2 * Copyright 2013 Red Hat Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
42 * struct hmm - HMM per mm struct
44 * @mm: mm struct this HMM struct is bound to
45 * @lock: lock protecting ranges list
46 * @ranges: list of range being snapshotted
47 * @mirrors: list of mirrors for this mm
48 * @mmu_notifier: mmu notifier to track updates to CPU page table
49 * @mirrors_sem: read/write semaphore protecting the mirrors list
54 struct list_head ranges;
55 struct list_head mirrors;
56 struct mmu_notifier mmu_notifier;
57 struct rw_semaphore mirrors_sem;
61 * hmm_register - register HMM against an mm (HMM internal)
63 * @mm: mm struct to attach to
65 * This is not intended to be used directly by device drivers. It allocates an
66 * HMM struct if mm does not have one, and initializes it.
68 static struct hmm *hmm_register(struct mm_struct *mm)
70 struct hmm *hmm = READ_ONCE(mm->hmm);
74 * The hmm struct can only be freed once the mm_struct goes away,
75 * hence we should always have pre-allocated an new hmm struct
81 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
84 INIT_LIST_HEAD(&hmm->mirrors);
85 init_rwsem(&hmm->mirrors_sem);
86 hmm->mmu_notifier.ops = NULL;
87 INIT_LIST_HEAD(&hmm->ranges);
88 spin_lock_init(&hmm->lock);
91 spin_lock(&mm->page_table_lock);
96 spin_unlock(&mm->page_table_lock);
102 * We should only get here if hold the mmap_sem in write mode ie on
103 * registration of first mirror through hmm_mirror_register()
105 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
106 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
112 spin_lock(&mm->page_table_lock);
115 spin_unlock(&mm->page_table_lock);
121 void hmm_mm_destroy(struct mm_struct *mm)
126 static int hmm_invalidate_range(struct hmm *hmm, bool device,
127 const struct hmm_update *update)
129 struct hmm_mirror *mirror;
130 struct hmm_range *range;
132 spin_lock(&hmm->lock);
133 list_for_each_entry(range, &hmm->ranges, list) {
134 unsigned long addr, idx, npages;
136 if (update->end < range->start || update->start >= range->end)
139 range->valid = false;
140 addr = max(update->start, range->start);
141 idx = (addr - range->start) >> PAGE_SHIFT;
142 npages = (min(range->end, update->end) - addr) >> PAGE_SHIFT;
143 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
145 spin_unlock(&hmm->lock);
150 down_read(&hmm->mirrors_sem);
151 list_for_each_entry(mirror, &hmm->mirrors, list) {
154 ret = mirror->ops->sync_cpu_device_pagetables(mirror, update);
155 if (!update->blockable && ret == -EAGAIN) {
156 up_read(&hmm->mirrors_sem);
160 up_read(&hmm->mirrors_sem);
165 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
167 struct hmm_mirror *mirror;
168 struct hmm *hmm = mm->hmm;
170 down_write(&hmm->mirrors_sem);
171 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
174 list_del_init(&mirror->list);
175 if (mirror->ops->release) {
177 * Drop mirrors_sem so callback can wait on any pending
178 * work that might itself trigger mmu_notifier callback
179 * and thus would deadlock with us.
181 up_write(&hmm->mirrors_sem);
182 mirror->ops->release(mirror);
183 down_write(&hmm->mirrors_sem);
185 mirror = list_first_entry_or_null(&hmm->mirrors,
186 struct hmm_mirror, list);
188 up_write(&hmm->mirrors_sem);
191 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
192 struct mm_struct *mm,
197 struct hmm_update update;
198 struct hmm *hmm = mm->hmm;
202 update.start = start;
204 update.event = HMM_UPDATE_INVALIDATE;
205 update.blockable = blockable;
206 return hmm_invalidate_range(hmm, true, &update);
209 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
210 struct mm_struct *mm,
214 struct hmm_update update;
215 struct hmm *hmm = mm->hmm;
219 update.start = start;
221 update.event = HMM_UPDATE_INVALIDATE;
222 update.blockable = true;
223 hmm_invalidate_range(hmm, false, &update);
226 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
227 .release = hmm_release,
228 .invalidate_range_start = hmm_invalidate_range_start,
229 .invalidate_range_end = hmm_invalidate_range_end,
233 * hmm_mirror_register() - register a mirror against an mm
235 * @mirror: new mirror struct to register
236 * @mm: mm to register against
238 * To start mirroring a process address space, the device driver must register
239 * an HMM mirror struct.
