2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
145 #include "net-sysfs.h"
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
170 * Writers must hold the rtnl semaphore while they loop through the
171 * dev_base_head list, and hold dev_base_lock for writing when they do the
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
192 static seqcount_t devnet_rename_seq;
194 static inline void dev_base_seq_inc(struct net *net)
196 while (++net->dev_base_seq == 0);
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 static inline void rps_lock(struct softnet_data *sd)
214 spin_lock(&sd->input_pkt_queue.lock);
218 static inline void rps_unlock(struct softnet_data *sd)
221 spin_unlock(&sd->input_pkt_queue.lock);
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
228 struct net *net = dev_net(dev);
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
239 dev_base_seq_inc(net);
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
245 static void unlist_netdevice(struct net_device *dev)
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
256 dev_base_seq_inc(dev_net(dev));
263 static RAW_NOTIFIER_HEAD(netdev_chain);
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
273 #ifdef CONFIG_LOCKDEP
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
278 static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
355 /*******************************************************************************
357 Protocol management and registration routines
359 *******************************************************************************/
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 if (pt->type == htons(ETH_P_ALL))
380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
399 void dev_add_pack(struct packet_type *pt)
401 struct list_head *head = ptype_head(pt);
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
407 EXPORT_SYMBOL(dev_add_pack);
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
422 void __dev_remove_pack(struct packet_type *pt)
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
427 spin_lock(&ptype_lock);
429 list_for_each_entry(pt1, head, list) {
431 list_del_rcu(&pt->list);
436 pr_warn("dev_remove_pack: %p not found\n", pt);
438 spin_unlock(&ptype_lock);
440 EXPORT_SYMBOL(__dev_remove_pack);
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
451 * This call sleeps to guarantee that no CPU is looking at the packet
454 void dev_remove_pack(struct packet_type *pt)
456 __dev_remove_pack(pt);
460 EXPORT_SYMBOL(dev_remove_pack);
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
475 void dev_add_offload(struct packet_offload *po)
477 struct packet_offload *elem;
479 spin_lock(&offload_lock);
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
484 list_add_rcu(&po->list, elem->list.prev);
485 spin_unlock(&offload_lock);
487 EXPORT_SYMBOL(dev_add_offload);
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
502 static void __dev_remove_offload(struct packet_offload *po)
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
507 spin_lock(&offload_lock);
509 list_for_each_entry(po1, head, list) {
511 list_del_rcu(&po->list);
516 pr_warn("dev_remove_offload: %p not found\n", po);
518 spin_unlock(&offload_lock);
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
530 * This call sleeps to guarantee that no CPU is looking at the packet
533 void dev_remove_offload(struct packet_offload *po)
535 __dev_remove_offload(po);
539 EXPORT_SYMBOL(dev_remove_offload);
541 /******************************************************************************
543 Device Boot-time Settings Routines
545 *******************************************************************************/
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 struct netdev_boot_setup *s;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
568 strlcpy(s[i].name, name, IFNAMSIZ);
569 memcpy(&s[i].map, map, sizeof(s[i].map));
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
586 int netdev_boot_setup_check(struct net_device *dev)
588 struct netdev_boot_setup *s = dev_boot_setup;
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 !strcmp(dev->name, s[i].name)) {
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
603 EXPORT_SYMBOL(netdev_boot_setup_check);
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
616 unsigned long netdev_boot_base(const char *prefix, int unit)
618 const struct netdev_boot_setup *s = dev_boot_setup;
622 sprintf(name, "%s%d", prefix, unit);
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
628 if (__dev_get_by_name(&init_net, name))
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
638 * Saves at boot time configured settings for any netdevice.
640 int __init netdev_boot_setup(char *str)
645 str = get_options(str, ARRAY_SIZE(ints), ints);
650 memset(&map, 0, sizeof(map));
654 map.base_addr = ints[2];
656 map.mem_start = ints[3];
658 map.mem_end = ints[4];
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
664 __setup("netdev=", netdev_boot_setup);
666 /*******************************************************************************
668 Device Interface Subroutines
670 *******************************************************************************/
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
680 int dev_get_iflink(const struct net_device *dev)
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
687 EXPORT_SYMBOL(dev_get_iflink);
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 struct ip_tunnel_info *info;
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
705 info = skb_tunnel_info_unclone(skb);
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
716 * __dev_get_by_name - find a device by its name
717 * @net: the applicable net namespace
718 * @name: name to find
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
732 hlist_for_each_entry(dev, head, name_hlist)
733 if (!strncmp(dev->name, name, IFNAMSIZ))
738 EXPORT_SYMBOL(__dev_get_by_name);
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
757 hlist_for_each_entry_rcu(dev, head, name_hlist)
758 if (!strncmp(dev->name, name, IFNAMSIZ))
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
766 * dev_get_by_name - find a device by its name
767 * @net: the applicable net namespace
768 * @name: name to find
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 struct net_device *dev;
782 dev = dev_get_by_name_rcu(net, name);
788 EXPORT_SYMBOL(dev_get_by_name);
791 * __dev_get_by_index - find a device by its ifindex
792 * @net: the applicable net namespace
793 * @ifindex: index of device
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
807 hlist_for_each_entry(dev, head, index_hlist)
808 if (dev->ifindex == ifindex)
813 EXPORT_SYMBOL(__dev_get_by_index);
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
831 hlist_for_each_entry_rcu(dev, head, index_hlist)
832 if (dev->ifindex == ifindex)
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
841 * dev_get_by_index - find a device by its ifindex
842 * @net: the applicable net namespace
843 * @ifindex: index of device
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 struct net_device *dev;
856 dev = dev_get_by_index_rcu(net, ifindex);
862 EXPORT_SYMBOL(dev_get_by_index);
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
874 int netdev_get_name(struct net *net, char *name, int ifindex)
876 struct net_device *dev;
880 seq = raw_seqcount_begin(&devnet_rename_seq);
882 dev = dev_get_by_index_rcu(net, ifindex);
888 strcpy(name, dev->name);
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
899 * dev_getbyhwaddr_rcu - find a device by its hardware address
900 * @net: the applicable net namespace
901 * @type: media type of device
902 * @ha: hardware address
904 * Search for an interface by MAC address. Returns NULL if the device
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
907 * The returned device has not had its ref count increased
908 * and the caller must therefore be careful about locking
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
915 struct net_device *dev;
917 for_each_netdev_rcu(net, dev)
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 struct net_device *dev;
931 for_each_netdev(net, dev)
932 if (dev->type == type)
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 struct net_device *dev, *ret = NULL;
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
956 * __dev_get_by_flags - find any device with given flags
957 * @net: the applicable net namespace
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
961 * Search for any interface with the given flags. Returns NULL if a device
962 * is not found or a pointer to the device. Must be called inside
963 * rtnl_lock(), and result refcount is unchanged.
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
969 struct net_device *dev, *ret;
974 for_each_netdev(net, dev) {
975 if (((dev->flags ^ if_flags) & mask) == 0) {
982 EXPORT_SYMBOL(__dev_get_by_flags);
985 * dev_valid_name - check if name is okay for network device
988 * Network device names need to be valid file names to
989 * to allow sysfs to work. We also disallow any kind of
992 bool dev_valid_name(const char *name)
996 if (strlen(name) >= IFNAMSIZ)
998 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 if (*name == '/' || *name == ':' || isspace(*name))
1008 EXPORT_SYMBOL(dev_valid_name);
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1013 * @name: name format string
1014 * @buf: scratch buffer and result name string
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 const int max_netdevices = 8*PAGE_SIZE;
1030 unsigned long *inuse;
1031 struct net_device *d;
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1043 /* Use one page as a bit array of possible slots */
1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048 for_each_netdev(net, d) {
1049 if (!sscanf(d->name, name, &i))
1051 if (i < 0 || i >= max_netdevices)
1054 /* avoid cases where sscanf is not exact inverse of printf */
1055 snprintf(buf, IFNAMSIZ, name, i);
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1065 snprintf(buf, IFNAMSIZ, name, i);
1066 if (!__dev_get_by_name(net, buf))
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1077 * dev_alloc_name - allocate a name for a device
1079 * @name: name format string
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1096 BUG_ON(!dev_net(dev));
1098 ret = __dev_alloc_name(net, name, buf);
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1103 EXPORT_SYMBOL(dev_alloc_name);
1105 static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1112 ret = __dev_alloc_name(net, name, buf);
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1118 static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1124 if (!dev_valid_name(name))
1127 if (strchr(name, '%'))
1128 return dev_alloc_name_ns(net, dev, name);
1129 else if (__dev_get_by_name(net, name))
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
1138 * dev_change_name - change name of a device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1142 * Change name of a device, can pass format strings "eth%d".
1145 int dev_change_name(struct net_device *dev, const char *newname)
1147 unsigned char old_assign_type;
1148 char oldname[IFNAMSIZ];
1154 BUG_ON(!dev_net(dev));
1157 if (dev->flags & IFF_UP)
1160 write_seqcount_begin(&devnet_rename_seq);
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 write_seqcount_end(&devnet_rename_seq);
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1169 err = dev_get_valid_name(net, dev, newname);
1171 write_seqcount_end(&devnet_rename_seq);
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1182 ret = device_rename(&dev->dev, dev->name);
1184 memcpy(dev->name, oldname, IFNAMSIZ);
1185 dev->name_assign_type = old_assign_type;
1186 write_seqcount_end(&devnet_rename_seq);
1190 write_seqcount_end(&devnet_rename_seq);
1192 netdev_adjacent_rename_links(dev, oldname);
1194 write_lock_bh(&dev_base_lock);
1195 hlist_del_rcu(&dev->name_hlist);
1196 write_unlock_bh(&dev_base_lock);
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 write_unlock_bh(&dev_base_lock);
1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 ret = notifier_to_errno(ret);
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1211 write_seqcount_begin(&devnet_rename_seq);
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 memcpy(oldname, newname, IFNAMSIZ);
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
1218 pr_err("%s: name change rollback failed: %d\n",
1227 * dev_set_alias - change ifalias of a device
1229 * @alias: name up to IFALIASZ
1230 * @len: limit of bytes to copy from info
1232 * Set ifalias for a device,
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1240 if (len >= IFALIASZ)
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1252 dev->ifalias = new_ifalias;
1254 strlcpy(dev->ifalias, alias, len+1);
1260 * netdev_features_change - device changes features
1261 * @dev: device to cause notification
1263 * Called to indicate a device has changed features.
1265 void netdev_features_change(struct net_device *dev)
1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 EXPORT_SYMBOL(netdev_features_change);
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1279 void netdev_state_change(struct net_device *dev)
1281 if (dev->flags & IFF_UP) {
1282 struct netdev_notifier_change_info change_info;
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1290 EXPORT_SYMBOL(netdev_state_change);
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1302 void netdev_notify_peers(struct net_device *dev)
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1308 EXPORT_SYMBOL(netdev_notify_peers);
1310 static int __dev_open(struct net_device *dev)
1312 const struct net_device_ops *ops = dev->netdev_ops;
1317 if (!netif_device_present(dev))
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1324 netpoll_poll_disable(dev);
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1331 set_bit(__LINK_STATE_START, &dev->state);
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1339 netpoll_poll_enable(dev);
1342 clear_bit(__LINK_STATE_START, &dev->state);
1344 dev->flags |= IFF_UP;
1345 dev_set_rx_mode(dev);
1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1365 int dev_open(struct net_device *dev)
1369 if (dev->flags & IFF_UP)
1372 ret = __dev_open(dev);
1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1381 EXPORT_SYMBOL(dev_open);
1383 static int __dev_close_many(struct list_head *head)
1385 struct net_device *dev;
1390 list_for_each_entry(dev, head, close_list) {
1391 /* Temporarily disable netpoll until the interface is down */
1392 netpoll_poll_disable(dev);
1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1396 clear_bit(__LINK_STATE_START, &dev->state);
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1404 smp_mb__after_atomic(); /* Commit netif_running(). */
1407 dev_deactivate_many(head);
1409 list_for_each_entry(dev, head, close_list) {
1410 const struct net_device_ops *ops = dev->netdev_ops;
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1416 * We allow it to be called even after a DETACH hot-plug
1422 dev->flags &= ~IFF_UP;
1423 netpoll_poll_enable(dev);
1429 static int __dev_close(struct net_device *dev)
1434 list_add(&dev->close_list, &single);
1435 retval = __dev_close_many(&single);
1441 int dev_close_many(struct list_head *head, bool unlink)
1443 struct net_device *dev, *tmp;
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
1447 if (!(dev->flags & IFF_UP))
1448 list_del_init(&dev->close_list);
1450 __dev_close_many(head);
1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
1456 list_del_init(&dev->close_list);
1461 EXPORT_SYMBOL(dev_close_many);
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1472 int dev_close(struct net_device *dev)
1474 if (dev->flags & IFF_UP) {
1477 list_add(&dev->close_list, &single);
1478 dev_close_many(&single, true);
1483 EXPORT_SYMBOL(dev_close);
1487 * dev_disable_lro - disable Large Receive Offload on a device
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1494 void dev_disable_lro(struct net_device *dev)
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
1508 EXPORT_SYMBOL(dev_disable_lro);
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1513 struct netdev_notifier_info info;
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1519 static int dev_boot_phase = 1;
1522 * register_netdevice_notifier - register a network notifier block
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1530 * When registered all registration and up events are replayed
1531 * to the new notifier to allow device to have a race free
1532 * view of the network device list.
1535 int register_netdevice_notifier(struct notifier_block *nb)
1537 struct net_device *dev;
1538 struct net_device *last;
1543 err = raw_notifier_chain_register(&netdev_chain, nb);
1549 for_each_netdev(net, dev) {
1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 err = notifier_to_errno(err);
1555 if (!(dev->flags & IFF_UP))
1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
1569 for_each_netdev(net, dev) {
1573 if (dev->flags & IFF_UP) {
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1583 raw_notifier_chain_unregister(&netdev_chain, nb);
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1589 * unregister_netdevice_notifier - unregister a network notifier block
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1604 struct net_device *dev;
1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
1651 * @dev: net_device pointer passed unmodified to notifier function
1653 * Call all network notifier blocks. Parameters and return value
1654 * are as for raw_notifier_call_chain().
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1659 struct netdev_notifier_info info;
1661 return call_netdevice_notifiers_info(val, dev, &info);
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1668 void net_inc_ingress_queue(void)
1670 static_key_slow_inc(&ingress_needed);
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1674 void net_dec_ingress_queue(void)
1676 static_key_slow_dec(&ingress_needed);
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1684 void net_inc_egress_queue(void)
1686 static_key_slow_inc(&egress_needed);
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1690 void net_dec_egress_queue(void)
1692 static_key_slow_dec(&egress_needed);
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700 * If net_disable_timestamp() is called from irq context, defer the
1701 * static_key_slow_dec() calls.
