]> Git Repo - linux.git/blob - security/selinux/hooks.c
Merge branch 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <[email protected]>
7  *            Chris Vance, <[email protected]>
8  *            Wayne Salamon, <[email protected]>
9  *            James Morris <[email protected]>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <[email protected]>
13  *                                         Eric Paris <[email protected]>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <[email protected]>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <[email protected]>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <[email protected]>
20  *  Copyright (C) 2016 Mellanox Technologies
21  *
22  *      This program is free software; you can redistribute it and/or modify
23  *      it under the terms of the GNU General Public License version 2,
24  *      as published by the Free Software Foundation.
25  */
26
27 #include <linux/init.h>
28 #include <linux/kd.h>
29 #include <linux/kernel.h>
30 #include <linux/tracehook.h>
31 #include <linux/errno.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/task.h>
34 #include <linux/lsm_hooks.h>
35 #include <linux/xattr.h>
36 #include <linux/capability.h>
37 #include <linux/unistd.h>
38 #include <linux/mm.h>
39 #include <linux/mman.h>
40 #include <linux/slab.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/swap.h>
44 #include <linux/spinlock.h>
45 #include <linux/syscalls.h>
46 #include <linux/dcache.h>
47 #include <linux/file.h>
48 #include <linux/fdtable.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>             /* for local_port_range[] */
56 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>    /* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/sctp.h>
71 #include <net/sctp/structs.h>
72 #include <linux/quota.h>
73 #include <linux/un.h>           /* for Unix socket types */
74 #include <net/af_unix.h>        /* for Unix socket types */
75 #include <linux/parser.h>
76 #include <linux/nfs_mount.h>
77 #include <net/ipv6.h>
78 #include <linux/hugetlb.h>
79 #include <linux/personality.h>
80 #include <linux/audit.h>
81 #include <linux/string.h>
82 #include <linux/selinux.h>
83 #include <linux/mutex.h>
84 #include <linux/posix-timers.h>
85 #include <linux/syslog.h>
86 #include <linux/user_namespace.h>
87 #include <linux/export.h>
88 #include <linux/msg.h>
89 #include <linux/shm.h>
90 #include <linux/bpf.h>
91
92 #include "avc.h"
93 #include "objsec.h"
94 #include "netif.h"
95 #include "netnode.h"
96 #include "netport.h"
97 #include "ibpkey.h"
98 #include "xfrm.h"
99 #include "netlabel.h"
100 #include "audit.h"
101 #include "avc_ss.h"
102
103 struct selinux_state selinux_state;
104
105 /* SECMARK reference count */
106 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107
108 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109 static int selinux_enforcing_boot;
110
111 static int __init enforcing_setup(char *str)
112 {
113         unsigned long enforcing;
114         if (!kstrtoul(str, 0, &enforcing))
115                 selinux_enforcing_boot = enforcing ? 1 : 0;
116         return 1;
117 }
118 __setup("enforcing=", enforcing_setup);
119 #else
120 #define selinux_enforcing_boot 1
121 #endif
122
123 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125
126 static int __init selinux_enabled_setup(char *str)
127 {
128         unsigned long enabled;
129         if (!kstrtoul(str, 0, &enabled))
130                 selinux_enabled = enabled ? 1 : 0;
131         return 1;
132 }
133 __setup("selinux=", selinux_enabled_setup);
134 #else
135 int selinux_enabled = 1;
136 #endif
137
138 static unsigned int selinux_checkreqprot_boot =
139         CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141 static int __init checkreqprot_setup(char *str)
142 {
143         unsigned long checkreqprot;
144
145         if (!kstrtoul(str, 0, &checkreqprot))
146                 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147         return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150
151 static struct kmem_cache *sel_inode_cache;
152 static struct kmem_cache *file_security_cache;
153
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167         return (selinux_policycap_alwaysnetwork() ||
168                 atomic_read(&selinux_secmark_refcount));
169 }
170
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183         return (selinux_policycap_alwaysnetwork() ||
184                 netlbl_enabled() || selinux_xfrm_enabled());
185 }
186
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189         if (event == AVC_CALLBACK_RESET) {
190                 sel_netif_flush();
191                 sel_netnode_flush();
192                 sel_netport_flush();
193                 synchronize_net();
194         }
195         return 0;
196 }
197
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200         if (event == AVC_CALLBACK_RESET) {
201                 sel_ib_pkey_flush();
202                 call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203         }
204
205         return 0;
206 }
207
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213         struct cred *cred = (struct cred *) current->real_cred;
214         struct task_security_struct *tsec;
215
216         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217         if (!tsec)
218                 panic("SELinux:  Failed to initialize initial task.\n");
219
220         tsec->osid = tsec->sid = SECINITSID_KERNEL;
221         cred->security = tsec;
222 }
223
224 /*
225  * get the security ID of a set of credentials
226  */
227 static inline u32 cred_sid(const struct cred *cred)
228 {
229         const struct task_security_struct *tsec;
230
231         tsec = cred->security;
232         return tsec->sid;
233 }
234
235 /*
236  * get the objective security ID of a task
237  */
238 static inline u32 task_sid(const struct task_struct *task)
239 {
240         u32 sid;
241
242         rcu_read_lock();
243         sid = cred_sid(__task_cred(task));
244         rcu_read_unlock();
245         return sid;
246 }
247
248 /* Allocate and free functions for each kind of security blob. */
249
250 static int inode_alloc_security(struct inode *inode)
251 {
252         struct inode_security_struct *isec;
253         u32 sid = current_sid();
254
255         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256         if (!isec)
257                 return -ENOMEM;
258
259         spin_lock_init(&isec->lock);
260         INIT_LIST_HEAD(&isec->list);
261         isec->inode = inode;
262         isec->sid = SECINITSID_UNLABELED;
263         isec->sclass = SECCLASS_FILE;
264         isec->task_sid = sid;
265         isec->initialized = LABEL_INVALID;
266         inode->i_security = isec;
267
268         return 0;
269 }
270
271 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272
273 /*
274  * Try reloading inode security labels that have been marked as invalid.  The
275  * @may_sleep parameter indicates when sleeping and thus reloading labels is
276  * allowed; when set to false, returns -ECHILD when the label is
277  * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
278  * when no dentry is available, set it to NULL instead.
279  */
280 static int __inode_security_revalidate(struct inode *inode,
281                                        struct dentry *opt_dentry,
282                                        bool may_sleep)
283 {
284         struct inode_security_struct *isec = inode->i_security;
285
286         might_sleep_if(may_sleep);
287
288         if (selinux_state.initialized &&
289             isec->initialized != LABEL_INITIALIZED) {
290                 if (!may_sleep)
291                         return -ECHILD;
292
293                 /*
294                  * Try reloading the inode security label.  This will fail if
295                  * @opt_dentry is NULL and no dentry for this inode can be
296                  * found; in that case, continue using the old label.
297                  */
298                 inode_doinit_with_dentry(inode, opt_dentry);
299         }
300         return 0;
301 }
302
303 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304 {
305         return inode->i_security;
306 }
307
308 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309 {
310         int error;
311
312         error = __inode_security_revalidate(inode, NULL, !rcu);
313         if (error)
314                 return ERR_PTR(error);
315         return inode->i_security;
316 }
317
318 /*
319  * Get the security label of an inode.
320  */
321 static struct inode_security_struct *inode_security(struct inode *inode)
322 {
323         __inode_security_revalidate(inode, NULL, true);
324         return inode->i_security;
325 }
326
327 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328 {
329         struct inode *inode = d_backing_inode(dentry);
330
331         return inode->i_security;
332 }
333
334 /*
335  * Get the security label of a dentry's backing inode.
336  */
337 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338 {
339         struct inode *inode = d_backing_inode(dentry);
340
341         __inode_security_revalidate(inode, dentry, true);
342         return inode->i_security;
343 }
344
345 static void inode_free_rcu(struct rcu_head *head)
346 {
347         struct inode_security_struct *isec;
348
349         isec = container_of(head, struct inode_security_struct, rcu);
350         kmem_cache_free(sel_inode_cache, isec);
351 }
352
353 static void inode_free_security(struct inode *inode)
354 {
355         struct inode_security_struct *isec = inode->i_security;
356         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357
358         /*
359          * As not all inode security structures are in a list, we check for
360          * empty list outside of the lock to make sure that we won't waste
361          * time taking a lock doing nothing.
362          *
363          * The list_del_init() function can be safely called more than once.
364          * It should not be possible for this function to be called with
365          * concurrent list_add(), but for better safety against future changes
366          * in the code, we use list_empty_careful() here.
367          */
368         if (!list_empty_careful(&isec->list)) {
369                 spin_lock(&sbsec->isec_lock);
370                 list_del_init(&isec->list);
371                 spin_unlock(&sbsec->isec_lock);
372         }
373
374         /*
375          * The inode may still be referenced in a path walk and
376          * a call to selinux_inode_permission() can be made
377          * after inode_free_security() is called. Ideally, the VFS
378          * wouldn't do this, but fixing that is a much harder
379          * job. For now, simply free the i_security via RCU, and
380          * leave the current inode->i_security pointer intact.
381          * The inode will be freed after the RCU grace period too.
382          */
383         call_rcu(&isec->rcu, inode_free_rcu);
384 }
385
386 static int file_alloc_security(struct file *file)
387 {
388         struct file_security_struct *fsec;
389         u32 sid = current_sid();
390
391         fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392         if (!fsec)
393                 return -ENOMEM;
394
395         fsec->sid = sid;
396         fsec->fown_sid = sid;
397         file->f_security = fsec;
398
399         return 0;
400 }
401
402 static void file_free_security(struct file *file)
403 {
404         struct file_security_struct *fsec = file->f_security;
405         file->f_security = NULL;
406         kmem_cache_free(file_security_cache, fsec);
407 }
408
409 static int superblock_alloc_security(struct super_block *sb)
410 {
411         struct superblock_security_struct *sbsec;
412
413         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414         if (!sbsec)
415                 return -ENOMEM;
416
417         mutex_init(&sbsec->lock);
418         INIT_LIST_HEAD(&sbsec->isec_head);
419         spin_lock_init(&sbsec->isec_lock);
420         sbsec->sb = sb;
421         sbsec->sid = SECINITSID_UNLABELED;
422         sbsec->def_sid = SECINITSID_FILE;
423         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424         sb->s_security = sbsec;
425
426         return 0;
427 }
428
429 static void superblock_free_security(struct super_block *sb)
430 {
431         struct superblock_security_struct *sbsec = sb->s_security;
432         sb->s_security = NULL;
433         kfree(sbsec);
434 }
435
436 static inline int inode_doinit(struct inode *inode)
437 {
438         return inode_doinit_with_dentry(inode, NULL);
439 }
440
441 enum {
442         Opt_error = -1,
443         Opt_context = 1,
444         Opt_fscontext = 2,
445         Opt_defcontext = 3,
446         Opt_rootcontext = 4,
447         Opt_labelsupport = 5,
448         Opt_nextmntopt = 6,
449 };
450
451 #define NUM_SEL_MNT_OPTS        (Opt_nextmntopt - 1)
452
453 static const match_table_t tokens = {
454         {Opt_context, CONTEXT_STR "%s"},
455         {Opt_fscontext, FSCONTEXT_STR "%s"},
456         {Opt_defcontext, DEFCONTEXT_STR "%s"},
457         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458         {Opt_labelsupport, LABELSUPP_STR},
459         {Opt_error, NULL},
460 };
461
462 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
463
464 static int may_context_mount_sb_relabel(u32 sid,
465                         struct superblock_security_struct *sbsec,
466                         const struct cred *cred)
467 {
468         const struct task_security_struct *tsec = cred->security;
469         int rc;
470
471         rc = avc_has_perm(&selinux_state,
472                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473                           FILESYSTEM__RELABELFROM, NULL);
474         if (rc)
475                 return rc;
476
477         rc = avc_has_perm(&selinux_state,
478                           tsec->sid, sid, SECCLASS_FILESYSTEM,
479                           FILESYSTEM__RELABELTO, NULL);
480         return rc;
481 }
482
483 static int may_context_mount_inode_relabel(u32 sid,
484                         struct superblock_security_struct *sbsec,
485                         const struct cred *cred)
486 {
487         const struct task_security_struct *tsec = cred->security;
488         int rc;
489         rc = avc_has_perm(&selinux_state,
490                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491                           FILESYSTEM__RELABELFROM, NULL);
492         if (rc)
493                 return rc;
494
495         rc = avc_has_perm(&selinux_state,
496                           sid, sbsec->sid, SECCLASS_FILESYSTEM,
497                           FILESYSTEM__ASSOCIATE, NULL);
498         return rc;
499 }
500
501 static int selinux_is_sblabel_mnt(struct super_block *sb)
502 {
503         struct superblock_security_struct *sbsec = sb->s_security;
504
505         return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506                 sbsec->behavior == SECURITY_FS_USE_TRANS ||
507                 sbsec->behavior == SECURITY_FS_USE_TASK ||
508                 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509                 /* Special handling. Genfs but also in-core setxattr handler */
510                 !strcmp(sb->s_type->name, "sysfs") ||
511                 !strcmp(sb->s_type->name, "pstore") ||
512                 !strcmp(sb->s_type->name, "debugfs") ||
513                 !strcmp(sb->s_type->name, "tracefs") ||
514                 !strcmp(sb->s_type->name, "rootfs") ||
515                 (selinux_policycap_cgroupseclabel() &&
516                  (!strcmp(sb->s_type->name, "cgroup") ||
517                   !strcmp(sb->s_type->name, "cgroup2")));
518 }
519
520 static int sb_finish_set_opts(struct super_block *sb)
521 {
522         struct superblock_security_struct *sbsec = sb->s_security;
523         struct dentry *root = sb->s_root;
524         struct inode *root_inode = d_backing_inode(root);
525         int rc = 0;
526
527         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528                 /* Make sure that the xattr handler exists and that no
529                    error other than -ENODATA is returned by getxattr on
530                    the root directory.  -ENODATA is ok, as this may be
531                    the first boot of the SELinux kernel before we have
532                    assigned xattr values to the filesystem. */
533                 if (!(root_inode->i_opflags & IOP_XATTR)) {
534                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535                                "xattr support\n", sb->s_id, sb->s_type->name);
536                         rc = -EOPNOTSUPP;
537                         goto out;
538                 }
539
540                 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541                 if (rc < 0 && rc != -ENODATA) {
542                         if (rc == -EOPNOTSUPP)
543                                 printk(KERN_WARNING "SELinux: (dev %s, type "
544                                        "%s) has no security xattr handler\n",
545                                        sb->s_id, sb->s_type->name);
546                         else
547                                 printk(KERN_WARNING "SELinux: (dev %s, type "
548                                        "%s) getxattr errno %d\n", sb->s_id,
549                                        sb->s_type->name, -rc);
550                         goto out;
551                 }
552         }
553
554         sbsec->flags |= SE_SBINITIALIZED;
555
556         /*
557          * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
558          * leave the flag untouched because sb_clone_mnt_opts might be handing
559          * us a superblock that needs the flag to be cleared.
560          */
561         if (selinux_is_sblabel_mnt(sb))
562                 sbsec->flags |= SBLABEL_MNT;
563         else
564                 sbsec->flags &= ~SBLABEL_MNT;
565
566         /* Initialize the root inode. */
567         rc = inode_doinit_with_dentry(root_inode, root);
568
569         /* Initialize any other inodes associated with the superblock, e.g.
570            inodes created prior to initial policy load or inodes created
571            during get_sb by a pseudo filesystem that directly
572            populates itself. */
573         spin_lock(&sbsec->isec_lock);
574 next_inode:
575         if (!list_empty(&sbsec->isec_head)) {
576                 struct inode_security_struct *isec =
577                                 list_entry(sbsec->isec_head.next,
578                                            struct inode_security_struct, list);
579                 struct inode *inode = isec->inode;
580                 list_del_init(&isec->list);
581                 spin_unlock(&sbsec->isec_lock);
582                 inode = igrab(inode);
583                 if (inode) {
584                         if (!IS_PRIVATE(inode))
585                                 inode_doinit(inode);
586                         iput(inode);
587                 }
588                 spin_lock(&sbsec->isec_lock);
589                 goto next_inode;
590         }
591         spin_unlock(&sbsec->isec_lock);
592 out:
593         return rc;
594 }
595
596 /*
597  * This function should allow an FS to ask what it's mount security
598  * options were so it can use those later for submounts, displaying
599  * mount options, or whatever.
600  */
601 static int selinux_get_mnt_opts(const struct super_block *sb,
602                                 struct security_mnt_opts *opts)
603 {
604         int rc = 0, i;
605         struct superblock_security_struct *sbsec = sb->s_security;
606         char *context = NULL;
607         u32 len;
608         char tmp;
609
610         security_init_mnt_opts(opts);
611
612         if (!(sbsec->flags & SE_SBINITIALIZED))
613                 return -EINVAL;
614
615         if (!selinux_state.initialized)
616                 return -EINVAL;
617
618         /* make sure we always check enough bits to cover the mask */
619         BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620
621         tmp = sbsec->flags & SE_MNTMASK;
622         /* count the number of mount options for this sb */
623         for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624                 if (tmp & 0x01)
625                         opts->num_mnt_opts++;
626                 tmp >>= 1;
627         }
628         /* Check if the Label support flag is set */
629         if (sbsec->flags & SBLABEL_MNT)
630                 opts->num_mnt_opts++;
631
632         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633         if (!opts->mnt_opts) {
634                 rc = -ENOMEM;
635                 goto out_free;
636         }
637
638         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639         if (!opts->mnt_opts_flags) {
640                 rc = -ENOMEM;
641                 goto out_free;
642         }
643
644         i = 0;
645         if (sbsec->flags & FSCONTEXT_MNT) {
646                 rc = security_sid_to_context(&selinux_state, sbsec->sid,
647                                              &context, &len);
648                 if (rc)
649                         goto out_free;
650                 opts->mnt_opts[i] = context;
651                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652         }
653         if (sbsec->flags & CONTEXT_MNT) {
654                 rc = security_sid_to_context(&selinux_state,
655                                              sbsec->mntpoint_sid,
656                                              &context, &len);
657                 if (rc)
658                         goto out_free;
659                 opts->mnt_opts[i] = context;
660                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661         }
662         if (sbsec->flags & DEFCONTEXT_MNT) {
663                 rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664                                              &context, &len);
665                 if (rc)
666                         goto out_free;
667                 opts->mnt_opts[i] = context;
668                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669         }
670         if (sbsec->flags & ROOTCONTEXT_MNT) {
671                 struct dentry *root = sbsec->sb->s_root;
672                 struct inode_security_struct *isec = backing_inode_security(root);
673
674                 rc = security_sid_to_context(&selinux_state, isec->sid,
675                                              &context, &len);
676                 if (rc)
677                         goto out_free;
678                 opts->mnt_opts[i] = context;
679                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680         }
681         if (sbsec->flags & SBLABEL_MNT) {
682                 opts->mnt_opts[i] = NULL;
683                 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684         }
685
686         BUG_ON(i != opts->num_mnt_opts);
687
688         return 0;
689
690 out_free:
691         security_free_mnt_opts(opts);
692         return rc;
693 }
694
695 static int bad_option(struct superblock_security_struct *sbsec, char flag,
696                       u32 old_sid, u32 new_sid)
697 {
698         char mnt_flags = sbsec->flags & SE_MNTMASK;
699
700         /* check if the old mount command had the same options */
701         if (sbsec->flags & SE_SBINITIALIZED)
702                 if (!(sbsec->flags & flag) ||
703                     (old_sid != new_sid))
704                         return 1;
705
706         /* check if we were passed the same options twice,
707          * aka someone passed context=a,context=b
708          */
709         if (!(sbsec->flags & SE_SBINITIALIZED))
710                 if (mnt_flags & flag)
711                         return 1;
712         return 0;
713 }
714
715 /*
716  * Allow filesystems with binary mount data to explicitly set mount point
717  * labeling information.
718  */
719 static int selinux_set_mnt_opts(struct super_block *sb,
720                                 struct security_mnt_opts *opts,
721                                 unsigned long kern_flags,
722                                 unsigned long *set_kern_flags)
723 {
724         const struct cred *cred = current_cred();
725         int rc = 0, i;
726         struct superblock_security_struct *sbsec = sb->s_security;
727         const char *name = sb->s_type->name;
728         struct dentry *root = sbsec->sb->s_root;
729         struct inode_security_struct *root_isec;
730         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731         u32 defcontext_sid = 0;
732         char **mount_options = opts->mnt_opts;
733         int *flags = opts->mnt_opts_flags;
734         int num_opts = opts->num_mnt_opts;
735
736         mutex_lock(&sbsec->lock);
737
738         if (!selinux_state.initialized) {
739                 if (!num_opts) {
740                         /* Defer initialization until selinux_complete_init,
741                            after the initial policy is loaded and the security
742                            server is ready to handle calls. */
743                         goto out;
744                 }
745                 rc = -EINVAL;
746                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
747                         "before the security server is initialized\n");
748                 goto out;
749         }
750         if (kern_flags && !set_kern_flags) {
751                 /* Specifying internal flags without providing a place to
752                  * place the results is not allowed */
753                 rc = -EINVAL;
754                 goto out;
755         }
756
757         /*
758          * Binary mount data FS will come through this function twice.  Once
759          * from an explicit call and once from the generic calls from the vfs.
760          * Since the generic VFS calls will not contain any security mount data
761          * we need to skip the double mount verification.
762          *
763          * This does open a hole in which we will not notice if the first
764          * mount using this sb set explict options and a second mount using
765          * this sb does not set any security options.  (The first options
766          * will be used for both mounts)
767          */
768         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769             && (num_opts == 0))
770                 goto out;
771
772         root_isec = backing_inode_security_novalidate(root);
773
774         /*
775          * parse the mount options, check if they are valid sids.
776          * also check if someone is trying to mount the same sb more
777          * than once with different security options.
778          */
779         for (i = 0; i < num_opts; i++) {
780                 u32 sid;
781
782                 if (flags[i] == SBLABEL_MNT)
783                         continue;
784                 rc = security_context_str_to_sid(&selinux_state,
785                                                  mount_options[i], &sid,
786                                                  GFP_KERNEL);
787                 if (rc) {
788                         printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789                                "(%s) failed for (dev %s, type %s) errno=%d\n",
790                                mount_options[i], sb->s_id, name, rc);
791                         goto out;
792                 }
793                 switch (flags[i]) {
794                 case FSCONTEXT_MNT:
795                         fscontext_sid = sid;
796
797                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798                                         fscontext_sid))
799                                 goto out_double_mount;
800
801                         sbsec->flags |= FSCONTEXT_MNT;
802                         break;
803                 case CONTEXT_MNT:
804                         context_sid = sid;
805
806                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807                                         context_sid))
808                                 goto out_double_mount;
809
810                         sbsec->flags |= CONTEXT_MNT;
811                         break;
812                 case ROOTCONTEXT_MNT:
813                         rootcontext_sid = sid;
814
815                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816                                         rootcontext_sid))
817                                 goto out_double_mount;
818
819                         sbsec->flags |= ROOTCONTEXT_MNT;
820
821                         break;
822                 case DEFCONTEXT_MNT:
823                         defcontext_sid = sid;
824
825                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826                                         defcontext_sid))
827                                 goto out_double_mount;
828
829                         sbsec->flags |= DEFCONTEXT_MNT;
830
831                         break;
832                 default:
833                         rc = -EINVAL;
834                         goto out;
835                 }
836         }
837
838         if (sbsec->flags & SE_SBINITIALIZED) {
839                 /* previously mounted with options, but not on this attempt? */
840                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841                         goto out_double_mount;
842                 rc = 0;
843                 goto out;
844         }
845
846         if (strcmp(sb->s_type->name, "proc") == 0)
847                 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848
849         if (!strcmp(sb->s_type->name, "debugfs") ||
850             !strcmp(sb->s_type->name, "tracefs") ||
851             !strcmp(sb->s_type->name, "sysfs") ||
852             !strcmp(sb->s_type->name, "pstore") ||
853             !strcmp(sb->s_type->name, "cgroup") ||
854             !strcmp(sb->s_type->name, "cgroup2"))
855                 sbsec->flags |= SE_SBGENFS;
856
857         if (!sbsec->behavior) {
858                 /*
859                  * Determine the labeling behavior to use for this
860                  * filesystem type.
861                  */
862                 rc = security_fs_use(&selinux_state, sb);
863                 if (rc) {
864                         printk(KERN_WARNING
865                                 "%s: security_fs_use(%s) returned %d\n",
866                                         __func__, sb->s_type->name, rc);
867                         goto out;
868                 }
869         }
870
871         /*
872          * If this is a user namespace mount and the filesystem type is not
873          * explicitly whitelisted, then no contexts are allowed on the command
874          * line and security labels must be ignored.
875          */
876         if (sb->s_user_ns != &init_user_ns &&
877             strcmp(sb->s_type->name, "tmpfs") &&
878             strcmp(sb->s_type->name, "ramfs") &&
879             strcmp(sb->s_type->name, "devpts")) {
880                 if (context_sid || fscontext_sid || rootcontext_sid ||
881                     defcontext_sid) {
882                         rc = -EACCES;
883                         goto out;
884                 }
885                 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887                         rc = security_transition_sid(&selinux_state,
888                                                      current_sid(),
889                                                      current_sid(),
890                                                      SECCLASS_FILE, NULL,
891                                                      &sbsec->mntpoint_sid);
892                         if (rc)
893                                 goto out;
894                 }
895                 goto out_set_opts;
896         }
897
898         /* sets the context of the superblock for the fs being mounted. */
899         if (fscontext_sid) {
900                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901                 if (rc)
902                         goto out;
903
904                 sbsec->sid = fscontext_sid;
905         }
906
907         /*
908          * Switch to using mount point labeling behavior.
909          * sets the label used on all file below the mountpoint, and will set
910          * the superblock context if not already set.