241 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
243 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
246 if (!mm || !mirror || !mirror->ops)
250 mirror->hmm = hmm_register(mm);
254 down_write(&mirror->hmm->mirrors_sem);
255 if (mirror->hmm->mm == NULL) {
257 * A racing hmm_mirror_unregister() is about to destroy the hmm
258 * struct. Try again to allocate a new one.
260 up_write(&mirror->hmm->mirrors_sem);
264 list_add(&mirror->list, &mirror->hmm->mirrors);
265 up_write(&mirror->hmm->mirrors_sem);
270 EXPORT_SYMBOL(hmm_mirror_register);
273 * hmm_mirror_unregister() - unregister a mirror
275 * @mirror: new mirror struct to register
277 * Stop mirroring a process address space, and cleanup.
279 void hmm_mirror_unregister(struct hmm_mirror *mirror)
281 bool should_unregister = false;
282 struct mm_struct *mm;
285 if (mirror->hmm == NULL)
289 down_write(&hmm->mirrors_sem);
290 list_del_init(&mirror->list);
291 should_unregister = list_empty(&hmm->mirrors);
295 up_write(&hmm->mirrors_sem);
297 if (!should_unregister || mm == NULL)
300 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
302 spin_lock(&mm->page_table_lock);
305 spin_unlock(&mm->page_table_lock);
309 EXPORT_SYMBOL(hmm_mirror_unregister);
311 struct hmm_vma_walk {
312 struct hmm_range *range;
318 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
319 bool write_fault, uint64_t *pfn)
321 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
322 struct hmm_vma_walk *hmm_vma_walk = walk->private;
323 struct hmm_range *range = hmm_vma_walk->range;
324 struct vm_area_struct *vma = walk->vma;
327 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
328 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
329 ret = handle_mm_fault(vma, addr, flags);
330 if (ret & VM_FAULT_RETRY)
332 if (ret & VM_FAULT_ERROR) {
333 *pfn = range->values[HMM_PFN_ERROR];
340 static int hmm_pfns_bad(unsigned long addr,
342 struct mm_walk *walk)
344 struct hmm_vma_walk *hmm_vma_walk = walk->private;
345 struct hmm_range *range = hmm_vma_walk->range;
346 uint64_t *pfns = range->pfns;
349 i = (addr - range->start) >> PAGE_SHIFT;
350 for (; addr < end; addr += PAGE_SIZE, i++)
351 pfns[i] = range->values[HMM_PFN_ERROR];
357 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
358 * @start: range virtual start address (inclusive)
359 * @end: range virtual end address (exclusive)
360 * @fault: should we fault or not ?
361 * @write_fault: write fault ?
362 * @walk: mm_walk structure
363 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
365 * This function will be called whenever pmd_none() or pte_none() returns true,
366 * or whenever there is no page directory covering the virtual address range.
