1 // SPDX-License-Identifier: GPL-2.0-only
3 * Xilinx Axi Ethernet device driver
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
17 * - Add Axi Fifo support.
18 * - Factor out Axi DMA code into separate driver.
19 * - Test and fix basic multicast filtering.
20 * - Add support for extended multicast filtering.
21 * - Test basic VLAN support.
22 * - Add support for extended VLAN support.
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/phy.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
41 #include "xilinx_axienet.h"
43 /* Descriptors defines for Tx and Rx DMA */
44 #define TX_BD_NUM_DEFAULT 64
45 #define RX_BD_NUM_DEFAULT 1024
46 #define TX_BD_NUM_MAX 4096
47 #define RX_BD_NUM_MAX 4096
49 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
50 #define DRIVER_NAME "xaxienet"
51 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
52 #define DRIVER_VERSION "1.00a"
54 #define AXIENET_REGS_N 40
56 /* Match table for of_platform binding */
57 static const struct of_device_id axienet_of_match[] = {
58 { .compatible = "xlnx,axi-ethernet-1.00.a", },
59 { .compatible = "xlnx,axi-ethernet-1.01.a", },
60 { .compatible = "xlnx,axi-ethernet-2.01.a", },
64 MODULE_DEVICE_TABLE(of, axienet_of_match);
66 /* Option table for setting up Axi Ethernet hardware options */
67 static struct axienet_option axienet_options[] = {
68 /* Turn on jumbo packet support for both Rx and Tx */
70 .opt = XAE_OPTION_JUMBO,
72 .m_or = XAE_TC_JUM_MASK,
74 .opt = XAE_OPTION_JUMBO,
75 .reg = XAE_RCW1_OFFSET,
76 .m_or = XAE_RCW1_JUM_MASK,
77 }, { /* Turn on VLAN packet support for both Rx and Tx */
78 .opt = XAE_OPTION_VLAN,
80 .m_or = XAE_TC_VLAN_MASK,
82 .opt = XAE_OPTION_VLAN,
83 .reg = XAE_RCW1_OFFSET,
84 .m_or = XAE_RCW1_VLAN_MASK,
85 }, { /* Turn on FCS stripping on receive packets */
86 .opt = XAE_OPTION_FCS_STRIP,
87 .reg = XAE_RCW1_OFFSET,
88 .m_or = XAE_RCW1_FCS_MASK,
89 }, { /* Turn on FCS insertion on transmit packets */
90 .opt = XAE_OPTION_FCS_INSERT,
92 .m_or = XAE_TC_FCS_MASK,
93 }, { /* Turn off length/type field checking on receive packets */
94 .opt = XAE_OPTION_LENTYPE_ERR,
95 .reg = XAE_RCW1_OFFSET,
96 .m_or = XAE_RCW1_LT_DIS_MASK,
97 }, { /* Turn on Rx flow control */
98 .opt = XAE_OPTION_FLOW_CONTROL,
99 .reg = XAE_FCC_OFFSET,
100 .m_or = XAE_FCC_FCRX_MASK,
101 }, { /* Turn on Tx flow control */
102 .opt = XAE_OPTION_FLOW_CONTROL,
103 .reg = XAE_FCC_OFFSET,
104 .m_or = XAE_FCC_FCTX_MASK,
105 }, { /* Turn on promiscuous frame filtering */
106 .opt = XAE_OPTION_PROMISC,
107 .reg = XAE_FMI_OFFSET,
108 .m_or = XAE_FMI_PM_MASK,
109 }, { /* Enable transmitter */
110 .opt = XAE_OPTION_TXEN,
111 .reg = XAE_TC_OFFSET,
112 .m_or = XAE_TC_TX_MASK,
113 }, { /* Enable receiver */
114 .opt = XAE_OPTION_RXEN,
115 .reg = XAE_RCW1_OFFSET,
116 .m_or = XAE_RCW1_RX_MASK,
122 * axienet_dma_in32 - Memory mapped Axi DMA register read
123 * @lp: Pointer to axienet local structure
124 * @reg: Address offset from the base address of the Axi DMA core
126 * Return: The contents of the Axi DMA register
128 * This function returns the contents of the corresponding Axi DMA register.
130 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
132 return ioread32(lp->dma_regs + reg);
136 * axienet_dma_out32 - Memory mapped Axi DMA register write.
137 * @lp: Pointer to axienet local structure
138 * @reg: Address offset from the base address of the Axi DMA core
139 * @value: Value to be written into the Axi DMA register
141 * This function writes the desired value into the corresponding Axi DMA
144 static inline void axienet_dma_out32(struct axienet_local *lp,
145 off_t reg, u32 value)
147 iowrite32(value, lp->dma_regs + reg);
150 static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
153 axienet_dma_out32(lp, reg, lower_32_bits(addr));
155 if (lp->features & XAE_FEATURE_DMA_64BIT)
156 axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
159 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
160 struct axidma_bd *desc)
162 desc->phys = lower_32_bits(addr);
163 if (lp->features & XAE_FEATURE_DMA_64BIT)
164 desc->phys_msb = upper_32_bits(addr);
167 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
168 struct axidma_bd *desc)
170 dma_addr_t ret = desc->phys;
172 if (lp->features & XAE_FEATURE_DMA_64BIT)
173 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
179 * axienet_dma_bd_release - Release buffer descriptor rings
180 * @ndev: Pointer to the net_device structure
182 * This function is used to release the descriptors allocated in
183 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
184 * driver stop api is called.
186 static void axienet_dma_bd_release(struct net_device *ndev)
189 struct axienet_local *lp = netdev_priv(ndev);
191 /* If we end up here, tx_bd_v must have been DMA allocated. */
192 dma_free_coherent(ndev->dev.parent,
193 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
200 for (i = 0; i < lp->rx_bd_num; i++) {
203 /* A NULL skb means this descriptor has not been initialised
206 if (!lp->rx_bd_v[i].skb)
209 dev_kfree_skb(lp->rx_bd_v[i].skb);
211 /* For each descriptor, we programmed cntrl with the (non-zero)
212 * descriptor size, after it had been successfully allocated.
213 * So a non-zero value in there means we need to unmap it.
215 if (lp->rx_bd_v[i].cntrl) {
216 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
217 dma_unmap_single(ndev->dev.parent, phys,
218 lp->max_frm_size, DMA_FROM_DEVICE);
222 dma_free_coherent(ndev->dev.parent,
223 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
229 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
230 * @ndev: Pointer to the net_device structure
232 * Return: 0, on success -ENOMEM, on failure
234 * This function is called to initialize the Rx and Tx DMA descriptor
235 * rings. This initializes the descriptors with required default values
236 * and is called when Axi Ethernet driver reset is called.
