1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "delayed-inode.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
39 #include "compression.h"
40 #include "rcu-string.h"
41 #include "dev-replace.h"
42 #include "free-space-cache.h"
44 #include "space-info.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/btrfs.h>
54 static const struct super_operations btrfs_super_ops;
57 * Types for mounting the default subvolume and a subvolume explicitly
58 * requested by subvol=/path. That way the callchain is straightforward and we
59 * don't have to play tricks with the mount options and recursive calls to
62 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64 static struct file_system_type btrfs_fs_type;
65 static struct file_system_type btrfs_root_fs_type;
67 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 #define STATE_STRING_PREFACE ": state "
72 #define STATE_STRING_BUF_LEN (sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT)
75 * Characters to print to indicate error conditions or uncommon filesystem sate.
78 static const char fs_state_chars[] = {
79 [BTRFS_FS_STATE_ERROR] = 'E',
80 [BTRFS_FS_STATE_REMOUNTING] = 'M',
81 [BTRFS_FS_STATE_RO] = 0,
82 [BTRFS_FS_STATE_TRANS_ABORTED] = 'A',
83 [BTRFS_FS_STATE_DEV_REPLACING] = 'R',
84 [BTRFS_FS_STATE_DUMMY_FS_INFO] = 0,
85 [BTRFS_FS_STATE_NO_CSUMS] = 'C',
86 [BTRFS_FS_STATE_LOG_CLEANUP_ERROR] = 'L',
89 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf)
92 bool states_printed = false;
93 unsigned long fs_state = READ_ONCE(info->fs_state);
96 memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE));
97 curr += sizeof(STATE_STRING_PREFACE) - 1;
99 for_each_set_bit(bit, &fs_state, sizeof(fs_state)) {
100 WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT);
101 if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) {
102 *curr++ = fs_state_chars[bit];
103 states_printed = true;
107 /* If no states were printed, reset the buffer */
116 * Generally the error codes correspond to their respective errors, but there
117 * are a few special cases.
119 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for
120 * instance will return EUCLEAN if any of the blocks are corrupted in
121 * a way that is problematic. We want to reserve EUCLEAN for these
122 * sort of corruptions.
124 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
125 * need to use EROFS for this case. We will have no idea of the
126 * original failure, that will have been reported at the time we tripped
127 * over the error. Each subsequent error that doesn't have any context
128 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
130 const char * __attribute_const__ btrfs_decode_error(int errno)
132 char *errstr = "unknown";
135 case -ENOENT: /* -2 */
136 errstr = "No such entry";
139 errstr = "IO failure";
141 case -ENOMEM: /* -12*/
142 errstr = "Out of memory";
144 case -EEXIST: /* -17 */
145 errstr = "Object already exists";
147 case -ENOSPC: /* -28 */
148 errstr = "No space left";
150 case -EROFS: /* -30 */
151 errstr = "Readonly filesystem";
153 case -EOPNOTSUPP: /* -95 */
154 errstr = "Operation not supported";
156 case -EUCLEAN: /* -117 */
157 errstr = "Filesystem corrupted";
159 case -EDQUOT: /* -122 */
160 errstr = "Quota exceeded";
168 * __btrfs_handle_fs_error decodes expected errors from the caller and
169 * invokes the appropriate error response.
172 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
173 unsigned int line, int errno, const char *fmt, ...)
175 struct super_block *sb = fs_info->sb;
177 char statestr[STATE_STRING_BUF_LEN];
182 * Special case: if the error is EROFS, and we're already
183 * under SB_RDONLY, then it is safe here.
185 if (errno == -EROFS && sb_rdonly(sb))
189 errstr = btrfs_decode_error(errno);
190 btrfs_state_to_string(fs_info, statestr);
192 struct va_format vaf;
199 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n",
200 sb->s_id, statestr, function, line, errno, errstr, &vaf);
203 pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n",
204 sb->s_id, statestr, function, line, errno, errstr);
209 * Today we only save the error info to memory. Long term we'll
210 * also send it down to the disk
212 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
214 /* Don't go through full error handling during mount */
215 if (!(sb->s_flags & SB_BORN))
221 btrfs_discard_stop(fs_info);
223 /* btrfs handle error by forcing the filesystem readonly */
224 btrfs_set_sb_rdonly(sb);
225 btrfs_info(fs_info, "forced readonly");
227 * Note that a running device replace operation is not canceled here
228 * although there is no way to update the progress. It would add the
229 * risk of a deadlock, therefore the canceling is omitted. The only
230 * penalty is that some I/O remains active until the procedure
231 * completes. The next time when the filesystem is mounted writable
232 * again, the device replace operation continues.
237 static const char * const logtypes[] = {
250 * Use one ratelimit state per log level so that a flood of less important
251 * messages doesn't cause more important ones to be dropped.
253 static struct ratelimit_state printk_limits[] = {
254 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
255 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
256 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
257 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
258 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
259 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
260 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
261 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
264 void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
266 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
267 struct va_format vaf;
270 const char *type = logtypes[4];
271 struct ratelimit_state *ratelimit = &printk_limits[4];
275 while ((kern_level = printk_get_level(fmt)) != 0) {
276 size_t size = printk_skip_level(fmt) - fmt;
278 if (kern_level >= '0' && kern_level <= '7') {
279 memcpy(lvl, fmt, size);
281 type = logtypes[kern_level - '0'];
282 ratelimit = &printk_limits[kern_level - '0'];
290 if (__ratelimit(ratelimit)) {
292 char statestr[STATE_STRING_BUF_LEN];
294 btrfs_state_to_string(fs_info, statestr);
295 _printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type,
296 fs_info->sb->s_id, statestr, &vaf);
298 _printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
306 #if BITS_PER_LONG == 32
307 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
309 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
310 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
312 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
313 BTRFS_32BIT_MAX_FILE_SIZE >> 40);
315 "please consider upgrading to 64bit kernel/hardware");
319 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
321 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
322 btrfs_err(fs_info, "reached 32bit limit for logical addresses");
324 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
325 BTRFS_32BIT_MAX_FILE_SIZE >> 40);
327 "please consider upgrading to 64bit kernel/hardware");
333 * We only mark the transaction aborted and then set the file system read-only.
334 * This will prevent new transactions from starting or trying to join this
337 * This means that error recovery at the call site is limited to freeing
338 * any local memory allocations and passing the error code up without
339 * further cleanup. The transaction should complete as it normally would
340 * in the call path but will return -EIO.
342 * We'll complete the cleanup in btrfs_end_transaction and
343 * btrfs_commit_transaction.
346 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
347 const char *function,
348 unsigned int line, int errno)
350 struct btrfs_fs_info *fs_info = trans->fs_info;
352 WRITE_ONCE(trans->aborted, errno);
353 WRITE_ONCE(trans->transaction->aborted, errno);
354 /* Wake up anybody who may be waiting on this transaction */
355 wake_up(&fs_info->transaction_wait);
356 wake_up(&fs_info->transaction_blocked_wait);
357 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
360 * __btrfs_panic decodes unexpected, fatal errors from the caller,
361 * issues an alert, and either panics or BUGs, depending on mount options.
364 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
365 unsigned int line, int errno, const char *fmt, ...)