368 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
369 bool fault, bool write_fault,
370 struct mm_walk *walk)
372 struct hmm_vma_walk *hmm_vma_walk = walk->private;
373 struct hmm_range *range = hmm_vma_walk->range;
374 uint64_t *pfns = range->pfns;
377 hmm_vma_walk->last = addr;
378 i = (addr - range->start) >> PAGE_SHIFT;
379 for (; addr < end; addr += PAGE_SIZE, i++) {
380 pfns[i] = range->values[HMM_PFN_NONE];
381 if (fault || write_fault) {
384 ret = hmm_vma_do_fault(walk, addr, write_fault,
391 return (fault || write_fault) ? -EAGAIN : 0;
394 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
395 uint64_t pfns, uint64_t cpu_flags,
396 bool *fault, bool *write_fault)
398 struct hmm_range *range = hmm_vma_walk->range;
400 *fault = *write_fault = false;
401 if (!hmm_vma_walk->fault)
404 /* We aren't ask to do anything ... */
405 if (!(pfns & range->flags[HMM_PFN_VALID]))
407 /* If this is device memory than only fault if explicitly requested */
408 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
409 /* Do we fault on device memory ? */
410 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
411 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
417 /* If CPU page table is not valid then we need to fault */
418 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
419 /* Need to write fault ? */
420 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
421 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
427 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
428 const uint64_t *pfns, unsigned long npages,
429 uint64_t cpu_flags, bool *fault,
434 if (!hmm_vma_walk->fault) {
435 *fault = *write_fault = false;
439 for (i = 0; i < npages; ++i) {
440 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
442 if ((*fault) || (*write_fault))
447 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
448 struct mm_walk *walk)
450 struct hmm_vma_walk *hmm_vma_walk = walk->private;
451 struct hmm_range *range = hmm_vma_walk->range;
452 bool fault, write_fault;
453 unsigned long i, npages;
456 i = (addr - range->start) >> PAGE_SHIFT;
457 npages = (end - addr) >> PAGE_SHIFT;
458 pfns = &range->pfns[i];
459 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
460 0, &fault, &write_fault);
461 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
464 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
466 if (pmd_protnone(pmd))
468 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
469 range->flags[HMM_PFN_WRITE] :
470 range->flags[HMM_PFN_VALID];
473 static int hmm_vma_handle_pmd(struct mm_walk *walk,
479 struct hmm_vma_walk *hmm_vma_walk = walk->private;
480 struct hmm_range *range = hmm_vma_walk->range;
481 unsigned long pfn, npages, i;
482 bool fault, write_fault;
485 npages = (end - addr) >> PAGE_SHIFT;
486 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
487 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
488 &fault, &write_fault);
490 if (pmd_protnone(pmd) || fault || write_fault)
491 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
493 pfn = pmd_pfn(pmd) + pte_index(addr);
494 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
495 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
496 hmm_vma_walk->last = end;
500 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
502 if (pte_none(pte) || !pte_present(pte))
504 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
505 range->flags[HMM_PFN_WRITE] :
506 range->flags[HMM_PFN_VALID];
509 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
510 unsigned long end, pmd_t *pmdp, pte_t *ptep,
513 struct hmm_vma_walk *hmm_vma_walk = walk->private;
514 struct hmm_range *range = hmm_vma_walk->range;
515 struct vm_area_struct *vma = walk->vma;
516 bool fault, write_fault;
519 uint64_t orig_pfn = *pfn;
521 *pfn = range->values[HMM_PFN_NONE];
522 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
523 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
524 &fault, &write_fault);
527 if (fault || write_fault)
532 if (!pte_present(pte)) {
533 swp_entry_t entry = pte_to_swp_entry(pte);
535 if (!non_swap_entry(entry)) {
536 if (fault || write_fault)
542 * This is a special swap entry, ignore migration, use
543 * device and report anything else as error.
545 if (is_device_private_entry(entry)) {
546 cpu_flags = range->flags[HMM_PFN_VALID] |
547 range->flags[HMM_PFN_DEVICE_PRIVATE];
548 cpu_flags |= is_write_device_private_entry(entry) ?
549 range->flags[HMM_PFN_WRITE] : 0;
550 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
551 &fault, &write_fault);
552 if (fault || write_fault)
554 *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
559 if (is_migration_entry(entry)) {
560 if (fault || write_fault) {
562 hmm_vma_walk->last = addr;
563 migration_entry_wait(vma->vm_mm,
570 /* Report error for everything else */
571 *pfn = range->values[HMM_PFN_ERROR];
575 if (fault || write_fault)
578 *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
583 /* Fault any virtual address we were asked to fault */
584 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
587 static int hmm_vma_walk_pmd(pmd_t *pmdp,
590 struct mm_walk *walk)
592 struct hmm_vma_walk *hmm_vma_walk = walk->private;
593 struct hmm_range *range = hmm_vma_walk->range;
594 struct vm_area_struct *vma = walk->vma;
595 uint64_t *pfns = range->pfns;
596 unsigned long addr = start, i;
602 pmd = READ_ONCE(*pmdp);
604 return hmm_vma_walk_hole(start, end, walk);
606 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
607 return hmm_pfns_bad(start, end, walk);
609 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
610 bool fault, write_fault;
611 unsigned long npages;
614 i = (addr - range->start) >> PAGE_SHIFT;
615 npages = (end - addr) >> PAGE_SHIFT;
616 pfns = &range->pfns[i];
618 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
619 0, &fault, &write_fault);
620 if (fault || write_fault) {
621 hmm_vma_walk->last = addr;
622 pmd_migration_entry_wait(vma->vm_mm, pmdp);
626 } else if (!pmd_present(pmd))
627 return hmm_pfns_bad(start, end, walk);
629 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
631 * No need to take pmd_lock here, even if some other threads
632 * is splitting the huge pmd we will get that event through
633 * mmu_notifier callback.