238 static int axienet_dma_bd_init(struct net_device *ndev)
243 struct axienet_local *lp = netdev_priv(ndev);
245 /* Reset the indexes which are used for accessing the BDs */
250 /* Allocate the Tx and Rx buffer descriptors. */
251 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
252 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
253 &lp->tx_bd_p, GFP_KERNEL);
257 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
258 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
259 &lp->rx_bd_p, GFP_KERNEL);
263 for (i = 0; i < lp->tx_bd_num; i++) {
264 dma_addr_t addr = lp->tx_bd_p +
265 sizeof(*lp->tx_bd_v) *
266 ((i + 1) % lp->tx_bd_num);
268 lp->tx_bd_v[i].next = lower_32_bits(addr);
269 if (lp->features & XAE_FEATURE_DMA_64BIT)
270 lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
273 for (i = 0; i < lp->rx_bd_num; i++) {
276 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
277 ((i + 1) % lp->rx_bd_num);
278 lp->rx_bd_v[i].next = lower_32_bits(addr);
279 if (lp->features & XAE_FEATURE_DMA_64BIT)
280 lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
282 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
286 lp->rx_bd_v[i].skb = skb;
287 addr = dma_map_single(ndev->dev.parent, skb->data,
288 lp->max_frm_size, DMA_FROM_DEVICE);
289 if (dma_mapping_error(ndev->dev.parent, addr)) {
290 netdev_err(ndev, "DMA mapping error\n");
293 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
295 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
298 /* Start updating the Rx channel control register */
299 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
300 /* Update the interrupt coalesce count */
301 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
302 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
303 /* Update the delay timer count */
304 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
305 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
306 /* Enable coalesce, delay timer and error interrupts */
307 cr |= XAXIDMA_IRQ_ALL_MASK;
308 /* Write to the Rx channel control register */
309 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
311 /* Start updating the Tx channel control register */
312 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
313 /* Update the interrupt coalesce count */
314 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
315 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
316 /* Update the delay timer count */
317 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
318 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
319 /* Enable coalesce, delay timer and error interrupts */
320 cr |= XAXIDMA_IRQ_ALL_MASK;
321 /* Write to the Tx channel control register */
322 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
324 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
325 * halted state. This will make the Rx side ready for reception.
327 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
328 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
329 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
330 cr | XAXIDMA_CR_RUNSTOP_MASK);
331 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
332 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
334 /* Write to the RS (Run-stop) bit in the Tx channel control register.
335 * Tx channel is now ready to run. But only after we write to the
336 * tail pointer register that the Tx channel will start transmitting.
338 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
339 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
340 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
341 cr | XAXIDMA_CR_RUNSTOP_MASK);
345 axienet_dma_bd_release(ndev);
350 * axienet_set_mac_address - Write the MAC address
351 * @ndev: Pointer to the net_device structure
352 * @address: 6 byte Address to be written as MAC address
354 * This function is called to initialize the MAC address of the Axi Ethernet
355 * core. It writes to the UAW0 and UAW1 registers of the core.
357 static void axienet_set_mac_address(struct net_device *ndev,
360 struct axienet_local *lp = netdev_priv(ndev);
363 memcpy(ndev->dev_addr, address, ETH_ALEN);
364 if (!is_valid_ether_addr(ndev->dev_addr))
365 eth_hw_addr_random(ndev);
367 /* Set up unicast MAC address filter set its mac address */
368 axienet_iow(lp, XAE_UAW0_OFFSET,
369 (ndev->dev_addr[0]) |
370 (ndev->dev_addr[1] << 8) |
371 (ndev->dev_addr[2] << 16) |
372 (ndev->dev_addr[3] << 24));
373 axienet_iow(lp, XAE_UAW1_OFFSET,
374 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
375 ~XAE_UAW1_UNICASTADDR_MASK) |
377 (ndev->dev_addr[5] << 8))));
381 * netdev_set_mac_address - Write the MAC address (from outside the driver)
382 * @ndev: Pointer to the net_device structure
383 * @p: 6 byte Address to be written as MAC address
385 * Return: 0 for all conditions. Presently, there is no failure case.
387 * This function is called to initialize the MAC address of the Axi Ethernet
388 * core. It calls the core specific axienet_set_mac_address. This is the
389 * function that goes into net_device_ops structure entry ndo_set_mac_address.
391 static int netdev_set_mac_address(struct net_device *ndev, void *p)
393 struct sockaddr *addr = p;
394 axienet_set_mac_address(ndev, addr->sa_data);
399 * axienet_set_multicast_list - Prepare the multicast table
400 * @ndev: Pointer to the net_device structure
402 * This function is called to initialize the multicast table during
403 * initialization. The Axi Ethernet basic multicast support has a four-entry
404 * multicast table which is initialized here. Additionally this function
405 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
406 * means whenever the multicast table entries need to be updated this
407 * function gets called.
409 static void axienet_set_multicast_list(struct net_device *ndev)
412 u32 reg, af0reg, af1reg;
413 struct axienet_local *lp = netdev_priv(ndev);
415 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
416 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
417 /* We must make the kernel realize we had to move into
418 * promiscuous mode. If it was a promiscuous mode request
419 * the flag is already set. If not we set it.
421 ndev->flags |= IFF_PROMISC;
422 reg = axienet_ior(lp, XAE_FMI_OFFSET);
423 reg |= XAE_FMI_PM_MASK;
424 axienet_iow(lp, XAE_FMI_OFFSET, reg);
425 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
426 } else if (!netdev_mc_empty(ndev)) {
427 struct netdev_hw_addr *ha;
430 netdev_for_each_mc_addr(ha, ndev) {
431 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
434 af0reg = (ha->addr[0]);
435 af0reg |= (ha->addr[1] << 8);
436 af0reg |= (ha->addr[2] << 16);
437 af0reg |= (ha->addr[3] << 24);
439 af1reg = (ha->addr[4]);
440 af1reg |= (ha->addr[5] << 8);
442 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
445 axienet_iow(lp, XAE_FMI_OFFSET, reg);
446 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
447 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
451 reg = axienet_ior(lp, XAE_FMI_OFFSET);
452 reg &= ~XAE_FMI_PM_MASK;
454 axienet_iow(lp, XAE_FMI_OFFSET, reg);
456 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
457 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
460 axienet_iow(lp, XAE_FMI_OFFSET, reg);
461 axienet_iow(lp, XAE_AF0_OFFSET, 0);
462 axienet_iow(lp, XAE_AF1_OFFSET, 0);
465 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
470 * axienet_setoptions - Set an Axi Ethernet option
471 * @ndev: Pointer to the net_device structure
472 * @options: Option to be enabled/disabled
474 * The Axi Ethernet core has multiple features which can be selectively turned
475 * on or off. The typical options could be jumbo frame option, basic VLAN
476 * option, promiscuous mode option etc. This function is used to set or clear
477 * these options in the Axi Ethernet hardware. This is done through
478 * axienet_option structure .