911          */
912         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
914                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915         }
916
917         if (context_sid) {
918                 if (!fscontext_sid) {
919                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
920                                                           cred);
921                         if (rc)
922                                 goto out;
923                         sbsec->sid = context_sid;
924                 } else {
925                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
926                                                              cred);
927                         if (rc)
928                                 goto out;
929                 }
930                 if (!rootcontext_sid)
931                         rootcontext_sid = context_sid;
932
933                 sbsec->mntpoint_sid = context_sid;
934                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935         }
936
937         if (rootcontext_sid) {
938                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939                                                      cred);
940                 if (rc)
941                         goto out;
942
943                 root_isec->sid = rootcontext_sid;
944                 root_isec->initialized = LABEL_INITIALIZED;
945         }
946
947         if (defcontext_sid) {
948                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950                         rc = -EINVAL;
951                         printk(KERN_WARNING "SELinux: defcontext option is "
952                                "invalid for this filesystem type\n");
953                         goto out;
954                 }
955
956                 if (defcontext_sid != sbsec->def_sid) {
957                         rc = may_context_mount_inode_relabel(defcontext_sid,
958                                                              sbsec, cred);
959                         if (rc)
960                                 goto out;
961                 }
962
963                 sbsec->def_sid = defcontext_sid;
964         }
965
966 out_set_opts:
967         rc = sb_finish_set_opts(sb);
968 out:
969         mutex_unlock(&sbsec->lock);
970         return rc;
971 out_double_mount:
972         rc = -EINVAL;
973         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
974                "security settings for (dev %s, type %s)\n", sb->s_id, name);
975         goto out;
976 }
977
978 static int selinux_cmp_sb_context(const struct super_block *oldsb,
979                                     const struct super_block *newsb)
980 {
981         struct superblock_security_struct *old = oldsb->s_security;
982         struct superblock_security_struct *new = newsb->s_security;
983         char oldflags = old->flags & SE_MNTMASK;
984         char newflags = new->flags & SE_MNTMASK;
985
986         if (oldflags != newflags)
987                 goto mismatch;
988         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989                 goto mismatch;
990         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991                 goto mismatch;
992         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993                 goto mismatch;
994         if (oldflags & ROOTCONTEXT_MNT) {
995                 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996                 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997                 if (oldroot->sid != newroot->sid)
998                         goto mismatch;
999         }
1000         return 0;
1001 mismatch:
1002         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1003                             "different security settings for (dev %s, "
1004                             "type %s)\n", newsb->s_id, newsb->s_type->name);
1005         return -EBUSY;
1006 }
1007
1008 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009                                         struct super_block *newsb,
1010                                         unsigned long kern_flags,
1011                                         unsigned long *set_kern_flags)
1012 {
1013         int rc = 0;
1014         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015         struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
1018         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
1019         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021         /*
1022          * if the parent was able to be mounted it clearly had no special lsm
1023          * mount options.  thus we can safely deal with this superblock later
1024          */
1025         if (!selinux_state.initialized)
1026                 return 0;
1027
1028         /*
1029          * Specifying internal flags without providing a place to
1030          * place the results is not allowed.
1031          */
1032         if (kern_flags && !set_kern_flags)
1033                 return -EINVAL;
1034
1035         /* how can we clone if the old one wasn't set up?? */
1036         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038         /* if fs is reusing a sb, make sure that the contexts match */
1039         if (newsbsec->flags & SE_SBINITIALIZED)
1040                 return selinux_cmp_sb_context(oldsb, newsb);
1041
1042         mutex_lock(&newsbsec->lock);
1043
1044         newsbsec->flags = oldsbsec->flags;
1045
1046         newsbsec->sid = oldsbsec->sid;
1047         newsbsec->def_sid = oldsbsec->def_sid;
1048         newsbsec->behavior = oldsbsec->behavior;
1049
1050         if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051                 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052                 rc = security_fs_use(&selinux_state, newsb);
1053                 if (rc)
1054                         goto out;
1055         }
1056
1057         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058                 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060         }
1061
1062         if (set_context) {
1063                 u32 sid = oldsbsec->mntpoint_sid;
1064
1065                 if (!set_fscontext)
1066                         newsbsec->sid = sid;
1067                 if (!set_rootcontext) {
1068                         struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069                         newisec->sid = sid;
1070                 }
1071                 newsbsec->mntpoint_sid = sid;
1072         }
1073         if (set_rootcontext) {
1074                 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075                 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077                 newisec->sid = oldisec->sid;
1078         }
1079
1080         sb_finish_set_opts(newsb);
1081 out:
1082         mutex_unlock(&newsbsec->lock);
1083         return rc;
1084 }
1085
1086 static int selinux_parse_opts_str(char *options,
1087                                   struct security_mnt_opts *opts)
1088 {
1089         char *p;
1090         char *context = NULL, *defcontext = NULL;
1091         char *fscontext = NULL, *rootcontext = NULL;
1092         int rc, num_mnt_opts = 0;
1093
1094         opts->num_mnt_opts = 0;
1095
1096         /* Standard string-based options. */
1097         while ((p = strsep(&options, "|")) != NULL) {
1098                 int token;
1099                 substring_t args[MAX_OPT_ARGS];
1100
1101                 if (!*p)
1102                         continue;
1103
1104                 token = match_token(p, tokens, args);
1105
1106                 switch (token) {
1107                 case Opt_context:
1108                         if (context || defcontext) {
1109                                 rc = -EINVAL;
1110                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111                                 goto out_err;
1112                         }
1113                         context = match_strdup(&args[0]);
1114                         if (!context) {
1115                                 rc = -ENOMEM;
1116                                 goto out_err;
1117                         }
1118                         break;
1119
1120                 case Opt_fscontext:
1121                         if (fscontext) {
1122                                 rc = -EINVAL;
1123                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124                                 goto out_err;
1125                         }
1126                         fscontext = match_strdup(&args[0]);
1127                         if (!fscontext) {
1128                                 rc = -ENOMEM;
1129                                 goto out_err;
1130                         }
1131                         break;
1132
1133                 case Opt_rootcontext:
1134                         if (rootcontext) {
1135                                 rc = -EINVAL;
1136                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137                                 goto out_err;
1138                         }
1139                         rootcontext = match_strdup(&args[0]);
1140                         if (!rootcontext) {
1141                                 rc = -ENOMEM;
1142                                 goto out_err;
1143                         }
1144                         break;
1145
1146                 case Opt_defcontext:
1147                         if (context || defcontext) {
1148                                 rc = -EINVAL;
1149                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150                                 goto out_err;
1151                         }
1152                         defcontext = match_strdup(&args[0]);
1153                         if (!defcontext) {
1154                                 rc = -ENOMEM;
1155                                 goto out_err;
1156                         }
1157                         break;
1158                 case Opt_labelsupport:
1159                         break;
1160                 default:
1161                         rc = -EINVAL;
1162                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
1163                         goto out_err;
1164
1165                 }
1166         }
1167
1168         rc = -ENOMEM;
1169         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170         if (!opts->mnt_opts)
1171                 goto out_err;
1172
1173         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174                                        GFP_KERNEL);
1175         if (!opts->mnt_opts_flags)
1176                 goto out_err;
1177
1178         if (fscontext) {
1179                 opts->mnt_opts[num_mnt_opts] = fscontext;
1180                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181         }
1182         if (context) {
1183                 opts->mnt_opts[num_mnt_opts] = context;
1184                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185         }
1186         if (rootcontext) {
1187                 opts->mnt_opts[num_mnt_opts] = rootcontext;
1188                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189         }
1190         if (defcontext) {
1191                 opts->mnt_opts[num_mnt_opts] = defcontext;
1192                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193         }
1194
1195         opts->num_mnt_opts = num_mnt_opts;
1196         return 0;
1197
1198 out_err:
1199         security_free_mnt_opts(opts);
1200         kfree(context);
1201         kfree(defcontext);
1202         kfree(fscontext);
1203         kfree(rootcontext);
1204         return rc;
1205 }
1206 /*
1207  * string mount options parsing and call set the sbsec
1208  */
1209 static int superblock_doinit(struct super_block *sb, void *data)
1210 {
1211         int rc = 0;
1212         char *options = data;
1213         struct security_mnt_opts opts;
1214
1215         security_init_mnt_opts(&opts);
1216
1217         if (!data)
1218                 goto out;
1219
1220         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222         rc = selinux_parse_opts_str(options, &opts);
1223         if (rc)
1224                 goto out_err;
1225
1226 out:
1227         rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229 out_err:
1230         security_free_mnt_opts(&opts);
1231         return rc;
1232 }
1233
1234 static void selinux_write_opts(struct seq_file *m,
1235                                struct security_mnt_opts *opts)
1236 {
1237         int i;
1238         char *prefix;
1239
1240         for (i = 0; i < opts->num_mnt_opts; i++) {
1241                 char *has_comma;
1242
1243                 if (opts->mnt_opts[i])
1244                         has_comma = strchr(opts->mnt_opts[i], ',');
1245                 else
1246                         has_comma = NULL;
1247
1248                 switch (opts->mnt_opts_flags[i]) {
1249                 case CONTEXT_MNT:
1250                         prefix = CONTEXT_STR;
1251                         break;
1252                 case FSCONTEXT_MNT:
1253                         prefix = FSCONTEXT_STR;
1254                         break;
1255                 case ROOTCONTEXT_MNT:
1256                         prefix = ROOTCONTEXT_STR;
1257                         break;
1258                 case DEFCONTEXT_MNT:
1259                         prefix = DEFCONTEXT_STR;
1260                         break;
1261                 case SBLABEL_MNT:
1262                         seq_putc(m, ',');
1263                         seq_puts(m, LABELSUPP_STR);
1264                         continue;
1265                 default:
1266                         BUG();
1267                         return;
1268                 };
1269                 /* we need a comma before each option */
1270                 seq_putc(m, ',');
1271                 seq_puts(m, prefix);
1272                 if (has_comma)
1273                         seq_putc(m, '\"');
1274                 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275                 if (has_comma)
1276                         seq_putc(m, '\"');
1277         }
1278 }
1279
1280 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281 {
1282         struct security_mnt_opts opts;
1283         int rc;
1284
1285         rc = selinux_get_mnt_opts(sb, &opts);
1286         if (rc) {
1287                 /* before policy load we may get EINVAL, don't show anything */
1288                 if (rc == -EINVAL)
1289                         rc = 0;
1290                 return rc;
1291         }
1292
1293         selinux_write_opts(m, &opts);
1294
1295         security_free_mnt_opts(&opts);
1296
1297         return rc;
1298 }
1299
1300 static inline u16 inode_mode_to_security_class(umode_t mode)
1301 {
1302         switch (mode & S_IFMT) {
1303         case S_IFSOCK:
1304                 return SECCLASS_SOCK_FILE;
1305         case S_IFLNK:
1306                 return SECCLASS_LNK_FILE;
1307         case S_IFREG:
1308                 return SECCLASS_FILE;
1309         case S_IFBLK:
1310                 return SECCLASS_BLK_FILE;
1311         case S_IFDIR:
1312                 return SECCLASS_DIR;
1313         case S_IFCHR:
1314                 return SECCLASS_CHR_FILE;
1315         case S_IFIFO:
1316                 return SECCLASS_FIFO_FILE;
1317
1318         }
1319
1320         return SECCLASS_FILE;
1321 }
1322
1323 static inline int default_protocol_stream(int protocol)
1324 {
1325         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326 }
1327
1328 static inline int default_protocol_dgram(int protocol)
1329 {
1330         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331 }
1332
1333 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334 {
1335         int extsockclass = selinux_policycap_extsockclass();
1336
1337         switch (family) {
1338         case PF_UNIX:
1339                 switch (type) {
1340                 case SOCK_STREAM:
1341                 case SOCK_SEQPACKET:
1342                         return SECCLASS_UNIX_STREAM_SOCKET;
1343                 case SOCK_DGRAM:
1344                 case SOCK_RAW:
1345                         return SECCLASS_UNIX_DGRAM_SOCKET;
1346                 }
1347                 break;
1348         case PF_INET:
1349         case PF_INET6:
1350                 switch (type) {
1351                 case SOCK_STREAM:
1352                 case SOCK_SEQPACKET:
1353                         if (default_protocol_stream(protocol))
1354                                 return SECCLASS_TCP_SOCKET;
1355                         else if (extsockclass && protocol == IPPROTO_SCTP)
1356                                 return SECCLASS_SCTP_SOCKET;
1357                         else
1358                                 return SECCLASS_RAWIP_SOCKET;
1359                 case SOCK_DGRAM:
1360                         if (default_protocol_dgram(protocol))
1361                                 return SECCLASS_UDP_SOCKET;
1362                         else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363                                                   protocol == IPPROTO_ICMPV6))
1364                                 return SECCLASS_ICMP_SOCKET;
1365                         else
1366                                 return SECCLASS_RAWIP_SOCKET;
1367                 case SOCK_DCCP:
1368                         return SECCLASS_DCCP_SOCKET;
1369                 default:
1370                         return SECCLASS_RAWIP_SOCKET;
1371                 }
1372                 break;
1373         case PF_NETLINK:
1374                 switch (protocol) {
1375                 case NETLINK_ROUTE:
1376                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1377                 case NETLINK_SOCK_DIAG:
1378                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379                 case NETLINK_NFLOG:
1380                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1381                 case NETLINK_XFRM:
1382                         return SECCLASS_NETLINK_XFRM_SOCKET;
1383                 case NETLINK_SELINUX:
1384                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1385                 case NETLINK_ISCSI:
1386                         return SECCLASS_NETLINK_ISCSI_SOCKET;
1387                 case NETLINK_AUDIT:
1388                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1389                 case NETLINK_FIB_LOOKUP:
1390                         return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391                 case NETLINK_CONNECTOR:
1392                         return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393                 case NETLINK_NETFILTER:
1394                         return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395                 case NETLINK_DNRTMSG:
1396                         return SECCLASS_NETLINK_DNRT_SOCKET;
1397                 case NETLINK_KOBJECT_UEVENT:
1398                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399                 case NETLINK_GENERIC:
1400                         return SECCLASS_NETLINK_GENERIC_SOCKET;
1401                 case NETLINK_SCSITRANSPORT:
1402                         return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403                 case NETLINK_RDMA:
1404                         return SECCLASS_NETLINK_RDMA_SOCKET;
1405                 case NETLINK_CRYPTO:
1406                         return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407                 default:
1408                         return SECCLASS_NETLINK_SOCKET;
1409                 }
1410         case PF_PACKET:
1411                 return SECCLASS_PACKET_SOCKET;
1412         case PF_KEY:
1413                 return SECCLASS_KEY_SOCKET;
1414         case PF_APPLETALK:
1415                 return SECCLASS_APPLETALK_SOCKET;
1416         }
1417
1418         if (extsockclass) {
1419                 switch (family) {
1420                 case PF_AX25:
1421                         return SECCLASS_AX25_SOCKET;
1422                 case PF_IPX:
1423                         return SECCLASS_IPX_SOCKET;
1424                 case PF_NETROM:
1425                         return SECCLASS_NETROM_SOCKET;
1426                 case PF_ATMPVC:
1427                         return SECCLASS_ATMPVC_SOCKET;
1428                 case PF_X25:
1429                         return SECCLASS_X25_SOCKET;
1430                 case PF_ROSE:
1431                         return SECCLASS_ROSE_SOCKET;
1432                 case PF_DECnet:
1433                         return SECCLASS_DECNET_SOCKET;
1434                 case PF_ATMSVC:
1435                         return SECCLASS_ATMSVC_SOCKET;
1436                 case PF_RDS:
1437                         return SECCLASS_RDS_SOCKET;
1438                 case PF_IRDA:
1439                         return SECCLASS_IRDA_SOCKET;
1440                 case PF_PPPOX:
1441                         return SECCLASS_PPPOX_SOCKET;
1442                 case PF_LLC:
1443                         return SECCLASS_LLC_SOCKET;
1444                 case PF_CAN:
1445                         return SECCLASS_CAN_SOCKET;
1446                 case PF_TIPC:
1447                         return SECCLASS_TIPC_SOCKET;
1448                 case PF_BLUETOOTH:
1449                         return SECCLASS_BLUETOOTH_SOCKET;
1450                 case PF_IUCV:
1451                         return SECCLASS_IUCV_SOCKET;
1452                 case PF_RXRPC:
1453                         return SECCLASS_RXRPC_SOCKET;
1454                 case PF_ISDN:
1455                         return SECCLASS_ISDN_SOCKET;
1456                 case PF_PHONET:
1457                         return SECCLASS_PHONET_SOCKET;
1458                 case PF_IEEE802154:
1459                         return SECCLASS_IEEE802154_SOCKET;
1460                 case PF_CAIF:
1461                         return SECCLASS_CAIF_SOCKET;
1462                 case PF_ALG:
1463                         return SECCLASS_ALG_SOCKET;
1464                 case PF_NFC:
1465                         return SECCLASS_NFC_SOCKET;
1466                 case PF_VSOCK:
1467                         return SECCLASS_VSOCK_SOCKET;
1468                 case PF_KCM:
1469                         return SECCLASS_KCM_SOCKET;
1470                 case PF_QIPCRTR:
1471                         return SECCLASS_QIPCRTR_SOCKET;
1472                 case PF_SMC:
1473                         return SECCLASS_SMC_SOCKET;
1474 #if PF_MAX > 44
1475 #error New address family defined, please update this function.
1476 #endif
1477                 }
1478         }
1479
1480         return SECCLASS_SOCKET;
1481 }
1482
1483 static int selinux_genfs_get_sid(struct dentry *dentry,
1484                                  u16 tclass,
1485                                  u16 flags,
1486                                  u32 *sid)
1487 {
1488         int rc;
1489         struct super_block *sb = dentry->d_sb;
1490         char *buffer, *path;
1491
1492         buffer = (char *)__get_free_page(GFP_KERNEL);
1493         if (!buffer)
1494                 return -ENOMEM;
1495
1496         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497         if (IS_ERR(path))
1498                 rc = PTR_ERR(path);
1499         else {
1500                 if (flags & SE_SBPROC) {
1501                         /* each process gets a /proc/PID/ entry. Strip off the
1502                          * PID part to get a valid selinux labeling.
1503                          * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504                         while (path[1] >= '0' && path[1] <= '9') {
1505                                 path[1] = '/';
1506                                 path++;
1507                         }
1508                 }
1509                 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510                                         path, tclass, sid);
1511         }
1512         free_page((unsigned long)buffer);
1513         return rc;
1514 }
1515
1516 /* The inode's security attributes must be initialized before first use. */
1517 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518 {
1519         struct superblock_security_struct *sbsec = NULL;
1520         struct inode_security_struct *isec = inode->i_security;
1521         u32 task_sid, sid = 0;
1522         u16 sclass;
1523         struct dentry *dentry;
1524 #define INITCONTEXTLEN 255
1525         char *context = NULL;
1526         unsigned len = 0;
1527         int rc = 0;
1528
1529         if (isec->initialized == LABEL_INITIALIZED)
1530                 return 0;
1531
1532         spin_lock(&isec->lock);
1533         if (isec->initialized == LABEL_INITIALIZED)
1534                 goto out_unlock;
1535
1536         if (isec->sclass == SECCLASS_FILE)
1537                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539         sbsec = inode->i_sb->s_security;
1540         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541                 /* Defer initialization until selinux_complete_init,
1542                    after the initial policy is loaded and the security
1543                    server is ready to handle calls. */
1544                 spin_lock(&sbsec->isec_lock);
1545                 if (list_empty(&isec->list))
1546                         list_add(&isec->list, &sbsec->isec_head);
1547                 spin_unlock(&sbsec->isec_lock);
1548                 goto out_unlock;
1549         }
1550
1551         sclass = isec->sclass;
1552         task_sid = isec->task_sid;
1553         sid = isec->sid;
1554         isec->initialized = LABEL_PENDING;
1555         spin_unlock(&isec->lock);
1556
1557         switch (sbsec->behavior) {
1558         case SECURITY_FS_USE_NATIVE:
1559                 break;
1560         case SECURITY_FS_USE_XATTR:
1561                 if (!(inode->i_opflags & IOP_XATTR)) {
1562                         sid = sbsec->def_sid;
1563                         break;
1564                 }
1565                 /* Need a dentry, since the xattr API requires one.
1566                    Life would be simpler if we could just pass the inode. */
1567                 if (opt_dentry) {
1568                         /* Called from d_instantiate or d_splice_alias. */
1569                         dentry = dget(opt_dentry);
1570                 } else {
1571                         /* Called from selinux_complete_init, try to find a dentry. */
1572                         dentry = d_find_alias(inode);
1573                 }
1574                 if (!dentry) {
1575                         /*
1576                          * this is can be hit on boot when a file is accessed
1577                          * before the policy is loaded.  When we load policy we
1578                          * may find inodes that have no dentry on the
1579                          * sbsec->isec_head list.  No reason to complain as these
1580                          * will get fixed up the next time we go through
1581                          * inode_doinit with a dentry, before these inodes could
1582                          * be used again by userspace.
1583                          */
1584                         goto out;
1585                 }
1586
1587                 len = INITCONTEXTLEN;
1588                 context = kmalloc(len+1, GFP_NOFS);
1589                 if (!context) {
1590                         rc = -ENOMEM;
1591                         dput(dentry);
1592                         goto out;
1593                 }
1594                 context[len] = '\0';
1595                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1596                 if (rc == -ERANGE) {
1597                         kfree(context);
1598
1599                         /* Need a larger buffer.  Query for the right size. */
1600                         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1601                         if (rc < 0) {
1602                                 dput(dentry);
1603                                 goto out;
1604                         }
1605                         len = rc;
1606                         context = kmalloc(len+1, GFP_NOFS);
1607                         if (!context) {
1608                                 rc = -ENOMEM;
1609                                 dput(dentry);
1610                                 goto out;
1611                         }
1612                         context[len] = '\0';
1613                         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1614                 }
1615                 dput(dentry);
1616                 if (rc < 0) {
1617                         if (rc != -ENODATA) {
1618                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1619                                        "%d for dev=%s ino=%ld\n", __func__,
1620                                        -rc, inode->i_sb->s_id, inode->i_ino);
1621                                 kfree(context);
1622                                 goto out;
1623                         }
1624                         /* Map ENODATA to the default file SID */
1625                         sid = sbsec->def_sid;
1626                         rc = 0;
1627                 } else {
1628                         rc = security_context_to_sid_default(&selinux_state,
1629                                                              context, rc, &sid,
1630                                                              sbsec->def_sid,
1631                                                              GFP_NOFS);
1632                         if (rc) {
1633                                 char *dev = inode->i_sb->s_id;
1634                                 unsigned long ino = inode->i_ino;
1635
1636                                 if (rc == -EINVAL) {
1637                                         if (printk_ratelimit())
1638                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1639                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1640                                                         "filesystem in question.\n", ino, dev, context);
1641                                 } else {
1642                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1643                                                "returned %d for dev=%s ino=%ld\n",
1644                                                __func__, context, -rc, dev, ino);
1645                                 }
1646                                 kfree(context);
1647                                 /* Leave with the unlabeled SID */
1648                                 rc = 0;
1649                                 break;
1650                         }
1651                 }
1652                 kfree(context);
1653                 break;
1654         case SECURITY_FS_USE_TASK:
1655                 sid = task_sid;
1656                 break;
1657         case SECURITY_FS_USE_TRANS:
1658                 /* Default to the fs SID. */
1659                 sid = sbsec->sid;
1660
1661                 /* Try to obtain a transition SID. */
1662                 rc = security_transition_sid(&selinux_state, task_sid, sid,
1663                                              sclass, NULL, &sid);
1664                 if (rc)
1665                         goto out;
1666                 break;
1667         case SECURITY_FS_USE_MNTPOINT:
1668                 sid = sbsec->mntpoint_sid;
1669                 break;
1670         default:
1671                 /* Default to the fs superblock SID. */
1672                 sid = sbsec->sid;
1673
1674                 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1675                         /* We must have a dentry to determine the label on
1676                          * procfs inodes */
1677                         if (opt_dentry)
1678                                 /* Called from d_instantiate or
1679                                  * d_splice_alias. */
1680                                 dentry = dget(opt_dentry);
1681                         else
1682                                 /* Called from selinux_complete_init, try to
1683                                  * find a dentry. */
1684                                 dentry = d_find_alias(inode);
1685                         /*
1686                          * This can be hit on boot when a file is accessed
1687                          * before the policy is loaded.  When we load policy we
1688                          * may find inodes that have no dentry on the
1689                          * sbsec->isec_head list.  No reason to complain as
1690                          * these will get fixed up the next time we go through
1691                          * inode_doinit() with a dentry, before these inodes
1692                          * could be used again by userspace.
1693                          */
1694                         if (!dentry)
1695                                 goto out;
1696                         rc = selinux_genfs_get_sid(dentry, sclass,
1697                                                    sbsec->flags, &sid);
1698                         dput(dentry);
1699                         if (rc)
1700                                 goto out;
1701                 }
1702                 break;
1703         }
1704
1705 out:
1706         spin_lock(&isec->lock);
1707         if (isec->initialized == LABEL_PENDING) {
1708                 if (!sid || rc) {
1709                         isec->initialized = LABEL_INVALID;
1710                         goto out_unlock;
1711                 }
1712
1713                 isec->initialized = LABEL_INITIALIZED;
1714                 isec->sid = sid;
1715         }
1716
1717 out_unlock:
1718         spin_unlock(&isec->lock);
1719         return rc;
1720 }
1721
1722 /* Convert a Linux signal to an access vector. */
1723 static inline u32 signal_to_av(int sig)
1724 {
1725         u32 perm = 0;
1726
1727         switch (sig) {
1728         case SIGCHLD:
1729                 /* Commonly granted from child to parent. */
1730                 perm = PROCESS__SIGCHLD;
1731                 break;
1732         case SIGKILL:
1733                 /* Cannot be caught or ignored */
1734                 perm = PROCESS__SIGKILL;
1735                 break;
1736         case SIGSTOP:
1737                 /* Cannot be caught or ignored */
1738                 perm = PROCESS__SIGSTOP;
1739                 break;
1740         default:
1741                 /* All other signals. */
1742                 perm = PROCESS__SIGNAL;
1743                 break;
1744         }
1745
1746         return perm;
1747 }
1748
1749 #if CAP_LAST_CAP > 63
1750 #error Fix SELinux to handle capabilities > 63.
1751 #endif
1752
1753 /* Check whether a task is allowed to use a capability. */
1754 static int cred_has_capability(const struct cred *cred,
1755                                int cap, int audit, bool initns)
1756 {
1757         struct common_audit_data ad;
1758         struct av_decision avd;
1759         u16 sclass;
1760         u32 sid = cred_sid(cred);
1761         u32 av = CAP_TO_MASK(cap);
1762         int rc;
1763
1764         ad.type = LSM_AUDIT_DATA_CAP;
1765         ad.u.cap = cap;
1766
1767         switch (CAP_TO_INDEX(cap)) {
1768         case 0:
1769                 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1770                 break;
1771         case 1:
1772                 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1773                 break;
1774         default:
1775                 printk(KERN_ERR
1776                        "SELinux:  out of range capability %d\n", cap);
1777                 BUG();
1778                 return -EINVAL;
1779         }
1780
1781         rc = avc_has_perm_noaudit(&selinux_state,
1782                                   sid, sid, sclass, av, 0, &avd);
1783         if (audit == SECURITY_CAP_AUDIT) {
1784                 int rc2 = avc_audit(&selinux_state,
1785                                     sid, sid, sclass, av, &avd, rc, &ad, 0);
1786                 if (rc2)
1787                         return rc2;
1788         }
1789         return rc;
1790 }
1791
1792 /* Check whether a task has a particular permission to an inode.
