4917 return btrfs_ioctl_start_sync(root, argp);
4918 case BTRFS_IOC_WAIT_SYNC:
4919 return btrfs_ioctl_wait_sync(fs_info, argp);
4920 case BTRFS_IOC_SCRUB:
4921 return btrfs_ioctl_scrub(file, argp);
4922 case BTRFS_IOC_SCRUB_CANCEL:
4923 return btrfs_ioctl_scrub_cancel(fs_info);
4924 case BTRFS_IOC_SCRUB_PROGRESS:
4925 return btrfs_ioctl_scrub_progress(fs_info, argp);
4926 case BTRFS_IOC_BALANCE_V2:
4927 return btrfs_ioctl_balance(file, argp);
4928 case BTRFS_IOC_BALANCE_CTL:
4929 return btrfs_ioctl_balance_ctl(fs_info, arg);
4930 case BTRFS_IOC_BALANCE_PROGRESS:
4931 return btrfs_ioctl_balance_progress(fs_info, argp);
4932 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4933 return btrfs_ioctl_set_received_subvol(file, argp);
4935 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4936 return btrfs_ioctl_set_received_subvol_32(file, argp);
4938 case BTRFS_IOC_SEND:
4939 return _btrfs_ioctl_send(file, argp, false);
4940 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4941 case BTRFS_IOC_SEND_32:
4942 return _btrfs_ioctl_send(file, argp, true);
4944 case BTRFS_IOC_GET_DEV_STATS:
4945 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4946 case BTRFS_IOC_QUOTA_CTL:
4947 return btrfs_ioctl_quota_ctl(file, argp);
4948 case BTRFS_IOC_QGROUP_ASSIGN:
4949 return btrfs_ioctl_qgroup_assign(file, argp);
4950 case BTRFS_IOC_QGROUP_CREATE:
4951 return btrfs_ioctl_qgroup_create(file, argp);
4952 case BTRFS_IOC_QGROUP_LIMIT:
4953 return btrfs_ioctl_qgroup_limit(file, argp);
4954 case BTRFS_IOC_QUOTA_RESCAN:
4955 return btrfs_ioctl_quota_rescan(file, argp);
4956 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4957 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4958 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4959 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4960 case BTRFS_IOC_DEV_REPLACE:
4961 return btrfs_ioctl_dev_replace(fs_info, argp);
4962 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4963 return btrfs_ioctl_get_supported_features(argp);
4964 case BTRFS_IOC_GET_FEATURES:
4965 return btrfs_ioctl_get_features(fs_info, argp);
4966 case BTRFS_IOC_SET_FEATURES:
4967 return btrfs_ioctl_set_features(file, argp);
4968 case FS_IOC_FSGETXATTR:
4969 return btrfs_ioctl_fsgetxattr(file, argp);
4970 case FS_IOC_FSSETXATTR:
4971 return btrfs_ioctl_fssetxattr(file, argp);
4972 case BTRFS_IOC_GET_SUBVOL_INFO:
4973 return btrfs_ioctl_get_subvol_info(file, argp);
4974 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4975 return btrfs_ioctl_get_subvol_rootref(file, argp);
4976 case BTRFS_IOC_INO_LOOKUP_USER:
4977 return btrfs_ioctl_ino_lookup_user(file, argp);
4983 #ifdef CONFIG_COMPAT
4984 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4987 * These all access 32-bit values anyway so no further
4988 * handling is necessary.
4991 case FS_IOC32_GETFLAGS:
4992 cmd = FS_IOC_GETFLAGS;
4994 case FS_IOC32_SETFLAGS:
4995 cmd = FS_IOC_SETFLAGS;
4997 case FS_IOC32_GETVERSION:
4998 cmd = FS_IOC_GETVERSION;
5002 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));