1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/errno.h>
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
37 struct anon_vma_chain;
40 struct writeback_control;
44 extern int sysctl_page_lock_unfairness;
46 void init_mm_internals(void);
48 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
49 extern unsigned long max_mapnr;
51 static inline void set_max_mapnr(unsigned long limit)
56 static inline void set_max_mapnr(unsigned long limit) { }
59 extern atomic_long_t _totalram_pages;
60 static inline unsigned long totalram_pages(void)
62 return (unsigned long)atomic_long_read(&_totalram_pages);
65 static inline void totalram_pages_inc(void)
67 atomic_long_inc(&_totalram_pages);
70 static inline void totalram_pages_dec(void)
72 atomic_long_dec(&_totalram_pages);
75 static inline void totalram_pages_add(long count)
77 atomic_long_add(count, &_totalram_pages);
80 extern void * high_memory;
81 extern int page_cluster;
84 extern int sysctl_legacy_va_layout;
86 #define sysctl_legacy_va_layout 0
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern const int mmap_rnd_bits_max;
92 extern int mmap_rnd_bits __read_mostly;
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
100 #include <asm/page.h>
101 #include <asm/processor.h>
104 * Architectures that support memory tagging (assigning tags to memory regions,
105 * embedding these tags into addresses that point to these memory regions, and
106 * checking that the memory and the pointer tags match on memory accesses)
107 * redefine this macro to strip tags from pointers.
108 * It's defined as noop for arcitectures that don't support memory tagging.
110 #ifndef untagged_addr
111 #define untagged_addr(addr) (addr)
115 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
119 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
123 #define lm_alias(x) __va(__pa_symbol(x))
127 * To prevent common memory management code establishing
128 * a zero page mapping on a read fault.
129 * This macro should be defined within <asm/pgtable.h>.
130 * s390 does this to prevent multiplexing of hardware bits
131 * related to the physical page in case of virtualization.
133 #ifndef mm_forbids_zeropage
134 #define mm_forbids_zeropage(X) (0)
138 * On some architectures it is expensive to call memset() for small sizes.
139 * If an architecture decides to implement their own version of
140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141 * define their own version of this macro in <asm/pgtable.h>
143 #if BITS_PER_LONG == 64
144 /* This function must be updated when the size of struct page grows above 80
145 * or reduces below 56. The idea that compiler optimizes out switch()
146 * statement, and only leaves move/store instructions. Also the compiler can
147 * combine write statments if they are both assignments and can be reordered,
148 * this can result in several of the writes here being dropped.
150 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
151 static inline void __mm_zero_struct_page(struct page *page)
153 unsigned long *_pp = (void *)page;
155 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 BUILD_BUG_ON(sizeof(struct page) & 7);
157 BUILD_BUG_ON(sizeof(struct page) < 56);
158 BUILD_BUG_ON(sizeof(struct page) > 80);
160 switch (sizeof(struct page)) {
181 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185 * Default maximum number of active map areas, this limits the number of vmas
186 * per mm struct. Users can overwrite this number by sysctl but there is a
189 * When a program's coredump is generated as ELF format, a section is created
190 * per a vma. In ELF, the number of sections is represented in unsigned short.
191 * This means the number of sections should be smaller than 65535 at coredump.
192 * Because the kernel adds some informative sections to a image of program at
193 * generating coredump, we need some margin. The number of extra sections is
194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197 * not a hard limit any more. Although some userspace tools can be surprised by
200 #define MAPCOUNT_ELF_CORE_MARGIN (5)
201 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 extern int sysctl_max_map_count;
205 extern unsigned long sysctl_user_reserve_kbytes;
206 extern unsigned long sysctl_admin_reserve_kbytes;
208 extern int sysctl_overcommit_memory;
209 extern int sysctl_overcommit_ratio;
210 extern unsigned long sysctl_overcommit_kbytes;
212 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
219 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
227 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 * Linux kernel virtual memory manager primitives.
231 * The idea being to have a "virtual" mm in the same way
232 * we have a virtual fs - giving a cleaner interface to the
233 * mm details, and allowing different kinds of memory mappings
234 * (from shared memory to executable loading to arbitrary
238 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
239 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240 void vm_area_free(struct vm_area_struct *);
243 extern struct rb_root nommu_region_tree;
244 extern struct rw_semaphore nommu_region_sem;
246 extern unsigned int kobjsize(const void *objp);
250 * vm_flags in vm_area_struct, see mm_types.h.
251 * When changing, update also include/trace/events/mmflags.h
253 #define VM_NONE 0x00000000
255 #define VM_READ 0x00000001 /* currently active flags */
256 #define VM_WRITE 0x00000002
257 #define VM_EXEC 0x00000004
258 #define VM_SHARED 0x00000008
260 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
261 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
262 #define VM_MAYWRITE 0x00000020
263 #define VM_MAYEXEC 0x00000040
264 #define VM_MAYSHARE 0x00000080
266 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
267 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
272 #define VM_LOCKED 0x00002000
273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
275 /* Used by sys_madvise() */
276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285 #define VM_SYNC 0x00800000 /* Synchronous page faults */
286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
293 # define VM_SOFTDIRTY 0
296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
308 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
309 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
310 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
311 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
312 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
314 #ifdef CONFIG_ARCH_HAS_PKEYS
315 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
316 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
317 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
318 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
319 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
321 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
323 # define VM_PKEY_BIT4 0
325 #endif /* CONFIG_ARCH_HAS_PKEYS */
327 #if defined(CONFIG_X86)
328 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
329 #elif defined(CONFIG_PPC)
330 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
331 #elif defined(CONFIG_PARISC)
332 # define VM_GROWSUP VM_ARCH_1
333 #elif defined(CONFIG_IA64)
334 # define VM_GROWSUP VM_ARCH_1
335 #elif defined(CONFIG_SPARC64)
336 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
337 # define VM_ARCH_CLEAR VM_SPARC_ADI
338 #elif defined(CONFIG_ARM64)
339 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
340 # define VM_ARCH_CLEAR VM_ARM64_BTI
341 #elif !defined(CONFIG_MMU)
342 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
346 # define VM_GROWSUP VM_NONE
349 /* Bits set in the VMA until the stack is in its final location */
350 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
352 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
354 /* Common data flag combinations */
355 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
356 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
357 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
358 VM_MAYWRITE | VM_MAYEXEC)
359 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
360 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
362 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
363 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
366 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
367 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
370 #ifdef CONFIG_STACK_GROWSUP
371 #define VM_STACK VM_GROWSUP
373 #define VM_STACK VM_GROWSDOWN
376 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
378 /* VMA basic access permission flags */
379 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
383 * Special vmas that are non-mergable, non-mlock()able.
385 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
387 /* This mask prevents VMA from being scanned with khugepaged */
388 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
390 /* This mask defines which mm->def_flags a process can inherit its parent */
391 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
393 /* This mask is used to clear all the VMA flags used by mlock */
394 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
396 /* Arch-specific flags to clear when updating VM flags on protection change */
397 #ifndef VM_ARCH_CLEAR
398 # define VM_ARCH_CLEAR VM_NONE
400 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
403 * mapping from the currently active vm_flags protection bits (the
404 * low four bits) to a page protection mask..
406 extern pgprot_t protection_map[16];
409 * Fault flag definitions.
411 * @FAULT_FLAG_WRITE: Fault was a write fault.
412 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
413 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
414 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
415 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
416 * @FAULT_FLAG_TRIED: The fault has been tried once.
417 * @FAULT_FLAG_USER: The fault originated in userspace.
418 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
419 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
420 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
422 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
423 * whether we would allow page faults to retry by specifying these two
424 * fault flags correctly. Currently there can be three legal combinations:
426 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
427 * this is the first try
429 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
430 * we've already tried at least once
432 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
434 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
435 * be used. Note that page faults can be allowed to retry for multiple times,
436 * in which case we'll have an initial fault with flags (a) then later on
437 * continuous faults with flags (b). We should always try to detect pending
438 * signals before a retry to make sure the continuous page faults can still be
439 * interrupted if necessary.
441 #define FAULT_FLAG_WRITE 0x01
442 #define FAULT_FLAG_MKWRITE 0x02
443 #define FAULT_FLAG_ALLOW_RETRY 0x04
444 #define FAULT_FLAG_RETRY_NOWAIT 0x08
445 #define FAULT_FLAG_KILLABLE 0x10
446 #define FAULT_FLAG_TRIED 0x20
447 #define FAULT_FLAG_USER 0x40
448 #define FAULT_FLAG_REMOTE 0x80
449 #define FAULT_FLAG_INSTRUCTION 0x100
450 #define FAULT_FLAG_INTERRUPTIBLE 0x200
453 * The default fault flags that should be used by most of the
454 * arch-specific page fault handlers.