1793    The 'adp' parameter is optional and allows other audit
1794    data to be passed (e.g. the dentry). */
1795 static int inode_has_perm(const struct cred *cred,
1796                           struct inode *inode,
1797                           u32 perms,
1798                           struct common_audit_data *adp)
1799 {
1800         struct inode_security_struct *isec;
1801         u32 sid;
1802
1803         validate_creds(cred);
1804
1805         if (unlikely(IS_PRIVATE(inode)))
1806                 return 0;
1807
1808         sid = cred_sid(cred);
1809         isec = inode->i_security;
1810
1811         return avc_has_perm(&selinux_state,
1812                             sid, isec->sid, isec->sclass, perms, adp);
1813 }
1814
1815 /* Same as inode_has_perm, but pass explicit audit data containing
1816    the dentry to help the auditing code to more easily generate the
1817    pathname if needed. */
1818 static inline int dentry_has_perm(const struct cred *cred,
1819                                   struct dentry *dentry,
1820                                   u32 av)
1821 {
1822         struct inode *inode = d_backing_inode(dentry);
1823         struct common_audit_data ad;
1824
1825         ad.type = LSM_AUDIT_DATA_DENTRY;
1826         ad.u.dentry = dentry;
1827         __inode_security_revalidate(inode, dentry, true);
1828         return inode_has_perm(cred, inode, av, &ad);
1829 }
1830
1831 /* Same as inode_has_perm, but pass explicit audit data containing
1832    the path to help the auditing code to more easily generate the
1833    pathname if needed. */
1834 static inline int path_has_perm(const struct cred *cred,
1835                                 const struct path *path,
1836                                 u32 av)
1837 {
1838         struct inode *inode = d_backing_inode(path->dentry);
1839         struct common_audit_data ad;
1840
1841         ad.type = LSM_AUDIT_DATA_PATH;
1842         ad.u.path = *path;
1843         __inode_security_revalidate(inode, path->dentry, true);
1844         return inode_has_perm(cred, inode, av, &ad);
1845 }
1846
1847 /* Same as path_has_perm, but uses the inode from the file struct. */
1848 static inline int file_path_has_perm(const struct cred *cred,
1849                                      struct file *file,
1850                                      u32 av)
1851 {
1852         struct common_audit_data ad;
1853
1854         ad.type = LSM_AUDIT_DATA_FILE;
1855         ad.u.file = file;
1856         return inode_has_perm(cred, file_inode(file), av, &ad);
1857 }
1858
1859 #ifdef CONFIG_BPF_SYSCALL
1860 static int bpf_fd_pass(struct file *file, u32 sid);
1861 #endif
1862
1863 /* Check whether a task can use an open file descriptor to
1864    access an inode in a given way.  Check access to the
1865    descriptor itself, and then use dentry_has_perm to
1866    check a particular permission to the file.
1867    Access to the descriptor is implicitly granted if it
1868    has the same SID as the process.  If av is zero, then
1869    access to the file is not checked, e.g. for cases
1870    where only the descriptor is affected like seek. */
1871 static int file_has_perm(const struct cred *cred,
1872                          struct file *file,
1873                          u32 av)
1874 {
1875         struct file_security_struct *fsec = file->f_security;
1876         struct inode *inode = file_inode(file);
1877         struct common_audit_data ad;
1878         u32 sid = cred_sid(cred);
1879         int rc;
1880
1881         ad.type = LSM_AUDIT_DATA_FILE;
1882         ad.u.file = file;
1883
1884         if (sid != fsec->sid) {
1885                 rc = avc_has_perm(&selinux_state,
1886                                   sid, fsec->sid,
1887                                   SECCLASS_FD,
1888                                   FD__USE,
1889                                   &ad);
1890                 if (rc)
1891                         goto out;
1892         }
1893
1894 #ifdef CONFIG_BPF_SYSCALL
1895         rc = bpf_fd_pass(file, cred_sid(cred));
1896         if (rc)
1897                 return rc;
1898 #endif
1899
1900         /* av is zero if only checking access to the descriptor. */
1901         rc = 0;
1902         if (av)
1903                 rc = inode_has_perm(cred, inode, av, &ad);
1904
1905 out:
1906         return rc;
1907 }
1908
1909 /*
1910  * Determine the label for an inode that might be unioned.
1911  */
1912 static int
1913 selinux_determine_inode_label(const struct task_security_struct *tsec,
1914                                  struct inode *dir,
1915                                  const struct qstr *name, u16 tclass,
1916                                  u32 *_new_isid)
1917 {
1918         const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1919
1920         if ((sbsec->flags & SE_SBINITIALIZED) &&
1921             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1922                 *_new_isid = sbsec->mntpoint_sid;
1923         } else if ((sbsec->flags & SBLABEL_MNT) &&
1924                    tsec->create_sid) {
1925                 *_new_isid = tsec->create_sid;
1926         } else {
1927                 const struct inode_security_struct *dsec = inode_security(dir);
1928                 return security_transition_sid(&selinux_state, tsec->sid,
1929                                                dsec->sid, tclass,
1930                                                name, _new_isid);
1931         }
1932
1933         return 0;
1934 }
1935
1936 /* Check whether a task can create a file. */
1937 static int may_create(struct inode *dir,
1938                       struct dentry *dentry,
1939                       u16 tclass)
1940 {
1941         const struct task_security_struct *tsec = current_security();
1942         struct inode_security_struct *dsec;
1943         struct superblock_security_struct *sbsec;
1944         u32 sid, newsid;
1945         struct common_audit_data ad;
1946         int rc;
1947
1948         dsec = inode_security(dir);
1949         sbsec = dir->i_sb->s_security;
1950
1951         sid = tsec->sid;
1952
1953         ad.type = LSM_AUDIT_DATA_DENTRY;
1954         ad.u.dentry = dentry;
1955
1956         rc = avc_has_perm(&selinux_state,
1957                           sid, dsec->sid, SECCLASS_DIR,
1958                           DIR__ADD_NAME | DIR__SEARCH,
1959                           &ad);
1960         if (rc)
1961                 return rc;
1962
1963         rc = selinux_determine_inode_label(current_security(), dir,
1964                                            &dentry->d_name, tclass, &newsid);
1965         if (rc)
1966                 return rc;
1967
1968         rc = avc_has_perm(&selinux_state,
1969                           sid, newsid, tclass, FILE__CREATE, &ad);
1970         if (rc)
1971                 return rc;
1972
1973         return avc_has_perm(&selinux_state,
1974                             newsid, sbsec->sid,
1975                             SECCLASS_FILESYSTEM,
1976                             FILESYSTEM__ASSOCIATE, &ad);
1977 }
1978
1979 #define MAY_LINK        0
1980 #define MAY_UNLINK      1
1981 #define MAY_RMDIR       2
1982
1983 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1984 static int may_link(struct inode *dir,
1985                     struct dentry *dentry,
1986                     int kind)
1987
1988 {
1989         struct inode_security_struct *dsec, *isec;
1990         struct common_audit_data ad;
1991         u32 sid = current_sid();
1992         u32 av;
1993         int rc;
1994
1995         dsec = inode_security(dir);
1996         isec = backing_inode_security(dentry);
1997
1998         ad.type = LSM_AUDIT_DATA_DENTRY;
1999         ad.u.dentry = dentry;
2000
2001         av = DIR__SEARCH;
2002         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2003         rc = avc_has_perm(&selinux_state,
2004                           sid, dsec->sid, SECCLASS_DIR, av, &ad);
2005         if (rc)
2006                 return rc;
2007
2008         switch (kind) {
2009         case MAY_LINK:
2010                 av = FILE__LINK;
2011                 break;
2012         case MAY_UNLINK:
2013                 av = FILE__UNLINK;
2014                 break;
2015         case MAY_RMDIR:
2016                 av = DIR__RMDIR;
2017                 break;
2018         default:
2019                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2020                         __func__, kind);
2021                 return 0;
2022         }
2023
2024         rc = avc_has_perm(&selinux_state,
2025                           sid, isec->sid, isec->sclass, av, &ad);
2026         return rc;
2027 }
2028
2029 static inline int may_rename(struct inode *old_dir,
2030                              struct dentry *old_dentry,
2031                              struct inode *new_dir,
2032                              struct dentry *new_dentry)
2033 {
2034         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2035         struct common_audit_data ad;
2036         u32 sid = current_sid();
2037         u32 av;
2038         int old_is_dir, new_is_dir;
2039         int rc;
2040
2041         old_dsec = inode_security(old_dir);
2042         old_isec = backing_inode_security(old_dentry);
2043         old_is_dir = d_is_dir(old_dentry);
2044         new_dsec = inode_security(new_dir);
2045
2046         ad.type = LSM_AUDIT_DATA_DENTRY;
2047
2048         ad.u.dentry = old_dentry;
2049         rc = avc_has_perm(&selinux_state,
2050                           sid, old_dsec->sid, SECCLASS_DIR,
2051                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2052         if (rc)
2053                 return rc;
2054         rc = avc_has_perm(&selinux_state,
2055                           sid, old_isec->sid,
2056                           old_isec->sclass, FILE__RENAME, &ad);
2057         if (rc)
2058                 return rc;
2059         if (old_is_dir && new_dir != old_dir) {
2060                 rc = avc_has_perm(&selinux_state,
2061                                   sid, old_isec->sid,
2062                                   old_isec->sclass, DIR__REPARENT, &ad);
2063                 if (rc)
2064                         return rc;
2065         }
2066
2067         ad.u.dentry = new_dentry;
2068         av = DIR__ADD_NAME | DIR__SEARCH;
2069         if (d_is_positive(new_dentry))
2070                 av |= DIR__REMOVE_NAME;
2071         rc = avc_has_perm(&selinux_state,
2072                           sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2073         if (rc)
2074                 return rc;
2075         if (d_is_positive(new_dentry)) {
2076                 new_isec = backing_inode_security(new_dentry);
2077                 new_is_dir = d_is_dir(new_dentry);
2078                 rc = avc_has_perm(&selinux_state,
2079                                   sid, new_isec->sid,
2080                                   new_isec->sclass,
2081                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2082                 if (rc)
2083                         return rc;
2084         }
2085
2086         return 0;
2087 }
2088
2089 /* Check whether a task can perform a filesystem operation. */
2090 static int superblock_has_perm(const struct cred *cred,
2091                                struct super_block *sb,
2092                                u32 perms,
2093                                struct common_audit_data *ad)
2094 {
2095         struct superblock_security_struct *sbsec;
2096         u32 sid = cred_sid(cred);
2097
2098         sbsec = sb->s_security;
2099         return avc_has_perm(&selinux_state,
2100                             sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2101 }
2102
2103 /* Convert a Linux mode and permission mask to an access vector. */
2104 static inline u32 file_mask_to_av(int mode, int mask)
2105 {
2106         u32 av = 0;
2107
2108         if (!S_ISDIR(mode)) {
2109                 if (mask & MAY_EXEC)
2110                         av |= FILE__EXECUTE;
2111                 if (mask & MAY_READ)
2112                         av |= FILE__READ;
2113
2114                 if (mask & MAY_APPEND)
2115                         av |= FILE__APPEND;
2116                 else if (mask & MAY_WRITE)
2117                         av |= FILE__WRITE;
2118
2119         } else {
2120                 if (mask & MAY_EXEC)
2121                         av |= DIR__SEARCH;
2122                 if (mask & MAY_WRITE)
2123                         av |= DIR__WRITE;
2124                 if (mask & MAY_READ)
2125                         av |= DIR__READ;
2126         }
2127
2128         return av;
2129 }
2130
2131 /* Convert a Linux file to an access vector. */
2132 static inline u32 file_to_av(struct file *file)
2133 {
2134         u32 av = 0;
2135
2136         if (file->f_mode & FMODE_READ)
2137                 av |= FILE__READ;
2138         if (file->f_mode & FMODE_WRITE) {
2139                 if (file->f_flags & O_APPEND)
2140                         av |= FILE__APPEND;
2141                 else
2142                         av |= FILE__WRITE;
2143         }
2144         if (!av) {
2145                 /*
2146                  * Special file opened with flags 3 for ioctl-only use.
2147                  */
2148                 av = FILE__IOCTL;
2149         }
2150
2151         return av;
2152 }
2153
2154 /*
2155  * Convert a file to an access vector and include the correct open
2156  * open permission.
2157  */
2158 static inline u32 open_file_to_av(struct file *file)
2159 {
2160         u32 av = file_to_av(file);
2161         struct inode *inode = file_inode(file);
2162
2163         if (selinux_policycap_openperm() &&
2164             inode->i_sb->s_magic != SOCKFS_MAGIC)
2165                 av |= FILE__OPEN;
2166
2167         return av;
2168 }
2169
2170 /* Hook functions begin here. */
2171
2172 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2173 {
2174         u32 mysid = current_sid();
2175         u32 mgrsid = task_sid(mgr);
2176
2177         return avc_has_perm(&selinux_state,
2178                             mysid, mgrsid, SECCLASS_BINDER,
2179                             BINDER__SET_CONTEXT_MGR, NULL);
2180 }
2181
2182 static int selinux_binder_transaction(struct task_struct *from,
2183                                       struct task_struct *to)
2184 {
2185         u32 mysid = current_sid();
2186         u32 fromsid = task_sid(from);
2187         u32 tosid = task_sid(to);
2188         int rc;
2189
2190         if (mysid != fromsid) {
2191                 rc = avc_has_perm(&selinux_state,
2192                                   mysid, fromsid, SECCLASS_BINDER,
2193                                   BINDER__IMPERSONATE, NULL);
2194                 if (rc)
2195                         return rc;
2196         }
2197
2198         return avc_has_perm(&selinux_state,
2199                             fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2200                             NULL);
2201 }
2202
2203 static int selinux_binder_transfer_binder(struct task_struct *from,
2204                                           struct task_struct *to)
2205 {
2206         u32 fromsid = task_sid(from);
2207         u32 tosid = task_sid(to);
2208
2209         return avc_has_perm(&selinux_state,
2210                             fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2211                             NULL);
2212 }
2213
2214 static int selinux_binder_transfer_file(struct task_struct *from,
2215                                         struct task_struct *to,
2216                                         struct file *file)
2217 {
2218         u32 sid = task_sid(to);
2219         struct file_security_struct *fsec = file->f_security;
2220         struct dentry *dentry = file->f_path.dentry;
2221         struct inode_security_struct *isec;
2222         struct common_audit_data ad;
2223         int rc;
2224
2225         ad.type = LSM_AUDIT_DATA_PATH;
2226         ad.u.path = file->f_path;
2227
2228         if (sid != fsec->sid) {
2229                 rc = avc_has_perm(&selinux_state,
2230                                   sid, fsec->sid,
2231                                   SECCLASS_FD,
2232                                   FD__USE,
2233                                   &ad);
2234                 if (rc)
2235                         return rc;
2236         }
2237
2238 #ifdef CONFIG_BPF_SYSCALL
2239         rc = bpf_fd_pass(file, sid);
2240         if (rc)
2241                 return rc;
2242 #endif
2243
2244         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2245                 return 0;
2246
2247         isec = backing_inode_security(dentry);
2248         return avc_has_perm(&selinux_state,
2249                             sid, isec->sid, isec->sclass, file_to_av(file),
2250                             &ad);
2251 }
2252
2253 static int selinux_ptrace_access_check(struct task_struct *child,
2254                                      unsigned int mode)
2255 {
2256         u32 sid = current_sid();
2257         u32 csid = task_sid(child);
2258
2259         if (mode & PTRACE_MODE_READ)
2260                 return avc_has_perm(&selinux_state,
2261                                     sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2262
2263         return avc_has_perm(&selinux_state,
2264                             sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2265 }
2266
2267 static int selinux_ptrace_traceme(struct task_struct *parent)
2268 {
2269         return avc_has_perm(&selinux_state,
2270                             task_sid(parent), current_sid(), SECCLASS_PROCESS,
2271                             PROCESS__PTRACE, NULL);
2272 }
2273
2274 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2275                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2276 {
2277         return avc_has_perm(&selinux_state,
2278                             current_sid(), task_sid(target), SECCLASS_PROCESS,
2279                             PROCESS__GETCAP, NULL);
2280 }
2281
2282 static int selinux_capset(struct cred *new, const struct cred *old,
2283                           const kernel_cap_t *effective,
2284                           const kernel_cap_t *inheritable,
2285                           const kernel_cap_t *permitted)
2286 {
2287         return avc_has_perm(&selinux_state,
2288                             cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2289                             PROCESS__SETCAP, NULL);
2290 }
2291
2292 /*
2293  * (This comment used to live with the selinux_task_setuid hook,
2294  * which was removed).
2295  *
2296  * Since setuid only affects the current process, and since the SELinux
2297  * controls are not based on the Linux identity attributes, SELinux does not
2298  * need to control this operation.  However, SELinux does control the use of
2299  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2300  */
2301
2302 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2303                            int cap, int audit)
2304 {
2305         return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2306 }
2307
2308 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2309 {
2310         const struct cred *cred = current_cred();
2311         int rc = 0;
2312
2313         if (!sb)
2314                 return 0;
2315
2316         switch (cmds) {
2317         case Q_SYNC:
2318         case Q_QUOTAON:
2319         case Q_QUOTAOFF:
2320         case Q_SETINFO:
2321         case Q_SETQUOTA:
2322                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2323                 break;
2324         case Q_GETFMT:
2325         case Q_GETINFO:
2326         case Q_GETQUOTA:
2327                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2328                 break;
2329         default:
2330                 rc = 0;  /* let the kernel handle invalid cmds */
2331                 break;
2332         }
2333         return rc;
2334 }
2335
2336 static int selinux_quota_on(struct dentry *dentry)
2337 {
2338         const struct cred *cred = current_cred();
2339
2340         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2341 }
2342
2343 static int selinux_syslog(int type)
2344 {
2345         switch (type) {
2346         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2347         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2348                 return avc_has_perm(&selinux_state,
2349                                     current_sid(), SECINITSID_KERNEL,
2350                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2351         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2352         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2353         /* Set level of messages printed to console */
2354         case SYSLOG_ACTION_CONSOLE_LEVEL:
2355                 return avc_has_perm(&selinux_state,
2356                                     current_sid(), SECINITSID_KERNEL,
2357                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2358                                     NULL);
2359         }
2360         /* All other syslog types */
2361         return avc_has_perm(&selinux_state,
2362                             current_sid(), SECINITSID_KERNEL,
2363                             SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2364 }
2365
2366 /*
2367  * Check that a process has enough memory to allocate a new virtual
2368  * mapping. 0 means there is enough memory for the allocation to
2369  * succeed and -ENOMEM implies there is not.
2370  *
2371  * Do not audit the selinux permission check, as this is applied to all
2372  * processes that allocate mappings.
2373  */
2374 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2375 {
2376         int rc, cap_sys_admin = 0;
2377
2378         rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2379                                  SECURITY_CAP_NOAUDIT, true);
2380         if (rc == 0)
2381                 cap_sys_admin = 1;
2382
2383         return cap_sys_admin;
2384 }
2385
2386 /* binprm security operations */
2387
2388 static u32 ptrace_parent_sid(void)
2389 {
2390         u32 sid = 0;
2391         struct task_struct *tracer;
2392
2393         rcu_read_lock();
2394         tracer = ptrace_parent(current);
2395         if (tracer)
2396                 sid = task_sid(tracer);
2397         rcu_read_unlock();
2398
2399         return sid;
2400 }
2401
2402 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2403                             const struct task_security_struct *old_tsec,
2404                             const struct task_security_struct *new_tsec)
2405 {
2406         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2407         int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2408         int rc;
2409         u32 av;
2410
2411         if (!nnp && !nosuid)
2412                 return 0; /* neither NNP nor nosuid */
2413
2414         if (new_tsec->sid == old_tsec->sid)
2415                 return 0; /* No change in credentials */
2416
2417         /*
2418          * If the policy enables the nnp_nosuid_transition policy capability,
2419          * then we permit transitions under NNP or nosuid if the
2420          * policy allows the corresponding permission between
2421          * the old and new contexts.
2422          */
2423         if (selinux_policycap_nnp_nosuid_transition()) {
2424                 av = 0;
2425                 if (nnp)
2426                         av |= PROCESS2__NNP_TRANSITION;
2427                 if (nosuid)
2428                         av |= PROCESS2__NOSUID_TRANSITION;
2429                 rc = avc_has_perm(&selinux_state,
2430                                   old_tsec->sid, new_tsec->sid,
2431                                   SECCLASS_PROCESS2, av, NULL);
2432                 if (!rc)
2433                         return 0;
2434         }
2435
2436         /*
2437          * We also permit NNP or nosuid transitions to bounded SIDs,
2438          * i.e. SIDs that are guaranteed to only be allowed a subset
2439          * of the permissions of the current SID.
2440          */
2441         rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2442                                          new_tsec->sid);
2443         if (!rc)
2444                 return 0;
2445
2446         /*
2447          * On failure, preserve the errno values for NNP vs nosuid.
2448          * NNP:  Operation not permitted for caller.
2449          * nosuid:  Permission denied to file.
2450          */
2451         if (nnp)
2452                 return -EPERM;
2453         return -EACCES;
2454 }
2455
2456 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2457 {
2458         const struct task_security_struct *old_tsec;
2459         struct task_security_struct *new_tsec;
2460         struct inode_security_struct *isec;
2461         struct common_audit_data ad;
2462         struct inode *inode = file_inode(bprm->file);
2463         int rc;
2464
2465         /* SELinux context only depends on initial program or script and not
2466          * the script interpreter */
2467         if (bprm->called_set_creds)
2468                 return 0;
2469
2470         old_tsec = current_security();
2471         new_tsec = bprm->cred->security;
2472         isec = inode_security(inode);
2473
2474         /* Default to the current task SID. */
2475         new_tsec->sid = old_tsec->sid;
2476         new_tsec->osid = old_tsec->sid;
2477
2478         /* Reset fs, key, and sock SIDs on execve. */
2479         new_tsec->create_sid = 0;
2480         new_tsec->keycreate_sid = 0;
2481         new_tsec->sockcreate_sid = 0;
2482
2483         if (old_tsec->exec_sid) {
2484                 new_tsec->sid = old_tsec->exec_sid;
2485                 /* Reset exec SID on execve. */
2486                 new_tsec->exec_sid = 0;
2487
2488                 /* Fail on NNP or nosuid if not an allowed transition. */
2489                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2490                 if (rc)
2491                         return rc;
2492         } else {
2493                 /* Check for a default transition on this program. */
2494                 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2495                                              isec->sid, SECCLASS_PROCESS, NULL,
2496                                              &new_tsec->sid);
2497                 if (rc)
2498                         return rc;
2499
2500                 /*
2501                  * Fallback to old SID on NNP or nosuid if not an allowed
2502                  * transition.
2503                  */
2504                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2505                 if (rc)
2506                         new_tsec->sid = old_tsec->sid;
2507         }
2508
2509         ad.type = LSM_AUDIT_DATA_FILE;
2510         ad.u.file = bprm->file;
2511
2512         if (new_tsec->sid == old_tsec->sid) {
2513                 rc = avc_has_perm(&selinux_state,
2514                                   old_tsec->sid, isec->sid,
2515                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2516                 if (rc)
2517                         return rc;
2518         } else {
2519                 /* Check permissions for the transition. */
2520                 rc = avc_has_perm(&selinux_state,
2521                                   old_tsec->sid, new_tsec->sid,
2522                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2523                 if (rc)
2524                         return rc;
2525
2526                 rc = avc_has_perm(&selinux_state,
2527                                   new_tsec->sid, isec->sid,
2528                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2529                 if (rc)
2530                         return rc;
2531
2532                 /* Check for shared state */
2533                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2534                         rc = avc_has_perm(&selinux_state,
2535                                           old_tsec->sid, new_tsec->sid,
2536                                           SECCLASS_PROCESS, PROCESS__SHARE,
2537                                           NULL);
2538                         if (rc)
2539                                 return -EPERM;
2540                 }
2541
2542                 /* Make sure that anyone attempting to ptrace over a task that
2543                  * changes its SID has the appropriate permit */
2544                 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2545                         u32 ptsid = ptrace_parent_sid();
2546                         if (ptsid != 0) {
2547                                 rc = avc_has_perm(&selinux_state,
2548                                                   ptsid, new_tsec->sid,
2549                                                   SECCLASS_PROCESS,
2550                                                   PROCESS__PTRACE, NULL);
2551                                 if (rc)
2552                                         return -EPERM;
2553                         }
2554                 }
2555
2556                 /* Clear any possibly unsafe personality bits on exec: */
2557                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2558
2559                 /* Enable secure mode for SIDs transitions unless
2560                    the noatsecure permission is granted between
2561                    the two SIDs, i.e. ahp returns 0. */
2562                 rc = avc_has_perm(&selinux_state,
2563                                   old_tsec->sid, new_tsec->sid,
2564                                   SECCLASS_PROCESS, PROCESS__NOATSECURE,
2565                                   NULL);
2566                 bprm->secureexec |= !!rc;
2567         }
2568
2569         return 0;
2570 }
2571
2572 static int match_file(const void *p, struct file *file, unsigned fd)
2573 {
2574         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2575 }
2576
2577 /* Derived from fs/exec.c:flush_old_files. */
2578 static inline void flush_unauthorized_files(const struct cred *cred,
2579                                             struct files_struct *files)
2580 {
2581         struct file *file, *devnull = NULL;
2582         struct tty_struct *tty;
2583         int drop_tty = 0;
2584         unsigned n;
2585
2586         tty = get_current_tty();
2587         if (tty) {
2588                 spin_lock(&tty->files_lock);
2589                 if (!list_empty(&tty->tty_files)) {
2590                         struct tty_file_private *file_priv;
2591
2592                         /* Revalidate access to controlling tty.
2593                            Use file_path_has_perm on the tty path directly
2594                            rather than using file_has_perm, as this particular
2595                            open file may belong to another process and we are
2596                            only interested in the inode-based check here. */
2597                         file_priv = list_first_entry(&tty->tty_files,
2598                                                 struct tty_file_private, list);
2599                         file = file_priv->file;
2600                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2601                                 drop_tty = 1;
2602                 }
2603                 spin_unlock(&tty->files_lock);
2604                 tty_kref_put(tty);
2605         }
2606         /* Reset controlling tty. */
2607         if (drop_tty)
2608                 no_tty();
2609
2610         /* Revalidate access to inherited open files. */
2611         n = iterate_fd(files, 0, match_file, cred);
2612         if (!n) /* none found? */
2613                 return;
2614
2615         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2616         if (IS_ERR(devnull))
2617                 devnull = NULL;
2618         /* replace all the matching ones with this */
2619         do {
2620                 replace_fd(n - 1, devnull, 0);
2621         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2622         if (devnull)
2623                 fput(devnull);
2624 }
2625
2626 /*
2627  * Prepare a process for imminent new credential changes due to exec
2628  */
2629 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2630 {
2631         struct task_security_struct *new_tsec;
2632         struct rlimit *rlim, *initrlim;
2633         int rc, i;
2634
2635         new_tsec = bprm->cred->security;
2636         if (new_tsec->sid == new_tsec->osid)
2637                 return;
2638
2639         /* Close files for which the new task SID is not authorized. */
2640         flush_unauthorized_files(bprm->cred, current->files);
2641
2642         /* Always clear parent death signal on SID transitions. */
2643         current->pdeath_signal = 0;
2644
2645         /* Check whether the new SID can inherit resource limits from the old
2646          * SID.  If not, reset all soft limits to the lower of the current
2647          * task's hard limit and the init task's soft limit.