635 * So just read pmd value and check again its a transparent
636 * huge or device mapping one and compute corresponding pfn
639 pmd = pmd_read_atomic(pmdp);
641 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
644 i = (addr - range->start) >> PAGE_SHIFT;
645 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
649 * We have handled all the valid case above ie either none, migration,
650 * huge or transparent huge. At this point either it is a valid pmd
651 * entry pointing to pte directory or it is a bad pmd that will not
655 return hmm_pfns_bad(start, end, walk);
657 ptep = pte_offset_map(pmdp, addr);
658 i = (addr - range->start) >> PAGE_SHIFT;
659 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
662 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
664 /* hmm_vma_handle_pte() did unmap pte directory */
665 hmm_vma_walk->last = addr;
671 hmm_vma_walk->last = addr;
675 static void hmm_pfns_clear(struct hmm_range *range,
680 for (; addr < end; addr += PAGE_SIZE, pfns++)
681 *pfns = range->values[HMM_PFN_NONE];
684 static void hmm_pfns_special(struct hmm_range *range)
686 unsigned long addr = range->start, i = 0;
688 for (; addr < range->end; addr += PAGE_SIZE, i++)
689 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
693 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
694 * @range: range being snapshotted
695 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
696 * vma permission, 0 success
698 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
699 * validity is tracked by range struct. See hmm_vma_range_done() for further
702 * The range struct is initialized here. It tracks the CPU page table, but only
703 * if the function returns success (0), in which case the caller must then call
704 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
706 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
707 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
709 int hmm_vma_get_pfns(struct hmm_range *range)
711 struct vm_area_struct *vma = range->vma;
712 struct hmm_vma_walk hmm_vma_walk;
713 struct mm_walk mm_walk;
716 /* Sanity check, this really should not happen ! */
717 if (range->start < vma->vm_start || range->start >= vma->vm_end)
719 if (range->end < vma->vm_start || range->end > vma->vm_end)
722 hmm = hmm_register(vma->vm_mm);
725 /* Caller must have registered a mirror, via hmm_mirror_register() ! */
726 if (!hmm->mmu_notifier.ops)
729 /* FIXME support hugetlb fs */
730 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
732 hmm_pfns_special(range);
736 if (!(vma->vm_flags & VM_READ)) {
738 * If vma do not allow read access, then assume that it does
739 * not allow write access, either. Architecture that allow
740 * write without read access are not supported by HMM, because
741 * operations such has atomic access would not work.
743 hmm_pfns_clear(range, range->pfns, range->start, range->end);
747 /* Initialize range to track CPU page table update */
748 spin_lock(&hmm->lock);
750 list_add_rcu(&range->list, &hmm->ranges);
751 spin_unlock(&hmm->lock);
753 hmm_vma_walk.fault = false;
754 hmm_vma_walk.range = range;
755 mm_walk.private = &hmm_vma_walk;
758 mm_walk.mm = vma->vm_mm;
759 mm_walk.pte_entry = NULL;
760 mm_walk.test_walk = NULL;
761 mm_walk.hugetlb_entry = NULL;
762 mm_walk.pmd_entry = hmm_vma_walk_pmd;
763 mm_walk.pte_hole = hmm_vma_walk_hole;
765 walk_page_range(range->start, range->end, &mm_walk);
768 EXPORT_SYMBOL(hmm_vma_get_pfns);
771 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
772 * @range: range being tracked
773 * Returns: false if range data has been invalidated, true otherwise
775 * Range struct is used to track updates to the CPU page table after a call to
776 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
777 * using the data, or wants to lock updates to the data it got from those
778 * functions, it must call the hmm_vma_range_done() function, which will then
779 * stop tracking CPU page table updates.