367 char *s_id = "<unknown>";
369 struct va_format vaf = { .fmt = fmt };
373 s_id = fs_info->sb->s_id;
378 errstr = btrfs_decode_error(errno);
379 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
380 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
381 s_id, function, line, &vaf, errno, errstr);
383 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
384 function, line, &vaf, errno, errstr);
386 /* Caller calls BUG() */
389 static void btrfs_put_super(struct super_block *sb)
391 close_ctree(btrfs_sb(sb));
400 Opt_compress_force_type,
405 Opt_flushoncommit, Opt_noflushoncommit,
407 Opt_barrier, Opt_nobarrier,
408 Opt_datacow, Opt_nodatacow,
409 Opt_datasum, Opt_nodatasum,
410 Opt_defrag, Opt_nodefrag,
411 Opt_discard, Opt_nodiscard,
415 Opt_rescan_uuid_tree,
417 Opt_space_cache, Opt_no_space_cache,
418 Opt_space_cache_version,
420 Opt_ssd_spread, Opt_nossd_spread,
425 Opt_treelog, Opt_notreelog,
426 Opt_user_subvol_rm_allowed,
436 /* Deprecated options */
438 Opt_inode_cache, Opt_noinode_cache,
440 /* Debugging options */
442 Opt_check_integrity_including_extent_data,
443 Opt_check_integrity_print_mask,
444 Opt_enospc_debug, Opt_noenospc_debug,
445 #ifdef CONFIG_BTRFS_DEBUG
446 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
448 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
454 static const match_table_t tokens = {
456 {Opt_noacl, "noacl"},
457 {Opt_clear_cache, "clear_cache"},
458 {Opt_commit_interval, "commit=%u"},
459 {Opt_compress, "compress"},
460 {Opt_compress_type, "compress=%s"},
461 {Opt_compress_force, "compress-force"},
462 {Opt_compress_force_type, "compress-force=%s"},
463 {Opt_degraded, "degraded"},
464 {Opt_device, "device=%s"},
465 {Opt_fatal_errors, "fatal_errors=%s"},
466 {Opt_flushoncommit, "flushoncommit"},
467 {Opt_noflushoncommit, "noflushoncommit"},
468 {Opt_inode_cache, "inode_cache"},
469 {Opt_noinode_cache, "noinode_cache"},
470 {Opt_max_inline, "max_inline=%s"},
471 {Opt_barrier, "barrier"},
472 {Opt_nobarrier, "nobarrier"},
473 {Opt_datacow, "datacow"},
474 {Opt_nodatacow, "nodatacow"},
475 {Opt_datasum, "datasum"},
476 {Opt_nodatasum, "nodatasum"},
477 {Opt_defrag, "autodefrag"},
478 {Opt_nodefrag, "noautodefrag"},
479 {Opt_discard, "discard"},
480 {Opt_discard_mode, "discard=%s"},
481 {Opt_nodiscard, "nodiscard"},
482 {Opt_norecovery, "norecovery"},
483 {Opt_ratio, "metadata_ratio=%u"},
484 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
485 {Opt_skip_balance, "skip_balance"},
486 {Opt_space_cache, "space_cache"},
487 {Opt_no_space_cache, "nospace_cache"},
488 {Opt_space_cache_version, "space_cache=%s"},
490 {Opt_nossd, "nossd"},
491 {Opt_ssd_spread, "ssd_spread"},
492 {Opt_nossd_spread, "nossd_spread"},
493 {Opt_subvol, "subvol=%s"},
494 {Opt_subvol_empty, "subvol="},
495 {Opt_subvolid, "subvolid=%s"},
496 {Opt_thread_pool, "thread_pool=%u"},
497 {Opt_treelog, "treelog"},
498 {Opt_notreelog, "notreelog"},
499 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
502 {Opt_rescue, "rescue=%s"},
503 /* Deprecated, with alias rescue=nologreplay */
504 {Opt_nologreplay, "nologreplay"},
505 /* Deprecated, with alias rescue=usebackuproot */
506 {Opt_usebackuproot, "usebackuproot"},
508 /* Deprecated options */
509 {Opt_recovery, "recovery"},
511 /* Debugging options */
512 {Opt_check_integrity, "check_int"},
513 {Opt_check_integrity_including_extent_data, "check_int_data"},
514 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
515 {Opt_enospc_debug, "enospc_debug"},
516 {Opt_noenospc_debug, "noenospc_debug"},
517 #ifdef CONFIG_BTRFS_DEBUG
518 {Opt_fragment_data, "fragment=data"},
519 {Opt_fragment_metadata, "fragment=metadata"},
520 {Opt_fragment_all, "fragment=all"},
522 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
523 {Opt_ref_verify, "ref_verify"},
528 static const match_table_t rescue_tokens = {
529 {Opt_usebackuproot, "usebackuproot"},
530 {Opt_nologreplay, "nologreplay"},
531 {Opt_ignorebadroots, "ignorebadroots"},
532 {Opt_ignorebadroots, "ibadroots"},
533 {Opt_ignoredatacsums, "ignoredatacsums"},
534 {Opt_ignoredatacsums, "idatacsums"},
535 {Opt_rescue_all, "all"},
539 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
540 const char *opt_name)
542 if (fs_info->mount_opt & opt) {
543 btrfs_err(fs_info, "%s must be used with ro mount option",
550 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
555 substring_t args[MAX_OPT_ARGS];
558 opts = kstrdup(options, GFP_KERNEL);
563 while ((p = strsep(&opts, ":")) != NULL) {
568 token = match_token(p, rescue_tokens, args);
570 case Opt_usebackuproot:
572 "trying to use backup root at mount time");
573 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
575 case Opt_nologreplay:
576 btrfs_set_and_info(info, NOLOGREPLAY,
577 "disabling log replay at mount time");
579 case Opt_ignorebadroots:
580 btrfs_set_and_info(info, IGNOREBADROOTS,
581 "ignoring bad roots");
583 case Opt_ignoredatacsums:
584 btrfs_set_and_info(info, IGNOREDATACSUMS,
585 "ignoring data csums");
588 btrfs_info(info, "enabling all of the rescue options");
589 btrfs_set_and_info(info, IGNOREDATACSUMS,
590 "ignoring data csums");
591 btrfs_set_and_info(info, IGNOREBADROOTS,
592 "ignoring bad roots");
593 btrfs_set_and_info(info, NOLOGREPLAY,
594 "disabling log replay at mount time");
597 btrfs_info(info, "unrecognized rescue option '%s'", p);
611 * Regular mount options parser. Everything that is needed only when
612 * reading in a new superblock is parsed here.
613 * XXX JDM: This needs to be cleaned up for remount.
615 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
616 unsigned long new_flags)
618 substring_t args[MAX_OPT_ARGS];
623 bool compress_force = false;
624 enum btrfs_compression_type saved_compress_type;
625 int saved_compress_level;
626 bool saved_compress_force;
629 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
630 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
631 else if (btrfs_free_space_cache_v1_active(info)) {
632 if (btrfs_is_zoned(info)) {
634 "zoned: clearing existing space cache");
635 btrfs_set_super_cache_generation(info->super_copy, 0);
637 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
642 * Even the options are empty, we still need to do extra check
648 while ((p = strsep(&options, ",")) != NULL) {
653 token = match_token(p, tokens, args);
656 btrfs_info(info, "allowing degraded mounts");
657 btrfs_set_opt(info->mount_opt, DEGRADED);
660 case Opt_subvol_empty:
664 * These are parsed by btrfs_parse_subvol_options or
665 * btrfs_parse_device_options and can be ignored here.