480 static void axienet_setoptions(struct net_device *ndev, u32 options)
483 struct axienet_local *lp = netdev_priv(ndev);
484 struct axienet_option *tp = &axienet_options[0];
487 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
488 if (options & tp->opt)
490 axienet_iow(lp, tp->reg, reg);
494 lp->options |= options;
497 static int __axienet_device_reset(struct axienet_local *lp)
501 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
502 * process of Axi DMA takes a while to complete as all pending
503 * commands/transfers will be flushed or completed during this
505 * Note that even though both TX and RX have their own reset register,
506 * they both reset the entire DMA core, so only one needs to be used.
508 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
509 timeout = DELAY_OF_ONE_MILLISEC;
510 while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
511 XAXIDMA_CR_RESET_MASK) {
513 if (--timeout == 0) {
514 netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
524 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
525 * @ndev: Pointer to the net_device structure
527 * This function is called to reset and initialize the Axi Ethernet core. This
528 * is typically called during initialization. It does a reset of the Axi DMA
529 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
530 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
531 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
533 * Returns 0 on success or a negative error number otherwise.
535 static int axienet_device_reset(struct net_device *ndev)
538 struct axienet_local *lp = netdev_priv(ndev);
541 ret = __axienet_device_reset(lp);
545 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
546 lp->options |= XAE_OPTION_VLAN;
547 lp->options &= (~XAE_OPTION_JUMBO);
549 if ((ndev->mtu > XAE_MTU) &&
550 (ndev->mtu <= XAE_JUMBO_MTU)) {
551 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
554 if (lp->max_frm_size <= lp->rxmem)
555 lp->options |= XAE_OPTION_JUMBO;
558 ret = axienet_dma_bd_init(ndev);
560 netdev_err(ndev, "%s: descriptor allocation failed\n",
565 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
566 axienet_status &= ~XAE_RCW1_RX_MASK;
567 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
569 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
570 if (axienet_status & XAE_INT_RXRJECT_MASK)
571 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
572 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
573 XAE_INT_RECV_ERROR_MASK : 0);
575 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
577 /* Sync default options with HW but leave receiver and
578 * transmitter disabled.
580 axienet_setoptions(ndev, lp->options &
581 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
582 axienet_set_mac_address(ndev, NULL);
583 axienet_set_multicast_list(ndev);
584 axienet_setoptions(ndev, lp->options);
586 netif_trans_update(ndev);
592 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
593 * @ndev: Pointer to the net_device structure
594 * @first_bd: Index of first descriptor to clean up
595 * @nr_bds: Number of descriptors to clean up, can be -1 if unknown.
596 * @sizep: Pointer to a u32 filled with the total sum of all bytes
597 * in all cleaned-up descriptors. Ignored if NULL.
599 * Would either be called after a successful transmit operation, or after
600 * there was an error when setting up the chain.
601 * Returns the number of descriptors handled.
603 static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
604 int nr_bds, u32 *sizep)
606 struct axienet_local *lp = netdev_priv(ndev);
607 struct axidma_bd *cur_p;
608 int max_bds = nr_bds;
614 max_bds = lp->tx_bd_num;
616 for (i = 0; i < max_bds; i++) {
617 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
618 status = cur_p->status;
620 /* If no number is given, clean up *all* descriptors that have
621 * been completed by the MAC.
623 if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
626 phys = desc_get_phys_addr(lp, cur_p);
627 dma_unmap_single(ndev->dev.parent, phys,
628 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
631 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
632 dev_consume_skb_irq(cur_p->skb);
643 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
650 * axienet_start_xmit_done - Invoked once a transmit is completed by the
651 * Axi DMA Tx channel.
652 * @ndev: Pointer to the net_device structure
654 * This function is invoked from the Axi DMA Tx isr to notify the completion
655 * of transmit operation. It clears fields in the corresponding Tx BDs and
656 * unmaps the corresponding buffer so that CPU can regain ownership of the
657 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
660 static void axienet_start_xmit_done(struct net_device *ndev)
662 struct axienet_local *lp = netdev_priv(ndev);
666 packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);
668 lp->tx_bd_ci += packets;
669 if (lp->tx_bd_ci >= lp->tx_bd_num)
670 lp->tx_bd_ci -= lp->tx_bd_num;
672 ndev->stats.tx_packets += packets;
673 ndev->stats.tx_bytes += size;
675 /* Matches barrier in axienet_start_xmit */
678 netif_wake_queue(ndev);
682 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
683 * @lp: Pointer to the axienet_local structure
684 * @num_frag: The number of BDs to check for
686 * Return: 0, on success
687 * NETDEV_TX_BUSY, if any of the descriptors are not free
689 * This function is invoked before BDs are allocated and transmission starts.
690 * This function returns 0 if a BD or group of BDs can be allocated for
691 * transmission. If the BD or any of the BDs are not free the function
692 * returns a busy status. This is invoked from axienet_start_xmit.
694 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
697 struct axidma_bd *cur_p;
698 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
699 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
700 return NETDEV_TX_BUSY;
705 * axienet_start_xmit - Starts the transmission.
706 * @skb: sk_buff pointer that contains data to be Txed.
707 * @ndev: Pointer to net_device structure.
709 * Return: NETDEV_TX_OK, on success
710 * NETDEV_TX_BUSY, if any of the descriptors are not free
712 * This function is invoked from upper layers to initiate transmission. The
713 * function uses the next available free BDs and populates their fields to
714 * start the transmission. Additionally if checksum offloading is supported,
715 * it populates AXI Stream Control fields with appropriate values.
718 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
725 dma_addr_t tail_p, phys;
726 struct axienet_local *lp = netdev_priv(ndev);
727 struct axidma_bd *cur_p;
728 u32 orig_tail_ptr = lp->tx_bd_tail;
730 num_frag = skb_shinfo(skb)->nr_frags;
731 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
733 if (axienet_check_tx_bd_space(lp, num_frag)) {
734 if (netif_queue_stopped(ndev))
735 return NETDEV_TX_BUSY;
737 netif_stop_queue(ndev);
739 /* Matches barrier in axienet_start_xmit_done */
742 /* Space might have just been freed - check again */
743 if (axienet_check_tx_bd_space(lp, num_frag))
744 return NETDEV_TX_BUSY;
746 netif_wake_queue(ndev);
749 if (skb->ip_summed == CHECKSUM_PARTIAL) {
750 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
751 /* Tx Full Checksum Offload Enabled */
753 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
754 csum_start_off = skb_transport_offset(skb);
755 csum_index_off = csum_start_off + skb->csum_offset;
756 /* Tx Partial Checksum Offload Enabled */
758 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
760 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
761 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
764 phys = dma_map_single(ndev->dev.parent, skb->data,
765 skb_headlen(skb), DMA_TO_DEVICE);
766 if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
768 netdev_err(ndev, "TX DMA mapping error\n");
769 ndev->stats.tx_dropped++;
772 desc_set_phys_addr(lp, phys, cur_p);
773 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
775 for (ii = 0; ii < num_frag; ii++) {
776 if (++lp->tx_bd_tail >= lp->tx_bd_num)
778 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
779 frag = &skb_shinfo(skb)->frags[ii];
780 phys = dma_map_single(ndev->dev.parent,
781 skb_frag_address(frag),
784 if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
786 netdev_err(ndev, "TX DMA mapping error\n");
787 ndev->stats.tx_dropped++;
788 axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
790 lp->tx_bd_tail = orig_tail_ptr;
794 desc_set_phys_addr(lp, phys, cur_p);
795 cur_p->cntrl = skb_frag_size(frag);
798 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
801 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
802 /* Start the transfer */
803 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
804 if (++lp->tx_bd_tail >= lp->tx_bd_num)
811 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
813 * @ndev: Pointer to net_device structure.