1703 static atomic_t netstamp_needed_deferred;
1706 void net_enable_timestamp(void)
1708 #ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1713 static_key_slow_dec(&netstamp_needed);
1717 static_key_slow_inc(&netstamp_needed);
1719 EXPORT_SYMBOL(net_enable_timestamp);
1721 void net_disable_timestamp(void)
1723 #ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1729 static_key_slow_dec(&netstamp_needed);
1731 EXPORT_SYMBOL(net_disable_timestamp);
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1735 skb->tstamp.tv64 = 0;
1736 if (static_key_false(&netstamp_needed))
1737 __net_timestamp(skb);
1740 #define net_timestamp_check(COND, SKB) \
1741 if (static_key_false(&netstamp_needed)) { \
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1750 if (!(dev->flags & IFF_UP))
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1760 if (skb_is_gso(skb))
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
1771 atomic_long_inc(&dev->rx_dropped);
1776 skb_scrub_packet(skb, true);
1778 skb->protocol = eth_type_trans(skb, dev);
1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1786 * dev_forward_skb - loopback an skb to another netif
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1792 * NET_RX_SUCCESS (no congestion)
1793 * NET_RX_DROP (packet was dropped, but freed)
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
1821 struct net_device *orig_dev,
1823 struct list_head *ptype_list)
1825 struct packet_type *ptype, *pt_prev = *pt;
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1831 deliver_skb(skb, pt_prev, orig_dev);
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1839 if (!ptype->af_packet_priv || !skb->sk)
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1857 struct packet_type *ptype;
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
1860 struct list_head *ptype_list = &ptype_all;
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 /* Never send packets back to the socket
1868 if (skb_loop_sk(ptype, skb))
1872 deliver_skb(skb2, pt_prev, skb->dev);
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1882 net_timestamp_set(skb2);
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1888 skb_reset_mac_header(skb2);
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1895 skb_reset_network_header(skb2);
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916 * @dev: Network device
1917 * @txq: number of queues available
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1947 netdev_set_prio_tc_map(dev, i, 0);
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1960 struct xps_map *map = NULL;
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
1969 map->queues[pos] = map->queues[--map->len];
1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 kfree_rcu(map, rcu);
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1984 struct xps_dev_maps *dev_maps;
1986 bool active = false;
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1994 for_each_possible_cpu(cpu) {
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1999 if (i == dev->num_tx_queues)
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2013 mutex_unlock(&xps_map_mutex);
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2029 /* Need to add queue to this CPU's existing map */
2031 if (pos < map->alloc_len)
2034 alloc_len = map->alloc_len * 2;
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 struct xps_map *map, *new_map;
2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
2060 mutex_lock(&xps_map_mutex);
2062 dev_maps = xmap_dereference(dev->xps_maps);
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2079 map = expand_xps_map(map, cpu, index);
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2087 goto out_no_new_maps;
2089 for_each_possible_cpu(cpu) {
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2116 /* Cleanup old maps */
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2125 kfree_rcu(dev_maps, rcu);
2128 dev_maps = new_dev_maps;
2132 /* update Tx queue numa node */
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2145 if (remove_xps_queue(dev_maps, cpu, index))
2149 /* free map if not active */
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2156 mutex_unlock(&xps_map_mutex);
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2165 if (new_map && new_map != map)
2169 mutex_unlock(&xps_map_mutex);
2171 kfree(new_dev_maps);
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2185 if (txq < 1 || txq > dev->num_tx_queues)
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2198 netif_setup_tc(dev, txq);
2200 if (txq < dev->real_num_tx_queues) {
2201 qdisc_reset_all_tx_gt(dev, txq);
2203 netif_reset_xps_queues_gt(dev, txq);
2208 dev->real_num_tx_queues = txq;
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
2221 * negative error code. If called before registration, it always
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2231 if (dev->reg_state == NETREG_REGISTERED) {
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2240 dev->real_num_rx_queues = rxq;
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2247 * netif_get_num_default_rss_queues - default number of RSS queues
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2252 int netif_get_num_default_rss_queues(void)
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2259 static void __netif_reschedule(struct Qdisc *q)
2261 struct softnet_data *sd;
2262 unsigned long flags;
2264 local_irq_save(flags);
2265 sd = this_cpu_ptr(&softnet_data);
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2273 void __netif_schedule(struct Qdisc *q)
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
2278 EXPORT_SYMBOL(__netif_schedule);
2280 struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2289 void netif_schedule_queue(struct netdev_queue *txq)
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2295 __netif_schedule(q);
2299 EXPORT_SYMBOL(netif_schedule_queue);
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2338 unsigned long flags;
2340 if (likely(atomic_read(&skb->users) == 1)) {
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2357 if (in_irq() || irqs_disabled())
2358 __dev_kfree_skb_irq(skb, reason);
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2369 * Mark device as removed from system and therefore no longer available.
2371 void netif_device_detach(struct net_device *dev)
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
2375 netif_tx_stop_all_queues(dev);
2378 EXPORT_SYMBOL(netif_device_detach);
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2384 * Mark device as attached from system and restart if needed.
2386 void netif_device_attach(struct net_device *dev)
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
2390 netif_tx_wake_all_queues(dev);
2391 __netdev_watchdog_up(dev);
2394 EXPORT_SYMBOL(netif_device_attach);
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2405 u16 qcount = num_tx_queues;
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2422 EXPORT_SYMBOL(__skb_tx_hash);
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2426 static const netdev_features_t null_features;
2427 struct net_device *dev = skb->dev;
2428 const char *name = "";
2430 if (!net_ratelimit())
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2437 name = netdev_name(dev);
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
2441 name, dev ? &dev->features : &null_features,
2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2451 int skb_checksum_help(struct sk_buff *skb)
2454 int ret = 0, offset;
2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 goto out_set_summed;
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 skb_warn_bad_offload(skb);
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2473 offset = skb_checksum_start_offset(skb);
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2489 skb->ip_summed = CHECKSUM_NONE;
2493 EXPORT_SYMBOL(skb_checksum_help);
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2522 struct ipv6hdr *ipv6;
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2558 nhdr = skb_inner_network_header(skb);
2565 if (!spec->ipv4_okay)
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2573 if (!spec->ipv6_okay)
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2613 goto ip_proto_again;
2619 /* Passed the tests for offloading checksum */
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2632 __be16 type = skb->protocol;
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2645 return __vlan_get_protocol(skb, type, depth);
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2664 __skb_pull(skb, vlan_depth);
2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 segs = ptype->callbacks.gso_segment(skb, features);
2675 __skb_push(skb, skb->data - skb_mac_header(skb));
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2682 /* openvswitch calls this on rx path, so we need a different check.
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2689 return skb->ip_summed == CHECKSUM_NONE;
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2698 * This function segments the given skb and returns a list of segments.
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2711 skb_warn_bad_offload(skb);
2713 err = skb_cow_head(skb, 0);
2715 return ERR_PTR(err);
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 SKB_GSO_CB(skb)->encap_level = 0;
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2740 return skb_mac_gso_segment(skb, features);
2742 EXPORT_SYMBOL(__skb_gso_segment);
2744 /* Take action when hardware reception checksum errors are detected. */
2746 void netdev_rx_csum_fault(struct net_device *dev)
2748 if (net_ratelimit()) {
2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2763 #ifdef CONFIG_HIGHMEM
2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2797 if (eth_p_mpls(type))
2798 features &= skb->dev->mpls_features;
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 netdev_features_t features)
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
2820 if (skb->ip_summed != CHECKSUM_NONE &&
2821 !can_checksum_protocol(features, type)) {
2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 } else if (illegal_highdma(skb->dev, skb)) {
2824 features &= ~NETIF_F_SG;
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2836 EXPORT_SYMBOL(passthru_features_check);
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2842 return vlan_features_check(skb, features);
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2879 struct net_device *dev = skb->dev;
2880 netdev_features_t features = dev->features;
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2902 features &= dflt_features_check(skb, dev, features);
2904 return harmonize_features(skb, features);
2906 EXPORT_SYMBOL(netif_skb_features);
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 struct netdev_queue *txq, bool more)
2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 dev_queue_xmit_nit(skb, dev);
2918 trace_net_dev_start_xmit(skb, dev);
2919 rc = netdev_start_xmit(skb, dev, txq, more);
2920 trace_net_dev_xmit(skb, rc, dev, len);
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
2932 struct sk_buff *next = skb->next;
2935 rc = xmit_one(skb, dev, txq, next != NULL);
2936 if (unlikely(!dev_xmit_complete(rc))) {
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
2956 if (skb_vlan_tag_present(skb) &&
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2964 netdev_features_t features;
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2971 if (netif_needs_gso(skb, features)) {
2972 struct sk_buff *segs;
2974 segs = skb_gso_segment(skb, features);
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
2997 if (!(features & NETIF_F_CSUM_MASK) &&
2998 skb_checksum_help(skb))
3008 atomic_long_inc(&dev->tx_dropped);
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3014 struct sk_buff *next, *head = NULL, *tail;
3016 for (; skb != NULL; skb = next) {
3020 /* in case skb wont be segmented, point to itself */
3023 skb = validate_xmit_skb(skb, dev);
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3048 if (shinfo->gso_size) {
3049 unsigned int hdr_len;
3050 u16 gso_segs = shinfo->gso_segs;
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3055 /* + transport layer */
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3059 hdr_len += sizeof(struct udphdr);
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3073 spinlock_t *root_lock = qdisc_lock(q);
3074 struct sk_buff *to_free = NULL;
3078 qdisc_calculate_pkt_len(skb, q);
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
3082 * This permits qdisc->running owner to get the lock more
3083 * often and dequeue packets faster.
3085 contended = qdisc_is_running(q);
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091 __qdisc_drop(skb, &to_free);
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094 qdisc_run_begin(q)) {
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3101 qdisc_bstats_update(q, skb);
3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3112 rc = NET_XMIT_SUCCESS;
3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3123 spin_unlock(root_lock);
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3136 if (!skb->priority && skb->sk && map) {
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3145 #define skb_update_prio(skb)
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3152 * dev_loopback_xmit - loop back @skb
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
3155 * @skb: buffer to transmit
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3183 qdisc_bstats_cpu_update(cl->q, skb);
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
3197 *ret = NET_XMIT_SUCCESS;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3211 #endif /* CONFIG_NET_EGRESS */
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3221 dev_maps = rcu_dereference(dev->xps_maps);
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3227 queue_index = map->queues[0];
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3252 new_index = skb_tx_hash(dev, skb);
3254 if (queue_index != new_index && sk &&
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3259 queue_index = new_index;
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3269 int queue_index = 0;
3272 u32 sender_cpu = skb->sender_cpu - 1;
3274 if (sender_cpu >= (u32)NR_CPUS)
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3284 queue_index = __netdev_pick_tx(dev, skb);
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3295 * __dev_queue_xmit - transmit a buffer
3296 * @skb: buffer to transmit
3297 * @accel_priv: private data used for L2 forwarding offload
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3322 struct net_device *dev = skb->dev;
3323 struct netdev_queue *txq;
3327 skb_reset_mac_header(skb);
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
3337 skb_update_prio(skb);
3339 qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3358 #ifdef CONFIG_NET_SWITCHDEV
3359 /* Don't forward if offload device already forwarded */
3360 if (skb->offload_fwd_mark &&
3361 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3363 rc = NET_XMIT_SUCCESS;
3368 txq = netdev_pick_tx(dev, skb, accel_priv);
3369 q = rcu_dereference_bh(txq->qdisc);
3371 trace_net_dev_queue(skb);
3373 rc = __dev_xmit_skb(skb, q, dev, txq);
3377 /* The device has no queue. Common case for software devices:
3378 loopback, all the sorts of tunnels...
3380 Really, it is unlikely that netif_tx_lock protection is necessary
3381 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3383 However, it is possible, that they rely on protection
3386 Check this and shot the lock. It is not prone from deadlocks.
3387 Either shot noqueue qdisc, it is even simpler 8)
3389 if (dev->flags & IFF_UP) {
3390 int cpu = smp_processor_id(); /* ok because BHs are off */
3392 if (txq->xmit_lock_owner != cpu) {
3393 if (unlikely(__this_cpu_read(xmit_recursion) >
3394 XMIT_RECURSION_LIMIT))
3395 goto recursion_alert;
3397 skb = validate_xmit_skb(skb, dev);
3401 HARD_TX_LOCK(dev, txq, cpu);
3403 if (!netif_xmit_stopped(txq)) {
3404 __this_cpu_inc(xmit_recursion);
3405 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3406 __this_cpu_dec(xmit_recursion);
3407 if (dev_xmit_complete(rc)) {
3408 HARD_TX_UNLOCK(dev, txq);
3412 HARD_TX_UNLOCK(dev, txq);
3413 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3416 /* Recursion is detected! It is possible,
3420 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3426 rcu_read_unlock_bh();
3428 atomic_long_inc(&dev->tx_dropped);
3429 kfree_skb_list(skb);
3432 rcu_read_unlock_bh();
3436 int dev_queue_xmit(struct sk_buff *skb)
3438 return __dev_queue_xmit(skb, NULL);
3440 EXPORT_SYMBOL(dev_queue_xmit);
3442 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3444 return __dev_queue_xmit(skb, accel_priv);
3446 EXPORT_SYMBOL(dev_queue_xmit_accel);
3449 /*=======================================================================
3451 =======================================================================*/
3453 int netdev_max_backlog __read_mostly = 1000;
3454 EXPORT_SYMBOL(netdev_max_backlog);
3456 int netdev_tstamp_prequeue __read_mostly = 1;
3457 int netdev_budget __read_mostly = 300;
3458 int weight_p __read_mostly = 64; /* old backlog weight */
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462 struct napi_struct *napi)
3464 list_add_tail(&napi->poll_list, &sd->poll_list);
3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3479 static struct rps_dev_flow *
3480 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3481 struct rps_dev_flow *rflow, u16 next_cpu)
3483 if (next_cpu < nr_cpu_ids) {
3484 #ifdef CONFIG_RFS_ACCEL
3485 struct netdev_rx_queue *rxqueue;
3486 struct rps_dev_flow_table *flow_table;
3487 struct rps_dev_flow *old_rflow;
3492 /* Should we steer this flow to a different hardware queue? */
3493 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3494 !(dev->features & NETIF_F_NTUPLE))
3496 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3497 if (rxq_index == skb_get_rx_queue(skb))
3500 rxqueue = dev->_rx + rxq_index;
3501 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3504 flow_id = skb_get_hash(skb) & flow_table->mask;
3505 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3506 rxq_index, flow_id);
3510 rflow = &flow_table->flows[flow_id];
3512 if (old_rflow->filter == rflow->filter)
3513 old_rflow->filter = RPS_NO_FILTER;
3517 per_cpu(softnet_data, next_cpu).input_queue_head;
3520 rflow->cpu = next_cpu;
3525 * get_rps_cpu is called from netif_receive_skb and returns the target
3526 * CPU from the RPS map of the receiving queue for a given skb.
3527 * rcu_read_lock must be held on entry.
3529 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3530 struct rps_dev_flow **rflowp)
3532 const struct rps_sock_flow_table *sock_flow_table;
3533 struct netdev_rx_queue *rxqueue = dev->_rx;
3534 struct rps_dev_flow_table *flow_table;
3535 struct rps_map *map;
3540 if (skb_rx_queue_recorded(skb)) {
3541 u16 index = skb_get_rx_queue(skb);
3543 if (unlikely(index >= dev->real_num_rx_queues)) {
3544 WARN_ONCE(dev->real_num_rx_queues > 1,
3545 "%s received packet on queue %u, but number "
3546 "of RX queues is %u\n",
3547 dev->name, index, dev->real_num_rx_queues);
3553 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3555 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3556 map = rcu_dereference(rxqueue->rps_map);
3557 if (!flow_table && !map)
3560 skb_reset_network_header(skb);
3561 hash = skb_get_hash(skb);
3565 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3566 if (flow_table && sock_flow_table) {
3567 struct rps_dev_flow *rflow;
3571 /* First check into global flow table if there is a match */
3572 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3573 if ((ident ^ hash) & ~rps_cpu_mask)
3576 next_cpu = ident & rps_cpu_mask;
3578 /* OK, now we know there is a match,
3579 * we can look at the local (per receive queue) flow table
3581 rflow = &flow_table->flows[hash & flow_table->mask];
3585 * If the desired CPU (where last recvmsg was done) is
3586 * different from current CPU (one in the rx-queue flow
3587 * table entry), switch if one of the following holds:
3588 * - Current CPU is unset (>= nr_cpu_ids).
3589 * - Current CPU is offline.
3590 * - The current CPU's queue tail has advanced beyond the
3591 * last packet that was enqueued using this table entry.
3592 * This guarantees that all previous packets for the flow
3593 * have been dequeued, thus preserving in order delivery.
3595 if (unlikely(tcpu != next_cpu) &&
3596 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3597 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3598 rflow->last_qtail)) >= 0)) {
3600 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3603 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3613 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3614 if (cpu_online(tcpu)) {
3624 #ifdef CONFIG_RFS_ACCEL
3627 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3628 * @dev: Device on which the filter was set
3629 * @rxq_index: RX queue index
3630 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3631 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3633 * Drivers that implement ndo_rx_flow_steer() should periodically call
3634 * this function for each installed filter and remove the filters for
3635 * which it returns %true.