456 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
457 FAULT_FLAG_KILLABLE | \
458 FAULT_FLAG_INTERRUPTIBLE)
461 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
463 * This is mostly used for places where we want to try to avoid taking
464 * the mmap_lock for too long a time when waiting for another condition
465 * to change, in which case we can try to be polite to release the
466 * mmap_lock in the first round to avoid potential starvation of other
467 * processes that would also want the mmap_lock.
469 * Return: true if the page fault allows retry and this is the first
470 * attempt of the fault handling; false otherwise.
472 static inline bool fault_flag_allow_retry_first(unsigned int flags)
474 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
475 (!(flags & FAULT_FLAG_TRIED));
478 #define FAULT_FLAG_TRACE \
479 { FAULT_FLAG_WRITE, "WRITE" }, \
480 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
481 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
482 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
483 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
484 { FAULT_FLAG_TRIED, "TRIED" }, \
485 { FAULT_FLAG_USER, "USER" }, \
486 { FAULT_FLAG_REMOTE, "REMOTE" }, \
487 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
488 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
491 * vm_fault is filled by the pagefault handler and passed to the vma's
492 * ->fault function. The vma's ->fault is responsible for returning a bitmask
493 * of VM_FAULT_xxx flags that give details about how the fault was handled.
495 * MM layer fills up gfp_mask for page allocations but fault handler might
496 * alter it if its implementation requires a different allocation context.
498 * pgoff should be used in favour of virtual_address, if possible.
501 struct vm_area_struct *vma; /* Target VMA */
502 unsigned int flags; /* FAULT_FLAG_xxx flags */
503 gfp_t gfp_mask; /* gfp mask to be used for allocations */
504 pgoff_t pgoff; /* Logical page offset based on vma */
505 unsigned long address; /* Faulting virtual address */
506 pmd_t *pmd; /* Pointer to pmd entry matching
508 pud_t *pud; /* Pointer to pud entry matching
511 pte_t orig_pte; /* Value of PTE at the time of fault */
513 struct page *cow_page; /* Page handler may use for COW fault */
514 struct page *page; /* ->fault handlers should return a
515 * page here, unless VM_FAULT_NOPAGE
516 * is set (which is also implied by
519 /* These three entries are valid only while holding ptl lock */
520 pte_t *pte; /* Pointer to pte entry matching
521 * the 'address'. NULL if the page
522 * table hasn't been allocated.
524 spinlock_t *ptl; /* Page table lock.
525 * Protects pte page table if 'pte'
526 * is not NULL, otherwise pmd.
528 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
529 * vm_ops->map_pages() calls
530 * alloc_set_pte() from atomic context.
531 * do_fault_around() pre-allocates
532 * page table to avoid allocation from
537 /* page entry size for vm->huge_fault() */
538 enum page_entry_size {
545 * These are the virtual MM functions - opening of an area, closing and
546 * unmapping it (needed to keep files on disk up-to-date etc), pointer
547 * to the functions called when a no-page or a wp-page exception occurs.
549 struct vm_operations_struct {
550 void (*open)(struct vm_area_struct * area);
551 void (*close)(struct vm_area_struct * area);
552 int (*split)(struct vm_area_struct * area, unsigned long addr);
553 int (*mremap)(struct vm_area_struct * area);
554 vm_fault_t (*fault)(struct vm_fault *vmf);
555 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
556 enum page_entry_size pe_size);
557 void (*map_pages)(struct vm_fault *vmf,
558 pgoff_t start_pgoff, pgoff_t end_pgoff);
559 unsigned long (*pagesize)(struct vm_area_struct * area);
561 /* notification that a previously read-only page is about to become
562 * writable, if an error is returned it will cause a SIGBUS */
563 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
565 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
566 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
568 /* called by access_process_vm when get_user_pages() fails, typically
569 * for use by special VMAs that can switch between memory and hardware
571 int (*access)(struct vm_area_struct *vma, unsigned long addr,
572 void *buf, int len, int write);
574 /* Called by the /proc/PID/maps code to ask the vma whether it
575 * has a special name. Returning non-NULL will also cause this
576 * vma to be dumped unconditionally. */
577 const char *(*name)(struct vm_area_struct *vma);
581 * set_policy() op must add a reference to any non-NULL @new mempolicy
582 * to hold the policy upon return. Caller should pass NULL @new to
583 * remove a policy and fall back to surrounding context--i.e. do not
584 * install a MPOL_DEFAULT policy, nor the task or system default
587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
590 * get_policy() op must add reference [mpol_get()] to any policy at
591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
592 * in mm/mempolicy.c will do this automatically.
593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
596 * must return NULL--i.e., do not "fallback" to task or system default
599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
603 * Called by vm_normal_page() for special PTEs to find the
604 * page for @addr. This is useful if the default behavior
605 * (using pte_page()) would not find the correct page.
607 struct page *(*find_special_page)(struct vm_area_struct *vma,
611 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
613 static const struct vm_operations_struct dummy_vm_ops = {};
615 memset(vma, 0, sizeof(*vma));
617 vma->vm_ops = &dummy_vm_ops;
618 INIT_LIST_HEAD(&vma->anon_vma_chain);
621 static inline void vma_set_anonymous(struct vm_area_struct *vma)
626 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
631 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
639 VM_STACK_INCOMPLETE_SETUP)
645 static inline bool vma_is_foreign(struct vm_area_struct *vma)
650 if (current->mm != vma->vm_mm)
656 static inline bool vma_is_accessible(struct vm_area_struct *vma)
658 return vma->vm_flags & VM_ACCESS_FLAGS;
663 * The vma_is_shmem is not inline because it is used only by slow
664 * paths in userfault.
666 bool vma_is_shmem(struct vm_area_struct *vma);
668 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
671 int vma_is_stack_for_current(struct vm_area_struct *vma);
673 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
674 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
679 #include <linux/huge_mm.h>
682 * Methods to modify the page usage count.
684 * What counts for a page usage:
685 * - cache mapping (page->mapping)
686 * - private data (page->private)
687 * - page mapped in a task's page tables, each mapping
688 * is counted separately
690 * Also, many kernel routines increase the page count before a critical
691 * routine so they can be sure the page doesn't go away from under them.
695 * Drop a ref, return true if the refcount fell to zero (the page has no users)
697 static inline int put_page_testzero(struct page *page)
699 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
700 return page_ref_dec_and_test(page);
704 * Try to grab a ref unless the page has a refcount of zero, return false if
706 * This can be called when MMU is off so it must not access
707 * any of the virtual mappings.
709 static inline int get_page_unless_zero(struct page *page)
711 return page_ref_add_unless(page, 1, 0);
714 extern int page_is_ram(unsigned long pfn);
722 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
725 /* Support for virtually mapped pages */
726 struct page *vmalloc_to_page(const void *addr);
727 unsigned long vmalloc_to_pfn(const void *addr);
730 * Determine if an address is within the vmalloc range
732 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
733 * is no special casing required.
736 #ifndef is_ioremap_addr
737 #define is_ioremap_addr(x) is_vmalloc_addr(x)
741 extern bool is_vmalloc_addr(const void *x);
742 extern int is_vmalloc_or_module_addr(const void *x);
744 static inline bool is_vmalloc_addr(const void *x)
748 static inline int is_vmalloc_or_module_addr(const void *x)
754 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
755 static inline void *kvmalloc(size_t size, gfp_t flags)
757 return kvmalloc_node(size, flags, NUMA_NO_NODE);
759 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
761 return kvmalloc_node(size, flags | __GFP_ZERO, node);
763 static inline void *kvzalloc(size_t size, gfp_t flags)
765 return kvmalloc(size, flags | __GFP_ZERO);
768 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
772 if (unlikely(check_mul_overflow(n, size, &bytes)))
775 return kvmalloc(bytes, flags);
778 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
780 return kvmalloc_array(n, size, flags | __GFP_ZERO);
783 extern void kvfree(const void *addr);
784 extern void kvfree_sensitive(const void *addr, size_t len);
786 static inline int head_mapcount(struct page *head)
788 return atomic_read(compound_mapcount_ptr(head)) + 1;
792 * Mapcount of compound page as a whole, does not include mapped sub-pages.
794 * Must be called only for compound pages or any their tail sub-pages.
796 static inline int compound_mapcount(struct page *page)
798 VM_BUG_ON_PAGE(!PageCompound(page), page);
799 page = compound_head(page);
800 return head_mapcount(page);
804 * The atomic page->_mapcount, starts from -1: so that transitions
805 * both from it and to it can be tracked, using atomic_inc_and_test
806 * and atomic_add_negative(-1).
808 static inline void page_mapcount_reset(struct page *page)
810 atomic_set(&(page)->_mapcount, -1);
813 int __page_mapcount(struct page *page);
816 * Mapcount of 0-order page; when compound sub-page, includes
817 * compound_mapcount().
819 * Result is undefined for pages which cannot be mapped into userspace.
820 * For example SLAB or special types of pages. See function page_has_type().
821 * They use this place in struct page differently.