815 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
816 * does minimal processing and invokes "netif_rx" to complete further
819 static void axienet_recv(struct net_device *ndev)
825 dma_addr_t tail_p = 0;
826 struct axienet_local *lp = netdev_priv(ndev);
827 struct sk_buff *skb, *new_skb;
828 struct axidma_bd *cur_p;
830 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
832 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
835 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
837 phys = desc_get_phys_addr(lp, cur_p);
838 dma_unmap_single(ndev->dev.parent, phys, lp->max_frm_size,
843 length = cur_p->app4 & 0x0000FFFF;
845 skb_put(skb, length);
846 skb->protocol = eth_type_trans(skb, ndev);
847 /*skb_checksum_none_assert(skb);*/
848 skb->ip_summed = CHECKSUM_NONE;
850 /* if we're doing Rx csum offload, set it up */
851 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
852 csumstatus = (cur_p->app2 &
853 XAE_FULL_CSUM_STATUS_MASK) >> 3;
854 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
855 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
856 skb->ip_summed = CHECKSUM_UNNECESSARY;
858 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
859 skb->protocol == htons(ETH_P_IP) &&
861 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
862 skb->ip_summed = CHECKSUM_COMPLETE;
870 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
874 phys = dma_map_single(ndev->dev.parent, new_skb->data,
877 if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
879 netdev_err(ndev, "RX DMA mapping error\n");
880 dev_kfree_skb(new_skb);
883 desc_set_phys_addr(lp, phys, cur_p);
885 cur_p->cntrl = lp->max_frm_size;
887 cur_p->skb = new_skb;
889 if (++lp->rx_bd_ci >= lp->rx_bd_num)
891 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
894 ndev->stats.rx_packets += packets;
895 ndev->stats.rx_bytes += size;
898 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
902 * axienet_tx_irq - Tx Done Isr.
904 * @_ndev: net_device pointer
906 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
908 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
909 * to complete the BD processing.
911 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
915 struct net_device *ndev = _ndev;
916 struct axienet_local *lp = netdev_priv(ndev);
918 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
919 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
920 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
921 axienet_start_xmit_done(lp->ndev);
924 if (!(status & XAXIDMA_IRQ_ALL_MASK))
926 if (status & XAXIDMA_IRQ_ERROR_MASK) {
927 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
928 dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
929 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
930 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
932 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
933 /* Disable coalesce, delay timer and error interrupts */
934 cr &= (~XAXIDMA_IRQ_ALL_MASK);
935 /* Write to the Tx channel control register */
936 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
938 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
939 /* Disable coalesce, delay timer and error interrupts */
940 cr &= (~XAXIDMA_IRQ_ALL_MASK);
941 /* Write to the Rx channel control register */
942 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
944 schedule_work(&lp->dma_err_task);
945 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
952 * axienet_rx_irq - Rx Isr.
954 * @_ndev: net_device pointer
956 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
958 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
961 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
965 struct net_device *ndev = _ndev;
966 struct axienet_local *lp = netdev_priv(ndev);
968 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
969 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
970 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
971 axienet_recv(lp->ndev);
974 if (!(status & XAXIDMA_IRQ_ALL_MASK))
976 if (status & XAXIDMA_IRQ_ERROR_MASK) {
977 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
978 dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
979 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
980 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
982 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
983 /* Disable coalesce, delay timer and error interrupts */
984 cr &= (~XAXIDMA_IRQ_ALL_MASK);
985 /* Finally write to the Tx channel control register */
986 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
988 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
989 /* Disable coalesce, delay timer and error interrupts */
990 cr &= (~XAXIDMA_IRQ_ALL_MASK);
991 /* write to the Rx channel control register */
992 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
994 schedule_work(&lp->dma_err_task);
995 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1002 * axienet_eth_irq - Ethernet core Isr.
1004 * @_ndev: net_device pointer
1006 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1008 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1010 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1012 struct net_device *ndev = _ndev;
1013 struct axienet_local *lp = netdev_priv(ndev);
1014 unsigned int pending;
1016 pending = axienet_ior(lp, XAE_IP_OFFSET);
1020 if (pending & XAE_INT_RXFIFOOVR_MASK)
1021 ndev->stats.rx_missed_errors++;
1023 if (pending & XAE_INT_RXRJECT_MASK)
1024 ndev->stats.rx_frame_errors++;
1026 axienet_iow(lp, XAE_IS_OFFSET, pending);
1030 static void axienet_dma_err_handler(struct work_struct *work);
1033 * axienet_open - Driver open routine.
1034 * @ndev: Pointer to net_device structure
1036 * Return: 0, on success.
1037 * non-zero error value on failure
1039 * This is the driver open routine. It calls phylink_start to start the
1041 * It also allocates interrupt service routines, enables the interrupt lines
1042 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1043 * descriptors are initialized.
1045 static int axienet_open(struct net_device *ndev)
1048 struct axienet_local *lp = netdev_priv(ndev);
1050 dev_dbg(&ndev->dev, "axienet_open()\n");
1052 /* When we do an Axi Ethernet reset, it resets the complete core
1053 * including the MDIO. MDIO must be disabled before resetting.
1054 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1056 axienet_lock_mii(lp);
1057 ret = axienet_device_reset(ndev);
1058 axienet_unlock_mii(lp);
1060 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1062 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1066 phylink_start(lp->phylink);
1068 /* Enable worker thread for Axi DMA error handling */
1069 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1071 /* Enable interrupts for Axi DMA Tx */
1072 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1076 /* Enable interrupts for Axi DMA Rx */
1077 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1081 /* Enable interrupts for Axi Ethernet core (if defined) */
1082 if (lp->eth_irq > 0) {
1083 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1092 free_irq(lp->rx_irq, ndev);
1094 free_irq(lp->tx_irq, ndev);
1096 phylink_stop(lp->phylink);
1097 phylink_disconnect_phy(lp->phylink);
1098 cancel_work_sync(&lp->dma_err_task);
1099 dev_err(lp->dev, "request_irq() failed\n");
1104 * axienet_stop - Driver stop routine.