669 btrfs_set_and_info(info, NODATASUM,
670 "setting nodatasum");
673 if (btrfs_test_opt(info, NODATASUM)) {
674 if (btrfs_test_opt(info, NODATACOW))
676 "setting datasum, datacow enabled");
678 btrfs_info(info, "setting datasum");
680 btrfs_clear_opt(info->mount_opt, NODATACOW);
681 btrfs_clear_opt(info->mount_opt, NODATASUM);
684 if (!btrfs_test_opt(info, NODATACOW)) {
685 if (!btrfs_test_opt(info, COMPRESS) ||
686 !btrfs_test_opt(info, FORCE_COMPRESS)) {
688 "setting nodatacow, compression disabled");
690 btrfs_info(info, "setting nodatacow");
693 btrfs_clear_opt(info->mount_opt, COMPRESS);
694 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
695 btrfs_set_opt(info->mount_opt, NODATACOW);
696 btrfs_set_opt(info->mount_opt, NODATASUM);
699 btrfs_clear_and_info(info, NODATACOW,
702 case Opt_compress_force:
703 case Opt_compress_force_type:
704 compress_force = true;
707 case Opt_compress_type:
708 saved_compress_type = btrfs_test_opt(info,
710 info->compress_type : BTRFS_COMPRESS_NONE;
711 saved_compress_force =
712 btrfs_test_opt(info, FORCE_COMPRESS);
713 saved_compress_level = info->compress_level;
714 if (token == Opt_compress ||
715 token == Opt_compress_force ||
716 strncmp(args[0].from, "zlib", 4) == 0) {
717 compress_type = "zlib";
719 info->compress_type = BTRFS_COMPRESS_ZLIB;
720 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
722 * args[0] contains uninitialized data since
723 * for these tokens we don't expect any
726 if (token != Opt_compress &&
727 token != Opt_compress_force)
728 info->compress_level =
729 btrfs_compress_str2level(
732 btrfs_set_opt(info->mount_opt, COMPRESS);
733 btrfs_clear_opt(info->mount_opt, NODATACOW);
734 btrfs_clear_opt(info->mount_opt, NODATASUM);
736 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
737 compress_type = "lzo";
738 info->compress_type = BTRFS_COMPRESS_LZO;
739 info->compress_level = 0;
740 btrfs_set_opt(info->mount_opt, COMPRESS);
741 btrfs_clear_opt(info->mount_opt, NODATACOW);
742 btrfs_clear_opt(info->mount_opt, NODATASUM);
743 btrfs_set_fs_incompat(info, COMPRESS_LZO);
745 } else if (strncmp(args[0].from, "zstd", 4) == 0) {
746 compress_type = "zstd";
747 info->compress_type = BTRFS_COMPRESS_ZSTD;
748 info->compress_level =
749 btrfs_compress_str2level(
752 btrfs_set_opt(info->mount_opt, COMPRESS);
753 btrfs_clear_opt(info->mount_opt, NODATACOW);
754 btrfs_clear_opt(info->mount_opt, NODATASUM);
755 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
757 } else if (strncmp(args[0].from, "no", 2) == 0) {
758 compress_type = "no";
759 info->compress_level = 0;
760 info->compress_type = 0;
761 btrfs_clear_opt(info->mount_opt, COMPRESS);
762 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
763 compress_force = false;
770 if (compress_force) {
771 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
774 * If we remount from compress-force=xxx to
775 * compress=xxx, we need clear FORCE_COMPRESS
776 * flag, otherwise, there is no way for users
777 * to disable forcible compression separately.
779 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
781 if (no_compress == 1) {
782 btrfs_info(info, "use no compression");
783 } else if ((info->compress_type != saved_compress_type) ||
784 (compress_force != saved_compress_force) ||
785 (info->compress_level != saved_compress_level)) {
786 btrfs_info(info, "%s %s compression, level %d",
787 (compress_force) ? "force" : "use",
788 compress_type, info->compress_level);
790 compress_force = false;
793 btrfs_set_and_info(info, SSD,
794 "enabling ssd optimizations");
795 btrfs_clear_opt(info->mount_opt, NOSSD);
798 btrfs_set_and_info(info, SSD,
799 "enabling ssd optimizations");
800 btrfs_set_and_info(info, SSD_SPREAD,
801 "using spread ssd allocation scheme");
802 btrfs_clear_opt(info->mount_opt, NOSSD);
805 btrfs_set_opt(info->mount_opt, NOSSD);
806 btrfs_clear_and_info(info, SSD,
807 "not using ssd optimizations");
809 case Opt_nossd_spread:
810 btrfs_clear_and_info(info, SSD_SPREAD,
811 "not using spread ssd allocation scheme");
814 btrfs_clear_and_info(info, NOBARRIER,
815 "turning on barriers");
818 btrfs_set_and_info(info, NOBARRIER,
819 "turning off barriers");
821 case Opt_thread_pool:
822 ret = match_int(&args[0], &intarg);
825 } else if (intarg == 0) {
829 info->thread_pool_size = intarg;
832 num = match_strdup(&args[0]);
834 info->max_inline = memparse(num, NULL);
837 if (info->max_inline) {
838 info->max_inline = min_t(u64,
842 btrfs_info(info, "max_inline at %llu",
850 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
851 info->sb->s_flags |= SB_POSIXACL;
854 btrfs_err(info, "support for ACL not compiled in!");
859 info->sb->s_flags &= ~SB_POSIXACL;
862 btrfs_set_and_info(info, NOTREELOG,
863 "disabling tree log");
866 btrfs_clear_and_info(info, NOTREELOG,
867 "enabling tree log");
870 case Opt_nologreplay:
872 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
873 btrfs_set_and_info(info, NOLOGREPLAY,
874 "disabling log replay at mount time");
876 case Opt_flushoncommit:
877 btrfs_set_and_info(info, FLUSHONCOMMIT,
878 "turning on flush-on-commit");
880 case Opt_noflushoncommit:
881 btrfs_clear_and_info(info, FLUSHONCOMMIT,
882 "turning off flush-on-commit");
885 ret = match_int(&args[0], &intarg);
888 info->metadata_ratio = intarg;
889 btrfs_info(info, "metadata ratio %u",
890 info->metadata_ratio);
893 case Opt_discard_mode:
894 if (token == Opt_discard ||
895 strcmp(args[0].from, "sync") == 0) {
896 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
897 btrfs_set_and_info(info, DISCARD_SYNC,
898 "turning on sync discard");
899 } else if (strcmp(args[0].from, "async") == 0) {
900 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
901 btrfs_set_and_info(info, DISCARD_ASYNC,
902 "turning on async discard");
909 btrfs_clear_and_info(info, DISCARD_SYNC,
910 "turning off discard");
911 btrfs_clear_and_info(info, DISCARD_ASYNC,
912 "turning off async discard");
914 case Opt_space_cache:
915 case Opt_space_cache_version:
917 * We already set FREE_SPACE_TREE above because we have
918 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
919 * to allow v1 to be set for extent tree v2, simply
920 * ignore this setting if we're extent tree v2.
922 if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
924 if (token == Opt_space_cache ||
925 strcmp(args[0].from, "v1") == 0) {
926 btrfs_clear_opt(info->mount_opt,
928 btrfs_set_and_info(info, SPACE_CACHE,
929 "enabling disk space caching");
930 } else if (strcmp(args[0].from, "v2") == 0) {
931 btrfs_clear_opt(info->mount_opt,
933 btrfs_set_and_info(info, FREE_SPACE_TREE,
934 "enabling free space tree");
940 case Opt_rescan_uuid_tree:
941 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
943 case Opt_no_space_cache:
945 * We cannot operate without the free space tree with
946 * extent tree v2, ignore this option.
948 if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
950 if (btrfs_test_opt(info, SPACE_CACHE)) {
951 btrfs_clear_and_info(info, SPACE_CACHE,
952 "disabling disk space caching");
954 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
955 btrfs_clear_and_info(info, FREE_SPACE_TREE,
956 "disabling free space tree");
959 case Opt_inode_cache:
960 case Opt_noinode_cache:
962 "the 'inode_cache' option is deprecated and has no effect since 5.11");
964 case Opt_clear_cache:
966 * We cannot clear the free space tree with extent tree
967 * v2, ignore this option.