823 static inline int page_mapcount(struct page *page)
825 if (unlikely(PageCompound(page)))
826 return __page_mapcount(page);
827 return atomic_read(&page->_mapcount) + 1;
830 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
831 int total_mapcount(struct page *page);
832 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
834 static inline int total_mapcount(struct page *page)
836 return page_mapcount(page);
838 static inline int page_trans_huge_mapcount(struct page *page,
841 int mapcount = page_mapcount(page);
843 *total_mapcount = mapcount;
848 static inline struct page *virt_to_head_page(const void *x)
850 struct page *page = virt_to_page(x);
852 return compound_head(page);
855 void __put_page(struct page *page);
857 void put_pages_list(struct list_head *pages);
859 void split_page(struct page *page, unsigned int order);
862 * Compound pages have a destructor function. Provide a
863 * prototype for that function and accessor functions.
864 * These are _only_ valid on the head of a compound page.
866 typedef void compound_page_dtor(struct page *);
868 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
869 enum compound_dtor_id {
872 #ifdef CONFIG_HUGETLB_PAGE
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
880 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
882 static inline void set_compound_page_dtor(struct page *page,
883 enum compound_dtor_id compound_dtor)
885 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
886 page[1].compound_dtor = compound_dtor;
889 static inline void destroy_compound_page(struct page *page)
891 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
892 compound_page_dtors[page[1].compound_dtor](page);
895 static inline unsigned int compound_order(struct page *page)
899 return page[1].compound_order;
902 static inline bool hpage_pincount_available(struct page *page)
905 * Can the page->hpage_pinned_refcount field be used? That field is in
906 * the 3rd page of the compound page, so the smallest (2-page) compound
907 * pages cannot support it.
909 page = compound_head(page);
910 return PageCompound(page) && compound_order(page) > 1;
913 static inline int head_pincount(struct page *head)
915 return atomic_read(compound_pincount_ptr(head));
918 static inline int compound_pincount(struct page *page)
920 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
921 page = compound_head(page);
922 return head_pincount(page);
925 static inline void set_compound_order(struct page *page, unsigned int order)
927 page[1].compound_order = order;
928 page[1].compound_nr = 1U << order;
931 /* Returns the number of pages in this potentially compound page. */
932 static inline unsigned long compound_nr(struct page *page)
936 return page[1].compound_nr;
939 /* Returns the number of bytes in this potentially compound page. */
940 static inline unsigned long page_size(struct page *page)
942 return PAGE_SIZE << compound_order(page);
945 /* Returns the number of bits needed for the number of bytes in a page */
946 static inline unsigned int page_shift(struct page *page)
948 return PAGE_SHIFT + compound_order(page);
951 void free_compound_page(struct page *page);
955 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
956 * servicing faults for write access. In the normal case, do always want
957 * pte_mkwrite. But get_user_pages can cause write faults for mappings
958 * that do not have writing enabled, when used by access_process_vm.
960 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
962 if (likely(vma->vm_flags & VM_WRITE))
963 pte = pte_mkwrite(pte);
967 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
968 vm_fault_t finish_fault(struct vm_fault *vmf);
969 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
973 * Multiple processes may "see" the same page. E.g. for untouched
974 * mappings of /dev/null, all processes see the same page full of
975 * zeroes, and text pages of executables and shared libraries have
976 * only one copy in memory, at most, normally.
978 * For the non-reserved pages, page_count(page) denotes a reference count.
979 * page_count() == 0 means the page is free. page->lru is then used for
980 * freelist management in the buddy allocator.
981 * page_count() > 0 means the page has been allocated.
983 * Pages are allocated by the slab allocator in order to provide memory
984 * to kmalloc and kmem_cache_alloc. In this case, the management of the
985 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
986 * unless a particular usage is carefully commented. (the responsibility of
987 * freeing the kmalloc memory is the caller's, of course).
989 * A page may be used by anyone else who does a __get_free_page().
990 * In this case, page_count still tracks the references, and should only
991 * be used through the normal accessor functions. The top bits of page->flags
992 * and page->virtual store page management information, but all other fields
993 * are unused and could be used privately, carefully. The management of this
994 * page is the responsibility of the one who allocated it, and those who have
995 * subsequently been given references to it.
997 * The other pages (we may call them "pagecache pages") are completely
998 * managed by the Linux memory manager: I/O, buffers, swapping etc.
999 * The following discussion applies only to them.
1001 * A pagecache page contains an opaque `private' member, which belongs to the
1002 * page's address_space. Usually, this is the address of a circular list of
1003 * the page's disk buffers. PG_private must be set to tell the VM to call
1004 * into the filesystem to release these pages.
1006 * A page may belong to an inode's memory mapping. In this case, page->mapping
1007 * is the pointer to the inode, and page->index is the file offset of the page,
1008 * in units of PAGE_SIZE.
1010 * If pagecache pages are not associated with an inode, they are said to be
1011 * anonymous pages. These may become associated with the swapcache, and in that
1012 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1014 * In either case (swapcache or inode backed), the pagecache itself holds one
1015 * reference to the page. Setting PG_private should also increment the
1016 * refcount. The each user mapping also has a reference to the page.
1018 * The pagecache pages are stored in a per-mapping radix tree, which is
1019 * rooted at mapping->i_pages, and indexed by offset.
1020 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1021 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1023 * All pagecache pages may be subject to I/O:
1024 * - inode pages may need to be read from disk,
1025 * - inode pages which have been modified and are MAP_SHARED may need
1026 * to be written back to the inode on disk,
1027 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1028 * modified may need to be swapped out to swap space and (later) to be read
1033 * The zone field is never updated after free_area_init_core()
1034 * sets it, so none of the operations on it need to be atomic.
1037 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1038 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1039 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1040 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1041 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1042 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1045 * Define the bit shifts to access each section. For non-existent
1046 * sections we define the shift as 0; that plus a 0 mask ensures
1047 * the compiler will optimise away reference to them.
1049 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1050 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1051 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1052 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1053 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1055 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1056 #ifdef NODE_NOT_IN_PAGE_FLAGS
1057 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1058 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1059 SECTIONS_PGOFF : ZONES_PGOFF)
1061 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1062 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1063 NODES_PGOFF : ZONES_PGOFF)
1066 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1068 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1069 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1070 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1071 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1072 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1073 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1075 static inline enum zone_type page_zonenum(const struct page *page)
1077 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1078 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1081 #ifdef CONFIG_ZONE_DEVICE
1082 static inline bool is_zone_device_page(const struct page *page)
1084 return page_zonenum(page) == ZONE_DEVICE;
1086 extern void memmap_init_zone_device(struct zone *, unsigned long,
1087 unsigned long, struct dev_pagemap *);
1089 static inline bool is_zone_device_page(const struct page *page)
1095 #ifdef CONFIG_DEV_PAGEMAP_OPS
1096 void free_devmap_managed_page(struct page *page);
1097 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1099 static inline bool page_is_devmap_managed(struct page *page)
1101 if (!static_branch_unlikely(&devmap_managed_key))
1103 if (!is_zone_device_page(page))
1105 switch (page->pgmap->type) {
1106 case MEMORY_DEVICE_PRIVATE:
1107 case MEMORY_DEVICE_FS_DAX:
1115 void put_devmap_managed_page(struct page *page);
1117 #else /* CONFIG_DEV_PAGEMAP_OPS */
1118 static inline bool page_is_devmap_managed(struct page *page)
1123 static inline void put_devmap_managed_page(struct page *page)
1126 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1128 static inline bool is_device_private_page(const struct page *page)
1130 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1131 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1132 is_zone_device_page(page) &&
1133 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1136 static inline bool is_pci_p2pdma_page(const struct page *page)
1138 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1139 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1140 is_zone_device_page(page) &&
1141 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1144 /* 127: arbitrary random number, small enough to assemble well */
1145 #define page_ref_zero_or_close_to_overflow(page) \
1146 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1148 static inline void get_page(struct page *page)
1150 page = compound_head(page);
1152 * Getting a normal page or the head of a compound page
1153 * requires to already have an elevated page->_refcount.
1155 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1159 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1161 static inline __must_check bool try_get_page(struct page *page)
1163 page = compound_head(page);
1164 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1170 static inline void put_page(struct page *page)
1172 page = compound_head(page);
1175 * For devmap managed pages we need to catch refcount transition from
1176 * 2 to 1, when refcount reach one it means the page is free and we
1177 * need to inform the device driver through callback. See
1178 * include/linux/memremap.h and HMM for details.
1180 if (page_is_devmap_managed(page)) {
1181 put_devmap_managed_page(page);
1185 if (put_page_testzero(page))
1190 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1191 * the page's refcount so that two separate items are tracked: the original page
1192 * reference count, and also a new count of how many pin_user_pages() calls were
1193 * made against the page. ("gup-pinned" is another term for the latter).
1195 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1196 * distinct from normal pages. As such, the unpin_user_page() call (and its
1197 * variants) must be used in order to release gup-pinned pages.