3637 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3638 u32 flow_id, u16 filter_id)
3640 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3641 struct rps_dev_flow_table *flow_table;
3642 struct rps_dev_flow *rflow;
3647 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3648 if (flow_table && flow_id <= flow_table->mask) {
3649 rflow = &flow_table->flows[flow_id];
3650 cpu = ACCESS_ONCE(rflow->cpu);
3651 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3652 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3653 rflow->last_qtail) <
3654 (int)(10 * flow_table->mask)))
3660 EXPORT_SYMBOL(rps_may_expire_flow);
3662 #endif /* CONFIG_RFS_ACCEL */
3664 /* Called from hardirq (IPI) context */
3665 static void rps_trigger_softirq(void *data)
3667 struct softnet_data *sd = data;
3669 ____napi_schedule(sd, &sd->backlog);
3673 #endif /* CONFIG_RPS */
3676 * Check if this softnet_data structure is another cpu one
3677 * If yes, queue it to our IPI list and return 1
3680 static int rps_ipi_queued(struct softnet_data *sd)
3683 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3686 sd->rps_ipi_next = mysd->rps_ipi_list;
3687 mysd->rps_ipi_list = sd;
3689 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3692 #endif /* CONFIG_RPS */
3696 #ifdef CONFIG_NET_FLOW_LIMIT
3697 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3700 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3702 #ifdef CONFIG_NET_FLOW_LIMIT
3703 struct sd_flow_limit *fl;
3704 struct softnet_data *sd;
3705 unsigned int old_flow, new_flow;
3707 if (qlen < (netdev_max_backlog >> 1))
3710 sd = this_cpu_ptr(&softnet_data);
3713 fl = rcu_dereference(sd->flow_limit);
3715 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3716 old_flow = fl->history[fl->history_head];
3717 fl->history[fl->history_head] = new_flow;
3720 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3722 if (likely(fl->buckets[old_flow]))
3723 fl->buckets[old_flow]--;
3725 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3737 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3738 * queue (may be a remote CPU queue).
3740 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3741 unsigned int *qtail)
3743 struct softnet_data *sd;
3744 unsigned long flags;
3747 sd = &per_cpu(softnet_data, cpu);
3749 local_irq_save(flags);
3752 if (!netif_running(skb->dev))
3754 qlen = skb_queue_len(&sd->input_pkt_queue);
3755 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3758 __skb_queue_tail(&sd->input_pkt_queue, skb);
3759 input_queue_tail_incr_save(sd, qtail);
3761 local_irq_restore(flags);
3762 return NET_RX_SUCCESS;
3765 /* Schedule NAPI for backlog device
3766 * We can use non atomic operation since we own the queue lock
3768 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3769 if (!rps_ipi_queued(sd))
3770 ____napi_schedule(sd, &sd->backlog);
3779 local_irq_restore(flags);
3781 atomic_long_inc(&skb->dev->rx_dropped);
3786 static int netif_rx_internal(struct sk_buff *skb)
3790 net_timestamp_check(netdev_tstamp_prequeue, skb);
3792 trace_netif_rx(skb);
3794 if (static_key_false(&rps_needed)) {
3795 struct rps_dev_flow voidflow, *rflow = &voidflow;
3801 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3803 cpu = smp_processor_id();
3805 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3813 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3820 * netif_rx - post buffer to the network code
3821 * @skb: buffer to post
3823 * This function receives a packet from a device driver and queues it for
3824 * the upper (protocol) levels to process. It always succeeds. The buffer
3825 * may be dropped during processing for congestion control or by the
3829 * NET_RX_SUCCESS (no congestion)
3830 * NET_RX_DROP (packet was dropped)
3834 int netif_rx(struct sk_buff *skb)
3836 trace_netif_rx_entry(skb);
3838 return netif_rx_internal(skb);
3840 EXPORT_SYMBOL(netif_rx);
3842 int netif_rx_ni(struct sk_buff *skb)
3846 trace_netif_rx_ni_entry(skb);
3849 err = netif_rx_internal(skb);
3850 if (local_softirq_pending())
3856 EXPORT_SYMBOL(netif_rx_ni);
3858 static void net_tx_action(struct softirq_action *h)
3860 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3862 if (sd->completion_queue) {
3863 struct sk_buff *clist;
3865 local_irq_disable();
3866 clist = sd->completion_queue;
3867 sd->completion_queue = NULL;
3871 struct sk_buff *skb = clist;
3872 clist = clist->next;
3874 WARN_ON(atomic_read(&skb->users));
3875 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3876 trace_consume_skb(skb);
3878 trace_kfree_skb(skb, net_tx_action);
3880 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3883 __kfree_skb_defer(skb);
3886 __kfree_skb_flush();
3889 if (sd->output_queue) {
3892 local_irq_disable();
3893 head = sd->output_queue;
3894 sd->output_queue = NULL;
3895 sd->output_queue_tailp = &sd->output_queue;
3899 struct Qdisc *q = head;
3900 spinlock_t *root_lock;
3902 head = head->next_sched;
3904 root_lock = qdisc_lock(q);
3905 spin_lock(root_lock);
3906 /* We need to make sure head->next_sched is read
3907 * before clearing __QDISC_STATE_SCHED
3909 smp_mb__before_atomic();
3910 clear_bit(__QDISC_STATE_SCHED, &q->state);
3912 spin_unlock(root_lock);
3917 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3918 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3919 /* This hook is defined here for ATM LANE */
3920 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3921 unsigned char *addr) __read_mostly;
3922 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3925 static inline struct sk_buff *
3926 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3927 struct net_device *orig_dev)
3929 #ifdef CONFIG_NET_CLS_ACT
3930 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3931 struct tcf_result cl_res;
3933 /* If there's at least one ingress present somewhere (so
3934 * we get here via enabled static key), remaining devices
3935 * that are not configured with an ingress qdisc will bail
3941 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3945 qdisc_skb_cb(skb)->pkt_len = skb->len;
3946 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3947 qdisc_bstats_cpu_update(cl->q, skb);
3949 switch (tc_classify(skb, cl, &cl_res, false)) {
3951 case TC_ACT_RECLASSIFY:
3952 skb->tc_index = TC_H_MIN(cl_res.classid);
3955 qdisc_qstats_cpu_drop(cl->q);
3962 case TC_ACT_REDIRECT:
3963 /* skb_mac_header check was done by cls/act_bpf, so
3964 * we can safely push the L2 header back before
3965 * redirecting to another netdev
3967 __skb_push(skb, skb->mac_len);
3968 skb_do_redirect(skb);
3973 #endif /* CONFIG_NET_CLS_ACT */
3978 * netdev_rx_handler_register - register receive handler
3979 * @dev: device to register a handler for
3980 * @rx_handler: receive handler to register
3981 * @rx_handler_data: data pointer that is used by rx handler
3983 * Register a receive handler for a device. This handler will then be
3984 * called from __netif_receive_skb. A negative errno code is returned
3987 * The caller must hold the rtnl_mutex.
3989 * For a general description of rx_handler, see enum rx_handler_result.
3991 int netdev_rx_handler_register(struct net_device *dev,
3992 rx_handler_func_t *rx_handler,
3993 void *rx_handler_data)
3997 if (dev->rx_handler)
4000 /* Note: rx_handler_data must be set before rx_handler */
4001 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4002 rcu_assign_pointer(dev->rx_handler, rx_handler);
4006 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4009 * netdev_rx_handler_unregister - unregister receive handler
4010 * @dev: device to unregister a handler from
4012 * Unregister a receive handler from a device.
4014 * The caller must hold the rtnl_mutex.
4016 void netdev_rx_handler_unregister(struct net_device *dev)
4020 RCU_INIT_POINTER(dev->rx_handler, NULL);
4021 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4022 * section has a guarantee to see a non NULL rx_handler_data
4026 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4028 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4031 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4032 * the special handling of PFMEMALLOC skbs.
4034 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4036 switch (skb->protocol) {
4037 case htons(ETH_P_ARP):
4038 case htons(ETH_P_IP):
4039 case htons(ETH_P_IPV6):
4040 case htons(ETH_P_8021Q):
4041 case htons(ETH_P_8021AD):
4048 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4049 int *ret, struct net_device *orig_dev)
4051 #ifdef CONFIG_NETFILTER_INGRESS
4052 if (nf_hook_ingress_active(skb)) {
4054 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4058 return nf_hook_ingress(skb);
4060 #endif /* CONFIG_NETFILTER_INGRESS */
4064 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4066 struct packet_type *ptype, *pt_prev;
4067 rx_handler_func_t *rx_handler;
4068 struct net_device *orig_dev;
4069 bool deliver_exact = false;
4070 int ret = NET_RX_DROP;
4073 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4075 trace_netif_receive_skb(skb);
4077 orig_dev = skb->dev;
4079 skb_reset_network_header(skb);
4080 if (!skb_transport_header_was_set(skb))
4081 skb_reset_transport_header(skb);
4082 skb_reset_mac_len(skb);
4087 skb->skb_iif = skb->dev->ifindex;
4089 __this_cpu_inc(softnet_data.processed);
4091 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4092 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4093 skb = skb_vlan_untag(skb);
4098 #ifdef CONFIG_NET_CLS_ACT
4099 if (skb->tc_verd & TC_NCLS) {
4100 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4108 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4110 ret = deliver_skb(skb, pt_prev, orig_dev);
4114 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4116 ret = deliver_skb(skb, pt_prev, orig_dev);
4121 #ifdef CONFIG_NET_INGRESS
4122 if (static_key_false(&ingress_needed)) {
4123 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4127 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4131 #ifdef CONFIG_NET_CLS_ACT
4135 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4138 if (skb_vlan_tag_present(skb)) {
4140 ret = deliver_skb(skb, pt_prev, orig_dev);
4143 if (vlan_do_receive(&skb))
4145 else if (unlikely(!skb))
4149 rx_handler = rcu_dereference(skb->dev->rx_handler);
4152 ret = deliver_skb(skb, pt_prev, orig_dev);
4155 switch (rx_handler(&skb)) {
4156 case RX_HANDLER_CONSUMED:
4157 ret = NET_RX_SUCCESS;
4159 case RX_HANDLER_ANOTHER:
4161 case RX_HANDLER_EXACT:
4162 deliver_exact = true;
4163 case RX_HANDLER_PASS:
4170 if (unlikely(skb_vlan_tag_present(skb))) {
4171 if (skb_vlan_tag_get_id(skb))
4172 skb->pkt_type = PACKET_OTHERHOST;
4173 /* Note: we might in the future use prio bits
4174 * and set skb->priority like in vlan_do_receive()
4175 * For the time being, just ignore Priority Code Point
4180 type = skb->protocol;
4182 /* deliver only exact match when indicated */
4183 if (likely(!deliver_exact)) {
4184 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4185 &ptype_base[ntohs(type) &
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &orig_dev->ptype_specific);
4192 if (unlikely(skb->dev != orig_dev)) {
4193 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 &skb->dev->ptype_specific);
4198 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4201 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4205 atomic_long_inc(&skb->dev->rx_dropped);
4207 atomic_long_inc(&skb->dev->rx_nohandler);
4209 /* Jamal, now you will not able to escape explaining
4210 * me how you were going to use this. :-)
4219 static int __netif_receive_skb(struct sk_buff *skb)
4223 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4224 unsigned long pflags = current->flags;
4227 * PFMEMALLOC skbs are special, they should
4228 * - be delivered to SOCK_MEMALLOC sockets only
4229 * - stay away from userspace
4230 * - have bounded memory usage
4232 * Use PF_MEMALLOC as this saves us from propagating the allocation
4233 * context down to all allocation sites.
4235 current->flags |= PF_MEMALLOC;
4236 ret = __netif_receive_skb_core(skb, true);
4237 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4239 ret = __netif_receive_skb_core(skb, false);
4244 static int netif_receive_skb_internal(struct sk_buff *skb)
4248 net_timestamp_check(netdev_tstamp_prequeue, skb);
4250 if (skb_defer_rx_timestamp(skb))
4251 return NET_RX_SUCCESS;
4256 if (static_key_false(&rps_needed)) {
4257 struct rps_dev_flow voidflow, *rflow = &voidflow;
4258 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4261 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4267 ret = __netif_receive_skb(skb);
4273 * netif_receive_skb - process receive buffer from network
4274 * @skb: buffer to process
4276 * netif_receive_skb() is the main receive data processing function.
4277 * It always succeeds. The buffer may be dropped during processing
4278 * for congestion control or by the protocol layers.
4280 * This function may only be called from softirq context and interrupts
4281 * should be enabled.
4283 * Return values (usually ignored):
4284 * NET_RX_SUCCESS: no congestion
4285 * NET_RX_DROP: packet was dropped
4287 int netif_receive_skb(struct sk_buff *skb)
4289 trace_netif_receive_skb_entry(skb);
4291 return netif_receive_skb_internal(skb);
4293 EXPORT_SYMBOL(netif_receive_skb);
4295 /* Network device is going away, flush any packets still pending
4296 * Called with irqs disabled.
4298 static void flush_backlog(void *arg)
4300 struct net_device *dev = arg;
4301 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4302 struct sk_buff *skb, *tmp;
4305 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4306 if (skb->dev == dev) {
4307 __skb_unlink(skb, &sd->input_pkt_queue);
4309 input_queue_head_incr(sd);
4314 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4315 if (skb->dev == dev) {
4316 __skb_unlink(skb, &sd->process_queue);
4318 input_queue_head_incr(sd);
4323 static int napi_gro_complete(struct sk_buff *skb)
4325 struct packet_offload *ptype;
4326 __be16 type = skb->protocol;
4327 struct list_head *head = &offload_base;
4330 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4332 if (NAPI_GRO_CB(skb)->count == 1) {
4333 skb_shinfo(skb)->gso_size = 0;
4338 list_for_each_entry_rcu(ptype, head, list) {
4339 if (ptype->type != type || !ptype->callbacks.gro_complete)
4342 err = ptype->callbacks.gro_complete(skb, 0);
4348 WARN_ON(&ptype->list == head);
4350 return NET_RX_SUCCESS;
4354 return netif_receive_skb_internal(skb);
4357 /* napi->gro_list contains packets ordered by age.
4358 * youngest packets at the head of it.
4359 * Complete skbs in reverse order to reduce latencies.