969 if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
971 btrfs_set_and_info(info, CLEAR_CACHE,
972 "force clearing of disk cache");
974 case Opt_user_subvol_rm_allowed:
975 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
977 case Opt_enospc_debug:
978 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
980 case Opt_noenospc_debug:
981 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
984 btrfs_set_and_info(info, AUTO_DEFRAG,
985 "enabling auto defrag");
988 btrfs_clear_and_info(info, AUTO_DEFRAG,
989 "disabling auto defrag");
992 case Opt_usebackuproot:
994 "'%s' is deprecated, use 'rescue=usebackuproot' instead",
995 token == Opt_recovery ? "recovery" :
998 "trying to use backup root at mount time");
999 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
1001 case Opt_skip_balance:
1002 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
1004 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1005 case Opt_check_integrity_including_extent_data:
1007 "enabling check integrity including extent data");
1008 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
1009 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
1011 case Opt_check_integrity:
1012 btrfs_info(info, "enabling check integrity");
1013 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
1015 case Opt_check_integrity_print_mask:
1016 ret = match_int(&args[0], &intarg);
1019 info->check_integrity_print_mask = intarg;
1020 btrfs_info(info, "check_integrity_print_mask 0x%x",
1021 info->check_integrity_print_mask);
1024 case Opt_check_integrity_including_extent_data:
1025 case Opt_check_integrity:
1026 case Opt_check_integrity_print_mask:
1028 "support for check_integrity* not compiled in!");
1032 case Opt_fatal_errors:
1033 if (strcmp(args[0].from, "panic") == 0)
1034 btrfs_set_opt(info->mount_opt,
1035 PANIC_ON_FATAL_ERROR);
1036 else if (strcmp(args[0].from, "bug") == 0)
1037 btrfs_clear_opt(info->mount_opt,
1038 PANIC_ON_FATAL_ERROR);
1044 case Opt_commit_interval:
1046 ret = match_int(&args[0], &intarg);
1051 "using default commit interval %us",
1052 BTRFS_DEFAULT_COMMIT_INTERVAL);
1053 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
1054 } else if (intarg > 300) {
1055 btrfs_warn(info, "excessive commit interval %d",
1058 info->commit_interval = intarg;
1061 ret = parse_rescue_options(info, args[0].from);
1065 #ifdef CONFIG_BTRFS_DEBUG
1066 case Opt_fragment_all:
1067 btrfs_info(info, "fragmenting all space");
1068 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1069 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
1071 case Opt_fragment_metadata:
1072 btrfs_info(info, "fragmenting metadata");
1073 btrfs_set_opt(info->mount_opt,
1076 case Opt_fragment_data:
1077 btrfs_info(info, "fragmenting data");
1078 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1081 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1082 case Opt_ref_verify:
1083 btrfs_info(info, "doing ref verification");
1084 btrfs_set_opt(info->mount_opt, REF_VERIFY);
1088 btrfs_err(info, "unrecognized mount option '%s'", p);
1096 /* We're read-only, don't have to check. */
1097 if (new_flags & SB_RDONLY)
1100 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1101 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1102 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1105 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1106 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1107 !btrfs_test_opt(info, CLEAR_CACHE)) {
1108 btrfs_err(info, "cannot disable free space tree");
1113 ret = btrfs_check_mountopts_zoned(info);
1114 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1115 btrfs_info(info, "disk space caching is enabled");
1116 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1117 btrfs_info(info, "using free space tree");
1122 * Parse mount options that are required early in the mount process.
1124 * All other options will be parsed on much later in the mount process and
1125 * only when we need to allocate a new super block.
1127 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1130 substring_t args[MAX_OPT_ARGS];
1131 char *device_name, *opts, *orig, *p;
1132 struct btrfs_device *device = NULL;
1135 lockdep_assert_held(&uuid_mutex);
1141 * strsep changes the string, duplicate it because btrfs_parse_options
1144 opts = kstrdup(options, GFP_KERNEL);
1149 while ((p = strsep(&opts, ",")) != NULL) {
1155 token = match_token(p, tokens, args);
1156 if (token == Opt_device) {
1157 device_name = match_strdup(&args[0]);
1162 device = btrfs_scan_one_device(device_name, flags,
1165 if (IS_ERR(device)) {
1166 error = PTR_ERR(device);
1178 * Parse mount options that are related to subvolume id
1180 * The value is later passed to mount_subvol()
1182 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1183 u64 *subvol_objectid)
1185 substring_t args[MAX_OPT_ARGS];
1186 char *opts, *orig, *p;
1194 * strsep changes the string, duplicate it because
1195 * btrfs_parse_device_options gets called later
1197 opts = kstrdup(options, GFP_KERNEL);
1202 while ((p = strsep(&opts, ",")) != NULL) {
1207 token = match_token(p, tokens, args);
1210 kfree(*subvol_name);
1211 *subvol_name = match_strdup(&args[0]);
1212 if (!*subvol_name) {
1218 error = match_u64(&args[0], &subvolid);
1222 /* we want the original fs_tree */
1224 subvolid = BTRFS_FS_TREE_OBJECTID;
1226 *subvol_objectid = subvolid;
1238 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1239 u64 subvol_objectid)
1241 struct btrfs_root *root = fs_info->tree_root;
1242 struct btrfs_root *fs_root = NULL;
1243 struct btrfs_root_ref *root_ref;
1244 struct btrfs_inode_ref *inode_ref;
1245 struct btrfs_key key;
1246 struct btrfs_path *path = NULL;
1247 char *name = NULL, *ptr;
1252 path = btrfs_alloc_path();
1258 name = kmalloc(PATH_MAX, GFP_KERNEL);
1263 ptr = name + PATH_MAX - 1;
1267 * Walk up the subvolume trees in the tree of tree roots by root
1268 * backrefs until we hit the top-level subvolume.
1270 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1271 key.objectid = subvol_objectid;
1272 key.type = BTRFS_ROOT_BACKREF_KEY;
1273 key.offset = (u64)-1;
1275 ret = btrfs_search_backwards(root, &key, path);
1278 } else if (ret > 0) {
1283 subvol_objectid = key.offset;
1285 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1286 struct btrfs_root_ref);
1287 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1290 ret = -ENAMETOOLONG;
1293 read_extent_buffer(path->nodes[0], ptr + 1,
1294 (unsigned long)(root_ref + 1), len);
1296 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1297 btrfs_release_path(path);
1299 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1300 if (IS_ERR(fs_root)) {
1301 ret = PTR_ERR(fs_root);
1307 * Walk up the filesystem tree by inode refs until we hit the
1310 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1311 key.objectid = dirid;
1312 key.type = BTRFS_INODE_REF_KEY;
1313 key.offset = (u64)-1;
1315 ret = btrfs_search_backwards(fs_root, &key, path);
1318 } else if (ret > 0) {
1325 inode_ref = btrfs_item_ptr(path->nodes[0],
1327 struct btrfs_inode_ref);
1328 len = btrfs_inode_ref_name_len(path->nodes[0],
1332 ret = -ENAMETOOLONG;
1335 read_extent_buffer(path->nodes[0], ptr + 1,
1336 (unsigned long)(inode_ref + 1), len);
1338 btrfs_release_path(path);
1340 btrfs_put_root(fs_root);
1344 btrfs_free_path(path);
1345 if (ptr == name + PATH_MAX - 1) {
1349 memmove(name, ptr, name + PATH_MAX - ptr);
1354 btrfs_put_root(fs_root);
1355 btrfs_free_path(path);
1357 return ERR_PTR(ret);
1360 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1362 struct btrfs_root *root = fs_info->tree_root;
1363 struct btrfs_dir_item *di;
1364 struct btrfs_path *path;
1365 struct btrfs_key location;
1368 path = btrfs_alloc_path();
1373 * Find the "default" dir item which points to the root item that we
1374 * will mount by default if we haven't been given a specific subvolume
1377 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1378 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1380 btrfs_free_path(path);
1385 * Ok the default dir item isn't there. This is weird since
1386 * it's always been there, but don't freak out, just try and
1387 * mount the top-level subvolume.