1105 * @ndev: Pointer to net_device structure
1107 * Return: 0, on success.
1109 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1110 * device. It also removes the interrupt handlers and disables the interrupts.
1111 * The Axi DMA Tx/Rx BDs are released.
1113 static int axienet_stop(struct net_device *ndev)
1117 struct axienet_local *lp = netdev_priv(ndev);
1119 dev_dbg(&ndev->dev, "axienet_close()\n");
1121 phylink_stop(lp->phylink);
1122 phylink_disconnect_phy(lp->phylink);
1124 axienet_setoptions(ndev, lp->options &
1125 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1127 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1128 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1129 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1131 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1132 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1133 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1135 axienet_iow(lp, XAE_IE_OFFSET, 0);
1137 /* Give DMAs a chance to halt gracefully */
1138 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1139 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1141 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1144 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1145 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1147 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1150 /* Do a reset to ensure DMA is really stopped */
1151 axienet_lock_mii(lp);
1152 __axienet_device_reset(lp);
1153 axienet_unlock_mii(lp);
1155 cancel_work_sync(&lp->dma_err_task);
1157 if (lp->eth_irq > 0)
1158 free_irq(lp->eth_irq, ndev);
1159 free_irq(lp->tx_irq, ndev);
1160 free_irq(lp->rx_irq, ndev);
1162 axienet_dma_bd_release(ndev);
1167 * axienet_change_mtu - Driver change mtu routine.
1168 * @ndev: Pointer to net_device structure
1169 * @new_mtu: New mtu value to be applied
1171 * Return: Always returns 0 (success).
1173 * This is the change mtu driver routine. It checks if the Axi Ethernet
1174 * hardware supports jumbo frames before changing the mtu. This can be
1175 * called only when the device is not up.
1177 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1179 struct axienet_local *lp = netdev_priv(ndev);
1181 if (netif_running(ndev))
1184 if ((new_mtu + VLAN_ETH_HLEN +
1185 XAE_TRL_SIZE) > lp->rxmem)
1188 ndev->mtu = new_mtu;
1193 #ifdef CONFIG_NET_POLL_CONTROLLER
1195 * axienet_poll_controller - Axi Ethernet poll mechanism.
1196 * @ndev: Pointer to net_device structure
1198 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1199 * to polling the ISRs and are enabled back after the polling is done.
1201 static void axienet_poll_controller(struct net_device *ndev)
1203 struct axienet_local *lp = netdev_priv(ndev);
1204 disable_irq(lp->tx_irq);
1205 disable_irq(lp->rx_irq);
1206 axienet_rx_irq(lp->tx_irq, ndev);
1207 axienet_tx_irq(lp->rx_irq, ndev);
1208 enable_irq(lp->tx_irq);
1209 enable_irq(lp->rx_irq);
1213 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1215 struct axienet_local *lp = netdev_priv(dev);
1217 if (!netif_running(dev))
1220 return phylink_mii_ioctl(lp->phylink, rq, cmd);
1223 static const struct net_device_ops axienet_netdev_ops = {
1224 .ndo_open = axienet_open,
1225 .ndo_stop = axienet_stop,
1226 .ndo_start_xmit = axienet_start_xmit,
1227 .ndo_change_mtu = axienet_change_mtu,
1228 .ndo_set_mac_address = netdev_set_mac_address,
1229 .ndo_validate_addr = eth_validate_addr,
1230 .ndo_do_ioctl = axienet_ioctl,
1231 .ndo_set_rx_mode = axienet_set_multicast_list,
1232 #ifdef CONFIG_NET_POLL_CONTROLLER
1233 .ndo_poll_controller = axienet_poll_controller,
1238 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1239 * @ndev: Pointer to net_device structure
1240 * @ed: Pointer to ethtool_drvinfo structure
1242 * This implements ethtool command for getting the driver information.
1243 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1245 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1246 struct ethtool_drvinfo *ed)
1248 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1249 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1253 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1255 * @ndev: Pointer to net_device structure
1257 * This implements ethtool command for getting the total register length
1260 * Return: the total regs length
1262 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1264 return sizeof(u32) * AXIENET_REGS_N;
1268 * axienet_ethtools_get_regs - Dump the contents of all registers present
1269 * in AxiEthernet core.
1270 * @ndev: Pointer to net_device structure
1271 * @regs: Pointer to ethtool_regs structure
1272 * @ret: Void pointer used to return the contents of the registers.
1274 * This implements ethtool command for getting the Axi Ethernet register dump.
1275 * Issue "ethtool -d ethX" to execute this function.
1277 static void axienet_ethtools_get_regs(struct net_device *ndev,
1278 struct ethtool_regs *regs, void *ret)
1280 u32 *data = (u32 *) ret;
1281 size_t len = sizeof(u32) * AXIENET_REGS_N;
1282 struct axienet_local *lp = netdev_priv(ndev);
1287 memset(data, 0, len);
1288 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1289 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1290 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1291 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1292 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1293 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1294 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1295 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1296 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1297 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1298 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1299 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1300 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1301 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1302 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1303 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1304 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1305 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1306 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1307 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1308 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1309 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1310 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1311 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1312 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1313 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1314 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1315 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1316 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1317 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1318 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1319 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1320 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1321 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1322 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1323 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1326 static void axienet_ethtools_get_ringparam(struct net_device *ndev,
1327 struct ethtool_ringparam *ering)
1329 struct axienet_local *lp = netdev_priv(ndev);
1331 ering->rx_max_pending = RX_BD_NUM_MAX;
1332 ering->rx_mini_max_pending = 0;
1333 ering->rx_jumbo_max_pending = 0;
1334 ering->tx_max_pending = TX_BD_NUM_MAX;
1335 ering->rx_pending = lp->rx_bd_num;
1336 ering->rx_mini_pending = 0;
1337 ering->rx_jumbo_pending = 0;
1338 ering->tx_pending = lp->tx_bd_num;
1341 static int axienet_ethtools_set_ringparam(struct net_device *ndev,
1342 struct ethtool_ringparam *ering)
1344 struct axienet_local *lp = netdev_priv(ndev);
1346 if (ering->rx_pending > RX_BD_NUM_MAX ||
1347 ering->rx_mini_pending ||
1348 ering->rx_jumbo_pending ||
1349 ering->rx_pending > TX_BD_NUM_MAX)
1352 if (netif_running(ndev))
1355 lp->rx_bd_num = ering->rx_pending;
1356 lp->tx_bd_num = ering->tx_pending;
1361 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1363 * @ndev: Pointer to net_device structure
1364 * @epauseparm: Pointer to ethtool_pauseparam structure.
1366 * This implements ethtool command for getting axi ethernet pause frame
1367 * setting. Issue "ethtool -a ethX" to execute this function.
1370 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1371 struct ethtool_pauseparam *epauseparm)
1373 struct axienet_local *lp = netdev_priv(ndev);
1375 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1379 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1381 * @ndev: Pointer to net_device structure
1382 * @epauseparm:Pointer to ethtool_pauseparam structure
1384 * This implements ethtool command for enabling flow control on Rx and Tx
1385 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1388 * Return: 0 on success, -EFAULT if device is running
1391 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1392 struct ethtool_pauseparam *epauseparm)
1394 struct axienet_local *lp = netdev_priv(ndev);
1396 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1400 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1401 * @ndev: Pointer to net_device structure
1402 * @ecoalesce: Pointer to ethtool_coalesce structure
1404 * This implements ethtool command for getting the DMA interrupt coalescing
1405 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1406 * execute this function.
1410 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1411 struct ethtool_coalesce *ecoalesce)
1414 struct axienet_local *lp = netdev_priv(ndev);
1415 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1416 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1417 >> XAXIDMA_COALESCE_SHIFT;
1418 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1419 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1420 >> XAXIDMA_COALESCE_SHIFT;
1425 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1426 * @ndev: Pointer to net_device structure
1427 * @ecoalesce: Pointer to ethtool_coalesce structure
1429 * This implements ethtool command for setting the DMA interrupt coalescing
1430 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1431 * prompt to execute this function.
1433 * Return: 0, on success, Non-zero error value on failure.
1435 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1436 struct ethtool_coalesce *ecoalesce)
1438 struct axienet_local *lp = netdev_priv(ndev);
1440 if (netif_running(ndev)) {
1442 "Please stop netif before applying configuration\n");
1446 if (ecoalesce->rx_max_coalesced_frames)
1447 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1448 if (ecoalesce->tx_max_coalesced_frames)
1449 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1455 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1456 struct ethtool_link_ksettings *cmd)
1458 struct axienet_local *lp = netdev_priv(ndev);
1460 return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1464 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1465 const struct ethtool_link_ksettings *cmd)
1467 struct axienet_local *lp = netdev_priv(ndev);
1469 return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1472 static int axienet_ethtools_nway_reset(struct net_device *dev)
1474 struct axienet_local *lp = netdev_priv(dev);
1476 return phylink_ethtool_nway_reset(lp->phylink);
1479 static const struct ethtool_ops axienet_ethtool_ops = {
1480 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES,
1481 .get_drvinfo = axienet_ethtools_get_drvinfo,
1482 .get_regs_len = axienet_ethtools_get_regs_len,
1483 .get_regs = axienet_ethtools_get_regs,
1484 .get_link = ethtool_op_get_link,
1485 .get_ringparam = axienet_ethtools_get_ringparam,
1486 .set_ringparam = axienet_ethtools_set_ringparam,
1487 .get_pauseparam = axienet_ethtools_get_pauseparam,
1488 .set_pauseparam = axienet_ethtools_set_pauseparam,
1489 .get_coalesce = axienet_ethtools_get_coalesce,
1490 .set_coalesce = axienet_ethtools_set_coalesce,
1491 .get_link_ksettings = axienet_ethtools_get_link_ksettings,
1492 .set_link_ksettings = axienet_ethtools_set_link_ksettings,
1493 .nway_reset = axienet_ethtools_nway_reset,
1496 static void axienet_validate(struct phylink_config *config,
1497 unsigned long *supported,
1498 struct phylink_link_state *state)
1500 struct net_device *ndev = to_net_dev(config->dev);
1501 struct axienet_local *lp = netdev_priv(ndev);
1502 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1504 /* Only support the mode we are configured for */
1505 switch (state->interface) {
1506 case PHY_INTERFACE_MODE_NA:
1508 case PHY_INTERFACE_MODE_1000BASEX:
1509 case PHY_INTERFACE_MODE_SGMII:
1510 if (lp->switch_x_sgmii)
1514 if (state->interface != lp->phy_mode) {
1515 netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
1516 phy_modes(state->interface),
1517 phy_modes(lp->phy_mode));
1518 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1523 phylink_set(mask, Autoneg);
1524 phylink_set_port_modes(mask);
1526 phylink_set(mask, Asym_Pause);
1527 phylink_set(mask, Pause);
1529 switch (state->interface) {
1530 case PHY_INTERFACE_MODE_NA:
1531 case PHY_INTERFACE_MODE_1000BASEX:
1532 case PHY_INTERFACE_MODE_SGMII:
1533 case PHY_INTERFACE_MODE_GMII:
1534 case PHY_INTERFACE_MODE_RGMII:
1535 case PHY_INTERFACE_MODE_RGMII_ID:
1536 case PHY_INTERFACE_MODE_RGMII_RXID:
1537 case PHY_INTERFACE_MODE_RGMII_TXID:
1538 phylink_set(mask, 1000baseX_Full);
1539 phylink_set(mask, 1000baseT_Full);
1540 if (state->interface == PHY_INTERFACE_MODE_1000BASEX)
1543 case PHY_INTERFACE_MODE_MII:
1544 phylink_set(mask, 100baseT_Full);
1545 phylink_set(mask, 10baseT_Full);
1551 bitmap_and(supported, supported, mask,
1552 __ETHTOOL_LINK_MODE_MASK_NBITS);
1553 bitmap_and(state->advertising, state->advertising, mask,
1554 __ETHTOOL_LINK_MODE_MASK_NBITS);
1557 static void axienet_mac_pcs_get_state(struct phylink_config *config,
1558 struct phylink_link_state *state)
1560 struct net_device *ndev = to_net_dev(config->dev);
1561 struct axienet_local *lp = netdev_priv(ndev);
1563 switch (state->interface) {
1564 case PHY_INTERFACE_MODE_SGMII:
1565 case PHY_INTERFACE_MODE_1000BASEX:
1566 phylink_mii_c22_pcs_get_state(lp->pcs_phy, state);
1573 static void axienet_mac_an_restart(struct phylink_config *config)
1575 struct net_device *ndev = to_net_dev(config->dev);
1576 struct axienet_local *lp = netdev_priv(ndev);
1578 phylink_mii_c22_pcs_an_restart(lp->pcs_phy);
1581 static int axienet_mac_prepare(struct phylink_config *config, unsigned int mode,
1582 phy_interface_t iface)
1584 struct net_device *ndev = to_net_dev(config->dev);
1585 struct axienet_local *lp = netdev_priv(ndev);
1589 case PHY_INTERFACE_MODE_SGMII:
1590 case PHY_INTERFACE_MODE_1000BASEX:
1591 if (!lp->switch_x_sgmii)
1594 ret = mdiobus_write(lp->pcs_phy->bus,
1596 XLNX_MII_STD_SELECT_REG,
1597 iface == PHY_INTERFACE_MODE_SGMII ?