4361 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4363 struct sk_buff *skb, *prev = NULL;
4365 /* scan list and build reverse chain */
4366 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4371 for (skb = prev; skb; skb = prev) {
4374 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4378 napi_gro_complete(skb);
4382 napi->gro_list = NULL;
4384 EXPORT_SYMBOL(napi_gro_flush);
4386 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4389 unsigned int maclen = skb->dev->hard_header_len;
4390 u32 hash = skb_get_hash_raw(skb);
4392 for (p = napi->gro_list; p; p = p->next) {
4393 unsigned long diffs;
4395 NAPI_GRO_CB(p)->flush = 0;
4397 if (hash != skb_get_hash_raw(p)) {
4398 NAPI_GRO_CB(p)->same_flow = 0;
4402 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4403 diffs |= p->vlan_tci ^ skb->vlan_tci;
4404 diffs |= skb_metadata_dst_cmp(p, skb);
4405 if (maclen == ETH_HLEN)
4406 diffs |= compare_ether_header(skb_mac_header(p),
4407 skb_mac_header(skb));
4409 diffs = memcmp(skb_mac_header(p),
4410 skb_mac_header(skb),
4412 NAPI_GRO_CB(p)->same_flow = !diffs;
4416 static void skb_gro_reset_offset(struct sk_buff *skb)
4418 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4419 const skb_frag_t *frag0 = &pinfo->frags[0];
4421 NAPI_GRO_CB(skb)->data_offset = 0;
4422 NAPI_GRO_CB(skb)->frag0 = NULL;
4423 NAPI_GRO_CB(skb)->frag0_len = 0;
4425 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4427 !PageHighMem(skb_frag_page(frag0))) {
4428 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4429 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4433 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4435 struct skb_shared_info *pinfo = skb_shinfo(skb);
4437 BUG_ON(skb->end - skb->tail < grow);
4439 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4441 skb->data_len -= grow;
4444 pinfo->frags[0].page_offset += grow;
4445 skb_frag_size_sub(&pinfo->frags[0], grow);
4447 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4448 skb_frag_unref(skb, 0);
4449 memmove(pinfo->frags, pinfo->frags + 1,
4450 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4454 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4456 struct sk_buff **pp = NULL;
4457 struct packet_offload *ptype;
4458 __be16 type = skb->protocol;
4459 struct list_head *head = &offload_base;
4461 enum gro_result ret;
4464 if (!(skb->dev->features & NETIF_F_GRO))
4467 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4470 gro_list_prepare(napi, skb);
4473 list_for_each_entry_rcu(ptype, head, list) {
4474 if (ptype->type != type || !ptype->callbacks.gro_receive)
4477 skb_set_network_header(skb, skb_gro_offset(skb));
4478 skb_reset_mac_len(skb);
4479 NAPI_GRO_CB(skb)->same_flow = 0;
4480 NAPI_GRO_CB(skb)->flush = 0;
4481 NAPI_GRO_CB(skb)->free = 0;
4482 NAPI_GRO_CB(skb)->encap_mark = 0;
4483 NAPI_GRO_CB(skb)->is_fou = 0;
4484 NAPI_GRO_CB(skb)->is_atomic = 1;
4485 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4487 /* Setup for GRO checksum validation */
4488 switch (skb->ip_summed) {
4489 case CHECKSUM_COMPLETE:
4490 NAPI_GRO_CB(skb)->csum = skb->csum;
4491 NAPI_GRO_CB(skb)->csum_valid = 1;
4492 NAPI_GRO_CB(skb)->csum_cnt = 0;
4494 case CHECKSUM_UNNECESSARY:
4495 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4496 NAPI_GRO_CB(skb)->csum_valid = 0;
4499 NAPI_GRO_CB(skb)->csum_cnt = 0;
4500 NAPI_GRO_CB(skb)->csum_valid = 0;
4503 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4508 if (&ptype->list == head)
4511 same_flow = NAPI_GRO_CB(skb)->same_flow;
4512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4515 struct sk_buff *nskb = *pp;
4519 napi_gro_complete(nskb);
4526 if (NAPI_GRO_CB(skb)->flush)
4529 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4530 struct sk_buff *nskb = napi->gro_list;
4532 /* locate the end of the list to select the 'oldest' flow */
4533 while (nskb->next) {
4539 napi_gro_complete(nskb);
4543 NAPI_GRO_CB(skb)->count = 1;
4544 NAPI_GRO_CB(skb)->age = jiffies;
4545 NAPI_GRO_CB(skb)->last = skb;
4546 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4547 skb->next = napi->gro_list;
4548 napi->gro_list = skb;
4552 grow = skb_gro_offset(skb) - skb_headlen(skb);
4554 gro_pull_from_frag0(skb, grow);
4563 struct packet_offload *gro_find_receive_by_type(__be16 type)
4565 struct list_head *offload_head = &offload_base;
4566 struct packet_offload *ptype;
4568 list_for_each_entry_rcu(ptype, offload_head, list) {
4569 if (ptype->type != type || !ptype->callbacks.gro_receive)
4575 EXPORT_SYMBOL(gro_find_receive_by_type);
4577 struct packet_offload *gro_find_complete_by_type(__be16 type)
4579 struct list_head *offload_head = &offload_base;
4580 struct packet_offload *ptype;
4582 list_for_each_entry_rcu(ptype, offload_head, list) {
4583 if (ptype->type != type || !ptype->callbacks.gro_complete)
4589 EXPORT_SYMBOL(gro_find_complete_by_type);
4591 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4595 if (netif_receive_skb_internal(skb))
4603 case GRO_MERGED_FREE:
4604 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4606 kmem_cache_free(skbuff_head_cache, skb);
4620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4622 skb_mark_napi_id(skb, napi);
4623 trace_napi_gro_receive_entry(skb);
4625 skb_gro_reset_offset(skb);
4627 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4629 EXPORT_SYMBOL(napi_gro_receive);
4631 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4633 if (unlikely(skb->pfmemalloc)) {
4637 __skb_pull(skb, skb_headlen(skb));
4638 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4639 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4641 skb->dev = napi->dev;
4643 skb->encapsulation = 0;
4644 skb_shinfo(skb)->gso_type = 0;
4645 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4650 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4652 struct sk_buff *skb = napi->skb;
4655 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4658 skb_mark_napi_id(skb, napi);
4663 EXPORT_SYMBOL(napi_get_frags);
4665 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4666 struct sk_buff *skb,
4672 __skb_push(skb, ETH_HLEN);
4673 skb->protocol = eth_type_trans(skb, skb->dev);
4674 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4679 case GRO_MERGED_FREE:
4680 napi_reuse_skb(napi, skb);
4690 /* Upper GRO stack assumes network header starts at gro_offset=0
4691 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4692 * We copy ethernet header into skb->data to have a common layout.
4694 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4696 struct sk_buff *skb = napi->skb;
4697 const struct ethhdr *eth;
4698 unsigned int hlen = sizeof(*eth);
4702 skb_reset_mac_header(skb);
4703 skb_gro_reset_offset(skb);
4705 eth = skb_gro_header_fast(skb, 0);
4706 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4707 eth = skb_gro_header_slow(skb, hlen, 0);
4708 if (unlikely(!eth)) {
4709 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4710 __func__, napi->dev->name);
4711 napi_reuse_skb(napi, skb);
4715 gro_pull_from_frag0(skb, hlen);
4716 NAPI_GRO_CB(skb)->frag0 += hlen;
4717 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4719 __skb_pull(skb, hlen);
4722 * This works because the only protocols we care about don't require
4724 * We'll fix it up properly in napi_frags_finish()
4726 skb->protocol = eth->h_proto;
4731 gro_result_t napi_gro_frags(struct napi_struct *napi)
4733 struct sk_buff *skb = napi_frags_skb(napi);
4738 trace_napi_gro_frags_entry(skb);
4740 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4742 EXPORT_SYMBOL(napi_gro_frags);
4744 /* Compute the checksum from gro_offset and return the folded value
4745 * after adding in any pseudo checksum.
4747 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4752 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4754 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4755 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4757 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4758 !skb->csum_complete_sw)
4759 netdev_rx_csum_fault(skb->dev);
4762 NAPI_GRO_CB(skb)->csum = wsum;
4763 NAPI_GRO_CB(skb)->csum_valid = 1;
4767 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4770 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4771 * Note: called with local irq disabled, but exits with local irq enabled.
4773 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4776 struct softnet_data *remsd = sd->rps_ipi_list;
4779 sd->rps_ipi_list = NULL;
4783 /* Send pending IPI's to kick RPS processing on remote cpus. */
4785 struct softnet_data *next = remsd->rps_ipi_next;
4787 if (cpu_online(remsd->cpu))
4788 smp_call_function_single_async(remsd->cpu,
4797 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4800 return sd->rps_ipi_list != NULL;
4806 static int process_backlog(struct napi_struct *napi, int quota)
4809 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4811 /* Check if we have pending ipi, its better to send them now,
4812 * not waiting net_rx_action() end.
4814 if (sd_has_rps_ipi_waiting(sd)) {
4815 local_irq_disable();
4816 net_rps_action_and_irq_enable(sd);
4819 napi->weight = weight_p;
4820 local_irq_disable();
4822 struct sk_buff *skb;
4824 while ((skb = __skb_dequeue(&sd->process_queue))) {
4827 __netif_receive_skb(skb);
4829 local_irq_disable();
4830 input_queue_head_incr(sd);
4831 if (++work >= quota) {
4838 if (skb_queue_empty(&sd->input_pkt_queue)) {
4840 * Inline a custom version of __napi_complete().
4841 * only current cpu owns and manipulates this napi,
4842 * and NAPI_STATE_SCHED is the only possible flag set
4844 * We can use a plain write instead of clear_bit(),
4845 * and we dont need an smp_mb() memory barrier.
4853 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4854 &sd->process_queue);
4863 * __napi_schedule - schedule for receive
4864 * @n: entry to schedule
4866 * The entry's receive function will be scheduled to run.
4867 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4869 void __napi_schedule(struct napi_struct *n)
4871 unsigned long flags;
4873 local_irq_save(flags);
4874 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4875 local_irq_restore(flags);
4877 EXPORT_SYMBOL(__napi_schedule);
4880 * __napi_schedule_irqoff - schedule for receive
4881 * @n: entry to schedule
4883 * Variant of __napi_schedule() assuming hard irqs are masked
4885 void __napi_schedule_irqoff(struct napi_struct *n)
4887 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4889 EXPORT_SYMBOL(__napi_schedule_irqoff);
4891 void __napi_complete(struct napi_struct *n)
4893 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4895 list_del_init(&n->poll_list);
4896 smp_mb__before_atomic();
4897 clear_bit(NAPI_STATE_SCHED, &n->state);
4899 EXPORT_SYMBOL(__napi_complete);
4901 void napi_complete_done(struct napi_struct *n, int work_done)
4903 unsigned long flags;
4906 * don't let napi dequeue from the cpu poll list
4907 * just in case its running on a different cpu
4909 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4913 unsigned long timeout = 0;
4916 timeout = n->dev->gro_flush_timeout;
4919 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4920 HRTIMER_MODE_REL_PINNED);
4922 napi_gro_flush(n, false);
4924 if (likely(list_empty(&n->poll_list))) {
4925 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4927 /* If n->poll_list is not empty, we need to mask irqs */
4928 local_irq_save(flags);
4930 local_irq_restore(flags);
4933 EXPORT_SYMBOL(napi_complete_done);
4935 /* must be called under rcu_read_lock(), as we dont take a reference */
4936 static struct napi_struct *napi_by_id(unsigned int napi_id)
4938 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4939 struct napi_struct *napi;
4941 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4942 if (napi->napi_id == napi_id)
4948 #if defined(CONFIG_NET_RX_BUSY_POLL)
4949 #define BUSY_POLL_BUDGET 8
4950 bool sk_busy_loop(struct sock *sk, int nonblock)
4952 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4953 int (*busy_poll)(struct napi_struct *dev);
4954 struct napi_struct *napi;
4959 napi = napi_by_id(sk->sk_napi_id);
4963 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4964 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4970 rc = busy_poll(napi);
4971 } else if (napi_schedule_prep(napi)) {
4972 void *have = netpoll_poll_lock(napi);
4974 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4975 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4976 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4977 if (rc == BUSY_POLL_BUDGET) {
4978 napi_complete_done(napi, rc);
4979 napi_schedule(napi);
4982 netpoll_poll_unlock(have);
4985 __NET_ADD_STATS(sock_net(sk),
4986 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4989 if (rc == LL_FLUSH_FAILED)
4990 break; /* permanent failure */
4993 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4994 !need_resched() && !busy_loop_timeout(end_time));
4996 rc = !skb_queue_empty(&sk->sk_receive_queue);
5001 EXPORT_SYMBOL(sk_busy_loop);
5003 #endif /* CONFIG_NET_RX_BUSY_POLL */
5005 void napi_hash_add(struct napi_struct *napi)
5007 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5008 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5011 spin_lock(&napi_hash_lock);
5013 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5015 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5016 napi_gen_id = NR_CPUS + 1;
5017 } while (napi_by_id(napi_gen_id));
5018 napi->napi_id = napi_gen_id;
5020 hlist_add_head_rcu(&napi->napi_hash_node,
5021 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5023 spin_unlock(&napi_hash_lock);
5025 EXPORT_SYMBOL_GPL(napi_hash_add);
5027 /* Warning : caller is responsible to make sure rcu grace period
5028 * is respected before freeing memory containing @napi
5030 bool napi_hash_del(struct napi_struct *napi)
5032 bool rcu_sync_needed = false;
5034 spin_lock(&napi_hash_lock);
5036 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5037 rcu_sync_needed = true;
5038 hlist_del_rcu(&napi->napi_hash_node);
5040 spin_unlock(&napi_hash_lock);
5041 return rcu_sync_needed;
5043 EXPORT_SYMBOL_GPL(napi_hash_del);
5045 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5047 struct napi_struct *napi;
5049 napi = container_of(timer, struct napi_struct, timer);
5051 napi_schedule(napi);
5053 return HRTIMER_NORESTART;
5056 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5057 int (*poll)(struct napi_struct *, int), int weight)
5059 INIT_LIST_HEAD(&napi->poll_list);
5060 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5061 napi->timer.function = napi_watchdog;
5062 napi->gro_count = 0;
5063 napi->gro_list = NULL;
5066 if (weight > NAPI_POLL_WEIGHT)
5067 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5069 napi->weight = weight;
5070 list_add(&napi->dev_list, &dev->napi_list);
5072 #ifdef CONFIG_NETPOLL
5073 spin_lock_init(&napi->poll_lock);
5074 napi->poll_owner = -1;
5076 set_bit(NAPI_STATE_SCHED, &napi->state);
5077 napi_hash_add(napi);
5079 EXPORT_SYMBOL(netif_napi_add);
5081 void napi_disable(struct napi_struct *n)
5084 set_bit(NAPI_STATE_DISABLE, &n->state);
5086 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5088 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5091 hrtimer_cancel(&n->timer);
5093 clear_bit(NAPI_STATE_DISABLE, &n->state);
5095 EXPORT_SYMBOL(napi_disable);
5097 /* Must be called in process context */
5098 void netif_napi_del(struct napi_struct *napi)
5101 if (napi_hash_del(napi))
5103 list_del_init(&napi->dev_list);
5104 napi_free_frags(napi);
5106 kfree_skb_list(napi->gro_list);
5107 napi->gro_list = NULL;
5108 napi->gro_count = 0;
5110 EXPORT_SYMBOL(netif_napi_del);
5112 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5117 list_del_init(&n->poll_list);
5119 have = netpoll_poll_lock(n);
5123 /* This NAPI_STATE_SCHED test is for avoiding a race
5124 * with netpoll's poll_napi(). Only the entity which
5125 * obtains the lock and sees NAPI_STATE_SCHED set will
5126 * actually make the ->poll() call. Therefore we avoid
5127 * accidentally calling ->poll() when NAPI is not scheduled.
5130 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5131 work = n->poll(n, weight);
5132 trace_napi_poll(n, work, weight);
5135 WARN_ON_ONCE(work > weight);
5137 if (likely(work < weight))
5140 /* Drivers must not modify the NAPI state if they
5141 * consume the entire weight. In such cases this code
5142 * still "owns" the NAPI instance and therefore can
5143 * move the instance around on the list at-will.
5145 if (unlikely(napi_disable_pending(n))) {
5151 /* flush too old packets
5152 * If HZ < 1000, flush all packets.
5154 napi_gro_flush(n, HZ >= 1000);
5157 /* Some drivers may have called napi_schedule
5158 * prior to exhausting their budget.
5160 if (unlikely(!list_empty(&n->poll_list))) {
5161 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5162 n->dev ? n->dev->name : "backlog");
5166 list_add_tail(&n->poll_list, repoll);
5169 netpoll_poll_unlock(have);
5174 static void net_rx_action(struct softirq_action *h)
5176 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5177 unsigned long time_limit = jiffies + 2;
5178 int budget = netdev_budget;
5182 local_irq_disable();
5183 list_splice_init(&sd->poll_list, &list);
5187 struct napi_struct *n;
5189 if (list_empty(&list)) {
5190 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5195 n = list_first_entry(&list, struct napi_struct, poll_list);
5196 budget -= napi_poll(n, &repoll);
5198 /* If softirq window is exhausted then punt.
5199 * Allow this to run for 2 jiffies since which will allow
5200 * an average latency of 1.5/HZ.
5202 if (unlikely(budget <= 0 ||
5203 time_after_eq(jiffies, time_limit))) {
5209 __kfree_skb_flush();
5210 local_irq_disable();
5212 list_splice_tail_init(&sd->poll_list, &list);
5213 list_splice_tail(&repoll, &list);
5214 list_splice(&list, &sd->poll_list);
5215 if (!list_empty(&sd->poll_list))
5216 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5218 net_rps_action_and_irq_enable(sd);
5221 struct netdev_adjacent {
5222 struct net_device *dev;
5224 /* upper master flag, there can only be one master device per list */
5227 /* counter for the number of times this device was added to us */
5230 /* private field for the users */
5233 struct list_head list;
5234 struct rcu_head rcu;
5237 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5238 struct list_head *adj_list)
5240 struct netdev_adjacent *adj;
5242 list_for_each_entry(adj, adj_list, list) {
5243 if (adj->dev == adj_dev)
5250 * netdev_has_upper_dev - Check if device is linked to an upper device
5252 * @upper_dev: upper device to check
5254 * Find out if a device is linked to specified upper device and return true
5255 * in case it is. Note that this checks only immediate upper device,
5256 * not through a complete stack of devices. The caller must hold the RTNL lock.
5258 bool netdev_has_upper_dev(struct net_device *dev,
5259 struct net_device *upper_dev)
5263 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5265 EXPORT_SYMBOL(netdev_has_upper_dev);
5268 * netdev_has_any_upper_dev - Check if device is linked to some device
5271 * Find out if a device is linked to an upper device and return true in case
5272 * it is. The caller must hold the RTNL lock.
5274 static bool netdev_has_any_upper_dev(struct net_device *dev)
5278 return !list_empty(&dev->all_adj_list.upper);
5282 * netdev_master_upper_dev_get - Get master upper device
5285 * Find a master upper device and return pointer to it or NULL in case
5286 * it's not there. The caller must hold the RTNL lock.