1389 btrfs_free_path(path);
1390 *objectid = BTRFS_FS_TREE_OBJECTID;
1394 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1395 btrfs_free_path(path);
1396 *objectid = location.objectid;
1400 static int btrfs_fill_super(struct super_block *sb,
1401 struct btrfs_fs_devices *fs_devices,
1404 struct inode *inode;
1405 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1408 sb->s_maxbytes = MAX_LFS_FILESIZE;
1409 sb->s_magic = BTRFS_SUPER_MAGIC;
1410 sb->s_op = &btrfs_super_ops;
1411 sb->s_d_op = &btrfs_dentry_operations;
1412 sb->s_export_op = &btrfs_export_ops;
1413 #ifdef CONFIG_FS_VERITY
1414 sb->s_vop = &btrfs_verityops;
1416 sb->s_xattr = btrfs_xattr_handlers;
1417 sb->s_time_gran = 1;
1418 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1419 sb->s_flags |= SB_POSIXACL;
1421 sb->s_flags |= SB_I_VERSION;
1422 sb->s_iflags |= SB_I_CGROUPWB;
1424 err = super_setup_bdi(sb);
1426 btrfs_err(fs_info, "super_setup_bdi failed");
1430 err = open_ctree(sb, fs_devices, (char *)data);
1432 btrfs_err(fs_info, "open_ctree failed");
1436 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1437 if (IS_ERR(inode)) {
1438 err = PTR_ERR(inode);
1442 sb->s_root = d_make_root(inode);
1448 sb->s_flags |= SB_ACTIVE;
1452 close_ctree(fs_info);
1456 int btrfs_sync_fs(struct super_block *sb, int wait)
1458 struct btrfs_trans_handle *trans;
1459 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1460 struct btrfs_root *root = fs_info->tree_root;
1462 trace_btrfs_sync_fs(fs_info, wait);
1465 filemap_flush(fs_info->btree_inode->i_mapping);
1469 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1471 trans = btrfs_attach_transaction_barrier(root);
1472 if (IS_ERR(trans)) {
1473 /* no transaction, don't bother */
1474 if (PTR_ERR(trans) == -ENOENT) {
1476 * Exit unless we have some pending changes
1477 * that need to go through commit
1479 if (fs_info->pending_changes == 0)
1482 * A non-blocking test if the fs is frozen. We must not
1483 * start a new transaction here otherwise a deadlock
1484 * happens. The pending operations are delayed to the
1485 * next commit after thawing.
1487 if (sb_start_write_trylock(sb))
1491 trans = btrfs_start_transaction(root, 0);
1494 return PTR_ERR(trans);
1496 return btrfs_commit_transaction(trans);
1499 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1501 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1505 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1507 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1508 const char *compress_type;
1509 const char *subvol_name;
1510 bool printed = false;
1512 if (btrfs_test_opt(info, DEGRADED))
1513 seq_puts(seq, ",degraded");
1514 if (btrfs_test_opt(info, NODATASUM))
1515 seq_puts(seq, ",nodatasum");
1516 if (btrfs_test_opt(info, NODATACOW))
1517 seq_puts(seq, ",nodatacow");
1518 if (btrfs_test_opt(info, NOBARRIER))
1519 seq_puts(seq, ",nobarrier");
1520 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1521 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1522 if (info->thread_pool_size != min_t(unsigned long,
1523 num_online_cpus() + 2, 8))
1524 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1525 if (btrfs_test_opt(info, COMPRESS)) {
1526 compress_type = btrfs_compress_type2str(info->compress_type);
1527 if (btrfs_test_opt(info, FORCE_COMPRESS))
1528 seq_printf(seq, ",compress-force=%s", compress_type);
1530 seq_printf(seq, ",compress=%s", compress_type);
1531 if (info->compress_level)
1532 seq_printf(seq, ":%d", info->compress_level);
1534 if (btrfs_test_opt(info, NOSSD))
1535 seq_puts(seq, ",nossd");
1536 if (btrfs_test_opt(info, SSD_SPREAD))
1537 seq_puts(seq, ",ssd_spread");
1538 else if (btrfs_test_opt(info, SSD))
1539 seq_puts(seq, ",ssd");
1540 if (btrfs_test_opt(info, NOTREELOG))
1541 seq_puts(seq, ",notreelog");
1542 if (btrfs_test_opt(info, NOLOGREPLAY))
1543 print_rescue_option(seq, "nologreplay", &printed);
1544 if (btrfs_test_opt(info, USEBACKUPROOT))
1545 print_rescue_option(seq, "usebackuproot", &printed);
1546 if (btrfs_test_opt(info, IGNOREBADROOTS))
1547 print_rescue_option(seq, "ignorebadroots", &printed);
1548 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1549 print_rescue_option(seq, "ignoredatacsums", &printed);
1550 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1551 seq_puts(seq, ",flushoncommit");
1552 if (btrfs_test_opt(info, DISCARD_SYNC))
1553 seq_puts(seq, ",discard");
1554 if (btrfs_test_opt(info, DISCARD_ASYNC))
1555 seq_puts(seq, ",discard=async");
1556 if (!(info->sb->s_flags & SB_POSIXACL))
1557 seq_puts(seq, ",noacl");
1558 if (btrfs_free_space_cache_v1_active(info))
1559 seq_puts(seq, ",space_cache");
1560 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1561 seq_puts(seq, ",space_cache=v2");
1563 seq_puts(seq, ",nospace_cache");
1564 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1565 seq_puts(seq, ",rescan_uuid_tree");
1566 if (btrfs_test_opt(info, CLEAR_CACHE))
1567 seq_puts(seq, ",clear_cache");
1568 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1569 seq_puts(seq, ",user_subvol_rm_allowed");
1570 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1571 seq_puts(seq, ",enospc_debug");
1572 if (btrfs_test_opt(info, AUTO_DEFRAG))
1573 seq_puts(seq, ",autodefrag");
1574 if (btrfs_test_opt(info, SKIP_BALANCE))
1575 seq_puts(seq, ",skip_balance");
1576 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1577 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1578 seq_puts(seq, ",check_int_data");
1579 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1580 seq_puts(seq, ",check_int");
1581 if (info->check_integrity_print_mask)
1582 seq_printf(seq, ",check_int_print_mask=%d",
1583 info->check_integrity_print_mask);
1585 if (info->metadata_ratio)
1586 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1587 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1588 seq_puts(seq, ",fatal_errors=panic");
1589 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1590 seq_printf(seq, ",commit=%u", info->commit_interval);
1591 #ifdef CONFIG_BTRFS_DEBUG
1592 if (btrfs_test_opt(info, FRAGMENT_DATA))
1593 seq_puts(seq, ",fragment=data");
1594 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1595 seq_puts(seq, ",fragment=metadata");
1597 if (btrfs_test_opt(info, REF_VERIFY))
1598 seq_puts(seq, ",ref_verify");
1599 seq_printf(seq, ",subvolid=%llu",
1600 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1601 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1602 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1603 if (!IS_ERR(subvol_name)) {
1604 seq_puts(seq, ",subvol=");
1605 seq_escape(seq, subvol_name, " \t\n\\");
1611 static int btrfs_test_super(struct super_block *s, void *data)
1613 struct btrfs_fs_info *p = data;
1614 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1616 return fs_info->fs_devices == p->fs_devices;
1619 static int btrfs_set_super(struct super_block *s, void *data)
1621 int err = set_anon_super(s, data);
1623 s->s_fs_info = data;
1628 * subvolumes are identified by ino 256
1630 static inline int is_subvolume_inode(struct inode *inode)
1632 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1637 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1638 struct vfsmount *mnt)
1640 struct dentry *root;
1644 if (!subvol_objectid) {
1645 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1648 root = ERR_PTR(ret);
1652 subvol_name = btrfs_get_subvol_name_from_objectid(
1653 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1654 if (IS_ERR(subvol_name)) {
1655 root = ERR_CAST(subvol_name);
1662 root = mount_subtree(mnt, subvol_name);
1663 /* mount_subtree() drops our reference on the vfsmount. */
1666 if (!IS_ERR(root)) {
1667 struct super_block *s = root->d_sb;
1668 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1669 struct inode *root_inode = d_inode(root);
1670 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1673 if (!is_subvolume_inode(root_inode)) {
1674 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1678 if (subvol_objectid && root_objectid != subvol_objectid) {
1680 * This will also catch a race condition where a
1681 * subvolume which was passed by ID is renamed and
1682 * another subvolume is renamed over the old location.
1685 "subvol '%s' does not match subvolid %llu",
1686 subvol_name, subvol_objectid);
1691 root = ERR_PTR(ret);
1692 deactivate_locked_super(s);
1703 * Find a superblock for the given device / mount point.
1705 * Note: This is based on mount_bdev from fs/super.c with a few additions
1706 * for multiple device setup. Make sure to keep it in sync.