781 * Note that device driver must still implement general CPU page table update
782 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
783 * the mmu_notifier API directly.
785 * CPU page table update tracking done through hmm_range is only temporary and
786 * to be used while trying to duplicate CPU page table contents for a range of
789 * There are two ways to use this :
791 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
792 * trans = device_build_page_table_update_transaction(pfns);
793 * device_page_table_lock();
794 * if (!hmm_vma_range_done(range)) {
795 * device_page_table_unlock();
798 * device_commit_transaction(trans);
799 * device_page_table_unlock();
802 * hmm_vma_get_pfns(range); or hmm_vma_fault(...);
803 * device_page_table_lock();
804 * hmm_vma_range_done(range);
805 * device_update_page_table(range->pfns);
806 * device_page_table_unlock();
808 bool hmm_vma_range_done(struct hmm_range *range)
810 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
813 if (range->end <= range->start) {
818 hmm = hmm_register(range->vma->vm_mm);
820 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
824 spin_lock(&hmm->lock);
825 list_del_rcu(&range->list);
826 spin_unlock(&hmm->lock);
830 EXPORT_SYMBOL(hmm_vma_range_done);
833 * hmm_vma_fault() - try to fault some address in a virtual address range
834 * @range: range being faulted
835 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
836 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
838 * This is similar to a regular CPU page fault except that it will not trigger
839 * any memory migration if the memory being faulted is not accessible by CPUs.
841 * On error, for one virtual address in the range, the function will mark the
842 * corresponding HMM pfn entry with an error flag.
844 * Expected use pattern:
846 * down_read(&mm->mmap_sem);
847 * // Find vma and address device wants to fault, initialize hmm_pfn_t
848 * // array accordingly
849 * ret = hmm_vma_fault(range, write, block);
852 * hmm_vma_range_done(range);
853 * // You might want to rate limit or yield to play nicely, you may
854 * // also commit any valid pfn in the array assuming that you are
855 * // getting true from hmm_vma_range_monitor_end()
864 * up_read(&mm->mmap_sem)
867 * // Take device driver lock that serialize device page table update
868 * driver_lock_device_page_table_update();
869 * hmm_vma_range_done(range);
870 * // Commit pfns we got from hmm_vma_fault()
871 * driver_unlock_device_page_table_update();
872 * up_read(&mm->mmap_sem)
874 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
875 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
877 * YOU HAVE BEEN WARNED !
879 int hmm_vma_fault(struct hmm_range *range, bool block)
881 struct vm_area_struct *vma = range->vma;
882 unsigned long start = range->start;
883 struct hmm_vma_walk hmm_vma_walk;
884 struct mm_walk mm_walk;
888 /* Sanity check, this really should not happen ! */
889 if (range->start < vma->vm_start || range->start >= vma->vm_end)
891 if (range->end < vma->vm_start || range->end > vma->vm_end)
894 hmm = hmm_register(vma->vm_mm);
896 hmm_pfns_clear(range, range->pfns, range->start, range->end);
899 /* Caller must have registered a mirror using hmm_mirror_register() */
900 if (!hmm->mmu_notifier.ops)
903 /* FIXME support hugetlb fs */
904 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
906 hmm_pfns_special(range);
910 if (!(vma->vm_flags & VM_READ)) {
912 * If vma do not allow read access, then assume that it does
913 * not allow write access, either. Architecture that allow
914 * write without read access are not supported by HMM, because
915 * operations such has atomic access would not work.