5288 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5290 struct netdev_adjacent *upper;
5294 if (list_empty(&dev->adj_list.upper))
5297 upper = list_first_entry(&dev->adj_list.upper,
5298 struct netdev_adjacent, list);
5299 if (likely(upper->master))
5303 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5305 void *netdev_adjacent_get_private(struct list_head *adj_list)
5307 struct netdev_adjacent *adj;
5309 adj = list_entry(adj_list, struct netdev_adjacent, list);
5311 return adj->private;
5313 EXPORT_SYMBOL(netdev_adjacent_get_private);
5316 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5318 * @iter: list_head ** of the current position
5320 * Gets the next device from the dev's upper list, starting from iter
5321 * position. The caller must hold RCU read lock.
5323 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5324 struct list_head **iter)
5326 struct netdev_adjacent *upper;
5328 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5330 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5332 if (&upper->list == &dev->adj_list.upper)
5335 *iter = &upper->list;
5339 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5342 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5344 * @iter: list_head ** of the current position
5346 * Gets the next device from the dev's upper list, starting from iter
5347 * position. The caller must hold RCU read lock.
5349 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5350 struct list_head **iter)
5352 struct netdev_adjacent *upper;
5354 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5356 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5358 if (&upper->list == &dev->all_adj_list.upper)
5361 *iter = &upper->list;
5365 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5368 * netdev_lower_get_next_private - Get the next ->private from the
5369 * lower neighbour list
5371 * @iter: list_head ** of the current position
5373 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5374 * list, starting from iter position. The caller must hold either hold the
5375 * RTNL lock or its own locking that guarantees that the neighbour lower
5376 * list will remain unchanged.
5378 void *netdev_lower_get_next_private(struct net_device *dev,
5379 struct list_head **iter)
5381 struct netdev_adjacent *lower;
5383 lower = list_entry(*iter, struct netdev_adjacent, list);
5385 if (&lower->list == &dev->adj_list.lower)
5388 *iter = lower->list.next;
5390 return lower->private;
5392 EXPORT_SYMBOL(netdev_lower_get_next_private);
5395 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5396 * lower neighbour list, RCU
5399 * @iter: list_head ** of the current position
5401 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5402 * list, starting from iter position. The caller must hold RCU read lock.
5404 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5405 struct list_head **iter)
5407 struct netdev_adjacent *lower;
5409 WARN_ON_ONCE(!rcu_read_lock_held());
5411 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5413 if (&lower->list == &dev->adj_list.lower)
5416 *iter = &lower->list;
5418 return lower->private;
5420 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5423 * netdev_lower_get_next - Get the next device from the lower neighbour
5426 * @iter: list_head ** of the current position
5428 * Gets the next netdev_adjacent from the dev's lower neighbour
5429 * list, starting from iter position. The caller must hold RTNL lock or
5430 * its own locking that guarantees that the neighbour lower
5431 * list will remain unchanged.
5433 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5435 struct netdev_adjacent *lower;
5437 lower = list_entry(*iter, struct netdev_adjacent, list);
5439 if (&lower->list == &dev->adj_list.lower)
5442 *iter = lower->list.next;
5446 EXPORT_SYMBOL(netdev_lower_get_next);
5449 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5451 * @iter: list_head ** of the current position
5453 * Gets the next netdev_adjacent from the dev's all lower neighbour
5454 * list, starting from iter position. The caller must hold RTNL lock or
5455 * its own locking that guarantees that the neighbour all lower
5456 * list will remain unchanged.
5458 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5460 struct netdev_adjacent *lower;
5462 lower = list_entry(*iter, struct netdev_adjacent, list);
5464 if (&lower->list == &dev->all_adj_list.lower)
5467 *iter = lower->list.next;
5471 EXPORT_SYMBOL(netdev_all_lower_get_next);
5474 * netdev_all_lower_get_next_rcu - Get the next device from all
5475 * lower neighbour list, RCU variant
5477 * @iter: list_head ** of the current position
5479 * Gets the next netdev_adjacent from the dev's all lower neighbour
5480 * list, starting from iter position. The caller must hold RCU read lock.
5482 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5483 struct list_head **iter)
5485 struct netdev_adjacent *lower;
5487 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5488 struct netdev_adjacent, list);
5490 return lower ? lower->dev : NULL;
5492 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5495 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5496 * lower neighbour list, RCU
5500 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5501 * list. The caller must hold RCU read lock.
5503 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5505 struct netdev_adjacent *lower;
5507 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5508 struct netdev_adjacent, list);
5510 return lower->private;
5513 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5516 * netdev_master_upper_dev_get_rcu - Get master upper device
5519 * Find a master upper device and return pointer to it or NULL in case
5520 * it's not there. The caller must hold the RCU read lock.
5522 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5524 struct netdev_adjacent *upper;
5526 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5527 struct netdev_adjacent, list);
5528 if (upper && likely(upper->master))
5532 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5534 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5535 struct net_device *adj_dev,
5536 struct list_head *dev_list)
5538 char linkname[IFNAMSIZ+7];
5539 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5540 "upper_%s" : "lower_%s", adj_dev->name);
5541 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5544 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5546 struct list_head *dev_list)
5548 char linkname[IFNAMSIZ+7];
5549 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5550 "upper_%s" : "lower_%s", name);
5551 sysfs_remove_link(&(dev->dev.kobj), linkname);
5554 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5555 struct net_device *adj_dev,
5556 struct list_head *dev_list)
5558 return (dev_list == &dev->adj_list.upper ||
5559 dev_list == &dev->adj_list.lower) &&
5560 net_eq(dev_net(dev), dev_net(adj_dev));
5563 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5564 struct net_device *adj_dev,
5565 struct list_head *dev_list,
5566 void *private, bool master)
5568 struct netdev_adjacent *adj;
5571 adj = __netdev_find_adj(adj_dev, dev_list);
5578 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5583 adj->master = master;
5585 adj->private = private;
5588 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5589 adj_dev->name, dev->name, adj_dev->name);
5591 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5592 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5597 /* Ensure that master link is always the first item in list. */
5599 ret = sysfs_create_link(&(dev->dev.kobj),
5600 &(adj_dev->dev.kobj), "master");
5602 goto remove_symlinks;
5604 list_add_rcu(&adj->list, dev_list);
5606 list_add_tail_rcu(&adj->list, dev_list);
5612 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5613 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5621 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5622 struct net_device *adj_dev,
5623 struct list_head *dev_list)
5625 struct netdev_adjacent *adj;
5627 adj = __netdev_find_adj(adj_dev, dev_list);
5630 pr_err("tried to remove device %s from %s\n",
5631 dev->name, adj_dev->name);
5635 if (adj->ref_nr > 1) {
5636 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5643 sysfs_remove_link(&(dev->dev.kobj), "master");
5645 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5646 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5648 list_del_rcu(&adj->list);
5649 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5650 adj_dev->name, dev->name, adj_dev->name);
5652 kfree_rcu(adj, rcu);
5655 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5656 struct net_device *upper_dev,
5657 struct list_head *up_list,
5658 struct list_head *down_list,
5659 void *private, bool master)
5663 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5668 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5671 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5678 static int __netdev_adjacent_dev_link(struct net_device *dev,
5679 struct net_device *upper_dev)
5681 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5682 &dev->all_adj_list.upper,
5683 &upper_dev->all_adj_list.lower,
5687 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5688 struct net_device *upper_dev,
5689 struct list_head *up_list,
5690 struct list_head *down_list)
5692 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5693 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5696 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5697 struct net_device *upper_dev)
5699 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5700 &dev->all_adj_list.upper,
5701 &upper_dev->all_adj_list.lower);
5704 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5705 struct net_device *upper_dev,
5706 void *private, bool master)
5708 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5713 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5714 &dev->adj_list.upper,
5715 &upper_dev->adj_list.lower,
5718 __netdev_adjacent_dev_unlink(dev, upper_dev);
5725 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5726 struct net_device *upper_dev)
5728 __netdev_adjacent_dev_unlink(dev, upper_dev);
5729 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5730 &dev->adj_list.upper,
5731 &upper_dev->adj_list.lower);
5734 static int __netdev_upper_dev_link(struct net_device *dev,
5735 struct net_device *upper_dev, bool master,
5736 void *upper_priv, void *upper_info)
5738 struct netdev_notifier_changeupper_info changeupper_info;
5739 struct netdev_adjacent *i, *j, *to_i, *to_j;
5744 if (dev == upper_dev)
5747 /* To prevent loops, check if dev is not upper device to upper_dev. */
5748 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5751 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5754 if (master && netdev_master_upper_dev_get(dev))
5757 changeupper_info.upper_dev = upper_dev;
5758 changeupper_info.master = master;
5759 changeupper_info.linking = true;
5760 changeupper_info.upper_info = upper_info;
5762 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5763 &changeupper_info.info);
5764 ret = notifier_to_errno(ret);
5768 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5773 /* Now that we linked these devs, make all the upper_dev's
5774 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5775 * versa, and don't forget the devices itself. All of these
5776 * links are non-neighbours.
5778 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5779 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5780 pr_debug("Interlinking %s with %s, non-neighbour\n",
5781 i->dev->name, j->dev->name);
5782 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5788 /* add dev to every upper_dev's upper device */
5789 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5790 pr_debug("linking %s's upper device %s with %s\n",
5791 upper_dev->name, i->dev->name, dev->name);
5792 ret = __netdev_adjacent_dev_link(dev, i->dev);
5794 goto rollback_upper_mesh;
5797 /* add upper_dev to every dev's lower device */
5798 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5799 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5800 i->dev->name, upper_dev->name);
5801 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5803 goto rollback_lower_mesh;
5806 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5807 &changeupper_info.info);
5808 ret = notifier_to_errno(ret);
5810 goto rollback_lower_mesh;
5814 rollback_lower_mesh:
5816 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5819 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5824 rollback_upper_mesh:
5826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5829 __netdev_adjacent_dev_unlink(dev, i->dev);
5837 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5839 if (i == to_i && j == to_j)
5841 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5847 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5853 * netdev_upper_dev_link - Add a link to the upper device
5855 * @upper_dev: new upper device
5857 * Adds a link to device which is upper to this one. The caller must hold
5858 * the RTNL lock. On a failure a negative errno code is returned.
5859 * On success the reference counts are adjusted and the function
5862 int netdev_upper_dev_link(struct net_device *dev,
5863 struct net_device *upper_dev)
5865 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5867 EXPORT_SYMBOL(netdev_upper_dev_link);
5870 * netdev_master_upper_dev_link - Add a master link to the upper device
5872 * @upper_dev: new upper device
5873 * @upper_priv: upper device private
5874 * @upper_info: upper info to be passed down via notifier
5876 * Adds a link to device which is upper to this one. In this case, only
5877 * one master upper device can be linked, although other non-master devices
5878 * might be linked as well. The caller must hold the RTNL lock.
5879 * On a failure a negative errno code is returned. On success the reference
5880 * counts are adjusted and the function returns zero.
5882 int netdev_master_upper_dev_link(struct net_device *dev,
5883 struct net_device *upper_dev,
5884 void *upper_priv, void *upper_info)
5886 return __netdev_upper_dev_link(dev, upper_dev, true,
5887 upper_priv, upper_info);
5889 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5892 * netdev_upper_dev_unlink - Removes a link to upper device
5894 * @upper_dev: new upper device
5896 * Removes a link to device which is upper to this one. The caller must hold
5899 void netdev_upper_dev_unlink(struct net_device *dev,
5900 struct net_device *upper_dev)
5902 struct netdev_notifier_changeupper_info changeupper_info;
5903 struct netdev_adjacent *i, *j;
5906 changeupper_info.upper_dev = upper_dev;
5907 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5908 changeupper_info.linking = false;
5910 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5911 &changeupper_info.info);
5913 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5915 /* Here is the tricky part. We must remove all dev's lower
5916 * devices from all upper_dev's upper devices and vice
5917 * versa, to maintain the graph relationship.
5919 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5920 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5921 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5923 /* remove also the devices itself from lower/upper device
5926 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5927 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5929 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5930 __netdev_adjacent_dev_unlink(dev, i->dev);
5932 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5933 &changeupper_info.info);
5935 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5938 * netdev_bonding_info_change - Dispatch event about slave change
5940 * @bonding_info: info to dispatch
5942 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5943 * The caller must hold the RTNL lock.
5945 void netdev_bonding_info_change(struct net_device *dev,
5946 struct netdev_bonding_info *bonding_info)
5948 struct netdev_notifier_bonding_info info;
5950 memcpy(&info.bonding_info, bonding_info,
5951 sizeof(struct netdev_bonding_info));
5952 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5955 EXPORT_SYMBOL(netdev_bonding_info_change);
5957 static void netdev_adjacent_add_links(struct net_device *dev)
5959 struct netdev_adjacent *iter;
5961 struct net *net = dev_net(dev);
5963 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5964 if (!net_eq(net, dev_net(iter->dev)))
5966 netdev_adjacent_sysfs_add(iter->dev, dev,
5967 &iter->dev->adj_list.lower);
5968 netdev_adjacent_sysfs_add(dev, iter->dev,
5969 &dev->adj_list.upper);
5972 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5973 if (!net_eq(net, dev_net(iter->dev)))
5975 netdev_adjacent_sysfs_add(iter->dev, dev,
5976 &iter->dev->adj_list.upper);
5977 netdev_adjacent_sysfs_add(dev, iter->dev,
5978 &dev->adj_list.lower);
5982 static void netdev_adjacent_del_links(struct net_device *dev)
5984 struct netdev_adjacent *iter;
5986 struct net *net = dev_net(dev);
5988 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5989 if (!net_eq(net, dev_net(iter->dev)))
5991 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5992 &iter->dev->adj_list.lower);
5993 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5994 &dev->adj_list.upper);
5997 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5998 if (!net_eq(net, dev_net(iter->dev)))
6000 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6001 &iter->dev->adj_list.upper);
6002 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6003 &dev->adj_list.lower);
6007 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6009 struct netdev_adjacent *iter;
6011 struct net *net = dev_net(dev);
6013 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6014 if (!net_eq(net, dev_net(iter->dev)))
6016 netdev_adjacent_sysfs_del(iter->dev, oldname,
6017 &iter->dev->adj_list.lower);
6018 netdev_adjacent_sysfs_add(iter->dev, dev,
6019 &iter->dev->adj_list.lower);
6022 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6023 if (!net_eq(net, dev_net(iter->dev)))
6025 netdev_adjacent_sysfs_del(iter->dev, oldname,
6026 &iter->dev->adj_list.upper);
6027 netdev_adjacent_sysfs_add(iter->dev, dev,
6028 &iter->dev->adj_list.upper);
6032 void *netdev_lower_dev_get_private(struct net_device *dev,
6033 struct net_device *lower_dev)
6035 struct netdev_adjacent *lower;
6039 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6043 return lower->private;
6045 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6048 int dev_get_nest_level(struct net_device *dev,
6049 bool (*type_check)(const struct net_device *dev))
6051 struct net_device *lower = NULL;
6052 struct list_head *iter;
6058 netdev_for_each_lower_dev(dev, lower, iter) {
6059 nest = dev_get_nest_level(lower, type_check);
6060 if (max_nest < nest)
6064 if (type_check(dev))
6069 EXPORT_SYMBOL(dev_get_nest_level);
6072 * netdev_lower_change - Dispatch event about lower device state change
6073 * @lower_dev: device
6074 * @lower_state_info: state to dispatch
6076 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6077 * The caller must hold the RTNL lock.
6079 void netdev_lower_state_changed(struct net_device *lower_dev,
6080 void *lower_state_info)
6082 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6085 changelowerstate_info.lower_state_info = lower_state_info;
6086 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6087 &changelowerstate_info.info);
6089 EXPORT_SYMBOL(netdev_lower_state_changed);
6091 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6092 struct neighbour *n)
6094 struct net_device *lower_dev, *stop_dev;
6095 struct list_head *iter;
6098 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6099 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6101 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6103 stop_dev = lower_dev;
6110 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6111 if (lower_dev == stop_dev)
6113 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6115 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6119 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6121 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6122 struct neighbour *n)
6124 struct net_device *lower_dev;
6125 struct list_head *iter;
6127 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6128 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6130 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6133 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6135 static void dev_change_rx_flags(struct net_device *dev, int flags)
6137 const struct net_device_ops *ops = dev->netdev_ops;
6139 if (ops->ndo_change_rx_flags)
6140 ops->ndo_change_rx_flags(dev, flags);
6143 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6145 unsigned int old_flags = dev->flags;
6151 dev->flags |= IFF_PROMISC;
6152 dev->promiscuity += inc;
6153 if (dev->promiscuity == 0) {
6156 * If inc causes overflow, untouch promisc and return error.