1201 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1202 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1203 * simpler, due to the fact that adding an even power of two to the page
1204 * refcount has the effect of using only the upper N bits, for the code that
1205 * counts up using the bias value. This means that the lower bits are left for
1206 * the exclusive use of the original code that increments and decrements by one
1207 * (or at least, by much smaller values than the bias value).
1209 * Of course, once the lower bits overflow into the upper bits (and this is
1210 * OK, because subtraction recovers the original values), then visual inspection
1211 * no longer suffices to directly view the separate counts. However, for normal
1212 * applications that don't have huge page reference counts, this won't be an
1215 * Locking: the lockless algorithm described in page_cache_get_speculative()
1216 * and page_cache_gup_pin_speculative() provides safe operation for
1217 * get_user_pages and page_mkclean and other calls that race to set up page
1220 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1222 void unpin_user_page(struct page *page);
1223 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1225 void unpin_user_pages(struct page **pages, unsigned long npages);
1228 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1230 * This function checks if a page has been pinned via a call to
1231 * pin_user_pages*().
1233 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1234 * because it means "definitely not pinned for DMA", but true means "probably
1235 * pinned for DMA, but possibly a false positive due to having at least
1236 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1238 * False positives are OK, because: a) it's unlikely for a page to get that many
1239 * refcounts, and b) all the callers of this routine are expected to be able to
1240 * deal gracefully with a false positive.
1242 * For huge pages, the result will be exactly correct. That's because we have
1243 * more tracking data available: the 3rd struct page in the compound page is
1244 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1247 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1249 * @page: pointer to page to be queried.
1250 * @Return: True, if it is likely that the page has been "dma-pinned".
1251 * False, if the page is definitely not dma-pinned.
1253 static inline bool page_maybe_dma_pinned(struct page *page)
1255 if (hpage_pincount_available(page))
1256 return compound_pincount(page) > 0;
1259 * page_ref_count() is signed. If that refcount overflows, then
1260 * page_ref_count() returns a negative value, and callers will avoid
1261 * further incrementing the refcount.
1263 * Here, for that overflow case, use the signed bit to count a little
1264 * bit higher via unsigned math, and thus still get an accurate result.
1266 return ((unsigned int)page_ref_count(compound_head(page))) >=
1267 GUP_PIN_COUNTING_BIAS;
1270 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1271 #define SECTION_IN_PAGE_FLAGS
1275 * The identification function is mainly used by the buddy allocator for
1276 * determining if two pages could be buddies. We are not really identifying
1277 * the zone since we could be using the section number id if we do not have
1278 * node id available in page flags.
1279 * We only guarantee that it will return the same value for two combinable
1282 static inline int page_zone_id(struct page *page)
1284 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1287 #ifdef NODE_NOT_IN_PAGE_FLAGS
1288 extern int page_to_nid(const struct page *page);
1290 static inline int page_to_nid(const struct page *page)
1292 struct page *p = (struct page *)page;
1294 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1298 #ifdef CONFIG_NUMA_BALANCING
1299 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1301 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1304 static inline int cpupid_to_pid(int cpupid)
1306 return cpupid & LAST__PID_MASK;
1309 static inline int cpupid_to_cpu(int cpupid)
1311 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1314 static inline int cpupid_to_nid(int cpupid)
1316 return cpu_to_node(cpupid_to_cpu(cpupid));
1319 static inline bool cpupid_pid_unset(int cpupid)
1321 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1324 static inline bool cpupid_cpu_unset(int cpupid)
1326 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1329 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1331 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1334 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1335 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1336 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1338 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1341 static inline int page_cpupid_last(struct page *page)
1343 return page->_last_cpupid;
1345 static inline void page_cpupid_reset_last(struct page *page)
1347 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1350 static inline int page_cpupid_last(struct page *page)
1352 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1355 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1357 static inline void page_cpupid_reset_last(struct page *page)
1359 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1361 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1362 #else /* !CONFIG_NUMA_BALANCING */
1363 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1365 return page_to_nid(page); /* XXX */
1368 static inline int page_cpupid_last(struct page *page)
1370 return page_to_nid(page); /* XXX */
1373 static inline int cpupid_to_nid(int cpupid)
1378 static inline int cpupid_to_pid(int cpupid)
1383 static inline int cpupid_to_cpu(int cpupid)
1388 static inline int cpu_pid_to_cpupid(int nid, int pid)
1393 static inline bool cpupid_pid_unset(int cpupid)
1398 static inline void page_cpupid_reset_last(struct page *page)
1402 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1406 #endif /* CONFIG_NUMA_BALANCING */
1408 #ifdef CONFIG_KASAN_SW_TAGS
1409 static inline u8 page_kasan_tag(const struct page *page)
1411 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1414 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1416 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1417 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1420 static inline void page_kasan_tag_reset(struct page *page)
1422 page_kasan_tag_set(page, 0xff);
1425 static inline u8 page_kasan_tag(const struct page *page)
1430 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1431 static inline void page_kasan_tag_reset(struct page *page) { }
1434 static inline struct zone *page_zone(const struct page *page)
1436 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1439 static inline pg_data_t *page_pgdat(const struct page *page)
1441 return NODE_DATA(page_to_nid(page));
1444 #ifdef SECTION_IN_PAGE_FLAGS
1445 static inline void set_page_section(struct page *page, unsigned long section)
1447 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1448 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1451 static inline unsigned long page_to_section(const struct page *page)
1453 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1457 static inline void set_page_zone(struct page *page, enum zone_type zone)
1459 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1460 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1463 static inline void set_page_node(struct page *page, unsigned long node)
1465 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1466 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1469 static inline void set_page_links(struct page *page, enum zone_type zone,
1470 unsigned long node, unsigned long pfn)
1472 set_page_zone(page, zone);
1473 set_page_node(page, node);
1474 #ifdef SECTION_IN_PAGE_FLAGS
1475 set_page_section(page, pfn_to_section_nr(pfn));
1480 static inline struct mem_cgroup *page_memcg(struct page *page)
1482 return page->mem_cgroup;
1484 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1486 WARN_ON_ONCE(!rcu_read_lock_held());
1487 return READ_ONCE(page->mem_cgroup);
1490 static inline struct mem_cgroup *page_memcg(struct page *page)
1494 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1496 WARN_ON_ONCE(!rcu_read_lock_held());
1502 * Some inline functions in vmstat.h depend on page_zone()
1504 #include <linux/vmstat.h>
1506 static __always_inline void *lowmem_page_address(const struct page *page)
1508 return page_to_virt(page);
1511 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1512 #define HASHED_PAGE_VIRTUAL
1515 #if defined(WANT_PAGE_VIRTUAL)
1516 static inline void *page_address(const struct page *page)
1518 return page->virtual;
1520 static inline void set_page_address(struct page *page, void *address)
1522 page->virtual = address;
1524 #define page_address_init() do { } while(0)
1527 #if defined(HASHED_PAGE_VIRTUAL)
1528 void *page_address(const struct page *page);
1529 void set_page_address(struct page *page, void *virtual);
1530 void page_address_init(void);
1533 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1534 #define page_address(page) lowmem_page_address(page)
1535 #define set_page_address(page, address) do { } while(0)
1536 #define page_address_init() do { } while(0)
1539 extern void *page_rmapping(struct page *page);
1540 extern struct anon_vma *page_anon_vma(struct page *page);
1541 extern struct address_space *page_mapping(struct page *page);
1543 extern struct address_space *__page_file_mapping(struct page *);
1546 struct address_space *page_file_mapping(struct page *page)
1548 if (unlikely(PageSwapCache(page)))
1549 return __page_file_mapping(page);
1551 return page->mapping;
1554 extern pgoff_t __page_file_index(struct page *page);
1557 * Return the pagecache index of the passed page. Regular pagecache pages
1558 * use ->index whereas swapcache pages use swp_offset(->private)
1560 static inline pgoff_t page_index(struct page *page)
1562 if (unlikely(PageSwapCache(page)))
1563 return __page_file_index(page);
1567 bool page_mapped(struct page *page);
1568 struct address_space *page_mapping(struct page *page);
1569 struct address_space *page_mapping_file(struct page *page);
1572 * Return true only if the page has been allocated with
1573 * ALLOC_NO_WATERMARKS and the low watermark was not
1574 * met implying that the system is under some pressure.
1576 static inline bool page_is_pfmemalloc(struct page *page)
1579 * Page index cannot be this large so this must be
1580 * a pfmemalloc page.
1582 return page->index == -1UL;
1586 * Only to be called by the page allocator on a freshly allocated
1589 static inline void set_page_pfmemalloc(struct page *page)
1594 static inline void clear_page_pfmemalloc(struct page *page)
1600 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1602 extern void pagefault_out_of_memory(void);
1604 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1605 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1608 * Flags passed to show_mem() and show_free_areas() to suppress output in
1611 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1613 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1616 extern bool can_do_mlock(void);
1618 static inline bool can_do_mlock(void) { return false; }
1620 extern int user_shm_lock(size_t, struct user_struct *);
1621 extern void user_shm_unlock(size_t, struct user_struct *);
1624 * Parameter block passed down to zap_pte_range in exceptional cases.
1626 struct zap_details {
1627 struct address_space *check_mapping; /* Check page->mapping if set */
1628 pgoff_t first_index; /* Lowest page->index to unmap */
1629 pgoff_t last_index; /* Highest page->index to unmap */
1632 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1634 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1637 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1638 unsigned long size);
1639 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1640 unsigned long size);
1641 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1642 unsigned long start, unsigned long end);
1644 struct mmu_notifier_range;
1646 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1647 unsigned long end, unsigned long floor, unsigned long ceiling);
1648 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1649 struct vm_area_struct *vma);
1650 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1651 struct mmu_notifier_range *range,
1652 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1653 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1654 unsigned long *pfn);
1655 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1656 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1657 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1658 void *buf, int len, int write);
1660 extern void truncate_pagecache(struct inode *inode, loff_t new);
1661 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1662 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1663 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1664 int truncate_inode_page(struct address_space *mapping, struct page *page);
1665 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1666 int invalidate_inode_page(struct page *page);
1669 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1670 unsigned long address, unsigned int flags,
1671 struct pt_regs *regs);
1672 extern int fixup_user_fault(struct mm_struct *mm,
1673 unsigned long address, unsigned int fault_flags,
1675 void unmap_mapping_pages(struct address_space *mapping,
1676 pgoff_t start, pgoff_t nr, bool even_cows);
1677 void unmap_mapping_range(struct address_space *mapping,
1678 loff_t const holebegin, loff_t const holelen, int even_cows);
1680 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1681 unsigned long address, unsigned int flags,
1682 struct pt_regs *regs)
1684 /* should never happen if there's no MMU */
1686 return VM_FAULT_SIGBUS;
1688 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1689 unsigned int fault_flags, bool *unlocked)
1691 /* should never happen if there's no MMU */
1695 static inline void unmap_mapping_pages(struct address_space *mapping,
1696 pgoff_t start, pgoff_t nr, bool even_cows) { }
1697 static inline void unmap_mapping_range(struct address_space *mapping,
1698 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1701 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1702 loff_t const holebegin, loff_t const holelen)
1704 unmap_mapping_range(mapping, holebegin, holelen, 0);
1707 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1708 void *buf, int len, unsigned int gup_flags);
1709 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1710 void *buf, int len, unsigned int gup_flags);
1711 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1712 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1714 long get_user_pages_remote(struct mm_struct *mm,
1715 unsigned long start, unsigned long nr_pages,
1716 unsigned int gup_flags, struct page **pages,
1717 struct vm_area_struct **vmas, int *locked);
1718 long pin_user_pages_remote(struct mm_struct *mm,
1719 unsigned long start, unsigned long nr_pages,
1720 unsigned int gup_flags, struct page **pages,
1721 struct vm_area_struct **vmas, int *locked);
1722 long get_user_pages(unsigned long start, unsigned long nr_pages,
1723 unsigned int gup_flags, struct page **pages,
1724 struct vm_area_struct **vmas);
1725 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1726 unsigned int gup_flags, struct page **pages,
1727 struct vm_area_struct **vmas);
1728 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1729 unsigned int gup_flags, struct page **pages, int *locked);
1730 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1731 unsigned int gup_flags, struct page **pages, int *locked);
1732 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1733 struct page **pages, unsigned int gup_flags);
1734 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1735 struct page **pages, unsigned int gup_flags);
1737 int get_user_pages_fast(unsigned long start, int nr_pages,
1738 unsigned int gup_flags, struct page **pages);
1739 int pin_user_pages_fast(unsigned long start, int nr_pages,
1740 unsigned int gup_flags, struct page **pages);
1742 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1743 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1744 struct task_struct *task, bool bypass_rlim);
1746 /* Container for pinned pfns / pages */
1747 struct frame_vector {
1748 unsigned int nr_allocated; /* Number of frames we have space for */
1749 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1750 bool got_ref; /* Did we pin pages by getting page ref? */
1751 bool is_pfns; /* Does array contain pages or pfns? */
1752 void *ptrs[]; /* Array of pinned pfns / pages. Use
1753 * pfns_vector_pages() or pfns_vector_pfns()
1757 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1758 void frame_vector_destroy(struct frame_vector *vec);
1759 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1760 unsigned int gup_flags, struct frame_vector *vec);
1761 void put_vaddr_frames(struct frame_vector *vec);
1762 int frame_vector_to_pages(struct frame_vector *vec);
1763 void frame_vector_to_pfns(struct frame_vector *vec);
1765 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1767 return vec->nr_frames;
1770 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1773 int err = frame_vector_to_pages(vec);
1776 return ERR_PTR(err);
1778 return (struct page **)(vec->ptrs);
1781 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1784 frame_vector_to_pfns(vec);
1785 return (unsigned long *)(vec->ptrs);
1789 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1790 struct page **pages);
1791 int get_kernel_page(unsigned long start, int write, struct page **pages);
1792 struct page *get_dump_page(unsigned long addr);
1794 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1795 extern void do_invalidatepage(struct page *page, unsigned int offset,
1796 unsigned int length);
1798 void __set_page_dirty(struct page *, struct address_space *, int warn);
1799 int __set_page_dirty_nobuffers(struct page *page);
1800 int __set_page_dirty_no_writeback(struct page *page);
1801 int redirty_page_for_writepage(struct writeback_control *wbc,
1803 void account_page_dirtied(struct page *page, struct address_space *mapping);
1804 void account_page_cleaned(struct page *page, struct address_space *mapping,
1805 struct bdi_writeback *wb);
1806 int set_page_dirty(struct page *page);
1807 int set_page_dirty_lock(struct page *page);
1808 void __cancel_dirty_page(struct page *page);
1809 static inline void cancel_dirty_page(struct page *page)
1811 /* Avoid atomic ops, locking, etc. when not actually needed. */
1812 if (PageDirty(page))
1813 __cancel_dirty_page(page);
1815 int clear_page_dirty_for_io(struct page *page);
1817 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1819 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1820 unsigned long old_addr, struct vm_area_struct *new_vma,
1821 unsigned long new_addr, unsigned long len,
1822 bool need_rmap_locks);
1825 * Flags used by change_protection(). For now we make it a bitmap so
1826 * that we can pass in multiple flags just like parameters. However
1827 * for now all the callers are only use one of the flags at the same
1830 /* Whether we should allow dirty bit accounting */
1831 #define MM_CP_DIRTY_ACCT (1UL << 0)
1832 /* Whether this protection change is for NUMA hints */
1833 #define MM_CP_PROT_NUMA (1UL << 1)
1834 /* Whether this change is for write protecting */
1835 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1836 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1837 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1838 MM_CP_UFFD_WP_RESOLVE)
1840 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1841 unsigned long end, pgprot_t newprot,
1842 unsigned long cp_flags);
1843 extern int mprotect_fixup(struct vm_area_struct *vma,
1844 struct vm_area_struct **pprev, unsigned long start,
1845 unsigned long end, unsigned long newflags);
1848 * doesn't attempt to fault and will return short.
1850 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1851 unsigned int gup_flags, struct page **pages);
1852 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1853 unsigned int gup_flags, struct page **pages);
1855 static inline bool get_user_page_fast_only(unsigned long addr,
1856 unsigned int gup_flags, struct page **pagep)
1858 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1861 * per-process(per-mm_struct) statistics.
1863 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1865 long val = atomic_long_read(&mm->rss_stat.count[member]);
1867 #ifdef SPLIT_RSS_COUNTING
1869 * counter is updated in asynchronous manner and may go to minus.
1870 * But it's never be expected number for users.
1875 return (unsigned long)val;
1878 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1880 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1882 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1884 mm_trace_rss_stat(mm, member, count);
1887 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1889 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1891 mm_trace_rss_stat(mm, member, count);
1894 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1896 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1898 mm_trace_rss_stat(mm, member, count);
1901 /* Optimized variant when page is already known not to be PageAnon */
1902 static inline int mm_counter_file(struct page *page)
1904 if (PageSwapBacked(page))
1905 return MM_SHMEMPAGES;
1906 return MM_FILEPAGES;
1909 static inline int mm_counter(struct page *page)
1912 return MM_ANONPAGES;
1913 return mm_counter_file(page);
1916 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1918 return get_mm_counter(mm, MM_FILEPAGES) +
1919 get_mm_counter(mm, MM_ANONPAGES) +
1920 get_mm_counter(mm, MM_SHMEMPAGES);
1923 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1925 return max(mm->hiwater_rss, get_mm_rss(mm));
1928 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1930 return max(mm->hiwater_vm, mm->total_vm);
1933 static inline void update_hiwater_rss(struct mm_struct *mm)
1935 unsigned long _rss = get_mm_rss(mm);
1937 if ((mm)->hiwater_rss < _rss)
1938 (mm)->hiwater_rss = _rss;
1941 static inline void update_hiwater_vm(struct mm_struct *mm)
1943 if (mm->hiwater_vm < mm->total_vm)
1944 mm->hiwater_vm = mm->total_vm;
1947 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1949 mm->hiwater_rss = get_mm_rss(mm);
1952 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1953 struct mm_struct *mm)
1955 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1957 if (*maxrss < hiwater_rss)
1958 *maxrss = hiwater_rss;
1961 #if defined(SPLIT_RSS_COUNTING)
1962 void sync_mm_rss(struct mm_struct *mm);
1964 static inline void sync_mm_rss(struct mm_struct *mm)
1969 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1970 static inline int pte_special(pte_t pte)
1975 static inline pte_t pte_mkspecial(pte_t pte)
1981 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1982 static inline int pte_devmap(pte_t pte)
1988 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1990 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1992 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1996 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2000 #ifdef __PAGETABLE_P4D_FOLDED
2001 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2002 unsigned long address)
2007 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2010 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2011 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2012 unsigned long address)
2016 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2017 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2020 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2022 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2024 if (mm_pud_folded(mm))
2026 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2029 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2031 if (mm_pud_folded(mm))
2033 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2037 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2038 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2039 unsigned long address)
2044 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2045 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2048 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2050 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2052 if (mm_pmd_folded(mm))
2054 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2057 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2059 if (mm_pmd_folded(mm))
2061 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2066 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2068 atomic_long_set(&mm->pgtables_bytes, 0);
2071 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2073 return atomic_long_read(&mm->pgtables_bytes);
2076 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2078 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2081 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2083 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2087 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2088 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2093 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2094 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2097 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2098 int __pte_alloc_kernel(pmd_t *pmd);
2100 #if defined(CONFIG_MMU)
2102 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2103 unsigned long address)
2105 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2106 NULL : p4d_offset(pgd, address);
2109 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2110 unsigned long address)
2112 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2113 NULL : pud_offset(p4d, address);
2116 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2118 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2119 NULL: pmd_offset(pud, address);
2121 #endif /* CONFIG_MMU */
2123 #if USE_SPLIT_PTE_PTLOCKS
2124 #if ALLOC_SPLIT_PTLOCKS
2125 void __init ptlock_cache_init(void);
2126 extern bool ptlock_alloc(struct page *page);
2127 extern void ptlock_free(struct page *page);
2129 static inline spinlock_t *ptlock_ptr(struct page *page)
2133 #else /* ALLOC_SPLIT_PTLOCKS */
2134 static inline void ptlock_cache_init(void)
2138 static inline bool ptlock_alloc(struct page *page)
2143 static inline void ptlock_free(struct page *page)
2147 static inline spinlock_t *ptlock_ptr(struct page *page)
2151 #endif /* ALLOC_SPLIT_PTLOCKS */
2153 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2155 return ptlock_ptr(pmd_page(*pmd));
2158 static inline bool ptlock_init(struct page *page)
2161 * prep_new_page() initialize page->private (and therefore page->ptl)
2162 * with 0. Make sure nobody took it in use in between.
2164 * It can happen if arch try to use slab for page table allocation:
2165 * slab code uses page->slab_cache, which share storage with page->ptl.
2167 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2168 if (!ptlock_alloc(page))
2170 spin_lock_init(ptlock_ptr(page));
2174 #else /* !USE_SPLIT_PTE_PTLOCKS */
2176 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2178 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2180 return &mm->page_table_lock;
2182 static inline void ptlock_cache_init(void) {}
2183 static inline bool ptlock_init(struct page *page) { return true; }
2184 static inline void ptlock_free(struct page *page) {}
2185 #endif /* USE_SPLIT_PTE_PTLOCKS */
2187 static inline void pgtable_init(void)
2189 ptlock_cache_init();
2190 pgtable_cache_init();
2193 static inline bool pgtable_pte_page_ctor(struct page *page)
2195 if (!ptlock_init(page))
2197 __SetPageTable(page);
2198 inc_zone_page_state(page, NR_PAGETABLE);
2202 static inline void pgtable_pte_page_dtor(struct page *page)
2205 __ClearPageTable(page);
2206 dec_zone_page_state(page, NR_PAGETABLE);
2209 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2211 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2212 pte_t *__pte = pte_offset_map(pmd, address); \
2218 #define pte_unmap_unlock(pte, ptl) do { \
2223 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2225 #define pte_alloc_map(mm, pmd, address) \
2226 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2228 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2229 (pte_alloc(mm, pmd) ? \
2230 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2232 #define pte_alloc_kernel(pmd, address) \
2233 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2234 NULL: pte_offset_kernel(pmd, address))
2236 #if USE_SPLIT_PMD_PTLOCKS
2238 static struct page *pmd_to_page(pmd_t *pmd)
2240 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2241 return virt_to_page((void *)((unsigned long) pmd & mask));
2244 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2246 return ptlock_ptr(pmd_to_page(pmd));
2249 static inline bool pgtable_pmd_page_ctor(struct page *page)
2251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2252 page->pmd_huge_pte = NULL;
2254 return ptlock_init(page);
2257 static inline void pgtable_pmd_page_dtor(struct page *page)
2259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2260 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2265 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2269 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2271 return &mm->page_table_lock;
2274 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2275 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2277 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2281 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2283 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2289 * No scalability reason to split PUD locks yet, but follow the same pattern
2290 * as the PMD locks to make it easier if we decide to. The VM should not be
2291 * considered ready to switch to split PUD locks yet; there may be places
2292 * which need to be converted from page_table_lock.
2294 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2296 return &mm->page_table_lock;
2299 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2301 spinlock_t *ptl = pud_lockptr(mm, pud);
2307 extern void __init pagecache_init(void);
2308 extern void __init free_area_init_memoryless_node(int nid);
2309 extern void free_initmem(void);
2312 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2313 * into the buddy system. The freed pages will be poisoned with pattern
2314 * "poison" if it's within range [0, UCHAR_MAX].
2315 * Return pages freed into the buddy system.
2317 extern unsigned long free_reserved_area(void *start, void *end,
2318 int poison, const char *s);
2320 #ifdef CONFIG_HIGHMEM
2322 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2323 * and totalram_pages.
2325 extern void free_highmem_page(struct page *page);
2328 extern void adjust_managed_page_count(struct page *page, long count);
2329 extern void mem_init_print_info(const char *str);
2331 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2333 /* Free the reserved page into the buddy system, so it gets managed. */
2334 static inline void __free_reserved_page(struct page *page)
2336 ClearPageReserved(page);
2337 init_page_count(page);
2341 static inline void free_reserved_page(struct page *page)
2343 __free_reserved_page(page);
2344 adjust_managed_page_count(page, 1);
2347 static inline void mark_page_reserved(struct page *page)
2349 SetPageReserved(page);
2350 adjust_managed_page_count(page, -1);
2354 * Default method to free all the __init memory into the buddy system.
2355 * The freed pages will be poisoned with pattern "poison" if it's within
2356 * range [0, UCHAR_MAX].
2357 * Return pages freed into the buddy system.
2359 static inline unsigned long free_initmem_default(int poison)
2361 extern char __init_begin[], __init_end[];
2363 return free_reserved_area(&__init_begin, &__init_end,
2364 poison, "unused kernel");
2367 static inline unsigned long get_num_physpages(void)
2370 unsigned long phys_pages = 0;
2372 for_each_online_node(nid)
2373 phys_pages += node_present_pages(nid);
2379 * Using memblock node mappings, an architecture may initialise its
2380 * zones, allocate the backing mem_map and account for memory holes in an
2381 * architecture independent manner.
2383 * An architecture is expected to register range of page frames backed by
2384 * physical memory with memblock_add[_node]() before calling
2385 * free_area_init() passing in the PFN each zone ends at. At a basic
2386 * usage, an architecture is expected to do something like
2388 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2390 * for_each_valid_physical_page_range()
2391 * memblock_add_node(base, size, nid)
2392 * free_area_init(max_zone_pfns);
2394 void free_area_init(unsigned long *max_zone_pfn);
2395 unsigned long node_map_pfn_alignment(void);
2396 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2397 unsigned long end_pfn);
2398 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2399 unsigned long end_pfn);
2400 extern void get_pfn_range_for_nid(unsigned int nid,
2401 unsigned long *start_pfn, unsigned long *end_pfn);
2402 extern unsigned long find_min_pfn_with_active_regions(void);
2404 #ifndef CONFIG_NEED_MULTIPLE_NODES
2405 static inline int early_pfn_to_nid(unsigned long pfn)
2410 /* please see mm/page_alloc.c */
2411 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2412 /* there is a per-arch backend function. */
2413 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2414 struct mminit_pfnnid_cache *state);
2417 extern void set_dma_reserve(unsigned long new_dma_reserve);
2418 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2419 enum memmap_context, struct vmem_altmap *);
2420 extern void setup_per_zone_wmarks(void);
2421 extern int __meminit init_per_zone_wmark_min(void);
2422 extern void mem_init(void);
2423 extern void __init mmap_init(void);
2424 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2425 extern long si_mem_available(void);
2426 extern void si_meminfo(struct sysinfo * val);
2427 extern void si_meminfo_node(struct sysinfo *val, int nid);
2428 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2429 extern unsigned long arch_reserved_kernel_pages(void);
2432 extern __printf(3, 4)
2433 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2435 extern void setup_per_cpu_pageset(void);
2438 extern int min_free_kbytes;
2439 extern int watermark_boost_factor;
2440 extern int watermark_scale_factor;
2441 extern bool arch_has_descending_max_zone_pfns(void);
2444 extern atomic_long_t mmap_pages_allocated;
2445 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2447 /* interval_tree.c */
2448 void vma_interval_tree_insert(struct vm_area_struct *node,
2449 struct rb_root_cached *root);
2450 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2451 struct vm_area_struct *prev,
2452 struct rb_root_cached *root);
2453 void vma_interval_tree_remove(struct vm_area_struct *node,
2454 struct rb_root_cached *root);
2455 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2456 unsigned long start, unsigned long last);
2457 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2458 unsigned long start, unsigned long last);
2460 #define vma_interval_tree_foreach(vma, root, start, last) \
2461 for (vma = vma_interval_tree_iter_first(root, start, last); \
2462 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2464 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2465 struct rb_root_cached *root);
2466 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2467 struct rb_root_cached *root);
2468 struct anon_vma_chain *
2469 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2470 unsigned long start, unsigned long last);
2471 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2472 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2473 #ifdef CONFIG_DEBUG_VM_RB
2474 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2477 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2478 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2479 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2482 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2483 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2484 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2485 struct vm_area_struct *expand);
2486 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2487 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2489 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2491 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2492 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2493 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2494 struct mempolicy *, struct vm_userfaultfd_ctx);
2495 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2496 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2497 unsigned long addr, int new_below);
2498 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2499 unsigned long addr, int new_below);
2500 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2501 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2502 struct rb_node **, struct rb_node *);
2503 extern void unlink_file_vma(struct vm_area_struct *);
2504 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2505 unsigned long addr, unsigned long len, pgoff_t pgoff,
2506 bool *need_rmap_locks);
2507 extern void exit_mmap(struct mm_struct *);
2509 static inline int check_data_rlimit(unsigned long rlim,
2511 unsigned long start,
2512 unsigned long end_data,
2513 unsigned long start_data)
2515 if (rlim < RLIM_INFINITY) {
2516 if (((new - start) + (end_data - start_data)) > rlim)
2523 extern int mm_take_all_locks(struct mm_struct *mm);
2524 extern void mm_drop_all_locks(struct mm_struct *mm);
2526 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2527 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2528 extern struct file *get_task_exe_file(struct task_struct *task);
2530 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2531 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2533 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2534 const struct vm_special_mapping *sm);
2535 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2536 unsigned long addr, unsigned long len,
2537 unsigned long flags,
2538 const struct vm_special_mapping *spec);
2539 /* This is an obsolete alternative to _install_special_mapping. */
2540 extern int install_special_mapping(struct mm_struct *mm,
2541 unsigned long addr, unsigned long len,
2542 unsigned long flags, struct page **pages);
2544 unsigned long randomize_stack_top(unsigned long stack_top);
2546 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2548 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2549 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2550 struct list_head *uf);
2551 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2552 unsigned long len, unsigned long prot, unsigned long flags,
2553 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2554 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2555 struct list_head *uf, bool downgrade);
2556 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2557 struct list_head *uf);
2558 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2561 extern int __mm_populate(unsigned long addr, unsigned long len,
2563 static inline void mm_populate(unsigned long addr, unsigned long len)
2566 (void) __mm_populate(addr, len, 1);
2569 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2572 /* These take the mm semaphore themselves */
2573 extern int __must_check vm_brk(unsigned long, unsigned long);
2574 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2575 extern int vm_munmap(unsigned long, size_t);
2576 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2577 unsigned long, unsigned long,
2578 unsigned long, unsigned long);
2580 struct vm_unmapped_area_info {
2581 #define VM_UNMAPPED_AREA_TOPDOWN 1
2582 unsigned long flags;
2583 unsigned long length;
2584 unsigned long low_limit;
2585 unsigned long high_limit;
2586 unsigned long align_mask;
2587 unsigned long align_offset;
2590 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2593 extern void truncate_inode_pages(struct address_space *, loff_t);
2594 extern void truncate_inode_pages_range(struct address_space *,
2595 loff_t lstart, loff_t lend);
2596 extern void truncate_inode_pages_final(struct address_space *);
2598 /* generic vm_area_ops exported for stackable file systems */
2599 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2600 extern void filemap_map_pages(struct vm_fault *vmf,
2601 pgoff_t start_pgoff, pgoff_t end_pgoff);
2602 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2604 /* mm/page-writeback.c */
2605 int __must_check write_one_page(struct page *page);
2606 void task_dirty_inc(struct task_struct *tsk);
2608 extern unsigned long stack_guard_gap;
2609 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2610 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2612 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2613 extern int expand_downwards(struct vm_area_struct *vma,
2614 unsigned long address);
2616 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2618 #define expand_upwards(vma, address) (0)
2621 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2622 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2623 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2624 struct vm_area_struct **pprev);
2626 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2627 NULL if none. Assume start_addr < end_addr. */
2628 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2630 struct vm_area_struct * vma = find_vma(mm,start_addr);
2632 if (vma && end_addr <= vma->vm_start)
2637 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2639 unsigned long vm_start = vma->vm_start;
2641 if (vma->vm_flags & VM_GROWSDOWN) {
2642 vm_start -= stack_guard_gap;
2643 if (vm_start > vma->vm_start)
2649 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2651 unsigned long vm_end = vma->vm_end;
2653 if (vma->vm_flags & VM_GROWSUP) {
2654 vm_end += stack_guard_gap;
2655 if (vm_end < vma->vm_end)
2656 vm_end = -PAGE_SIZE;
2661 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2663 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2666 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2667 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2668 unsigned long vm_start, unsigned long vm_end)
2670 struct vm_area_struct *vma = find_vma(mm, vm_start);
2672 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2678 static inline bool range_in_vma(struct vm_area_struct *vma,
2679 unsigned long start, unsigned long end)
2681 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2685 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2686 void vma_set_page_prot(struct vm_area_struct *vma);
2688 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2692 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2694 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2698 #ifdef CONFIG_NUMA_BALANCING
2699 unsigned long change_prot_numa(struct vm_area_struct *vma,
2700 unsigned long start, unsigned long end);
2703 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2704 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2705 unsigned long pfn, unsigned long size, pgprot_t);
2706 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2707 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2708 struct page **pages, unsigned long *num);
2709 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2711 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2713 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2715 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2716 unsigned long pfn, pgprot_t pgprot);
2717 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2719 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2720 pfn_t pfn, pgprot_t pgprot);
2721 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2722 unsigned long addr, pfn_t pfn);
2723 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2725 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2726 unsigned long addr, struct page *page)
2728 int err = vm_insert_page(vma, addr, page);
2731 return VM_FAULT_OOM;
2732 if (err < 0 && err != -EBUSY)
2733 return VM_FAULT_SIGBUS;
2735 return VM_FAULT_NOPAGE;
2738 static inline vm_fault_t vmf_error(int err)
2741 return VM_FAULT_OOM;
2742 return VM_FAULT_SIGBUS;
2745 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2746 unsigned int foll_flags);
2748 #define FOLL_WRITE 0x01 /* check pte is writable */
2749 #define FOLL_TOUCH 0x02 /* mark page accessed */
2750 #define FOLL_GET 0x04 /* do get_page on page */
2751 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2752 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2753 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2754 * and return without waiting upon it */
2755 #define FOLL_POPULATE 0x40 /* fault in page */
2756 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2757 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2758 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2759 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2760 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2761 #define FOLL_MLOCK 0x1000 /* lock present pages */
2762 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2763 #define FOLL_COW 0x4000 /* internal GUP flag */
2764 #define FOLL_ANON 0x8000 /* don't do file mappings */
2765 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2766 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2767 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2768 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2771 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2772 * other. Here is what they mean, and how to use them:
2774 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2775 * period _often_ under userspace control. This is in contrast to
2776 * iov_iter_get_pages(), whose usages are transient.
2778 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2779 * lifetime enforced by the filesystem and we need guarantees that longterm
2780 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2781 * the filesystem. Ideas for this coordination include revoking the longterm
2782 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2783 * added after the problem with filesystems was found FS DAX VMAs are
2784 * specifically failed. Filesystem pages are still subject to bugs and use of
2785 * FOLL_LONGTERM should be avoided on those pages.
2787 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2788 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2789 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2790 * is due to an incompatibility with the FS DAX check and
2791 * FAULT_FLAG_ALLOW_RETRY.
2793 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2794 * that region. And so, CMA attempts to migrate the page before pinning, when
2795 * FOLL_LONGTERM is specified.