917 hmm_pfns_clear(range, range->pfns, range->start, range->end);
921 /* Initialize range to track CPU page table update */
922 spin_lock(&hmm->lock);
924 list_add_rcu(&range->list, &hmm->ranges);
925 spin_unlock(&hmm->lock);
927 hmm_vma_walk.fault = true;
928 hmm_vma_walk.block = block;
929 hmm_vma_walk.range = range;
930 mm_walk.private = &hmm_vma_walk;
931 hmm_vma_walk.last = range->start;
934 mm_walk.mm = vma->vm_mm;
935 mm_walk.pte_entry = NULL;
936 mm_walk.test_walk = NULL;
937 mm_walk.hugetlb_entry = NULL;
938 mm_walk.pmd_entry = hmm_vma_walk_pmd;
939 mm_walk.pte_hole = hmm_vma_walk_hole;
942 ret = walk_page_range(start, range->end, &mm_walk);
943 start = hmm_vma_walk.last;
944 } while (ret == -EAGAIN);
949 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
950 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
952 hmm_vma_range_done(range);
956 EXPORT_SYMBOL(hmm_vma_fault);
957 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
960 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
961 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
966 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
972 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
975 static void hmm_devmem_ref_release(struct percpu_ref *ref)
977 struct hmm_devmem *devmem;
979 devmem = container_of(ref, struct hmm_devmem, ref);
980 complete(&devmem->completion);
983 static void hmm_devmem_ref_exit(void *data)
985 struct percpu_ref *ref = data;
986 struct hmm_devmem *devmem;
988 devmem = container_of(ref, struct hmm_devmem, ref);
989 percpu_ref_exit(ref);
990 devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
993 static void hmm_devmem_ref_kill(void *data)
995 struct percpu_ref *ref = data;
996 struct hmm_devmem *devmem;
998 devmem = container_of(ref, struct hmm_devmem, ref);
999 percpu_ref_kill(ref);
1000 wait_for_completion(&devmem->completion);
1001 devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
1004 static int hmm_devmem_fault(struct vm_area_struct *vma,
1006 const struct page *page,
1010 struct hmm_devmem *devmem = page->pgmap->data;
1012 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1015 static void hmm_devmem_free(struct page *page, void *data)
1017 struct hmm_devmem *devmem = data;
1019 page->mapping = NULL;
1021 devmem->ops->free(devmem, page);
1024 static DEFINE_MUTEX(hmm_devmem_lock);
1025 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
1027 static void hmm_devmem_radix_release(struct resource *resource)
1029 resource_size_t key;
1031 mutex_lock(&hmm_devmem_lock);
1032 for (key = resource->start;
1033 key <= resource->end;
1034 key += PA_SECTION_SIZE)
1035 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
1036 mutex_unlock(&hmm_devmem_lock);
1039 static void hmm_devmem_release(struct device *dev, void *data)
1041 struct hmm_devmem *devmem = data;
1042 struct resource *resource = devmem->resource;
1043 unsigned long start_pfn, npages;
1047 if (percpu_ref_tryget_live(&devmem->ref)) {
1048 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1049 percpu_ref_put(&devmem->ref);
1052 /* pages are dead and unused, undo the arch mapping */
1053 start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1054 npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1056 page = pfn_to_page(start_pfn);
1057 zone = page_zone(page);
1059 mem_hotplug_begin();
1060 if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1061 __remove_pages(zone, start_pfn, npages, NULL);
1063 arch_remove_memory(start_pfn << PAGE_SHIFT,
1064 npages << PAGE_SHIFT, NULL);
1067 hmm_devmem_radix_release(resource);
1070 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1072 resource_size_t key, align_start, align_size, align_end;
1073 struct device *device = devmem->device;
1074 int ret, nid, is_ram;
1076 align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1077 align_size = ALIGN(devmem->resource->start +
1078 resource_size(devmem->resource),
1079 PA_SECTION_SIZE) - align_start;
1081 is_ram = region_intersects(align_start, align_size,
1082 IORESOURCE_SYSTEM_RAM,
1084 if (is_ram == REGION_MIXED) {
1085 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1086 __func__, devmem->resource);
1089 if (is_ram == REGION_INTERSECTS)
1092 if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1093 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1095 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1097 devmem->pagemap.res = *devmem->resource;
1098 devmem->pagemap.page_fault = hmm_devmem_fault;
1099 devmem->pagemap.page_free = hmm_devmem_free;
1100 devmem->pagemap.dev = devmem->device;
1101 devmem->pagemap.ref = &devmem->ref;
1102 devmem->pagemap.data = devmem;
1104 mutex_lock(&hmm_devmem_lock);
1105 align_end = align_start + align_size - 1;
1106 for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1107 struct hmm_devmem *dup;
1109 dup = radix_tree_lookup(&hmm_devmem_radix,
1110 key >> PA_SECTION_SHIFT);
1112 dev_err(device, "%s: collides with mapping for %s\n",
1113 __func__, dev_name(dup->device));
1114 mutex_unlock(&hmm_devmem_lock);
1118 ret = radix_tree_insert(&hmm_devmem_radix,
1119 key >> PA_SECTION_SHIFT,
1122 dev_err(device, "%s: failed: %d\n", __func__, ret);
1123 mutex_unlock(&hmm_devmem_lock);
1127 mutex_unlock(&hmm_devmem_lock);
1129 nid = dev_to_node(device);
1131 nid = numa_mem_id();
1133 mem_hotplug_begin();
1135 * For device private memory we call add_pages() as we only need to
1136 * allocate and initialize struct page for the device memory. More-
1137 * over the device memory is un-accessible thus we do not want to
1138 * create a linear mapping for the memory like arch_add_memory()
1141 * For device public memory, which is accesible by the CPU, we do
1142 * want the linear mapping and thus use arch_add_memory().