1708 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1709 int flags, const char *device_name, void *data)
1711 struct block_device *bdev = NULL;
1712 struct super_block *s;
1713 struct btrfs_device *device = NULL;
1714 struct btrfs_fs_devices *fs_devices = NULL;
1715 struct btrfs_fs_info *fs_info = NULL;
1716 void *new_sec_opts = NULL;
1717 fmode_t mode = FMODE_READ;
1720 if (!(flags & SB_RDONLY))
1721 mode |= FMODE_WRITE;
1724 error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1726 return ERR_PTR(error);
1730 * Setup a dummy root and fs_info for test/set super. This is because
1731 * we don't actually fill this stuff out until open_ctree, but we need
1732 * then open_ctree will properly initialize the file system specific
1733 * settings later. btrfs_init_fs_info initializes the static elements
1734 * of the fs_info (locks and such) to make cleanup easier if we find a
1735 * superblock with our given fs_devices later on at sget() time.
1737 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1740 goto error_sec_opts;
1742 btrfs_init_fs_info(fs_info);
1744 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1745 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1746 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1751 mutex_lock(&uuid_mutex);
1752 error = btrfs_parse_device_options(data, mode, fs_type);
1754 mutex_unlock(&uuid_mutex);
1758 device = btrfs_scan_one_device(device_name, mode, fs_type);
1759 if (IS_ERR(device)) {
1760 mutex_unlock(&uuid_mutex);
1761 error = PTR_ERR(device);
1765 fs_devices = device->fs_devices;
1766 fs_info->fs_devices = fs_devices;
1768 error = btrfs_open_devices(fs_devices, mode, fs_type);
1769 mutex_unlock(&uuid_mutex);
1773 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1775 goto error_close_devices;
1778 bdev = fs_devices->latest_dev->bdev;
1779 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1783 goto error_close_devices;
1787 btrfs_close_devices(fs_devices);
1788 btrfs_free_fs_info(fs_info);
1789 if ((flags ^ s->s_flags) & SB_RDONLY)
1792 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1793 btrfs_sb(s)->bdev_holder = fs_type;
1794 if (!strstr(crc32c_impl(), "generic"))
1795 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1796 error = btrfs_fill_super(s, fs_devices, data);
1799 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1800 security_free_mnt_opts(&new_sec_opts);
1802 deactivate_locked_super(s);
1803 return ERR_PTR(error);
1806 return dget(s->s_root);
1808 error_close_devices:
1809 btrfs_close_devices(fs_devices);
1811 btrfs_free_fs_info(fs_info);
1813 security_free_mnt_opts(&new_sec_opts);
1814 return ERR_PTR(error);
1818 * Mount function which is called by VFS layer.
1820 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1821 * which needs vfsmount* of device's root (/). This means device's root has to
1822 * be mounted internally in any case.
1825 * 1. Parse subvol id related options for later use in mount_subvol().
1827 * 2. Mount device's root (/) by calling vfs_kern_mount().
1829 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1830 * first place. In order to avoid calling btrfs_mount() again, we use
1831 * different file_system_type which is not registered to VFS by
1832 * register_filesystem() (btrfs_root_fs_type). As a result,
1833 * btrfs_mount_root() is called. The return value will be used by
1834 * mount_subtree() in mount_subvol().
1836 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1837 * "btrfs subvolume set-default", mount_subvol() is called always.
1839 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1840 const char *device_name, void *data)
1842 struct vfsmount *mnt_root;
1843 struct dentry *root;
1844 char *subvol_name = NULL;
1845 u64 subvol_objectid = 0;
1848 error = btrfs_parse_subvol_options(data, &subvol_name,
1852 return ERR_PTR(error);
1855 /* mount device's root (/) */
1856 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1857 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1858 if (flags & SB_RDONLY) {
1859 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1860 flags & ~SB_RDONLY, device_name, data);
1862 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1863 flags | SB_RDONLY, device_name, data);
1864 if (IS_ERR(mnt_root)) {
1865 root = ERR_CAST(mnt_root);
1870 down_write(&mnt_root->mnt_sb->s_umount);
1871 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1872 up_write(&mnt_root->mnt_sb->s_umount);
1874 root = ERR_PTR(error);
1881 if (IS_ERR(mnt_root)) {
1882 root = ERR_CAST(mnt_root);
1887 /* mount_subvol() will free subvol_name and mnt_root */
1888 root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1894 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1895 u32 new_pool_size, u32 old_pool_size)
1897 if (new_pool_size == old_pool_size)
1900 fs_info->thread_pool_size = new_pool_size;
1902 btrfs_info(fs_info, "resize thread pool %d -> %d",
1903 old_pool_size, new_pool_size);
1905 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1906 btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1907 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1908 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1909 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1910 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1911 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1913 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1914 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1915 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1918 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1919 unsigned long old_opts, int flags)
1921 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1922 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1923 (flags & SB_RDONLY))) {
1924 /* wait for any defraggers to finish */
1925 wait_event(fs_info->transaction_wait,
1926 (atomic_read(&fs_info->defrag_running) == 0));
1927 if (flags & SB_RDONLY)
1928 sync_filesystem(fs_info->sb);
1932 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1933 unsigned long old_opts)
1935 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1938 * We need to cleanup all defragable inodes if the autodefragment is
1939 * close or the filesystem is read only.
1941 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1942 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1943 btrfs_cleanup_defrag_inodes(fs_info);
1946 /* If we toggled discard async */
1947 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1948 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1949 btrfs_discard_resume(fs_info);
1950 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1951 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1952 btrfs_discard_cleanup(fs_info);
1954 /* If we toggled space cache */
1955 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1956 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1959 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1961 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1962 unsigned old_flags = sb->s_flags;
1963 unsigned long old_opts = fs_info->mount_opt;
1964 unsigned long old_compress_type = fs_info->compress_type;
1965 u64 old_max_inline = fs_info->max_inline;
1966 u32 old_thread_pool_size = fs_info->thread_pool_size;
1967 u32 old_metadata_ratio = fs_info->metadata_ratio;
1970 sync_filesystem(sb);
1971 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1974 void *new_sec_opts = NULL;
1976 ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1978 ret = security_sb_remount(sb, new_sec_opts);
1979 security_free_mnt_opts(&new_sec_opts);
1984 ret = btrfs_parse_options(fs_info, data, *flags);
1988 btrfs_remount_begin(fs_info, old_opts, *flags);
1989 btrfs_resize_thread_pool(fs_info,
1990 fs_info->thread_pool_size, old_thread_pool_size);
1992 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1993 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1994 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1996 "remount supports changing free space tree only from ro to rw");
1997 /* Make sure free space cache options match the state on disk */
1998 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1999 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
2000 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
2002 if (btrfs_free_space_cache_v1_active(fs_info)) {
2003 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
2004 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
2008 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
2011 if (*flags & SB_RDONLY) {
2013 * this also happens on 'umount -rf' or on shutdown, when
2014 * the filesystem is busy.
2016 cancel_work_sync(&fs_info->async_reclaim_work);
2017 cancel_work_sync(&fs_info->async_data_reclaim_work);
2019 btrfs_discard_cleanup(fs_info);
2021 /* wait for the uuid_scan task to finish */
2022 down(&fs_info->uuid_tree_rescan_sem);
2023 /* avoid complains from lockdep et al. */
2024 up(&fs_info->uuid_tree_rescan_sem);
2026 btrfs_set_sb_rdonly(sb);
2029 * Setting SB_RDONLY will put the cleaner thread to
2030 * sleep at the next loop if it's already active.
2031 * If it's already asleep, we'll leave unused block
2032 * groups on disk until we're mounted read-write again
2033 * unless we clean them up here.
2035 btrfs_delete_unused_bgs(fs_info);
2038 * The cleaner task could be already running before we set the
2039 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
2040 * We must make sure that after we finish the remount, i.e. after
2041 * we call btrfs_commit_super(), the cleaner can no longer start
2042 * a transaction - either because it was dropping a dead root,
2043 * running delayed iputs or deleting an unused block group (the
2044 * cleaner picked a block group from the list of unused block
2045 * groups before we were able to in the previous call to
2046 * btrfs_delete_unused_bgs()).