2648          *
2649          * Note that the setting of hard limits (even to lower them) can be
2650          * controlled by the setrlimit check.  The inclusion of the init task's
2651          * soft limit into the computation is to avoid resetting soft limits
2652          * higher than the default soft limit for cases where the default is
2653          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2654          */
2655         rc = avc_has_perm(&selinux_state,
2656                           new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2657                           PROCESS__RLIMITINH, NULL);
2658         if (rc) {
2659                 /* protect against do_prlimit() */
2660                 task_lock(current);
2661                 for (i = 0; i < RLIM_NLIMITS; i++) {
2662                         rlim = current->signal->rlim + i;
2663                         initrlim = init_task.signal->rlim + i;
2664                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2665                 }
2666                 task_unlock(current);
2667                 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2668                         update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2669         }
2670 }
2671
2672 /*
2673  * Clean up the process immediately after the installation of new credentials
2674  * due to exec
2675  */
2676 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2677 {
2678         const struct task_security_struct *tsec = current_security();
2679         struct itimerval itimer;
2680         u32 osid, sid;
2681         int rc, i;
2682
2683         osid = tsec->osid;
2684         sid = tsec->sid;
2685
2686         if (sid == osid)
2687                 return;
2688
2689         /* Check whether the new SID can inherit signal state from the old SID.
2690          * If not, clear itimers to avoid subsequent signal generation and
2691          * flush and unblock signals.
2692          *
2693          * This must occur _after_ the task SID has been updated so that any
2694          * kill done after the flush will be checked against the new SID.
2695          */
2696         rc = avc_has_perm(&selinux_state,
2697                           osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2698         if (rc) {
2699                 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2700                         memset(&itimer, 0, sizeof itimer);
2701                         for (i = 0; i < 3; i++)
2702                                 do_setitimer(i, &itimer, NULL);
2703                 }
2704                 spin_lock_irq(&current->sighand->siglock);
2705                 if (!fatal_signal_pending(current)) {
2706                         flush_sigqueue(&current->pending);
2707                         flush_sigqueue(&current->signal->shared_pending);
2708                         flush_signal_handlers(current, 1);
2709                         sigemptyset(&current->blocked);
2710                         recalc_sigpending();
2711                 }
2712                 spin_unlock_irq(&current->sighand->siglock);
2713         }
2714
2715         /* Wake up the parent if it is waiting so that it can recheck
2716          * wait permission to the new task SID. */
2717         read_lock(&tasklist_lock);
2718         __wake_up_parent(current, current->real_parent);
2719         read_unlock(&tasklist_lock);
2720 }
2721
2722 /* superblock security operations */
2723
2724 static int selinux_sb_alloc_security(struct super_block *sb)
2725 {
2726         return superblock_alloc_security(sb);
2727 }
2728
2729 static void selinux_sb_free_security(struct super_block *sb)
2730 {
2731         superblock_free_security(sb);
2732 }
2733
2734 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2735 {
2736         if (plen > olen)
2737                 return 0;
2738
2739         return !memcmp(prefix, option, plen);
2740 }
2741
2742 static inline int selinux_option(char *option, int len)
2743 {
2744         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2745                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2746                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2747                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2748                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2749 }
2750
2751 static inline void take_option(char **to, char *from, int *first, int len)
2752 {
2753         if (!*first) {
2754                 **to = ',';
2755                 *to += 1;
2756         } else
2757                 *first = 0;
2758         memcpy(*to, from, len);
2759         *to += len;
2760 }
2761
2762 static inline void take_selinux_option(char **to, char *from, int *first,
2763                                        int len)
2764 {
2765         int current_size = 0;
2766
2767         if (!*first) {
2768                 **to = '|';
2769                 *to += 1;
2770         } else
2771                 *first = 0;
2772
2773         while (current_size < len) {
2774                 if (*from != '"') {
2775                         **to = *from;
2776                         *to += 1;
2777                 }
2778                 from += 1;
2779                 current_size += 1;
2780         }
2781 }
2782
2783 static int selinux_sb_copy_data(char *orig, char *copy)
2784 {
2785         int fnosec, fsec, rc = 0;
2786         char *in_save, *in_curr, *in_end;
2787         char *sec_curr, *nosec_save, *nosec;
2788         int open_quote = 0;
2789
2790         in_curr = orig;
2791         sec_curr = copy;
2792
2793         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2794         if (!nosec) {
2795                 rc = -ENOMEM;
2796                 goto out;
2797         }
2798
2799         nosec_save = nosec;
2800         fnosec = fsec = 1;
2801         in_save = in_end = orig;
2802
2803         do {
2804                 if (*in_end == '"')
2805                         open_quote = !open_quote;
2806                 if ((*in_end == ',' && open_quote == 0) ||
2807                                 *in_end == '\0') {
2808                         int len = in_end - in_curr;
2809
2810                         if (selinux_option(in_curr, len))
2811                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2812                         else
2813                                 take_option(&nosec, in_curr, &fnosec, len);
2814
2815                         in_curr = in_end + 1;
2816                 }
2817         } while (*in_end++);
2818
2819         strcpy(in_save, nosec_save);
2820         free_page((unsigned long)nosec_save);
2821 out:
2822         return rc;
2823 }
2824
2825 static int selinux_sb_remount(struct super_block *sb, void *data)
2826 {
2827         int rc, i, *flags;
2828         struct security_mnt_opts opts;
2829         char *secdata, **mount_options;
2830         struct superblock_security_struct *sbsec = sb->s_security;
2831
2832         if (!(sbsec->flags & SE_SBINITIALIZED))
2833                 return 0;
2834
2835         if (!data)
2836                 return 0;
2837
2838         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2839                 return 0;
2840
2841         security_init_mnt_opts(&opts);
2842         secdata = alloc_secdata();
2843         if (!secdata)
2844                 return -ENOMEM;
2845         rc = selinux_sb_copy_data(data, secdata);
2846         if (rc)
2847                 goto out_free_secdata;
2848
2849         rc = selinux_parse_opts_str(secdata, &opts);
2850         if (rc)
2851                 goto out_free_secdata;
2852
2853         mount_options = opts.mnt_opts;
2854         flags = opts.mnt_opts_flags;
2855
2856         for (i = 0; i < opts.num_mnt_opts; i++) {
2857                 u32 sid;
2858
2859                 if (flags[i] == SBLABEL_MNT)
2860                         continue;
2861                 rc = security_context_str_to_sid(&selinux_state,
2862                                                  mount_options[i], &sid,
2863                                                  GFP_KERNEL);
2864                 if (rc) {
2865                         printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2866                                "(%s) failed for (dev %s, type %s) errno=%d\n",
2867                                mount_options[i], sb->s_id, sb->s_type->name, rc);
2868                         goto out_free_opts;
2869                 }
2870                 rc = -EINVAL;
2871                 switch (flags[i]) {
2872                 case FSCONTEXT_MNT:
2873                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2874                                 goto out_bad_option;
2875                         break;
2876                 case CONTEXT_MNT:
2877                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2878                                 goto out_bad_option;
2879                         break;
2880                 case ROOTCONTEXT_MNT: {
2881                         struct inode_security_struct *root_isec;
2882                         root_isec = backing_inode_security(sb->s_root);
2883
2884                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2885                                 goto out_bad_option;
2886                         break;
2887                 }
2888                 case DEFCONTEXT_MNT:
2889                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2890                                 goto out_bad_option;
2891                         break;
2892                 default:
2893                         goto out_free_opts;
2894                 }
2895         }
2896
2897         rc = 0;
2898 out_free_opts:
2899         security_free_mnt_opts(&opts);
2900 out_free_secdata:
2901         free_secdata(secdata);
2902         return rc;
2903 out_bad_option:
2904         printk(KERN_WARNING "SELinux: unable to change security options "
2905                "during remount (dev %s, type=%s)\n", sb->s_id,
2906                sb->s_type->name);
2907         goto out_free_opts;
2908 }
2909
2910 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2911 {
2912         const struct cred *cred = current_cred();
2913         struct common_audit_data ad;
2914         int rc;
2915
2916         rc = superblock_doinit(sb, data);
2917         if (rc)
2918                 return rc;
2919
2920         /* Allow all mounts performed by the kernel */
2921         if (flags & MS_KERNMOUNT)
2922                 return 0;
2923
2924         ad.type = LSM_AUDIT_DATA_DENTRY;
2925         ad.u.dentry = sb->s_root;
2926         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2927 }
2928
2929 static int selinux_sb_statfs(struct dentry *dentry)
2930 {
2931         const struct cred *cred = current_cred();
2932         struct common_audit_data ad;
2933
2934         ad.type = LSM_AUDIT_DATA_DENTRY;
2935         ad.u.dentry = dentry->d_sb->s_root;
2936         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2937 }
2938
2939 static int selinux_mount(const char *dev_name,
2940                          const struct path *path,
2941                          const char *type,
2942                          unsigned long flags,
2943                          void *data)
2944 {
2945         const struct cred *cred = current_cred();
2946
2947         if (flags & MS_REMOUNT)
2948                 return superblock_has_perm(cred, path->dentry->d_sb,
2949                                            FILESYSTEM__REMOUNT, NULL);
2950         else
2951                 return path_has_perm(cred, path, FILE__MOUNTON);
2952 }
2953
2954 static int selinux_umount(struct vfsmount *mnt, int flags)
2955 {
2956         const struct cred *cred = current_cred();
2957
2958         return superblock_has_perm(cred, mnt->mnt_sb,
2959                                    FILESYSTEM__UNMOUNT, NULL);
2960 }
2961
2962 /* inode security operations */
2963
2964 static int selinux_inode_alloc_security(struct inode *inode)
2965 {
2966         return inode_alloc_security(inode);
2967 }
2968
2969 static void selinux_inode_free_security(struct inode *inode)
2970 {
2971         inode_free_security(inode);
2972 }
2973
2974 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2975                                         const struct qstr *name, void **ctx,
2976                                         u32 *ctxlen)
2977 {
2978         u32 newsid;
2979         int rc;
2980
2981         rc = selinux_determine_inode_label(current_security(),
2982                                            d_inode(dentry->d_parent), name,
2983                                            inode_mode_to_security_class(mode),
2984                                            &newsid);
2985         if (rc)
2986                 return rc;
2987
2988         return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2989                                        ctxlen);
2990 }
2991
2992 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2993                                           struct qstr *name,
2994                                           const struct cred *old,
2995                                           struct cred *new)
2996 {
2997         u32 newsid;
2998         int rc;
2999         struct task_security_struct *tsec;
3000
3001         rc = selinux_determine_inode_label(old->security,
3002                                            d_inode(dentry->d_parent), name,
3003                                            inode_mode_to_security_class(mode),
3004                                            &newsid);
3005         if (rc)
3006                 return rc;
3007
3008         tsec = new->security;
3009         tsec->create_sid = newsid;
3010         return 0;
3011 }
3012
3013 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3014                                        const struct qstr *qstr,
3015                                        const char **name,
3016                                        void **value, size_t *len)
3017 {
3018         const struct task_security_struct *tsec = current_security();
3019         struct superblock_security_struct *sbsec;
3020         u32 newsid, clen;
3021         int rc;
3022         char *context;
3023
3024         sbsec = dir->i_sb->s_security;
3025
3026         newsid = tsec->create_sid;
3027
3028         rc = selinux_determine_inode_label(current_security(),
3029                 dir, qstr,
3030                 inode_mode_to_security_class(inode->i_mode),
3031                 &newsid);
3032         if (rc)
3033                 return rc;
3034
3035         /* Possibly defer initialization to selinux_complete_init. */
3036         if (sbsec->flags & SE_SBINITIALIZED) {
3037                 struct inode_security_struct *isec = inode->i_security;
3038                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3039                 isec->sid = newsid;
3040                 isec->initialized = LABEL_INITIALIZED;
3041         }
3042
3043         if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3044                 return -EOPNOTSUPP;
3045
3046         if (name)
3047                 *name = XATTR_SELINUX_SUFFIX;
3048
3049         if (value && len) {
3050                 rc = security_sid_to_context_force(&selinux_state, newsid,
3051                                                    &context, &clen);
3052                 if (rc)
3053                         return rc;
3054                 *value = context;
3055                 *len = clen;
3056         }
3057
3058         return 0;
3059 }
3060
3061 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3062 {
3063         return may_create(dir, dentry, SECCLASS_FILE);
3064 }
3065
3066 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3067 {
3068         return may_link(dir, old_dentry, MAY_LINK);
3069 }
3070
3071 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3072 {
3073         return may_link(dir, dentry, MAY_UNLINK);
3074 }
3075
3076 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3077 {
3078         return may_create(dir, dentry, SECCLASS_LNK_FILE);
3079 }
3080
3081 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3082 {
3083         return may_create(dir, dentry, SECCLASS_DIR);
3084 }
3085
3086 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3087 {
3088         return may_link(dir, dentry, MAY_RMDIR);
3089 }
3090
3091 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3092 {
3093         return may_create(dir, dentry, inode_mode_to_security_class(mode));
3094 }
3095
3096 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3097                                 struct inode *new_inode, struct dentry *new_dentry)
3098 {
3099         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3100 }
3101
3102 static int selinux_inode_readlink(struct dentry *dentry)
3103 {
3104         const struct cred *cred = current_cred();
3105
3106         return dentry_has_perm(cred, dentry, FILE__READ);
3107 }
3108
3109 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3110                                      bool rcu)
3111 {
3112         const struct cred *cred = current_cred();
3113         struct common_audit_data ad;
3114         struct inode_security_struct *isec;
3115         u32 sid;
3116
3117         validate_creds(cred);
3118
3119         ad.type = LSM_AUDIT_DATA_DENTRY;
3120         ad.u.dentry = dentry;
3121         sid = cred_sid(cred);
3122         isec = inode_security_rcu(inode, rcu);
3123         if (IS_ERR(isec))
3124                 return PTR_ERR(isec);
3125
3126         return avc_has_perm_flags(&selinux_state,
3127                                   sid, isec->sid, isec->sclass, FILE__READ, &ad,
3128                                   rcu ? MAY_NOT_BLOCK : 0);
3129 }
3130
3131 static noinline int audit_inode_permission(struct inode *inode,
3132                                            u32 perms, u32 audited, u32 denied,
3133                                            int result,
3134                                            unsigned flags)
3135 {
3136         struct common_audit_data ad;
3137         struct inode_security_struct *isec = inode->i_security;
3138         int rc;
3139
3140         ad.type = LSM_AUDIT_DATA_INODE;
3141         ad.u.inode = inode;
3142
3143         rc = slow_avc_audit(&selinux_state,
3144                             current_sid(), isec->sid, isec->sclass, perms,
3145                             audited, denied, result, &ad, flags);
3146         if (rc)
3147                 return rc;
3148         return 0;
3149 }
3150
3151 static int selinux_inode_permission(struct inode *inode, int mask)
3152 {
3153         const struct cred *cred = current_cred();
3154         u32 perms;
3155         bool from_access;
3156         unsigned flags = mask & MAY_NOT_BLOCK;
3157         struct inode_security_struct *isec;
3158         u32 sid;
3159         struct av_decision avd;
3160         int rc, rc2;
3161         u32 audited, denied;
3162
3163         from_access = mask & MAY_ACCESS;
3164         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3165
3166         /* No permission to check.  Existence test. */
3167         if (!mask)
3168                 return 0;
3169
3170         validate_creds(cred);
3171
3172         if (unlikely(IS_PRIVATE(inode)))
3173                 return 0;
3174
3175         perms = file_mask_to_av(inode->i_mode, mask);
3176
3177         sid = cred_sid(cred);
3178         isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3179         if (IS_ERR(isec))
3180                 return PTR_ERR(isec);
3181
3182         rc = avc_has_perm_noaudit(&selinux_state,
3183                                   sid, isec->sid, isec->sclass, perms, 0, &avd);
3184         audited = avc_audit_required(perms, &avd, rc,
3185                                      from_access ? FILE__AUDIT_ACCESS : 0,
3186                                      &denied);
3187         if (likely(!audited))
3188                 return rc;
3189
3190         rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3191         if (rc2)
3192                 return rc2;
3193         return rc;
3194 }
3195
3196 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3197 {
3198         const struct cred *cred = current_cred();
3199         struct inode *inode = d_backing_inode(dentry);
3200         unsigned int ia_valid = iattr->ia_valid;
3201         __u32 av = FILE__WRITE;
3202
3203         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3204         if (ia_valid & ATTR_FORCE) {
3205                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3206                               ATTR_FORCE);
3207                 if (!ia_valid)
3208                         return 0;
3209         }
3210
3211         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3212                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3213                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3214
3215         if (selinux_policycap_openperm() &&
3216             inode->i_sb->s_magic != SOCKFS_MAGIC &&
3217             (ia_valid & ATTR_SIZE) &&
3218             !(ia_valid & ATTR_FILE))
3219                 av |= FILE__OPEN;
3220
3221         return dentry_has_perm(cred, dentry, av);
3222 }
3223
3224 static int selinux_inode_getattr(const struct path *path)
3225 {
3226         return path_has_perm(current_cred(), path, FILE__GETATTR);
3227 }
3228
3229 static bool has_cap_mac_admin(bool audit)
3230 {
3231         const struct cred *cred = current_cred();
3232         int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3233
3234         if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3235                 return false;
3236         if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3237                 return false;
3238         return true;
3239 }
3240
3241 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3242                                   const void *value, size_t size, int flags)
3243 {
3244         struct inode *inode = d_backing_inode(dentry);
3245         struct inode_security_struct *isec;
3246         struct superblock_security_struct *sbsec;
3247         struct common_audit_data ad;
3248         u32 newsid, sid = current_sid();
3249         int rc = 0;
3250
3251         if (strcmp(name, XATTR_NAME_SELINUX)) {
3252                 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3253                 if (rc)
3254                         return rc;
3255
3256                 /* Not an attribute we recognize, so just check the
3257                    ordinary setattr permission. */
3258                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3259         }
3260
3261         sbsec = inode->i_sb->s_security;
3262         if (!(sbsec->flags & SBLABEL_MNT))
3263                 return -EOPNOTSUPP;
3264
3265         if (!inode_owner_or_capable(inode))
3266                 return -EPERM;
3267
3268         ad.type = LSM_AUDIT_DATA_DENTRY;
3269         ad.u.dentry = dentry;
3270
3271         isec = backing_inode_security(dentry);
3272         rc = avc_has_perm(&selinux_state,
3273                           sid, isec->sid, isec->sclass,
3274                           FILE__RELABELFROM, &ad);
3275         if (rc)
3276                 return rc;
3277
3278         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3279                                      GFP_KERNEL);
3280         if (rc == -EINVAL) {
3281                 if (!has_cap_mac_admin(true)) {
3282                         struct audit_buffer *ab;
3283                         size_t audit_size;
3284
3285                         /* We strip a nul only if it is at the end, otherwise the
3286                          * context contains a nul and we should audit that */
3287                         if (value) {
3288                                 const char *str = value;
3289
3290                                 if (str[size - 1] == '\0')
3291                                         audit_size = size - 1;
3292                                 else
3293                                         audit_size = size;
3294                         } else {
3295                                 audit_size = 0;
3296                         }
3297                         ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3298                         audit_log_format(ab, "op=setxattr invalid_context=");
3299                         audit_log_n_untrustedstring(ab, value, audit_size);
3300                         audit_log_end(ab);
3301
3302                         return rc;
3303                 }
3304                 rc = security_context_to_sid_force(&selinux_state, value,
3305                                                    size, &newsid);
3306         }
3307         if (rc)
3308                 return rc;
3309
3310         rc = avc_has_perm(&selinux_state,
3311                           sid, newsid, isec->sclass,
3312                           FILE__RELABELTO, &ad);
3313         if (rc)
3314                 return rc;
3315
3316         rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3317                                           sid, isec->sclass);
3318         if (rc)
3319                 return rc;
3320
3321         return avc_has_perm(&selinux_state,
3322                             newsid,
3323                             sbsec->sid,
3324                             SECCLASS_FILESYSTEM,
3325                             FILESYSTEM__ASSOCIATE,
3326                             &ad);
3327 }
3328
3329 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3330                                         const void *value, size_t size,
3331                                         int flags)
3332 {
3333         struct inode *inode = d_backing_inode(dentry);
3334         struct inode_security_struct *isec;
3335         u32 newsid;
3336         int rc;
3337
3338         if (strcmp(name, XATTR_NAME_SELINUX)) {
3339                 /* Not an attribute we recognize, so nothing to do. */
3340                 return;
3341         }
3342
3343         rc = security_context_to_sid_force(&selinux_state, value, size,
3344                                            &newsid);
3345         if (rc) {
3346                 printk(KERN_ERR "SELinux:  unable to map context to SID"
3347                        "for (%s, %lu), rc=%d\n",
3348                        inode->i_sb->s_id, inode->i_ino, -rc);
3349                 return;
3350         }
3351
3352         isec = backing_inode_security(dentry);
3353         spin_lock(&isec->lock);
3354         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3355         isec->sid = newsid;
3356         isec->initialized = LABEL_INITIALIZED;
3357         spin_unlock(&isec->lock);
3358
3359         return;
3360 }
3361
3362 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3363 {
3364         const struct cred *cred = current_cred();
3365
3366         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3367 }
3368
3369 static int selinux_inode_listxattr(struct dentry *dentry)
3370 {
3371         const struct cred *cred = current_cred();
3372
3373         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3374 }
3375
3376 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3377 {
3378         if (strcmp(name, XATTR_NAME_SELINUX)) {
3379                 int rc = cap_inode_removexattr(dentry, name);
3380                 if (rc)
3381                         return rc;
3382
3383                 /* Not an attribute we recognize, so just check the
3384                    ordinary setattr permission. */
3385                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3386         }
3387
3388         /* No one is allowed to remove a SELinux security label.
3389            You can change the label, but all data must be labeled. */
3390         return -EACCES;
3391 }
3392
3393 /*
3394  * Copy the inode security context value to the user.
3395  *
3396  * Permission check is handled by selinux_inode_getxattr hook.
3397  */
3398 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3399 {
3400         u32 size;
3401         int error;
3402         char *context = NULL;
3403         struct inode_security_struct *isec;
3404
3405         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3406                 return -EOPNOTSUPP;
3407
3408         /*
3409          * If the caller has CAP_MAC_ADMIN, then get the raw context
3410          * value even if it is not defined by current policy; otherwise,
3411          * use the in-core value under current policy.
3412          * Use the non-auditing forms of the permission checks since
3413          * getxattr may be called by unprivileged processes commonly
3414          * and lack of permission just means that we fall back to the
3415          * in-core context value, not a denial.
3416          */
3417         isec = inode_security(inode);
3418         if (has_cap_mac_admin(false))
3419                 error = security_sid_to_context_force(&selinux_state,
3420                                                       isec->sid, &context,
3421                                                       &size);
3422         else
3423                 error = security_sid_to_context(&selinux_state, isec->sid,
3424                                                 &context, &size);
3425         if (error)
3426                 return error;
3427         error = size;
3428         if (alloc) {
3429                 *buffer = context;
3430                 goto out_nofree;
3431         }
3432         kfree(context);
3433 out_nofree:
3434         return error;
3435 }
3436
3437 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3438                                      const void *value, size_t size, int flags)
3439 {
3440         struct inode_security_struct *isec = inode_security_novalidate(inode);
3441         u32 newsid;
3442         int rc;
3443
3444         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3445                 return -EOPNOTSUPP;
3446
3447         if (!value || !size)
3448                 return -EACCES;
3449
3450         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451                                      GFP_KERNEL);
3452         if (rc)
3453                 return rc;
3454
3455         spin_lock(&isec->lock);
3456         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457         isec->sid = newsid;
3458         isec->initialized = LABEL_INITIALIZED;
3459         spin_unlock(&isec->lock);
3460         return 0;
3461 }
3462
3463 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464 {
3465         const int len = sizeof(XATTR_NAME_SELINUX);
3466         if (buffer && len <= buffer_size)
3467                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3468         return len;
3469 }
3470
3471 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3472 {
3473         struct inode_security_struct *isec = inode_security_novalidate(inode);
3474         *secid = isec->sid;
3475 }
3476
3477 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3478 {
3479         u32 sid;
3480         struct task_security_struct *tsec;
3481         struct cred *new_creds = *new;
3482
3483         if (new_creds == NULL) {
3484                 new_creds = prepare_creds();
3485                 if (!new_creds)
3486                         return -ENOMEM;
3487         }
3488
3489         tsec = new_creds->security;
3490         /* Get label from overlay inode and set it in create_sid */
3491         selinux_inode_getsecid(d_inode(src), &sid);
3492         tsec->create_sid = sid;
3493         *new = new_creds;
3494         return 0;
3495 }
3496
3497 static int selinux_inode_copy_up_xattr(const char *name)
3498 {
3499         /* The copy_up hook above sets the initial context on an inode, but we
3500          * don't then want to overwrite it by blindly copying all the lower
3501          * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3502          */
3503         if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3504                 return 1; /* Discard */
3505         /*
3506          * Any other attribute apart from SELINUX is not claimed, supported
3507          * by selinux.
3508          */
3509         return -EOPNOTSUPP;
3510 }
3511
3512 /* file security operations */
3513
3514 static int selinux_revalidate_file_permission(struct file *file, int mask)
3515 {
3516         const struct cred *cred = current_cred();
3517         struct inode *inode = file_inode(file);
3518
3519         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3520         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3521                 mask |= MAY_APPEND;
3522
3523         return file_has_perm(cred, file,
3524                              file_mask_to_av(inode->i_mode, mask));
3525 }
3526
3527 static int selinux_file_permission(struct file *file, int mask)
3528 {
3529         struct inode *inode = file_inode(file);
3530         struct file_security_struct *fsec = file->f_security;
3531         struct inode_security_struct *isec;
3532         u32 sid = current_sid();
3533
3534         if (!mask)
3535                 /* No permission to check.  Existence test. */
3536                 return 0;
3537
3538         isec = inode_security(inode);
3539         if (sid == fsec->sid && fsec->isid == isec->sid &&
3540             fsec->pseqno == avc_policy_seqno(&selinux_state))
3541                 /* No change since file_open check. */
3542                 return 0;
3543
3544         return selinux_revalidate_file_permission(file, mask);
3545 }
3546
3547 static int selinux_file_alloc_security(struct file *file)
3548 {
3549         return file_alloc_security(file);
3550 }
3551
3552 static void selinux_file_free_security(struct file *file)
3553 {
3554         file_free_security(file);
3555 }
3556
3557 /*
3558  * Check whether a task has the ioctl permission and cmd
3559  * operation to an inode.