1144 if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1145 ret = arch_add_memory(nid, align_start, align_size, NULL,
1148 ret = add_pages(nid, align_start >> PAGE_SHIFT,
1149 align_size >> PAGE_SHIFT, NULL, false);
1152 goto error_add_memory;
1154 move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1155 align_start >> PAGE_SHIFT,
1156 align_size >> PAGE_SHIFT, NULL);
1160 * Initialization of the pages has been deferred until now in order
1161 * to allow us to do the work while not holding the hotplug lock.
1163 memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1164 align_start >> PAGE_SHIFT,
1165 align_size >> PAGE_SHIFT, &devmem->pagemap);
1170 untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1172 hmm_devmem_radix_release(devmem->resource);
1177 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1179 struct hmm_devmem *devmem = data;
1181 return devmem->resource == match_data;
1184 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1186 devres_release(devmem->device, &hmm_devmem_release,
1187 &hmm_devmem_match, devmem->resource);
1191 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1193 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1194 * @device: device struct to bind the resource too
1195 * @size: size in bytes of the device memory to add
1196 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1198 * This function first finds an empty range of physical address big enough to
1199 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1200 * in turn allocates struct pages. It does not do anything beyond that; all
1201 * events affecting the memory will go through the various callbacks provided
1202 * by hmm_devmem_ops struct.
1204 * Device driver should call this function during device initialization and
1205 * is then responsible of memory management. HMM only provides helpers.
1207 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1208 struct device *device,
1211 struct hmm_devmem *devmem;
1212 resource_size_t addr;
1215 dev_pagemap_get_ops();
1217 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1218 GFP_KERNEL, dev_to_node(device));
1220 return ERR_PTR(-ENOMEM);
1222 init_completion(&devmem->completion);
1223 devmem->pfn_first = -1UL;
1224 devmem->pfn_last = -1UL;
1225 devmem->resource = NULL;
1226 devmem->device = device;
1229 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1232 goto error_percpu_ref;
1234 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1236 goto error_devm_add_action;
1238 size = ALIGN(size, PA_SECTION_SIZE);
1239 addr = min((unsigned long)iomem_resource.end,
1240 (1UL << MAX_PHYSMEM_BITS) - 1);
1241 addr = addr - size + 1UL;
1244 * FIXME add a new helper to quickly walk resource tree and find free
1247 * FIXME what about ioport_resource resource ?