2048 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
2049 TASK_UNINTERRUPTIBLE);
2052 * We've set the superblock to RO mode, so we might have made
2053 * the cleaner task sleep without running all pending delayed
2054 * iputs. Go through all the delayed iputs here, so that if an
2055 * unmount happens without remounting RW we don't end up at
2056 * finishing close_ctree() with a non-empty list of delayed
2059 btrfs_run_delayed_iputs(fs_info);
2061 btrfs_dev_replace_suspend_for_unmount(fs_info);
2062 btrfs_scrub_cancel(fs_info);
2063 btrfs_pause_balance(fs_info);
2066 * Pause the qgroup rescan worker if it is running. We don't want
2067 * it to be still running after we are in RO mode, as after that,
2068 * by the time we unmount, it might have left a transaction open,
2069 * so we would leak the transaction and/or crash.
2071 btrfs_qgroup_wait_for_completion(fs_info, false);
2073 ret = btrfs_commit_super(fs_info);
2077 if (BTRFS_FS_ERROR(fs_info)) {
2079 "Remounting read-write after error is not allowed");
2083 if (fs_info->fs_devices->rw_devices == 0) {
2088 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2090 "too many missing devices, writable remount is not allowed");
2095 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2097 "mount required to replay tree-log, cannot remount read-write");
2103 * NOTE: when remounting with a change that does writes, don't
2104 * put it anywhere above this point, as we are not sure to be
2105 * safe to write until we pass the above checks.
2107 ret = btrfs_start_pre_rw_mount(fs_info);
2111 btrfs_clear_sb_rdonly(sb);
2113 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2117 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2118 * since the absence of the flag means it can be toggled off by remount.
2120 *flags |= SB_I_VERSION;
2122 wake_up_process(fs_info->transaction_kthread);
2123 btrfs_remount_cleanup(fs_info, old_opts);
2124 btrfs_clear_oneshot_options(fs_info);
2125 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2130 /* We've hit an error - don't reset SB_RDONLY */
2132 old_flags |= SB_RDONLY;
2133 if (!(old_flags & SB_RDONLY))
2134 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2135 sb->s_flags = old_flags;
2136 fs_info->mount_opt = old_opts;
2137 fs_info->compress_type = old_compress_type;
2138 fs_info->max_inline = old_max_inline;
2139 btrfs_resize_thread_pool(fs_info,
2140 old_thread_pool_size, fs_info->thread_pool_size);
2141 fs_info->metadata_ratio = old_metadata_ratio;
2142 btrfs_remount_cleanup(fs_info, old_opts);
2143 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2148 /* Used to sort the devices by max_avail(descending sort) */
2149 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
2151 const struct btrfs_device_info *dev_info1 = a;
2152 const struct btrfs_device_info *dev_info2 = b;
2154 if (dev_info1->max_avail > dev_info2->max_avail)
2156 else if (dev_info1->max_avail < dev_info2->max_avail)
2162 * sort the devices by max_avail, in which max free extent size of each device
2163 * is stored.(Descending Sort)
2165 static inline void btrfs_descending_sort_devices(
2166 struct btrfs_device_info *devices,
2169 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2170 btrfs_cmp_device_free_bytes, NULL);
2174 * The helper to calc the free space on the devices that can be used to store
2177 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2180 struct btrfs_device_info *devices_info;
2181 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2182 struct btrfs_device *device;
2185 u64 min_stripe_size;
2186 int num_stripes = 1;
2187 int i = 0, nr_devices;
2188 const struct btrfs_raid_attr *rattr;
2191 * We aren't under the device list lock, so this is racy-ish, but good
2192 * enough for our purposes.
2194 nr_devices = fs_info->fs_devices->open_devices;
2197 nr_devices = fs_info->fs_devices->open_devices;
2205 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2210 /* calc min stripe number for data space allocation */
2211 type = btrfs_data_alloc_profile(fs_info);
2212 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2214 if (type & BTRFS_BLOCK_GROUP_RAID0)
2215 num_stripes = nr_devices;
2216 else if (type & BTRFS_BLOCK_GROUP_RAID1)
2218 else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2220 else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2222 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2225 /* Adjust for more than 1 stripe per device */
2226 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2229 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2230 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2231 &device->dev_state) ||
2233 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2236 if (i >= nr_devices)
2239 avail_space = device->total_bytes - device->bytes_used;
2241 /* align with stripe_len */
2242 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2245 * In order to avoid overwriting the superblock on the drive,
2246 * btrfs starts at an offset of at least 1MB when doing chunk
2249 * This ensures we have at least min_stripe_size free space
2250 * after excluding 1MB.
2252 if (avail_space <= SZ_1M + min_stripe_size)
2255 avail_space -= SZ_1M;
2257 devices_info[i].dev = device;
2258 devices_info[i].max_avail = avail_space;
2266 btrfs_descending_sort_devices(devices_info, nr_devices);
2270 while (nr_devices >= rattr->devs_min) {
2271 num_stripes = min(num_stripes, nr_devices);
2273 if (devices_info[i].max_avail >= min_stripe_size) {
2277 avail_space += devices_info[i].max_avail * num_stripes;
2278 alloc_size = devices_info[i].max_avail;
2279 for (j = i + 1 - num_stripes; j <= i; j++)
2280 devices_info[j].max_avail -= alloc_size;
2286 kfree(devices_info);
2287 *free_bytes = avail_space;
2292 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2294 * If there's a redundant raid level at DATA block groups, use the respective
2295 * multiplier to scale the sizes.
2297 * Unused device space usage is based on simulating the chunk allocator
2298 * algorithm that respects the device sizes and order of allocations. This is
2299 * a close approximation of the actual use but there are other factors that may
2300 * change the result (like a new metadata chunk).
2302 * If metadata is exhausted, f_bavail will be 0.
2304 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2306 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2307 struct btrfs_super_block *disk_super = fs_info->super_copy;
2308 struct btrfs_space_info *found;
2310 u64 total_free_data = 0;
2311 u64 total_free_meta = 0;
2312 u32 bits = fs_info->sectorsize_bits;
2313 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2314 unsigned factor = 1;
2315 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2320 list_for_each_entry(found, &fs_info->space_info, list) {
2321 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2324 total_free_data += found->disk_total - found->disk_used;
2326 btrfs_account_ro_block_groups_free_space(found);
2328 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2329 if (!list_empty(&found->block_groups[i]))
2330 factor = btrfs_bg_type_to_factor(
2331 btrfs_raid_array[i].bg_flag);
2336 * Metadata in mixed block goup profiles are accounted in data
2338 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2339 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2342 total_free_meta += found->disk_total -
2346 total_used += found->disk_used;
2349 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2350 buf->f_blocks >>= bits;
2351 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2353 /* Account global block reserve as used, it's in logical size already */
2354 spin_lock(&block_rsv->lock);
2355 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2356 if (buf->f_bfree >= block_rsv->size >> bits)
2357 buf->f_bfree -= block_rsv->size >> bits;
2360 spin_unlock(&block_rsv->lock);
2362 buf->f_bavail = div_u64(total_free_data, factor);
2363 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2366 buf->f_bavail += div_u64(total_free_data, factor);
2367 buf->f_bavail = buf->f_bavail >> bits;
2370 * We calculate the remaining metadata space minus global reserve. If
2371 * this is (supposedly) smaller than zero, there's no space. But this
2372 * does not hold in practice, the exhausted state happens where's still
2373 * some positive delta. So we apply some guesswork and compare the
2374 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2376 * We probably cannot calculate the exact threshold value because this
2377 * depends on the internal reservations requested by various
2378 * operations, so some operations that consume a few metadata will
2379 * succeed even if the Avail is zero. But this is better than the other
2385 * We only want to claim there's no available space if we can no longer
2386 * allocate chunks for our metadata profile and our global reserve will
2387 * not fit in the free metadata space. If we aren't ->full then we
2388 * still can allocate chunks and thus are fine using the currently
2389 * calculated f_bavail.