3560  */
3561 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3562                 u32 requested, u16 cmd)
3563 {
3564         struct common_audit_data ad;
3565         struct file_security_struct *fsec = file->f_security;
3566         struct inode *inode = file_inode(file);
3567         struct inode_security_struct *isec;
3568         struct lsm_ioctlop_audit ioctl;
3569         u32 ssid = cred_sid(cred);
3570         int rc;
3571         u8 driver = cmd >> 8;
3572         u8 xperm = cmd & 0xff;
3573
3574         ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3575         ad.u.op = &ioctl;
3576         ad.u.op->cmd = cmd;
3577         ad.u.op->path = file->f_path;
3578
3579         if (ssid != fsec->sid) {
3580                 rc = avc_has_perm(&selinux_state,
3581                                   ssid, fsec->sid,
3582                                 SECCLASS_FD,
3583                                 FD__USE,
3584                                 &ad);
3585                 if (rc)
3586                         goto out;
3587         }
3588
3589         if (unlikely(IS_PRIVATE(inode)))
3590                 return 0;
3591
3592         isec = inode_security(inode);
3593         rc = avc_has_extended_perms(&selinux_state,
3594                                     ssid, isec->sid, isec->sclass,
3595                                     requested, driver, xperm, &ad);
3596 out:
3597         return rc;
3598 }
3599
3600 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3601                               unsigned long arg)
3602 {
3603         const struct cred *cred = current_cred();
3604         int error = 0;
3605
3606         switch (cmd) {
3607         case FIONREAD:
3608         /* fall through */
3609         case FIBMAP:
3610         /* fall through */
3611         case FIGETBSZ:
3612         /* fall through */
3613         case FS_IOC_GETFLAGS:
3614         /* fall through */
3615         case FS_IOC_GETVERSION:
3616                 error = file_has_perm(cred, file, FILE__GETATTR);
3617                 break;
3618
3619         case FS_IOC_SETFLAGS:
3620         /* fall through */
3621         case FS_IOC_SETVERSION:
3622                 error = file_has_perm(cred, file, FILE__SETATTR);
3623                 break;
3624
3625         /* sys_ioctl() checks */
3626         case FIONBIO:
3627         /* fall through */
3628         case FIOASYNC:
3629                 error = file_has_perm(cred, file, 0);
3630                 break;
3631
3632         case KDSKBENT:
3633         case KDSKBSENT:
3634                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3635                                             SECURITY_CAP_AUDIT, true);
3636                 break;
3637
3638         /* default case assumes that the command will go
3639          * to the file's ioctl() function.
3640          */
3641         default:
3642                 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3643         }
3644         return error;
3645 }
3646
3647 static int default_noexec;
3648
3649 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3650 {
3651         const struct cred *cred = current_cred();
3652         u32 sid = cred_sid(cred);
3653         int rc = 0;
3654
3655         if (default_noexec &&
3656             (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3657                                    (!shared && (prot & PROT_WRITE)))) {
3658                 /*
3659                  * We are making executable an anonymous mapping or a
3660                  * private file mapping that will also be writable.
3661                  * This has an additional check.
3662                  */
3663                 rc = avc_has_perm(&selinux_state,
3664                                   sid, sid, SECCLASS_PROCESS,
3665                                   PROCESS__EXECMEM, NULL);
3666                 if (rc)
3667                         goto error;
3668         }
3669
3670         if (file) {
3671                 /* read access is always possible with a mapping */
3672                 u32 av = FILE__READ;
3673
3674                 /* write access only matters if the mapping is shared */
3675                 if (shared && (prot & PROT_WRITE))
3676                         av |= FILE__WRITE;
3677
3678                 if (prot & PROT_EXEC)
3679                         av |= FILE__EXECUTE;
3680
3681                 return file_has_perm(cred, file, av);
3682         }
3683
3684 error:
3685         return rc;
3686 }
3687
3688 static int selinux_mmap_addr(unsigned long addr)
3689 {
3690         int rc = 0;
3691
3692         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3693                 u32 sid = current_sid();
3694                 rc = avc_has_perm(&selinux_state,
3695                                   sid, sid, SECCLASS_MEMPROTECT,
3696                                   MEMPROTECT__MMAP_ZERO, NULL);
3697         }
3698
3699         return rc;
3700 }
3701
3702 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3703                              unsigned long prot, unsigned long flags)
3704 {
3705         struct common_audit_data ad;
3706         int rc;
3707
3708         if (file) {
3709                 ad.type = LSM_AUDIT_DATA_FILE;
3710                 ad.u.file = file;
3711                 rc = inode_has_perm(current_cred(), file_inode(file),
3712                                     FILE__MAP, &ad);
3713                 if (rc)
3714                         return rc;
3715         }
3716
3717         if (selinux_state.checkreqprot)
3718                 prot = reqprot;
3719
3720         return file_map_prot_check(file, prot,
3721                                    (flags & MAP_TYPE) == MAP_SHARED);
3722 }
3723
3724 static int selinux_file_mprotect(struct vm_area_struct *vma,
3725                                  unsigned long reqprot,
3726                                  unsigned long prot)
3727 {
3728         const struct cred *cred = current_cred();
3729         u32 sid = cred_sid(cred);
3730
3731         if (selinux_state.checkreqprot)
3732                 prot = reqprot;
3733
3734         if (default_noexec &&
3735             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3736                 int rc = 0;
3737                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3738                     vma->vm_end <= vma->vm_mm->brk) {
3739                         rc = avc_has_perm(&selinux_state,
3740                                           sid, sid, SECCLASS_PROCESS,
3741                                           PROCESS__EXECHEAP, NULL);
3742                 } else if (!vma->vm_file &&
3743                            ((vma->vm_start <= vma->vm_mm->start_stack &&
3744                              vma->vm_end >= vma->vm_mm->start_stack) ||
3745                             vma_is_stack_for_current(vma))) {
3746                         rc = avc_has_perm(&selinux_state,
3747                                           sid, sid, SECCLASS_PROCESS,
3748                                           PROCESS__EXECSTACK, NULL);
3749                 } else if (vma->vm_file && vma->anon_vma) {
3750                         /*
3751                          * We are making executable a file mapping that has
3752                          * had some COW done. Since pages might have been
3753                          * written, check ability to execute the possibly
3754                          * modified content.  This typically should only
3755                          * occur for text relocations.
3756                          */
3757                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3758                 }
3759                 if (rc)
3760                         return rc;
3761         }
3762
3763         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3764 }
3765
3766 static int selinux_file_lock(struct file *file, unsigned int cmd)
3767 {
3768         const struct cred *cred = current_cred();
3769
3770         return file_has_perm(cred, file, FILE__LOCK);
3771 }
3772
3773 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3774                               unsigned long arg)
3775 {
3776         const struct cred *cred = current_cred();
3777         int err = 0;
3778
3779         switch (cmd) {
3780         case F_SETFL:
3781                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3782                         err = file_has_perm(cred, file, FILE__WRITE);
3783                         break;
3784                 }
3785                 /* fall through */
3786         case F_SETOWN:
3787         case F_SETSIG:
3788         case F_GETFL:
3789         case F_GETOWN:
3790         case F_GETSIG:
3791         case F_GETOWNER_UIDS:
3792                 /* Just check FD__USE permission */
3793                 err = file_has_perm(cred, file, 0);
3794                 break;
3795         case F_GETLK:
3796         case F_SETLK:
3797         case F_SETLKW:
3798         case F_OFD_GETLK:
3799         case F_OFD_SETLK:
3800         case F_OFD_SETLKW:
3801 #if BITS_PER_LONG == 32
3802         case F_GETLK64:
3803         case F_SETLK64:
3804         case F_SETLKW64:
3805 #endif
3806                 err = file_has_perm(cred, file, FILE__LOCK);
3807                 break;
3808         }
3809
3810         return err;
3811 }
3812
3813 static void selinux_file_set_fowner(struct file *file)
3814 {
3815         struct file_security_struct *fsec;
3816
3817         fsec = file->f_security;
3818         fsec->fown_sid = current_sid();
3819 }
3820
3821 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3822                                        struct fown_struct *fown, int signum)
3823 {
3824         struct file *file;
3825         u32 sid = task_sid(tsk);
3826         u32 perm;
3827         struct file_security_struct *fsec;
3828
3829         /* struct fown_struct is never outside the context of a struct file */
3830         file = container_of(fown, struct file, f_owner);
3831
3832         fsec = file->f_security;
3833
3834         if (!signum)
3835                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3836         else
3837                 perm = signal_to_av(signum);
3838
3839         return avc_has_perm(&selinux_state,
3840                             fsec->fown_sid, sid,
3841                             SECCLASS_PROCESS, perm, NULL);
3842 }
3843
3844 static int selinux_file_receive(struct file *file)
3845 {
3846         const struct cred *cred = current_cred();
3847
3848         return file_has_perm(cred, file, file_to_av(file));
3849 }
3850
3851 static int selinux_file_open(struct file *file, const struct cred *cred)
3852 {
3853         struct file_security_struct *fsec;
3854         struct inode_security_struct *isec;
3855
3856         fsec = file->f_security;
3857         isec = inode_security(file_inode(file));
3858         /*
3859          * Save inode label and policy sequence number
3860          * at open-time so that selinux_file_permission
3861          * can determine whether revalidation is necessary.
3862          * Task label is already saved in the file security
3863          * struct as its SID.
3864          */
3865         fsec->isid = isec->sid;
3866         fsec->pseqno = avc_policy_seqno(&selinux_state);
3867         /*
3868          * Since the inode label or policy seqno may have changed
3869          * between the selinux_inode_permission check and the saving
3870          * of state above, recheck that access is still permitted.
3871          * Otherwise, access might never be revalidated against the
3872          * new inode label or new policy.
3873          * This check is not redundant - do not remove.
3874          */
3875         return file_path_has_perm(cred, file, open_file_to_av(file));
3876 }
3877
3878 /* task security operations */
3879
3880 static int selinux_task_alloc(struct task_struct *task,
3881                               unsigned long clone_flags)
3882 {
3883         u32 sid = current_sid();
3884
3885         return avc_has_perm(&selinux_state,
3886                             sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3887 }
3888
3889 /*
3890  * allocate the SELinux part of blank credentials
3891  */
3892 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3893 {
3894         struct task_security_struct *tsec;
3895
3896         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3897         if (!tsec)
3898                 return -ENOMEM;
3899
3900         cred->security = tsec;
3901         return 0;
3902 }
3903
3904 /*
3905  * detach and free the LSM part of a set of credentials
3906  */
3907 static void selinux_cred_free(struct cred *cred)
3908 {
3909         struct task_security_struct *tsec = cred->security;
3910
3911         /*
3912          * cred->security == NULL if security_cred_alloc_blank() or
3913          * security_prepare_creds() returned an error.
3914          */
3915         BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3916         cred->security = (void *) 0x7UL;
3917         kfree(tsec);
3918 }
3919
3920 /*
3921  * prepare a new set of credentials for modification
3922  */
3923 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3924                                 gfp_t gfp)
3925 {
3926         const struct task_security_struct *old_tsec;
3927         struct task_security_struct *tsec;
3928
3929         old_tsec = old->security;
3930
3931         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3932         if (!tsec)
3933                 return -ENOMEM;
3934
3935         new->security = tsec;
3936         return 0;
3937 }
3938
3939 /*
3940  * transfer the SELinux data to a blank set of creds
3941  */
3942 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3943 {
3944         const struct task_security_struct *old_tsec = old->security;
3945         struct task_security_struct *tsec = new->security;
3946
3947         *tsec = *old_tsec;
3948 }
3949
3950 /*
3951  * set the security data for a kernel service
3952  * - all the creation contexts are set to unlabelled
3953  */
3954 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3955 {
3956         struct task_security_struct *tsec = new->security;
3957         u32 sid = current_sid();
3958         int ret;
3959
3960         ret = avc_has_perm(&selinux_state,
3961                            sid, secid,
3962                            SECCLASS_KERNEL_SERVICE,
3963                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3964                            NULL);
3965         if (ret == 0) {
3966                 tsec->sid = secid;
3967                 tsec->create_sid = 0;
3968                 tsec->keycreate_sid = 0;
3969                 tsec->sockcreate_sid = 0;
3970         }
3971         return ret;
3972 }
3973
3974 /*
3975  * set the file creation context in a security record to the same as the
3976  * objective context of the specified inode
3977  */
3978 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3979 {
3980         struct inode_security_struct *isec = inode_security(inode);
3981         struct task_security_struct *tsec = new->security;
3982         u32 sid = current_sid();
3983         int ret;
3984
3985         ret = avc_has_perm(&selinux_state,
3986                            sid, isec->sid,
3987                            SECCLASS_KERNEL_SERVICE,
3988                            KERNEL_SERVICE__CREATE_FILES_AS,
3989                            NULL);
3990
3991         if (ret == 0)
3992                 tsec->create_sid = isec->sid;
3993         return ret;
3994 }
3995
3996 static int selinux_kernel_module_request(char *kmod_name)
3997 {
3998         struct common_audit_data ad;
3999
4000         ad.type = LSM_AUDIT_DATA_KMOD;
4001         ad.u.kmod_name = kmod_name;
4002
4003         return avc_has_perm(&selinux_state,
4004                             current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4005                             SYSTEM__MODULE_REQUEST, &ad);
4006 }
4007
4008 static int selinux_kernel_module_from_file(struct file *file)
4009 {
4010         struct common_audit_data ad;
4011         struct inode_security_struct *isec;
4012         struct file_security_struct *fsec;
4013         u32 sid = current_sid();
4014         int rc;
4015
4016         /* init_module */
4017         if (file == NULL)
4018                 return avc_has_perm(&selinux_state,
4019                                     sid, sid, SECCLASS_SYSTEM,
4020                                         SYSTEM__MODULE_LOAD, NULL);
4021
4022         /* finit_module */
4023
4024         ad.type = LSM_AUDIT_DATA_FILE;
4025         ad.u.file = file;
4026
4027         fsec = file->f_security;
4028         if (sid != fsec->sid) {
4029                 rc = avc_has_perm(&selinux_state,
4030                                   sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4031                 if (rc)
4032                         return rc;
4033         }
4034
4035         isec = inode_security(file_inode(file));
4036         return avc_has_perm(&selinux_state,
4037                             sid, isec->sid, SECCLASS_SYSTEM,
4038                                 SYSTEM__MODULE_LOAD, &ad);
4039 }
4040
4041 static int selinux_kernel_read_file(struct file *file,
4042                                     enum kernel_read_file_id id)
4043 {
4044         int rc = 0;
4045
4046         switch (id) {
4047         case READING_MODULE:
4048                 rc = selinux_kernel_module_from_file(file);
4049                 break;
4050         default:
4051                 break;
4052         }
4053
4054         return rc;
4055 }
4056
4057 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4058 {
4059         return avc_has_perm(&selinux_state,
4060                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4061                             PROCESS__SETPGID, NULL);
4062 }
4063
4064 static int selinux_task_getpgid(struct task_struct *p)
4065 {
4066         return avc_has_perm(&selinux_state,
4067                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4068                             PROCESS__GETPGID, NULL);
4069 }
4070
4071 static int selinux_task_getsid(struct task_struct *p)
4072 {
4073         return avc_has_perm(&selinux_state,
4074                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4075                             PROCESS__GETSESSION, NULL);
4076 }
4077
4078 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4079 {
4080         *secid = task_sid(p);
4081 }
4082
4083 static int selinux_task_setnice(struct task_struct *p, int nice)
4084 {
4085         return avc_has_perm(&selinux_state,
4086                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4087                             PROCESS__SETSCHED, NULL);
4088 }
4089
4090 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4091 {
4092         return avc_has_perm(&selinux_state,
4093                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4094                             PROCESS__SETSCHED, NULL);
4095 }
4096
4097 static int selinux_task_getioprio(struct task_struct *p)
4098 {
4099         return avc_has_perm(&selinux_state,
4100                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4101                             PROCESS__GETSCHED, NULL);
4102 }
4103
4104 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4105                                 unsigned int flags)
4106 {
4107         u32 av = 0;
4108
4109         if (!flags)
4110                 return 0;
4111         if (flags & LSM_PRLIMIT_WRITE)
4112                 av |= PROCESS__SETRLIMIT;
4113         if (flags & LSM_PRLIMIT_READ)
4114                 av |= PROCESS__GETRLIMIT;
4115         return avc_has_perm(&selinux_state,
4116                             cred_sid(cred), cred_sid(tcred),
4117                             SECCLASS_PROCESS, av, NULL);
4118 }
4119
4120 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4121                 struct rlimit *new_rlim)
4122 {
4123         struct rlimit *old_rlim = p->signal->rlim + resource;
4124
4125         /* Control the ability to change the hard limit (whether
4126            lowering or raising it), so that the hard limit can
4127            later be used as a safe reset point for the soft limit
4128            upon context transitions.  See selinux_bprm_committing_creds. */
4129         if (old_rlim->rlim_max != new_rlim->rlim_max)
4130                 return avc_has_perm(&selinux_state,
4131                                     current_sid(), task_sid(p),
4132                                     SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4133
4134         return 0;
4135 }
4136
4137 static int selinux_task_setscheduler(struct task_struct *p)
4138 {
4139         return avc_has_perm(&selinux_state,
4140                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4141                             PROCESS__SETSCHED, NULL);
4142 }
4143
4144 static int selinux_task_getscheduler(struct task_struct *p)
4145 {
4146         return avc_has_perm(&selinux_state,
4147                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4148                             PROCESS__GETSCHED, NULL);
4149 }
4150
4151 static int selinux_task_movememory(struct task_struct *p)
4152 {
4153         return avc_has_perm(&selinux_state,
4154                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4155                             PROCESS__SETSCHED, NULL);
4156 }
4157
4158 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4159                                 int sig, const struct cred *cred)
4160 {
4161         u32 secid;
4162         u32 perm;
4163
4164         if (!sig)
4165                 perm = PROCESS__SIGNULL; /* null signal; existence test */
4166         else
4167                 perm = signal_to_av(sig);
4168         if (!cred)
4169                 secid = current_sid();
4170         else
4171                 secid = cred_sid(cred);
4172         return avc_has_perm(&selinux_state,
4173                             secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4174 }
4175
4176 static void selinux_task_to_inode(struct task_struct *p,
4177                                   struct inode *inode)
4178 {
4179         struct inode_security_struct *isec = inode->i_security;
4180         u32 sid = task_sid(p);
4181
4182         spin_lock(&isec->lock);
4183         isec->sclass = inode_mode_to_security_class(inode->i_mode);
4184         isec->sid = sid;
4185         isec->initialized = LABEL_INITIALIZED;
4186         spin_unlock(&isec->lock);
4187 }
4188
4189 /* Returns error only if unable to parse addresses */
4190 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4191                         struct common_audit_data *ad, u8 *proto)
4192 {
4193         int offset, ihlen, ret = -EINVAL;
4194         struct iphdr _iph, *ih;
4195
4196         offset = skb_network_offset(skb);
4197         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4198         if (ih == NULL)
4199                 goto out;
4200
4201         ihlen = ih->ihl * 4;
4202         if (ihlen < sizeof(_iph))
4203                 goto out;
4204
4205         ad->u.net->v4info.saddr = ih->saddr;
4206         ad->u.net->v4info.daddr = ih->daddr;
4207         ret = 0;
4208
4209         if (proto)
4210                 *proto = ih->protocol;
4211
4212         switch (ih->protocol) {
4213         case IPPROTO_TCP: {
4214                 struct tcphdr _tcph, *th;
4215
4216                 if (ntohs(ih->frag_off) & IP_OFFSET)
4217                         break;
4218
4219                 offset += ihlen;
4220                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4221                 if (th == NULL)
4222                         break;
4223
4224                 ad->u.net->sport = th->source;
4225                 ad->u.net->dport = th->dest;
4226                 break;
4227         }
4228
4229         case IPPROTO_UDP: {
4230                 struct udphdr _udph, *uh;
4231
4232                 if (ntohs(ih->frag_off) & IP_OFFSET)
4233                         break;
4234
4235                 offset += ihlen;
4236                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4237                 if (uh == NULL)
4238                         break;
4239
4240                 ad->u.net->sport = uh->source;
4241                 ad->u.net->dport = uh->dest;
4242                 break;
4243         }
4244
4245         case IPPROTO_DCCP: {
4246                 struct dccp_hdr _dccph, *dh;
4247
4248                 if (ntohs(ih->frag_off) & IP_OFFSET)
4249                         break;
4250
4251                 offset += ihlen;
4252                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4253                 if (dh == NULL)
4254                         break;
4255
4256                 ad->u.net->sport = dh->dccph_sport;
4257                 ad->u.net->dport = dh->dccph_dport;
4258                 break;
4259         }
4260
4261 #if IS_ENABLED(CONFIG_IP_SCTP)
4262         case IPPROTO_SCTP: {
4263                 struct sctphdr _sctph, *sh;
4264
4265                 if (ntohs(ih->frag_off) & IP_OFFSET)
4266                         break;
4267
4268                 offset += ihlen;
4269                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4270                 if (sh == NULL)
4271                         break;
4272
4273                 ad->u.net->sport = sh->source;
4274                 ad->u.net->dport = sh->dest;
4275                 break;
4276         }
4277 #endif
4278         default:
4279                 break;
4280         }
4281 out:
4282         return ret;
4283 }
4284
4285 #if IS_ENABLED(CONFIG_IPV6)
4286
4287 /* Returns error only if unable to parse addresses */
4288 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4289                         struct common_audit_data *ad, u8 *proto)
4290 {
4291         u8 nexthdr;
4292         int ret = -EINVAL, offset;
4293         struct ipv6hdr _ipv6h, *ip6;
4294         __be16 frag_off;
4295
4296         offset = skb_network_offset(skb);
4297         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4298         if (ip6 == NULL)
4299                 goto out;
4300
4301         ad->u.net->v6info.saddr = ip6->saddr;
4302         ad->u.net->v6info.daddr = ip6->daddr;
4303         ret = 0;
4304
4305         nexthdr = ip6->nexthdr;
4306         offset += sizeof(_ipv6h);
4307         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4308         if (offset < 0)
4309                 goto out;
4310
4311         if (proto)
4312                 *proto = nexthdr;
4313
4314         switch (nexthdr) {
4315         case IPPROTO_TCP: {
4316                 struct tcphdr _tcph, *th;
4317
4318                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4319                 if (th == NULL)
4320                         break;
4321
4322                 ad->u.net->sport = th->source;
4323                 ad->u.net->dport = th->dest;
4324                 break;
4325         }
4326
4327         case IPPROTO_UDP: {
4328                 struct udphdr _udph, *uh;
4329
4330                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4331                 if (uh == NULL)
4332                         break;
4333
4334                 ad->u.net->sport = uh->source;
4335                 ad->u.net->dport = uh->dest;
4336                 break;
4337         }
4338
4339         case IPPROTO_DCCP: {
4340                 struct dccp_hdr _dccph, *dh;
4341
4342                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4343                 if (dh == NULL)
4344                         break;
4345
4346                 ad->u.net->sport = dh->dccph_sport;
4347                 ad->u.net->dport = dh->dccph_dport;
4348                 break;
4349         }
4350
4351 #if IS_ENABLED(CONFIG_IP_SCTP)
4352         case IPPROTO_SCTP: {
4353                 struct sctphdr _sctph, *sh;
4354
4355                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4356                 if (sh == NULL)
4357                         break;
4358
4359                 ad->u.net->sport = sh->source;
4360                 ad->u.net->dport = sh->dest;
4361                 break;
4362         }
4363 #endif
4364         /* includes fragments */
4365         default:
4366                 break;
4367         }
4368 out:
4369         return ret;
4370 }
4371
4372 #endif /* IPV6 */
4373
4374 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4375                              char **_addrp, int src, u8 *proto)
4376 {
4377         char *addrp;
4378         int ret;
4379
4380         switch (ad->u.net->family) {
4381         case PF_INET:
4382                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4383                 if (ret)
4384                         goto parse_error;
4385                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4386                                        &ad->u.net->v4info.daddr);
4387                 goto okay;
4388
4389 #if IS_ENABLED(CONFIG_IPV6)
4390         case PF_INET6:
4391                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4392                 if (ret)
4393                         goto parse_error;
4394                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4395                                        &ad->u.net->v6info.daddr);
4396                 goto okay;
4397 #endif  /* IPV6 */
4398         default:
4399                 addrp = NULL;
4400                 goto okay;
4401         }
4402
4403 parse_error:
4404         printk(KERN_WARNING
4405                "SELinux: failure in selinux_parse_skb(),"
4406                " unable to parse packet\n");
4407         return ret;
4408
4409 okay:
4410         if (_addrp)
4411                 *_addrp = addrp;
4412         return 0;
4413 }
4414
4415 /**
4416  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4417  * @skb: the packet
4418  * @family: protocol family
4419  * @sid: the packet's peer label SID
4420  *
4421  * Description:
4422  * Check the various different forms of network peer labeling and determine
4423  * the peer label/SID for the packet; most of the magic actually occurs in
4424  * the security server function security_net_peersid_cmp().  The function
4425  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4426  * or -EACCES if @sid is invalid due to inconsistencies with the different
4427  * peer labels.
4428  *
4429  */
4430 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4431 {
4432         int err;
4433         u32 xfrm_sid;
4434         u32 nlbl_sid;
4435         u32 nlbl_type;
4436
4437         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4438         if (unlikely(err))
4439                 return -EACCES;
4440         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4441         if (unlikely(err))
4442                 return -EACCES;
4443
4444         err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4445                                            nlbl_type, xfrm_sid, sid);
4446         if (unlikely(err)) {
4447                 printk(KERN_WARNING
4448                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
4449                        " unable to determine packet's peer label\n");
4450                 return -EACCES;
4451         }
4452
4453         return 0;
4454 }
4455
4456 /**
4457  * selinux_conn_sid - Determine the child socket label for a connection
4458  * @sk_sid: the parent socket's SID
4459  * @skb_sid: the packet's SID
4460  * @conn_sid: the resulting connection SID
4461  *
4462  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4463  * combined with the MLS information from @skb_sid in order to create
4464  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4465  * of @sk_sid.  Returns zero on success, negative values on failure.
4466  *
4467  */
4468 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4469 {
4470         int err = 0;
4471
4472         if (skb_sid != SECSID_NULL)
4473                 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4474                                             conn_sid);
4475         else
4476                 *conn_sid = sk_sid;
4477
4478         return err;
4479 }
4480
4481 /* socket security operations */
4482
4483 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4484                                  u16 secclass, u32 *socksid)
4485 {
4486         if (tsec->sockcreate_sid > SECSID_NULL) {
4487                 *socksid = tsec->sockcreate_sid;
4488                 return 0;
4489         }
4490
4491         return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4492                                        secclass, NULL, socksid);
4493 }
4494
4495 static int sock_has_perm(struct sock *sk, u32 perms)
4496 {
4497         struct sk_security_struct *sksec = sk->sk_security;
4498         struct common_audit_data ad;
4499         struct lsm_network_audit net = {0,};
4500
4501         if (sksec->sid == SECINITSID_KERNEL)
4502                 return 0;
4503
4504         ad.type = LSM_AUDIT_DATA_NET;
4505         ad.u.net = &net;
4506         ad.u.net->sk = sk;
4507
4508         return avc_has_perm(&selinux_state,
4509                             current_sid(), sksec->sid, sksec->sclass, perms,
4510                             &ad);
4511 }
4512
4513 static int selinux_socket_create(int family, int type,
4514                                  int protocol, int kern)
4515 {
4516         const struct task_security_struct *tsec = current_security();
4517         u32 newsid;
4518         u16 secclass;
4519         int rc;
4520
4521         if (kern)
4522                 return 0;
4523
4524         secclass = socket_type_to_security_class(family, type, protocol);
4525         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4526         if (rc)
4527                 return rc;
4528
4529         return avc_has_perm(&selinux_state,
4530                             tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4531 }
4532
4533 static int selinux_socket_post_create(struct socket *sock, int family,
4534                                       int type, int protocol, int kern)
4535 {
4536         const struct task_security_struct *tsec = current_security();
4537         struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4538         struct sk_security_struct *sksec;
4539         u16 sclass = socket_type_to_security_class(family, type, protocol);
4540         u32 sid = SECINITSID_KERNEL;
4541         int err = 0;
4542
4543         if (!kern) {
4544                 err = socket_sockcreate_sid(tsec, sclass, &sid);
4545                 if (err)
4546                         return err;
4547         }
4548
4549         isec->sclass = sclass;
4550         isec->sid = sid;
4551         isec->initialized = LABEL_INITIALIZED;
4552
4553         if (sock->sk) {
4554                 sksec = sock->sk->sk_security;
4555                 sksec->sclass = sclass;
4556                 sksec->sid = sid;
4557                 /* Allows detection of the first association on this socket */
4558                 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4559                         sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4560
4561                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4562         }
4563
4564         return err;
4565 }
4566
4567 /* Range of port numbers used to automatically bind.