6159 dev->flags &= ~IFF_PROMISC;
6161 dev->promiscuity -= inc;
6162 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6167 if (dev->flags != old_flags) {
6168 pr_info("device %s %s promiscuous mode\n",
6170 dev->flags & IFF_PROMISC ? "entered" : "left");
6171 if (audit_enabled) {
6172 current_uid_gid(&uid, &gid);
6173 audit_log(current->audit_context, GFP_ATOMIC,
6174 AUDIT_ANOM_PROMISCUOUS,
6175 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6176 dev->name, (dev->flags & IFF_PROMISC),
6177 (old_flags & IFF_PROMISC),
6178 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6179 from_kuid(&init_user_ns, uid),
6180 from_kgid(&init_user_ns, gid),
6181 audit_get_sessionid(current));
6184 dev_change_rx_flags(dev, IFF_PROMISC);
6187 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6192 * dev_set_promiscuity - update promiscuity count on a device
6196 * Add or remove promiscuity from a device. While the count in the device
6197 * remains above zero the interface remains promiscuous. Once it hits zero
6198 * the device reverts back to normal filtering operation. A negative inc
6199 * value is used to drop promiscuity on the device.
6200 * Return 0 if successful or a negative errno code on error.
6202 int dev_set_promiscuity(struct net_device *dev, int inc)
6204 unsigned int old_flags = dev->flags;
6207 err = __dev_set_promiscuity(dev, inc, true);
6210 if (dev->flags != old_flags)
6211 dev_set_rx_mode(dev);
6214 EXPORT_SYMBOL(dev_set_promiscuity);
6216 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6218 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6222 dev->flags |= IFF_ALLMULTI;
6223 dev->allmulti += inc;
6224 if (dev->allmulti == 0) {
6227 * If inc causes overflow, untouch allmulti and return error.
6230 dev->flags &= ~IFF_ALLMULTI;
6232 dev->allmulti -= inc;
6233 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6238 if (dev->flags ^ old_flags) {
6239 dev_change_rx_flags(dev, IFF_ALLMULTI);
6240 dev_set_rx_mode(dev);
6242 __dev_notify_flags(dev, old_flags,
6243 dev->gflags ^ old_gflags);
6249 * dev_set_allmulti - update allmulti count on a device
6253 * Add or remove reception of all multicast frames to a device. While the
6254 * count in the device remains above zero the interface remains listening
6255 * to all interfaces. Once it hits zero the device reverts back to normal
6256 * filtering operation. A negative @inc value is used to drop the counter
6257 * when releasing a resource needing all multicasts.
6258 * Return 0 if successful or a negative errno code on error.
6261 int dev_set_allmulti(struct net_device *dev, int inc)
6263 return __dev_set_allmulti(dev, inc, true);
6265 EXPORT_SYMBOL(dev_set_allmulti);
6268 * Upload unicast and multicast address lists to device and
6269 * configure RX filtering. When the device doesn't support unicast
6270 * filtering it is put in promiscuous mode while unicast addresses
6273 void __dev_set_rx_mode(struct net_device *dev)
6275 const struct net_device_ops *ops = dev->netdev_ops;
6277 /* dev_open will call this function so the list will stay sane. */
6278 if (!(dev->flags&IFF_UP))
6281 if (!netif_device_present(dev))
6284 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6285 /* Unicast addresses changes may only happen under the rtnl,
6286 * therefore calling __dev_set_promiscuity here is safe.
6288 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6289 __dev_set_promiscuity(dev, 1, false);
6290 dev->uc_promisc = true;
6291 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6292 __dev_set_promiscuity(dev, -1, false);
6293 dev->uc_promisc = false;
6297 if (ops->ndo_set_rx_mode)
6298 ops->ndo_set_rx_mode(dev);
6301 void dev_set_rx_mode(struct net_device *dev)
6303 netif_addr_lock_bh(dev);
6304 __dev_set_rx_mode(dev);
6305 netif_addr_unlock_bh(dev);
6309 * dev_get_flags - get flags reported to userspace
6312 * Get the combination of flag bits exported through APIs to userspace.
6314 unsigned int dev_get_flags(const struct net_device *dev)
6318 flags = (dev->flags & ~(IFF_PROMISC |
6323 (dev->gflags & (IFF_PROMISC |
6326 if (netif_running(dev)) {
6327 if (netif_oper_up(dev))
6328 flags |= IFF_RUNNING;
6329 if (netif_carrier_ok(dev))
6330 flags |= IFF_LOWER_UP;
6331 if (netif_dormant(dev))
6332 flags |= IFF_DORMANT;
6337 EXPORT_SYMBOL(dev_get_flags);
6339 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6341 unsigned int old_flags = dev->flags;
6347 * Set the flags on our device.
6350 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6351 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6353 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6357 * Load in the correct multicast list now the flags have changed.
6360 if ((old_flags ^ flags) & IFF_MULTICAST)
6361 dev_change_rx_flags(dev, IFF_MULTICAST);
6363 dev_set_rx_mode(dev);
6366 * Have we downed the interface. We handle IFF_UP ourselves
6367 * according to user attempts to set it, rather than blindly
6372 if ((old_flags ^ flags) & IFF_UP)
6373 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6375 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6376 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6377 unsigned int old_flags = dev->flags;
6379 dev->gflags ^= IFF_PROMISC;
6381 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6382 if (dev->flags != old_flags)
6383 dev_set_rx_mode(dev);
6386 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6387 is important. Some (broken) drivers set IFF_PROMISC, when
6388 IFF_ALLMULTI is requested not asking us and not reporting.
6390 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6391 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6393 dev->gflags ^= IFF_ALLMULTI;
6394 __dev_set_allmulti(dev, inc, false);
6400 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6401 unsigned int gchanges)
6403 unsigned int changes = dev->flags ^ old_flags;
6406 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6408 if (changes & IFF_UP) {
6409 if (dev->flags & IFF_UP)
6410 call_netdevice_notifiers(NETDEV_UP, dev);
6412 call_netdevice_notifiers(NETDEV_DOWN, dev);
6415 if (dev->flags & IFF_UP &&
6416 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6417 struct netdev_notifier_change_info change_info;
6419 change_info.flags_changed = changes;
6420 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6426 * dev_change_flags - change device settings
6428 * @flags: device state flags
6430 * Change settings on device based state flags. The flags are
6431 * in the userspace exported format.
6433 int dev_change_flags(struct net_device *dev, unsigned int flags)
6436 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6438 ret = __dev_change_flags(dev, flags);
6442 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6443 __dev_notify_flags(dev, old_flags, changes);
6446 EXPORT_SYMBOL(dev_change_flags);
6448 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6450 const struct net_device_ops *ops = dev->netdev_ops;
6452 if (ops->ndo_change_mtu)
6453 return ops->ndo_change_mtu(dev, new_mtu);
6460 * dev_set_mtu - Change maximum transfer unit
6462 * @new_mtu: new transfer unit
6464 * Change the maximum transfer size of the network device.
6466 int dev_set_mtu(struct net_device *dev, int new_mtu)
6470 if (new_mtu == dev->mtu)
6473 /* MTU must be positive. */
6477 if (!netif_device_present(dev))
6480 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6481 err = notifier_to_errno(err);
6485 orig_mtu = dev->mtu;
6486 err = __dev_set_mtu(dev, new_mtu);
6489 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6490 err = notifier_to_errno(err);
6492 /* setting mtu back and notifying everyone again,
6493 * so that they have a chance to revert changes.
6495 __dev_set_mtu(dev, orig_mtu);
6496 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6501 EXPORT_SYMBOL(dev_set_mtu);
6504 * dev_set_group - Change group this device belongs to
6506 * @new_group: group this device should belong to
6508 void dev_set_group(struct net_device *dev, int new_group)
6510 dev->group = new_group;
6512 EXPORT_SYMBOL(dev_set_group);
6515 * dev_set_mac_address - Change Media Access Control Address
6519 * Change the hardware (MAC) address of the device
6521 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6523 const struct net_device_ops *ops = dev->netdev_ops;
6526 if (!ops->ndo_set_mac_address)
6528 if (sa->sa_family != dev->type)
6530 if (!netif_device_present(dev))
6532 err = ops->ndo_set_mac_address(dev, sa);
6535 dev->addr_assign_type = NET_ADDR_SET;
6536 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6537 add_device_randomness(dev->dev_addr, dev->addr_len);
6540 EXPORT_SYMBOL(dev_set_mac_address);
6543 * dev_change_carrier - Change device carrier
6545 * @new_carrier: new value
6547 * Change device carrier
6549 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6551 const struct net_device_ops *ops = dev->netdev_ops;
6553 if (!ops->ndo_change_carrier)
6555 if (!netif_device_present(dev))
6557 return ops->ndo_change_carrier(dev, new_carrier);
6559 EXPORT_SYMBOL(dev_change_carrier);
6562 * dev_get_phys_port_id - Get device physical port ID
6566 * Get device physical port ID
6568 int dev_get_phys_port_id(struct net_device *dev,
6569 struct netdev_phys_item_id *ppid)
6571 const struct net_device_ops *ops = dev->netdev_ops;
6573 if (!ops->ndo_get_phys_port_id)
6575 return ops->ndo_get_phys_port_id(dev, ppid);
6577 EXPORT_SYMBOL(dev_get_phys_port_id);
6580 * dev_get_phys_port_name - Get device physical port name
6583 * @len: limit of bytes to copy to name
6585 * Get device physical port name
6587 int dev_get_phys_port_name(struct net_device *dev,
6588 char *name, size_t len)
6590 const struct net_device_ops *ops = dev->netdev_ops;
6592 if (!ops->ndo_get_phys_port_name)
6594 return ops->ndo_get_phys_port_name(dev, name, len);
6596 EXPORT_SYMBOL(dev_get_phys_port_name);
6599 * dev_change_proto_down - update protocol port state information
6601 * @proto_down: new value
6603 * This info can be used by switch drivers to set the phys state of the
6606 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6608 const struct net_device_ops *ops = dev->netdev_ops;
6610 if (!ops->ndo_change_proto_down)
6612 if (!netif_device_present(dev))
6614 return ops->ndo_change_proto_down(dev, proto_down);
6616 EXPORT_SYMBOL(dev_change_proto_down);
6619 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6621 * @fd: new program fd or negative value to clear
6623 * Set or clear a bpf program for a device
6625 int dev_change_xdp_fd(struct net_device *dev, int fd)
6627 const struct net_device_ops *ops = dev->netdev_ops;
6628 struct bpf_prog *prog = NULL;
6629 struct netdev_xdp xdp = {};
6635 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6637 return PTR_ERR(prog);
6640 xdp.command = XDP_SETUP_PROG;
6642 err = ops->ndo_xdp(dev, &xdp);
6643 if (err < 0 && prog)
6648 EXPORT_SYMBOL(dev_change_xdp_fd);
6651 * dev_new_index - allocate an ifindex
6652 * @net: the applicable net namespace
6654 * Returns a suitable unique value for a new device interface
6655 * number. The caller must hold the rtnl semaphore or the
6656 * dev_base_lock to be sure it remains unique.
6658 static int dev_new_index(struct net *net)
6660 int ifindex = net->ifindex;
6664 if (!__dev_get_by_index(net, ifindex))
6665 return net->ifindex = ifindex;
6669 /* Delayed registration/unregisteration */
6670 static LIST_HEAD(net_todo_list);
6671 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6673 static void net_set_todo(struct net_device *dev)
6675 list_add_tail(&dev->todo_list, &net_todo_list);
6676 dev_net(dev)->dev_unreg_count++;
6679 static void rollback_registered_many(struct list_head *head)
6681 struct net_device *dev, *tmp;
6682 LIST_HEAD(close_head);
6684 BUG_ON(dev_boot_phase);
6687 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6688 /* Some devices call without registering
6689 * for initialization unwind. Remove those
6690 * devices and proceed with the remaining.
6692 if (dev->reg_state == NETREG_UNINITIALIZED) {
6693 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6697 list_del(&dev->unreg_list);
6700 dev->dismantle = true;
6701 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6704 /* If device is running, close it first. */
6705 list_for_each_entry(dev, head, unreg_list)
6706 list_add_tail(&dev->close_list, &close_head);
6707 dev_close_many(&close_head, true);
6709 list_for_each_entry(dev, head, unreg_list) {
6710 /* And unlink it from device chain. */
6711 unlist_netdevice(dev);
6713 dev->reg_state = NETREG_UNREGISTERING;
6714 on_each_cpu(flush_backlog, dev, 1);
6719 list_for_each_entry(dev, head, unreg_list) {
6720 struct sk_buff *skb = NULL;
6722 /* Shutdown queueing discipline. */
6726 /* Notify protocols, that we are about to destroy
6727 this device. They should clean all the things.
6729 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6731 if (!dev->rtnl_link_ops ||
6732 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6733 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6737 * Flush the unicast and multicast chains
6742 if (dev->netdev_ops->ndo_uninit)
6743 dev->netdev_ops->ndo_uninit(dev);
6746 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6748 /* Notifier chain MUST detach us all upper devices. */
6749 WARN_ON(netdev_has_any_upper_dev(dev));
6751 /* Remove entries from kobject tree */
6752 netdev_unregister_kobject(dev);
6754 /* Remove XPS queueing entries */
6755 netif_reset_xps_queues_gt(dev, 0);
6761 list_for_each_entry(dev, head, unreg_list)
6765 static void rollback_registered(struct net_device *dev)
6769 list_add(&dev->unreg_list, &single);
6770 rollback_registered_many(&single);
6774 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6775 struct net_device *upper, netdev_features_t features)
6777 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6778 netdev_features_t feature;
6781 for_each_netdev_feature(&upper_disables, feature_bit) {
6782 feature = __NETIF_F_BIT(feature_bit);
6783 if (!(upper->wanted_features & feature)
6784 && (features & feature)) {
6785 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6786 &feature, upper->name);
6787 features &= ~feature;
6794 static void netdev_sync_lower_features(struct net_device *upper,
6795 struct net_device *lower, netdev_features_t features)
6797 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6798 netdev_features_t feature;
6801 for_each_netdev_feature(&upper_disables, feature_bit) {
6802 feature = __NETIF_F_BIT(feature_bit);
6803 if (!(features & feature) && (lower->features & feature)) {
6804 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6805 &feature, lower->name);
6806 lower->wanted_features &= ~feature;
6807 netdev_update_features(lower);
6809 if (unlikely(lower->features & feature))
6810 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6811 &feature, lower->name);
6816 static netdev_features_t netdev_fix_features(struct net_device *dev,
6817 netdev_features_t features)
6819 /* Fix illegal checksum combinations */
6820 if ((features & NETIF_F_HW_CSUM) &&
6821 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6822 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6823 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6826 /* TSO requires that SG is present as well. */
6827 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6828 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6829 features &= ~NETIF_F_ALL_TSO;
6832 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6833 !(features & NETIF_F_IP_CSUM)) {
6834 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6835 features &= ~NETIF_F_TSO;
6836 features &= ~NETIF_F_TSO_ECN;
6839 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6840 !(features & NETIF_F_IPV6_CSUM)) {
6841 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6842 features &= ~NETIF_F_TSO6;
6845 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6846 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6847 features &= ~NETIF_F_TSO_MANGLEID;
6849 /* TSO ECN requires that TSO is present as well. */
6850 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6851 features &= ~NETIF_F_TSO_ECN;
6853 /* Software GSO depends on SG. */
6854 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6855 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6856 features &= ~NETIF_F_GSO;
6859 /* UFO needs SG and checksumming */
6860 if (features & NETIF_F_UFO) {
6861 /* maybe split UFO into V4 and V6? */
6862 if (!(features & NETIF_F_HW_CSUM) &&
6863 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6864 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6866 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6867 features &= ~NETIF_F_UFO;
6870 if (!(features & NETIF_F_SG)) {
6872 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6873 features &= ~NETIF_F_UFO;
6877 /* GSO partial features require GSO partial be set */
6878 if ((features & dev->gso_partial_features) &&
6879 !(features & NETIF_F_GSO_PARTIAL)) {
6881 "Dropping partially supported GSO features since no GSO partial.\n");
6882 features &= ~dev->gso_partial_features;
6885 #ifdef CONFIG_NET_RX_BUSY_POLL
6886 if (dev->netdev_ops->ndo_busy_poll)
6887 features |= NETIF_F_BUSY_POLL;
6890 features &= ~NETIF_F_BUSY_POLL;
6895 int __netdev_update_features(struct net_device *dev)
6897 struct net_device *upper, *lower;
6898 netdev_features_t features;
6899 struct list_head *iter;
6904 features = netdev_get_wanted_features(dev);
6906 if (dev->netdev_ops->ndo_fix_features)
6907 features = dev->netdev_ops->ndo_fix_features(dev, features);
6909 /* driver might be less strict about feature dependencies */
6910 features = netdev_fix_features(dev, features);
6912 /* some features can't be enabled if they're off an an upper device */
6913 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6914 features = netdev_sync_upper_features(dev, upper, features);
6916 if (dev->features == features)
6919 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6920 &dev->features, &features);
6922 if (dev->netdev_ops->ndo_set_features)
6923 err = dev->netdev_ops->ndo_set_features(dev, features);
6927 if (unlikely(err < 0)) {
6929 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6930 err, &features, &dev->features);
6931 /* return non-0 since some features might have changed and
6932 * it's better to fire a spurious notification than miss it
6938 /* some features must be disabled on lower devices when disabled
6939 * on an upper device (think: bonding master or bridge)
6941 netdev_for_each_lower_dev(dev, lower, iter)
6942 netdev_sync_lower_features(dev, lower, features);
6945 dev->features = features;
6947 return err < 0 ? 0 : 1;
6951 * netdev_update_features - recalculate device features
6952 * @dev: the device to check
6954 * Recalculate dev->features set and send notifications if it
6955 * has changed. Should be called after driver or hardware dependent
6956 * conditions might have changed that influence the features.