1598 XLNX_MII_STD_SELECT_SGMII : 0);
1600 netdev_warn(ndev, "Failed to switch PHY interface: %d\n",
1608 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1609 const struct phylink_link_state *state)
1611 struct net_device *ndev = to_net_dev(config->dev);
1612 struct axienet_local *lp = netdev_priv(ndev);
1615 switch (state->interface) {
1616 case PHY_INTERFACE_MODE_SGMII:
1617 case PHY_INTERFACE_MODE_1000BASEX:
1618 ret = phylink_mii_c22_pcs_config(lp->pcs_phy, mode,
1620 state->advertising);
1622 netdev_warn(ndev, "Failed to configure PCS: %d\n",
1631 static void axienet_mac_link_down(struct phylink_config *config,
1633 phy_interface_t interface)
1635 /* nothing meaningful to do */
1638 static void axienet_mac_link_up(struct phylink_config *config,
1639 struct phy_device *phy,
1640 unsigned int mode, phy_interface_t interface,
1641 int speed, int duplex,
1642 bool tx_pause, bool rx_pause)
1644 struct net_device *ndev = to_net_dev(config->dev);
1645 struct axienet_local *lp = netdev_priv(ndev);
1646 u32 emmc_reg, fcc_reg;
1648 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1649 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1653 emmc_reg |= XAE_EMMC_LINKSPD_1000;
1656 emmc_reg |= XAE_EMMC_LINKSPD_100;
1659 emmc_reg |= XAE_EMMC_LINKSPD_10;
1663 "Speed other than 10, 100 or 1Gbps is not supported\n");
1667 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1669 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1671 fcc_reg |= XAE_FCC_FCTX_MASK;
1673 fcc_reg &= ~XAE_FCC_FCTX_MASK;
1675 fcc_reg |= XAE_FCC_FCRX_MASK;
1677 fcc_reg &= ~XAE_FCC_FCRX_MASK;
1678 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1681 static const struct phylink_mac_ops axienet_phylink_ops = {
1682 .validate = axienet_validate,
1683 .mac_pcs_get_state = axienet_mac_pcs_get_state,
1684 .mac_an_restart = axienet_mac_an_restart,
1685 .mac_prepare = axienet_mac_prepare,
1686 .mac_config = axienet_mac_config,
1687 .mac_link_down = axienet_mac_link_down,
1688 .mac_link_up = axienet_mac_link_up,
1692 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1693 * @work: pointer to work_struct
1695 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1698 static void axienet_dma_err_handler(struct work_struct *work)
1702 struct axienet_local *lp = container_of(work, struct axienet_local,
1704 struct net_device *ndev = lp->ndev;
1705 struct axidma_bd *cur_p;
1707 axienet_setoptions(ndev, lp->options &
1708 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1709 /* When we do an Axi Ethernet reset, it resets the complete core
1710 * including the MDIO. MDIO must be disabled before resetting.
1711 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1713 axienet_lock_mii(lp);
1714 __axienet_device_reset(lp);
1715 axienet_unlock_mii(lp);
1717 for (i = 0; i < lp->tx_bd_num; i++) {
1718 cur_p = &lp->tx_bd_v[i];
1720 dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1722 dma_unmap_single(ndev->dev.parent, addr,
1724 XAXIDMA_BD_CTRL_LENGTH_MASK),
1728 dev_kfree_skb_irq(cur_p->skb);
1730 cur_p->phys_msb = 0;
1741 for (i = 0; i < lp->rx_bd_num; i++) {
1742 cur_p = &lp->rx_bd_v[i];
1755 /* Start updating the Rx channel control register */
1756 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1757 /* Update the interrupt coalesce count */
1758 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1759 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1760 /* Update the delay timer count */
1761 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1762 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1763 /* Enable coalesce, delay timer and error interrupts */
1764 cr |= XAXIDMA_IRQ_ALL_MASK;
1765 /* Finally write to the Rx channel control register */
1766 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1768 /* Start updating the Tx channel control register */
1769 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1770 /* Update the interrupt coalesce count */
1771 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1772 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1773 /* Update the delay timer count */
1774 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1775 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1776 /* Enable coalesce, delay timer and error interrupts */
1777 cr |= XAXIDMA_IRQ_ALL_MASK;
1778 /* Finally write to the Tx channel control register */
1779 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1781 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1782 * halted state. This will make the Rx side ready for reception.
1784 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1785 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1786 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1787 cr | XAXIDMA_CR_RUNSTOP_MASK);
1788 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1789 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1791 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1792 * Tx channel is now ready to run. But only after we write to the
1793 * tail pointer register that the Tx channel will start transmitting
1795 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1796 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1797 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1798 cr | XAXIDMA_CR_RUNSTOP_MASK);
1800 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1801 axienet_status &= ~XAE_RCW1_RX_MASK;
1802 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1804 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1805 if (axienet_status & XAE_INT_RXRJECT_MASK)
1806 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1807 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1808 XAE_INT_RECV_ERROR_MASK : 0);
1809 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1811 /* Sync default options with HW but leave receiver and
1812 * transmitter disabled.
1814 axienet_setoptions(ndev, lp->options &
1815 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1816 axienet_set_mac_address(ndev, NULL);
1817 axienet_set_multicast_list(ndev);
1818 axienet_setoptions(ndev, lp->options);
1822 * axienet_probe - Axi Ethernet probe function.
1823 * @pdev: Pointer to platform device structure.
1825 * Return: 0, on success
1826 * Non-zero error value on failure.
1828 * This is the probe routine for Axi Ethernet driver. This is called before
1829 * any other driver routines are invoked. It allocates and sets up the Ethernet
1830 * device. Parses through device tree and populates fields of
1831 * axienet_local. It registers the Ethernet device.
1833 static int axienet_probe(struct platform_device *pdev)
1836 struct device_node *np;
1837 struct axienet_local *lp;
1838 struct net_device *ndev;
1839 struct resource *ethres;
1840 u8 mac_addr[ETH_ALEN];
1841 int addr_width = 32;
1844 ndev = alloc_etherdev(sizeof(*lp));
1848 platform_set_drvdata(pdev, ndev);
1850 SET_NETDEV_DEV(ndev, &pdev->dev);
1851 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1852 ndev->features = NETIF_F_SG;
1853 ndev->netdev_ops = &axienet_netdev_ops;
1854 ndev->ethtool_ops = &axienet_ethtool_ops;
1856 /* MTU range: 64 - 9000 */
1858 ndev->max_mtu = XAE_JUMBO_MTU;
1860 lp = netdev_priv(ndev);
1862 lp->dev = &pdev->dev;
1863 lp->options = XAE_OPTION_DEFAULTS;
1864 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1865 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1867 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1869 /* For backward compatibility, if named AXI clock is not present,
1870 * treat the first clock specified as the AXI clock.