1249 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1250 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1251 if (ret != REGION_DISJOINT)
1254 devmem->resource = devm_request_mem_region(device, addr, size,
1256 if (!devmem->resource) {
1258 goto error_no_resource;
1262 if (!devmem->resource) {
1264 goto error_no_resource;
1267 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1268 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1269 devmem->pfn_last = devmem->pfn_first +
1270 (resource_size(devmem->resource) >> PAGE_SHIFT);
1272 ret = hmm_devmem_pages_create(devmem);
1276 devres_add(device, devmem);
1278 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1280 hmm_devmem_remove(devmem);
1281 return ERR_PTR(ret);
1287 devm_release_mem_region(device, devmem->resource->start,
1288 resource_size(devmem->resource));
1290 error_devm_add_action:
1291 hmm_devmem_ref_kill(&devmem->ref);
1292 hmm_devmem_ref_exit(&devmem->ref);
1294 devres_free(devmem);
1295 return ERR_PTR(ret);
1297 EXPORT_SYMBOL(hmm_devmem_add);
1299 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1300 struct device *device,
1301 struct resource *res)
1303 struct hmm_devmem *devmem;
1306 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1307 return ERR_PTR(-EINVAL);
1309 dev_pagemap_get_ops();
1311 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1312 GFP_KERNEL, dev_to_node(device));
1314 return ERR_PTR(-ENOMEM);
1316 init_completion(&devmem->completion);
1317 devmem->pfn_first = -1UL;
1318 devmem->pfn_last = -1UL;
1319 devmem->resource = res;
1320 devmem->device = device;
1323 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1326 goto error_percpu_ref;
1328 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1330 goto error_devm_add_action;
1333 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1334 devmem->pfn_last = devmem->pfn_first +
1335 (resource_size(devmem->resource) >> PAGE_SHIFT);
1337 ret = hmm_devmem_pages_create(devmem);
1339 goto error_devm_add_action;
1341 devres_add(device, devmem);
1343 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1345 hmm_devmem_remove(devmem);
1346 return ERR_PTR(ret);
1351 error_devm_add_action:
1352 hmm_devmem_ref_kill(&devmem->ref);
1353 hmm_devmem_ref_exit(&devmem->ref);
1355 devres_free(devmem);
1356 return ERR_PTR(ret);
1358 EXPORT_SYMBOL(hmm_devmem_add_resource);
1361 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1363 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1365 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1366 * of the device driver. It will free struct page and remove the resource that
1367 * reserved the physical address range for this device memory.
1369 void hmm_devmem_remove(struct hmm_devmem *devmem)
1371 resource_size_t start, size;
1372 struct device *device;
1378 device = devmem->device;
1379 start = devmem->resource->start;
1380 size = resource_size(devmem->resource);
1382 cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1383 hmm_devmem_ref_kill(&devmem->ref);
1384 hmm_devmem_ref_exit(&devmem->ref);
1385 hmm_devmem_pages_remove(devmem);
1388 devm_release_mem_region(device, start, size);
1390 EXPORT_SYMBOL(hmm_devmem_remove);
1393 * A device driver that wants to handle multiple devices memory through a
1394 * single fake device can use hmm_device to do so. This is purely a helper
1395 * and it is not needed to make use of any HMM functionality.
1397 #define HMM_DEVICE_MAX 256
1399 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1400 static DEFINE_SPINLOCK(hmm_device_lock);
1401 static struct class *hmm_device_class;
1402 static dev_t hmm_device_devt;
1404 static void hmm_device_release(struct device *device)
1406 struct hmm_device *hmm_device;
1408 hmm_device = container_of(device, struct hmm_device, device);
1409 spin_lock(&hmm_device_lock);
1410 clear_bit(hmm_device->minor, hmm_device_mask);
1411 spin_unlock(&hmm_device_lock);
1416 struct hmm_device *hmm_device_new(void *drvdata)
1418 struct hmm_device *hmm_device;
1420 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1422 return ERR_PTR(-ENOMEM);
1424 spin_lock(&hmm_device_lock);
1425 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1426 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1427 spin_unlock(&hmm_device_lock);
1429 return ERR_PTR(-EBUSY);
1431 set_bit(hmm_device->minor, hmm_device_mask);
1432 spin_unlock(&hmm_device_lock);
1434 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1435 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1437 hmm_device->device.release = hmm_device_release;
1438 dev_set_drvdata(&hmm_device->device, drvdata);
1439 hmm_device->device.class = hmm_device_class;
1440 device_initialize(&hmm_device->device);
1444 EXPORT_SYMBOL(hmm_device_new);
1446 void hmm_device_put(struct hmm_device *hmm_device)
1448 put_device(&hmm_device->device);
1450 EXPORT_SYMBOL(hmm_device_put);
1452 static int __init hmm_init(void)
1456 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1462 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1463 if (IS_ERR(hmm_device_class)) {
1464 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1465 return PTR_ERR(hmm_device_class);
1470 device_initcall(hmm_init);
1471 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */