1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
155 #include "net-sysfs.h"
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly; /* Taps */
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
192 static DEFINE_MUTEX(ifalias_mutex);
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 static DECLARE_RWSEM(devnet_rename_sem);
202 static inline void dev_base_seq_inc(struct net *net)
204 while (++net->dev_base_seq == 0)
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
257 struct netdev_name_node *name_node;
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
271 struct netdev_name_node *name_node;
273 name_node = netdev_name_node_alloc(dev, dev->name);
276 INIT_LIST_HEAD(&name_node->list);
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
294 hlist_del_rcu(&name_node->hlist);
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
321 bool netdev_name_in_use(struct net *net, const char *name)
323 return netdev_name_node_lookup(net, name);
325 EXPORT_SYMBOL(netdev_name_in_use);
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
332 name_node = netdev_name_node_lookup(net, name);
335 name_node = netdev_name_node_alloc(dev, name);
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
358 name_node = netdev_name_node_lookup(net, name);
361 /* lookup might have found our primary name or a name belonging
364 if (name_node == dev->name_node || name_node->dev != dev)
367 __netdev_name_node_alt_destroy(name_node);
372 static void netdev_name_node_alt_flush(struct net_device *dev)
374 struct netdev_name_node *name_node, *tmp;
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
383 struct net *net = dev_net(dev);
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
394 dev_base_seq_inc(net);
397 /* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
400 static void unlist_netdevice(struct net_device *dev)
404 /* Unlink dev from the device chain */
405 write_lock(&dev_base_lock);
406 list_del_rcu(&dev->dev_list);
407 netdev_name_node_del(dev->name_node);
408 hlist_del_rcu(&dev->index_hlist);
409 write_unlock(&dev_base_lock);
411 dev_base_seq_inc(dev_net(dev));
418 static RAW_NOTIFIER_HEAD(netdev_chain);
421 * Device drivers call our routines to queue packets here. We empty the
422 * queue in the local softnet handler.
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
428 #ifdef CONFIG_LOCKDEP
430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431 * according to dev->type
433 static const unsigned short netdev_lock_type[] = {
434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
450 static const char *const netdev_lock_name[] = {
451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 if (netdev_lock_type[i] == dev_type)
477 /* the last key is used by default */
478 return ARRAY_SIZE(netdev_lock_type) - 1;
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 unsigned short dev_type)
486 i = netdev_lock_pos(dev_type);
487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 netdev_lock_name[i]);
491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
495 i = netdev_lock_pos(dev->type);
496 lockdep_set_class_and_name(&dev->addr_list_lock,
497 &netdev_addr_lock_key[i],
498 netdev_lock_name[i]);
501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 unsigned short dev_type)
506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
511 /*******************************************************************************
513 * Protocol management and registration routines
515 *******************************************************************************/
519 * Add a protocol ID to the list. Now that the input handler is
520 * smarter we can dispense with all the messy stuff that used to be
523 * BEWARE!!! Protocol handlers, mangling input packets,
524 * MUST BE last in hash buckets and checking protocol handlers
525 * MUST start from promiscuous ptype_all chain in net_bh.
526 * It is true now, do not change it.
527 * Explanation follows: if protocol handler, mangling packet, will
528 * be the first on list, it is not able to sense, that packet
529 * is cloned and should be copied-on-write, so that it will
530 * change it and subsequent readers will get broken packet.
534 static inline struct list_head *ptype_head(const struct packet_type *pt)
536 if (pt->type == htons(ETH_P_ALL))
537 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
539 return pt->dev ? &pt->dev->ptype_specific :
540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
544 * dev_add_pack - add packet handler
545 * @pt: packet type declaration
547 * Add a protocol handler to the networking stack. The passed &packet_type
548 * is linked into kernel lists and may not be freed until it has been
549 * removed from the kernel lists.
551 * This call does not sleep therefore it can not
552 * guarantee all CPU's that are in middle of receiving packets
553 * will see the new packet type (until the next received packet).
556 void dev_add_pack(struct packet_type *pt)
558 struct list_head *head = ptype_head(pt);
560 spin_lock(&ptype_lock);
561 list_add_rcu(&pt->list, head);
562 spin_unlock(&ptype_lock);
564 EXPORT_SYMBOL(dev_add_pack);
567 * __dev_remove_pack - remove packet handler
568 * @pt: packet type declaration
570 * Remove a protocol handler that was previously added to the kernel
571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
572 * from the kernel lists and can be freed or reused once this function
575 * The packet type might still be in use by receivers
576 * and must not be freed until after all the CPU's have gone
577 * through a quiescent state.
579 void __dev_remove_pack(struct packet_type *pt)
581 struct list_head *head = ptype_head(pt);
582 struct packet_type *pt1;
584 spin_lock(&ptype_lock);
586 list_for_each_entry(pt1, head, list) {
588 list_del_rcu(&pt->list);
593 pr_warn("dev_remove_pack: %p not found\n", pt);
595 spin_unlock(&ptype_lock);
597 EXPORT_SYMBOL(__dev_remove_pack);
600 * dev_remove_pack - remove packet handler
601 * @pt: packet type declaration
603 * Remove a protocol handler that was previously added to the kernel
604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
605 * from the kernel lists and can be freed or reused once this function
608 * This call sleeps to guarantee that no CPU is looking at the packet
611 void dev_remove_pack(struct packet_type *pt)
613 __dev_remove_pack(pt);
617 EXPORT_SYMBOL(dev_remove_pack);
620 /*******************************************************************************
622 * Device Interface Subroutines
624 *******************************************************************************/
627 * dev_get_iflink - get 'iflink' value of a interface
628 * @dev: targeted interface
630 * Indicates the ifindex the interface is linked to.
631 * Physical interfaces have the same 'ifindex' and 'iflink' values.
634 int dev_get_iflink(const struct net_device *dev)
636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 return dev->netdev_ops->ndo_get_iflink(dev);
641 EXPORT_SYMBOL(dev_get_iflink);
644 * dev_fill_metadata_dst - Retrieve tunnel egress information.
645 * @dev: targeted interface
648 * For better visibility of tunnel traffic OVS needs to retrieve
649 * egress tunnel information for a packet. Following API allows
650 * user to get this info.
652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
654 struct ip_tunnel_info *info;
656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
659 info = skb_tunnel_info_unclone(skb);
662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
671 int k = stack->num_paths++;
673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 return &stack->path[k];
679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 struct net_device_path_stack *stack)
682 const struct net_device *last_dev;
683 struct net_device_path_ctx ctx = {
686 struct net_device_path *path;
689 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
690 stack->num_paths = 0;
691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
693 path = dev_fwd_path(stack);
697 memset(path, 0, sizeof(struct net_device_path));
698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
702 if (WARN_ON_ONCE(last_dev == ctx.dev))
709 path = dev_fwd_path(stack);
712 path->type = DEV_PATH_ETHERNET;
717 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720 * __dev_get_by_name - find a device by its name
721 * @net: the applicable net namespace
722 * @name: name to find
724 * Find an interface by name. Must be called under RTNL semaphore
725 * or @dev_base_lock. If the name is found a pointer to the device
726 * is returned. If the name is not found then %NULL is returned. The
727 * reference counters are not incremented so the caller must be
728 * careful with locks.
731 struct net_device *__dev_get_by_name(struct net *net, const char *name)
733 struct netdev_name_node *node_name;
735 node_name = netdev_name_node_lookup(net, name);
736 return node_name ? node_name->dev : NULL;
738 EXPORT_SYMBOL(__dev_get_by_name);
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 struct netdev_name_node *node_name;
756 node_name = netdev_name_node_lookup_rcu(net, name);
757 return node_name ? node_name->dev : NULL;
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 * dev_get_by_name - find a device by its name
763 * @net: the applicable net namespace
764 * @name: name to find
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
775 struct net_device *dev;
778 dev = dev_get_by_name_rcu(net, name);
783 EXPORT_SYMBOL(dev_get_by_name);
786 * __dev_get_by_index - find a device by its ifindex
787 * @net: the applicable net namespace
788 * @ifindex: index of device
790 * Search for an interface by index. Returns %NULL if the device
791 * is not found or a pointer to the device. The device has not
792 * had its reference counter increased so the caller must be careful
793 * about locking. The caller must hold either the RTNL semaphore
797 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 struct net_device *dev;
800 struct hlist_head *head = dev_index_hash(net, ifindex);
802 hlist_for_each_entry(dev, head, index_hlist)
803 if (dev->ifindex == ifindex)
808 EXPORT_SYMBOL(__dev_get_by_index);
811 * dev_get_by_index_rcu - find a device by its ifindex
812 * @net: the applicable net namespace
813 * @ifindex: index of device
815 * Search for an interface by index. Returns %NULL if the device
816 * is not found or a pointer to the device. The device has not
817 * had its reference counter increased so the caller must be careful
818 * about locking. The caller must hold RCU lock.
821 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 struct net_device *dev;
824 struct hlist_head *head = dev_index_hash(net, ifindex);
826 hlist_for_each_entry_rcu(dev, head, index_hlist)
827 if (dev->ifindex == ifindex)
832 EXPORT_SYMBOL(dev_get_by_index_rcu);
836 * dev_get_by_index - find a device by its ifindex
837 * @net: the applicable net namespace
838 * @ifindex: index of device
840 * Search for an interface by index. Returns NULL if the device
841 * is not found or a pointer to the device. The device returned has
842 * had a reference added and the pointer is safe until the user calls
843 * dev_put to indicate they have finished with it.
846 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 struct net_device *dev;
851 dev = dev_get_by_index_rcu(net, ifindex);
856 EXPORT_SYMBOL(dev_get_by_index);
859 * dev_get_by_napi_id - find a device by napi_id
860 * @napi_id: ID of the NAPI struct
862 * Search for an interface by NAPI ID. Returns %NULL if the device
863 * is not found or a pointer to the device. The device has not had
864 * its reference counter increased so the caller must be careful
865 * about locking. The caller must hold RCU lock.
868 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
870 struct napi_struct *napi;
872 WARN_ON_ONCE(!rcu_read_lock_held());
874 if (napi_id < MIN_NAPI_ID)
877 napi = napi_by_id(napi_id);
879 return napi ? napi->dev : NULL;
881 EXPORT_SYMBOL(dev_get_by_napi_id);
884 * netdev_get_name - get a netdevice name, knowing its ifindex.
885 * @net: network namespace
886 * @name: a pointer to the buffer where the name will be stored.
887 * @ifindex: the ifindex of the interface to get the name from.
889 int netdev_get_name(struct net *net, char *name, int ifindex)
891 struct net_device *dev;
894 down_read(&devnet_rename_sem);
897 dev = dev_get_by_index_rcu(net, ifindex);
903 strcpy(name, dev->name);
908 up_read(&devnet_rename_sem);
913 * dev_getbyhwaddr_rcu - find a device by its hardware address
914 * @net: the applicable net namespace
915 * @type: media type of device
916 * @ha: hardware address
918 * Search for an interface by MAC address. Returns NULL if the device
919 * is not found or a pointer to the device.
920 * The caller must hold RCU or RTNL.
921 * The returned device has not had its ref count increased
922 * and the caller must therefore be careful about locking
926 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 struct net_device *dev;
931 for_each_netdev_rcu(net, dev)
932 if (dev->type == type &&
933 !memcmp(dev->dev_addr, ha, dev->addr_len))
938 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
942 struct net_device *dev, *ret = NULL;
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 struct net_device *dev, *ret;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
983 EXPORT_SYMBOL(__dev_get_by_flags);
986 * dev_valid_name - check if name is okay for network device
989 * Network device names need to be valid file names to
990 * allow sysfs to work. We also disallow any kind of
993 bool dev_valid_name(const char *name)
997 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1003 if (*name == '/' || *name == ':' || isspace(*name))
1009 EXPORT_SYMBOL(dev_valid_name);
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1034 if (!dev_valid_name(name))
1037 p = strchr(name, '%');
1040 * Verify the string as this thing may have come from
1041 * the user. There must be either one "%d" and no other "%"
1044 if (p[1] != 'd' || strchr(p + 2, '%'))
1047 /* Use one page as a bit array of possible slots */
1048 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1052 for_each_netdev(net, d) {
1053 struct netdev_name_node *name_node;
1054 list_for_each_entry(name_node, &d->name_node->list, list) {
1055 if (!sscanf(name_node->name, name, &i))
1057 if (i < 0 || i >= max_netdevices)
1060 /* avoid cases where sscanf is not exact inverse of printf */
1061 snprintf(buf, IFNAMSIZ, name, i);
1062 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1063 __set_bit(i, inuse);
1065 if (!sscanf(d->name, name, &i))
1067 if (i < 0 || i >= max_netdevices)
1070 /* avoid cases where sscanf is not exact inverse of printf */
1071 snprintf(buf, IFNAMSIZ, name, i);
1072 if (!strncmp(buf, d->name, IFNAMSIZ))
1073 __set_bit(i, inuse);
1076 i = find_first_zero_bit(inuse, max_netdevices);
1077 free_page((unsigned long) inuse);
1080 snprintf(buf, IFNAMSIZ, name, i);
1081 if (!netdev_name_in_use(net, buf))
1084 /* It is possible to run out of possible slots
1085 * when the name is long and there isn't enough space left
1086 * for the digits, or if all bits are used.
1091 static int dev_alloc_name_ns(struct net *net,
1092 struct net_device *dev,
1099 ret = __dev_alloc_name(net, name, buf);
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1106 * dev_alloc_name - allocate a name for a device
1108 * @name: name format string
1110 * Passed a format string - eg "lt%d" it will try and find a suitable
1111 * id. It scans list of devices to build up a free map, then chooses
1112 * the first empty slot. The caller must hold the dev_base or rtnl lock
1113 * while allocating the name and adding the device in order to avoid
1115 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116 * Returns the number of the unit assigned or a negative errno code.
1119 int dev_alloc_name(struct net_device *dev, const char *name)
1121 return dev_alloc_name_ns(dev_net(dev), dev, name);
1123 EXPORT_SYMBOL(dev_alloc_name);
1125 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1130 if (!dev_valid_name(name))
1133 if (strchr(name, '%'))
1134 return dev_alloc_name_ns(net, dev, name);
1135 else if (netdev_name_in_use(net, name))
1137 else if (dev->name != name)
1138 strlcpy(dev->name, name, IFNAMSIZ);
1144 * dev_change_name - change name of a device
1146 * @newname: name (or format string) must be at least IFNAMSIZ
1148 * Change name of a device, can pass format strings "eth%d".
1151 int dev_change_name(struct net_device *dev, const char *newname)
1153 unsigned char old_assign_type;
1154 char oldname[IFNAMSIZ];
1160 BUG_ON(!dev_net(dev));
1164 /* Some auto-enslaved devices e.g. failover slaves are
1165 * special, as userspace might rename the device after
1166 * the interface had been brought up and running since
1167 * the point kernel initiated auto-enslavement. Allow
1168 * live name change even when these slave devices are
1171 * Typically, users of these auto-enslaving devices
1172 * don't actually care about slave name change, as
1173 * they are supposed to operate on master interface
1176 if (dev->flags & IFF_UP &&
1177 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180 down_write(&devnet_rename_sem);
1182 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1183 up_write(&devnet_rename_sem);
1187 memcpy(oldname, dev->name, IFNAMSIZ);
1189 err = dev_get_valid_name(net, dev, newname);
1191 up_write(&devnet_rename_sem);
1195 if (oldname[0] && !strchr(oldname, '%'))
1196 netdev_info(dev, "renamed from %s\n", oldname);
1198 old_assign_type = dev->name_assign_type;
1199 dev->name_assign_type = NET_NAME_RENAMED;
1202 ret = device_rename(&dev->dev, dev->name);
1204 memcpy(dev->name, oldname, IFNAMSIZ);
1205 dev->name_assign_type = old_assign_type;
1206 up_write(&devnet_rename_sem);
1210 up_write(&devnet_rename_sem);
1212 netdev_adjacent_rename_links(dev, oldname);
1214 write_lock(&dev_base_lock);
1215 netdev_name_node_del(dev->name_node);
1216 write_unlock(&dev_base_lock);
1220 write_lock(&dev_base_lock);
1221 netdev_name_node_add(net, dev->name_node);
1222 write_unlock(&dev_base_lock);
1224 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225 ret = notifier_to_errno(ret);
1228 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231 down_write(&devnet_rename_sem);
1232 memcpy(dev->name, oldname, IFNAMSIZ);
1233 memcpy(oldname, newname, IFNAMSIZ);
1234 dev->name_assign_type = old_assign_type;
1235 old_assign_type = NET_NAME_RENAMED;
1238 netdev_err(dev, "name change rollback failed: %d\n",
1247 * dev_set_alias - change ifalias of a device
1249 * @alias: name up to IFALIASZ
1250 * @len: limit of bytes to copy from info
1252 * Set ifalias for a device,
1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1256 struct dev_ifalias *new_alias = NULL;
1258 if (len >= IFALIASZ)
1262 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1266 memcpy(new_alias->ifalias, alias, len);
1267 new_alias->ifalias[len] = 0;
1270 mutex_lock(&ifalias_mutex);
1271 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 mutex_is_locked(&ifalias_mutex));
1273 mutex_unlock(&ifalias_mutex);
1276 kfree_rcu(new_alias, rcuhead);
1280 EXPORT_SYMBOL(dev_set_alias);
1283 * dev_get_alias - get ifalias of a device
1285 * @name: buffer to store name of ifalias
1286 * @len: size of buffer
1288 * get ifalias for a device. Caller must make sure dev cannot go
1289 * away, e.g. rcu read lock or own a reference count to device.
1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1293 const struct dev_ifalias *alias;
1297 alias = rcu_dereference(dev->ifalias);
1299 ret = snprintf(name, len, "%s", alias->ifalias);
1306 * netdev_features_change - device changes features
1307 * @dev: device to cause notification
1309 * Called to indicate a device has changed features.
1311 void netdev_features_change(struct net_device *dev)
1313 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1315 EXPORT_SYMBOL(netdev_features_change);
1318 * netdev_state_change - device changes state
1319 * @dev: device to cause notification
1321 * Called to indicate a device has changed state. This function calls
1322 * the notifier chains for netdev_chain and sends a NEWLINK message
1323 * to the routing socket.
1325 void netdev_state_change(struct net_device *dev)
1327 if (dev->flags & IFF_UP) {
1328 struct netdev_notifier_change_info change_info = {
1332 call_netdevice_notifiers_info(NETDEV_CHANGE,
1334 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337 EXPORT_SYMBOL(netdev_state_change);
1340 * __netdev_notify_peers - notify network peers about existence of @dev,
1341 * to be called when rtnl lock is already held.
1342 * @dev: network device
1344 * Generate traffic such that interested network peers are aware of
1345 * @dev, such as by generating a gratuitous ARP. This may be used when
1346 * a device wants to inform the rest of the network about some sort of
1347 * reconfiguration such as a failover event or virtual machine
1350 void __netdev_notify_peers(struct net_device *dev)
1353 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1356 EXPORT_SYMBOL(__netdev_notify_peers);
1359 * netdev_notify_peers - notify network peers about existence of @dev
1360 * @dev: network device
1362 * Generate traffic such that interested network peers are aware of
1363 * @dev, such as by generating a gratuitous ARP. This may be used when
1364 * a device wants to inform the rest of the network about some sort of
1365 * reconfiguration such as a failover event or virtual machine
1368 void netdev_notify_peers(struct net_device *dev)
1371 __netdev_notify_peers(dev);
1374 EXPORT_SYMBOL(netdev_notify_peers);
1376 static int napi_threaded_poll(void *data);
1378 static int napi_kthread_create(struct napi_struct *n)
1382 /* Create and wake up the kthread once to put it in
1383 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 * warning and work with loadavg.
1386 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 n->dev->name, n->napi_id);
1388 if (IS_ERR(n->thread)) {
1389 err = PTR_ERR(n->thread);
1390 pr_err("kthread_run failed with err %d\n", err);
1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1399 const struct net_device_ops *ops = dev->netdev_ops;
1403 dev_addr_check(dev);
1405 if (!netif_device_present(dev)) {
1406 /* may be detached because parent is runtime-suspended */
1407 if (dev->dev.parent)
1408 pm_runtime_resume(dev->dev.parent);
1409 if (!netif_device_present(dev))
1413 /* Block netpoll from trying to do any rx path servicing.
1414 * If we don't do this there is a chance ndo_poll_controller
1415 * or ndo_poll may be running while we open the device
1417 netpoll_poll_disable(dev);
1419 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420 ret = notifier_to_errno(ret);
1424 set_bit(__LINK_STATE_START, &dev->state);
1426 if (ops->ndo_validate_addr)
1427 ret = ops->ndo_validate_addr(dev);
1429 if (!ret && ops->ndo_open)
1430 ret = ops->ndo_open(dev);
1432 netpoll_poll_enable(dev);
1435 clear_bit(__LINK_STATE_START, &dev->state);
1437 dev->flags |= IFF_UP;
1438 dev_set_rx_mode(dev);
1440 add_device_randomness(dev->dev_addr, dev->addr_len);
1447 * dev_open - prepare an interface for use.
1448 * @dev: device to open
1449 * @extack: netlink extended ack
1451 * Takes a device from down to up state. The device's private open
1452 * function is invoked and then the multicast lists are loaded. Finally
1453 * the device is moved into the up state and a %NETDEV_UP message is
1454 * sent to the netdev notifier chain.
1456 * Calling this function on an active interface is a nop. On a failure
1457 * a negative errno code is returned.
1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1463 if (dev->flags & IFF_UP)
1466 ret = __dev_open(dev, extack);
1470 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1471 call_netdevice_notifiers(NETDEV_UP, dev);
1475 EXPORT_SYMBOL(dev_open);
1477 static void __dev_close_many(struct list_head *head)
1479 struct net_device *dev;
1484 list_for_each_entry(dev, head, close_list) {
1485 /* Temporarily disable netpoll until the interface is down */
1486 netpoll_poll_disable(dev);
1488 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1490 clear_bit(__LINK_STATE_START, &dev->state);
1492 /* Synchronize to scheduled poll. We cannot touch poll list, it
1493 * can be even on different cpu. So just clear netif_running().
1495 * dev->stop() will invoke napi_disable() on all of it's
1496 * napi_struct instances on this device.
1498 smp_mb__after_atomic(); /* Commit netif_running(). */
1501 dev_deactivate_many(head);
1503 list_for_each_entry(dev, head, close_list) {
1504 const struct net_device_ops *ops = dev->netdev_ops;
1507 * Call the device specific close. This cannot fail.
1508 * Only if device is UP
1510 * We allow it to be called even after a DETACH hot-plug
1516 dev->flags &= ~IFF_UP;
1517 netpoll_poll_enable(dev);
1521 static void __dev_close(struct net_device *dev)
1525 list_add(&dev->close_list, &single);
1526 __dev_close_many(&single);
1530 void dev_close_many(struct list_head *head, bool unlink)
1532 struct net_device *dev, *tmp;
1534 /* Remove the devices that don't need to be closed */
1535 list_for_each_entry_safe(dev, tmp, head, close_list)
1536 if (!(dev->flags & IFF_UP))
1537 list_del_init(&dev->close_list);
1539 __dev_close_many(head);
1541 list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1543 call_netdevice_notifiers(NETDEV_DOWN, dev);
1545 list_del_init(&dev->close_list);
1548 EXPORT_SYMBOL(dev_close_many);
1551 * dev_close - shutdown an interface.
1552 * @dev: device to shutdown
1554 * This function moves an active device into down state. A
1555 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559 void dev_close(struct net_device *dev)
1561 if (dev->flags & IFF_UP) {
1564 list_add(&dev->close_list, &single);
1565 dev_close_many(&single, true);
1569 EXPORT_SYMBOL(dev_close);
1573 * dev_disable_lro - disable Large Receive Offload on a device
1576 * Disable Large Receive Offload (LRO) on a net device. Must be
1577 * called under RTNL. This is needed if received packets may be
1578 * forwarded to another interface.
1580 void dev_disable_lro(struct net_device *dev)
1582 struct net_device *lower_dev;
1583 struct list_head *iter;
1585 dev->wanted_features &= ~NETIF_F_LRO;
1586 netdev_update_features(dev);
1588 if (unlikely(dev->features & NETIF_F_LRO))
1589 netdev_WARN(dev, "failed to disable LRO!\n");
1591 netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 dev_disable_lro(lower_dev);
1594 EXPORT_SYMBOL(dev_disable_lro);
1597 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1601 * called under RTNL. This is needed if Generic XDP is installed on
1604 static void dev_disable_gro_hw(struct net_device *dev)
1606 dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 netdev_update_features(dev);
1609 if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 case NETDEV_##val: \
1617 return "NETDEV_" __stringify(val);
1619 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1623 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1624 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1625 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632 return "UNKNOWN_NETDEV_EVENT";
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 struct net_device *dev)
1639 struct netdev_notifier_info info = {
1643 return nb->notifier_call(nb, val, &info);
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 struct net_device *dev)
1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 err = notifier_to_errno(err);
1656 if (!(dev->flags & IFF_UP))
1659 call_netdevice_notifier(nb, NETDEV_UP, dev);
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 struct net_device *dev)
1666 if (dev->flags & IFF_UP) {
1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677 struct net_device *dev;
1680 for_each_netdev(net, dev) {
1681 err = call_netdevice_register_notifiers(nb, dev);
1688 for_each_netdev_continue_reverse(net, dev)
1689 call_netdevice_unregister_notifiers(nb, dev);
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696 struct net_device *dev;
1698 for_each_netdev(net, dev)
1699 call_netdevice_unregister_notifiers(nb, dev);
1702 static int dev_boot_phase = 1;
1705 * register_netdevice_notifier - register a network notifier block
1708 * Register a notifier to be called when network device events occur.
1709 * The notifier passed is linked into the kernel structures and must
1710 * not be reused until it has been unregistered. A negative errno code
1711 * is returned on a failure.
1713 * When registered all registration and up events are replayed
1714 * to the new notifier to allow device to have a race free
1715 * view of the network device list.
1718 int register_netdevice_notifier(struct notifier_block *nb)
1723 /* Close race with setup_net() and cleanup_net() */
1724 down_write(&pernet_ops_rwsem);
1726 err = raw_notifier_chain_register(&netdev_chain, nb);
1732 err = call_netdevice_register_net_notifiers(nb, net);
1739 up_write(&pernet_ops_rwsem);
1743 for_each_net_continue_reverse(net)
1744 call_netdevice_unregister_net_notifiers(nb, net);
1746 raw_notifier_chain_unregister(&netdev_chain, nb);
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1752 * unregister_netdevice_notifier - unregister a network notifier block
1755 * Unregister a notifier previously registered by
1756 * register_netdevice_notifier(). The notifier is unlinked into the
1757 * kernel structures and may then be reused. A negative errno code
1758 * is returned on a failure.
1760 * After unregistering unregister and down device events are synthesized
1761 * for all devices on the device list to the removed notifier to remove
1762 * the need for special case cleanup code.
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1770 /* Close race with setup_net() and cleanup_net() */
1771 down_write(&pernet_ops_rwsem);
1773 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1778 call_netdevice_unregister_net_notifiers(nb, net);
1782 up_write(&pernet_ops_rwsem);
1785 EXPORT_SYMBOL(unregister_netdevice_notifier);
1787 static int __register_netdevice_notifier_net(struct net *net,
1788 struct notifier_block *nb,
1789 bool ignore_call_fail)
1793 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 err = call_netdevice_register_net_notifiers(nb, net);
1800 if (err && !ignore_call_fail)
1801 goto chain_unregister;
1806 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1810 static int __unregister_netdevice_notifier_net(struct net *net,
1811 struct notifier_block *nb)
1815 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1819 call_netdevice_unregister_net_notifiers(nb, net);
1824 * register_netdevice_notifier_net - register a per-netns network notifier block
1825 * @net: network namespace
1828 * Register a notifier to be called when network device events occur.
1829 * The notifier passed is linked into the kernel structures and must
1830 * not be reused until it has been unregistered. A negative errno code
1831 * is returned on a failure.
1833 * When registered all registration and up events are replayed
1834 * to the new notifier to allow device to have a race free
1835 * view of the network device list.
1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1843 err = __register_netdevice_notifier_net(net, nb, false);
1847 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850 * unregister_netdevice_notifier_net - unregister a per-netns
1851 * network notifier block
1852 * @net: network namespace
1855 * Unregister a notifier previously registered by
1856 * register_netdevice_notifier(). The notifier is unlinked into the
1857 * kernel structures and may then be reused. A negative errno code
1858 * is returned on a failure.
1860 * After unregistering unregister and down device events are synthesized
1861 * for all devices on the device list to the removed notifier to remove
1862 * the need for special case cleanup code.
1865 int unregister_netdevice_notifier_net(struct net *net,
1866 struct notifier_block *nb)
1871 err = __unregister_netdevice_notifier_net(net, nb);
1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1877 int register_netdevice_notifier_dev_net(struct net_device *dev,
1878 struct notifier_block *nb,
1879 struct netdev_net_notifier *nn)
1884 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887 list_add(&nn->list, &dev->net_notifier_list);
1892 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1894 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1895 struct notifier_block *nb,
1896 struct netdev_net_notifier *nn)
1901 list_del(&nn->list);
1902 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1906 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1908 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911 struct netdev_net_notifier *nn;
1913 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1914 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1915 __register_netdevice_notifier_net(net, nn->nb, true);
1920 * call_netdevice_notifiers_info - call all network notifier blocks
1921 * @val: value passed unmodified to notifier function
1922 * @info: notifier information data
1924 * Call all network notifier blocks. Parameters and return value
1925 * are as for raw_notifier_call_chain().
1928 static int call_netdevice_notifiers_info(unsigned long val,
1929 struct netdev_notifier_info *info)
1931 struct net *net = dev_net(info->dev);
1936 /* Run per-netns notifier block chain first, then run the global one.
1937 * Hopefully, one day, the global one is going to be removed after
1938 * all notifier block registrators get converted to be per-netns.
1940 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1941 if (ret & NOTIFY_STOP_MASK)
1943 return raw_notifier_call_chain(&netdev_chain, val, info);
1947 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1948 * for and rollback on error
1949 * @val_up: value passed unmodified to notifier function
1950 * @val_down: value passed unmodified to the notifier function when
1951 * recovering from an error on @val_up
1952 * @info: notifier information data
1954 * Call all per-netns network notifier blocks, but not notifier blocks on
1955 * the global notifier chain. Parameters and return value are as for
1956 * raw_notifier_call_chain_robust().
1960 call_netdevice_notifiers_info_robust(unsigned long val_up,
1961 unsigned long val_down,
1962 struct netdev_notifier_info *info)
1964 struct net *net = dev_net(info->dev);
1968 return raw_notifier_call_chain_robust(&net->netdev_chain,
1969 val_up, val_down, info);
1972 static int call_netdevice_notifiers_extack(unsigned long val,
1973 struct net_device *dev,
1974 struct netlink_ext_ack *extack)
1976 struct netdev_notifier_info info = {
1981 return call_netdevice_notifiers_info(val, &info);
1985 * call_netdevice_notifiers - call all network notifier blocks
1986 * @val: value passed unmodified to notifier function
1987 * @dev: net_device pointer passed unmodified to notifier function
1989 * Call all network notifier blocks. Parameters and return value
1990 * are as for raw_notifier_call_chain().
1993 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1995 return call_netdevice_notifiers_extack(val, dev, NULL);
1997 EXPORT_SYMBOL(call_netdevice_notifiers);
2000 * call_netdevice_notifiers_mtu - call all network notifier blocks
2001 * @val: value passed unmodified to notifier function
2002 * @dev: net_device pointer passed unmodified to notifier function
2003 * @arg: additional u32 argument passed to the notifier function
2005 * Call all network notifier blocks. Parameters and return value
2006 * are as for raw_notifier_call_chain().
2008 static int call_netdevice_notifiers_mtu(unsigned long val,
2009 struct net_device *dev, u32 arg)
2011 struct netdev_notifier_info_ext info = {
2016 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2018 return call_netdevice_notifiers_info(val, &info.info);
2021 #ifdef CONFIG_NET_INGRESS
2022 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2024 void net_inc_ingress_queue(void)
2026 static_branch_inc(&ingress_needed_key);
2028 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2030 void net_dec_ingress_queue(void)
2032 static_branch_dec(&ingress_needed_key);
2034 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #ifdef CONFIG_NET_EGRESS
2038 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2040 void net_inc_egress_queue(void)
2042 static_branch_inc(&egress_needed_key);
2044 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2046 void net_dec_egress_queue(void)
2048 static_branch_dec(&egress_needed_key);
2050 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2054 EXPORT_SYMBOL(netstamp_needed_key);
2055 #ifdef CONFIG_JUMP_LABEL
2056 static atomic_t netstamp_needed_deferred;
2057 static atomic_t netstamp_wanted;
2058 static void netstamp_clear(struct work_struct *work)
2060 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063 wanted = atomic_add_return(deferred, &netstamp_wanted);
2065 static_branch_enable(&netstamp_needed_key);
2067 static_branch_disable(&netstamp_needed_key);
2069 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 void net_enable_timestamp(void)
2074 #ifdef CONFIG_JUMP_LABEL
2078 wanted = atomic_read(&netstamp_wanted);
2081 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084 atomic_inc(&netstamp_needed_deferred);
2085 schedule_work(&netstamp_work);
2087 static_branch_inc(&netstamp_needed_key);
2090 EXPORT_SYMBOL(net_enable_timestamp);
2092 void net_disable_timestamp(void)
2094 #ifdef CONFIG_JUMP_LABEL
2098 wanted = atomic_read(&netstamp_wanted);
2101 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104 atomic_dec(&netstamp_needed_deferred);
2105 schedule_work(&netstamp_work);
2107 static_branch_dec(&netstamp_needed_key);
2110 EXPORT_SYMBOL(net_disable_timestamp);
2112 static inline void net_timestamp_set(struct sk_buff *skb)
2115 skb->mono_delivery_time = 0;
2116 if (static_branch_unlikely(&netstamp_needed_key))
2117 skb->tstamp = ktime_get_real();
2120 #define net_timestamp_check(COND, SKB) \
2121 if (static_branch_unlikely(&netstamp_needed_key)) { \
2122 if ((COND) && !(SKB)->tstamp) \
2123 (SKB)->tstamp = ktime_get_real(); \
2126 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2128 return __is_skb_forwardable(dev, skb, true);
2130 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2132 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138 skb->protocol = eth_type_trans(skb, dev);
2139 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2145 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2147 return __dev_forward_skb2(dev, skb, true);
2149 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152 * dev_forward_skb - loopback an skb to another netif
2154 * @dev: destination network device
2155 * @skb: buffer to forward
2158 * NET_RX_SUCCESS (no congestion)
2159 * NET_RX_DROP (packet was dropped, but freed)
2161 * dev_forward_skb can be used for injecting an skb from the
2162 * start_xmit function of one device into the receive queue
2163 * of another device.
2165 * The receiving device may be in another namespace, so
2166 * we have to clear all information in the skb that could
2167 * impact namespace isolation.
2169 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2173 EXPORT_SYMBOL_GPL(dev_forward_skb);
2175 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2177 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 static inline int deliver_skb(struct sk_buff *skb,
2181 struct packet_type *pt_prev,
2182 struct net_device *orig_dev)
2184 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2186 refcount_inc(&skb->users);
2187 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2191 struct packet_type **pt,
2192 struct net_device *orig_dev,
2194 struct list_head *ptype_list)
2196 struct packet_type *ptype, *pt_prev = *pt;
2198 list_for_each_entry_rcu(ptype, ptype_list, list) {
2199 if (ptype->type != type)
2202 deliver_skb(skb, pt_prev, orig_dev);
2208 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2210 if (!ptype->af_packet_priv || !skb->sk)
2213 if (ptype->id_match)
2214 return ptype->id_match(ptype, skb->sk);
2215 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2222 * dev_nit_active - return true if any network interface taps are in use
2224 * @dev: network device to check for the presence of taps
2226 bool dev_nit_active(struct net_device *dev)
2228 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2230 EXPORT_SYMBOL_GPL(dev_nit_active);
2233 * Support routine. Sends outgoing frames to any network
2234 * taps currently in use.
2237 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2239 struct packet_type *ptype;
2240 struct sk_buff *skb2 = NULL;
2241 struct packet_type *pt_prev = NULL;
2242 struct list_head *ptype_list = &ptype_all;
2246 list_for_each_entry_rcu(ptype, ptype_list, list) {
2247 if (ptype->ignore_outgoing)
2250 /* Never send packets back to the socket
2253 if (skb_loop_sk(ptype, skb))
2257 deliver_skb(skb2, pt_prev, skb->dev);
2262 /* need to clone skb, done only once */
2263 skb2 = skb_clone(skb, GFP_ATOMIC);
2267 net_timestamp_set(skb2);
2269 /* skb->nh should be correctly
2270 * set by sender, so that the second statement is
2271 * just protection against buggy protocols.
2273 skb_reset_mac_header(skb2);
2275 if (skb_network_header(skb2) < skb2->data ||
2276 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2277 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2278 ntohs(skb2->protocol),
2280 skb_reset_network_header(skb2);
2283 skb2->transport_header = skb2->network_header;
2284 skb2->pkt_type = PACKET_OUTGOING;
2288 if (ptype_list == &ptype_all) {
2289 ptype_list = &dev->ptype_all;
2294 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2295 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2301 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2305 * @dev: Network device
2306 * @txq: number of queues available
2308 * If real_num_tx_queues is changed the tc mappings may no longer be
2309 * valid. To resolve this verify the tc mapping remains valid and if
2310 * not NULL the mapping. With no priorities mapping to this
2311 * offset/count pair it will no longer be used. In the worst case TC0
2312 * is invalid nothing can be done so disable priority mappings. If is
2313 * expected that drivers will fix this mapping if they can before
2314 * calling netif_set_real_num_tx_queues.
2316 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321 /* If TC0 is invalidated disable TC mapping */
2322 if (tc->offset + tc->count > txq) {
2323 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2328 /* Invalidated prio to tc mappings set to TC0 */
2329 for (i = 1; i < TC_BITMASK + 1; i++) {
2330 int q = netdev_get_prio_tc_map(dev, i);
2332 tc = &dev->tc_to_txq[q];
2333 if (tc->offset + tc->count > txq) {
2334 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2336 netdev_set_prio_tc_map(dev, i, 0);
2341 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347 /* walk through the TCs and see if it falls into any of them */
2348 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2349 if ((txq - tc->offset) < tc->count)
2353 /* didn't find it, just return -1 to indicate no match */
2359 EXPORT_SYMBOL(netdev_txq_to_tc);
2362 static struct static_key xps_needed __read_mostly;
2363 static struct static_key xps_rxqs_needed __read_mostly;
2364 static DEFINE_MUTEX(xps_map_mutex);
2365 #define xmap_dereference(P) \
2366 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2368 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2369 struct xps_dev_maps *old_maps, int tci, u16 index)
2371 struct xps_map *map = NULL;
2375 map = xmap_dereference(dev_maps->attr_map[tci]);
2379 for (pos = map->len; pos--;) {
2380 if (map->queues[pos] != index)
2384 map->queues[pos] = map->queues[--map->len];
2389 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 kfree_rcu(map, rcu);
2398 static bool remove_xps_queue_cpu(struct net_device *dev,
2399 struct xps_dev_maps *dev_maps,
2400 int cpu, u16 offset, u16 count)
2402 int num_tc = dev_maps->num_tc;
2403 bool active = false;
2406 for (tci = cpu * num_tc; num_tc--; tci++) {
2409 for (i = count, j = offset; i--; j++) {
2410 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2420 static void reset_xps_maps(struct net_device *dev,
2421 struct xps_dev_maps *dev_maps,
2422 enum xps_map_type type)
2424 static_key_slow_dec_cpuslocked(&xps_needed);
2425 if (type == XPS_RXQS)
2426 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2428 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2430 kfree_rcu(dev_maps, rcu);
2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 u16 offset, u16 count)
2436 struct xps_dev_maps *dev_maps;
2437 bool active = false;
2440 dev_maps = xmap_dereference(dev->xps_maps[type]);
2444 for (j = 0; j < dev_maps->nr_ids; j++)
2445 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2447 reset_xps_maps(dev, dev_maps, type);
2449 if (type == XPS_CPUS) {
2450 for (i = offset + (count - 1); count--; i--)
2451 netdev_queue_numa_node_write(
2452 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459 if (!static_key_false(&xps_needed))
2463 mutex_lock(&xps_map_mutex);
2465 if (static_key_false(&xps_rxqs_needed))
2466 clean_xps_maps(dev, XPS_RXQS, offset, count);
2468 clean_xps_maps(dev, XPS_CPUS, offset, count);
2470 mutex_unlock(&xps_map_mutex);
2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 u16 index, bool is_rxqs_map)
2482 struct xps_map *new_map;
2483 int alloc_len = XPS_MIN_MAP_ALLOC;
2486 for (pos = 0; map && pos < map->len; pos++) {
2487 if (map->queues[pos] != index)
2492 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494 if (pos < map->alloc_len)
2497 alloc_len = map->alloc_len * 2;
2500 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2504 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 cpu_to_node(attr_index));
2511 for (i = 0; i < pos; i++)
2512 new_map->queues[i] = map->queues[i];
2513 new_map->alloc_len = alloc_len;
2519 /* Copy xps maps at a given index */
2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 struct xps_dev_maps *new_dev_maps, int index,
2522 int tc, bool skip_tc)
2524 int i, tci = index * dev_maps->num_tc;
2525 struct xps_map *map;
2527 /* copy maps belonging to foreign traffic classes */
2528 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 if (i == tc && skip_tc)
2532 /* fill in the new device map from the old device map */
2533 map = xmap_dereference(dev_maps->attr_map[tci]);
2534 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2538 /* Must be called under cpus_read_lock */
2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 u16 index, enum xps_map_type type)
2542 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 const unsigned long *online_mask = NULL;
2544 bool active = false, copy = false;
2545 int i, j, tci, numa_node_id = -2;
2546 int maps_sz, num_tc = 1, tc = 0;
2547 struct xps_map *map, *new_map;
2548 unsigned int nr_ids;
2551 /* Do not allow XPS on subordinate device directly */
2552 num_tc = dev->num_tc;
2556 /* If queue belongs to subordinate dev use its map */
2557 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2559 tc = netdev_txq_to_tc(dev, index);
2564 mutex_lock(&xps_map_mutex);
2566 dev_maps = xmap_dereference(dev->xps_maps[type]);
2567 if (type == XPS_RXQS) {
2568 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2569 nr_ids = dev->num_rx_queues;
2571 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2572 if (num_possible_cpus() > 1)
2573 online_mask = cpumask_bits(cpu_online_mask);
2574 nr_ids = nr_cpu_ids;
2577 if (maps_sz < L1_CACHE_BYTES)
2578 maps_sz = L1_CACHE_BYTES;
2580 /* The old dev_maps could be larger or smaller than the one we're
2581 * setting up now, as dev->num_tc or nr_ids could have been updated in
2582 * between. We could try to be smart, but let's be safe instead and only
2583 * copy foreign traffic classes if the two map sizes match.
2586 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 /* allocate memory for queue storage */
2590 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2592 if (!new_dev_maps) {
2593 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2594 if (!new_dev_maps) {
2595 mutex_unlock(&xps_map_mutex);
2599 new_dev_maps->nr_ids = nr_ids;
2600 new_dev_maps->num_tc = num_tc;
2603 tci = j * num_tc + tc;
2604 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2606 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2610 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2614 goto out_no_new_maps;
2617 /* Increment static keys at most once per type */
2618 static_key_slow_inc_cpuslocked(&xps_needed);
2619 if (type == XPS_RXQS)
2620 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623 for (j = 0; j < nr_ids; j++) {
2624 bool skip_tc = false;
2626 tci = j * num_tc + tc;
2627 if (netif_attr_test_mask(j, mask, nr_ids) &&
2628 netif_attr_test_online(j, online_mask, nr_ids)) {
2629 /* add tx-queue to CPU/rx-queue maps */
2634 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2635 while ((pos < map->len) && (map->queues[pos] != index))
2638 if (pos == map->len)
2639 map->queues[map->len++] = index;
2641 if (type == XPS_CPUS) {
2642 if (numa_node_id == -2)
2643 numa_node_id = cpu_to_node(j);
2644 else if (numa_node_id != cpu_to_node(j))
2651 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2655 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2657 /* Cleanup old maps */
2659 goto out_no_old_maps;
2661 for (j = 0; j < dev_maps->nr_ids; j++) {
2662 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2663 map = xmap_dereference(dev_maps->attr_map[tci]);
2668 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2673 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2674 kfree_rcu(map, rcu);
2678 old_dev_maps = dev_maps;
2681 dev_maps = new_dev_maps;
2685 if (type == XPS_CPUS)
2686 /* update Tx queue numa node */
2687 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2688 (numa_node_id >= 0) ?
2689 numa_node_id : NUMA_NO_NODE);
2694 /* removes tx-queue from unused CPUs/rx-queues */
2695 for (j = 0; j < dev_maps->nr_ids; j++) {
2696 tci = j * dev_maps->num_tc;
2698 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2700 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2701 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704 active |= remove_xps_queue(dev_maps,
2705 copy ? old_dev_maps : NULL,
2711 kfree_rcu(old_dev_maps, rcu);
2713 /* free map if not active */
2715 reset_xps_maps(dev, dev_maps, type);
2718 mutex_unlock(&xps_map_mutex);
2722 /* remove any maps that we added */
2723 for (j = 0; j < nr_ids; j++) {
2724 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2725 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2727 xmap_dereference(dev_maps->attr_map[tci]) :
2729 if (new_map && new_map != map)
2734 mutex_unlock(&xps_map_mutex);
2736 kfree(new_dev_maps);
2739 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2741 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2747 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2752 EXPORT_SYMBOL(netif_set_xps_queue);
2755 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2757 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2759 /* Unbind any subordinate channels */
2760 while (txq-- != &dev->_tx[0]) {
2762 netdev_unbind_sb_channel(dev, txq->sb_dev);
2766 void netdev_reset_tc(struct net_device *dev)
2769 netif_reset_xps_queues_gt(dev, 0);
2771 netdev_unbind_all_sb_channels(dev);
2773 /* Reset TC configuration of device */
2775 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2776 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2778 EXPORT_SYMBOL(netdev_reset_tc);
2780 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2782 if (tc >= dev->num_tc)
2786 netif_reset_xps_queues(dev, offset, count);
2788 dev->tc_to_txq[tc].count = count;
2789 dev->tc_to_txq[tc].offset = offset;
2792 EXPORT_SYMBOL(netdev_set_tc_queue);
2794 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2796 if (num_tc > TC_MAX_QUEUE)
2800 netif_reset_xps_queues_gt(dev, 0);
2802 netdev_unbind_all_sb_channels(dev);
2804 dev->num_tc = num_tc;
2807 EXPORT_SYMBOL(netdev_set_num_tc);
2809 void netdev_unbind_sb_channel(struct net_device *dev,
2810 struct net_device *sb_dev)
2812 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 netif_reset_xps_queues_gt(sb_dev, 0);
2817 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2818 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2820 while (txq-- != &dev->_tx[0]) {
2821 if (txq->sb_dev == sb_dev)
2825 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2827 int netdev_bind_sb_channel_queue(struct net_device *dev,
2828 struct net_device *sb_dev,
2829 u8 tc, u16 count, u16 offset)
2831 /* Make certain the sb_dev and dev are already configured */
2832 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 /* We cannot hand out queues we don't have */
2836 if ((offset + count) > dev->real_num_tx_queues)
2839 /* Record the mapping */
2840 sb_dev->tc_to_txq[tc].count = count;
2841 sb_dev->tc_to_txq[tc].offset = offset;
2843 /* Provide a way for Tx queue to find the tc_to_txq map or
2844 * XPS map for itself.
2847 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2851 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2853 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2855 /* Do not use a multiqueue device to represent a subordinate channel */
2856 if (netif_is_multiqueue(dev))
2859 /* We allow channels 1 - 32767 to be used for subordinate channels.
2860 * Channel 0 is meant to be "native" mode and used only to represent
2861 * the main root device. We allow writing 0 to reset the device back
2862 * to normal mode after being used as a subordinate channel.
2864 if (channel > S16_MAX)
2867 dev->num_tc = -channel;
2871 EXPORT_SYMBOL(netdev_set_sb_channel);
2874 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2875 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2877 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2882 disabling = txq < dev->real_num_tx_queues;
2884 if (txq < 1 || txq > dev->num_tx_queues)
2887 if (dev->reg_state == NETREG_REGISTERED ||
2888 dev->reg_state == NETREG_UNREGISTERING) {
2891 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2897 netif_setup_tc(dev, txq);
2899 dev_qdisc_change_real_num_tx(dev, txq);
2901 dev->real_num_tx_queues = txq;
2905 qdisc_reset_all_tx_gt(dev, txq);
2907 netif_reset_xps_queues_gt(dev, txq);
2911 dev->real_num_tx_queues = txq;
2916 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2920 * netif_set_real_num_rx_queues - set actual number of RX queues used
2921 * @dev: Network device
2922 * @rxq: Actual number of RX queues
2924 * This must be called either with the rtnl_lock held or before
2925 * registration of the net device. Returns 0 on success, or a
2926 * negative error code. If called before registration, it always
2929 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2933 if (rxq < 1 || rxq > dev->num_rx_queues)
2936 if (dev->reg_state == NETREG_REGISTERED) {
2939 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2945 dev->real_num_rx_queues = rxq;
2948 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2952 * netif_set_real_num_queues - set actual number of RX and TX queues used
2953 * @dev: Network device
2954 * @txq: Actual number of TX queues
2955 * @rxq: Actual number of RX queues
2957 * Set the real number of both TX and RX queues.
2958 * Does nothing if the number of queues is already correct.
2960 int netif_set_real_num_queues(struct net_device *dev,
2961 unsigned int txq, unsigned int rxq)
2963 unsigned int old_rxq = dev->real_num_rx_queues;
2966 if (txq < 1 || txq > dev->num_tx_queues ||
2967 rxq < 1 || rxq > dev->num_rx_queues)
2970 /* Start from increases, so the error path only does decreases -
2971 * decreases can't fail.
2973 if (rxq > dev->real_num_rx_queues) {
2974 err = netif_set_real_num_rx_queues(dev, rxq);
2978 if (txq > dev->real_num_tx_queues) {
2979 err = netif_set_real_num_tx_queues(dev, txq);
2983 if (rxq < dev->real_num_rx_queues)
2984 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2985 if (txq < dev->real_num_tx_queues)
2986 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2990 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 EXPORT_SYMBOL(netif_set_real_num_queues);
2996 * netif_set_tso_max_size() - set the max size of TSO frames supported
2997 * @dev: netdev to update
2998 * @size: max skb->len of a TSO frame
3000 * Set the limit on the size of TSO super-frames the device can handle.
3001 * Unless explicitly set the stack will assume the value of
3002 * %GSO_LEGACY_MAX_SIZE.
3004 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3006 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3007 if (size < READ_ONCE(dev->gso_max_size))
3008 netif_set_gso_max_size(dev, size);
3010 EXPORT_SYMBOL(netif_set_tso_max_size);
3013 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3014 * @dev: netdev to update
3015 * @segs: max number of TCP segments
3017 * Set the limit on the number of TCP segments the device can generate from
3018 * a single TSO super-frame.
3019 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3021 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3023 dev->tso_max_segs = segs;
3024 if (segs < READ_ONCE(dev->gso_max_segs))
3025 netif_set_gso_max_segs(dev, segs);
3027 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3031 * @to: netdev to update
3032 * @from: netdev from which to copy the limits
3034 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3036 netif_set_tso_max_size(to, from->tso_max_size);
3037 netif_set_tso_max_segs(to, from->tso_max_segs);
3039 EXPORT_SYMBOL(netif_inherit_tso_max);
3042 * netif_get_num_default_rss_queues - default number of RSS queues
3044 * Default value is the number of physical cores if there are only 1 or 2, or
3045 * divided by 2 if there are more.
3047 int netif_get_num_default_rss_queues(void)
3052 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055 cpumask_copy(cpus, cpu_online_mask);
3056 for_each_cpu(cpu, cpus) {
3058 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3060 free_cpumask_var(cpus);
3062 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3064 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3066 static void __netif_reschedule(struct Qdisc *q)
3068 struct softnet_data *sd;
3069 unsigned long flags;
3071 local_irq_save(flags);
3072 sd = this_cpu_ptr(&softnet_data);
3073 q->next_sched = NULL;
3074 *sd->output_queue_tailp = q;
3075 sd->output_queue_tailp = &q->next_sched;
3076 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3077 local_irq_restore(flags);
3080 void __netif_schedule(struct Qdisc *q)
3082 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3083 __netif_reschedule(q);
3085 EXPORT_SYMBOL(__netif_schedule);
3087 struct dev_kfree_skb_cb {
3088 enum skb_free_reason reason;
3091 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3093 return (struct dev_kfree_skb_cb *)skb->cb;
3096 void netif_schedule_queue(struct netdev_queue *txq)
3099 if (!netif_xmit_stopped(txq)) {
3100 struct Qdisc *q = rcu_dereference(txq->qdisc);
3102 __netif_schedule(q);
3106 EXPORT_SYMBOL(netif_schedule_queue);
3108 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3110 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3114 q = rcu_dereference(dev_queue->qdisc);
3115 __netif_schedule(q);
3119 EXPORT_SYMBOL(netif_tx_wake_queue);
3121 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3123 unsigned long flags;
3128 if (likely(refcount_read(&skb->users) == 1)) {
3130 refcount_set(&skb->users, 0);
3131 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134 get_kfree_skb_cb(skb)->reason = reason;
3135 local_irq_save(flags);
3136 skb->next = __this_cpu_read(softnet_data.completion_queue);
3137 __this_cpu_write(softnet_data.completion_queue, skb);
3138 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3139 local_irq_restore(flags);
3141 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3143 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3145 if (in_hardirq() || irqs_disabled())
3146 __dev_kfree_skb_irq(skb, reason);
3150 EXPORT_SYMBOL(__dev_kfree_skb_any);
3154 * netif_device_detach - mark device as removed
3155 * @dev: network device
3157 * Mark device as removed from system and therefore no longer available.
3159 void netif_device_detach(struct net_device *dev)
3161 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3162 netif_running(dev)) {
3163 netif_tx_stop_all_queues(dev);
3166 EXPORT_SYMBOL(netif_device_detach);
3169 * netif_device_attach - mark device as attached
3170 * @dev: network device
3172 * Mark device as attached from system and restart if needed.
3174 void netif_device_attach(struct net_device *dev)
3176 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3177 netif_running(dev)) {
3178 netif_tx_wake_all_queues(dev);
3179 __netdev_watchdog_up(dev);
3182 EXPORT_SYMBOL(netif_device_attach);
3185 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3186 * to be used as a distribution range.
3188 static u16 skb_tx_hash(const struct net_device *dev,
3189 const struct net_device *sb_dev,
3190 struct sk_buff *skb)
3194 u16 qcount = dev->real_num_tx_queues;
3197 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3199 qoffset = sb_dev->tc_to_txq[tc].offset;
3200 qcount = sb_dev->tc_to_txq[tc].count;
3201 if (unlikely(!qcount)) {
3202 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3203 sb_dev->name, qoffset, tc);
3205 qcount = dev->real_num_tx_queues;
3209 if (skb_rx_queue_recorded(skb)) {
3210 hash = skb_get_rx_queue(skb);
3211 if (hash >= qoffset)
3213 while (unlikely(hash >= qcount))
3215 return hash + qoffset;
3218 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221 static void skb_warn_bad_offload(const struct sk_buff *skb)
3223 static const netdev_features_t null_features;
3224 struct net_device *dev = skb->dev;
3225 const char *name = "";
3227 if (!net_ratelimit())
3231 if (dev->dev.parent)
3232 name = dev_driver_string(dev->dev.parent);
3234 name = netdev_name(dev);
3236 skb_dump(KERN_WARNING, skb, false);
3237 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3238 name, dev ? &dev->features : &null_features,
3239 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3243 * Invalidate hardware checksum when packet is to be mangled, and
3244 * complete checksum manually on outgoing path.
3246 int skb_checksum_help(struct sk_buff *skb)
3249 int ret = 0, offset;
3251 if (skb->ip_summed == CHECKSUM_COMPLETE)
3252 goto out_set_summed;
3254 if (unlikely(skb_is_gso(skb))) {
3255 skb_warn_bad_offload(skb);
3259 /* Before computing a checksum, we should make sure no frag could
3260 * be modified by an external entity : checksum could be wrong.
3262 if (skb_has_shared_frag(skb)) {
3263 ret = __skb_linearize(skb);
3268 offset = skb_checksum_start_offset(skb);
3270 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3271 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3276 offset += skb->csum_offset;
3277 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3278 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3285 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3287 skb->ip_summed = CHECKSUM_NONE;
3291 EXPORT_SYMBOL(skb_checksum_help);
3293 int skb_crc32c_csum_help(struct sk_buff *skb)
3296 int ret = 0, offset, start;
3298 if (skb->ip_summed != CHECKSUM_PARTIAL)
3301 if (unlikely(skb_is_gso(skb)))
3304 /* Before computing a checksum, we should make sure no frag could
3305 * be modified by an external entity : checksum could be wrong.
3307 if (unlikely(skb_has_shared_frag(skb))) {
3308 ret = __skb_linearize(skb);
3312 start = skb_checksum_start_offset(skb);
3313 offset = start + offsetof(struct sctphdr, checksum);
3314 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3319 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3323 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3324 skb->len - start, ~(__u32)0,
3326 *(__le32 *)(skb->data + offset) = crc32c_csum;
3327 skb->ip_summed = CHECKSUM_NONE;
3328 skb->csum_not_inet = 0;
3333 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3335 __be16 type = skb->protocol;
3337 /* Tunnel gso handlers can set protocol to ethernet. */
3338 if (type == htons(ETH_P_TEB)) {
3341 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344 eth = (struct ethhdr *)skb->data;
3345 type = eth->h_proto;
3348 return __vlan_get_protocol(skb, type, depth);
3351 /* openvswitch calls this on rx path, so we need a different check.
3353 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356 return skb->ip_summed != CHECKSUM_PARTIAL &&
3357 skb->ip_summed != CHECKSUM_UNNECESSARY;
3359 return skb->ip_summed == CHECKSUM_NONE;
3363 * __skb_gso_segment - Perform segmentation on skb.
3364 * @skb: buffer to segment
3365 * @features: features for the output path (see dev->features)
3366 * @tx_path: whether it is called in TX path
3368 * This function segments the given skb and returns a list of segments.
3370 * It may return NULL if the skb requires no segmentation. This is
3371 * only possible when GSO is used for verifying header integrity.
3373 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3376 netdev_features_t features, bool tx_path)
3378 struct sk_buff *segs;
3380 if (unlikely(skb_needs_check(skb, tx_path))) {
3383 /* We're going to init ->check field in TCP or UDP header */
3384 err = skb_cow_head(skb, 0);
3386 return ERR_PTR(err);
3389 /* Only report GSO partial support if it will enable us to
3390 * support segmentation on this frame without needing additional
3393 if (features & NETIF_F_GSO_PARTIAL) {
3394 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3395 struct net_device *dev = skb->dev;
3397 partial_features |= dev->features & dev->gso_partial_features;
3398 if (!skb_gso_ok(skb, features | partial_features))
3399 features &= ~NETIF_F_GSO_PARTIAL;
3402 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3403 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3406 SKB_GSO_CB(skb)->encap_level = 0;
3408 skb_reset_mac_header(skb);
3409 skb_reset_mac_len(skb);
3411 segs = skb_mac_gso_segment(skb, features);
3413 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3414 skb_warn_bad_offload(skb);
3418 EXPORT_SYMBOL(__skb_gso_segment);
3420 /* Take action when hardware reception checksum errors are detected. */
3422 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 netdev_err(dev, "hw csum failure\n");
3425 skb_dump(KERN_ERR, skb, true);
3429 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433 EXPORT_SYMBOL(netdev_rx_csum_fault);
3436 /* XXX: check that highmem exists at all on the given machine. */
3437 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439 #ifdef CONFIG_HIGHMEM
3442 if (!(dev->features & NETIF_F_HIGHDMA)) {
3443 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3444 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446 if (PageHighMem(skb_frag_page(frag)))
3454 /* If MPLS offload request, verify we are testing hardware MPLS features
3455 * instead of standard features for the netdev.
3457 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3458 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459 netdev_features_t features,
3462 if (eth_p_mpls(type))
3463 features &= skb->dev->mpls_features;
3468 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3469 netdev_features_t features,
3476 static netdev_features_t harmonize_features(struct sk_buff *skb,
3477 netdev_features_t features)
3481 type = skb_network_protocol(skb, NULL);
3482 features = net_mpls_features(skb, features, type);
3484 if (skb->ip_summed != CHECKSUM_NONE &&
3485 !can_checksum_protocol(features, type)) {
3486 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488 if (illegal_highdma(skb->dev, skb))
3489 features &= ~NETIF_F_SG;
3494 netdev_features_t passthru_features_check(struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3500 EXPORT_SYMBOL(passthru_features_check);
3502 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3503 struct net_device *dev,
3504 netdev_features_t features)
3506 return vlan_features_check(skb, features);
3509 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3510 struct net_device *dev,
3511 netdev_features_t features)
3513 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3516 return features & ~NETIF_F_GSO_MASK;
3518 if (!skb_shinfo(skb)->gso_type) {
3519 skb_warn_bad_offload(skb);
3520 return features & ~NETIF_F_GSO_MASK;
3523 /* Support for GSO partial features requires software
3524 * intervention before we can actually process the packets
3525 * so we need to strip support for any partial features now
3526 * and we can pull them back in after we have partially
3527 * segmented the frame.
3529 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530 features &= ~dev->gso_partial_features;
3532 /* Make sure to clear the IPv4 ID mangling feature if the
3533 * IPv4 header has the potential to be fragmented.
3535 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536 struct iphdr *iph = skb->encapsulation ?
3537 inner_ip_hdr(skb) : ip_hdr(skb);
3539 if (!(iph->frag_off & htons(IP_DF)))
3540 features &= ~NETIF_F_TSO_MANGLEID;
3546 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 struct net_device *dev = skb->dev;
3549 netdev_features_t features = dev->features;
3551 if (skb_is_gso(skb))
3552 features = gso_features_check(skb, dev, features);
3554 /* If encapsulation offload request, verify we are testing
3555 * hardware encapsulation features instead of standard
3556 * features for the netdev
3558 if (skb->encapsulation)
3559 features &= dev->hw_enc_features;
3561 if (skb_vlan_tagged(skb))
3562 features = netdev_intersect_features(features,
3563 dev->vlan_features |
3564 NETIF_F_HW_VLAN_CTAG_TX |
3565 NETIF_F_HW_VLAN_STAG_TX);
3567 if (dev->netdev_ops->ndo_features_check)
3568 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 features &= dflt_features_check(skb, dev, features);
3573 return harmonize_features(skb, features);
3575 EXPORT_SYMBOL(netif_skb_features);
3577 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578 struct netdev_queue *txq, bool more)
3583 if (dev_nit_active(dev))
3584 dev_queue_xmit_nit(skb, dev);
3587 trace_net_dev_start_xmit(skb, dev);
3588 rc = netdev_start_xmit(skb, dev, txq, more);
3589 trace_net_dev_xmit(skb, rc, dev, len);
3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595 struct netdev_queue *txq, int *ret)
3597 struct sk_buff *skb = first;
3598 int rc = NETDEV_TX_OK;
3601 struct sk_buff *next = skb->next;
3603 skb_mark_not_on_list(skb);
3604 rc = xmit_one(skb, dev, txq, next != NULL);
3605 if (unlikely(!dev_xmit_complete(rc))) {
3611 if (netif_tx_queue_stopped(txq) && skb) {
3612 rc = NETDEV_TX_BUSY;
3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623 netdev_features_t features)
3625 if (skb_vlan_tag_present(skb) &&
3626 !vlan_hw_offload_capable(features, skb->vlan_proto))
3627 skb = __vlan_hwaccel_push_inside(skb);
3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632 const netdev_features_t features)
3634 if (unlikely(skb_csum_is_sctp(skb)))
3635 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636 skb_crc32c_csum_help(skb);
3638 if (features & NETIF_F_HW_CSUM)
3641 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642 switch (skb->csum_offset) {
3643 case offsetof(struct tcphdr, check):
3644 case offsetof(struct udphdr, check):
3649 return skb_checksum_help(skb);
3651 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3653 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3655 netdev_features_t features;
3657 features = netif_skb_features(skb);
3658 skb = validate_xmit_vlan(skb, features);
3662 skb = sk_validate_xmit_skb(skb, dev);
3666 if (netif_needs_gso(skb, features)) {
3667 struct sk_buff *segs;
3669 segs = skb_gso_segment(skb, features);
3677 if (skb_needs_linearize(skb, features) &&
3678 __skb_linearize(skb))
3681 /* If packet is not checksummed and device does not
3682 * support checksumming for this protocol, complete
3683 * checksumming here.
3685 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3686 if (skb->encapsulation)
3687 skb_set_inner_transport_header(skb,
3688 skb_checksum_start_offset(skb));
3690 skb_set_transport_header(skb,
3691 skb_checksum_start_offset(skb));
3692 if (skb_csum_hwoffload_help(skb, features))
3697 skb = validate_xmit_xfrm(skb, features, again);
3704 dev_core_stats_tx_dropped_inc(dev);
3708 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3710 struct sk_buff *next, *head = NULL, *tail;
3712 for (; skb != NULL; skb = next) {
3714 skb_mark_not_on_list(skb);
3716 /* in case skb wont be segmented, point to itself */
3719 skb = validate_xmit_skb(skb, dev, again);
3727 /* If skb was segmented, skb->prev points to
3728 * the last segment. If not, it still contains skb.
3734 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3736 static void qdisc_pkt_len_init(struct sk_buff *skb)
3738 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3740 qdisc_skb_cb(skb)->pkt_len = skb->len;
3742 /* To get more precise estimation of bytes sent on wire,
3743 * we add to pkt_len the headers size of all segments
3745 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3746 unsigned int hdr_len;
3747 u16 gso_segs = shinfo->gso_segs;
3749 /* mac layer + network layer */
3750 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3752 /* + transport layer */
3753 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3754 const struct tcphdr *th;
3755 struct tcphdr _tcphdr;
3757 th = skb_header_pointer(skb, skb_transport_offset(skb),
3758 sizeof(_tcphdr), &_tcphdr);
3760 hdr_len += __tcp_hdrlen(th);
3762 struct udphdr _udphdr;
3764 if (skb_header_pointer(skb, skb_transport_offset(skb),
3765 sizeof(_udphdr), &_udphdr))
3766 hdr_len += sizeof(struct udphdr);
3769 if (shinfo->gso_type & SKB_GSO_DODGY)
3770 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3777 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3778 struct sk_buff **to_free,
3779 struct netdev_queue *txq)
3783 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3784 if (rc == NET_XMIT_SUCCESS)
3785 trace_qdisc_enqueue(q, txq, skb);
3789 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3790 struct net_device *dev,
3791 struct netdev_queue *txq)
3793 spinlock_t *root_lock = qdisc_lock(q);
3794 struct sk_buff *to_free = NULL;
3798 qdisc_calculate_pkt_len(skb, q);
3800 if (q->flags & TCQ_F_NOLOCK) {
3801 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3802 qdisc_run_begin(q)) {
3803 /* Retest nolock_qdisc_is_empty() within the protection
3804 * of q->seqlock to protect from racing with requeuing.
3806 if (unlikely(!nolock_qdisc_is_empty(q))) {
3807 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3814 qdisc_bstats_cpu_update(q, skb);
3815 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3816 !nolock_qdisc_is_empty(q))
3820 return NET_XMIT_SUCCESS;
3823 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3827 if (unlikely(to_free))
3828 kfree_skb_list_reason(to_free,
3829 SKB_DROP_REASON_QDISC_DROP);
3834 * Heuristic to force contended enqueues to serialize on a
3835 * separate lock before trying to get qdisc main lock.
3836 * This permits qdisc->running owner to get the lock more
3837 * often and dequeue packets faster.
3838 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3839 * and then other tasks will only enqueue packets. The packets will be
3840 * sent after the qdisc owner is scheduled again. To prevent this
3841 * scenario the task always serialize on the lock.
3843 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3844 if (unlikely(contended))
3845 spin_lock(&q->busylock);
3847 spin_lock(root_lock);
3848 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3849 __qdisc_drop(skb, &to_free);
3851 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3852 qdisc_run_begin(q)) {
3854 * This is a work-conserving queue; there are no old skbs
3855 * waiting to be sent out; and the qdisc is not running -
3856 * xmit the skb directly.
3859 qdisc_bstats_update(q, skb);
3861 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3862 if (unlikely(contended)) {
3863 spin_unlock(&q->busylock);
3870 rc = NET_XMIT_SUCCESS;
3872 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3873 if (qdisc_run_begin(q)) {
3874 if (unlikely(contended)) {
3875 spin_unlock(&q->busylock);
3882 spin_unlock(root_lock);
3883 if (unlikely(to_free))
3884 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3885 if (unlikely(contended))
3886 spin_unlock(&q->busylock);
3890 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3891 static void skb_update_prio(struct sk_buff *skb)
3893 const struct netprio_map *map;
3894 const struct sock *sk;
3895 unsigned int prioidx;
3899 map = rcu_dereference_bh(skb->dev->priomap);
3902 sk = skb_to_full_sk(skb);
3906 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3908 if (prioidx < map->priomap_len)
3909 skb->priority = map->priomap[prioidx];
3912 #define skb_update_prio(skb)
3916 * dev_loopback_xmit - loop back @skb
3917 * @net: network namespace this loopback is happening in
3918 * @sk: sk needed to be a netfilter okfn
3919 * @skb: buffer to transmit
3921 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3923 skb_reset_mac_header(skb);
3924 __skb_pull(skb, skb_network_offset(skb));
3925 skb->pkt_type = PACKET_LOOPBACK;
3926 if (skb->ip_summed == CHECKSUM_NONE)
3927 skb->ip_summed = CHECKSUM_UNNECESSARY;
3928 WARN_ON(!skb_dst(skb));
3933 EXPORT_SYMBOL(dev_loopback_xmit);
3935 #ifdef CONFIG_NET_EGRESS
3936 static struct sk_buff *
3937 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3939 #ifdef CONFIG_NET_CLS_ACT
3940 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3941 struct tcf_result cl_res;
3946 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3947 tc_skb_cb(skb)->mru = 0;
3948 tc_skb_cb(skb)->post_ct = false;
3949 mini_qdisc_bstats_cpu_update(miniq, skb);
3951 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3953 case TC_ACT_RECLASSIFY:
3954 skb->tc_index = TC_H_MIN(cl_res.classid);
3957 mini_qdisc_qstats_cpu_drop(miniq);
3958 *ret = NET_XMIT_DROP;
3959 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3964 *ret = NET_XMIT_SUCCESS;
3967 case TC_ACT_REDIRECT:
3968 /* No need to push/pop skb's mac_header here on egress! */
3969 skb_do_redirect(skb);
3970 *ret = NET_XMIT_SUCCESS;
3975 #endif /* CONFIG_NET_CLS_ACT */
3980 static struct netdev_queue *
3981 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3983 int qm = skb_get_queue_mapping(skb);
3985 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988 static bool netdev_xmit_txqueue_skipped(void)
3990 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993 void netdev_xmit_skip_txqueue(bool skip)
3995 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3997 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3998 #endif /* CONFIG_NET_EGRESS */
4001 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4002 struct xps_dev_maps *dev_maps, unsigned int tci)
4004 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4005 struct xps_map *map;
4006 int queue_index = -1;
4008 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011 tci *= dev_maps->num_tc;
4014 map = rcu_dereference(dev_maps->attr_map[tci]);
4017 queue_index = map->queues[0];
4019 queue_index = map->queues[reciprocal_scale(
4020 skb_get_hash(skb), map->len)];
4021 if (unlikely(queue_index >= dev->real_num_tx_queues))
4028 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4029 struct sk_buff *skb)
4032 struct xps_dev_maps *dev_maps;
4033 struct sock *sk = skb->sk;
4034 int queue_index = -1;
4036 if (!static_key_false(&xps_needed))
4040 if (!static_key_false(&xps_rxqs_needed))
4043 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4045 int tci = sk_rx_queue_get(sk);
4048 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4053 if (queue_index < 0) {
4054 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4056 unsigned int tci = skb->sender_cpu - 1;
4058 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4070 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4071 struct net_device *sb_dev)
4075 EXPORT_SYMBOL(dev_pick_tx_zero);
4077 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4078 struct net_device *sb_dev)
4080 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4082 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4084 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4085 struct net_device *sb_dev)
4087 struct sock *sk = skb->sk;
4088 int queue_index = sk_tx_queue_get(sk);
4090 sb_dev = sb_dev ? : dev;
4092 if (queue_index < 0 || skb->ooo_okay ||
4093 queue_index >= dev->real_num_tx_queues) {
4094 int new_index = get_xps_queue(dev, sb_dev, skb);
4097 new_index = skb_tx_hash(dev, sb_dev, skb);
4099 if (queue_index != new_index && sk &&
4101 rcu_access_pointer(sk->sk_dst_cache))
4102 sk_tx_queue_set(sk, new_index);
4104 queue_index = new_index;
4109 EXPORT_SYMBOL(netdev_pick_tx);
4111 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4112 struct sk_buff *skb,
4113 struct net_device *sb_dev)
4115 int queue_index = 0;
4118 u32 sender_cpu = skb->sender_cpu - 1;
4120 if (sender_cpu >= (u32)NR_CPUS)
4121 skb->sender_cpu = raw_smp_processor_id() + 1;
4124 if (dev->real_num_tx_queues != 1) {
4125 const struct net_device_ops *ops = dev->netdev_ops;
4127 if (ops->ndo_select_queue)
4128 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4130 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4132 queue_index = netdev_cap_txqueue(dev, queue_index);
4135 skb_set_queue_mapping(skb, queue_index);
4136 return netdev_get_tx_queue(dev, queue_index);
4140 * __dev_queue_xmit() - transmit a buffer
4141 * @skb: buffer to transmit
4142 * @sb_dev: suboordinate device used for L2 forwarding offload
4144 * Queue a buffer for transmission to a network device. The caller must
4145 * have set the device and priority and built the buffer before calling
4146 * this function. The function can be called from an interrupt.
4148 * When calling this method, interrupts MUST be enabled. This is because
4149 * the BH enable code must have IRQs enabled so that it will not deadlock.
4151 * Regardless of the return value, the skb is consumed, so it is currently
4152 * difficult to retry a send to this method. (You can bump the ref count
4153 * before sending to hold a reference for retry if you are careful.)
4156 * * 0 - buffer successfully transmitted
4157 * * positive qdisc return code - NET_XMIT_DROP etc.
4158 * * negative errno - other errors
4160 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4162 struct net_device *dev = skb->dev;
4163 struct netdev_queue *txq = NULL;
4168 skb_reset_mac_header(skb);
4170 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4171 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4173 /* Disable soft irqs for various locks below. Also
4174 * stops preemption for RCU.
4178 skb_update_prio(skb);
4180 qdisc_pkt_len_init(skb);
4181 #ifdef CONFIG_NET_CLS_ACT
4182 skb->tc_at_ingress = 0;
4184 #ifdef CONFIG_NET_EGRESS
4185 if (static_branch_unlikely(&egress_needed_key)) {
4186 if (nf_hook_egress_active()) {
4187 skb = nf_hook_egress(skb, &rc, dev);
4192 netdev_xmit_skip_txqueue(false);
4194 nf_skip_egress(skb, true);
4195 skb = sch_handle_egress(skb, &rc, dev);
4198 nf_skip_egress(skb, false);
4200 if (netdev_xmit_txqueue_skipped())
4201 txq = netdev_tx_queue_mapping(dev, skb);
4204 /* If device/qdisc don't need skb->dst, release it right now while
4205 * its hot in this cpu cache.
4207 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4213 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4215 q = rcu_dereference_bh(txq->qdisc);
4217 trace_net_dev_queue(skb);
4219 rc = __dev_xmit_skb(skb, q, dev, txq);
4223 /* The device has no queue. Common case for software devices:
4224 * loopback, all the sorts of tunnels...
4226 * Really, it is unlikely that netif_tx_lock protection is necessary
4227 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4229 * However, it is possible, that they rely on protection
4232 * Check this and shot the lock. It is not prone from deadlocks.
4233 *Either shot noqueue qdisc, it is even simpler 8)
4235 if (dev->flags & IFF_UP) {
4236 int cpu = smp_processor_id(); /* ok because BHs are off */
4238 /* Other cpus might concurrently change txq->xmit_lock_owner
4239 * to -1 or to their cpu id, but not to our id.
4241 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4242 if (dev_xmit_recursion())
4243 goto recursion_alert;
4245 skb = validate_xmit_skb(skb, dev, &again);
4249 HARD_TX_LOCK(dev, txq, cpu);
4251 if (!netif_xmit_stopped(txq)) {
4252 dev_xmit_recursion_inc();
4253 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4254 dev_xmit_recursion_dec();
4255 if (dev_xmit_complete(rc)) {
4256 HARD_TX_UNLOCK(dev, txq);
4260 HARD_TX_UNLOCK(dev, txq);
4261 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4264 /* Recursion is detected! It is possible,
4268 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4274 rcu_read_unlock_bh();
4276 dev_core_stats_tx_dropped_inc(dev);
4277 kfree_skb_list(skb);
4280 rcu_read_unlock_bh();
4283 EXPORT_SYMBOL(__dev_queue_xmit);
4285 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4287 struct net_device *dev = skb->dev;
4288 struct sk_buff *orig_skb = skb;
4289 struct netdev_queue *txq;
4290 int ret = NETDEV_TX_BUSY;
4293 if (unlikely(!netif_running(dev) ||
4294 !netif_carrier_ok(dev)))
4297 skb = validate_xmit_skb_list(skb, dev, &again);
4298 if (skb != orig_skb)
4301 skb_set_queue_mapping(skb, queue_id);
4302 txq = skb_get_tx_queue(dev, skb);
4306 dev_xmit_recursion_inc();
4307 HARD_TX_LOCK(dev, txq, smp_processor_id());
4308 if (!netif_xmit_frozen_or_drv_stopped(txq))
4309 ret = netdev_start_xmit(skb, dev, txq, false);
4310 HARD_TX_UNLOCK(dev, txq);
4311 dev_xmit_recursion_dec();
4316 dev_core_stats_tx_dropped_inc(dev);
4317 kfree_skb_list(skb);
4318 return NET_XMIT_DROP;
4320 EXPORT_SYMBOL(__dev_direct_xmit);
4322 /*************************************************************************
4324 *************************************************************************/
4326 int netdev_max_backlog __read_mostly = 1000;
4327 EXPORT_SYMBOL(netdev_max_backlog);
4329 int netdev_tstamp_prequeue __read_mostly = 1;
4330 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4331 int netdev_budget __read_mostly = 300;
4332 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4333 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4334 int weight_p __read_mostly = 64; /* old backlog weight */
4335 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4336 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4337 int dev_rx_weight __read_mostly = 64;
4338 int dev_tx_weight __read_mostly = 64;
4340 /* Called with irq disabled */
4341 static inline void ____napi_schedule(struct softnet_data *sd,
4342 struct napi_struct *napi)
4344 struct task_struct *thread;
4346 lockdep_assert_irqs_disabled();
4348 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4349 /* Paired with smp_mb__before_atomic() in
4350 * napi_enable()/dev_set_threaded().
4351 * Use READ_ONCE() to guarantee a complete
4352 * read on napi->thread. Only call
4353 * wake_up_process() when it's not NULL.
4355 thread = READ_ONCE(napi->thread);
4357 /* Avoid doing set_bit() if the thread is in
4358 * INTERRUPTIBLE state, cause napi_thread_wait()
4359 * makes sure to proceed with napi polling
4360 * if the thread is explicitly woken from here.
4362 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4363 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4364 wake_up_process(thread);
4369 list_add_tail(&napi->poll_list, &sd->poll_list);
4370 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4375 /* One global table that all flow-based protocols share. */
4376 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4377 EXPORT_SYMBOL(rps_sock_flow_table);
4378 u32 rps_cpu_mask __read_mostly;
4379 EXPORT_SYMBOL(rps_cpu_mask);
4381 struct static_key_false rps_needed __read_mostly;
4382 EXPORT_SYMBOL(rps_needed);
4383 struct static_key_false rfs_needed __read_mostly;
4384 EXPORT_SYMBOL(rfs_needed);
4386 static struct rps_dev_flow *
4387 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4388 struct rps_dev_flow *rflow, u16 next_cpu)
4390 if (next_cpu < nr_cpu_ids) {
4391 #ifdef CONFIG_RFS_ACCEL
4392 struct netdev_rx_queue *rxqueue;
4393 struct rps_dev_flow_table *flow_table;
4394 struct rps_dev_flow *old_rflow;
4399 /* Should we steer this flow to a different hardware queue? */
4400 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4401 !(dev->features & NETIF_F_NTUPLE))
4403 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4404 if (rxq_index == skb_get_rx_queue(skb))
4407 rxqueue = dev->_rx + rxq_index;
4408 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4411 flow_id = skb_get_hash(skb) & flow_table->mask;
4412 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4413 rxq_index, flow_id);
4417 rflow = &flow_table->flows[flow_id];
4419 if (old_rflow->filter == rflow->filter)
4420 old_rflow->filter = RPS_NO_FILTER;
4424 per_cpu(softnet_data, next_cpu).input_queue_head;
4427 rflow->cpu = next_cpu;
4432 * get_rps_cpu is called from netif_receive_skb and returns the target
4433 * CPU from the RPS map of the receiving queue for a given skb.
4434 * rcu_read_lock must be held on entry.
4436 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4437 struct rps_dev_flow **rflowp)
4439 const struct rps_sock_flow_table *sock_flow_table;
4440 struct netdev_rx_queue *rxqueue = dev->_rx;
4441 struct rps_dev_flow_table *flow_table;
4442 struct rps_map *map;
4447 if (skb_rx_queue_recorded(skb)) {
4448 u16 index = skb_get_rx_queue(skb);
4450 if (unlikely(index >= dev->real_num_rx_queues)) {
4451 WARN_ONCE(dev->real_num_rx_queues > 1,
4452 "%s received packet on queue %u, but number "
4453 "of RX queues is %u\n",
4454 dev->name, index, dev->real_num_rx_queues);
4460 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4462 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4463 map = rcu_dereference(rxqueue->rps_map);
4464 if (!flow_table && !map)
4467 skb_reset_network_header(skb);
4468 hash = skb_get_hash(skb);
4472 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4473 if (flow_table && sock_flow_table) {
4474 struct rps_dev_flow *rflow;
4478 /* First check into global flow table if there is a match */
4479 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4480 if ((ident ^ hash) & ~rps_cpu_mask)
4483 next_cpu = ident & rps_cpu_mask;
4485 /* OK, now we know there is a match,
4486 * we can look at the local (per receive queue) flow table
4488 rflow = &flow_table->flows[hash & flow_table->mask];
4492 * If the desired CPU (where last recvmsg was done) is
4493 * different from current CPU (one in the rx-queue flow
4494 * table entry), switch if one of the following holds:
4495 * - Current CPU is unset (>= nr_cpu_ids).
4496 * - Current CPU is offline.
4497 * - The current CPU's queue tail has advanced beyond the
4498 * last packet that was enqueued using this table entry.
4499 * This guarantees that all previous packets for the flow
4500 * have been dequeued, thus preserving in order delivery.
4502 if (unlikely(tcpu != next_cpu) &&
4503 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4504 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4505 rflow->last_qtail)) >= 0)) {
4507 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4510 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4520 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4521 if (cpu_online(tcpu)) {
4531 #ifdef CONFIG_RFS_ACCEL
4534 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4535 * @dev: Device on which the filter was set
4536 * @rxq_index: RX queue index
4537 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4538 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4540 * Drivers that implement ndo_rx_flow_steer() should periodically call
4541 * this function for each installed filter and remove the filters for
4542 * which it returns %true.
4544 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4545 u32 flow_id, u16 filter_id)
4547 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4548 struct rps_dev_flow_table *flow_table;
4549 struct rps_dev_flow *rflow;
4554 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4555 if (flow_table && flow_id <= flow_table->mask) {
4556 rflow = &flow_table->flows[flow_id];
4557 cpu = READ_ONCE(rflow->cpu);
4558 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4559 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4560 rflow->last_qtail) <
4561 (int)(10 * flow_table->mask)))
4567 EXPORT_SYMBOL(rps_may_expire_flow);
4569 #endif /* CONFIG_RFS_ACCEL */
4571 /* Called from hardirq (IPI) context */
4572 static void rps_trigger_softirq(void *data)
4574 struct softnet_data *sd = data;
4576 ____napi_schedule(sd, &sd->backlog);
4580 #endif /* CONFIG_RPS */
4582 /* Called from hardirq (IPI) context */
4583 static void trigger_rx_softirq(void *data)
4585 struct softnet_data *sd = data;
4587 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4588 smp_store_release(&sd->defer_ipi_scheduled, 0);
4592 * Check if this softnet_data structure is another cpu one
4593 * If yes, queue it to our IPI list and return 1
4596 static int napi_schedule_rps(struct softnet_data *sd)
4598 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602 sd->rps_ipi_next = mysd->rps_ipi_list;
4603 mysd->rps_ipi_list = sd;
4605 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4608 #endif /* CONFIG_RPS */
4609 __napi_schedule_irqoff(&mysd->backlog);
4613 #ifdef CONFIG_NET_FLOW_LIMIT
4614 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4617 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4619 #ifdef CONFIG_NET_FLOW_LIMIT
4620 struct sd_flow_limit *fl;
4621 struct softnet_data *sd;
4622 unsigned int old_flow, new_flow;
4624 if (qlen < (netdev_max_backlog >> 1))
4627 sd = this_cpu_ptr(&softnet_data);
4630 fl = rcu_dereference(sd->flow_limit);
4632 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4633 old_flow = fl->history[fl->history_head];
4634 fl->history[fl->history_head] = new_flow;
4637 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4639 if (likely(fl->buckets[old_flow]))
4640 fl->buckets[old_flow]--;
4642 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4654 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4655 * queue (may be a remote CPU queue).
4657 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4658 unsigned int *qtail)
4660 enum skb_drop_reason reason;
4661 struct softnet_data *sd;
4662 unsigned long flags;
4665 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4666 sd = &per_cpu(softnet_data, cpu);
4668 rps_lock_irqsave(sd, &flags);
4669 if (!netif_running(skb->dev))
4671 qlen = skb_queue_len(&sd->input_pkt_queue);
4672 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4675 __skb_queue_tail(&sd->input_pkt_queue, skb);
4676 input_queue_tail_incr_save(sd, qtail);
4677 rps_unlock_irq_restore(sd, &flags);
4678 return NET_RX_SUCCESS;
4681 /* Schedule NAPI for backlog device
4682 * We can use non atomic operation since we own the queue lock
4684 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4685 napi_schedule_rps(sd);
4688 reason = SKB_DROP_REASON_CPU_BACKLOG;
4692 rps_unlock_irq_restore(sd, &flags);
4694 dev_core_stats_rx_dropped_inc(skb->dev);
4695 kfree_skb_reason(skb, reason);
4699 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4701 struct net_device *dev = skb->dev;
4702 struct netdev_rx_queue *rxqueue;
4706 if (skb_rx_queue_recorded(skb)) {
4707 u16 index = skb_get_rx_queue(skb);
4709 if (unlikely(index >= dev->real_num_rx_queues)) {
4710 WARN_ONCE(dev->real_num_rx_queues > 1,
4711 "%s received packet on queue %u, but number "
4712 "of RX queues is %u\n",
4713 dev->name, index, dev->real_num_rx_queues);
4715 return rxqueue; /* Return first rxqueue */
4722 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4723 struct bpf_prog *xdp_prog)
4725 void *orig_data, *orig_data_end, *hard_start;
4726 struct netdev_rx_queue *rxqueue;
4727 bool orig_bcast, orig_host;
4728 u32 mac_len, frame_sz;
4729 __be16 orig_eth_type;
4734 /* The XDP program wants to see the packet starting at the MAC
4737 mac_len = skb->data - skb_mac_header(skb);
4738 hard_start = skb->data - skb_headroom(skb);
4740 /* SKB "head" area always have tailroom for skb_shared_info */
4741 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4742 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4744 rxqueue = netif_get_rxqueue(skb);
4745 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4746 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4747 skb_headlen(skb) + mac_len, true);
4749 orig_data_end = xdp->data_end;
4750 orig_data = xdp->data;
4751 eth = (struct ethhdr *)xdp->data;
4752 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4753 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4754 orig_eth_type = eth->h_proto;
4756 act = bpf_prog_run_xdp(xdp_prog, xdp);
4758 /* check if bpf_xdp_adjust_head was used */
4759 off = xdp->data - orig_data;
4762 __skb_pull(skb, off);
4764 __skb_push(skb, -off);
4766 skb->mac_header += off;
4767 skb_reset_network_header(skb);
4770 /* check if bpf_xdp_adjust_tail was used */
4771 off = xdp->data_end - orig_data_end;
4773 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4774 skb->len += off; /* positive on grow, negative on shrink */
4777 /* check if XDP changed eth hdr such SKB needs update */
4778 eth = (struct ethhdr *)xdp->data;
4779 if ((orig_eth_type != eth->h_proto) ||
4780 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4781 skb->dev->dev_addr)) ||
4782 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4783 __skb_push(skb, ETH_HLEN);
4784 skb->pkt_type = PACKET_HOST;
4785 skb->protocol = eth_type_trans(skb, skb->dev);
4788 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4789 * before calling us again on redirect path. We do not call do_redirect
4790 * as we leave that up to the caller.
4792 * Caller is responsible for managing lifetime of skb (i.e. calling
4793 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4798 __skb_push(skb, mac_len);
4801 metalen = xdp->data - xdp->data_meta;
4803 skb_metadata_set(skb, metalen);
4810 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4811 struct xdp_buff *xdp,
4812 struct bpf_prog *xdp_prog)
4816 /* Reinjected packets coming from act_mirred or similar should
4817 * not get XDP generic processing.
4819 if (skb_is_redirected(skb))
4822 /* XDP packets must be linear and must have sufficient headroom
4823 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4824 * native XDP provides, thus we need to do it here as well.
4826 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4827 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4828 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4829 int troom = skb->tail + skb->data_len - skb->end;
4831 /* In case we have to go down the path and also linearize,
4832 * then lets do the pskb_expand_head() work just once here.
4834 if (pskb_expand_head(skb,
4835 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4836 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4838 if (skb_linearize(skb))
4842 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4849 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4852 trace_xdp_exception(skb->dev, xdp_prog, act);
4863 /* When doing generic XDP we have to bypass the qdisc layer and the
4864 * network taps in order to match in-driver-XDP behavior.
4866 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4868 struct net_device *dev = skb->dev;
4869 struct netdev_queue *txq;
4870 bool free_skb = true;
4873 txq = netdev_core_pick_tx(dev, skb, NULL);
4874 cpu = smp_processor_id();
4875 HARD_TX_LOCK(dev, txq, cpu);
4876 if (!netif_xmit_stopped(txq)) {
4877 rc = netdev_start_xmit(skb, dev, txq, 0);
4878 if (dev_xmit_complete(rc))
4881 HARD_TX_UNLOCK(dev, txq);
4883 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4888 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4890 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893 struct xdp_buff xdp;
4897 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4898 if (act != XDP_PASS) {
4901 err = xdp_do_generic_redirect(skb->dev, skb,
4907 generic_xdp_tx(skb, xdp_prog);
4915 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4918 EXPORT_SYMBOL_GPL(do_xdp_generic);
4920 static int netif_rx_internal(struct sk_buff *skb)
4924 net_timestamp_check(netdev_tstamp_prequeue, skb);
4926 trace_netif_rx(skb);
4929 if (static_branch_unlikely(&rps_needed)) {
4930 struct rps_dev_flow voidflow, *rflow = &voidflow;
4935 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4937 cpu = smp_processor_id();
4939 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4947 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4953 * __netif_rx - Slightly optimized version of netif_rx
4954 * @skb: buffer to post
4956 * This behaves as netif_rx except that it does not disable bottom halves.
4957 * As a result this function may only be invoked from the interrupt context
4958 * (either hard or soft interrupt).
4960 int __netif_rx(struct sk_buff *skb)
4964 lockdep_assert_once(hardirq_count() | softirq_count());
4966 trace_netif_rx_entry(skb);
4967 ret = netif_rx_internal(skb);
4968 trace_netif_rx_exit(ret);
4971 EXPORT_SYMBOL(__netif_rx);
4974 * netif_rx - post buffer to the network code
4975 * @skb: buffer to post
4977 * This function receives a packet from a device driver and queues it for
4978 * the upper (protocol) levels to process via the backlog NAPI device. It
4979 * always succeeds. The buffer may be dropped during processing for
4980 * congestion control or by the protocol layers.
4981 * The network buffer is passed via the backlog NAPI device. Modern NIC
4982 * driver should use NAPI and GRO.
4983 * This function can used from interrupt and from process context. The
4984 * caller from process context must not disable interrupts before invoking
4988 * NET_RX_SUCCESS (no congestion)
4989 * NET_RX_DROP (packet was dropped)
4992 int netif_rx(struct sk_buff *skb)
4994 bool need_bh_off = !(hardirq_count() | softirq_count());
4999 trace_netif_rx_entry(skb);
5000 ret = netif_rx_internal(skb);
5001 trace_netif_rx_exit(ret);
5006 EXPORT_SYMBOL(netif_rx);
5008 static __latent_entropy void net_tx_action(struct softirq_action *h)
5010 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5012 if (sd->completion_queue) {
5013 struct sk_buff *clist;
5015 local_irq_disable();
5016 clist = sd->completion_queue;
5017 sd->completion_queue = NULL;
5021 struct sk_buff *skb = clist;
5023 clist = clist->next;
5025 WARN_ON(refcount_read(&skb->users));
5026 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5027 trace_consume_skb(skb);
5029 trace_kfree_skb(skb, net_tx_action,
5030 SKB_DROP_REASON_NOT_SPECIFIED);
5032 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5035 __kfree_skb_defer(skb);
5039 if (sd->output_queue) {
5042 local_irq_disable();
5043 head = sd->output_queue;
5044 sd->output_queue = NULL;
5045 sd->output_queue_tailp = &sd->output_queue;
5051 struct Qdisc *q = head;
5052 spinlock_t *root_lock = NULL;
5054 head = head->next_sched;
5056 /* We need to make sure head->next_sched is read
5057 * before clearing __QDISC_STATE_SCHED
5059 smp_mb__before_atomic();
5061 if (!(q->flags & TCQ_F_NOLOCK)) {
5062 root_lock = qdisc_lock(q);
5063 spin_lock(root_lock);
5064 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5066 /* There is a synchronize_net() between
5067 * STATE_DEACTIVATED flag being set and
5068 * qdisc_reset()/some_qdisc_is_busy() in
5069 * dev_deactivate(), so we can safely bail out
5070 * early here to avoid data race between
5071 * qdisc_deactivate() and some_qdisc_is_busy()
5072 * for lockless qdisc.
5074 clear_bit(__QDISC_STATE_SCHED, &q->state);
5078 clear_bit(__QDISC_STATE_SCHED, &q->state);
5081 spin_unlock(root_lock);
5087 xfrm_dev_backlog(sd);
5090 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5091 /* This hook is defined here for ATM LANE */
5092 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5093 unsigned char *addr) __read_mostly;
5094 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5097 static inline struct sk_buff *
5098 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5099 struct net_device *orig_dev, bool *another)
5101 #ifdef CONFIG_NET_CLS_ACT
5102 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5103 struct tcf_result cl_res;
5105 /* If there's at least one ingress present somewhere (so
5106 * we get here via enabled static key), remaining devices
5107 * that are not configured with an ingress qdisc will bail
5114 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5118 qdisc_skb_cb(skb)->pkt_len = skb->len;
5119 tc_skb_cb(skb)->mru = 0;
5120 tc_skb_cb(skb)->post_ct = false;
5121 skb->tc_at_ingress = 1;
5122 mini_qdisc_bstats_cpu_update(miniq, skb);
5124 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5126 case TC_ACT_RECLASSIFY:
5127 skb->tc_index = TC_H_MIN(cl_res.classid);
5130 mini_qdisc_qstats_cpu_drop(miniq);
5131 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5138 case TC_ACT_REDIRECT:
5139 /* skb_mac_header check was done by cls/act_bpf, so
5140 * we can safely push the L2 header back before
5141 * redirecting to another netdev
5143 __skb_push(skb, skb->mac_len);
5144 if (skb_do_redirect(skb) == -EAGAIN) {
5145 __skb_pull(skb, skb->mac_len);
5150 case TC_ACT_CONSUMED:
5155 #endif /* CONFIG_NET_CLS_ACT */
5160 * netdev_is_rx_handler_busy - check if receive handler is registered
5161 * @dev: device to check
5163 * Check if a receive handler is already registered for a given device.
5164 * Return true if there one.
5166 * The caller must hold the rtnl_mutex.
5168 bool netdev_is_rx_handler_busy(struct net_device *dev)
5171 return dev && rtnl_dereference(dev->rx_handler);
5173 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5176 * netdev_rx_handler_register - register receive handler
5177 * @dev: device to register a handler for
5178 * @rx_handler: receive handler to register
5179 * @rx_handler_data: data pointer that is used by rx handler
5181 * Register a receive handler for a device. This handler will then be
5182 * called from __netif_receive_skb. A negative errno code is returned
5185 * The caller must hold the rtnl_mutex.
5187 * For a general description of rx_handler, see enum rx_handler_result.
5189 int netdev_rx_handler_register(struct net_device *dev,
5190 rx_handler_func_t *rx_handler,
5191 void *rx_handler_data)
5193 if (netdev_is_rx_handler_busy(dev))
5196 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5199 /* Note: rx_handler_data must be set before rx_handler */
5200 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5201 rcu_assign_pointer(dev->rx_handler, rx_handler);
5205 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5208 * netdev_rx_handler_unregister - unregister receive handler
5209 * @dev: device to unregister a handler from
5211 * Unregister a receive handler from a device.
5213 * The caller must hold the rtnl_mutex.
5215 void netdev_rx_handler_unregister(struct net_device *dev)
5219 RCU_INIT_POINTER(dev->rx_handler, NULL);
5220 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5221 * section has a guarantee to see a non NULL rx_handler_data
5225 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5227 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5230 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5231 * the special handling of PFMEMALLOC skbs.
5233 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5235 switch (skb->protocol) {
5236 case htons(ETH_P_ARP):
5237 case htons(ETH_P_IP):
5238 case htons(ETH_P_IPV6):
5239 case htons(ETH_P_8021Q):
5240 case htons(ETH_P_8021AD):
5247 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5248 int *ret, struct net_device *orig_dev)
5250 if (nf_hook_ingress_active(skb)) {
5254 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5259 ingress_retval = nf_hook_ingress(skb);
5261 return ingress_retval;
5266 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5267 struct packet_type **ppt_prev)
5269 struct packet_type *ptype, *pt_prev;
5270 rx_handler_func_t *rx_handler;
5271 struct sk_buff *skb = *pskb;
5272 struct net_device *orig_dev;
5273 bool deliver_exact = false;
5274 int ret = NET_RX_DROP;
5277 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5279 trace_netif_receive_skb(skb);
5281 orig_dev = skb->dev;
5283 skb_reset_network_header(skb);
5284 if (!skb_transport_header_was_set(skb))
5285 skb_reset_transport_header(skb);
5286 skb_reset_mac_len(skb);
5291 skb->skb_iif = skb->dev->ifindex;
5293 __this_cpu_inc(softnet_data.processed);
5295 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5299 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5302 if (ret2 != XDP_PASS) {
5308 if (eth_type_vlan(skb->protocol)) {
5309 skb = skb_vlan_untag(skb);
5314 if (skb_skip_tc_classify(skb))
5320 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5322 ret = deliver_skb(skb, pt_prev, orig_dev);
5326 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5328 ret = deliver_skb(skb, pt_prev, orig_dev);
5333 #ifdef CONFIG_NET_INGRESS
5334 if (static_branch_unlikely(&ingress_needed_key)) {
5335 bool another = false;
5337 nf_skip_egress(skb, true);
5338 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5345 nf_skip_egress(skb, false);
5346 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5350 skb_reset_redirect(skb);
5352 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5355 if (skb_vlan_tag_present(skb)) {
5357 ret = deliver_skb(skb, pt_prev, orig_dev);
5360 if (vlan_do_receive(&skb))
5362 else if (unlikely(!skb))
5366 rx_handler = rcu_dereference(skb->dev->rx_handler);
5369 ret = deliver_skb(skb, pt_prev, orig_dev);
5372 switch (rx_handler(&skb)) {
5373 case RX_HANDLER_CONSUMED:
5374 ret = NET_RX_SUCCESS;
5376 case RX_HANDLER_ANOTHER:
5378 case RX_HANDLER_EXACT:
5379 deliver_exact = true;
5381 case RX_HANDLER_PASS:
5388 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5390 if (skb_vlan_tag_get_id(skb)) {
5391 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5394 skb->pkt_type = PACKET_OTHERHOST;
5395 } else if (eth_type_vlan(skb->protocol)) {
5396 /* Outer header is 802.1P with vlan 0, inner header is
5397 * 802.1Q or 802.1AD and vlan_do_receive() above could
5398 * not find vlan dev for vlan id 0.
5400 __vlan_hwaccel_clear_tag(skb);
5401 skb = skb_vlan_untag(skb);
5404 if (vlan_do_receive(&skb))
5405 /* After stripping off 802.1P header with vlan 0
5406 * vlan dev is found for inner header.
5409 else if (unlikely(!skb))
5412 /* We have stripped outer 802.1P vlan 0 header.
5413 * But could not find vlan dev.
5414 * check again for vlan id to set OTHERHOST.
5418 /* Note: we might in the future use prio bits
5419 * and set skb->priority like in vlan_do_receive()
5420 * For the time being, just ignore Priority Code Point
5422 __vlan_hwaccel_clear_tag(skb);
5425 type = skb->protocol;
5427 /* deliver only exact match when indicated */
5428 if (likely(!deliver_exact)) {
5429 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5430 &ptype_base[ntohs(type) &
5434 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5435 &orig_dev->ptype_specific);
5437 if (unlikely(skb->dev != orig_dev)) {
5438 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5439 &skb->dev->ptype_specific);
5443 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5445 *ppt_prev = pt_prev;
5449 dev_core_stats_rx_dropped_inc(skb->dev);
5451 dev_core_stats_rx_nohandler_inc(skb->dev);
5452 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5453 /* Jamal, now you will not able to escape explaining
5454 * me how you were going to use this. :-)
5460 /* The invariant here is that if *ppt_prev is not NULL
5461 * then skb should also be non-NULL.
5463 * Apparently *ppt_prev assignment above holds this invariant due to
5464 * skb dereferencing near it.
5470 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5472 struct net_device *orig_dev = skb->dev;
5473 struct packet_type *pt_prev = NULL;
5476 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5478 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5479 skb->dev, pt_prev, orig_dev);
5484 * netif_receive_skb_core - special purpose version of netif_receive_skb
5485 * @skb: buffer to process
5487 * More direct receive version of netif_receive_skb(). It should
5488 * only be used by callers that have a need to skip RPS and Generic XDP.
5489 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5491 * This function may only be called from softirq context and interrupts
5492 * should be enabled.
5494 * Return values (usually ignored):
5495 * NET_RX_SUCCESS: no congestion
5496 * NET_RX_DROP: packet was dropped
5498 int netif_receive_skb_core(struct sk_buff *skb)
5503 ret = __netif_receive_skb_one_core(skb, false);
5508 EXPORT_SYMBOL(netif_receive_skb_core);
5510 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5511 struct packet_type *pt_prev,
5512 struct net_device *orig_dev)
5514 struct sk_buff *skb, *next;
5518 if (list_empty(head))
5520 if (pt_prev->list_func != NULL)
5521 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5522 ip_list_rcv, head, pt_prev, orig_dev);
5524 list_for_each_entry_safe(skb, next, head, list) {
5525 skb_list_del_init(skb);
5526 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5530 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5532 /* Fast-path assumptions:
5533 * - There is no RX handler.
5534 * - Only one packet_type matches.
5535 * If either of these fails, we will end up doing some per-packet
5536 * processing in-line, then handling the 'last ptype' for the whole
5537 * sublist. This can't cause out-of-order delivery to any single ptype,
5538 * because the 'last ptype' must be constant across the sublist, and all
5539 * other ptypes are handled per-packet.
5541 /* Current (common) ptype of sublist */
5542 struct packet_type *pt_curr = NULL;
5543 /* Current (common) orig_dev of sublist */
5544 struct net_device *od_curr = NULL;
5545 struct list_head sublist;
5546 struct sk_buff *skb, *next;
5548 INIT_LIST_HEAD(&sublist);
5549 list_for_each_entry_safe(skb, next, head, list) {
5550 struct net_device *orig_dev = skb->dev;
5551 struct packet_type *pt_prev = NULL;
5553 skb_list_del_init(skb);
5554 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5557 if (pt_curr != pt_prev || od_curr != orig_dev) {
5558 /* dispatch old sublist */
5559 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5560 /* start new sublist */
5561 INIT_LIST_HEAD(&sublist);
5565 list_add_tail(&skb->list, &sublist);
5568 /* dispatch final sublist */
5569 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5572 static int __netif_receive_skb(struct sk_buff *skb)
5576 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5577 unsigned int noreclaim_flag;
5580 * PFMEMALLOC skbs are special, they should
5581 * - be delivered to SOCK_MEMALLOC sockets only
5582 * - stay away from userspace
5583 * - have bounded memory usage
5585 * Use PF_MEMALLOC as this saves us from propagating the allocation
5586 * context down to all allocation sites.
5588 noreclaim_flag = memalloc_noreclaim_save();
5589 ret = __netif_receive_skb_one_core(skb, true);
5590 memalloc_noreclaim_restore(noreclaim_flag);
5592 ret = __netif_receive_skb_one_core(skb, false);
5597 static void __netif_receive_skb_list(struct list_head *head)
5599 unsigned long noreclaim_flag = 0;
5600 struct sk_buff *skb, *next;
5601 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5603 list_for_each_entry_safe(skb, next, head, list) {
5604 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5605 struct list_head sublist;
5607 /* Handle the previous sublist */
5608 list_cut_before(&sublist, head, &skb->list);
5609 if (!list_empty(&sublist))
5610 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5611 pfmemalloc = !pfmemalloc;
5612 /* See comments in __netif_receive_skb */
5614 noreclaim_flag = memalloc_noreclaim_save();
5616 memalloc_noreclaim_restore(noreclaim_flag);
5619 /* Handle the remaining sublist */
5620 if (!list_empty(head))
5621 __netif_receive_skb_list_core(head, pfmemalloc);
5622 /* Restore pflags */
5624 memalloc_noreclaim_restore(noreclaim_flag);
5627 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5629 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5630 struct bpf_prog *new = xdp->prog;
5633 switch (xdp->command) {
5634 case XDP_SETUP_PROG:
5635 rcu_assign_pointer(dev->xdp_prog, new);
5640 static_branch_dec(&generic_xdp_needed_key);
5641 } else if (new && !old) {
5642 static_branch_inc(&generic_xdp_needed_key);
5643 dev_disable_lro(dev);
5644 dev_disable_gro_hw(dev);
5656 static int netif_receive_skb_internal(struct sk_buff *skb)
5660 net_timestamp_check(netdev_tstamp_prequeue, skb);
5662 if (skb_defer_rx_timestamp(skb))
5663 return NET_RX_SUCCESS;
5667 if (static_branch_unlikely(&rps_needed)) {
5668 struct rps_dev_flow voidflow, *rflow = &voidflow;
5669 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5672 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5678 ret = __netif_receive_skb(skb);
5683 void netif_receive_skb_list_internal(struct list_head *head)
5685 struct sk_buff *skb, *next;
5686 struct list_head sublist;
5688 INIT_LIST_HEAD(&sublist);
5689 list_for_each_entry_safe(skb, next, head, list) {
5690 net_timestamp_check(netdev_tstamp_prequeue, skb);
5691 skb_list_del_init(skb);
5692 if (!skb_defer_rx_timestamp(skb))
5693 list_add_tail(&skb->list, &sublist);
5695 list_splice_init(&sublist, head);
5699 if (static_branch_unlikely(&rps_needed)) {
5700 list_for_each_entry_safe(skb, next, head, list) {
5701 struct rps_dev_flow voidflow, *rflow = &voidflow;
5702 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5705 /* Will be handled, remove from list */
5706 skb_list_del_init(skb);
5707 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5712 __netif_receive_skb_list(head);
5717 * netif_receive_skb - process receive buffer from network
5718 * @skb: buffer to process
5720 * netif_receive_skb() is the main receive data processing function.
5721 * It always succeeds. The buffer may be dropped during processing
5722 * for congestion control or by the protocol layers.
5724 * This function may only be called from softirq context and interrupts
5725 * should be enabled.
5727 * Return values (usually ignored):
5728 * NET_RX_SUCCESS: no congestion
5729 * NET_RX_DROP: packet was dropped
5731 int netif_receive_skb(struct sk_buff *skb)
5735 trace_netif_receive_skb_entry(skb);
5737 ret = netif_receive_skb_internal(skb);
5738 trace_netif_receive_skb_exit(ret);
5742 EXPORT_SYMBOL(netif_receive_skb);
5745 * netif_receive_skb_list - process many receive buffers from network
5746 * @head: list of skbs to process.
5748 * Since return value of netif_receive_skb() is normally ignored, and
5749 * wouldn't be meaningful for a list, this function returns void.
5751 * This function may only be called from softirq context and interrupts
5752 * should be enabled.
5754 void netif_receive_skb_list(struct list_head *head)
5756 struct sk_buff *skb;
5758 if (list_empty(head))
5760 if (trace_netif_receive_skb_list_entry_enabled()) {
5761 list_for_each_entry(skb, head, list)
5762 trace_netif_receive_skb_list_entry(skb);
5764 netif_receive_skb_list_internal(head);
5765 trace_netif_receive_skb_list_exit(0);
5767 EXPORT_SYMBOL(netif_receive_skb_list);
5769 static DEFINE_PER_CPU(struct work_struct, flush_works);
5771 /* Network device is going away, flush any packets still pending */
5772 static void flush_backlog(struct work_struct *work)
5774 struct sk_buff *skb, *tmp;
5775 struct softnet_data *sd;
5778 sd = this_cpu_ptr(&softnet_data);
5780 rps_lock_irq_disable(sd);
5781 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5782 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5783 __skb_unlink(skb, &sd->input_pkt_queue);
5784 dev_kfree_skb_irq(skb);
5785 input_queue_head_incr(sd);
5788 rps_unlock_irq_enable(sd);
5790 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5791 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5792 __skb_unlink(skb, &sd->process_queue);
5794 input_queue_head_incr(sd);
5800 static bool flush_required(int cpu)
5802 #if IS_ENABLED(CONFIG_RPS)
5803 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806 rps_lock_irq_disable(sd);
5808 /* as insertion into process_queue happens with the rps lock held,
5809 * process_queue access may race only with dequeue
5811 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5812 !skb_queue_empty_lockless(&sd->process_queue);
5813 rps_unlock_irq_enable(sd);
5817 /* without RPS we can't safely check input_pkt_queue: during a
5818 * concurrent remote skb_queue_splice() we can detect as empty both
5819 * input_pkt_queue and process_queue even if the latter could end-up
5820 * containing a lot of packets.
5825 static void flush_all_backlogs(void)
5827 static cpumask_t flush_cpus;
5830 /* since we are under rtnl lock protection we can use static data
5831 * for the cpumask and avoid allocating on stack the possibly
5838 cpumask_clear(&flush_cpus);
5839 for_each_online_cpu(cpu) {
5840 if (flush_required(cpu)) {
5841 queue_work_on(cpu, system_highpri_wq,
5842 per_cpu_ptr(&flush_works, cpu));
5843 cpumask_set_cpu(cpu, &flush_cpus);
5847 /* we can have in flight packet[s] on the cpus we are not flushing,
5848 * synchronize_net() in unregister_netdevice_many() will take care of
5851 for_each_cpu(cpu, &flush_cpus)
5852 flush_work(per_cpu_ptr(&flush_works, cpu));
5857 static void net_rps_send_ipi(struct softnet_data *remsd)
5861 struct softnet_data *next = remsd->rps_ipi_next;
5863 if (cpu_online(remsd->cpu))
5864 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5871 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5872 * Note: called with local irq disabled, but exits with local irq enabled.
5874 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5877 struct softnet_data *remsd = sd->rps_ipi_list;
5880 sd->rps_ipi_list = NULL;
5884 /* Send pending IPI's to kick RPS processing on remote cpus. */
5885 net_rps_send_ipi(remsd);
5891 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5894 return sd->rps_ipi_list != NULL;
5900 static int process_backlog(struct napi_struct *napi, int quota)
5902 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5906 /* Check if we have pending ipi, its better to send them now,
5907 * not waiting net_rx_action() end.
5909 if (sd_has_rps_ipi_waiting(sd)) {
5910 local_irq_disable();
5911 net_rps_action_and_irq_enable(sd);
5914 napi->weight = dev_rx_weight;
5916 struct sk_buff *skb;
5918 while ((skb = __skb_dequeue(&sd->process_queue))) {
5920 __netif_receive_skb(skb);
5922 input_queue_head_incr(sd);
5923 if (++work >= quota)
5928 rps_lock_irq_disable(sd);
5929 if (skb_queue_empty(&sd->input_pkt_queue)) {
5931 * Inline a custom version of __napi_complete().
5932 * only current cpu owns and manipulates this napi,
5933 * and NAPI_STATE_SCHED is the only possible flag set
5935 * We can use a plain write instead of clear_bit(),
5936 * and we dont need an smp_mb() memory barrier.
5941 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5942 &sd->process_queue);
5944 rps_unlock_irq_enable(sd);
5951 * __napi_schedule - schedule for receive
5952 * @n: entry to schedule
5954 * The entry's receive function will be scheduled to run.
5955 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5957 void __napi_schedule(struct napi_struct *n)
5959 unsigned long flags;
5961 local_irq_save(flags);
5962 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5963 local_irq_restore(flags);
5965 EXPORT_SYMBOL(__napi_schedule);
5968 * napi_schedule_prep - check if napi can be scheduled
5971 * Test if NAPI routine is already running, and if not mark
5972 * it as running. This is used as a condition variable to
5973 * insure only one NAPI poll instance runs. We also make
5974 * sure there is no pending NAPI disable.
5976 bool napi_schedule_prep(struct napi_struct *n)
5978 unsigned long val, new;
5981 val = READ_ONCE(n->state);
5982 if (unlikely(val & NAPIF_STATE_DISABLE))
5984 new = val | NAPIF_STATE_SCHED;
5986 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5987 * This was suggested by Alexander Duyck, as compiler
5988 * emits better code than :
5989 * if (val & NAPIF_STATE_SCHED)
5990 * new |= NAPIF_STATE_MISSED;
5992 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5994 } while (cmpxchg(&n->state, val, new) != val);
5996 return !(val & NAPIF_STATE_SCHED);
5998 EXPORT_SYMBOL(napi_schedule_prep);
6001 * __napi_schedule_irqoff - schedule for receive
6002 * @n: entry to schedule
6004 * Variant of __napi_schedule() assuming hard irqs are masked.
6006 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6007 * because the interrupt disabled assumption might not be true
6008 * due to force-threaded interrupts and spinlock substitution.
6010 void __napi_schedule_irqoff(struct napi_struct *n)
6012 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6013 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017 EXPORT_SYMBOL(__napi_schedule_irqoff);
6019 bool napi_complete_done(struct napi_struct *n, int work_done)
6021 unsigned long flags, val, new, timeout = 0;
6025 * 1) Don't let napi dequeue from the cpu poll list
6026 * just in case its running on a different cpu.
6027 * 2) If we are busy polling, do nothing here, we have
6028 * the guarantee we will be called later.
6030 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6031 NAPIF_STATE_IN_BUSY_POLL)))
6036 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6037 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6039 if (n->defer_hard_irqs_count > 0) {
6040 n->defer_hard_irqs_count--;
6041 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6045 if (n->gro_bitmask) {
6046 /* When the NAPI instance uses a timeout and keeps postponing
6047 * it, we need to bound somehow the time packets are kept in
6050 napi_gro_flush(n, !!timeout);
6055 if (unlikely(!list_empty(&n->poll_list))) {
6056 /* If n->poll_list is not empty, we need to mask irqs */
6057 local_irq_save(flags);
6058 list_del_init(&n->poll_list);
6059 local_irq_restore(flags);
6063 val = READ_ONCE(n->state);
6065 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6067 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6068 NAPIF_STATE_SCHED_THREADED |
6069 NAPIF_STATE_PREFER_BUSY_POLL);
6071 /* If STATE_MISSED was set, leave STATE_SCHED set,
6072 * because we will call napi->poll() one more time.
6073 * This C code was suggested by Alexander Duyck to help gcc.
6075 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6077 } while (cmpxchg(&n->state, val, new) != val);
6079 if (unlikely(val & NAPIF_STATE_MISSED)) {
6085 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6086 HRTIMER_MODE_REL_PINNED);
6089 EXPORT_SYMBOL(napi_complete_done);
6091 /* must be called under rcu_read_lock(), as we dont take a reference */
6092 static struct napi_struct *napi_by_id(unsigned int napi_id)
6094 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6095 struct napi_struct *napi;
6097 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6098 if (napi->napi_id == napi_id)
6104 #if defined(CONFIG_NET_RX_BUSY_POLL)
6106 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6108 if (!skip_schedule) {
6109 gro_normal_list(napi);
6110 __napi_schedule(napi);
6114 if (napi->gro_bitmask) {
6115 /* flush too old packets
6116 * If HZ < 1000, flush all packets.
6118 napi_gro_flush(napi, HZ >= 1000);
6121 gro_normal_list(napi);
6122 clear_bit(NAPI_STATE_SCHED, &napi->state);
6125 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6128 bool skip_schedule = false;
6129 unsigned long timeout;
6132 /* Busy polling means there is a high chance device driver hard irq
6133 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6134 * set in napi_schedule_prep().
6135 * Since we are about to call napi->poll() once more, we can safely
6136 * clear NAPI_STATE_MISSED.
6138 * Note: x86 could use a single "lock and ..." instruction
6139 * to perform these two clear_bit()
6141 clear_bit(NAPI_STATE_MISSED, &napi->state);
6142 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6146 if (prefer_busy_poll) {
6147 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6148 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6149 if (napi->defer_hard_irqs_count && timeout) {
6150 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6151 skip_schedule = true;
6155 /* All we really want here is to re-enable device interrupts.
6156 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6158 rc = napi->poll(napi, budget);
6159 /* We can't gro_normal_list() here, because napi->poll() might have
6160 * rearmed the napi (napi_complete_done()) in which case it could
6161 * already be running on another CPU.
6163 trace_napi_poll(napi, rc, budget);
6164 netpoll_poll_unlock(have_poll_lock);
6166 __busy_poll_stop(napi, skip_schedule);
6170 void napi_busy_loop(unsigned int napi_id,
6171 bool (*loop_end)(void *, unsigned long),
6172 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6174 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6175 int (*napi_poll)(struct napi_struct *napi, int budget);
6176 void *have_poll_lock = NULL;
6177 struct napi_struct *napi;
6184 napi = napi_by_id(napi_id);
6194 unsigned long val = READ_ONCE(napi->state);
6196 /* If multiple threads are competing for this napi,
6197 * we avoid dirtying napi->state as much as we can.
6199 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6200 NAPIF_STATE_IN_BUSY_POLL)) {
6201 if (prefer_busy_poll)
6202 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6205 if (cmpxchg(&napi->state, val,
6206 val | NAPIF_STATE_IN_BUSY_POLL |
6207 NAPIF_STATE_SCHED) != val) {
6208 if (prefer_busy_poll)
6209 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6212 have_poll_lock = netpoll_poll_lock(napi);
6213 napi_poll = napi->poll;
6215 work = napi_poll(napi, budget);
6216 trace_napi_poll(napi, work, budget);
6217 gro_normal_list(napi);
6220 __NET_ADD_STATS(dev_net(napi->dev),
6221 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6224 if (!loop_end || loop_end(loop_end_arg, start_time))
6227 if (unlikely(need_resched())) {
6229 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6233 if (loop_end(loop_end_arg, start_time))
6240 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6245 EXPORT_SYMBOL(napi_busy_loop);
6247 #endif /* CONFIG_NET_RX_BUSY_POLL */
6249 static void napi_hash_add(struct napi_struct *napi)
6251 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6254 spin_lock(&napi_hash_lock);
6256 /* 0..NR_CPUS range is reserved for sender_cpu use */
6258 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6259 napi_gen_id = MIN_NAPI_ID;
6260 } while (napi_by_id(napi_gen_id));
6261 napi->napi_id = napi_gen_id;
6263 hlist_add_head_rcu(&napi->napi_hash_node,
6264 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6266 spin_unlock(&napi_hash_lock);
6269 /* Warning : caller is responsible to make sure rcu grace period
6270 * is respected before freeing memory containing @napi
6272 static void napi_hash_del(struct napi_struct *napi)
6274 spin_lock(&napi_hash_lock);
6276 hlist_del_init_rcu(&napi->napi_hash_node);
6278 spin_unlock(&napi_hash_lock);
6281 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6283 struct napi_struct *napi;
6285 napi = container_of(timer, struct napi_struct, timer);
6287 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6288 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6290 if (!napi_disable_pending(napi) &&
6291 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6292 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6293 __napi_schedule_irqoff(napi);
6296 return HRTIMER_NORESTART;
6299 static void init_gro_hash(struct napi_struct *napi)
6303 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6304 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6305 napi->gro_hash[i].count = 0;
6307 napi->gro_bitmask = 0;
6310 int dev_set_threaded(struct net_device *dev, bool threaded)
6312 struct napi_struct *napi;
6315 if (dev->threaded == threaded)
6319 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6320 if (!napi->thread) {
6321 err = napi_kthread_create(napi);
6330 dev->threaded = threaded;
6332 /* Make sure kthread is created before THREADED bit
6335 smp_mb__before_atomic();
6337 /* Setting/unsetting threaded mode on a napi might not immediately
6338 * take effect, if the current napi instance is actively being
6339 * polled. In this case, the switch between threaded mode and
6340 * softirq mode will happen in the next round of napi_schedule().
6341 * This should not cause hiccups/stalls to the live traffic.
6343 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6345 set_bit(NAPI_STATE_THREADED, &napi->state);
6347 clear_bit(NAPI_STATE_THREADED, &napi->state);
6352 EXPORT_SYMBOL(dev_set_threaded);
6354 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6355 int (*poll)(struct napi_struct *, int), int weight)
6357 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6360 INIT_LIST_HEAD(&napi->poll_list);
6361 INIT_HLIST_NODE(&napi->napi_hash_node);
6362 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6363 napi->timer.function = napi_watchdog;
6364 init_gro_hash(napi);
6366 INIT_LIST_HEAD(&napi->rx_list);
6369 if (weight > NAPI_POLL_WEIGHT)
6370 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6372 napi->weight = weight;
6374 #ifdef CONFIG_NETPOLL
6375 napi->poll_owner = -1;
6377 set_bit(NAPI_STATE_SCHED, &napi->state);
6378 set_bit(NAPI_STATE_NPSVC, &napi->state);
6379 list_add_rcu(&napi->dev_list, &dev->napi_list);
6380 napi_hash_add(napi);
6381 /* Create kthread for this napi if dev->threaded is set.
6382 * Clear dev->threaded if kthread creation failed so that
6383 * threaded mode will not be enabled in napi_enable().
6385 if (dev->threaded && napi_kthread_create(napi))
6388 EXPORT_SYMBOL(netif_napi_add_weight);
6390 void napi_disable(struct napi_struct *n)
6392 unsigned long val, new;
6395 set_bit(NAPI_STATE_DISABLE, &n->state);
6398 val = READ_ONCE(n->state);
6399 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6400 usleep_range(20, 200);
6404 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6405 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6407 if (cmpxchg(&n->state, val, new) == val)
6411 hrtimer_cancel(&n->timer);
6413 clear_bit(NAPI_STATE_DISABLE, &n->state);
6415 EXPORT_SYMBOL(napi_disable);
6418 * napi_enable - enable NAPI scheduling
6421 * Resume NAPI from being scheduled on this context.
6422 * Must be paired with napi_disable.
6424 void napi_enable(struct napi_struct *n)
6426 unsigned long val, new;
6429 val = READ_ONCE(n->state);
6430 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6432 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6433 if (n->dev->threaded && n->thread)
6434 new |= NAPIF_STATE_THREADED;
6435 } while (cmpxchg(&n->state, val, new) != val);
6437 EXPORT_SYMBOL(napi_enable);
6439 static void flush_gro_hash(struct napi_struct *napi)
6443 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6444 struct sk_buff *skb, *n;
6446 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6448 napi->gro_hash[i].count = 0;
6452 /* Must be called in process context */
6453 void __netif_napi_del(struct napi_struct *napi)
6455 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6458 napi_hash_del(napi);
6459 list_del_rcu(&napi->dev_list);
6460 napi_free_frags(napi);
6462 flush_gro_hash(napi);
6463 napi->gro_bitmask = 0;
6466 kthread_stop(napi->thread);
6467 napi->thread = NULL;
6470 EXPORT_SYMBOL(__netif_napi_del);
6472 static int __napi_poll(struct napi_struct *n, bool *repoll)
6478 /* This NAPI_STATE_SCHED test is for avoiding a race
6479 * with netpoll's poll_napi(). Only the entity which
6480 * obtains the lock and sees NAPI_STATE_SCHED set will
6481 * actually make the ->poll() call. Therefore we avoid
6482 * accidentally calling ->poll() when NAPI is not scheduled.
6485 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6486 work = n->poll(n, weight);
6487 trace_napi_poll(n, work, weight);
6490 if (unlikely(work > weight))
6491 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6492 n->poll, work, weight);
6494 if (likely(work < weight))
6497 /* Drivers must not modify the NAPI state if they
6498 * consume the entire weight. In such cases this code
6499 * still "owns" the NAPI instance and therefore can
6500 * move the instance around on the list at-will.
6502 if (unlikely(napi_disable_pending(n))) {
6507 /* The NAPI context has more processing work, but busy-polling
6508 * is preferred. Exit early.
6510 if (napi_prefer_busy_poll(n)) {
6511 if (napi_complete_done(n, work)) {
6512 /* If timeout is not set, we need to make sure
6513 * that the NAPI is re-scheduled.
6520 if (n->gro_bitmask) {
6521 /* flush too old packets
6522 * If HZ < 1000, flush all packets.
6524 napi_gro_flush(n, HZ >= 1000);
6529 /* Some drivers may have called napi_schedule
6530 * prior to exhausting their budget.
6532 if (unlikely(!list_empty(&n->poll_list))) {
6533 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6534 n->dev ? n->dev->name : "backlog");
6543 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6545 bool do_repoll = false;
6549 list_del_init(&n->poll_list);
6551 have = netpoll_poll_lock(n);
6553 work = __napi_poll(n, &do_repoll);
6556 list_add_tail(&n->poll_list, repoll);
6558 netpoll_poll_unlock(have);
6563 static int napi_thread_wait(struct napi_struct *napi)
6567 set_current_state(TASK_INTERRUPTIBLE);
6569 while (!kthread_should_stop()) {
6570 /* Testing SCHED_THREADED bit here to make sure the current
6571 * kthread owns this napi and could poll on this napi.
6572 * Testing SCHED bit is not enough because SCHED bit might be
6573 * set by some other busy poll thread or by napi_disable().
6575 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6576 WARN_ON(!list_empty(&napi->poll_list));
6577 __set_current_state(TASK_RUNNING);
6582 /* woken being true indicates this thread owns this napi. */
6584 set_current_state(TASK_INTERRUPTIBLE);
6586 __set_current_state(TASK_RUNNING);
6591 static int napi_threaded_poll(void *data)
6593 struct napi_struct *napi = data;
6596 while (!napi_thread_wait(napi)) {
6598 bool repoll = false;
6602 have = netpoll_poll_lock(napi);
6603 __napi_poll(napi, &repoll);
6604 netpoll_poll_unlock(have);
6617 static void skb_defer_free_flush(struct softnet_data *sd)
6619 struct sk_buff *skb, *next;
6620 unsigned long flags;
6622 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6623 if (!READ_ONCE(sd->defer_list))
6626 spin_lock_irqsave(&sd->defer_lock, flags);
6627 skb = sd->defer_list;
6628 sd->defer_list = NULL;
6629 sd->defer_count = 0;
6630 spin_unlock_irqrestore(&sd->defer_lock, flags);
6632 while (skb != NULL) {
6634 napi_consume_skb(skb, 1);
6639 static __latent_entropy void net_rx_action(struct softirq_action *h)
6641 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6642 unsigned long time_limit = jiffies +
6643 usecs_to_jiffies(netdev_budget_usecs);
6644 int budget = netdev_budget;
6648 local_irq_disable();
6649 list_splice_init(&sd->poll_list, &list);
6653 struct napi_struct *n;
6655 skb_defer_free_flush(sd);
6657 if (list_empty(&list)) {
6658 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6663 n = list_first_entry(&list, struct napi_struct, poll_list);
6664 budget -= napi_poll(n, &repoll);
6666 /* If softirq window is exhausted then punt.
6667 * Allow this to run for 2 jiffies since which will allow
6668 * an average latency of 1.5/HZ.
6670 if (unlikely(budget <= 0 ||
6671 time_after_eq(jiffies, time_limit))) {
6677 local_irq_disable();
6679 list_splice_tail_init(&sd->poll_list, &list);
6680 list_splice_tail(&repoll, &list);
6681 list_splice(&list, &sd->poll_list);
6682 if (!list_empty(&sd->poll_list))
6683 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6685 net_rps_action_and_irq_enable(sd);
6689 struct netdev_adjacent {
6690 struct net_device *dev;
6691 netdevice_tracker dev_tracker;
6693 /* upper master flag, there can only be one master device per list */
6696 /* lookup ignore flag */
6699 /* counter for the number of times this device was added to us */
6702 /* private field for the users */
6705 struct list_head list;
6706 struct rcu_head rcu;
6709 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6710 struct list_head *adj_list)
6712 struct netdev_adjacent *adj;
6714 list_for_each_entry(adj, adj_list, list) {
6715 if (adj->dev == adj_dev)
6721 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6722 struct netdev_nested_priv *priv)
6724 struct net_device *dev = (struct net_device *)priv->data;
6726 return upper_dev == dev;
6730 * netdev_has_upper_dev - Check if device is linked to an upper device
6732 * @upper_dev: upper device to check
6734 * Find out if a device is linked to specified upper device and return true
6735 * in case it is. Note that this checks only immediate upper device,
6736 * not through a complete stack of devices. The caller must hold the RTNL lock.
6738 bool netdev_has_upper_dev(struct net_device *dev,
6739 struct net_device *upper_dev)
6741 struct netdev_nested_priv priv = {
6742 .data = (void *)upper_dev,
6747 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6750 EXPORT_SYMBOL(netdev_has_upper_dev);
6753 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6755 * @upper_dev: upper device to check
6757 * Find out if a device is linked to specified upper device and return true
6758 * in case it is. Note that this checks the entire upper device chain.
6759 * The caller must hold rcu lock.
6762 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6763 struct net_device *upper_dev)
6765 struct netdev_nested_priv priv = {
6766 .data = (void *)upper_dev,
6769 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6772 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6775 * netdev_has_any_upper_dev - Check if device is linked to some device
6778 * Find out if a device is linked to an upper device and return true in case
6779 * it is. The caller must hold the RTNL lock.
6781 bool netdev_has_any_upper_dev(struct net_device *dev)
6785 return !list_empty(&dev->adj_list.upper);
6787 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6790 * netdev_master_upper_dev_get - Get master upper device
6793 * Find a master upper device and return pointer to it or NULL in case
6794 * it's not there. The caller must hold the RTNL lock.
6796 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6798 struct netdev_adjacent *upper;
6802 if (list_empty(&dev->adj_list.upper))
6805 upper = list_first_entry(&dev->adj_list.upper,
6806 struct netdev_adjacent, list);
6807 if (likely(upper->master))
6811 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6813 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6815 struct netdev_adjacent *upper;
6819 if (list_empty(&dev->adj_list.upper))
6822 upper = list_first_entry(&dev->adj_list.upper,
6823 struct netdev_adjacent, list);
6824 if (likely(upper->master) && !upper->ignore)
6830 * netdev_has_any_lower_dev - Check if device is linked to some device
6833 * Find out if a device is linked to a lower device and return true in case
6834 * it is. The caller must hold the RTNL lock.
6836 static bool netdev_has_any_lower_dev(struct net_device *dev)
6840 return !list_empty(&dev->adj_list.lower);
6843 void *netdev_adjacent_get_private(struct list_head *adj_list)
6845 struct netdev_adjacent *adj;
6847 adj = list_entry(adj_list, struct netdev_adjacent, list);
6849 return adj->private;
6851 EXPORT_SYMBOL(netdev_adjacent_get_private);
6854 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6856 * @iter: list_head ** of the current position
6858 * Gets the next device from the dev's upper list, starting from iter
6859 * position. The caller must hold RCU read lock.
6861 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6862 struct list_head **iter)
6864 struct netdev_adjacent *upper;
6866 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6868 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6870 if (&upper->list == &dev->adj_list.upper)
6873 *iter = &upper->list;
6877 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6879 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6880 struct list_head **iter,
6883 struct netdev_adjacent *upper;
6885 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6887 if (&upper->list == &dev->adj_list.upper)
6890 *iter = &upper->list;
6891 *ignore = upper->ignore;
6896 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6897 struct list_head **iter)
6899 struct netdev_adjacent *upper;
6901 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6903 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6905 if (&upper->list == &dev->adj_list.upper)
6908 *iter = &upper->list;
6913 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6914 int (*fn)(struct net_device *dev,
6915 struct netdev_nested_priv *priv),
6916 struct netdev_nested_priv *priv)
6918 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6919 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6924 iter = &dev->adj_list.upper;
6928 ret = fn(now, priv);
6935 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6942 niter = &udev->adj_list.upper;
6943 dev_stack[cur] = now;
6944 iter_stack[cur++] = iter;
6951 next = dev_stack[--cur];
6952 niter = iter_stack[cur];
6962 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6963 int (*fn)(struct net_device *dev,
6964 struct netdev_nested_priv *priv),
6965 struct netdev_nested_priv *priv)
6967 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6968 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6972 iter = &dev->adj_list.upper;
6976 ret = fn(now, priv);
6983 udev = netdev_next_upper_dev_rcu(now, &iter);
6988 niter = &udev->adj_list.upper;
6989 dev_stack[cur] = now;
6990 iter_stack[cur++] = iter;
6997 next = dev_stack[--cur];
6998 niter = iter_stack[cur];
7007 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7009 static bool __netdev_has_upper_dev(struct net_device *dev,
7010 struct net_device *upper_dev)
7012 struct netdev_nested_priv priv = {
7014 .data = (void *)upper_dev,
7019 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7024 * netdev_lower_get_next_private - Get the next ->private from the
7025 * lower neighbour list
7027 * @iter: list_head ** of the current position
7029 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7030 * list, starting from iter position. The caller must hold either hold the
7031 * RTNL lock or its own locking that guarantees that the neighbour lower
7032 * list will remain unchanged.
7034 void *netdev_lower_get_next_private(struct net_device *dev,
7035 struct list_head **iter)
7037 struct netdev_adjacent *lower;
7039 lower = list_entry(*iter, struct netdev_adjacent, list);
7041 if (&lower->list == &dev->adj_list.lower)
7044 *iter = lower->list.next;
7046 return lower->private;
7048 EXPORT_SYMBOL(netdev_lower_get_next_private);
7051 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7052 * lower neighbour list, RCU
7055 * @iter: list_head ** of the current position
7057 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7058 * list, starting from iter position. The caller must hold RCU read lock.
7060 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7061 struct list_head **iter)
7063 struct netdev_adjacent *lower;
7065 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7067 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7069 if (&lower->list == &dev->adj_list.lower)
7072 *iter = &lower->list;
7074 return lower->private;
7076 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7079 * netdev_lower_get_next - Get the next device from the lower neighbour
7082 * @iter: list_head ** of the current position
7084 * Gets the next netdev_adjacent from the dev's lower neighbour
7085 * list, starting from iter position. The caller must hold RTNL lock or
7086 * its own locking that guarantees that the neighbour lower
7087 * list will remain unchanged.
7089 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7091 struct netdev_adjacent *lower;
7093 lower = list_entry(*iter, struct netdev_adjacent, list);
7095 if (&lower->list == &dev->adj_list.lower)
7098 *iter = lower->list.next;
7102 EXPORT_SYMBOL(netdev_lower_get_next);
7104 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7105 struct list_head **iter)
7107 struct netdev_adjacent *lower;
7109 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7111 if (&lower->list == &dev->adj_list.lower)
7114 *iter = &lower->list;
7119 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7120 struct list_head **iter,
7123 struct netdev_adjacent *lower;
7125 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7127 if (&lower->list == &dev->adj_list.lower)
7130 *iter = &lower->list;
7131 *ignore = lower->ignore;
7136 int netdev_walk_all_lower_dev(struct net_device *dev,
7137 int (*fn)(struct net_device *dev,
7138 struct netdev_nested_priv *priv),
7139 struct netdev_nested_priv *priv)
7141 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7142 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7146 iter = &dev->adj_list.lower;
7150 ret = fn(now, priv);
7157 ldev = netdev_next_lower_dev(now, &iter);
7162 niter = &ldev->adj_list.lower;
7163 dev_stack[cur] = now;
7164 iter_stack[cur++] = iter;
7171 next = dev_stack[--cur];
7172 niter = iter_stack[cur];
7181 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7183 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7184 int (*fn)(struct net_device *dev,
7185 struct netdev_nested_priv *priv),
7186 struct netdev_nested_priv *priv)
7188 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7189 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7194 iter = &dev->adj_list.lower;
7198 ret = fn(now, priv);
7205 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7212 niter = &ldev->adj_list.lower;
7213 dev_stack[cur] = now;
7214 iter_stack[cur++] = iter;
7221 next = dev_stack[--cur];
7222 niter = iter_stack[cur];
7232 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7233 struct list_head **iter)
7235 struct netdev_adjacent *lower;
7237 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7238 if (&lower->list == &dev->adj_list.lower)
7241 *iter = &lower->list;
7245 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7247 static u8 __netdev_upper_depth(struct net_device *dev)
7249 struct net_device *udev;
7250 struct list_head *iter;
7254 for (iter = &dev->adj_list.upper,
7255 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7257 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7260 if (max_depth < udev->upper_level)
7261 max_depth = udev->upper_level;
7267 static u8 __netdev_lower_depth(struct net_device *dev)
7269 struct net_device *ldev;
7270 struct list_head *iter;
7274 for (iter = &dev->adj_list.lower,
7275 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7277 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7280 if (max_depth < ldev->lower_level)
7281 max_depth = ldev->lower_level;
7287 static int __netdev_update_upper_level(struct net_device *dev,
7288 struct netdev_nested_priv *__unused)
7290 dev->upper_level = __netdev_upper_depth(dev) + 1;
7294 #ifdef CONFIG_LOCKDEP
7295 static LIST_HEAD(net_unlink_list);
7297 static void net_unlink_todo(struct net_device *dev)
7299 if (list_empty(&dev->unlink_list))
7300 list_add_tail(&dev->unlink_list, &net_unlink_list);
7304 static int __netdev_update_lower_level(struct net_device *dev,
7305 struct netdev_nested_priv *priv)
7307 dev->lower_level = __netdev_lower_depth(dev) + 1;
7309 #ifdef CONFIG_LOCKDEP
7313 if (priv->flags & NESTED_SYNC_IMM)
7314 dev->nested_level = dev->lower_level - 1;
7315 if (priv->flags & NESTED_SYNC_TODO)
7316 net_unlink_todo(dev);
7321 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7322 int (*fn)(struct net_device *dev,
7323 struct netdev_nested_priv *priv),
7324 struct netdev_nested_priv *priv)
7326 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7327 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7331 iter = &dev->adj_list.lower;
7335 ret = fn(now, priv);
7342 ldev = netdev_next_lower_dev_rcu(now, &iter);
7347 niter = &ldev->adj_list.lower;
7348 dev_stack[cur] = now;
7349 iter_stack[cur++] = iter;
7356 next = dev_stack[--cur];
7357 niter = iter_stack[cur];
7366 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7369 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7370 * lower neighbour list, RCU
7374 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7375 * list. The caller must hold RCU read lock.
7377 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7379 struct netdev_adjacent *lower;
7381 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7382 struct netdev_adjacent, list);
7384 return lower->private;
7387 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7390 * netdev_master_upper_dev_get_rcu - Get master upper device
7393 * Find a master upper device and return pointer to it or NULL in case
7394 * it's not there. The caller must hold the RCU read lock.
7396 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7398 struct netdev_adjacent *upper;
7400 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7401 struct netdev_adjacent, list);
7402 if (upper && likely(upper->master))
7406 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7408 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7409 struct net_device *adj_dev,
7410 struct list_head *dev_list)
7412 char linkname[IFNAMSIZ+7];
7414 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7415 "upper_%s" : "lower_%s", adj_dev->name);
7416 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7419 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7421 struct list_head *dev_list)
7423 char linkname[IFNAMSIZ+7];
7425 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7426 "upper_%s" : "lower_%s", name);
7427 sysfs_remove_link(&(dev->dev.kobj), linkname);
7430 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7431 struct net_device *adj_dev,
7432 struct list_head *dev_list)
7434 return (dev_list == &dev->adj_list.upper ||
7435 dev_list == &dev->adj_list.lower) &&
7436 net_eq(dev_net(dev), dev_net(adj_dev));
7439 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7440 struct net_device *adj_dev,
7441 struct list_head *dev_list,
7442 void *private, bool master)
7444 struct netdev_adjacent *adj;
7447 adj = __netdev_find_adj(adj_dev, dev_list);
7451 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7452 dev->name, adj_dev->name, adj->ref_nr);
7457 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7462 adj->master = master;
7464 adj->private = private;
7465 adj->ignore = false;
7466 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7468 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7469 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7471 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7472 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7477 /* Ensure that master link is always the first item in list. */
7479 ret = sysfs_create_link(&(dev->dev.kobj),
7480 &(adj_dev->dev.kobj), "master");
7482 goto remove_symlinks;
7484 list_add_rcu(&adj->list, dev_list);
7486 list_add_tail_rcu(&adj->list, dev_list);
7492 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7493 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7495 dev_put_track(adj_dev, &adj->dev_tracker);
7501 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7502 struct net_device *adj_dev,
7504 struct list_head *dev_list)
7506 struct netdev_adjacent *adj;
7508 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7509 dev->name, adj_dev->name, ref_nr);
7511 adj = __netdev_find_adj(adj_dev, dev_list);
7514 pr_err("Adjacency does not exist for device %s from %s\n",
7515 dev->name, adj_dev->name);
7520 if (adj->ref_nr > ref_nr) {
7521 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7522 dev->name, adj_dev->name, ref_nr,
7523 adj->ref_nr - ref_nr);
7524 adj->ref_nr -= ref_nr;
7529 sysfs_remove_link(&(dev->dev.kobj), "master");
7531 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7532 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7534 list_del_rcu(&adj->list);
7535 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7536 adj_dev->name, dev->name, adj_dev->name);
7537 dev_put_track(adj_dev, &adj->dev_tracker);
7538 kfree_rcu(adj, rcu);
7541 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7542 struct net_device *upper_dev,
7543 struct list_head *up_list,
7544 struct list_head *down_list,
7545 void *private, bool master)
7549 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7554 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7557 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7564 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7565 struct net_device *upper_dev,
7567 struct list_head *up_list,
7568 struct list_head *down_list)
7570 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7571 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7574 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7575 struct net_device *upper_dev,
7576 void *private, bool master)
7578 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7579 &dev->adj_list.upper,
7580 &upper_dev->adj_list.lower,
7584 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7585 struct net_device *upper_dev)
7587 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7588 &dev->adj_list.upper,
7589 &upper_dev->adj_list.lower);
7592 static int __netdev_upper_dev_link(struct net_device *dev,
7593 struct net_device *upper_dev, bool master,
7594 void *upper_priv, void *upper_info,
7595 struct netdev_nested_priv *priv,
7596 struct netlink_ext_ack *extack)
7598 struct netdev_notifier_changeupper_info changeupper_info = {
7603 .upper_dev = upper_dev,
7606 .upper_info = upper_info,
7608 struct net_device *master_dev;
7613 if (dev == upper_dev)
7616 /* To prevent loops, check if dev is not upper device to upper_dev. */
7617 if (__netdev_has_upper_dev(upper_dev, dev))
7620 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7624 if (__netdev_has_upper_dev(dev, upper_dev))
7627 master_dev = __netdev_master_upper_dev_get(dev);
7629 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7632 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7633 &changeupper_info.info);
7634 ret = notifier_to_errno(ret);
7638 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7643 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7644 &changeupper_info.info);
7645 ret = notifier_to_errno(ret);
7649 __netdev_update_upper_level(dev, NULL);
7650 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7652 __netdev_update_lower_level(upper_dev, priv);
7653 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7659 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7665 * netdev_upper_dev_link - Add a link to the upper device
7667 * @upper_dev: new upper device
7668 * @extack: netlink extended ack
7670 * Adds a link to device which is upper to this one. The caller must hold
7671 * the RTNL lock. On a failure a negative errno code is returned.
7672 * On success the reference counts are adjusted and the function
7675 int netdev_upper_dev_link(struct net_device *dev,
7676 struct net_device *upper_dev,
7677 struct netlink_ext_ack *extack)
7679 struct netdev_nested_priv priv = {
7680 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7684 return __netdev_upper_dev_link(dev, upper_dev, false,
7685 NULL, NULL, &priv, extack);
7687 EXPORT_SYMBOL(netdev_upper_dev_link);
7690 * netdev_master_upper_dev_link - Add a master link to the upper device
7692 * @upper_dev: new upper device
7693 * @upper_priv: upper device private
7694 * @upper_info: upper info to be passed down via notifier
7695 * @extack: netlink extended ack
7697 * Adds a link to device which is upper to this one. In this case, only
7698 * one master upper device can be linked, although other non-master devices
7699 * might be linked as well. The caller must hold the RTNL lock.
7700 * On a failure a negative errno code is returned. On success the reference
7701 * counts are adjusted and the function returns zero.
7703 int netdev_master_upper_dev_link(struct net_device *dev,
7704 struct net_device *upper_dev,
7705 void *upper_priv, void *upper_info,
7706 struct netlink_ext_ack *extack)
7708 struct netdev_nested_priv priv = {
7709 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7713 return __netdev_upper_dev_link(dev, upper_dev, true,
7714 upper_priv, upper_info, &priv, extack);
7716 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7718 static void __netdev_upper_dev_unlink(struct net_device *dev,
7719 struct net_device *upper_dev,
7720 struct netdev_nested_priv *priv)
7722 struct netdev_notifier_changeupper_info changeupper_info = {
7726 .upper_dev = upper_dev,
7732 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7734 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7735 &changeupper_info.info);
7737 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7739 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7740 &changeupper_info.info);
7742 __netdev_update_upper_level(dev, NULL);
7743 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7745 __netdev_update_lower_level(upper_dev, priv);
7746 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7751 * netdev_upper_dev_unlink - Removes a link to upper device
7753 * @upper_dev: new upper device
7755 * Removes a link to device which is upper to this one. The caller must hold
7758 void netdev_upper_dev_unlink(struct net_device *dev,
7759 struct net_device *upper_dev)
7761 struct netdev_nested_priv priv = {
7762 .flags = NESTED_SYNC_TODO,
7766 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7768 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7770 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7771 struct net_device *lower_dev,
7774 struct netdev_adjacent *adj;
7776 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7780 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7785 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7786 struct net_device *lower_dev)
7788 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7791 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7792 struct net_device *lower_dev)
7794 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7797 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7798 struct net_device *new_dev,
7799 struct net_device *dev,
7800 struct netlink_ext_ack *extack)
7802 struct netdev_nested_priv priv = {
7811 if (old_dev && new_dev != old_dev)
7812 netdev_adjacent_dev_disable(dev, old_dev);
7813 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7816 if (old_dev && new_dev != old_dev)
7817 netdev_adjacent_dev_enable(dev, old_dev);
7823 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7825 void netdev_adjacent_change_commit(struct net_device *old_dev,
7826 struct net_device *new_dev,
7827 struct net_device *dev)
7829 struct netdev_nested_priv priv = {
7830 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7834 if (!new_dev || !old_dev)
7837 if (new_dev == old_dev)
7840 netdev_adjacent_dev_enable(dev, old_dev);
7841 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7843 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7845 void netdev_adjacent_change_abort(struct net_device *old_dev,
7846 struct net_device *new_dev,
7847 struct net_device *dev)
7849 struct netdev_nested_priv priv = {
7857 if (old_dev && new_dev != old_dev)
7858 netdev_adjacent_dev_enable(dev, old_dev);
7860 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7862 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7865 * netdev_bonding_info_change - Dispatch event about slave change
7867 * @bonding_info: info to dispatch
7869 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7870 * The caller must hold the RTNL lock.
7872 void netdev_bonding_info_change(struct net_device *dev,
7873 struct netdev_bonding_info *bonding_info)
7875 struct netdev_notifier_bonding_info info = {
7879 memcpy(&info.bonding_info, bonding_info,
7880 sizeof(struct netdev_bonding_info));
7881 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7884 EXPORT_SYMBOL(netdev_bonding_info_change);
7886 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7887 struct netlink_ext_ack *extack)
7889 struct netdev_notifier_offload_xstats_info info = {
7891 .info.extack = extack,
7892 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7897 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7899 if (!dev->offload_xstats_l3)
7902 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7903 NETDEV_OFFLOAD_XSTATS_DISABLE,
7905 err = notifier_to_errno(rc);
7912 kfree(dev->offload_xstats_l3);
7913 dev->offload_xstats_l3 = NULL;
7917 int netdev_offload_xstats_enable(struct net_device *dev,
7918 enum netdev_offload_xstats_type type,
7919 struct netlink_ext_ack *extack)
7923 if (netdev_offload_xstats_enabled(dev, type))
7927 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7928 return netdev_offload_xstats_enable_l3(dev, extack);
7934 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7936 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7938 struct netdev_notifier_offload_xstats_info info = {
7940 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7943 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7945 kfree(dev->offload_xstats_l3);
7946 dev->offload_xstats_l3 = NULL;
7949 int netdev_offload_xstats_disable(struct net_device *dev,
7950 enum netdev_offload_xstats_type type)
7954 if (!netdev_offload_xstats_enabled(dev, type))
7958 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7959 netdev_offload_xstats_disable_l3(dev);
7966 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7968 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7970 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7973 static struct rtnl_hw_stats64 *
7974 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7975 enum netdev_offload_xstats_type type)
7978 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7979 return dev->offload_xstats_l3;
7986 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7987 enum netdev_offload_xstats_type type)
7991 return netdev_offload_xstats_get_ptr(dev, type);
7993 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7995 struct netdev_notifier_offload_xstats_ru {
7999 struct netdev_notifier_offload_xstats_rd {
8000 struct rtnl_hw_stats64 stats;
8004 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8005 const struct rtnl_hw_stats64 *src)
8007 dest->rx_packets += src->rx_packets;
8008 dest->tx_packets += src->tx_packets;
8009 dest->rx_bytes += src->rx_bytes;
8010 dest->tx_bytes += src->tx_bytes;
8011 dest->rx_errors += src->rx_errors;
8012 dest->tx_errors += src->tx_errors;
8013 dest->rx_dropped += src->rx_dropped;
8014 dest->tx_dropped += src->tx_dropped;
8015 dest->multicast += src->multicast;
8018 static int netdev_offload_xstats_get_used(struct net_device *dev,
8019 enum netdev_offload_xstats_type type,
8021 struct netlink_ext_ack *extack)
8023 struct netdev_notifier_offload_xstats_ru report_used = {};
8024 struct netdev_notifier_offload_xstats_info info = {
8026 .info.extack = extack,
8028 .report_used = &report_used,
8032 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8033 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8035 *p_used = report_used.used;
8036 return notifier_to_errno(rc);
8039 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8040 enum netdev_offload_xstats_type type,
8041 struct rtnl_hw_stats64 *p_stats,
8043 struct netlink_ext_ack *extack)
8045 struct netdev_notifier_offload_xstats_rd report_delta = {};
8046 struct netdev_notifier_offload_xstats_info info = {
8048 .info.extack = extack,
8050 .report_delta = &report_delta,
8052 struct rtnl_hw_stats64 *stats;
8055 stats = netdev_offload_xstats_get_ptr(dev, type);
8056 if (WARN_ON(!stats))
8059 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8062 /* Cache whatever we got, even if there was an error, otherwise the
8063 * successful stats retrievals would get lost.
8065 netdev_hw_stats64_add(stats, &report_delta.stats);
8069 *p_used = report_delta.used;
8071 return notifier_to_errno(rc);
8074 int netdev_offload_xstats_get(struct net_device *dev,
8075 enum netdev_offload_xstats_type type,
8076 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8077 struct netlink_ext_ack *extack)
8082 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8085 return netdev_offload_xstats_get_used(dev, type, p_used,
8088 EXPORT_SYMBOL(netdev_offload_xstats_get);
8091 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8092 const struct rtnl_hw_stats64 *stats)
8094 report_delta->used = true;
8095 netdev_hw_stats64_add(&report_delta->stats, stats);
8097 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8100 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8102 report_used->used = true;
8104 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8106 void netdev_offload_xstats_push_delta(struct net_device *dev,
8107 enum netdev_offload_xstats_type type,
8108 const struct rtnl_hw_stats64 *p_stats)
8110 struct rtnl_hw_stats64 *stats;
8114 stats = netdev_offload_xstats_get_ptr(dev, type);
8115 if (WARN_ON(!stats))
8118 netdev_hw_stats64_add(stats, p_stats);
8120 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8123 * netdev_get_xmit_slave - Get the xmit slave of master device
8126 * @all_slaves: assume all the slaves are active
8128 * The reference counters are not incremented so the caller must be
8129 * careful with locks. The caller must hold RCU lock.
8130 * %NULL is returned if no slave is found.
8133 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8134 struct sk_buff *skb,
8137 const struct net_device_ops *ops = dev->netdev_ops;
8139 if (!ops->ndo_get_xmit_slave)
8141 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8143 EXPORT_SYMBOL(netdev_get_xmit_slave);
8145 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8148 const struct net_device_ops *ops = dev->netdev_ops;
8150 if (!ops->ndo_sk_get_lower_dev)
8152 return ops->ndo_sk_get_lower_dev(dev, sk);
8156 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8160 * %NULL is returned if no lower device is found.
8163 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8166 struct net_device *lower;
8168 lower = netdev_sk_get_lower_dev(dev, sk);
8171 lower = netdev_sk_get_lower_dev(dev, sk);
8176 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8178 static void netdev_adjacent_add_links(struct net_device *dev)
8180 struct netdev_adjacent *iter;
8182 struct net *net = dev_net(dev);
8184 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8185 if (!net_eq(net, dev_net(iter->dev)))
8187 netdev_adjacent_sysfs_add(iter->dev, dev,
8188 &iter->dev->adj_list.lower);
8189 netdev_adjacent_sysfs_add(dev, iter->dev,
8190 &dev->adj_list.upper);
8193 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8194 if (!net_eq(net, dev_net(iter->dev)))
8196 netdev_adjacent_sysfs_add(iter->dev, dev,
8197 &iter->dev->adj_list.upper);
8198 netdev_adjacent_sysfs_add(dev, iter->dev,
8199 &dev->adj_list.lower);
8203 static void netdev_adjacent_del_links(struct net_device *dev)
8205 struct netdev_adjacent *iter;
8207 struct net *net = dev_net(dev);
8209 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8210 if (!net_eq(net, dev_net(iter->dev)))
8212 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8213 &iter->dev->adj_list.lower);
8214 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8215 &dev->adj_list.upper);
8218 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8219 if (!net_eq(net, dev_net(iter->dev)))
8221 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8222 &iter->dev->adj_list.upper);
8223 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8224 &dev->adj_list.lower);
8228 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8230 struct netdev_adjacent *iter;
8232 struct net *net = dev_net(dev);
8234 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8235 if (!net_eq(net, dev_net(iter->dev)))
8237 netdev_adjacent_sysfs_del(iter->dev, oldname,
8238 &iter->dev->adj_list.lower);
8239 netdev_adjacent_sysfs_add(iter->dev, dev,
8240 &iter->dev->adj_list.lower);
8243 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8244 if (!net_eq(net, dev_net(iter->dev)))
8246 netdev_adjacent_sysfs_del(iter->dev, oldname,
8247 &iter->dev->adj_list.upper);
8248 netdev_adjacent_sysfs_add(iter->dev, dev,
8249 &iter->dev->adj_list.upper);
8253 void *netdev_lower_dev_get_private(struct net_device *dev,
8254 struct net_device *lower_dev)
8256 struct netdev_adjacent *lower;
8260 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8264 return lower->private;
8266 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8270 * netdev_lower_state_changed - Dispatch event about lower device state change
8271 * @lower_dev: device
8272 * @lower_state_info: state to dispatch
8274 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8275 * The caller must hold the RTNL lock.
8277 void netdev_lower_state_changed(struct net_device *lower_dev,
8278 void *lower_state_info)
8280 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8281 .info.dev = lower_dev,
8285 changelowerstate_info.lower_state_info = lower_state_info;
8286 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8287 &changelowerstate_info.info);
8289 EXPORT_SYMBOL(netdev_lower_state_changed);
8291 static void dev_change_rx_flags(struct net_device *dev, int flags)
8293 const struct net_device_ops *ops = dev->netdev_ops;
8295 if (ops->ndo_change_rx_flags)
8296 ops->ndo_change_rx_flags(dev, flags);
8299 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8301 unsigned int old_flags = dev->flags;
8307 dev->flags |= IFF_PROMISC;
8308 dev->promiscuity += inc;
8309 if (dev->promiscuity == 0) {
8312 * If inc causes overflow, untouch promisc and return error.
8315 dev->flags &= ~IFF_PROMISC;
8317 dev->promiscuity -= inc;
8318 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8322 if (dev->flags != old_flags) {
8323 pr_info("device %s %s promiscuous mode\n",
8325 dev->flags & IFF_PROMISC ? "entered" : "left");
8326 if (audit_enabled) {
8327 current_uid_gid(&uid, &gid);
8328 audit_log(audit_context(), GFP_ATOMIC,
8329 AUDIT_ANOM_PROMISCUOUS,
8330 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8331 dev->name, (dev->flags & IFF_PROMISC),
8332 (old_flags & IFF_PROMISC),
8333 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8334 from_kuid(&init_user_ns, uid),
8335 from_kgid(&init_user_ns, gid),
8336 audit_get_sessionid(current));
8339 dev_change_rx_flags(dev, IFF_PROMISC);
8342 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8347 * dev_set_promiscuity - update promiscuity count on a device
8351 * Add or remove promiscuity from a device. While the count in the device
8352 * remains above zero the interface remains promiscuous. Once it hits zero
8353 * the device reverts back to normal filtering operation. A negative inc
8354 * value is used to drop promiscuity on the device.
8355 * Return 0 if successful or a negative errno code on error.
8357 int dev_set_promiscuity(struct net_device *dev, int inc)
8359 unsigned int old_flags = dev->flags;
8362 err = __dev_set_promiscuity(dev, inc, true);
8365 if (dev->flags != old_flags)
8366 dev_set_rx_mode(dev);
8369 EXPORT_SYMBOL(dev_set_promiscuity);
8371 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8373 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8377 dev->flags |= IFF_ALLMULTI;
8378 dev->allmulti += inc;
8379 if (dev->allmulti == 0) {
8382 * If inc causes overflow, untouch allmulti and return error.
8385 dev->flags &= ~IFF_ALLMULTI;
8387 dev->allmulti -= inc;
8388 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8392 if (dev->flags ^ old_flags) {
8393 dev_change_rx_flags(dev, IFF_ALLMULTI);
8394 dev_set_rx_mode(dev);
8396 __dev_notify_flags(dev, old_flags,
8397 dev->gflags ^ old_gflags);
8403 * dev_set_allmulti - update allmulti count on a device
8407 * Add or remove reception of all multicast frames to a device. While the
8408 * count in the device remains above zero the interface remains listening
8409 * to all interfaces. Once it hits zero the device reverts back to normal
8410 * filtering operation. A negative @inc value is used to drop the counter
8411 * when releasing a resource needing all multicasts.
8412 * Return 0 if successful or a negative errno code on error.
8415 int dev_set_allmulti(struct net_device *dev, int inc)
8417 return __dev_set_allmulti(dev, inc, true);
8419 EXPORT_SYMBOL(dev_set_allmulti);
8422 * Upload unicast and multicast address lists to device and
8423 * configure RX filtering. When the device doesn't support unicast
8424 * filtering it is put in promiscuous mode while unicast addresses
8427 void __dev_set_rx_mode(struct net_device *dev)
8429 const struct net_device_ops *ops = dev->netdev_ops;
8431 /* dev_open will call this function so the list will stay sane. */
8432 if (!(dev->flags&IFF_UP))
8435 if (!netif_device_present(dev))
8438 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8439 /* Unicast addresses changes may only happen under the rtnl,
8440 * therefore calling __dev_set_promiscuity here is safe.
8442 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8443 __dev_set_promiscuity(dev, 1, false);
8444 dev->uc_promisc = true;
8445 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8446 __dev_set_promiscuity(dev, -1, false);
8447 dev->uc_promisc = false;
8451 if (ops->ndo_set_rx_mode)
8452 ops->ndo_set_rx_mode(dev);
8455 void dev_set_rx_mode(struct net_device *dev)
8457 netif_addr_lock_bh(dev);
8458 __dev_set_rx_mode(dev);
8459 netif_addr_unlock_bh(dev);
8463 * dev_get_flags - get flags reported to userspace
8466 * Get the combination of flag bits exported through APIs to userspace.
8468 unsigned int dev_get_flags(const struct net_device *dev)
8472 flags = (dev->flags & ~(IFF_PROMISC |
8477 (dev->gflags & (IFF_PROMISC |
8480 if (netif_running(dev)) {
8481 if (netif_oper_up(dev))
8482 flags |= IFF_RUNNING;
8483 if (netif_carrier_ok(dev))
8484 flags |= IFF_LOWER_UP;
8485 if (netif_dormant(dev))
8486 flags |= IFF_DORMANT;
8491 EXPORT_SYMBOL(dev_get_flags);
8493 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8494 struct netlink_ext_ack *extack)
8496 unsigned int old_flags = dev->flags;
8502 * Set the flags on our device.
8505 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8506 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8508 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8512 * Load in the correct multicast list now the flags have changed.
8515 if ((old_flags ^ flags) & IFF_MULTICAST)
8516 dev_change_rx_flags(dev, IFF_MULTICAST);
8518 dev_set_rx_mode(dev);
8521 * Have we downed the interface. We handle IFF_UP ourselves
8522 * according to user attempts to set it, rather than blindly
8527 if ((old_flags ^ flags) & IFF_UP) {
8528 if (old_flags & IFF_UP)
8531 ret = __dev_open(dev, extack);
8534 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8535 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8536 unsigned int old_flags = dev->flags;
8538 dev->gflags ^= IFF_PROMISC;
8540 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8541 if (dev->flags != old_flags)
8542 dev_set_rx_mode(dev);
8545 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8546 * is important. Some (broken) drivers set IFF_PROMISC, when
8547 * IFF_ALLMULTI is requested not asking us and not reporting.
8549 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8550 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8552 dev->gflags ^= IFF_ALLMULTI;
8553 __dev_set_allmulti(dev, inc, false);
8559 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8560 unsigned int gchanges)
8562 unsigned int changes = dev->flags ^ old_flags;
8565 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8567 if (changes & IFF_UP) {
8568 if (dev->flags & IFF_UP)
8569 call_netdevice_notifiers(NETDEV_UP, dev);
8571 call_netdevice_notifiers(NETDEV_DOWN, dev);
8574 if (dev->flags & IFF_UP &&
8575 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8576 struct netdev_notifier_change_info change_info = {
8580 .flags_changed = changes,
8583 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8588 * dev_change_flags - change device settings
8590 * @flags: device state flags
8591 * @extack: netlink extended ack
8593 * Change settings on device based state flags. The flags are
8594 * in the userspace exported format.
8596 int dev_change_flags(struct net_device *dev, unsigned int flags,
8597 struct netlink_ext_ack *extack)
8600 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8602 ret = __dev_change_flags(dev, flags, extack);
8606 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8607 __dev_notify_flags(dev, old_flags, changes);
8610 EXPORT_SYMBOL(dev_change_flags);
8612 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8614 const struct net_device_ops *ops = dev->netdev_ops;
8616 if (ops->ndo_change_mtu)
8617 return ops->ndo_change_mtu(dev, new_mtu);
8619 /* Pairs with all the lockless reads of dev->mtu in the stack */
8620 WRITE_ONCE(dev->mtu, new_mtu);
8623 EXPORT_SYMBOL(__dev_set_mtu);
8625 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8626 struct netlink_ext_ack *extack)
8628 /* MTU must be positive, and in range */
8629 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8630 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8634 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8635 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8642 * dev_set_mtu_ext - Change maximum transfer unit
8644 * @new_mtu: new transfer unit
8645 * @extack: netlink extended ack
8647 * Change the maximum transfer size of the network device.
8649 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8650 struct netlink_ext_ack *extack)
8654 if (new_mtu == dev->mtu)
8657 err = dev_validate_mtu(dev, new_mtu, extack);
8661 if (!netif_device_present(dev))
8664 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8665 err = notifier_to_errno(err);
8669 orig_mtu = dev->mtu;
8670 err = __dev_set_mtu(dev, new_mtu);
8673 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8675 err = notifier_to_errno(err);
8677 /* setting mtu back and notifying everyone again,
8678 * so that they have a chance to revert changes.
8680 __dev_set_mtu(dev, orig_mtu);
8681 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8688 int dev_set_mtu(struct net_device *dev, int new_mtu)
8690 struct netlink_ext_ack extack;
8693 memset(&extack, 0, sizeof(extack));
8694 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8695 if (err && extack._msg)
8696 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8699 EXPORT_SYMBOL(dev_set_mtu);
8702 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8704 * @new_len: new tx queue length
8706 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8708 unsigned int orig_len = dev->tx_queue_len;
8711 if (new_len != (unsigned int)new_len)
8714 if (new_len != orig_len) {
8715 dev->tx_queue_len = new_len;
8716 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8717 res = notifier_to_errno(res);
8720 res = dev_qdisc_change_tx_queue_len(dev);
8728 netdev_err(dev, "refused to change device tx_queue_len\n");
8729 dev->tx_queue_len = orig_len;
8734 * dev_set_group - Change group this device belongs to
8736 * @new_group: group this device should belong to
8738 void dev_set_group(struct net_device *dev, int new_group)
8740 dev->group = new_group;
8744 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8746 * @addr: new address
8747 * @extack: netlink extended ack
8749 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8750 struct netlink_ext_ack *extack)
8752 struct netdev_notifier_pre_changeaddr_info info = {
8754 .info.extack = extack,
8759 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8760 return notifier_to_errno(rc);
8762 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8765 * dev_set_mac_address - Change Media Access Control Address
8768 * @extack: netlink extended ack
8770 * Change the hardware (MAC) address of the device
8772 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8773 struct netlink_ext_ack *extack)
8775 const struct net_device_ops *ops = dev->netdev_ops;
8778 if (!ops->ndo_set_mac_address)
8780 if (sa->sa_family != dev->type)
8782 if (!netif_device_present(dev))
8784 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8787 err = ops->ndo_set_mac_address(dev, sa);
8790 dev->addr_assign_type = NET_ADDR_SET;
8791 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8792 add_device_randomness(dev->dev_addr, dev->addr_len);
8795 EXPORT_SYMBOL(dev_set_mac_address);
8797 static DECLARE_RWSEM(dev_addr_sem);
8799 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8800 struct netlink_ext_ack *extack)
8804 down_write(&dev_addr_sem);
8805 ret = dev_set_mac_address(dev, sa, extack);
8806 up_write(&dev_addr_sem);
8809 EXPORT_SYMBOL(dev_set_mac_address_user);
8811 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8813 size_t size = sizeof(sa->sa_data);
8814 struct net_device *dev;
8817 down_read(&dev_addr_sem);
8820 dev = dev_get_by_name_rcu(net, dev_name);
8826 memset(sa->sa_data, 0, size);
8828 memcpy(sa->sa_data, dev->dev_addr,
8829 min_t(size_t, size, dev->addr_len));
8830 sa->sa_family = dev->type;
8834 up_read(&dev_addr_sem);
8837 EXPORT_SYMBOL(dev_get_mac_address);
8840 * dev_change_carrier - Change device carrier
8842 * @new_carrier: new value
8844 * Change device carrier
8846 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8848 const struct net_device_ops *ops = dev->netdev_ops;
8850 if (!ops->ndo_change_carrier)
8852 if (!netif_device_present(dev))
8854 return ops->ndo_change_carrier(dev, new_carrier);
8858 * dev_get_phys_port_id - Get device physical port ID
8862 * Get device physical port ID
8864 int dev_get_phys_port_id(struct net_device *dev,
8865 struct netdev_phys_item_id *ppid)
8867 const struct net_device_ops *ops = dev->netdev_ops;
8869 if (!ops->ndo_get_phys_port_id)
8871 return ops->ndo_get_phys_port_id(dev, ppid);
8875 * dev_get_phys_port_name - Get device physical port name
8878 * @len: limit of bytes to copy to name
8880 * Get device physical port name
8882 int dev_get_phys_port_name(struct net_device *dev,
8883 char *name, size_t len)
8885 const struct net_device_ops *ops = dev->netdev_ops;
8888 if (ops->ndo_get_phys_port_name) {
8889 err = ops->ndo_get_phys_port_name(dev, name, len);
8890 if (err != -EOPNOTSUPP)
8893 return devlink_compat_phys_port_name_get(dev, name, len);
8897 * dev_get_port_parent_id - Get the device's port parent identifier
8898 * @dev: network device
8899 * @ppid: pointer to a storage for the port's parent identifier
8900 * @recurse: allow/disallow recursion to lower devices
8902 * Get the devices's port parent identifier
8904 int dev_get_port_parent_id(struct net_device *dev,
8905 struct netdev_phys_item_id *ppid,
8908 const struct net_device_ops *ops = dev->netdev_ops;
8909 struct netdev_phys_item_id first = { };
8910 struct net_device *lower_dev;
8911 struct list_head *iter;
8914 if (ops->ndo_get_port_parent_id) {
8915 err = ops->ndo_get_port_parent_id(dev, ppid);
8916 if (err != -EOPNOTSUPP)
8920 err = devlink_compat_switch_id_get(dev, ppid);
8921 if (!recurse || err != -EOPNOTSUPP)
8924 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8925 err = dev_get_port_parent_id(lower_dev, ppid, true);
8930 else if (memcmp(&first, ppid, sizeof(*ppid)))
8936 EXPORT_SYMBOL(dev_get_port_parent_id);
8939 * netdev_port_same_parent_id - Indicate if two network devices have
8940 * the same port parent identifier
8941 * @a: first network device
8942 * @b: second network device
8944 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8946 struct netdev_phys_item_id a_id = { };
8947 struct netdev_phys_item_id b_id = { };
8949 if (dev_get_port_parent_id(a, &a_id, true) ||
8950 dev_get_port_parent_id(b, &b_id, true))
8953 return netdev_phys_item_id_same(&a_id, &b_id);
8955 EXPORT_SYMBOL(netdev_port_same_parent_id);
8958 * dev_change_proto_down - set carrier according to proto_down.
8961 * @proto_down: new value
8963 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8965 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8967 if (!netif_device_present(dev))
8970 netif_carrier_off(dev);
8972 netif_carrier_on(dev);
8973 dev->proto_down = proto_down;
8978 * dev_change_proto_down_reason - proto down reason
8981 * @mask: proto down mask
8982 * @value: proto down value
8984 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8990 dev->proto_down_reason = value;
8992 for_each_set_bit(b, &mask, 32) {
8993 if (value & (1 << b))
8994 dev->proto_down_reason |= BIT(b);
8996 dev->proto_down_reason &= ~BIT(b);
9001 struct bpf_xdp_link {
9002 struct bpf_link link;
9003 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9007 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9009 if (flags & XDP_FLAGS_HW_MODE)
9011 if (flags & XDP_FLAGS_DRV_MODE)
9012 return XDP_MODE_DRV;
9013 if (flags & XDP_FLAGS_SKB_MODE)
9014 return XDP_MODE_SKB;
9015 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9018 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9022 return generic_xdp_install;
9025 return dev->netdev_ops->ndo_bpf;
9031 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9032 enum bpf_xdp_mode mode)
9034 return dev->xdp_state[mode].link;
9037 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9038 enum bpf_xdp_mode mode)
9040 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9043 return link->link.prog;
9044 return dev->xdp_state[mode].prog;
9047 u8 dev_xdp_prog_count(struct net_device *dev)
9052 for (i = 0; i < __MAX_XDP_MODE; i++)
9053 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9057 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9059 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9061 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9063 return prog ? prog->aux->id : 0;
9066 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9067 struct bpf_xdp_link *link)
9069 dev->xdp_state[mode].link = link;
9070 dev->xdp_state[mode].prog = NULL;
9073 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9074 struct bpf_prog *prog)
9076 dev->xdp_state[mode].link = NULL;
9077 dev->xdp_state[mode].prog = prog;
9080 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9081 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9082 u32 flags, struct bpf_prog *prog)
9084 struct netdev_bpf xdp;
9087 memset(&xdp, 0, sizeof(xdp));
9088 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9089 xdp.extack = extack;
9093 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9094 * "moved" into driver), so they don't increment it on their own, but
9095 * they do decrement refcnt when program is detached or replaced.
9096 * Given net_device also owns link/prog, we need to bump refcnt here
9097 * to prevent drivers from underflowing it.
9101 err = bpf_op(dev, &xdp);
9108 if (mode != XDP_MODE_HW)
9109 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9114 static void dev_xdp_uninstall(struct net_device *dev)
9116 struct bpf_xdp_link *link;
9117 struct bpf_prog *prog;
9118 enum bpf_xdp_mode mode;
9123 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9124 prog = dev_xdp_prog(dev, mode);
9128 bpf_op = dev_xdp_bpf_op(dev, mode);
9132 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9134 /* auto-detach link from net device */
9135 link = dev_xdp_link(dev, mode);
9141 dev_xdp_set_link(dev, mode, NULL);
9145 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9146 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9147 struct bpf_prog *old_prog, u32 flags)
9149 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9150 struct bpf_prog *cur_prog;
9151 struct net_device *upper;
9152 struct list_head *iter;
9153 enum bpf_xdp_mode mode;
9159 /* either link or prog attachment, never both */
9160 if (link && (new_prog || old_prog))
9162 /* link supports only XDP mode flags */
9163 if (link && (flags & ~XDP_FLAGS_MODES)) {
9164 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9167 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9168 if (num_modes > 1) {
9169 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9172 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9173 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9174 NL_SET_ERR_MSG(extack,
9175 "More than one program loaded, unset mode is ambiguous");
9178 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9179 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9180 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9184 mode = dev_xdp_mode(dev, flags);
9185 /* can't replace attached link */
9186 if (dev_xdp_link(dev, mode)) {
9187 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9191 /* don't allow if an upper device already has a program */
9192 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9193 if (dev_xdp_prog_count(upper) > 0) {
9194 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9199 cur_prog = dev_xdp_prog(dev, mode);
9200 /* can't replace attached prog with link */
9201 if (link && cur_prog) {
9202 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9205 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9206 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9210 /* put effective new program into new_prog */
9212 new_prog = link->link.prog;
9215 bool offload = mode == XDP_MODE_HW;
9216 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9217 ? XDP_MODE_DRV : XDP_MODE_SKB;
9219 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9220 NL_SET_ERR_MSG(extack, "XDP program already attached");
9223 if (!offload && dev_xdp_prog(dev, other_mode)) {
9224 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9227 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9228 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9231 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9232 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9235 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9236 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9241 /* don't call drivers if the effective program didn't change */
9242 if (new_prog != cur_prog) {
9243 bpf_op = dev_xdp_bpf_op(dev, mode);
9245 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9249 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9255 dev_xdp_set_link(dev, mode, link);
9257 dev_xdp_set_prog(dev, mode, new_prog);
9259 bpf_prog_put(cur_prog);
9264 static int dev_xdp_attach_link(struct net_device *dev,
9265 struct netlink_ext_ack *extack,
9266 struct bpf_xdp_link *link)
9268 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9271 static int dev_xdp_detach_link(struct net_device *dev,
9272 struct netlink_ext_ack *extack,
9273 struct bpf_xdp_link *link)
9275 enum bpf_xdp_mode mode;
9280 mode = dev_xdp_mode(dev, link->flags);
9281 if (dev_xdp_link(dev, mode) != link)
9284 bpf_op = dev_xdp_bpf_op(dev, mode);
9285 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9286 dev_xdp_set_link(dev, mode, NULL);
9290 static void bpf_xdp_link_release(struct bpf_link *link)
9292 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9296 /* if racing with net_device's tear down, xdp_link->dev might be
9297 * already NULL, in which case link was already auto-detached
9299 if (xdp_link->dev) {
9300 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9301 xdp_link->dev = NULL;
9307 static int bpf_xdp_link_detach(struct bpf_link *link)
9309 bpf_xdp_link_release(link);
9313 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9315 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9320 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9321 struct seq_file *seq)
9323 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9328 ifindex = xdp_link->dev->ifindex;
9331 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9334 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9335 struct bpf_link_info *info)
9337 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9342 ifindex = xdp_link->dev->ifindex;
9345 info->xdp.ifindex = ifindex;
9349 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9350 struct bpf_prog *old_prog)
9352 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9353 enum bpf_xdp_mode mode;
9359 /* link might have been auto-released already, so fail */
9360 if (!xdp_link->dev) {
9365 if (old_prog && link->prog != old_prog) {
9369 old_prog = link->prog;
9370 if (old_prog->type != new_prog->type ||
9371 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9376 if (old_prog == new_prog) {
9377 /* no-op, don't disturb drivers */
9378 bpf_prog_put(new_prog);
9382 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9383 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9384 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9385 xdp_link->flags, new_prog);
9389 old_prog = xchg(&link->prog, new_prog);
9390 bpf_prog_put(old_prog);
9397 static const struct bpf_link_ops bpf_xdp_link_lops = {
9398 .release = bpf_xdp_link_release,
9399 .dealloc = bpf_xdp_link_dealloc,
9400 .detach = bpf_xdp_link_detach,
9401 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9402 .fill_link_info = bpf_xdp_link_fill_link_info,
9403 .update_prog = bpf_xdp_link_update,
9406 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9408 struct net *net = current->nsproxy->net_ns;
9409 struct bpf_link_primer link_primer;
9410 struct bpf_xdp_link *link;
9411 struct net_device *dev;
9415 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9421 link = kzalloc(sizeof(*link), GFP_USER);
9427 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9429 link->flags = attr->link_create.flags;
9431 err = bpf_link_prime(&link->link, &link_primer);
9437 err = dev_xdp_attach_link(dev, NULL, link);
9442 bpf_link_cleanup(&link_primer);
9446 fd = bpf_link_settle(&link_primer);
9447 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9460 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9462 * @extack: netlink extended ack
9463 * @fd: new program fd or negative value to clear
9464 * @expected_fd: old program fd that userspace expects to replace or clear
9465 * @flags: xdp-related flags
9467 * Set or clear a bpf program for a device
9469 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9470 int fd, int expected_fd, u32 flags)
9472 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9473 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9479 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9480 mode != XDP_MODE_SKB);
9481 if (IS_ERR(new_prog))
9482 return PTR_ERR(new_prog);
9485 if (expected_fd >= 0) {
9486 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9487 mode != XDP_MODE_SKB);
9488 if (IS_ERR(old_prog)) {
9489 err = PTR_ERR(old_prog);
9495 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9498 if (err && new_prog)
9499 bpf_prog_put(new_prog);
9501 bpf_prog_put(old_prog);
9506 * dev_new_index - allocate an ifindex
9507 * @net: the applicable net namespace
9509 * Returns a suitable unique value for a new device interface
9510 * number. The caller must hold the rtnl semaphore or the
9511 * dev_base_lock to be sure it remains unique.
9513 static int dev_new_index(struct net *net)
9515 int ifindex = net->ifindex;
9520 if (!__dev_get_by_index(net, ifindex))
9521 return net->ifindex = ifindex;
9525 /* Delayed registration/unregisteration */
9526 LIST_HEAD(net_todo_list);
9527 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9529 static void net_set_todo(struct net_device *dev)
9531 list_add_tail(&dev->todo_list, &net_todo_list);
9532 atomic_inc(&dev_net(dev)->dev_unreg_count);
9535 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9536 struct net_device *upper, netdev_features_t features)
9538 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9539 netdev_features_t feature;
9542 for_each_netdev_feature(upper_disables, feature_bit) {
9543 feature = __NETIF_F_BIT(feature_bit);
9544 if (!(upper->wanted_features & feature)
9545 && (features & feature)) {
9546 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9547 &feature, upper->name);
9548 features &= ~feature;
9555 static void netdev_sync_lower_features(struct net_device *upper,
9556 struct net_device *lower, netdev_features_t features)
9558 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9559 netdev_features_t feature;
9562 for_each_netdev_feature(upper_disables, feature_bit) {
9563 feature = __NETIF_F_BIT(feature_bit);
9564 if (!(features & feature) && (lower->features & feature)) {
9565 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9566 &feature, lower->name);
9567 lower->wanted_features &= ~feature;
9568 __netdev_update_features(lower);
9570 if (unlikely(lower->features & feature))
9571 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9572 &feature, lower->name);
9574 netdev_features_change(lower);
9579 static netdev_features_t netdev_fix_features(struct net_device *dev,
9580 netdev_features_t features)
9582 /* Fix illegal checksum combinations */
9583 if ((features & NETIF_F_HW_CSUM) &&
9584 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9585 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9586 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9589 /* TSO requires that SG is present as well. */
9590 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9591 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9592 features &= ~NETIF_F_ALL_TSO;
9595 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9596 !(features & NETIF_F_IP_CSUM)) {
9597 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9598 features &= ~NETIF_F_TSO;
9599 features &= ~NETIF_F_TSO_ECN;
9602 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9603 !(features & NETIF_F_IPV6_CSUM)) {
9604 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9605 features &= ~NETIF_F_TSO6;
9608 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9609 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9610 features &= ~NETIF_F_TSO_MANGLEID;
9612 /* TSO ECN requires that TSO is present as well. */
9613 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9614 features &= ~NETIF_F_TSO_ECN;
9616 /* Software GSO depends on SG. */
9617 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9618 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9619 features &= ~NETIF_F_GSO;
9622 /* GSO partial features require GSO partial be set */
9623 if ((features & dev->gso_partial_features) &&
9624 !(features & NETIF_F_GSO_PARTIAL)) {
9626 "Dropping partially supported GSO features since no GSO partial.\n");
9627 features &= ~dev->gso_partial_features;
9630 if (!(features & NETIF_F_RXCSUM)) {
9631 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9632 * successfully merged by hardware must also have the
9633 * checksum verified by hardware. If the user does not
9634 * want to enable RXCSUM, logically, we should disable GRO_HW.
9636 if (features & NETIF_F_GRO_HW) {
9637 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9638 features &= ~NETIF_F_GRO_HW;
9642 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9643 if (features & NETIF_F_RXFCS) {
9644 if (features & NETIF_F_LRO) {
9645 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9646 features &= ~NETIF_F_LRO;
9649 if (features & NETIF_F_GRO_HW) {
9650 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9651 features &= ~NETIF_F_GRO_HW;
9655 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9656 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9657 features &= ~NETIF_F_LRO;
9660 if (features & NETIF_F_HW_TLS_TX) {
9661 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9662 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9663 bool hw_csum = features & NETIF_F_HW_CSUM;
9665 if (!ip_csum && !hw_csum) {
9666 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9667 features &= ~NETIF_F_HW_TLS_TX;
9671 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9672 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9673 features &= ~NETIF_F_HW_TLS_RX;
9679 int __netdev_update_features(struct net_device *dev)
9681 struct net_device *upper, *lower;
9682 netdev_features_t features;
9683 struct list_head *iter;
9688 features = netdev_get_wanted_features(dev);
9690 if (dev->netdev_ops->ndo_fix_features)
9691 features = dev->netdev_ops->ndo_fix_features(dev, features);
9693 /* driver might be less strict about feature dependencies */
9694 features = netdev_fix_features(dev, features);
9696 /* some features can't be enabled if they're off on an upper device */
9697 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9698 features = netdev_sync_upper_features(dev, upper, features);
9700 if (dev->features == features)
9703 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9704 &dev->features, &features);
9706 if (dev->netdev_ops->ndo_set_features)
9707 err = dev->netdev_ops->ndo_set_features(dev, features);
9711 if (unlikely(err < 0)) {
9713 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9714 err, &features, &dev->features);
9715 /* return non-0 since some features might have changed and
9716 * it's better to fire a spurious notification than miss it
9722 /* some features must be disabled on lower devices when disabled
9723 * on an upper device (think: bonding master or bridge)
9725 netdev_for_each_lower_dev(dev, lower, iter)
9726 netdev_sync_lower_features(dev, lower, features);
9729 netdev_features_t diff = features ^ dev->features;
9731 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9732 /* udp_tunnel_{get,drop}_rx_info both need
9733 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9734 * device, or they won't do anything.
9735 * Thus we need to update dev->features
9736 * *before* calling udp_tunnel_get_rx_info,
9737 * but *after* calling udp_tunnel_drop_rx_info.
9739 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9740 dev->features = features;
9741 udp_tunnel_get_rx_info(dev);
9743 udp_tunnel_drop_rx_info(dev);
9747 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9748 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9749 dev->features = features;
9750 err |= vlan_get_rx_ctag_filter_info(dev);
9752 vlan_drop_rx_ctag_filter_info(dev);
9756 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9757 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9758 dev->features = features;
9759 err |= vlan_get_rx_stag_filter_info(dev);
9761 vlan_drop_rx_stag_filter_info(dev);
9765 dev->features = features;
9768 return err < 0 ? 0 : 1;
9772 * netdev_update_features - recalculate device features
9773 * @dev: the device to check
9775 * Recalculate dev->features set and send notifications if it
9776 * has changed. Should be called after driver or hardware dependent
9777 * conditions might have changed that influence the features.
9779 void netdev_update_features(struct net_device *dev)
9781 if (__netdev_update_features(dev))
9782 netdev_features_change(dev);
9784 EXPORT_SYMBOL(netdev_update_features);
9787 * netdev_change_features - recalculate device features
9788 * @dev: the device to check
9790 * Recalculate dev->features set and send notifications even
9791 * if they have not changed. Should be called instead of
9792 * netdev_update_features() if also dev->vlan_features might
9793 * have changed to allow the changes to be propagated to stacked
9796 void netdev_change_features(struct net_device *dev)
9798 __netdev_update_features(dev);
9799 netdev_features_change(dev);
9801 EXPORT_SYMBOL(netdev_change_features);
9804 * netif_stacked_transfer_operstate - transfer operstate
9805 * @rootdev: the root or lower level device to transfer state from
9806 * @dev: the device to transfer operstate to
9808 * Transfer operational state from root to device. This is normally
9809 * called when a stacking relationship exists between the root
9810 * device and the device(a leaf device).
9812 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9813 struct net_device *dev)
9815 if (rootdev->operstate == IF_OPER_DORMANT)
9816 netif_dormant_on(dev);
9818 netif_dormant_off(dev);
9820 if (rootdev->operstate == IF_OPER_TESTING)
9821 netif_testing_on(dev);
9823 netif_testing_off(dev);
9825 if (netif_carrier_ok(rootdev))
9826 netif_carrier_on(dev);
9828 netif_carrier_off(dev);
9830 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9832 static int netif_alloc_rx_queues(struct net_device *dev)
9834 unsigned int i, count = dev->num_rx_queues;
9835 struct netdev_rx_queue *rx;
9836 size_t sz = count * sizeof(*rx);
9841 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9847 for (i = 0; i < count; i++) {
9850 /* XDP RX-queue setup */
9851 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9858 /* Rollback successful reg's and free other resources */
9860 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9866 static void netif_free_rx_queues(struct net_device *dev)
9868 unsigned int i, count = dev->num_rx_queues;
9870 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9874 for (i = 0; i < count; i++)
9875 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9880 static void netdev_init_one_queue(struct net_device *dev,
9881 struct netdev_queue *queue, void *_unused)
9883 /* Initialize queue lock */
9884 spin_lock_init(&queue->_xmit_lock);
9885 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9886 queue->xmit_lock_owner = -1;
9887 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9890 dql_init(&queue->dql, HZ);
9894 static void netif_free_tx_queues(struct net_device *dev)
9899 static int netif_alloc_netdev_queues(struct net_device *dev)
9901 unsigned int count = dev->num_tx_queues;
9902 struct netdev_queue *tx;
9903 size_t sz = count * sizeof(*tx);
9905 if (count < 1 || count > 0xffff)
9908 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9914 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9915 spin_lock_init(&dev->tx_global_lock);
9920 void netif_tx_stop_all_queues(struct net_device *dev)
9924 for (i = 0; i < dev->num_tx_queues; i++) {
9925 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9927 netif_tx_stop_queue(txq);
9930 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9933 * register_netdevice() - register a network device
9934 * @dev: device to register
9936 * Take a prepared network device structure and make it externally accessible.
9937 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9938 * Callers must hold the rtnl lock - you may want register_netdev()
9941 int register_netdevice(struct net_device *dev)
9944 struct net *net = dev_net(dev);
9946 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9947 NETDEV_FEATURE_COUNT);
9948 BUG_ON(dev_boot_phase);
9953 /* When net_device's are persistent, this will be fatal. */
9954 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9957 ret = ethtool_check_ops(dev->ethtool_ops);
9961 spin_lock_init(&dev->addr_list_lock);
9962 netdev_set_addr_lockdep_class(dev);
9964 ret = dev_get_valid_name(net, dev, dev->name);
9969 dev->name_node = netdev_name_node_head_alloc(dev);
9970 if (!dev->name_node)
9973 /* Init, if this function is available */
9974 if (dev->netdev_ops->ndo_init) {
9975 ret = dev->netdev_ops->ndo_init(dev);
9983 if (((dev->hw_features | dev->features) &
9984 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9985 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9986 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9987 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9994 dev->ifindex = dev_new_index(net);
9995 else if (__dev_get_by_index(net, dev->ifindex))
9998 /* Transfer changeable features to wanted_features and enable
9999 * software offloads (GSO and GRO).
10001 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10002 dev->features |= NETIF_F_SOFT_FEATURES;
10004 if (dev->udp_tunnel_nic_info) {
10005 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10006 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10009 dev->wanted_features = dev->features & dev->hw_features;
10011 if (!(dev->flags & IFF_LOOPBACK))
10012 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10014 /* If IPv4 TCP segmentation offload is supported we should also
10015 * allow the device to enable segmenting the frame with the option
10016 * of ignoring a static IP ID value. This doesn't enable the
10017 * feature itself but allows the user to enable it later.
10019 if (dev->hw_features & NETIF_F_TSO)
10020 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10021 if (dev->vlan_features & NETIF_F_TSO)
10022 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10023 if (dev->mpls_features & NETIF_F_TSO)
10024 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10025 if (dev->hw_enc_features & NETIF_F_TSO)
10026 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10028 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10030 dev->vlan_features |= NETIF_F_HIGHDMA;
10032 /* Make NETIF_F_SG inheritable to tunnel devices.
10034 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10036 /* Make NETIF_F_SG inheritable to MPLS.
10038 dev->mpls_features |= NETIF_F_SG;
10040 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10041 ret = notifier_to_errno(ret);
10045 ret = netdev_register_kobject(dev);
10047 dev->reg_state = NETREG_UNREGISTERED;
10050 dev->reg_state = NETREG_REGISTERED;
10052 __netdev_update_features(dev);
10055 * Default initial state at registry is that the
10056 * device is present.
10059 set_bit(__LINK_STATE_PRESENT, &dev->state);
10061 linkwatch_init_dev(dev);
10063 dev_init_scheduler(dev);
10065 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10066 list_netdevice(dev);
10068 add_device_randomness(dev->dev_addr, dev->addr_len);
10070 /* If the device has permanent device address, driver should
10071 * set dev_addr and also addr_assign_type should be set to
10072 * NET_ADDR_PERM (default value).
10074 if (dev->addr_assign_type == NET_ADDR_PERM)
10075 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10077 /* Notify protocols, that a new device appeared. */
10078 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10079 ret = notifier_to_errno(ret);
10081 /* Expect explicit free_netdev() on failure */
10082 dev->needs_free_netdev = false;
10083 unregister_netdevice_queue(dev, NULL);
10087 * Prevent userspace races by waiting until the network
10088 * device is fully setup before sending notifications.
10090 if (!dev->rtnl_link_ops ||
10091 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10092 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10098 if (dev->netdev_ops->ndo_uninit)
10099 dev->netdev_ops->ndo_uninit(dev);
10100 if (dev->priv_destructor)
10101 dev->priv_destructor(dev);
10103 netdev_name_node_free(dev->name_node);
10106 EXPORT_SYMBOL(register_netdevice);
10109 * init_dummy_netdev - init a dummy network device for NAPI
10110 * @dev: device to init
10112 * This takes a network device structure and initialize the minimum
10113 * amount of fields so it can be used to schedule NAPI polls without
10114 * registering a full blown interface. This is to be used by drivers
10115 * that need to tie several hardware interfaces to a single NAPI
10116 * poll scheduler due to HW limitations.
10118 int init_dummy_netdev(struct net_device *dev)
10120 /* Clear everything. Note we don't initialize spinlocks
10121 * are they aren't supposed to be taken by any of the
10122 * NAPI code and this dummy netdev is supposed to be
10123 * only ever used for NAPI polls
10125 memset(dev, 0, sizeof(struct net_device));
10127 /* make sure we BUG if trying to hit standard
10128 * register/unregister code path
10130 dev->reg_state = NETREG_DUMMY;
10132 /* NAPI wants this */
10133 INIT_LIST_HEAD(&dev->napi_list);
10135 /* a dummy interface is started by default */
10136 set_bit(__LINK_STATE_PRESENT, &dev->state);
10137 set_bit(__LINK_STATE_START, &dev->state);
10139 /* napi_busy_loop stats accounting wants this */
10140 dev_net_set(dev, &init_net);
10142 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10143 * because users of this 'device' dont need to change
10149 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10153 * register_netdev - register a network device
10154 * @dev: device to register
10156 * Take a completed network device structure and add it to the kernel
10157 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10158 * chain. 0 is returned on success. A negative errno code is returned
10159 * on a failure to set up the device, or if the name is a duplicate.
10161 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10162 * and expands the device name if you passed a format string to
10165 int register_netdev(struct net_device *dev)
10169 if (rtnl_lock_killable())
10171 err = register_netdevice(dev);
10175 EXPORT_SYMBOL(register_netdev);
10177 int netdev_refcnt_read(const struct net_device *dev)
10179 #ifdef CONFIG_PCPU_DEV_REFCNT
10182 for_each_possible_cpu(i)
10183 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10186 return refcount_read(&dev->dev_refcnt);
10189 EXPORT_SYMBOL(netdev_refcnt_read);
10191 int netdev_unregister_timeout_secs __read_mostly = 10;
10193 #define WAIT_REFS_MIN_MSECS 1
10194 #define WAIT_REFS_MAX_MSECS 250
10196 * netdev_wait_allrefs_any - wait until all references are gone.
10197 * @list: list of net_devices to wait on
10199 * This is called when unregistering network devices.
10201 * Any protocol or device that holds a reference should register
10202 * for netdevice notification, and cleanup and put back the
10203 * reference if they receive an UNREGISTER event.
10204 * We can get stuck here if buggy protocols don't correctly
10207 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10209 unsigned long rebroadcast_time, warning_time;
10210 struct net_device *dev;
10213 rebroadcast_time = warning_time = jiffies;
10215 list_for_each_entry(dev, list, todo_list)
10216 if (netdev_refcnt_read(dev) == 1)
10220 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10223 /* Rebroadcast unregister notification */
10224 list_for_each_entry(dev, list, todo_list)
10225 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10231 list_for_each_entry(dev, list, todo_list)
10232 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10234 /* We must not have linkwatch events
10235 * pending on unregister. If this
10236 * happens, we simply run the queue
10237 * unscheduled, resulting in a noop
10240 linkwatch_run_queue();
10246 rebroadcast_time = jiffies;
10251 wait = WAIT_REFS_MIN_MSECS;
10254 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10257 list_for_each_entry(dev, list, todo_list)
10258 if (netdev_refcnt_read(dev) == 1)
10261 if (time_after(jiffies, warning_time +
10262 netdev_unregister_timeout_secs * HZ)) {
10263 list_for_each_entry(dev, list, todo_list) {
10264 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10265 dev->name, netdev_refcnt_read(dev));
10266 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10269 warning_time = jiffies;
10274 /* The sequence is:
10278 * register_netdevice(x1);
10279 * register_netdevice(x2);
10281 * unregister_netdevice(y1);
10282 * unregister_netdevice(y2);
10288 * We are invoked by rtnl_unlock().
10289 * This allows us to deal with problems:
10290 * 1) We can delete sysfs objects which invoke hotplug
10291 * without deadlocking with linkwatch via keventd.
10292 * 2) Since we run with the RTNL semaphore not held, we can sleep
10293 * safely in order to wait for the netdev refcnt to drop to zero.
10295 * We must not return until all unregister events added during
10296 * the interval the lock was held have been completed.
10298 void netdev_run_todo(void)
10300 struct net_device *dev, *tmp;
10301 struct list_head list;
10302 #ifdef CONFIG_LOCKDEP
10303 struct list_head unlink_list;
10305 list_replace_init(&net_unlink_list, &unlink_list);
10307 while (!list_empty(&unlink_list)) {
10308 struct net_device *dev = list_first_entry(&unlink_list,
10311 list_del_init(&dev->unlink_list);
10312 dev->nested_level = dev->lower_level - 1;
10316 /* Snapshot list, allow later requests */
10317 list_replace_init(&net_todo_list, &list);
10321 /* Wait for rcu callbacks to finish before next phase */
10322 if (!list_empty(&list))
10325 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10326 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10327 netdev_WARN(dev, "run_todo but not unregistering\n");
10328 list_del(&dev->todo_list);
10332 dev->reg_state = NETREG_UNREGISTERED;
10333 linkwatch_forget_dev(dev);
10336 while (!list_empty(&list)) {
10337 dev = netdev_wait_allrefs_any(&list);
10338 list_del(&dev->todo_list);
10341 BUG_ON(netdev_refcnt_read(dev) != 1);
10342 BUG_ON(!list_empty(&dev->ptype_all));
10343 BUG_ON(!list_empty(&dev->ptype_specific));
10344 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10345 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10346 #if IS_ENABLED(CONFIG_DECNET)
10347 WARN_ON(dev->dn_ptr);
10349 if (dev->priv_destructor)
10350 dev->priv_destructor(dev);
10351 if (dev->needs_free_netdev)
10354 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10355 wake_up(&netdev_unregistering_wq);
10357 /* Free network device */
10358 kobject_put(&dev->dev.kobj);
10362 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10363 * all the same fields in the same order as net_device_stats, with only
10364 * the type differing, but rtnl_link_stats64 may have additional fields
10365 * at the end for newer counters.
10367 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10368 const struct net_device_stats *netdev_stats)
10370 #if BITS_PER_LONG == 64
10371 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10372 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10373 /* zero out counters that only exist in rtnl_link_stats64 */
10374 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10375 sizeof(*stats64) - sizeof(*netdev_stats));
10377 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10378 const unsigned long *src = (const unsigned long *)netdev_stats;
10379 u64 *dst = (u64 *)stats64;
10381 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10382 for (i = 0; i < n; i++)
10384 /* zero out counters that only exist in rtnl_link_stats64 */
10385 memset((char *)stats64 + n * sizeof(u64), 0,
10386 sizeof(*stats64) - n * sizeof(u64));
10389 EXPORT_SYMBOL(netdev_stats_to_stats64);
10391 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10393 struct net_device_core_stats __percpu *p;
10395 p = alloc_percpu_gfp(struct net_device_core_stats,
10396 GFP_ATOMIC | __GFP_NOWARN);
10398 if (p && cmpxchg(&dev->core_stats, NULL, p))
10401 /* This READ_ONCE() pairs with the cmpxchg() above */
10402 return READ_ONCE(dev->core_stats);
10404 EXPORT_SYMBOL(netdev_core_stats_alloc);
10407 * dev_get_stats - get network device statistics
10408 * @dev: device to get statistics from
10409 * @storage: place to store stats
10411 * Get network statistics from device. Return @storage.
10412 * The device driver may provide its own method by setting
10413 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10414 * otherwise the internal statistics structure is used.
10416 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10417 struct rtnl_link_stats64 *storage)
10419 const struct net_device_ops *ops = dev->netdev_ops;
10420 const struct net_device_core_stats __percpu *p;
10422 if (ops->ndo_get_stats64) {
10423 memset(storage, 0, sizeof(*storage));
10424 ops->ndo_get_stats64(dev, storage);
10425 } else if (ops->ndo_get_stats) {
10426 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10428 netdev_stats_to_stats64(storage, &dev->stats);
10431 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10432 p = READ_ONCE(dev->core_stats);
10434 const struct net_device_core_stats *core_stats;
10437 for_each_possible_cpu(i) {
10438 core_stats = per_cpu_ptr(p, i);
10439 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10440 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10441 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10442 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10447 EXPORT_SYMBOL(dev_get_stats);
10450 * dev_fetch_sw_netstats - get per-cpu network device statistics
10451 * @s: place to store stats
10452 * @netstats: per-cpu network stats to read from
10454 * Read per-cpu network statistics and populate the related fields in @s.
10456 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10457 const struct pcpu_sw_netstats __percpu *netstats)
10461 for_each_possible_cpu(cpu) {
10462 const struct pcpu_sw_netstats *stats;
10463 struct pcpu_sw_netstats tmp;
10464 unsigned int start;
10466 stats = per_cpu_ptr(netstats, cpu);
10468 start = u64_stats_fetch_begin_irq(&stats->syncp);
10469 tmp.rx_packets = stats->rx_packets;
10470 tmp.rx_bytes = stats->rx_bytes;
10471 tmp.tx_packets = stats->tx_packets;
10472 tmp.tx_bytes = stats->tx_bytes;
10473 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10475 s->rx_packets += tmp.rx_packets;
10476 s->rx_bytes += tmp.rx_bytes;
10477 s->tx_packets += tmp.tx_packets;
10478 s->tx_bytes += tmp.tx_bytes;
10481 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10484 * dev_get_tstats64 - ndo_get_stats64 implementation
10485 * @dev: device to get statistics from
10486 * @s: place to store stats
10488 * Populate @s from dev->stats and dev->tstats. Can be used as
10489 * ndo_get_stats64() callback.
10491 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10493 netdev_stats_to_stats64(s, &dev->stats);
10494 dev_fetch_sw_netstats(s, dev->tstats);
10496 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10498 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10500 struct netdev_queue *queue = dev_ingress_queue(dev);
10502 #ifdef CONFIG_NET_CLS_ACT
10505 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10508 netdev_init_one_queue(dev, queue, NULL);
10509 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10510 queue->qdisc_sleeping = &noop_qdisc;
10511 rcu_assign_pointer(dev->ingress_queue, queue);
10516 static const struct ethtool_ops default_ethtool_ops;
10518 void netdev_set_default_ethtool_ops(struct net_device *dev,
10519 const struct ethtool_ops *ops)
10521 if (dev->ethtool_ops == &default_ethtool_ops)
10522 dev->ethtool_ops = ops;
10524 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10526 void netdev_freemem(struct net_device *dev)
10528 char *addr = (char *)dev - dev->padded;
10534 * alloc_netdev_mqs - allocate network device
10535 * @sizeof_priv: size of private data to allocate space for
10536 * @name: device name format string
10537 * @name_assign_type: origin of device name
10538 * @setup: callback to initialize device
10539 * @txqs: the number of TX subqueues to allocate
10540 * @rxqs: the number of RX subqueues to allocate
10542 * Allocates a struct net_device with private data area for driver use
10543 * and performs basic initialization. Also allocates subqueue structs
10544 * for each queue on the device.
10546 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10547 unsigned char name_assign_type,
10548 void (*setup)(struct net_device *),
10549 unsigned int txqs, unsigned int rxqs)
10551 struct net_device *dev;
10552 unsigned int alloc_size;
10553 struct net_device *p;
10555 BUG_ON(strlen(name) >= sizeof(dev->name));
10558 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10563 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10567 alloc_size = sizeof(struct net_device);
10569 /* ensure 32-byte alignment of private area */
10570 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10571 alloc_size += sizeof_priv;
10573 /* ensure 32-byte alignment of whole construct */
10574 alloc_size += NETDEV_ALIGN - 1;
10576 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10580 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10581 dev->padded = (char *)dev - (char *)p;
10583 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10584 #ifdef CONFIG_PCPU_DEV_REFCNT
10585 dev->pcpu_refcnt = alloc_percpu(int);
10586 if (!dev->pcpu_refcnt)
10590 refcount_set(&dev->dev_refcnt, 1);
10593 if (dev_addr_init(dev))
10599 dev_net_set(dev, &init_net);
10601 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10602 dev->gso_max_segs = GSO_MAX_SEGS;
10603 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10604 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10605 dev->tso_max_segs = TSO_MAX_SEGS;
10606 dev->upper_level = 1;
10607 dev->lower_level = 1;
10608 #ifdef CONFIG_LOCKDEP
10609 dev->nested_level = 0;
10610 INIT_LIST_HEAD(&dev->unlink_list);
10613 INIT_LIST_HEAD(&dev->napi_list);
10614 INIT_LIST_HEAD(&dev->unreg_list);
10615 INIT_LIST_HEAD(&dev->close_list);
10616 INIT_LIST_HEAD(&dev->link_watch_list);
10617 INIT_LIST_HEAD(&dev->adj_list.upper);
10618 INIT_LIST_HEAD(&dev->adj_list.lower);
10619 INIT_LIST_HEAD(&dev->ptype_all);
10620 INIT_LIST_HEAD(&dev->ptype_specific);
10621 INIT_LIST_HEAD(&dev->net_notifier_list);
10622 #ifdef CONFIG_NET_SCHED
10623 hash_init(dev->qdisc_hash);
10625 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10628 if (!dev->tx_queue_len) {
10629 dev->priv_flags |= IFF_NO_QUEUE;
10630 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10633 dev->num_tx_queues = txqs;
10634 dev->real_num_tx_queues = txqs;
10635 if (netif_alloc_netdev_queues(dev))
10638 dev->num_rx_queues = rxqs;
10639 dev->real_num_rx_queues = rxqs;
10640 if (netif_alloc_rx_queues(dev))
10643 strcpy(dev->name, name);
10644 dev->name_assign_type = name_assign_type;
10645 dev->group = INIT_NETDEV_GROUP;
10646 if (!dev->ethtool_ops)
10647 dev->ethtool_ops = &default_ethtool_ops;
10649 nf_hook_netdev_init(dev);
10658 #ifdef CONFIG_PCPU_DEV_REFCNT
10659 free_percpu(dev->pcpu_refcnt);
10662 netdev_freemem(dev);
10665 EXPORT_SYMBOL(alloc_netdev_mqs);
10668 * free_netdev - free network device
10671 * This function does the last stage of destroying an allocated device
10672 * interface. The reference to the device object is released. If this
10673 * is the last reference then it will be freed.Must be called in process
10676 void free_netdev(struct net_device *dev)
10678 struct napi_struct *p, *n;
10682 /* When called immediately after register_netdevice() failed the unwind
10683 * handling may still be dismantling the device. Handle that case by
10684 * deferring the free.
10686 if (dev->reg_state == NETREG_UNREGISTERING) {
10688 dev->needs_free_netdev = true;
10692 netif_free_tx_queues(dev);
10693 netif_free_rx_queues(dev);
10695 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10697 /* Flush device addresses */
10698 dev_addr_flush(dev);
10700 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10703 ref_tracker_dir_exit(&dev->refcnt_tracker);
10704 #ifdef CONFIG_PCPU_DEV_REFCNT
10705 free_percpu(dev->pcpu_refcnt);
10706 dev->pcpu_refcnt = NULL;
10708 free_percpu(dev->core_stats);
10709 dev->core_stats = NULL;
10710 free_percpu(dev->xdp_bulkq);
10711 dev->xdp_bulkq = NULL;
10713 /* Compatibility with error handling in drivers */
10714 if (dev->reg_state == NETREG_UNINITIALIZED) {
10715 netdev_freemem(dev);
10719 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10720 dev->reg_state = NETREG_RELEASED;
10722 /* will free via device release */
10723 put_device(&dev->dev);
10725 EXPORT_SYMBOL(free_netdev);
10728 * synchronize_net - Synchronize with packet receive processing
10730 * Wait for packets currently being received to be done.
10731 * Does not block later packets from starting.
10733 void synchronize_net(void)
10736 if (rtnl_is_locked())
10737 synchronize_rcu_expedited();
10741 EXPORT_SYMBOL(synchronize_net);
10744 * unregister_netdevice_queue - remove device from the kernel
10748 * This function shuts down a device interface and removes it
10749 * from the kernel tables.
10750 * If head not NULL, device is queued to be unregistered later.
10752 * Callers must hold the rtnl semaphore. You may want
10753 * unregister_netdev() instead of this.
10756 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10761 list_move_tail(&dev->unreg_list, head);
10765 list_add(&dev->unreg_list, &single);
10766 unregister_netdevice_many(&single);
10769 EXPORT_SYMBOL(unregister_netdevice_queue);
10772 * unregister_netdevice_many - unregister many devices
10773 * @head: list of devices
10775 * Note: As most callers use a stack allocated list_head,
10776 * we force a list_del() to make sure stack wont be corrupted later.
10778 void unregister_netdevice_many(struct list_head *head)
10780 struct net_device *dev, *tmp;
10781 LIST_HEAD(close_head);
10783 BUG_ON(dev_boot_phase);
10786 if (list_empty(head))
10789 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10790 /* Some devices call without registering
10791 * for initialization unwind. Remove those
10792 * devices and proceed with the remaining.
10794 if (dev->reg_state == NETREG_UNINITIALIZED) {
10795 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10799 list_del(&dev->unreg_list);
10802 dev->dismantle = true;
10803 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10806 /* If device is running, close it first. */
10807 list_for_each_entry(dev, head, unreg_list)
10808 list_add_tail(&dev->close_list, &close_head);
10809 dev_close_many(&close_head, true);
10811 list_for_each_entry(dev, head, unreg_list) {
10812 /* And unlink it from device chain. */
10813 unlist_netdevice(dev);
10815 dev->reg_state = NETREG_UNREGISTERING;
10817 flush_all_backlogs();
10821 list_for_each_entry(dev, head, unreg_list) {
10822 struct sk_buff *skb = NULL;
10824 /* Shutdown queueing discipline. */
10827 dev_xdp_uninstall(dev);
10829 netdev_offload_xstats_disable_all(dev);
10831 /* Notify protocols, that we are about to destroy
10832 * this device. They should clean all the things.
10834 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10836 if (!dev->rtnl_link_ops ||
10837 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10838 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10839 GFP_KERNEL, NULL, 0);
10842 * Flush the unicast and multicast chains
10847 netdev_name_node_alt_flush(dev);
10848 netdev_name_node_free(dev->name_node);
10850 if (dev->netdev_ops->ndo_uninit)
10851 dev->netdev_ops->ndo_uninit(dev);
10854 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10856 /* Notifier chain MUST detach us all upper devices. */
10857 WARN_ON(netdev_has_any_upper_dev(dev));
10858 WARN_ON(netdev_has_any_lower_dev(dev));
10860 /* Remove entries from kobject tree */
10861 netdev_unregister_kobject(dev);
10863 /* Remove XPS queueing entries */
10864 netif_reset_xps_queues_gt(dev, 0);
10870 list_for_each_entry(dev, head, unreg_list) {
10871 dev_put_track(dev, &dev->dev_registered_tracker);
10877 EXPORT_SYMBOL(unregister_netdevice_many);
10880 * unregister_netdev - remove device from the kernel
10883 * This function shuts down a device interface and removes it
10884 * from the kernel tables.
10886 * This is just a wrapper for unregister_netdevice that takes
10887 * the rtnl semaphore. In general you want to use this and not
10888 * unregister_netdevice.
10890 void unregister_netdev(struct net_device *dev)
10893 unregister_netdevice(dev);
10896 EXPORT_SYMBOL(unregister_netdev);
10899 * __dev_change_net_namespace - move device to different nethost namespace
10901 * @net: network namespace
10902 * @pat: If not NULL name pattern to try if the current device name
10903 * is already taken in the destination network namespace.
10904 * @new_ifindex: If not zero, specifies device index in the target
10907 * This function shuts down a device interface and moves it
10908 * to a new network namespace. On success 0 is returned, on
10909 * a failure a netagive errno code is returned.
10911 * Callers must hold the rtnl semaphore.
10914 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10915 const char *pat, int new_ifindex)
10917 struct net *net_old = dev_net(dev);
10922 /* Don't allow namespace local devices to be moved. */
10924 if (dev->features & NETIF_F_NETNS_LOCAL)
10927 /* Ensure the device has been registrered */
10928 if (dev->reg_state != NETREG_REGISTERED)
10931 /* Get out if there is nothing todo */
10933 if (net_eq(net_old, net))
10936 /* Pick the destination device name, and ensure
10937 * we can use it in the destination network namespace.
10940 if (netdev_name_in_use(net, dev->name)) {
10941 /* We get here if we can't use the current device name */
10944 err = dev_get_valid_name(net, dev, pat);
10949 /* Check that new_ifindex isn't used yet. */
10951 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10955 * And now a mini version of register_netdevice unregister_netdevice.
10958 /* If device is running close it first. */
10961 /* And unlink it from device chain */
10962 unlist_netdevice(dev);
10966 /* Shutdown queueing discipline. */
10969 /* Notify protocols, that we are about to destroy
10970 * this device. They should clean all the things.
10972 * Note that dev->reg_state stays at NETREG_REGISTERED.
10973 * This is wanted because this way 8021q and macvlan know
10974 * the device is just moving and can keep their slaves up.
10976 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10979 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10980 /* If there is an ifindex conflict assign a new one */
10981 if (!new_ifindex) {
10982 if (__dev_get_by_index(net, dev->ifindex))
10983 new_ifindex = dev_new_index(net);
10985 new_ifindex = dev->ifindex;
10988 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10992 * Flush the unicast and multicast chains
10997 /* Send a netdev-removed uevent to the old namespace */
10998 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10999 netdev_adjacent_del_links(dev);
11001 /* Move per-net netdevice notifiers that are following the netdevice */
11002 move_netdevice_notifiers_dev_net(dev, net);
11004 /* Actually switch the network namespace */
11005 dev_net_set(dev, net);
11006 dev->ifindex = new_ifindex;
11008 /* Send a netdev-add uevent to the new namespace */
11009 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11010 netdev_adjacent_add_links(dev);
11012 /* Fixup kobjects */
11013 err = device_rename(&dev->dev, dev->name);
11016 /* Adapt owner in case owning user namespace of target network
11017 * namespace is different from the original one.
11019 err = netdev_change_owner(dev, net_old, net);
11022 /* Add the device back in the hashes */
11023 list_netdevice(dev);
11025 /* Notify protocols, that a new device appeared. */
11026 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11029 * Prevent userspace races by waiting until the network
11030 * device is fully setup before sending notifications.
11032 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11039 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11041 static int dev_cpu_dead(unsigned int oldcpu)
11043 struct sk_buff **list_skb;
11044 struct sk_buff *skb;
11046 struct softnet_data *sd, *oldsd, *remsd = NULL;
11048 local_irq_disable();
11049 cpu = smp_processor_id();
11050 sd = &per_cpu(softnet_data, cpu);
11051 oldsd = &per_cpu(softnet_data, oldcpu);
11053 /* Find end of our completion_queue. */
11054 list_skb = &sd->completion_queue;
11056 list_skb = &(*list_skb)->next;
11057 /* Append completion queue from offline CPU. */
11058 *list_skb = oldsd->completion_queue;
11059 oldsd->completion_queue = NULL;
11061 /* Append output queue from offline CPU. */
11062 if (oldsd->output_queue) {
11063 *sd->output_queue_tailp = oldsd->output_queue;
11064 sd->output_queue_tailp = oldsd->output_queue_tailp;
11065 oldsd->output_queue = NULL;
11066 oldsd->output_queue_tailp = &oldsd->output_queue;
11068 /* Append NAPI poll list from offline CPU, with one exception :
11069 * process_backlog() must be called by cpu owning percpu backlog.
11070 * We properly handle process_queue & input_pkt_queue later.
11072 while (!list_empty(&oldsd->poll_list)) {
11073 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11074 struct napi_struct,
11077 list_del_init(&napi->poll_list);
11078 if (napi->poll == process_backlog)
11081 ____napi_schedule(sd, napi);
11084 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11085 local_irq_enable();
11088 remsd = oldsd->rps_ipi_list;
11089 oldsd->rps_ipi_list = NULL;
11091 /* send out pending IPI's on offline CPU */
11092 net_rps_send_ipi(remsd);
11094 /* Process offline CPU's input_pkt_queue */
11095 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11097 input_queue_head_incr(oldsd);
11099 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11101 input_queue_head_incr(oldsd);
11108 * netdev_increment_features - increment feature set by one
11109 * @all: current feature set
11110 * @one: new feature set
11111 * @mask: mask feature set
11113 * Computes a new feature set after adding a device with feature set
11114 * @one to the master device with current feature set @all. Will not
11115 * enable anything that is off in @mask. Returns the new feature set.
11117 netdev_features_t netdev_increment_features(netdev_features_t all,
11118 netdev_features_t one, netdev_features_t mask)
11120 if (mask & NETIF_F_HW_CSUM)
11121 mask |= NETIF_F_CSUM_MASK;
11122 mask |= NETIF_F_VLAN_CHALLENGED;
11124 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11125 all &= one | ~NETIF_F_ALL_FOR_ALL;
11127 /* If one device supports hw checksumming, set for all. */
11128 if (all & NETIF_F_HW_CSUM)
11129 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11133 EXPORT_SYMBOL(netdev_increment_features);
11135 static struct hlist_head * __net_init netdev_create_hash(void)
11138 struct hlist_head *hash;
11140 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11142 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11143 INIT_HLIST_HEAD(&hash[i]);
11148 /* Initialize per network namespace state */
11149 static int __net_init netdev_init(struct net *net)
11151 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11152 8 * sizeof_field(struct napi_struct, gro_bitmask));
11154 INIT_LIST_HEAD(&net->dev_base_head);
11156 net->dev_name_head = netdev_create_hash();
11157 if (net->dev_name_head == NULL)
11160 net->dev_index_head = netdev_create_hash();
11161 if (net->dev_index_head == NULL)
11164 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11169 kfree(net->dev_name_head);
11175 * netdev_drivername - network driver for the device
11176 * @dev: network device
11178 * Determine network driver for device.
11180 const char *netdev_drivername(const struct net_device *dev)
11182 const struct device_driver *driver;
11183 const struct device *parent;
11184 const char *empty = "";
11186 parent = dev->dev.parent;
11190 driver = parent->driver;
11191 if (driver && driver->name)
11192 return driver->name;
11196 static void __netdev_printk(const char *level, const struct net_device *dev,
11197 struct va_format *vaf)
11199 if (dev && dev->dev.parent) {
11200 dev_printk_emit(level[1] - '0',
11203 dev_driver_string(dev->dev.parent),
11204 dev_name(dev->dev.parent),
11205 netdev_name(dev), netdev_reg_state(dev),
11208 printk("%s%s%s: %pV",
11209 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11211 printk("%s(NULL net_device): %pV", level, vaf);
11215 void netdev_printk(const char *level, const struct net_device *dev,
11216 const char *format, ...)
11218 struct va_format vaf;
11221 va_start(args, format);
11226 __netdev_printk(level, dev, &vaf);
11230 EXPORT_SYMBOL(netdev_printk);
11232 #define define_netdev_printk_level(func, level) \
11233 void func(const struct net_device *dev, const char *fmt, ...) \
11235 struct va_format vaf; \
11238 va_start(args, fmt); \
11243 __netdev_printk(level, dev, &vaf); \
11247 EXPORT_SYMBOL(func);
11249 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11250 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11251 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11252 define_netdev_printk_level(netdev_err, KERN_ERR);
11253 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11254 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11255 define_netdev_printk_level(netdev_info, KERN_INFO);
11257 static void __net_exit netdev_exit(struct net *net)
11259 kfree(net->dev_name_head);
11260 kfree(net->dev_index_head);
11261 if (net != &init_net)
11262 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11265 static struct pernet_operations __net_initdata netdev_net_ops = {
11266 .init = netdev_init,
11267 .exit = netdev_exit,
11270 static void __net_exit default_device_exit_net(struct net *net)
11272 struct net_device *dev, *aux;
11274 * Push all migratable network devices back to the
11275 * initial network namespace
11278 for_each_netdev_safe(net, dev, aux) {
11280 char fb_name[IFNAMSIZ];
11282 /* Ignore unmoveable devices (i.e. loopback) */
11283 if (dev->features & NETIF_F_NETNS_LOCAL)
11286 /* Leave virtual devices for the generic cleanup */
11287 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11290 /* Push remaining network devices to init_net */
11291 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11292 if (netdev_name_in_use(&init_net, fb_name))
11293 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11294 err = dev_change_net_namespace(dev, &init_net, fb_name);
11296 pr_emerg("%s: failed to move %s to init_net: %d\n",
11297 __func__, dev->name, err);
11303 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11305 /* At exit all network devices most be removed from a network
11306 * namespace. Do this in the reverse order of registration.
11307 * Do this across as many network namespaces as possible to
11308 * improve batching efficiency.
11310 struct net_device *dev;
11312 LIST_HEAD(dev_kill_list);
11315 list_for_each_entry(net, net_list, exit_list) {
11316 default_device_exit_net(net);
11320 list_for_each_entry(net, net_list, exit_list) {
11321 for_each_netdev_reverse(net, dev) {
11322 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11323 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11325 unregister_netdevice_queue(dev, &dev_kill_list);
11328 unregister_netdevice_many(&dev_kill_list);
11332 static struct pernet_operations __net_initdata default_device_ops = {
11333 .exit_batch = default_device_exit_batch,
11337 * Initialize the DEV module. At boot time this walks the device list and
11338 * unhooks any devices that fail to initialise (normally hardware not
11339 * present) and leaves us with a valid list of present and active devices.
11344 * This is called single threaded during boot, so no need
11345 * to take the rtnl semaphore.
11347 static int __init net_dev_init(void)
11349 int i, rc = -ENOMEM;
11351 BUG_ON(!dev_boot_phase);
11353 if (dev_proc_init())
11356 if (netdev_kobject_init())
11359 INIT_LIST_HEAD(&ptype_all);
11360 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11361 INIT_LIST_HEAD(&ptype_base[i]);
11363 if (register_pernet_subsys(&netdev_net_ops))
11367 * Initialise the packet receive queues.
11370 for_each_possible_cpu(i) {
11371 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11372 struct softnet_data *sd = &per_cpu(softnet_data, i);
11374 INIT_WORK(flush, flush_backlog);
11376 skb_queue_head_init(&sd->input_pkt_queue);
11377 skb_queue_head_init(&sd->process_queue);
11378 #ifdef CONFIG_XFRM_OFFLOAD
11379 skb_queue_head_init(&sd->xfrm_backlog);
11381 INIT_LIST_HEAD(&sd->poll_list);
11382 sd->output_queue_tailp = &sd->output_queue;
11384 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11387 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11388 spin_lock_init(&sd->defer_lock);
11390 init_gro_hash(&sd->backlog);
11391 sd->backlog.poll = process_backlog;
11392 sd->backlog.weight = weight_p;
11395 dev_boot_phase = 0;
11397 /* The loopback device is special if any other network devices
11398 * is present in a network namespace the loopback device must
11399 * be present. Since we now dynamically allocate and free the
11400 * loopback device ensure this invariant is maintained by
11401 * keeping the loopback device as the first device on the
11402 * list of network devices. Ensuring the loopback devices
11403 * is the first device that appears and the last network device
11406 if (register_pernet_device(&loopback_net_ops))
11409 if (register_pernet_device(&default_device_ops))
11412 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11413 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11415 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11416 NULL, dev_cpu_dead);
11423 subsys_initcall(net_dev_init);