4568    Need to determine whether we should perform a name_bind
4569    permission check between the socket and the port number. */
4570
4571 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4572 {
4573         struct sock *sk = sock->sk;
4574         u16 family;
4575         int err;
4576
4577         err = sock_has_perm(sk, SOCKET__BIND);
4578         if (err)
4579                 goto out;
4580
4581         /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4582         family = sk->sk_family;
4583         if (family == PF_INET || family == PF_INET6) {
4584                 char *addrp;
4585                 struct sk_security_struct *sksec = sk->sk_security;
4586                 struct common_audit_data ad;
4587                 struct lsm_network_audit net = {0,};
4588                 struct sockaddr_in *addr4 = NULL;
4589                 struct sockaddr_in6 *addr6 = NULL;
4590                 unsigned short snum;
4591                 u32 sid, node_perm;
4592
4593                 /*
4594                  * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4595                  * that validates multiple binding addresses. Because of this
4596                  * need to check address->sa_family as it is possible to have
4597                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4598                  */
4599                 switch (address->sa_family) {
4600                 case AF_INET:
4601                         if (addrlen < sizeof(struct sockaddr_in))
4602                                 return -EINVAL;
4603                         addr4 = (struct sockaddr_in *)address;
4604                         snum = ntohs(addr4->sin_port);
4605                         addrp = (char *)&addr4->sin_addr.s_addr;
4606                         break;
4607                 case AF_INET6:
4608                         if (addrlen < SIN6_LEN_RFC2133)
4609                                 return -EINVAL;
4610                         addr6 = (struct sockaddr_in6 *)address;
4611                         snum = ntohs(addr6->sin6_port);
4612                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4613                         break;
4614                 default:
4615                         /* Note that SCTP services expect -EINVAL, whereas
4616                          * others expect -EAFNOSUPPORT.
4617                          */
4618                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4619                                 return -EINVAL;
4620                         else
4621                                 return -EAFNOSUPPORT;
4622                 }
4623
4624                 if (snum) {
4625                         int low, high;
4626
4627                         inet_get_local_port_range(sock_net(sk), &low, &high);
4628
4629                         if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4630                             snum > high) {
4631                                 err = sel_netport_sid(sk->sk_protocol,
4632                                                       snum, &sid);
4633                                 if (err)
4634                                         goto out;
4635                                 ad.type = LSM_AUDIT_DATA_NET;
4636                                 ad.u.net = &net;
4637                                 ad.u.net->sport = htons(snum);
4638                                 ad.u.net->family = family;
4639                                 err = avc_has_perm(&selinux_state,
4640                                                    sksec->sid, sid,
4641                                                    sksec->sclass,
4642                                                    SOCKET__NAME_BIND, &ad);
4643                                 if (err)
4644                                         goto out;
4645                         }
4646                 }
4647
4648                 switch (sksec->sclass) {
4649                 case SECCLASS_TCP_SOCKET:
4650                         node_perm = TCP_SOCKET__NODE_BIND;
4651                         break;
4652
4653                 case SECCLASS_UDP_SOCKET:
4654                         node_perm = UDP_SOCKET__NODE_BIND;
4655                         break;
4656
4657                 case SECCLASS_DCCP_SOCKET:
4658                         node_perm = DCCP_SOCKET__NODE_BIND;
4659                         break;
4660
4661                 case SECCLASS_SCTP_SOCKET:
4662                         node_perm = SCTP_SOCKET__NODE_BIND;
4663                         break;
4664
4665                 default:
4666                         node_perm = RAWIP_SOCKET__NODE_BIND;
4667                         break;
4668                 }
4669
4670                 err = sel_netnode_sid(addrp, family, &sid);
4671                 if (err)
4672                         goto out;
4673
4674                 ad.type = LSM_AUDIT_DATA_NET;
4675                 ad.u.net = &net;
4676                 ad.u.net->sport = htons(snum);
4677                 ad.u.net->family = family;
4678
4679                 if (address->sa_family == AF_INET)
4680                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4681                 else
4682                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4683
4684                 err = avc_has_perm(&selinux_state,
4685                                    sksec->sid, sid,
4686                                    sksec->sclass, node_perm, &ad);
4687                 if (err)
4688                         goto out;
4689         }
4690 out:
4691         return err;
4692 }
4693
4694 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4695  * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4696  */
4697 static int selinux_socket_connect_helper(struct socket *sock,
4698                                          struct sockaddr *address, int addrlen)
4699 {
4700         struct sock *sk = sock->sk;
4701         struct sk_security_struct *sksec = sk->sk_security;
4702         int err;
4703
4704         err = sock_has_perm(sk, SOCKET__CONNECT);
4705         if (err)
4706                 return err;
4707
4708         /*
4709          * If a TCP, DCCP or SCTP socket, check name_connect permission
4710          * for the port.
4711          */
4712         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4713             sksec->sclass == SECCLASS_DCCP_SOCKET ||
4714             sksec->sclass == SECCLASS_SCTP_SOCKET) {
4715                 struct common_audit_data ad;
4716                 struct lsm_network_audit net = {0,};
4717                 struct sockaddr_in *addr4 = NULL;
4718                 struct sockaddr_in6 *addr6 = NULL;
4719                 unsigned short snum;
4720                 u32 sid, perm;
4721
4722                 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4723                  * that validates multiple connect addresses. Because of this
4724                  * need to check address->sa_family as it is possible to have
4725                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4726                  */
4727                 switch (address->sa_family) {
4728                 case AF_INET:
4729                         addr4 = (struct sockaddr_in *)address;
4730                         if (addrlen < sizeof(struct sockaddr_in))
4731                                 return -EINVAL;
4732                         snum = ntohs(addr4->sin_port);
4733                         break;
4734                 case AF_INET6:
4735                         addr6 = (struct sockaddr_in6 *)address;
4736                         if (addrlen < SIN6_LEN_RFC2133)
4737                                 return -EINVAL;
4738                         snum = ntohs(addr6->sin6_port);
4739                         break;
4740                 default:
4741                         /* Note that SCTP services expect -EINVAL, whereas
4742                          * others expect -EAFNOSUPPORT.
4743                          */
4744                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4745                                 return -EINVAL;
4746                         else
4747                                 return -EAFNOSUPPORT;
4748                 }
4749
4750                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4751                 if (err)
4752                         return err;
4753
4754                 switch (sksec->sclass) {
4755                 case SECCLASS_TCP_SOCKET:
4756                         perm = TCP_SOCKET__NAME_CONNECT;
4757                         break;
4758                 case SECCLASS_DCCP_SOCKET:
4759                         perm = DCCP_SOCKET__NAME_CONNECT;
4760                         break;
4761                 case SECCLASS_SCTP_SOCKET:
4762                         perm = SCTP_SOCKET__NAME_CONNECT;
4763                         break;
4764                 }
4765
4766                 ad.type = LSM_AUDIT_DATA_NET;
4767                 ad.u.net = &net;
4768                 ad.u.net->dport = htons(snum);
4769                 ad.u.net->family = sk->sk_family;
4770                 err = avc_has_perm(&selinux_state,
4771                                    sksec->sid, sid, sksec->sclass, perm, &ad);
4772                 if (err)
4773                         return err;
4774         }
4775
4776         return 0;
4777 }
4778
4779 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4780 static int selinux_socket_connect(struct socket *sock,
4781                                   struct sockaddr *address, int addrlen)
4782 {
4783         int err;
4784         struct sock *sk = sock->sk;
4785
4786         err = selinux_socket_connect_helper(sock, address, addrlen);
4787         if (err)
4788                 return err;
4789
4790         return selinux_netlbl_socket_connect(sk, address);
4791 }
4792
4793 static int selinux_socket_listen(struct socket *sock, int backlog)
4794 {
4795         return sock_has_perm(sock->sk, SOCKET__LISTEN);
4796 }
4797
4798 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4799 {
4800         int err;
4801         struct inode_security_struct *isec;
4802         struct inode_security_struct *newisec;
4803         u16 sclass;
4804         u32 sid;
4805
4806         err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4807         if (err)
4808                 return err;
4809
4810         isec = inode_security_novalidate(SOCK_INODE(sock));
4811         spin_lock(&isec->lock);
4812         sclass = isec->sclass;
4813         sid = isec->sid;
4814         spin_unlock(&isec->lock);
4815
4816         newisec = inode_security_novalidate(SOCK_INODE(newsock));
4817         newisec->sclass = sclass;
4818         newisec->sid = sid;
4819         newisec->initialized = LABEL_INITIALIZED;
4820
4821         return 0;
4822 }
4823
4824 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4825                                   int size)
4826 {
4827         return sock_has_perm(sock->sk, SOCKET__WRITE);
4828 }
4829
4830 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4831                                   int size, int flags)
4832 {
4833         return sock_has_perm(sock->sk, SOCKET__READ);
4834 }
4835
4836 static int selinux_socket_getsockname(struct socket *sock)
4837 {
4838         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4839 }
4840
4841 static int selinux_socket_getpeername(struct socket *sock)
4842 {
4843         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4844 }
4845
4846 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4847 {
4848         int err;
4849
4850         err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4851         if (err)
4852                 return err;
4853
4854         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4855 }
4856
4857 static int selinux_socket_getsockopt(struct socket *sock, int level,
4858                                      int optname)
4859 {
4860         return sock_has_perm(sock->sk, SOCKET__GETOPT);
4861 }
4862
4863 static int selinux_socket_shutdown(struct socket *sock, int how)
4864 {
4865         return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4866 }
4867
4868 static int selinux_socket_unix_stream_connect(struct sock *sock,
4869                                               struct sock *other,
4870                                               struct sock *newsk)
4871 {
4872         struct sk_security_struct *sksec_sock = sock->sk_security;
4873         struct sk_security_struct *sksec_other = other->sk_security;
4874         struct sk_security_struct *sksec_new = newsk->sk_security;
4875         struct common_audit_data ad;
4876         struct lsm_network_audit net = {0,};
4877         int err;
4878
4879         ad.type = LSM_AUDIT_DATA_NET;
4880         ad.u.net = &net;
4881         ad.u.net->sk = other;
4882
4883         err = avc_has_perm(&selinux_state,
4884                            sksec_sock->sid, sksec_other->sid,
4885                            sksec_other->sclass,
4886                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4887         if (err)
4888                 return err;
4889
4890         /* server child socket */
4891         sksec_new->peer_sid = sksec_sock->sid;
4892         err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4893                                     sksec_sock->sid, &sksec_new->sid);
4894         if (err)
4895                 return err;
4896
4897         /* connecting socket */
4898         sksec_sock->peer_sid = sksec_new->sid;
4899
4900         return 0;
4901 }
4902
4903 static int selinux_socket_unix_may_send(struct socket *sock,
4904                                         struct socket *other)
4905 {
4906         struct sk_security_struct *ssec = sock->sk->sk_security;
4907         struct sk_security_struct *osec = other->sk->sk_security;
4908         struct common_audit_data ad;
4909         struct lsm_network_audit net = {0,};
4910
4911         ad.type = LSM_AUDIT_DATA_NET;
4912         ad.u.net = &net;
4913         ad.u.net->sk = other->sk;
4914
4915         return avc_has_perm(&selinux_state,
4916                             ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4917                             &ad);
4918 }
4919
4920 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4921                                     char *addrp, u16 family, u32 peer_sid,
4922                                     struct common_audit_data *ad)
4923 {
4924         int err;
4925         u32 if_sid;
4926         u32 node_sid;
4927
4928         err = sel_netif_sid(ns, ifindex, &if_sid);
4929         if (err)
4930                 return err;
4931         err = avc_has_perm(&selinux_state,
4932                            peer_sid, if_sid,
4933                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4934         if (err)
4935                 return err;
4936
4937         err = sel_netnode_sid(addrp, family, &node_sid);
4938         if (err)
4939                 return err;
4940         return avc_has_perm(&selinux_state,
4941                             peer_sid, node_sid,
4942                             SECCLASS_NODE, NODE__RECVFROM, ad);
4943 }
4944
4945 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4946                                        u16 family)
4947 {
4948         int err = 0;
4949         struct sk_security_struct *sksec = sk->sk_security;
4950         u32 sk_sid = sksec->sid;
4951         struct common_audit_data ad;
4952         struct lsm_network_audit net = {0,};
4953         char *addrp;
4954
4955         ad.type = LSM_AUDIT_DATA_NET;
4956         ad.u.net = &net;
4957         ad.u.net->netif = skb->skb_iif;
4958         ad.u.net->family = family;
4959         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4960         if (err)
4961                 return err;
4962
4963         if (selinux_secmark_enabled()) {
4964                 err = avc_has_perm(&selinux_state,
4965                                    sk_sid, skb->secmark, SECCLASS_PACKET,
4966                                    PACKET__RECV, &ad);
4967                 if (err)
4968                         return err;
4969         }
4970
4971         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4972         if (err)
4973                 return err;
4974         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4975
4976         return err;
4977 }
4978
4979 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4980 {
4981         int err;
4982         struct sk_security_struct *sksec = sk->sk_security;
4983         u16 family = sk->sk_family;
4984         u32 sk_sid = sksec->sid;
4985         struct common_audit_data ad;
4986         struct lsm_network_audit net = {0,};
4987         char *addrp;
4988         u8 secmark_active;
4989         u8 peerlbl_active;
4990
4991         if (family != PF_INET && family != PF_INET6)
4992                 return 0;
4993
4994         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4995         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4996                 family = PF_INET;
4997
4998         /* If any sort of compatibility mode is enabled then handoff processing
4999          * to the selinux_sock_rcv_skb_compat() function to deal with the
5000          * special handling.  We do this in an attempt to keep this function
5001          * as fast and as clean as possible. */
5002         if (!selinux_policycap_netpeer())
5003                 return selinux_sock_rcv_skb_compat(sk, skb, family);
5004
5005         secmark_active = selinux_secmark_enabled();
5006         peerlbl_active = selinux_peerlbl_enabled();
5007         if (!secmark_active && !peerlbl_active)
5008                 return 0;
5009
5010         ad.type = LSM_AUDIT_DATA_NET;
5011         ad.u.net = &net;
5012         ad.u.net->netif = skb->skb_iif;
5013         ad.u.net->family = family;
5014         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5015         if (err)
5016                 return err;
5017
5018         if (peerlbl_active) {
5019                 u32 peer_sid;
5020
5021                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5022                 if (err)
5023                         return err;
5024                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5025                                                addrp, family, peer_sid, &ad);
5026                 if (err) {
5027                         selinux_netlbl_err(skb, family, err, 0);
5028                         return err;
5029                 }
5030                 err = avc_has_perm(&selinux_state,
5031                                    sk_sid, peer_sid, SECCLASS_PEER,
5032                                    PEER__RECV, &ad);
5033                 if (err) {
5034                         selinux_netlbl_err(skb, family, err, 0);
5035                         return err;
5036                 }
5037         }
5038
5039         if (secmark_active) {
5040                 err = avc_has_perm(&selinux_state,
5041                                    sk_sid, skb->secmark, SECCLASS_PACKET,
5042                                    PACKET__RECV, &ad);
5043                 if (err)
5044                         return err;
5045         }
5046
5047         return err;
5048 }
5049
5050 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5051                                             int __user *optlen, unsigned len)
5052 {
5053         int err = 0;
5054         char *scontext;
5055         u32 scontext_len;
5056         struct sk_security_struct *sksec = sock->sk->sk_security;
5057         u32 peer_sid = SECSID_NULL;
5058
5059         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5060             sksec->sclass == SECCLASS_TCP_SOCKET ||
5061             sksec->sclass == SECCLASS_SCTP_SOCKET)
5062                 peer_sid = sksec->peer_sid;
5063         if (peer_sid == SECSID_NULL)
5064                 return -ENOPROTOOPT;
5065
5066         err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5067                                       &scontext_len);
5068         if (err)
5069                 return err;
5070
5071         if (scontext_len > len) {
5072                 err = -ERANGE;
5073                 goto out_len;
5074         }
5075
5076         if (copy_to_user(optval, scontext, scontext_len))
5077                 err = -EFAULT;
5078
5079 out_len:
5080         if (put_user(scontext_len, optlen))
5081                 err = -EFAULT;
5082         kfree(scontext);
5083         return err;
5084 }
5085
5086 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5087 {
5088         u32 peer_secid = SECSID_NULL;
5089         u16 family;
5090         struct inode_security_struct *isec;
5091
5092         if (skb && skb->protocol == htons(ETH_P_IP))
5093                 family = PF_INET;
5094         else if (skb && skb->protocol == htons(ETH_P_IPV6))
5095                 family = PF_INET6;
5096         else if (sock)
5097                 family = sock->sk->sk_family;
5098         else
5099                 goto out;
5100
5101         if (sock && family == PF_UNIX) {
5102                 isec = inode_security_novalidate(SOCK_INODE(sock));
5103                 peer_secid = isec->sid;
5104         } else if (skb)
5105                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5106
5107 out:
5108         *secid = peer_secid;
5109         if (peer_secid == SECSID_NULL)
5110                 return -EINVAL;
5111         return 0;
5112 }
5113
5114 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5115 {
5116         struct sk_security_struct *sksec;
5117
5118         sksec = kzalloc(sizeof(*sksec), priority);
5119         if (!sksec)
5120                 return -ENOMEM;
5121
5122         sksec->peer_sid = SECINITSID_UNLABELED;
5123         sksec->sid = SECINITSID_UNLABELED;
5124         sksec->sclass = SECCLASS_SOCKET;
5125         selinux_netlbl_sk_security_reset(sksec);
5126         sk->sk_security = sksec;
5127
5128         return 0;
5129 }
5130
5131 static void selinux_sk_free_security(struct sock *sk)
5132 {
5133         struct sk_security_struct *sksec = sk->sk_security;
5134
5135         sk->sk_security = NULL;
5136         selinux_netlbl_sk_security_free(sksec);
5137         kfree(sksec);
5138 }
5139
5140 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5141 {
5142         struct sk_security_struct *sksec = sk->sk_security;
5143         struct sk_security_struct *newsksec = newsk->sk_security;
5144
5145         newsksec->sid = sksec->sid;
5146         newsksec->peer_sid = sksec->peer_sid;
5147         newsksec->sclass = sksec->sclass;
5148
5149         selinux_netlbl_sk_security_reset(newsksec);
5150 }
5151
5152 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5153 {
5154         if (!sk)
5155                 *secid = SECINITSID_ANY_SOCKET;
5156         else {
5157                 struct sk_security_struct *sksec = sk->sk_security;
5158
5159                 *secid = sksec->sid;
5160         }
5161 }
5162
5163 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5164 {
5165         struct inode_security_struct *isec =
5166                 inode_security_novalidate(SOCK_INODE(parent));
5167         struct sk_security_struct *sksec = sk->sk_security;
5168
5169         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5170             sk->sk_family == PF_UNIX)
5171                 isec->sid = sksec->sid;
5172         sksec->sclass = isec->sclass;
5173 }
5174
5175 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5176  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5177  * already present).
5178  */
5179 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5180                                       struct sk_buff *skb)
5181 {
5182         struct sk_security_struct *sksec = ep->base.sk->sk_security;
5183         struct common_audit_data ad;
5184         struct lsm_network_audit net = {0,};
5185         u8 peerlbl_active;
5186         u32 peer_sid = SECINITSID_UNLABELED;
5187         u32 conn_sid;
5188         int err = 0;
5189
5190         if (!selinux_policycap_extsockclass())
5191                 return 0;
5192
5193         peerlbl_active = selinux_peerlbl_enabled();
5194
5195         if (peerlbl_active) {
5196                 /* This will return peer_sid = SECSID_NULL if there are
5197                  * no peer labels, see security_net_peersid_resolve().
5198                  */
5199                 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5200                                               &peer_sid);
5201                 if (err)
5202                         return err;
5203
5204                 if (peer_sid == SECSID_NULL)
5205                         peer_sid = SECINITSID_UNLABELED;
5206         }
5207
5208         if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5209                 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5210
5211                 /* Here as first association on socket. As the peer SID
5212                  * was allowed by peer recv (and the netif/node checks),
5213                  * then it is approved by policy and used as the primary
5214                  * peer SID for getpeercon(3).
5215                  */
5216                 sksec->peer_sid = peer_sid;
5217         } else if  (sksec->peer_sid != peer_sid) {
5218                 /* Other association peer SIDs are checked to enforce
5219                  * consistency among the peer SIDs.
5220                  */
5221                 ad.type = LSM_AUDIT_DATA_NET;
5222                 ad.u.net = &net;
5223                 ad.u.net->sk = ep->base.sk;
5224                 err = avc_has_perm(&selinux_state,
5225                                    sksec->peer_sid, peer_sid, sksec->sclass,
5226                                    SCTP_SOCKET__ASSOCIATION, &ad);
5227                 if (err)
5228                         return err;
5229         }
5230
5231         /* Compute the MLS component for the connection and store
5232          * the information in ep. This will be used by SCTP TCP type
5233          * sockets and peeled off connections as they cause a new
5234          * socket to be generated. selinux_sctp_sk_clone() will then
5235          * plug this into the new socket.
5236          */
5237         err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5238         if (err)
5239                 return err;
5240
5241         ep->secid = conn_sid;
5242         ep->peer_secid = peer_sid;
5243
5244         /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5245         return selinux_netlbl_sctp_assoc_request(ep, skb);
5246 }
5247
5248 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5249  * based on their @optname.
5250  */
5251 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5252                                      struct sockaddr *address,
5253                                      int addrlen)
5254 {
5255         int len, err = 0, walk_size = 0;
5256         void *addr_buf;
5257         struct sockaddr *addr;
5258         struct socket *sock;
5259
5260         if (!selinux_policycap_extsockclass())
5261                 return 0;
5262
5263         /* Process one or more addresses that may be IPv4 or IPv6 */
5264         sock = sk->sk_socket;
5265         addr_buf = address;
5266
5267         while (walk_size < addrlen) {
5268                 addr = addr_buf;
5269                 switch (addr->sa_family) {
5270                 case AF_INET:
5271                         len = sizeof(struct sockaddr_in);
5272                         break;
5273                 case AF_INET6:
5274                         len = sizeof(struct sockaddr_in6);
5275                         break;
5276                 default:
5277                         return -EAFNOSUPPORT;
5278                 }
5279
5280                 err = -EINVAL;
5281                 switch (optname) {
5282                 /* Bind checks */
5283                 case SCTP_PRIMARY_ADDR:
5284                 case SCTP_SET_PEER_PRIMARY_ADDR:
5285                 case SCTP_SOCKOPT_BINDX_ADD:
5286                         err = selinux_socket_bind(sock, addr, len);
5287                         break;
5288                 /* Connect checks */
5289                 case SCTP_SOCKOPT_CONNECTX:
5290                 case SCTP_PARAM_SET_PRIMARY:
5291                 case SCTP_PARAM_ADD_IP:
5292                 case SCTP_SENDMSG_CONNECT:
5293                         err = selinux_socket_connect_helper(sock, addr, len);
5294                         if (err)
5295                                 return err;
5296
5297                         /* As selinux_sctp_bind_connect() is called by the
5298                          * SCTP protocol layer, the socket is already locked,
5299                          * therefore selinux_netlbl_socket_connect_locked() is
5300                          * is called here. The situations handled are:
5301                          * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5302                          * whenever a new IP address is added or when a new
5303                          * primary address is selected.
5304                          * Note that an SCTP connect(2) call happens before
5305                          * the SCTP protocol layer and is handled via
5306                          * selinux_socket_connect().
5307                          */
5308                         err = selinux_netlbl_socket_connect_locked(sk, addr);
5309                         break;
5310                 }
5311
5312                 if (err)
5313                         return err;
5314
5315                 addr_buf += len;
5316                 walk_size += len;
5317         }
5318
5319         return 0;
5320 }
5321
5322 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5323 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5324                                   struct sock *newsk)
5325 {
5326         struct sk_security_struct *sksec = sk->sk_security;
5327         struct sk_security_struct *newsksec = newsk->sk_security;
5328
5329         /* If policy does not support SECCLASS_SCTP_SOCKET then call
5330          * the non-sctp clone version.
5331          */
5332         if (!selinux_policycap_extsockclass())
5333                 return selinux_sk_clone_security(sk, newsk);
5334
5335         newsksec->sid = ep->secid;
5336         newsksec->peer_sid = ep->peer_secid;
5337         newsksec->sclass = sksec->sclass;
5338         selinux_netlbl_sctp_sk_clone(sk, newsk);
5339 }
5340
5341 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5342                                      struct request_sock *req)
5343 {
5344         struct sk_security_struct *sksec = sk->sk_security;
5345         int err;
5346         u16 family = req->rsk_ops->family;
5347         u32 connsid;
5348         u32 peersid;
5349
5350         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5351         if (err)
5352                 return err;
5353         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5354         if (err)
5355                 return err;
5356         req->secid = connsid;
5357         req->peer_secid = peersid;
5358
5359         return selinux_netlbl_inet_conn_request(req, family);
5360 }
5361
5362 static void selinux_inet_csk_clone(struct sock *newsk,
5363                                    const struct request_sock *req)
5364 {
5365         struct sk_security_struct *newsksec = newsk->sk_security;
5366
5367         newsksec->sid = req->secid;
5368         newsksec->peer_sid = req->peer_secid;
5369         /* NOTE: Ideally, we should also get the isec->sid for the
5370            new socket in sync, but we don't have the isec available yet.
5371            So we will wait until sock_graft to do it, by which
5372            time it will have been created and available. */
5373
5374         /* We don't need to take any sort of lock here as we are the only
5375          * thread with access to newsksec */
5376         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5377 }
5378
5379 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5380 {
5381         u16 family = sk->sk_family;
5382         struct sk_security_struct *sksec = sk->sk_security;
5383
5384         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5385         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5386                 family = PF_INET;
5387
5388         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5389 }
5390
5391 static int selinux_secmark_relabel_packet(u32 sid)
5392 {
5393         const struct task_security_struct *__tsec;
5394         u32 tsid;
5395
5396         __tsec = current_security();
5397         tsid = __tsec->sid;
5398
5399         return avc_has_perm(&selinux_state,
5400                             tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5401                             NULL);
5402 }
5403
5404 static void selinux_secmark_refcount_inc(void)
5405 {
5406         atomic_inc(&selinux_secmark_refcount);
5407 }
5408
5409 static void selinux_secmark_refcount_dec(void)
5410 {
5411         atomic_dec(&selinux_secmark_refcount);
5412 }
5413
5414 static void selinux_req_classify_flow(const struct request_sock *req,
5415                                       struct flowi *fl)
5416 {
5417         fl->flowi_secid = req->secid;
5418 }
5419
5420 static int selinux_tun_dev_alloc_security(void **security)
5421 {
5422         struct tun_security_struct *tunsec;
5423
5424         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5425         if (!tunsec)
5426                 return -ENOMEM;
5427         tunsec->sid = current_sid();
5428
5429         *security = tunsec;
5430         return 0;
5431 }
5432
5433 static void selinux_tun_dev_free_security(void *security)
5434 {
5435         kfree(security);
5436 }
5437
5438 static int selinux_tun_dev_create(void)
5439 {
5440         u32 sid = current_sid();
5441
5442         /* we aren't taking into account the "sockcreate" SID since the socket
5443          * that is being created here is not a socket in the traditional sense,
5444          * instead it is a private sock, accessible only to the kernel, and
5445          * representing a wide range of network traffic spanning multiple
5446          * connections unlike traditional sockets - check the TUN driver to
5447          * get a better understanding of why this socket is special */
5448
5449         return avc_has_perm(&selinux_state,
5450                             sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5451                             NULL);
5452 }
5453
5454 static int selinux_tun_dev_attach_queue(void *security)
5455 {
5456         struct tun_security_struct *tunsec = security;
5457
5458         return avc_has_perm(&selinux_state,
5459                             current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5460                             TUN_SOCKET__ATTACH_QUEUE, NULL);
5461 }
5462
5463 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5464 {
5465         struct tun_security_struct *tunsec = security;
5466         struct sk_security_struct *sksec = sk->sk_security;
5467
5468         /* we don't currently perform any NetLabel based labeling here and it
5469          * isn't clear that we would want to do so anyway; while we could apply
5470          * labeling without the support of the TUN user the resulting labeled
5471          * traffic from the other end of the connection would almost certainly
5472          * cause confusion to the TUN user that had no idea network labeling
5473          * protocols were being used */
5474
5475         sksec->sid = tunsec->sid;
5476         sksec->sclass = SECCLASS_TUN_SOCKET;
5477
5478         return 0;
5479 }
5480
5481 static int selinux_tun_dev_open(void *security)
5482 {
5483         struct tun_security_struct *tunsec = security;
5484         u32 sid = current_sid();
5485         int err;
5486
5487         err = avc_has_perm(&selinux_state,
5488                            sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5489                            TUN_SOCKET__RELABELFROM, NULL);
5490         if (err)
5491                 return err;
5492         err = avc_has_perm(&selinux_state,
5493                            sid, sid, SECCLASS_TUN_SOCKET,
5494                            TUN_SOCKET__RELABELTO, NULL);
5495         if (err)
5496                 return err;
5497         tunsec->sid = sid;
5498
5499         return 0;
5500 }
5501
5502 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5503 {
5504         int err = 0;
5505         u32 perm;
5506         struct nlmsghdr *nlh;
5507         struct sk_security_struct *sksec = sk->sk_security;
5508
5509         if (skb->len < NLMSG_HDRLEN) {
5510                 err = -EINVAL;
5511                 goto out;
5512         }
5513         nlh = nlmsg_hdr(skb);
5514
5515         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5516         if (err) {
5517                 if (err == -EINVAL) {
5518                         pr_warn_ratelimited("SELinux: unrecognized netlink"
5519                                " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5520                                " pig=%d comm=%s\n",
5521                                sk->sk_protocol, nlh->nlmsg_type,
5522                                secclass_map[sksec->sclass - 1].name,
5523                                task_pid_nr(current), current->comm);
5524                         if (!enforcing_enabled(&selinux_state) ||
5525                             security_get_allow_unknown(&selinux_state))
5526                                 err = 0;
5527                 }
5528
5529                 /* Ignore */
5530                 if (err == -ENOENT)
5531                         err = 0;
5532                 goto out;
5533         }
5534
5535         err = sock_has_perm(sk, perm);
5536 out:
5537         return err;
5538 }
5539
5540 #ifdef CONFIG_NETFILTER
5541
5542 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5543                                        const struct net_device *indev,
5544                                        u16 family)
5545 {
5546         int err;
5547         char *addrp;
5548         u32 peer_sid;
5549         struct common_audit_data ad;
5550         struct lsm_network_audit net = {0,};
5551         u8 secmark_active;
5552         u8 netlbl_active;
5553         u8 peerlbl_active;
5554
5555         if (!selinux_policycap_netpeer())
5556                 return NF_ACCEPT;
5557
5558         secmark_active = selinux_secmark_enabled();
5559         netlbl_active = netlbl_enabled();
5560         peerlbl_active = selinux_peerlbl_enabled();
5561         if (!secmark_active && !peerlbl_active)
5562                 return NF_ACCEPT;
5563
5564         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5565                 return NF_DROP;
5566
5567         ad.type = LSM_AUDIT_DATA_NET;
5568         ad.u.net = &net;
5569         ad.u.net->netif = indev->ifindex;
5570         ad.u.net->family = family;
5571         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5572                 return NF_DROP;
5573
5574         if (peerlbl_active) {
5575                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5576                                                addrp, family, peer_sid, &ad);
5577                 if (err) {
5578                         selinux_netlbl_err(skb, family, err, 1);
5579                         return NF_DROP;
5580                 }
5581         }
5582
5583         if (secmark_active)
5584                 if (avc_has_perm(&selinux_state,
5585                                  peer_sid, skb->secmark,
5586                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5587                         return NF_DROP;
5588
5589         if (netlbl_active)
5590                 /* we do this in the FORWARD path and not the POST_ROUTING
5591                  * path because we want to make sure we apply the necessary
5592                  * labeling before IPsec is applied so we can leverage AH
5593                  * protection */
5594                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5595                         return NF_DROP;
5596
5597         return NF_ACCEPT;
5598 }
5599
5600 static unsigned int selinux_ipv4_forward(void *priv,
5601                                          struct sk_buff *skb,
5602                                          const struct nf_hook_state *state)
5603 {
5604         return selinux_ip_forward(skb, state->in, PF_INET);
5605 }
5606
5607 #if IS_ENABLED(CONFIG_IPV6)
5608 static unsigned int selinux_ipv6_forward(void *priv,
5609                                          struct sk_buff *skb,
5610                                          const struct nf_hook_state *state)
5611 {
5612         return selinux_ip_forward(skb, state->in, PF_INET6);
5613 }
5614 #endif  /* IPV6 */
5615
5616 static unsigned int selinux_ip_output(struct sk_buff *skb,
5617                                       u16 family)
5618 {
5619         struct sock *sk;
5620         u32 sid;
5621
5622         if (!netlbl_enabled())
5623                 return NF_ACCEPT;
5624
5625         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5626          * because we want to make sure we apply the necessary labeling
5627          * before IPsec is applied so we can leverage AH protection */
5628         sk = skb->sk;
5629         if (sk) {
5630                 struct sk_security_struct *sksec;
5631
5632                 if (sk_listener(sk))
5633                         /* if the socket is the listening state then this
5634                          * packet is a SYN-ACK packet which means it needs to
5635                          * be labeled based on the connection/request_sock and
5636                          * not the parent socket.  unfortunately, we can't
5637                          * lookup the request_sock yet as it isn't queued on
5638                          * the parent socket until after the SYN-ACK is sent.
5639                          * the "solution" is to simply pass the packet as-is
5640                          * as any IP option based labeling should be copied
5641                          * from the initial connection request (in the IP
5642                          * layer).  it is far from ideal, but until we get a
5643                          * security label in the packet itself this is the
5644                          * best we can do. */
5645                         return NF_ACCEPT;
5646
5647                 /* standard practice, label using the parent socket */
5648                 sksec = sk->sk_security;
5649                 sid = sksec->sid;
5650         } else
5651                 sid = SECINITSID_KERNEL;
5652         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5653                 return NF_DROP;
5654
5655         return NF_ACCEPT;
5656 }
5657
5658 static unsigned int selinux_ipv4_output(void *priv,
5659                                         struct sk_buff *skb,
5660                                         const struct nf_hook_state *state)
5661 {
5662         return selinux_ip_output(skb, PF_INET);
5663 }
5664
5665 #if IS_ENABLED(CONFIG_IPV6)
5666 static unsigned int selinux_ipv6_output(void *priv,
5667                                         struct sk_buff *skb,
5668                                         const struct nf_hook_state *state)
5669 {
5670         return selinux_ip_output(skb, PF_INET6);
5671 }
5672 #endif  /* IPV6 */
5673
5674 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5675                                                 int ifindex,
5676                                                 u16 family)
5677 {
5678         struct sock *sk = skb_to_full_sk(skb);
5679         struct sk_security_struct *sksec;
5680         struct common_audit_data ad;
5681         struct lsm_network_audit net = {0,};
5682         char *addrp;
5683         u8 proto;
5684
5685         if (sk == NULL)
5686                 return NF_ACCEPT;
5687         sksec = sk->sk_security;
5688
5689         ad.type = LSM_AUDIT_DATA_NET;
5690         ad.u.net = &net;
5691         ad.u.net->netif = ifindex;
5692         ad.u.net->family = family;
5693         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5694                 return NF_DROP;
5695
5696         if (selinux_secmark_enabled())
5697                 if (avc_has_perm(&selinux_state,
5698                                  sksec->sid, skb->secmark,
5699                                  SECCLASS_PACKET, PACKET__SEND, &ad))
5700                         return NF_DROP_ERR(-ECONNREFUSED);
5701
5702         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5703                 return NF_DROP_ERR(-ECONNREFUSED);
5704
5705         return NF_ACCEPT;
5706 }
5707
5708 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5709                                          const struct net_device *outdev,
5710                                          u16 family)
5711 {
5712         u32 secmark_perm;
5713         u32 peer_sid;
5714         int ifindex = outdev->ifindex;
5715         struct sock *sk;
5716         struct common_audit_data ad;
5717         struct lsm_network_audit net = {0,};
5718         char *addrp;
5719         u8 secmark_active;
5720         u8 peerlbl_active;
5721
5722         /* If any sort of compatibility mode is enabled then handoff processing
5723          * to the selinux_ip_postroute_compat() function to deal with the
5724          * special handling.  We do this in an attempt to keep this function
5725          * as fast and as clean as possible. */
5726         if (!selinux_policycap_netpeer())
5727                 return selinux_ip_postroute_compat(skb, ifindex, family);
5728
5729         secmark_active = selinux_secmark_enabled();
5730         peerlbl_active = selinux_peerlbl_enabled();
5731         if (!secmark_active && !peerlbl_active)
5732                 return NF_ACCEPT;
5733
5734         sk = skb_to_full_sk(skb);
5735
5736 #ifdef CONFIG_XFRM
5737         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5738          * packet transformation so allow the packet to pass without any checks
5739          * since we'll have another chance to perform access control checks
5740          * when the packet is on it's final way out.
5741          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5742          *       is NULL, in this case go ahead and apply access control.
5743          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5744          *       TCP listening state we cannot wait until the XFRM processing
5745          *       is done as we will miss out on the SA label if we do;
5746          *       unfortunately, this means more work, but it is only once per
5747          *       connection. */
5748         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5749             !(sk && sk_listener(sk)))
5750                 return NF_ACCEPT;
5751 #endif
5752
5753         if (sk == NULL) {
5754                 /* Without an associated socket the packet is either coming
5755                  * from the kernel or it is being forwarded; check the packet
5756                  * to determine which and if the packet is being forwarded
5757                  * query the packet directly to determine the security label. */
5758                 if (skb->skb_iif) {
5759                         secmark_perm = PACKET__FORWARD_OUT;
5760                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5761                                 return NF_DROP;
5762                 } else {
5763                         secmark_perm = PACKET__SEND;
5764                         peer_sid = SECINITSID_KERNEL;
5765                 }
5766         } else if (sk_listener(sk)) {
5767                 /* Locally generated packet but the associated socket is in the
5768                  * listening state which means this is a SYN-ACK packet.  In
5769                  * this particular case the correct security label is assigned
5770                  * to the connection/request_sock but unfortunately we can't
5771                  * query the request_sock as it isn't queued on the parent
5772                  * socket until after the SYN-ACK packet is sent; the only
5773                  * viable choice is to regenerate the label like we do in
5774                  * selinux_inet_conn_request().  See also selinux_ip_output()
5775                  * for similar problems. */
5776                 u32 skb_sid;
5777                 struct sk_security_struct *sksec;
5778
5779                 sksec = sk->sk_security;
5780                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5781                         return NF_DROP;
5782                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5783                  * and the packet has been through at least one XFRM
5784                  * transformation then we must be dealing with the "final"
5785                  * form of labeled IPsec packet; since we've already applied
5786                  * all of our access controls on this packet we can safely
5787                  * pass the packet. */
5788                 if (skb_sid == SECSID_NULL) {
5789                         switch (family) {
5790                         case PF_INET:
5791                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5792                                         return NF_ACCEPT;
5793                                 break;
5794                         case PF_INET6:
5795                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5796                                         return NF_ACCEPT;
5797                                 break;
5798                         default:
5799                                 return NF_DROP_ERR(-ECONNREFUSED);
5800                         }
5801                 }
5802                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5803                         return NF_DROP;
5804                 secmark_perm = PACKET__SEND;
5805         } else {
5806                 /* Locally generated packet, fetch the security label from the
5807                  * associated socket. */
5808                 struct sk_security_struct *sksec = sk->sk_security;
5809                 peer_sid = sksec->sid;
5810                 secmark_perm = PACKET__SEND;
5811         }
5812
5813         ad.type = LSM_AUDIT_DATA_NET;
5814         ad.u.net = &net;
5815         ad.u.net->netif = ifindex;
5816         ad.u.net->family = family;
5817         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5818                 return NF_DROP;
5819
5820         if (secmark_active)
5821                 if (avc_has_perm(&selinux_state,
5822                                  peer_sid, skb->secmark,
5823                                  SECCLASS_PACKET, secmark_perm, &ad))
5824                         return NF_DROP_ERR(-ECONNREFUSED);
5825
5826         if (peerlbl_active) {
5827                 u32 if_sid;
5828                 u32 node_sid;
5829
5830                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5831                         return NF_DROP;
5832                 if (avc_has_perm(&selinux_state,
5833                                  peer_sid, if_sid,
5834                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5835                         return NF_DROP_ERR(-ECONNREFUSED);
5836
5837                 if (sel_netnode_sid(addrp, family, &node_sid))
5838                         return NF_DROP;
5839                 if (avc_has_perm(&selinux_state,
5840                                  peer_sid, node_sid,
5841                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5842                         return NF_DROP_ERR(-ECONNREFUSED);
5843         }
5844
5845         return NF_ACCEPT;
5846 }
5847
5848 static unsigned int selinux_ipv4_postroute(void *priv,
5849                                            struct sk_buff *skb,
5850                                            const struct nf_hook_state *state)
5851 {
5852         return selinux_ip_postroute(skb, state->out, PF_INET);
5853 }
5854
5855 #if IS_ENABLED(CONFIG_IPV6)
5856 static unsigned int selinux_ipv6_postroute(void *priv,
5857                                            struct sk_buff *skb,
5858                                            const struct nf_hook_state *state)
5859 {
5860         return selinux_ip_postroute(skb, state->out, PF_INET6);
5861 }
5862 #endif  /* IPV6 */
5863
5864 #endif  /* CONFIG_NETFILTER */
5865
5866 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5867 {
5868         return selinux_nlmsg_perm(sk, skb);
5869 }
5870
5871 static int ipc_alloc_security(struct kern_ipc_perm *perm,
5872                               u16 sclass)
5873 {
5874         struct ipc_security_struct *isec;
5875
5876         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5877         if (!isec)
5878                 return -ENOMEM;
5879
5880         isec->sclass = sclass;
5881         isec->sid = current_sid();
5882         perm->security = isec;
5883
5884         return 0;
5885 }
5886
5887 static void ipc_free_security(struct kern_ipc_perm *perm)
5888 {
5889         struct ipc_security_struct *isec = perm->security;
5890         perm->security = NULL;
5891         kfree(isec);
5892 }
5893
5894 static int msg_msg_alloc_security(struct msg_msg *msg)
5895 {
5896         struct msg_security_struct *msec;
5897
5898         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5899         if (!msec)
5900                 return -ENOMEM;
5901
5902         msec->sid = SECINITSID_UNLABELED;
5903         msg->security = msec;
5904
5905         return 0;
5906 }
5907
5908 static void msg_msg_free_security(struct msg_msg *msg)
5909 {
5910         struct msg_security_struct *msec = msg->security;
5911
5912         msg->security = NULL;
5913         kfree(msec);
5914 }
5915
5916 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5917                         u32 perms)
5918 {
5919         struct ipc_security_struct *isec;
5920         struct common_audit_data ad;
5921         u32 sid = current_sid();
5922
5923         isec = ipc_perms->security;
5924
5925         ad.type = LSM_AUDIT_DATA_IPC;
5926         ad.u.ipc_id = ipc_perms->key;
5927
5928         return avc_has_perm(&selinux_state,
5929                             sid, isec->sid, isec->sclass, perms, &ad);
5930 }
5931
5932 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5933 {
5934         return msg_msg_alloc_security(msg);
5935 }
5936
5937 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5938 {
5939         msg_msg_free_security(msg);
5940 }
5941
5942 /* message queue security operations */
5943 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5944 {
5945         struct ipc_security_struct *isec;
5946         struct common_audit_data ad;
5947         u32 sid = current_sid();
5948         int rc;
5949
5950         rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5951         if (rc)
5952                 return rc;
5953
5954         isec = msq->security;
5955
5956         ad.type = LSM_AUDIT_DATA_IPC;
5957         ad.u.ipc_id = msq->key;
5958
5959         rc = avc_has_perm(&selinux_state,
5960                           sid, isec->sid, SECCLASS_MSGQ,
5961                           MSGQ__CREATE, &ad);
5962         if (rc) {
5963                 ipc_free_security(msq);
5964                 return rc;
5965         }
5966         return 0;
5967 }
5968
5969 static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5970 {
5971         ipc_free_security(msq);
5972 }
5973
5974 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5975 {
5976         struct ipc_security_struct *isec;
5977         struct common_audit_data ad;
5978         u32 sid = current_sid();
5979
5980         isec = msq->security;
5981
5982         ad.type = LSM_AUDIT_DATA_IPC;
5983         ad.u.ipc_id = msq->key;
5984
5985         return avc_has_perm(&selinux_state,
5986                             sid, isec->sid, SECCLASS_MSGQ,
5987                             MSGQ__ASSOCIATE, &ad);
5988 }
5989
5990 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5991 {
5992         int err;
5993         int perms;
5994
5995         switch (cmd) {
5996         case IPC_INFO:
5997         case MSG_INFO:
5998                 /* No specific object, just general system-wide information. */
5999                 return avc_has_perm(&selinux_state,
6000                                     current_sid(), SECINITSID_KERNEL,
6001                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6002         case IPC_STAT:
6003         case MSG_STAT:
6004                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6005                 break;
6006         case IPC_SET:
6007                 perms = MSGQ__SETATTR;
6008                 break;
6009         case IPC_RMID:
6010                 perms = MSGQ__DESTROY;
6011                 break;
6012         default:
6013                 return 0;
6014         }
6015
6016         err = ipc_has_perm(msq, perms);
6017         return err;
6018 }
6019
6020 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6021 {
6022         struct ipc_security_struct *isec;
6023         struct msg_security_struct *msec;
6024         struct common_audit_data ad;
6025         u32 sid = current_sid();
6026         int rc;
6027
6028         isec = msq->security;
6029         msec = msg->security;
6030
6031         /*
6032          * First time through, need to assign label to the message
6033          */
6034         if (msec->sid == SECINITSID_UNLABELED) {
6035                 /*
6036                  * Compute new sid based on current process and
6037                  * message queue this message will be stored in
6038                  */
6039                 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6040                                              SECCLASS_MSG, NULL, &msec->sid);
6041                 if (rc)
6042                         return rc;
6043         }
6044
6045         ad.type = LSM_AUDIT_DATA_IPC;
6046         ad.u.ipc_id = msq->key;
6047
6048         /* Can this process write to the queue? */
6049         rc = avc_has_perm(&selinux_state,
6050                           sid, isec->sid, SECCLASS_MSGQ,
6051                           MSGQ__WRITE, &ad);
6052         if (!rc)
6053                 /* Can this process send the message */
6054                 rc = avc_has_perm(&selinux_state,
6055                                   sid, msec->sid, SECCLASS_MSG,
6056                                   MSG__SEND, &ad);
6057         if (!rc)
6058                 /* Can the message be put in the queue? */
6059                 rc = avc_has_perm(&selinux_state,
6060                                   msec->sid, isec->sid, SECCLASS_MSGQ,
6061                                   MSGQ__ENQUEUE, &ad);
6062
6063         return rc;
6064 }
6065
6066 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6067                                     struct task_struct *target,
6068                                     long type, int mode)
6069 {
6070         struct ipc_security_struct *isec;
6071         struct msg_security_struct *msec;
6072         struct common_audit_data ad;
6073         u32 sid = task_sid(target);
6074         int rc;
6075
6076         isec = msq->security;
6077         msec = msg->security;
6078
6079         ad.type = LSM_AUDIT_DATA_IPC;
6080         ad.u.ipc_id = msq->key;
6081
6082         rc = avc_has_perm(&selinux_state,
6083                           sid, isec->sid,
6084                           SECCLASS_MSGQ, MSGQ__READ, &ad);
6085         if (!rc)
6086                 rc = avc_has_perm(&selinux_state,
6087                                   sid, msec->sid,
6088                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
6089         return rc;
6090 }
6091
6092 /* Shared Memory security operations */
6093 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6094 {
6095         struct ipc_security_struct *isec;
6096         struct common_audit_data ad;
6097         u32 sid = current_sid();
6098         int rc;
6099
6100         rc = ipc_alloc_security(shp, SECCLASS_SHM);
6101         if (rc)
6102                 return rc;
6103
6104         isec = shp->security;
6105
6106         ad.type = LSM_AUDIT_DATA_IPC;
6107         ad.u.ipc_id = shp->key;
6108
6109         rc = avc_has_perm(&selinux_state,
6110                           sid, isec->sid, SECCLASS_SHM,
6111                           SHM__CREATE, &ad);
6112         if (rc) {
6113                 ipc_free_security(shp);
6114                 return rc;
6115         }
6116         return 0;
6117 }
6118
6119 static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6120 {
6121         ipc_free_security(shp);
6122 }
6123
6124 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6125 {
6126         struct ipc_security_struct *isec;
6127         struct common_audit_data ad;
6128         u32 sid = current_sid();
6129
6130         isec = shp->security;
6131
6132         ad.type = LSM_AUDIT_DATA_IPC;
6133         ad.u.ipc_id = shp->key;
6134
6135         return avc_has_perm(&selinux_state,
6136                             sid, isec->sid, SECCLASS_SHM,
6137                             SHM__ASSOCIATE, &ad);
6138 }
6139
6140 /* Note, at this point, shp is locked down */
6141 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6142 {
6143         int perms;
6144         int err;
6145
6146         switch (cmd) {
6147         case IPC_INFO:
6148         case SHM_INFO:
6149                 /* No specific object, just general system-wide information. */
6150                 return avc_has_perm(&selinux_state,
6151                                     current_sid(), SECINITSID_KERNEL,
6152                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6153         case IPC_STAT:
6154         case SHM_STAT:
6155                 perms = SHM__GETATTR | SHM__ASSOCIATE;
6156                 break;
6157         case IPC_SET:
6158                 perms = SHM__SETATTR;
6159                 break;
6160         case SHM_LOCK:
6161         case SHM_UNLOCK:
6162                 perms = SHM__LOCK;
6163                 break;
6164         case IPC_RMID:
6165                 perms = SHM__DESTROY;
6166                 break;
6167         default:
6168                 return 0;
6169         }
6170
6171         err = ipc_has_perm(shp, perms);
6172         return err;
6173 }
6174
6175 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6176                              char __user *shmaddr, int shmflg)
6177 {
6178         u32 perms;
6179
6180         if (shmflg & SHM_RDONLY)
6181                 perms = SHM__READ;
6182         else
6183                 perms = SHM__READ | SHM__WRITE;
6184
6185         return ipc_has_perm(shp, perms);
6186 }
6187
6188 /* Semaphore security operations */
6189 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6190 {
6191         struct ipc_security_struct *isec;
6192         struct common_audit_data ad;
6193         u32 sid = current_sid();
6194         int rc;
6195
6196         rc = ipc_alloc_security(sma, SECCLASS_SEM);
6197         if (rc)
6198                 return rc;
6199
6200         isec = sma->security;
6201
6202         ad.type = LSM_AUDIT_DATA_IPC;
6203         ad.u.ipc_id = sma->key;
6204
6205         rc = avc_has_perm(&selinux_state,
6206                           sid, isec->sid, SECCLASS_SEM,
6207                           SEM__CREATE, &ad);
6208         if (rc) {
6209                 ipc_free_security(sma);
6210                 return rc;
6211         }
6212         return 0;
6213 }
6214
6215 static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6216 {
6217         ipc_free_security(sma);
6218 }
6219
6220 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6221 {
6222         struct ipc_security_struct *isec;
6223         struct common_audit_data ad;
6224         u32 sid = current_sid();
6225
6226         isec = sma->security;
6227
6228         ad.type = LSM_AUDIT_DATA_IPC;
6229         ad.u.ipc_id = sma->key;
6230
6231         return avc_has_perm(&selinux_state,
6232                             sid, isec->sid, SECCLASS_SEM,
6233                             SEM__ASSOCIATE, &ad);
6234 }
6235
6236 /* Note, at this point, sma is locked down */
6237 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6238 {
6239         int err;
6240         u32 perms;
6241
6242         switch (cmd) {
6243         case IPC_INFO:
6244         case SEM_INFO:
6245                 /* No specific object, just general system-wide information. */
6246                 return avc_has_perm(&selinux_state,
6247                                     current_sid(), SECINITSID_KERNEL,
6248                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6249         case GETPID:
6250         case GETNCNT:
6251         case GETZCNT:
6252                 perms = SEM__GETATTR;
6253                 break;
6254         case GETVAL:
6255         case GETALL:
6256                 perms = SEM__READ;
6257                 break;
6258         case SETVAL:
6259         case SETALL:
6260                 perms = SEM__WRITE;
6261                 break;
6262         case IPC_RMID:
6263                 perms = SEM__DESTROY;
6264                 break;
6265         case IPC_SET:
6266                 perms = SEM__SETATTR;
6267                 break;
6268         case IPC_STAT:
6269         case SEM_STAT:
6270                 perms = SEM__GETATTR | SEM__ASSOCIATE;
6271                 break;
6272         default:
6273                 return 0;
6274         }
6275
6276         err = ipc_has_perm(sma, perms);
6277         return err;
6278 }
6279
6280 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6281                              struct sembuf *sops, unsigned nsops, int alter)
6282 {
6283         u32 perms;
6284
6285         if (alter)
6286                 perms = SEM__READ | SEM__WRITE;
6287         else
6288                 perms = SEM__READ;
6289
6290         return ipc_has_perm(sma, perms);
6291 }
6292
6293 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6294 {
6295         u32 av = 0;
6296
6297         av = 0;
6298         if (flag & S_IRUGO)
6299                 av |= IPC__UNIX_READ;
6300         if (flag & S_IWUGO)
6301                 av |= IPC__UNIX_WRITE;
6302
6303         if (av == 0)
6304                 return 0;
6305
6306         return ipc_has_perm(ipcp, av);
6307 }
6308
6309 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6310 {
6311         struct ipc_security_struct *isec = ipcp->security;
6312         *secid = isec->sid;
6313 }
6314
6315 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6316 {
6317         if (inode)
6318                 inode_doinit_with_dentry(inode, dentry);
6319 }
6320
6321 static int selinux_getprocattr(struct task_struct *p,
6322                                char *name, char **value)
6323 {
6324         const struct task_security_struct *__tsec;
6325         u32 sid;
6326         int error;
6327         unsigned len;
6328
6329         rcu_read_lock();
6330         __tsec = __task_cred(p)->security;
6331
6332         if (current != p) {
6333                 error = avc_has_perm(&selinux_state,
6334                                      current_sid(), __tsec->sid,
6335                                      SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6336                 if (error)
6337                         goto bad;
6338         }
6339
6340         if (!strcmp(name, "current"))
6341                 sid = __tsec->sid;
6342         else if (!strcmp(name, "prev"))
6343                 sid = __tsec->osid;
6344         else if (!strcmp(name, "exec"))
6345                 sid = __tsec->exec_sid;
6346         else if (!strcmp(name, "fscreate"))
6347                 sid = __tsec->create_sid;
6348         else if (!strcmp(name, "keycreate"))
6349                 sid = __tsec->keycreate_sid;
6350         else if (!strcmp(name, "sockcreate"))
6351                 sid = __tsec->sockcreate_sid;
6352         else {
6353                 error = -EINVAL;
6354                 goto bad;
6355         }
6356         rcu_read_unlock();
6357
6358         if (!sid)
6359                 return 0;
6360
6361         error = security_sid_to_context(&selinux_state, sid, value, &len);
6362         if (error)
6363                 return error;
6364         return len;
6365
6366 bad:
6367         rcu_read_unlock();
6368         return error;
6369 }
6370
6371 static int selinux_setprocattr(const char *name, void *value, size_t size)
6372 {
6373         struct task_security_struct *tsec;
6374         struct cred *new;
6375         u32 mysid = current_sid(), sid = 0, ptsid;
6376         int error;
6377         char *str = value;
6378
6379         /*
6380          * Basic control over ability to set these attributes at all.