2391 if (!mixed && block_rsv->space_info->full &&
2392 total_free_meta - thresh < block_rsv->size)
2395 buf->f_type = BTRFS_SUPER_MAGIC;
2396 buf->f_bsize = dentry->d_sb->s_blocksize;
2397 buf->f_namelen = BTRFS_NAME_LEN;
2399 /* We treat it as constant endianness (it doesn't matter _which_)
2400 because we want the fsid to come out the same whether mounted
2401 on a big-endian or little-endian host */
2402 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2403 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2404 /* Mask in the root object ID too, to disambiguate subvols */
2405 buf->f_fsid.val[0] ^=
2406 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2407 buf->f_fsid.val[1] ^=
2408 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2413 static void btrfs_kill_super(struct super_block *sb)
2415 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2416 kill_anon_super(sb);
2417 btrfs_free_fs_info(fs_info);
2420 static struct file_system_type btrfs_fs_type = {
2421 .owner = THIS_MODULE,
2423 .mount = btrfs_mount,
2424 .kill_sb = btrfs_kill_super,
2425 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2428 static struct file_system_type btrfs_root_fs_type = {
2429 .owner = THIS_MODULE,
2431 .mount = btrfs_mount_root,
2432 .kill_sb = btrfs_kill_super,
2433 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2436 MODULE_ALIAS_FS("btrfs");
2438 static int btrfs_control_open(struct inode *inode, struct file *file)
2441 * The control file's private_data is used to hold the
2442 * transaction when it is started and is used to keep
2443 * track of whether a transaction is already in progress.
2445 file->private_data = NULL;
2450 * Used by /dev/btrfs-control for devices ioctls.
2452 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2455 struct btrfs_ioctl_vol_args *vol;
2456 struct btrfs_device *device = NULL;
2460 if (!capable(CAP_SYS_ADMIN))
2463 vol = memdup_user((void __user *)arg, sizeof(*vol));
2465 return PTR_ERR(vol);
2466 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2469 case BTRFS_IOC_SCAN_DEV:
2470 mutex_lock(&uuid_mutex);
2471 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2472 &btrfs_root_fs_type);
2473 ret = PTR_ERR_OR_ZERO(device);
2474 mutex_unlock(&uuid_mutex);
2476 case BTRFS_IOC_FORGET_DEV:
2477 if (vol->name[0] != 0) {
2478 ret = lookup_bdev(vol->name, &devt);
2482 ret = btrfs_forget_devices(devt);
2484 case BTRFS_IOC_DEVICES_READY:
2485 mutex_lock(&uuid_mutex);
2486 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2487 &btrfs_root_fs_type);
2488 if (IS_ERR(device)) {
2489 mutex_unlock(&uuid_mutex);
2490 ret = PTR_ERR(device);
2493 ret = !(device->fs_devices->num_devices ==
2494 device->fs_devices->total_devices);
2495 mutex_unlock(&uuid_mutex);
2497 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2498 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2506 static int btrfs_freeze(struct super_block *sb)
2508 struct btrfs_trans_handle *trans;
2509 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2510 struct btrfs_root *root = fs_info->tree_root;
2512 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2514 * We don't need a barrier here, we'll wait for any transaction that
2515 * could be in progress on other threads (and do delayed iputs that
2516 * we want to avoid on a frozen filesystem), or do the commit
2519 trans = btrfs_attach_transaction_barrier(root);
2520 if (IS_ERR(trans)) {
2521 /* no transaction, don't bother */
2522 if (PTR_ERR(trans) == -ENOENT)
2524 return PTR_ERR(trans);
2526 return btrfs_commit_transaction(trans);
2529 static int btrfs_unfreeze(struct super_block *sb)
2531 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2533 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2537 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2539 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2542 * There should be always a valid pointer in latest_dev, it may be stale
2543 * for a short moment in case it's being deleted but still valid until
2544 * the end of RCU grace period.
2547 seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2553 static const struct super_operations btrfs_super_ops = {
2554 .drop_inode = btrfs_drop_inode,
2555 .evict_inode = btrfs_evict_inode,
2556 .put_super = btrfs_put_super,
2557 .sync_fs = btrfs_sync_fs,
2558 .show_options = btrfs_show_options,
2559 .show_devname = btrfs_show_devname,
2560 .alloc_inode = btrfs_alloc_inode,
2561 .destroy_inode = btrfs_destroy_inode,
2562 .free_inode = btrfs_free_inode,
2563 .statfs = btrfs_statfs,
2564 .remount_fs = btrfs_remount,
2565 .freeze_fs = btrfs_freeze,
2566 .unfreeze_fs = btrfs_unfreeze,
2569 static const struct file_operations btrfs_ctl_fops = {
2570 .open = btrfs_control_open,
2571 .unlocked_ioctl = btrfs_control_ioctl,
2572 .compat_ioctl = compat_ptr_ioctl,
2573 .owner = THIS_MODULE,
2574 .llseek = noop_llseek,
2577 static struct miscdevice btrfs_misc = {
2578 .minor = BTRFS_MINOR,
2579 .name = "btrfs-control",
2580 .fops = &btrfs_ctl_fops
2583 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2584 MODULE_ALIAS("devname:btrfs-control");
2586 static int __init btrfs_interface_init(void)
2588 return misc_register(&btrfs_misc);
2591 static __cold void btrfs_interface_exit(void)
2593 misc_deregister(&btrfs_misc);
2596 static void __init btrfs_print_mod_info(void)
2598 static const char options[] = ""
2599 #ifdef CONFIG_BTRFS_DEBUG
2602 #ifdef CONFIG_BTRFS_ASSERT
2605 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2606 ", integrity-checker=on"
2608 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2611 #ifdef CONFIG_BLK_DEV_ZONED
2616 #ifdef CONFIG_FS_VERITY
2622 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2625 static int __init init_btrfs_fs(void)
2631 err = btrfs_init_sysfs();
2635 btrfs_init_compress();
2637 err = btrfs_init_cachep();
2641 err = extent_io_init();
2645 err = extent_state_cache_init();
2647 goto free_extent_io;
2649 err = extent_map_init();
2651 goto free_extent_state_cache;
2653 err = ordered_data_init();
2655 goto free_extent_map;
2657 err = btrfs_delayed_inode_init();
2659 goto free_ordered_data;
2661 err = btrfs_auto_defrag_init();
2663 goto free_delayed_inode;
2665 err = btrfs_delayed_ref_init();
2667 goto free_auto_defrag;
2669 err = btrfs_prelim_ref_init();
2671 goto free_delayed_ref;
2673 err = btrfs_end_io_wq_init();
2675 goto free_prelim_ref;
2677 err = btrfs_interface_init();
2679 goto free_end_io_wq;
2681 btrfs_print_mod_info();
2683 err = btrfs_run_sanity_tests();
2685 goto unregister_ioctl;
2687 err = register_filesystem(&btrfs_fs_type);
2689 goto unregister_ioctl;
2694 btrfs_interface_exit();
2696 btrfs_end_io_wq_exit();
2698 btrfs_prelim_ref_exit();
2700 btrfs_delayed_ref_exit();
2702 btrfs_auto_defrag_exit();
2704 btrfs_delayed_inode_exit();
2706 ordered_data_exit();
2709 free_extent_state_cache:
2710 extent_state_cache_exit();
2714 btrfs_destroy_cachep();
2716 btrfs_exit_compress();
2722 static void __exit exit_btrfs_fs(void)
2724 btrfs_destroy_cachep();
2725 btrfs_delayed_ref_exit();
2726 btrfs_auto_defrag_exit();
2727 btrfs_delayed_inode_exit();
2728 btrfs_prelim_ref_exit();
2729 ordered_data_exit();
2731 extent_state_cache_exit();
2733 btrfs_interface_exit();
2734 btrfs_end_io_wq_exit();
2735 unregister_filesystem(&btrfs_fs_type);
2737 btrfs_cleanup_fs_uuids();
2738 btrfs_exit_compress();
2741 late_initcall(init_btrfs_fs);
2742 module_exit(exit_btrfs_fs)
2744 MODULE_LICENSE("GPL");
2745 MODULE_SOFTDEP("pre: crc32c");
2746 MODULE_SOFTDEP("pre: xxhash64");
2747 MODULE_SOFTDEP("pre: sha256");
2748 MODULE_SOFTDEP("pre: blake2b-256");