2797 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2798 * but an additional pin counting system) will be invoked. This is intended for
2799 * anything that gets a page reference and then touches page data (for example,
2800 * Direct IO). This lets the filesystem know that some non-file-system entity is
2801 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2802 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2803 * a call to unpin_user_page().
2805 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2806 * and separate refcounting mechanisms, however, and that means that each has
2807 * its own acquire and release mechanisms:
2809 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2811 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2813 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2814 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2815 * calls applied to them, and that's perfectly OK. This is a constraint on the
2816 * callers, not on the pages.)
2818 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2819 * directly by the caller. That's in order to help avoid mismatches when
2820 * releasing pages: get_user_pages*() pages must be released via put_page(),
2821 * while pin_user_pages*() pages must be released via unpin_user_page().
2823 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2826 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2828 if (vm_fault & VM_FAULT_OOM)
2830 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2831 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2832 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2837 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2838 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2839 unsigned long size, pte_fn_t fn, void *data);
2840 extern int apply_to_existing_page_range(struct mm_struct *mm,
2841 unsigned long address, unsigned long size,
2842 pte_fn_t fn, void *data);
2844 #ifdef CONFIG_PAGE_POISONING
2845 extern bool page_poisoning_enabled(void);
2846 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2848 static inline bool page_poisoning_enabled(void) { return false; }
2849 static inline void kernel_poison_pages(struct page *page, int numpages,
2853 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2854 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2856 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2858 static inline bool want_init_on_alloc(gfp_t flags)
2860 if (static_branch_unlikely(&init_on_alloc) &&
2861 !page_poisoning_enabled())
2863 return flags & __GFP_ZERO;
2866 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2867 DECLARE_STATIC_KEY_TRUE(init_on_free);
2869 DECLARE_STATIC_KEY_FALSE(init_on_free);
2871 static inline bool want_init_on_free(void)
2873 return static_branch_unlikely(&init_on_free) &&
2874 !page_poisoning_enabled();
2877 #ifdef CONFIG_DEBUG_PAGEALLOC
2878 extern void init_debug_pagealloc(void);
2880 static inline void init_debug_pagealloc(void) {}
2882 extern bool _debug_pagealloc_enabled_early;
2883 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2885 static inline bool debug_pagealloc_enabled(void)
2887 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2888 _debug_pagealloc_enabled_early;
2892 * For use in fast paths after init_debug_pagealloc() has run, or when a
2893 * false negative result is not harmful when called too early.
2895 static inline bool debug_pagealloc_enabled_static(void)
2897 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2900 return static_branch_unlikely(&_debug_pagealloc_enabled);
2903 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2904 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2907 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2908 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2911 kernel_map_pages(struct page *page, int numpages, int enable)
2913 __kernel_map_pages(page, numpages, enable);
2915 #ifdef CONFIG_HIBERNATION
2916 extern bool kernel_page_present(struct page *page);
2917 #endif /* CONFIG_HIBERNATION */
2918 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2920 kernel_map_pages(struct page *page, int numpages, int enable) {}
2921 #ifdef CONFIG_HIBERNATION
2922 static inline bool kernel_page_present(struct page *page) { return true; }
2923 #endif /* CONFIG_HIBERNATION */
2924 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2926 #ifdef __HAVE_ARCH_GATE_AREA
2927 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2928 extern int in_gate_area_no_mm(unsigned long addr);
2929 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2931 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2935 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2936 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2940 #endif /* __HAVE_ARCH_GATE_AREA */
2942 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2944 #ifdef CONFIG_SYSCTL
2945 extern int sysctl_drop_caches;
2946 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2950 void drop_slab(void);
2951 void drop_slab_node(int nid);
2954 #define randomize_va_space 0
2956 extern int randomize_va_space;
2959 const char * arch_vma_name(struct vm_area_struct *vma);
2961 void print_vma_addr(char *prefix, unsigned long rip);
2963 static inline void print_vma_addr(char *prefix, unsigned long rip)
2968 void *sparse_buffer_alloc(unsigned long size);
2969 struct page * __populate_section_memmap(unsigned long pfn,
2970 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2971 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2972 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2973 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2974 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2975 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2976 struct vmem_altmap *altmap);
2977 void *vmemmap_alloc_block(unsigned long size, int node);
2979 void *vmemmap_alloc_block_buf(unsigned long size, int node,
2980 struct vmem_altmap *altmap);
2981 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2982 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2983 int node, struct vmem_altmap *altmap);
2984 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2985 struct vmem_altmap *altmap);
2986 void vmemmap_populate_print_last(void);
2987 #ifdef CONFIG_MEMORY_HOTPLUG
2988 void vmemmap_free(unsigned long start, unsigned long end,
2989 struct vmem_altmap *altmap);
2991 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2992 unsigned long nr_pages);
2995 MF_COUNT_INCREASED = 1 << 0,
2996 MF_ACTION_REQUIRED = 1 << 1,
2997 MF_MUST_KILL = 1 << 2,
2998 MF_SOFT_OFFLINE = 1 << 3,
3000 extern int memory_failure(unsigned long pfn, int flags);
3001 extern void memory_failure_queue(unsigned long pfn, int flags);
3002 extern void memory_failure_queue_kick(int cpu);
3003 extern int unpoison_memory(unsigned long pfn);
3004 extern int get_hwpoison_page(struct page *page);
3005 #define put_hwpoison_page(page) put_page(page)
3006 extern int sysctl_memory_failure_early_kill;
3007 extern int sysctl_memory_failure_recovery;
3008 extern void shake_page(struct page *p, int access);
3009 extern atomic_long_t num_poisoned_pages __read_mostly;
3010 extern int soft_offline_page(unsigned long pfn, int flags);
3014 * Error handlers for various types of pages.
3017 MF_IGNORED, /* Error: cannot be handled */
3018 MF_FAILED, /* Error: handling failed */
3019 MF_DELAYED, /* Will be handled later */
3020 MF_RECOVERED, /* Successfully recovered */
3023 enum mf_action_page_type {
3025 MF_MSG_KERNEL_HIGH_ORDER,
3027 MF_MSG_DIFFERENT_COMPOUND,
3028 MF_MSG_POISONED_HUGE,
3031 MF_MSG_NON_PMD_HUGE,
3032 MF_MSG_UNMAP_FAILED,
3033 MF_MSG_DIRTY_SWAPCACHE,
3034 MF_MSG_CLEAN_SWAPCACHE,
3035 MF_MSG_DIRTY_MLOCKED_LRU,
3036 MF_MSG_CLEAN_MLOCKED_LRU,
3037 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3038 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3041 MF_MSG_TRUNCATED_LRU,
3048 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3049 extern void clear_huge_page(struct page *page,
3050 unsigned long addr_hint,
3051 unsigned int pages_per_huge_page);
3052 extern void copy_user_huge_page(struct page *dst, struct page *src,
3053 unsigned long addr_hint,
3054 struct vm_area_struct *vma,
3055 unsigned int pages_per_huge_page);
3056 extern long copy_huge_page_from_user(struct page *dst_page,
3057 const void __user *usr_src,
3058 unsigned int pages_per_huge_page,
3059 bool allow_pagefault);
3062 * vma_is_special_huge - Are transhuge page-table entries considered special?
3063 * @vma: Pointer to the struct vm_area_struct to consider
3065 * Whether transhuge page-table entries are considered "special" following
3066 * the definition in vm_normal_page().
3068 * Return: true if transhuge page-table entries should be considered special,
3071 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3073 return vma_is_dax(vma) || (vma->vm_file &&
3074 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3079 #ifdef CONFIG_DEBUG_PAGEALLOC
3080 extern unsigned int _debug_guardpage_minorder;
3081 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3083 static inline unsigned int debug_guardpage_minorder(void)
3085 return _debug_guardpage_minorder;
3088 static inline bool debug_guardpage_enabled(void)
3090 return static_branch_unlikely(&_debug_guardpage_enabled);
3093 static inline bool page_is_guard(struct page *page)
3095 if (!debug_guardpage_enabled())
3098 return PageGuard(page);
3101 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3102 static inline bool debug_guardpage_enabled(void) { return false; }
3103 static inline bool page_is_guard(struct page *page) { return false; }
3104 #endif /* CONFIG_DEBUG_PAGEALLOC */
3106 #if MAX_NUMNODES > 1
3107 void __init setup_nr_node_ids(void);
3109 static inline void setup_nr_node_ids(void) {}
3112 extern int memcmp_pages(struct page *page1, struct page *page2);
3114 static inline int pages_identical(struct page *page1, struct page *page2)
3116 return !memcmp_pages(page1, page2);
3119 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3120 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3121 pgoff_t first_index, pgoff_t nr,
3122 pgoff_t bitmap_pgoff,
3123 unsigned long *bitmap,
3127 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3128 pgoff_t first_index, pgoff_t nr);
3131 extern int sysctl_nr_trim_pages;
3133 #endif /* __KERNEL__ */
3134 #endif /* _LINUX_MM_H */