1872 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1874 if (IS_ERR(lp->axi_clk)) {
1875 ret = PTR_ERR(lp->axi_clk);
1878 ret = clk_prepare_enable(lp->axi_clk);
1880 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1884 lp->misc_clks[0].id = "axis_clk";
1885 lp->misc_clks[1].id = "ref_clk";
1886 lp->misc_clks[2].id = "mgt_clk";
1888 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1892 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1896 /* Map device registers */
1897 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres);
1898 if (IS_ERR(lp->regs)) {
1899 ret = PTR_ERR(lp->regs);
1902 lp->regs_start = ethres->start;
1904 /* Setup checksum offload, but default to off if not specified */
1907 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1911 lp->csum_offload_on_tx_path =
1912 XAE_FEATURE_PARTIAL_TX_CSUM;
1913 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1914 /* Can checksum TCP/UDP over IPv4. */
1915 ndev->features |= NETIF_F_IP_CSUM;
1918 lp->csum_offload_on_tx_path =
1919 XAE_FEATURE_FULL_TX_CSUM;
1920 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1921 /* Can checksum TCP/UDP over IPv4. */
1922 ndev->features |= NETIF_F_IP_CSUM;
1925 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1928 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1932 lp->csum_offload_on_rx_path =
1933 XAE_FEATURE_PARTIAL_RX_CSUM;
1934 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1937 lp->csum_offload_on_rx_path =
1938 XAE_FEATURE_FULL_RX_CSUM;
1939 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1942 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1945 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1946 * a larger Rx/Tx Memory. Typically, the size must be large so that
1947 * we can enable jumbo option and start supporting jumbo frames.
1948 * Here we check for memory allocated for Rx/Tx in the hardware from
1949 * the device-tree and accordingly set flags.
1951 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1953 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1954 "xlnx,switch-x-sgmii");
1956 /* Start with the proprietary, and broken phy_type */
1957 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1959 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1961 case XAE_PHY_TYPE_MII:
1962 lp->phy_mode = PHY_INTERFACE_MODE_MII;
1964 case XAE_PHY_TYPE_GMII:
1965 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1967 case XAE_PHY_TYPE_RGMII_2_0:
1968 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1970 case XAE_PHY_TYPE_SGMII:
1971 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1973 case XAE_PHY_TYPE_1000BASE_X:
1974 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1981 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1985 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
1986 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
1987 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
1992 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1993 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1995 struct resource dmares;
1997 ret = of_address_to_resource(np, 0, &dmares);
2000 "unable to get DMA resource\n");
2004 lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2006 lp->rx_irq = irq_of_parse_and_map(np, 1);
2007 lp->tx_irq = irq_of_parse_and_map(np, 0);
2009 lp->eth_irq = platform_get_irq_optional(pdev, 0);
2011 /* Check for these resources directly on the Ethernet node. */
2012 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2013 lp->rx_irq = platform_get_irq(pdev, 1);
2014 lp->tx_irq = platform_get_irq(pdev, 0);
2015 lp->eth_irq = platform_get_irq_optional(pdev, 2);
2017 if (IS_ERR(lp->dma_regs)) {
2018 dev_err(&pdev->dev, "could not map DMA regs\n");
2019 ret = PTR_ERR(lp->dma_regs);
2022 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2023 dev_err(&pdev->dev, "could not determine irqs\n");
2028 /* Autodetect the need for 64-bit DMA pointers.
2029 * When the IP is configured for a bus width bigger than 32 bits,
2030 * writing the MSB registers is mandatory, even if they are all 0.
2031 * We can detect this case by writing all 1's to one such register
2032 * and see if that sticks: when the IP is configured for 32 bits
2033 * only, those registers are RES0.
2034 * Those MSB registers were introduced in IP v7.1, which we check first.
2036 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2037 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2039 iowrite32(0x0, desc);
2040 if (ioread32(desc) == 0) { /* sanity check */
2041 iowrite32(0xffffffff, desc);
2042 if (ioread32(desc) > 0) {
2043 lp->features |= XAE_FEATURE_DMA_64BIT;
2045 dev_info(&pdev->dev,
2046 "autodetected 64-bit DMA range\n");
2048 iowrite32(0x0, desc);
2052 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2054 dev_err(&pdev->dev, "No suitable DMA available\n");
2058 /* Check for Ethernet core IRQ (optional) */
2059 if (lp->eth_irq <= 0)
2060 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2062 /* Retrieve the MAC address */
2063 ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2065 axienet_set_mac_address(ndev, mac_addr);
2067 dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2069 axienet_set_mac_address(ndev, NULL);
2072 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2073 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2075 lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2077 ret = axienet_mdio_setup(lp);
2079 dev_warn(&pdev->dev,
2080 "error registering MDIO bus: %d\n", ret);
2082 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2083 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2084 if (!lp->phy_node) {
2085 dev_err(&pdev->dev, "phy-handle required for 1000BaseX/SGMII\n");
2089 lp->pcs_phy = of_mdio_find_device(lp->phy_node);
2091 ret = -EPROBE_DEFER;
2094 lp->phylink_config.pcs_poll = true;
2097 lp->phylink_config.dev = &ndev->dev;
2098 lp->phylink_config.type = PHYLINK_NETDEV;
2100 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2102 &axienet_phylink_ops);
2103 if (IS_ERR(lp->phylink)) {
2104 ret = PTR_ERR(lp->phylink);
2105 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2109 ret = register_netdev(lp->ndev);
2111 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2112 goto cleanup_phylink;
2118 phylink_destroy(lp->phylink);
2122 put_device(&lp->pcs_phy->dev);
2124 axienet_mdio_teardown(lp);
2125 of_node_put(lp->phy_node);
2128 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2129 clk_disable_unprepare(lp->axi_clk);
2137 static int axienet_remove(struct platform_device *pdev)
2139 struct net_device *ndev = platform_get_drvdata(pdev);
2140 struct axienet_local *lp = netdev_priv(ndev);
2142 unregister_netdev(ndev);
2145 phylink_destroy(lp->phylink);
2148 put_device(&lp->pcs_phy->dev);
2150 axienet_mdio_teardown(lp);
2152 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2153 clk_disable_unprepare(lp->axi_clk);
2155 of_node_put(lp->phy_node);
2156 lp->phy_node = NULL;
2163 static void axienet_shutdown(struct platform_device *pdev)
2165 struct net_device *ndev = platform_get_drvdata(pdev);
2168 netif_device_detach(ndev);
2170 if (netif_running(ndev))
2176 static struct platform_driver axienet_driver = {
2177 .probe = axienet_probe,
2178 .remove = axienet_remove,
2179 .shutdown = axienet_shutdown,
2181 .name = "xilinx_axienet",
2182 .of_match_table = axienet_of_match,
2186 module_platform_driver(axienet_driver);
2188 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2189 MODULE_AUTHOR("Xilinx");
2190 MODULE_LICENSE("GPL");