6958 void netdev_update_features(struct net_device *dev)
6960 if (__netdev_update_features(dev))
6961 netdev_features_change(dev);
6963 EXPORT_SYMBOL(netdev_update_features);
6966 * netdev_change_features - recalculate device features
6967 * @dev: the device to check
6969 * Recalculate dev->features set and send notifications even
6970 * if they have not changed. Should be called instead of
6971 * netdev_update_features() if also dev->vlan_features might
6972 * have changed to allow the changes to be propagated to stacked
6975 void netdev_change_features(struct net_device *dev)
6977 __netdev_update_features(dev);
6978 netdev_features_change(dev);
6980 EXPORT_SYMBOL(netdev_change_features);
6983 * netif_stacked_transfer_operstate - transfer operstate
6984 * @rootdev: the root or lower level device to transfer state from
6985 * @dev: the device to transfer operstate to
6987 * Transfer operational state from root to device. This is normally
6988 * called when a stacking relationship exists between the root
6989 * device and the device(a leaf device).
6991 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6992 struct net_device *dev)
6994 if (rootdev->operstate == IF_OPER_DORMANT)
6995 netif_dormant_on(dev);
6997 netif_dormant_off(dev);
6999 if (netif_carrier_ok(rootdev)) {
7000 if (!netif_carrier_ok(dev))
7001 netif_carrier_on(dev);
7003 if (netif_carrier_ok(dev))
7004 netif_carrier_off(dev);
7007 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7010 static int netif_alloc_rx_queues(struct net_device *dev)
7012 unsigned int i, count = dev->num_rx_queues;
7013 struct netdev_rx_queue *rx;
7014 size_t sz = count * sizeof(*rx);
7018 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7026 for (i = 0; i < count; i++)
7032 static void netdev_init_one_queue(struct net_device *dev,
7033 struct netdev_queue *queue, void *_unused)
7035 /* Initialize queue lock */
7036 spin_lock_init(&queue->_xmit_lock);
7037 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7038 queue->xmit_lock_owner = -1;
7039 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7042 dql_init(&queue->dql, HZ);
7046 static void netif_free_tx_queues(struct net_device *dev)
7051 static int netif_alloc_netdev_queues(struct net_device *dev)
7053 unsigned int count = dev->num_tx_queues;
7054 struct netdev_queue *tx;
7055 size_t sz = count * sizeof(*tx);
7057 if (count < 1 || count > 0xffff)
7060 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7068 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7069 spin_lock_init(&dev->tx_global_lock);
7074 void netif_tx_stop_all_queues(struct net_device *dev)
7078 for (i = 0; i < dev->num_tx_queues; i++) {
7079 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7080 netif_tx_stop_queue(txq);
7083 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7086 * register_netdevice - register a network device
7087 * @dev: device to register
7089 * Take a completed network device structure and add it to the kernel
7090 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7091 * chain. 0 is returned on success. A negative errno code is returned
7092 * on a failure to set up the device, or if the name is a duplicate.
7094 * Callers must hold the rtnl semaphore. You may want
7095 * register_netdev() instead of this.
7098 * The locking appears insufficient to guarantee two parallel registers
7099 * will not get the same name.
7102 int register_netdevice(struct net_device *dev)
7105 struct net *net = dev_net(dev);
7107 BUG_ON(dev_boot_phase);
7112 /* When net_device's are persistent, this will be fatal. */
7113 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7116 spin_lock_init(&dev->addr_list_lock);
7117 netdev_set_addr_lockdep_class(dev);
7119 ret = dev_get_valid_name(net, dev, dev->name);
7123 /* Init, if this function is available */
7124 if (dev->netdev_ops->ndo_init) {
7125 ret = dev->netdev_ops->ndo_init(dev);
7133 if (((dev->hw_features | dev->features) &
7134 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7135 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7136 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7137 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7144 dev->ifindex = dev_new_index(net);
7145 else if (__dev_get_by_index(net, dev->ifindex))
7148 /* Transfer changeable features to wanted_features and enable
7149 * software offloads (GSO and GRO).
7151 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7152 dev->features |= NETIF_F_SOFT_FEATURES;
7153 dev->wanted_features = dev->features & dev->hw_features;
7155 if (!(dev->flags & IFF_LOOPBACK))
7156 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7158 /* If IPv4 TCP segmentation offload is supported we should also
7159 * allow the device to enable segmenting the frame with the option
7160 * of ignoring a static IP ID value. This doesn't enable the
7161 * feature itself but allows the user to enable it later.
7163 if (dev->hw_features & NETIF_F_TSO)
7164 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7165 if (dev->vlan_features & NETIF_F_TSO)
7166 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7167 if (dev->mpls_features & NETIF_F_TSO)
7168 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7169 if (dev->hw_enc_features & NETIF_F_TSO)
7170 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7172 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7174 dev->vlan_features |= NETIF_F_HIGHDMA;
7176 /* Make NETIF_F_SG inheritable to tunnel devices.
7178 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7180 /* Make NETIF_F_SG inheritable to MPLS.
7182 dev->mpls_features |= NETIF_F_SG;
7184 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7185 ret = notifier_to_errno(ret);
7189 ret = netdev_register_kobject(dev);
7192 dev->reg_state = NETREG_REGISTERED;
7194 __netdev_update_features(dev);
7197 * Default initial state at registry is that the
7198 * device is present.
7201 set_bit(__LINK_STATE_PRESENT, &dev->state);
7203 linkwatch_init_dev(dev);
7205 dev_init_scheduler(dev);
7207 list_netdevice(dev);
7208 add_device_randomness(dev->dev_addr, dev->addr_len);
7210 /* If the device has permanent device address, driver should
7211 * set dev_addr and also addr_assign_type should be set to
7212 * NET_ADDR_PERM (default value).
7214 if (dev->addr_assign_type == NET_ADDR_PERM)
7215 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7217 /* Notify protocols, that a new device appeared. */
7218 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7219 ret = notifier_to_errno(ret);
7221 rollback_registered(dev);
7222 dev->reg_state = NETREG_UNREGISTERED;
7225 * Prevent userspace races by waiting until the network
7226 * device is fully setup before sending notifications.
7228 if (!dev->rtnl_link_ops ||
7229 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7230 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7236 if (dev->netdev_ops->ndo_uninit)
7237 dev->netdev_ops->ndo_uninit(dev);
7240 EXPORT_SYMBOL(register_netdevice);
7243 * init_dummy_netdev - init a dummy network device for NAPI
7244 * @dev: device to init
7246 * This takes a network device structure and initialize the minimum
7247 * amount of fields so it can be used to schedule NAPI polls without
7248 * registering a full blown interface. This is to be used by drivers
7249 * that need to tie several hardware interfaces to a single NAPI
7250 * poll scheduler due to HW limitations.
7252 int init_dummy_netdev(struct net_device *dev)
7254 /* Clear everything. Note we don't initialize spinlocks
7255 * are they aren't supposed to be taken by any of the
7256 * NAPI code and this dummy netdev is supposed to be
7257 * only ever used for NAPI polls
7259 memset(dev, 0, sizeof(struct net_device));
7261 /* make sure we BUG if trying to hit standard
7262 * register/unregister code path
7264 dev->reg_state = NETREG_DUMMY;
7266 /* NAPI wants this */
7267 INIT_LIST_HEAD(&dev->napi_list);
7269 /* a dummy interface is started by default */
7270 set_bit(__LINK_STATE_PRESENT, &dev->state);
7271 set_bit(__LINK_STATE_START, &dev->state);
7273 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7274 * because users of this 'device' dont need to change
7280 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7284 * register_netdev - register a network device
7285 * @dev: device to register
7287 * Take a completed network device structure and add it to the kernel
7288 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7289 * chain. 0 is returned on success. A negative errno code is returned
7290 * on a failure to set up the device, or if the name is a duplicate.
7292 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7293 * and expands the device name if you passed a format string to
7296 int register_netdev(struct net_device *dev)
7301 err = register_netdevice(dev);
7305 EXPORT_SYMBOL(register_netdev);
7307 int netdev_refcnt_read(const struct net_device *dev)
7311 for_each_possible_cpu(i)
7312 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7315 EXPORT_SYMBOL(netdev_refcnt_read);
7318 * netdev_wait_allrefs - wait until all references are gone.
7319 * @dev: target net_device
7321 * This is called when unregistering network devices.
7323 * Any protocol or device that holds a reference should register
7324 * for netdevice notification, and cleanup and put back the
7325 * reference if they receive an UNREGISTER event.
7326 * We can get stuck here if buggy protocols don't correctly
7329 static void netdev_wait_allrefs(struct net_device *dev)
7331 unsigned long rebroadcast_time, warning_time;
7334 linkwatch_forget_dev(dev);
7336 rebroadcast_time = warning_time = jiffies;
7337 refcnt = netdev_refcnt_read(dev);
7339 while (refcnt != 0) {
7340 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7343 /* Rebroadcast unregister notification */
7344 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7350 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7351 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7353 /* We must not have linkwatch events
7354 * pending on unregister. If this
7355 * happens, we simply run the queue
7356 * unscheduled, resulting in a noop
7359 linkwatch_run_queue();
7364 rebroadcast_time = jiffies;
7369 refcnt = netdev_refcnt_read(dev);
7371 if (time_after(jiffies, warning_time + 10 * HZ)) {
7372 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7374 warning_time = jiffies;
7383 * register_netdevice(x1);
7384 * register_netdevice(x2);
7386 * unregister_netdevice(y1);
7387 * unregister_netdevice(y2);
7393 * We are invoked by rtnl_unlock().
7394 * This allows us to deal with problems:
7395 * 1) We can delete sysfs objects which invoke hotplug
7396 * without deadlocking with linkwatch via keventd.
7397 * 2) Since we run with the RTNL semaphore not held, we can sleep
7398 * safely in order to wait for the netdev refcnt to drop to zero.
7400 * We must not return until all unregister events added during
7401 * the interval the lock was held have been completed.
7403 void netdev_run_todo(void)
7405 struct list_head list;
7407 /* Snapshot list, allow later requests */
7408 list_replace_init(&net_todo_list, &list);
7413 /* Wait for rcu callbacks to finish before next phase */
7414 if (!list_empty(&list))
7417 while (!list_empty(&list)) {
7418 struct net_device *dev
7419 = list_first_entry(&list, struct net_device, todo_list);
7420 list_del(&dev->todo_list);
7423 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7426 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7427 pr_err("network todo '%s' but state %d\n",
7428 dev->name, dev->reg_state);
7433 dev->reg_state = NETREG_UNREGISTERED;
7435 netdev_wait_allrefs(dev);
7438 BUG_ON(netdev_refcnt_read(dev));
7439 BUG_ON(!list_empty(&dev->ptype_all));
7440 BUG_ON(!list_empty(&dev->ptype_specific));
7441 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7442 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7443 WARN_ON(dev->dn_ptr);
7445 if (dev->destructor)
7446 dev->destructor(dev);
7448 /* Report a network device has been unregistered */
7450 dev_net(dev)->dev_unreg_count--;
7452 wake_up(&netdev_unregistering_wq);
7454 /* Free network device */
7455 kobject_put(&dev->dev.kobj);
7459 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7460 * all the same fields in the same order as net_device_stats, with only
7461 * the type differing, but rtnl_link_stats64 may have additional fields
7462 * at the end for newer counters.
7464 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7465 const struct net_device_stats *netdev_stats)
7467 #if BITS_PER_LONG == 64
7468 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7469 memcpy(stats64, netdev_stats, sizeof(*stats64));
7470 /* zero out counters that only exist in rtnl_link_stats64 */
7471 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7472 sizeof(*stats64) - sizeof(*netdev_stats));
7474 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7475 const unsigned long *src = (const unsigned long *)netdev_stats;
7476 u64 *dst = (u64 *)stats64;
7478 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7479 for (i = 0; i < n; i++)
7481 /* zero out counters that only exist in rtnl_link_stats64 */
7482 memset((char *)stats64 + n * sizeof(u64), 0,
7483 sizeof(*stats64) - n * sizeof(u64));
7486 EXPORT_SYMBOL(netdev_stats_to_stats64);
7489 * dev_get_stats - get network device statistics
7490 * @dev: device to get statistics from
7491 * @storage: place to store stats
7493 * Get network statistics from device. Return @storage.
7494 * The device driver may provide its own method by setting
7495 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7496 * otherwise the internal statistics structure is used.
7498 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7499 struct rtnl_link_stats64 *storage)
7501 const struct net_device_ops *ops = dev->netdev_ops;
7503 if (ops->ndo_get_stats64) {
7504 memset(storage, 0, sizeof(*storage));
7505 ops->ndo_get_stats64(dev, storage);
7506 } else if (ops->ndo_get_stats) {
7507 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7509 netdev_stats_to_stats64(storage, &dev->stats);
7511 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7512 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7513 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7516 EXPORT_SYMBOL(dev_get_stats);
7518 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7520 struct netdev_queue *queue = dev_ingress_queue(dev);
7522 #ifdef CONFIG_NET_CLS_ACT
7525 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7528 netdev_init_one_queue(dev, queue, NULL);
7529 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7530 queue->qdisc_sleeping = &noop_qdisc;
7531 rcu_assign_pointer(dev->ingress_queue, queue);
7536 static const struct ethtool_ops default_ethtool_ops;
7538 void netdev_set_default_ethtool_ops(struct net_device *dev,
7539 const struct ethtool_ops *ops)
7541 if (dev->ethtool_ops == &default_ethtool_ops)
7542 dev->ethtool_ops = ops;
7544 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7546 void netdev_freemem(struct net_device *dev)
7548 char *addr = (char *)dev - dev->padded;
7554 * alloc_netdev_mqs - allocate network device
7555 * @sizeof_priv: size of private data to allocate space for
7556 * @name: device name format string
7557 * @name_assign_type: origin of device name
7558 * @setup: callback to initialize device
7559 * @txqs: the number of TX subqueues to allocate
7560 * @rxqs: the number of RX subqueues to allocate
7562 * Allocates a struct net_device with private data area for driver use
7563 * and performs basic initialization. Also allocates subqueue structs
7564 * for each queue on the device.