6381          */
6382         if (!strcmp(name, "exec"))
6383                 error = avc_has_perm(&selinux_state,
6384                                      mysid, mysid, SECCLASS_PROCESS,
6385                                      PROCESS__SETEXEC, NULL);
6386         else if (!strcmp(name, "fscreate"))
6387                 error = avc_has_perm(&selinux_state,
6388                                      mysid, mysid, SECCLASS_PROCESS,
6389                                      PROCESS__SETFSCREATE, NULL);
6390         else if (!strcmp(name, "keycreate"))
6391                 error = avc_has_perm(&selinux_state,
6392                                      mysid, mysid, SECCLASS_PROCESS,
6393                                      PROCESS__SETKEYCREATE, NULL);
6394         else if (!strcmp(name, "sockcreate"))
6395                 error = avc_has_perm(&selinux_state,
6396                                      mysid, mysid, SECCLASS_PROCESS,
6397                                      PROCESS__SETSOCKCREATE, NULL);
6398         else if (!strcmp(name, "current"))
6399                 error = avc_has_perm(&selinux_state,
6400                                      mysid, mysid, SECCLASS_PROCESS,
6401                                      PROCESS__SETCURRENT, NULL);
6402         else
6403                 error = -EINVAL;
6404         if (error)
6405                 return error;
6406
6407         /* Obtain a SID for the context, if one was specified. */
6408         if (size && str[0] && str[0] != '\n') {
6409                 if (str[size-1] == '\n') {
6410                         str[size-1] = 0;
6411                         size--;
6412                 }
6413                 error = security_context_to_sid(&selinux_state, value, size,
6414                                                 &sid, GFP_KERNEL);
6415                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6416                         if (!has_cap_mac_admin(true)) {
6417                                 struct audit_buffer *ab;
6418                                 size_t audit_size;
6419
6420                                 /* We strip a nul only if it is at the end, otherwise the
6421                                  * context contains a nul and we should audit that */
6422                                 if (str[size - 1] == '\0')
6423                                         audit_size = size - 1;
6424                                 else
6425                                         audit_size = size;
6426                                 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6427                                 audit_log_format(ab, "op=fscreate invalid_context=");
6428                                 audit_log_n_untrustedstring(ab, value, audit_size);
6429                                 audit_log_end(ab);
6430
6431                                 return error;
6432                         }
6433                         error = security_context_to_sid_force(
6434                                                       &selinux_state,
6435                                                       value, size, &sid);
6436                 }
6437                 if (error)
6438                         return error;
6439         }
6440
6441         new = prepare_creds();
6442         if (!new)
6443                 return -ENOMEM;
6444
6445         /* Permission checking based on the specified context is
6446            performed during the actual operation (execve,
6447            open/mkdir/...), when we know the full context of the
6448            operation.  See selinux_bprm_set_creds for the execve
6449            checks and may_create for the file creation checks. The
6450            operation will then fail if the context is not permitted. */
6451         tsec = new->security;
6452         if (!strcmp(name, "exec")) {
6453                 tsec->exec_sid = sid;
6454         } else if (!strcmp(name, "fscreate")) {
6455                 tsec->create_sid = sid;
6456         } else if (!strcmp(name, "keycreate")) {
6457                 error = avc_has_perm(&selinux_state,
6458                                      mysid, sid, SECCLASS_KEY, KEY__CREATE,
6459                                      NULL);
6460                 if (error)
6461                         goto abort_change;
6462                 tsec->keycreate_sid = sid;
6463         } else if (!strcmp(name, "sockcreate")) {
6464                 tsec->sockcreate_sid = sid;
6465         } else if (!strcmp(name, "current")) {
6466                 error = -EINVAL;
6467                 if (sid == 0)
6468                         goto abort_change;
6469
6470                 /* Only allow single threaded processes to change context */
6471                 error = -EPERM;
6472                 if (!current_is_single_threaded()) {
6473                         error = security_bounded_transition(&selinux_state,
6474                                                             tsec->sid, sid);
6475                         if (error)
6476                                 goto abort_change;
6477                 }
6478
6479                 /* Check permissions for the transition. */
6480                 error = avc_has_perm(&selinux_state,
6481                                      tsec->sid, sid, SECCLASS_PROCESS,
6482                                      PROCESS__DYNTRANSITION, NULL);
6483                 if (error)
6484                         goto abort_change;
6485
6486                 /* Check for ptracing, and update the task SID if ok.
6487                    Otherwise, leave SID unchanged and fail. */
6488                 ptsid = ptrace_parent_sid();
6489                 if (ptsid != 0) {
6490                         error = avc_has_perm(&selinux_state,
6491                                              ptsid, sid, SECCLASS_PROCESS,
6492                                              PROCESS__PTRACE, NULL);
6493                         if (error)
6494                                 goto abort_change;
6495                 }
6496
6497                 tsec->sid = sid;
6498         } else {
6499                 error = -EINVAL;
6500                 goto abort_change;
6501         }
6502
6503         commit_creds(new);
6504         return size;
6505
6506 abort_change:
6507         abort_creds(new);
6508         return error;
6509 }
6510
6511 static int selinux_ismaclabel(const char *name)
6512 {
6513         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6514 }
6515
6516 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6517 {
6518         return security_sid_to_context(&selinux_state, secid,
6519                                        secdata, seclen);
6520 }
6521
6522 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6523 {
6524         return security_context_to_sid(&selinux_state, secdata, seclen,
6525                                        secid, GFP_KERNEL);
6526 }
6527
6528 static void selinux_release_secctx(char *secdata, u32 seclen)
6529 {
6530         kfree(secdata);
6531 }
6532
6533 static void selinux_inode_invalidate_secctx(struct inode *inode)
6534 {
6535         struct inode_security_struct *isec = inode->i_security;
6536
6537         spin_lock(&isec->lock);
6538         isec->initialized = LABEL_INVALID;
6539         spin_unlock(&isec->lock);
6540 }
6541
6542 /*
6543  *      called with inode->i_mutex locked
6544  */
6545 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6546 {
6547         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6548 }
6549
6550 /*
6551  *      called with inode->i_mutex locked
6552  */
6553 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6554 {
6555         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6556 }
6557
6558 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6559 {
6560         int len = 0;
6561         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6562                                                 ctx, true);
6563         if (len < 0)
6564                 return len;
6565         *ctxlen = len;
6566         return 0;
6567 }
6568 #ifdef CONFIG_KEYS
6569
6570 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6571                              unsigned long flags)
6572 {
6573         const struct task_security_struct *tsec;
6574         struct key_security_struct *ksec;
6575
6576         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6577         if (!ksec)
6578                 return -ENOMEM;
6579
6580         tsec = cred->security;
6581         if (tsec->keycreate_sid)
6582                 ksec->sid = tsec->keycreate_sid;
6583         else
6584                 ksec->sid = tsec->sid;
6585
6586         k->security = ksec;
6587         return 0;
6588 }
6589
6590 static void selinux_key_free(struct key *k)
6591 {
6592         struct key_security_struct *ksec = k->security;
6593
6594         k->security = NULL;
6595         kfree(ksec);
6596 }
6597
6598 static int selinux_key_permission(key_ref_t key_ref,
6599                                   const struct cred *cred,
6600                                   unsigned perm)
6601 {
6602         struct key *key;
6603         struct key_security_struct *ksec;
6604         u32 sid;
6605
6606         /* if no specific permissions are requested, we skip the
6607            permission check. No serious, additional covert channels
6608            appear to be created. */
6609         if (perm == 0)
6610                 return 0;
6611
6612         sid = cred_sid(cred);
6613
6614         key = key_ref_to_ptr(key_ref);
6615         ksec = key->security;
6616
6617         return avc_has_perm(&selinux_state,
6618                             sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6619 }
6620
6621 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6622 {
6623         struct key_security_struct *ksec = key->security;
6624         char *context = NULL;
6625         unsigned len;
6626         int rc;
6627
6628         rc = security_sid_to_context(&selinux_state, ksec->sid,
6629                                      &context, &len);
6630         if (!rc)
6631                 rc = len;
6632         *_buffer = context;
6633         return rc;
6634 }
6635 #endif
6636
6637 #ifdef CONFIG_SECURITY_INFINIBAND
6638 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6639 {
6640         struct common_audit_data ad;
6641         int err;
6642         u32 sid = 0;
6643         struct ib_security_struct *sec = ib_sec;
6644         struct lsm_ibpkey_audit ibpkey;
6645
6646         err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6647         if (err)
6648                 return err;
6649
6650         ad.type = LSM_AUDIT_DATA_IBPKEY;
6651         ibpkey.subnet_prefix = subnet_prefix;
6652         ibpkey.pkey = pkey_val;
6653         ad.u.ibpkey = &ibpkey;
6654         return avc_has_perm(&selinux_state,
6655                             sec->sid, sid,
6656                             SECCLASS_INFINIBAND_PKEY,
6657                             INFINIBAND_PKEY__ACCESS, &ad);
6658 }
6659
6660 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6661                                             u8 port_num)
6662 {
6663         struct common_audit_data ad;
6664         int err;
6665         u32 sid = 0;
6666         struct ib_security_struct *sec = ib_sec;
6667         struct lsm_ibendport_audit ibendport;
6668
6669         err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6670                                       &sid);
6671
6672         if (err)
6673                 return err;
6674
6675         ad.type = LSM_AUDIT_DATA_IBENDPORT;
6676         strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6677         ibendport.port = port_num;
6678         ad.u.ibendport = &ibendport;
6679         return avc_has_perm(&selinux_state,
6680                             sec->sid, sid,
6681                             SECCLASS_INFINIBAND_ENDPORT,
6682                             INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6683 }
6684
6685 static int selinux_ib_alloc_security(void **ib_sec)
6686 {
6687         struct ib_security_struct *sec;
6688
6689         sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6690         if (!sec)
6691                 return -ENOMEM;
6692         sec->sid = current_sid();
6693
6694         *ib_sec = sec;
6695         return 0;
6696 }
6697
6698 static void selinux_ib_free_security(void *ib_sec)
6699 {
6700         kfree(ib_sec);
6701 }
6702 #endif
6703
6704 #ifdef CONFIG_BPF_SYSCALL
6705 static int selinux_bpf(int cmd, union bpf_attr *attr,
6706                                      unsigned int size)
6707 {
6708         u32 sid = current_sid();
6709         int ret;
6710
6711         switch (cmd) {
6712         case BPF_MAP_CREATE:
6713                 ret = avc_has_perm(&selinux_state,
6714                                    sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6715                                    NULL);
6716                 break;
6717         case BPF_PROG_LOAD:
6718                 ret = avc_has_perm(&selinux_state,
6719                                    sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6720                                    NULL);
6721                 break;
6722         default:
6723                 ret = 0;
6724                 break;
6725         }
6726
6727         return ret;
6728 }
6729
6730 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6731 {
6732         u32 av = 0;
6733
6734         if (fmode & FMODE_READ)
6735                 av |= BPF__MAP_READ;
6736         if (fmode & FMODE_WRITE)
6737                 av |= BPF__MAP_WRITE;
6738         return av;
6739 }
6740
6741 /* This function will check the file pass through unix socket or binder to see
6742  * if it is a bpf related object. And apply correspinding checks on the bpf
6743  * object based on the type. The bpf maps and programs, not like other files and
6744  * socket, are using a shared anonymous inode inside the kernel as their inode.
6745  * So checking that inode cannot identify if the process have privilege to
6746  * access the bpf object and that's why we have to add this additional check in
6747  * selinux_file_receive and selinux_binder_transfer_files.
6748  */
6749 static int bpf_fd_pass(struct file *file, u32 sid)
6750 {
6751         struct bpf_security_struct *bpfsec;
6752         struct bpf_prog *prog;
6753         struct bpf_map *map;
6754         int ret;
6755
6756         if (file->f_op == &bpf_map_fops) {
6757                 map = file->private_data;
6758                 bpfsec = map->security;
6759                 ret = avc_has_perm(&selinux_state,
6760                                    sid, bpfsec->sid, SECCLASS_BPF,
6761                                    bpf_map_fmode_to_av(file->f_mode), NULL);
6762                 if (ret)
6763                         return ret;
6764         } else if (file->f_op == &bpf_prog_fops) {
6765                 prog = file->private_data;
6766                 bpfsec = prog->aux->security;
6767                 ret = avc_has_perm(&selinux_state,
6768                                    sid, bpfsec->sid, SECCLASS_BPF,
6769                                    BPF__PROG_RUN, NULL);
6770                 if (ret)
6771                         return ret;
6772         }
6773         return 0;
6774 }
6775
6776 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6777 {
6778         u32 sid = current_sid();
6779         struct bpf_security_struct *bpfsec;
6780
6781         bpfsec = map->security;
6782         return avc_has_perm(&selinux_state,
6783                             sid, bpfsec->sid, SECCLASS_BPF,
6784                             bpf_map_fmode_to_av(fmode), NULL);
6785 }
6786
6787 static int selinux_bpf_prog(struct bpf_prog *prog)
6788 {
6789         u32 sid = current_sid();
6790         struct bpf_security_struct *bpfsec;
6791
6792         bpfsec = prog->aux->security;
6793         return avc_has_perm(&selinux_state,
6794                             sid, bpfsec->sid, SECCLASS_BPF,
6795                             BPF__PROG_RUN, NULL);
6796 }
6797
6798 static int selinux_bpf_map_alloc(struct bpf_map *map)
6799 {
6800         struct bpf_security_struct *bpfsec;
6801
6802         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6803         if (!bpfsec)
6804                 return -ENOMEM;
6805
6806         bpfsec->sid = current_sid();
6807         map->security = bpfsec;
6808
6809         return 0;
6810 }
6811
6812 static void selinux_bpf_map_free(struct bpf_map *map)
6813 {
6814         struct bpf_security_struct *bpfsec = map->security;
6815
6816         map->security = NULL;
6817         kfree(bpfsec);
6818 }
6819
6820 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6821 {
6822         struct bpf_security_struct *bpfsec;
6823
6824         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6825         if (!bpfsec)
6826                 return -ENOMEM;
6827
6828         bpfsec->sid = current_sid();
6829         aux->security = bpfsec;
6830
6831         return 0;
6832 }
6833
6834 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6835 {
6836         struct bpf_security_struct *bpfsec = aux->security;
6837
6838         aux->security = NULL;
6839         kfree(bpfsec);
6840 }
6841 #endif
6842
6843 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6844         LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6845         LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6846         LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6847         LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6848
6849         LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6850         LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6851         LSM_HOOK_INIT(capget, selinux_capget),
6852         LSM_HOOK_INIT(capset, selinux_capset),
6853         LSM_HOOK_INIT(capable, selinux_capable),
6854         LSM_HOOK_INIT(quotactl, selinux_quotactl),
6855         LSM_HOOK_INIT(quota_on, selinux_quota_on),
6856         LSM_HOOK_INIT(syslog, selinux_syslog),
6857         LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6858
6859         LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6860
6861         LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6862         LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6863         LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6864
6865         LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6866         LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6867         LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6868         LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6869         LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6870         LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6871         LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6872         LSM_HOOK_INIT(sb_mount, selinux_mount),
6873         LSM_HOOK_INIT(sb_umount, selinux_umount),
6874         LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6875         LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6876         LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6877
6878         LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6879         LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6880
6881         LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6882         LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6883         LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6884         LSM_HOOK_INIT(inode_create, selinux_inode_create),
6885         LSM_HOOK_INIT(inode_link, selinux_inode_link),
6886         LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6887         LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6888         LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6889         LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6890         LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6891         LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6892         LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6893         LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6894         LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6895         LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6896         LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6897         LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6898         LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6899         LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6900         LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6901         LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6902         LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6903         LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6904         LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6905         LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6906         LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6907         LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6908
6909         LSM_HOOK_INIT(file_permission, selinux_file_permission),
6910         LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6911         LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6912         LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6913         LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6914         LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6915         LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6916         LSM_HOOK_INIT(file_lock, selinux_file_lock),
6917         LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6918         LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6919         LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6920         LSM_HOOK_INIT(file_receive, selinux_file_receive),
6921
6922         LSM_HOOK_INIT(file_open, selinux_file_open),
6923
6924         LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6925         LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6926         LSM_HOOK_INIT(cred_free, selinux_cred_free),
6927         LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6928         LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6929         LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6930         LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6931         LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6932         LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6933         LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6934         LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6935         LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6936         LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6937         LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6938         LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6939         LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6940         LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6941         LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6942         LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6943         LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6944         LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6945         LSM_HOOK_INIT(task_kill, selinux_task_kill),
6946         LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6947
6948         LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6949         LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6950
6951         LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6952         LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6953
6954         LSM_HOOK_INIT(msg_queue_alloc_security,
6955                         selinux_msg_queue_alloc_security),
6956         LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6957         LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6958         LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6959         LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6960         LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6961
6962         LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6963         LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6964         LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6965         LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6966         LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6967
6968         LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6969         LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6970         LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6971         LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6972         LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6973
6974         LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6975
6976         LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6977         LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6978
6979         LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6980         LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6981         LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6982         LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6983         LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6984         LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6985         LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6986         LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6987
6988         LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6989         LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6990
6991         LSM_HOOK_INIT(socket_create, selinux_socket_create),
6992         LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6993         LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6994         LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6995         LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6996         LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6997         LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6998         LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6999         LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7000         LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7001         LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7002         LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7003         LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7004         LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7005         LSM_HOOK_INIT(socket_getpeersec_stream,
7006                         selinux_socket_getpeersec_stream),
7007         LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7008         LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7009         LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7010         LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7011         LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7012         LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7013         LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7014         LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7015         LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7016         LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7017         LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7018         LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7019         LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7020         LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7021         LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7022         LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7023         LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7024         LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7025         LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7026         LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7027         LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7028         LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7029 #ifdef CONFIG_SECURITY_INFINIBAND
7030         LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7031         LSM_HOOK_INIT(ib_endport_manage_subnet,
7032                       selinux_ib_endport_manage_subnet),
7033         LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7034         LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7035 #endif
7036 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7037         LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7038         LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7039         LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7040         LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7041         LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7042         LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7043                         selinux_xfrm_state_alloc_acquire),
7044         LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7045         LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7046         LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7047         LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7048                         selinux_xfrm_state_pol_flow_match),
7049         LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7050 #endif
7051
7052 #ifdef CONFIG_KEYS
7053         LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7054         LSM_HOOK_INIT(key_free, selinux_key_free),
7055         LSM_HOOK_INIT(key_permission, selinux_key_permission),
7056         LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7057 #endif
7058
7059 #ifdef CONFIG_AUDIT
7060         LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7061         LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7062         LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7063         LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7064 #endif
7065
7066 #ifdef CONFIG_BPF_SYSCALL
7067         LSM_HOOK_INIT(bpf, selinux_bpf),
7068         LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7069         LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7070         LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7071         LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7072         LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7073         LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7074 #endif
7075 };
7076
7077 static __init int selinux_init(void)
7078 {
7079         if (!security_module_enable("selinux")) {
7080                 selinux_enabled = 0;
7081                 return 0;
7082         }
7083
7084         if (!selinux_enabled) {
7085                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7086                 return 0;
7087         }
7088
7089         printk(KERN_INFO "SELinux:  Initializing.\n");
7090
7091         memset(&selinux_state, 0, sizeof(selinux_state));
7092         enforcing_set(&selinux_state, selinux_enforcing_boot);
7093         selinux_state.checkreqprot = selinux_checkreqprot_boot;
7094         selinux_ss_init(&selinux_state.ss);
7095         selinux_avc_init(&selinux_state.avc);
7096
7097         /* Set the security state for the initial task. */
7098         cred_init_security();
7099
7100         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7101
7102         sel_inode_cache = kmem_cache_create("selinux_inode_security",
7103                                             sizeof(struct inode_security_struct),
7104                                             0, SLAB_PANIC, NULL);
7105         file_security_cache = kmem_cache_create("selinux_file_security",
7106                                             sizeof(struct file_security_struct),
7107                                             0, SLAB_PANIC, NULL);
7108         avc_init();
7109
7110         avtab_cache_init();
7111
7112         ebitmap_cache_init();
7113
7114         hashtab_cache_init();
7115
7116         security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7117
7118         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7119                 panic("SELinux: Unable to register AVC netcache callback\n");
7120
7121         if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7122                 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7123
7124         if (selinux_enforcing_boot)
7125                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7126         else
7127                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
7128
7129         return 0;
7130 }
7131
7132 static void delayed_superblock_init(struct super_block *sb, void *unused)
7133 {
7134         superblock_doinit(sb, NULL);
7135 }
7136
7137 void selinux_complete_init(void)
7138 {
7139         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7140
7141         /* Set up any superblocks initialized prior to the policy load. */
7142         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7143         iterate_supers(delayed_superblock_init, NULL);
7144 }
7145
7146 /* SELinux requires early initialization in order to label
7147    all processes and objects when they are created. */
7148 security_initcall(selinux_init);
7149
7150 #if defined(CONFIG_NETFILTER)
7151
7152 static const struct nf_hook_ops selinux_nf_ops[] = {
7153         {
7154                 .hook =         selinux_ipv4_postroute,
7155                 .pf =           NFPROTO_IPV4,
7156                 .hooknum =      NF_INET_POST_ROUTING,
7157                 .priority =     NF_IP_PRI_SELINUX_LAST,
7158         },
7159         {
7160                 .hook =         selinux_ipv4_forward,
7161                 .pf =           NFPROTO_IPV4,
7162                 .hooknum =      NF_INET_FORWARD,
7163                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7164         },
7165         {
7166                 .hook =         selinux_ipv4_output,
7167                 .pf =           NFPROTO_IPV4,
7168                 .hooknum =      NF_INET_LOCAL_OUT,
7169                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7170         },
7171 #if IS_ENABLED(CONFIG_IPV6)
7172         {
7173                 .hook =         selinux_ipv6_postroute,
7174                 .pf =           NFPROTO_IPV6,
7175                 .hooknum =      NF_INET_POST_ROUTING,
7176                 .priority =     NF_IP6_PRI_SELINUX_LAST,
7177         },
7178         {
7179                 .hook =         selinux_ipv6_forward,
7180                 .pf =           NFPROTO_IPV6,
7181                 .hooknum =      NF_INET_FORWARD,
7182                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7183         },
7184         {
7185                 .hook =         selinux_ipv6_output,
7186                 .pf =           NFPROTO_IPV6,
7187                 .hooknum =      NF_INET_LOCAL_OUT,
7188                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7189         },
7190 #endif  /* IPV6 */
7191 };
7192
7193 static int __net_init selinux_nf_register(struct net *net)
7194 {
7195         return nf_register_net_hooks(net, selinux_nf_ops,
7196                                      ARRAY_SIZE(selinux_nf_ops));
7197 }
7198
7199 static void __net_exit selinux_nf_unregister(struct net *net)
7200 {
7201         nf_unregister_net_hooks(net, selinux_nf_ops,
7202                                 ARRAY_SIZE(selinux_nf_ops));
7203 }
7204
7205 static struct pernet_operations selinux_net_ops = {
7206         .init = selinux_nf_register,
7207         .exit = selinux_nf_unregister,
7208 };
7209
7210 static int __init selinux_nf_ip_init(void)
7211 {
7212         int err;
7213
7214         if (!selinux_enabled)
7215                 return 0;
7216
7217         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7218
7219         err = register_pernet_subsys(&selinux_net_ops);
7220         if (err)
7221                 panic("SELinux: register_pernet_subsys: error %d\n", err);
7222
7223         return 0;
7224 }
7225 __initcall(selinux_nf_ip_init);
7226
7227 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7228 static void selinux_nf_ip_exit(void)
7229 {
7230         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7231
7232         unregister_pernet_subsys(&selinux_net_ops);
7233 }
7234 #endif
7235
7236 #else /* CONFIG_NETFILTER */
7237
7238 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7239 #define selinux_nf_ip_exit()
7240 #endif
7241
7242 #endif /* CONFIG_NETFILTER */
7243
7244 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7245 int selinux_disable(struct selinux_state *state)
7246 {
7247         if (state->initialized) {
7248                 /* Not permitted after initial policy load. */
7249                 return -EINVAL;
7250         }
7251
7252         if (state->disabled) {
7253                 /* Only do this once. */
7254                 return -EINVAL;
7255         }
7256
7257         state->disabled = 1;
7258
7259         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7260
7261         selinux_enabled = 0;
7262
7263         security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7264
7265         /* Try to destroy the avc node cache */
7266         avc_disable();
7267
7268         /* Unregister netfilter hooks. */
7269         selinux_nf_ip_exit();
7270
7271         /* Unregister selinuxfs. */
7272         exit_sel_fs();
7273
7274         return 0;
7275 }
7276 #endif
This page took 0.466742 seconds and 4 git commands to generate.