7566 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7567 unsigned char name_assign_type,
7568 void (*setup)(struct net_device *),
7569 unsigned int txqs, unsigned int rxqs)
7571 struct net_device *dev;
7573 struct net_device *p;
7575 BUG_ON(strlen(name) >= sizeof(dev->name));
7578 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7584 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7589 alloc_size = sizeof(struct net_device);
7591 /* ensure 32-byte alignment of private area */
7592 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7593 alloc_size += sizeof_priv;
7595 /* ensure 32-byte alignment of whole construct */
7596 alloc_size += NETDEV_ALIGN - 1;
7598 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7600 p = vzalloc(alloc_size);
7604 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7605 dev->padded = (char *)dev - (char *)p;
7607 dev->pcpu_refcnt = alloc_percpu(int);
7608 if (!dev->pcpu_refcnt)
7611 if (dev_addr_init(dev))
7617 dev_net_set(dev, &init_net);
7619 dev->gso_max_size = GSO_MAX_SIZE;
7620 dev->gso_max_segs = GSO_MAX_SEGS;
7622 INIT_LIST_HEAD(&dev->napi_list);
7623 INIT_LIST_HEAD(&dev->unreg_list);
7624 INIT_LIST_HEAD(&dev->close_list);
7625 INIT_LIST_HEAD(&dev->link_watch_list);
7626 INIT_LIST_HEAD(&dev->adj_list.upper);
7627 INIT_LIST_HEAD(&dev->adj_list.lower);
7628 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7629 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7630 INIT_LIST_HEAD(&dev->ptype_all);
7631 INIT_LIST_HEAD(&dev->ptype_specific);
7632 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7635 if (!dev->tx_queue_len) {
7636 dev->priv_flags |= IFF_NO_QUEUE;
7637 dev->tx_queue_len = 1;
7640 dev->num_tx_queues = txqs;
7641 dev->real_num_tx_queues = txqs;
7642 if (netif_alloc_netdev_queues(dev))
7646 dev->num_rx_queues = rxqs;
7647 dev->real_num_rx_queues = rxqs;
7648 if (netif_alloc_rx_queues(dev))
7652 strcpy(dev->name, name);
7653 dev->name_assign_type = name_assign_type;
7654 dev->group = INIT_NETDEV_GROUP;
7655 if (!dev->ethtool_ops)
7656 dev->ethtool_ops = &default_ethtool_ops;
7658 nf_hook_ingress_init(dev);
7667 free_percpu(dev->pcpu_refcnt);
7669 netdev_freemem(dev);
7672 EXPORT_SYMBOL(alloc_netdev_mqs);
7675 * free_netdev - free network device
7678 * This function does the last stage of destroying an allocated device
7679 * interface. The reference to the device object is released.
7680 * If this is the last reference then it will be freed.
7681 * Must be called in process context.
7683 void free_netdev(struct net_device *dev)
7685 struct napi_struct *p, *n;
7688 netif_free_tx_queues(dev);
7693 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7695 /* Flush device addresses */
7696 dev_addr_flush(dev);
7698 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7701 free_percpu(dev->pcpu_refcnt);
7702 dev->pcpu_refcnt = NULL;
7704 /* Compatibility with error handling in drivers */
7705 if (dev->reg_state == NETREG_UNINITIALIZED) {
7706 netdev_freemem(dev);
7710 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7711 dev->reg_state = NETREG_RELEASED;
7713 /* will free via device release */
7714 put_device(&dev->dev);
7716 EXPORT_SYMBOL(free_netdev);
7719 * synchronize_net - Synchronize with packet receive processing
7721 * Wait for packets currently being received to be done.
7722 * Does not block later packets from starting.
7724 void synchronize_net(void)
7727 if (rtnl_is_locked())
7728 synchronize_rcu_expedited();
7732 EXPORT_SYMBOL(synchronize_net);
7735 * unregister_netdevice_queue - remove device from the kernel
7739 * This function shuts down a device interface and removes it
7740 * from the kernel tables.
7741 * If head not NULL, device is queued to be unregistered later.
7743 * Callers must hold the rtnl semaphore. You may want
7744 * unregister_netdev() instead of this.
7747 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7752 list_move_tail(&dev->unreg_list, head);
7754 rollback_registered(dev);
7755 /* Finish processing unregister after unlock */
7759 EXPORT_SYMBOL(unregister_netdevice_queue);
7762 * unregister_netdevice_many - unregister many devices
7763 * @head: list of devices
7765 * Note: As most callers use a stack allocated list_head,
7766 * we force a list_del() to make sure stack wont be corrupted later.
7768 void unregister_netdevice_many(struct list_head *head)
7770 struct net_device *dev;
7772 if (!list_empty(head)) {
7773 rollback_registered_many(head);
7774 list_for_each_entry(dev, head, unreg_list)
7779 EXPORT_SYMBOL(unregister_netdevice_many);
7782 * unregister_netdev - remove device from the kernel
7785 * This function shuts down a device interface and removes it
7786 * from the kernel tables.
7788 * This is just a wrapper for unregister_netdevice that takes
7789 * the rtnl semaphore. In general you want to use this and not
7790 * unregister_netdevice.
7792 void unregister_netdev(struct net_device *dev)
7795 unregister_netdevice(dev);
7798 EXPORT_SYMBOL(unregister_netdev);
7801 * dev_change_net_namespace - move device to different nethost namespace
7803 * @net: network namespace
7804 * @pat: If not NULL name pattern to try if the current device name
7805 * is already taken in the destination network namespace.
7807 * This function shuts down a device interface and moves it
7808 * to a new network namespace. On success 0 is returned, on
7809 * a failure a netagive errno code is returned.
7811 * Callers must hold the rtnl semaphore.
7814 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7820 /* Don't allow namespace local devices to be moved. */
7822 if (dev->features & NETIF_F_NETNS_LOCAL)
7825 /* Ensure the device has been registrered */
7826 if (dev->reg_state != NETREG_REGISTERED)
7829 /* Get out if there is nothing todo */
7831 if (net_eq(dev_net(dev), net))
7834 /* Pick the destination device name, and ensure
7835 * we can use it in the destination network namespace.
7838 if (__dev_get_by_name(net, dev->name)) {
7839 /* We get here if we can't use the current device name */
7842 if (dev_get_valid_name(net, dev, pat) < 0)
7847 * And now a mini version of register_netdevice unregister_netdevice.
7850 /* If device is running close it first. */
7853 /* And unlink it from device chain */
7855 unlist_netdevice(dev);
7859 /* Shutdown queueing discipline. */
7862 /* Notify protocols, that we are about to destroy
7863 this device. They should clean all the things.
7865 Note that dev->reg_state stays at NETREG_REGISTERED.
7866 This is wanted because this way 8021q and macvlan know
7867 the device is just moving and can keep their slaves up.
7869 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7871 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7872 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7875 * Flush the unicast and multicast chains
7880 /* Send a netdev-removed uevent to the old namespace */
7881 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7882 netdev_adjacent_del_links(dev);
7884 /* Actually switch the network namespace */
7885 dev_net_set(dev, net);
7887 /* If there is an ifindex conflict assign a new one */
7888 if (__dev_get_by_index(net, dev->ifindex))
7889 dev->ifindex = dev_new_index(net);
7891 /* Send a netdev-add uevent to the new namespace */
7892 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7893 netdev_adjacent_add_links(dev);
7895 /* Fixup kobjects */
7896 err = device_rename(&dev->dev, dev->name);
7899 /* Add the device back in the hashes */
7900 list_netdevice(dev);
7902 /* Notify protocols, that a new device appeared. */
7903 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7906 * Prevent userspace races by waiting until the network
7907 * device is fully setup before sending notifications.
7909 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7916 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7918 static int dev_cpu_callback(struct notifier_block *nfb,
7919 unsigned long action,
7922 struct sk_buff **list_skb;
7923 struct sk_buff *skb;
7924 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7925 struct softnet_data *sd, *oldsd;
7927 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7930 local_irq_disable();
7931 cpu = smp_processor_id();
7932 sd = &per_cpu(softnet_data, cpu);
7933 oldsd = &per_cpu(softnet_data, oldcpu);
7935 /* Find end of our completion_queue. */
7936 list_skb = &sd->completion_queue;
7938 list_skb = &(*list_skb)->next;
7939 /* Append completion queue from offline CPU. */
7940 *list_skb = oldsd->completion_queue;
7941 oldsd->completion_queue = NULL;
7943 /* Append output queue from offline CPU. */
7944 if (oldsd->output_queue) {
7945 *sd->output_queue_tailp = oldsd->output_queue;
7946 sd->output_queue_tailp = oldsd->output_queue_tailp;
7947 oldsd->output_queue = NULL;
7948 oldsd->output_queue_tailp = &oldsd->output_queue;
7950 /* Append NAPI poll list from offline CPU, with one exception :
7951 * process_backlog() must be called by cpu owning percpu backlog.
7952 * We properly handle process_queue & input_pkt_queue later.
7954 while (!list_empty(&oldsd->poll_list)) {
7955 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7959 list_del_init(&napi->poll_list);
7960 if (napi->poll == process_backlog)
7963 ____napi_schedule(sd, napi);
7966 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7969 /* Process offline CPU's input_pkt_queue */
7970 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7972 input_queue_head_incr(oldsd);
7974 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7976 input_queue_head_incr(oldsd);
7984 * netdev_increment_features - increment feature set by one
7985 * @all: current feature set
7986 * @one: new feature set
7987 * @mask: mask feature set
7989 * Computes a new feature set after adding a device with feature set
7990 * @one to the master device with current feature set @all. Will not
7991 * enable anything that is off in @mask. Returns the new feature set.
7993 netdev_features_t netdev_increment_features(netdev_features_t all,
7994 netdev_features_t one, netdev_features_t mask)
7996 if (mask & NETIF_F_HW_CSUM)
7997 mask |= NETIF_F_CSUM_MASK;
7998 mask |= NETIF_F_VLAN_CHALLENGED;
8000 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8001 all &= one | ~NETIF_F_ALL_FOR_ALL;
8003 /* If one device supports hw checksumming, set for all. */
8004 if (all & NETIF_F_HW_CSUM)
8005 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8009 EXPORT_SYMBOL(netdev_increment_features);
8011 static struct hlist_head * __net_init netdev_create_hash(void)
8014 struct hlist_head *hash;
8016 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8018 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8019 INIT_HLIST_HEAD(&hash[i]);
8024 /* Initialize per network namespace state */
8025 static int __net_init netdev_init(struct net *net)
8027 if (net != &init_net)
8028 INIT_LIST_HEAD(&net->dev_base_head);
8030 net->dev_name_head = netdev_create_hash();
8031 if (net->dev_name_head == NULL)
8034 net->dev_index_head = netdev_create_hash();
8035 if (net->dev_index_head == NULL)
8041 kfree(net->dev_name_head);
8047 * netdev_drivername - network driver for the device
8048 * @dev: network device
8050 * Determine network driver for device.
8052 const char *netdev_drivername(const struct net_device *dev)
8054 const struct device_driver *driver;
8055 const struct device *parent;
8056 const char *empty = "";
8058 parent = dev->dev.parent;
8062 driver = parent->driver;
8063 if (driver && driver->name)
8064 return driver->name;
8068 static void __netdev_printk(const char *level, const struct net_device *dev,
8069 struct va_format *vaf)
8071 if (dev && dev->dev.parent) {
8072 dev_printk_emit(level[1] - '0',
8075 dev_driver_string(dev->dev.parent),
8076 dev_name(dev->dev.parent),
8077 netdev_name(dev), netdev_reg_state(dev),
8080 printk("%s%s%s: %pV",
8081 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8083 printk("%s(NULL net_device): %pV", level, vaf);
8087 void netdev_printk(const char *level, const struct net_device *dev,
8088 const char *format, ...)
8090 struct va_format vaf;
8093 va_start(args, format);
8098 __netdev_printk(level, dev, &vaf);
8102 EXPORT_SYMBOL(netdev_printk);
8104 #define define_netdev_printk_level(func, level) \
8105 void func(const struct net_device *dev, const char *fmt, ...) \
8107 struct va_format vaf; \
8110 va_start(args, fmt); \
8115 __netdev_printk(level, dev, &vaf); \
8119 EXPORT_SYMBOL(func);
8121 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8122 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8123 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8124 define_netdev_printk_level(netdev_err, KERN_ERR);
8125 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8126 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8127 define_netdev_printk_level(netdev_info, KERN_INFO);
8129 static void __net_exit netdev_exit(struct net *net)
8131 kfree(net->dev_name_head);
8132 kfree(net->dev_index_head);
8135 static struct pernet_operations __net_initdata netdev_net_ops = {
8136 .init = netdev_init,
8137 .exit = netdev_exit,
8140 static void __net_exit default_device_exit(struct net *net)
8142 struct net_device *dev, *aux;
8144 * Push all migratable network devices back to the
8145 * initial network namespace
8148 for_each_netdev_safe(net, dev, aux) {
8150 char fb_name[IFNAMSIZ];
8152 /* Ignore unmoveable devices (i.e. loopback) */
8153 if (dev->features & NETIF_F_NETNS_LOCAL)
8156 /* Leave virtual devices for the generic cleanup */
8157 if (dev->rtnl_link_ops)
8160 /* Push remaining network devices to init_net */
8161 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8162 err = dev_change_net_namespace(dev, &init_net, fb_name);
8164 pr_emerg("%s: failed to move %s to init_net: %d\n",
8165 __func__, dev->name, err);
8172 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8174 /* Return with the rtnl_lock held when there are no network
8175 * devices unregistering in any network namespace in net_list.
8179 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8181 add_wait_queue(&netdev_unregistering_wq, &wait);
8183 unregistering = false;
8185 list_for_each_entry(net, net_list, exit_list) {
8186 if (net->dev_unreg_count > 0) {
8187 unregistering = true;
8195 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8197 remove_wait_queue(&netdev_unregistering_wq, &wait);
8200 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8202 /* At exit all network devices most be removed from a network
8203 * namespace. Do this in the reverse order of registration.
8204 * Do this across as many network namespaces as possible to
8205 * improve batching efficiency.
8207 struct net_device *dev;
8209 LIST_HEAD(dev_kill_list);
8211 /* To prevent network device cleanup code from dereferencing
8212 * loopback devices or network devices that have been freed
8213 * wait here for all pending unregistrations to complete,
8214 * before unregistring the loopback device and allowing the
8215 * network namespace be freed.
8217 * The netdev todo list containing all network devices
8218 * unregistrations that happen in default_device_exit_batch
8219 * will run in the rtnl_unlock() at the end of
8220 * default_device_exit_batch.
8222 rtnl_lock_unregistering(net_list);
8223 list_for_each_entry(net, net_list, exit_list) {
8224 for_each_netdev_reverse(net, dev) {
8225 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8226 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8228 unregister_netdevice_queue(dev, &dev_kill_list);
8231 unregister_netdevice_many(&dev_kill_list);
8235 static struct pernet_operations __net_initdata default_device_ops = {
8236 .exit = default_device_exit,
8237 .exit_batch = default_device_exit_batch,
8241 * Initialize the DEV module. At boot time this walks the device list and
8242 * unhooks any devices that fail to initialise (normally hardware not
8243 * present) and leaves us with a valid list of present and active devices.
8248 * This is called single threaded during boot, so no need
8249 * to take the rtnl semaphore.
8251 static int __init net_dev_init(void)
8253 int i, rc = -ENOMEM;
8255 BUG_ON(!dev_boot_phase);
8257 if (dev_proc_init())
8260 if (netdev_kobject_init())
8263 INIT_LIST_HEAD(&ptype_all);
8264 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8265 INIT_LIST_HEAD(&ptype_base[i]);
8267 INIT_LIST_HEAD(&offload_base);
8269 if (register_pernet_subsys(&netdev_net_ops))
8273 * Initialise the packet receive queues.
8276 for_each_possible_cpu(i) {
8277 struct softnet_data *sd = &per_cpu(softnet_data, i);
8279 skb_queue_head_init(&sd->input_pkt_queue);
8280 skb_queue_head_init(&sd->process_queue);
8281 INIT_LIST_HEAD(&sd->poll_list);
8282 sd->output_queue_tailp = &sd->output_queue;
8284 sd->csd.func = rps_trigger_softirq;
8289 sd->backlog.poll = process_backlog;
8290 sd->backlog.weight = weight_p;
8295 /* The loopback device is special if any other network devices
8296 * is present in a network namespace the loopback device must
8297 * be present. Since we now dynamically allocate and free the
8298 * loopback device ensure this invariant is maintained by
8299 * keeping the loopback device as the first device on the
8300 * list of network devices. Ensuring the loopback devices
8301 * is the first device that appears and the last network device
8304 if (register_pernet_device(&loopback_net_ops))
8307 if (register_pernet_device(&default_device_ops))
8310 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8311 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8313 hotcpu_notifier(dev_cpu_callback, 0);
8320 subsys_initcall(net_dev_init);