1 // SPDX-License-Identifier: GPL-2.0
2 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
3 * auto carrier detecting ethernet driver. Also known as the
4 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
11 * - port to non-sparc architectures. Tested only on x86 and
12 * only currently works with QFE PCI cards.
13 * - ability to specify the MAC address at module load time by passing this
14 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/ethtool.h>
29 #include <linux/mii.h>
30 #include <linux/crc32.h>
31 #include <linux/random.h>
32 #include <linux/errno.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
37 #include <linux/bitops.h>
38 #include <linux/dma-mapping.h>
42 #include <asm/byteorder.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
51 #include <asm/auxio.h>
53 #include <linux/uaccess.h>
58 #include <linux/pci.h>
63 #define DRV_NAME "sunhme"
64 #define DRV_VERSION "3.10"
65 #define DRV_RELDATE "August 26, 2008"
68 static char version[] =
69 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_AUTHOR(DRV_AUTHOR);
73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
74 MODULE_LICENSE("GPL");
76 static int macaddr[6];
78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
79 module_param_array(macaddr, int, NULL, 0);
80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
83 static struct quattro *qfe_sbus_list;
87 static struct quattro *qfe_pci_list;
97 struct hme_tx_logent {
101 #define TXLOG_ACTION_IRQ 0x01
102 #define TXLOG_ACTION_TXMIT 0x02
103 #define TXLOG_ACTION_TBUSY 0x04
104 #define TXLOG_ACTION_NBUFS 0x08
107 #define TX_LOG_LEN 128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
112 struct hme_tx_logent *tlp;
115 local_irq_save(flags);
116 tlp = &tx_log[txlog_cur_entry];
117 tlp->tstamp = (unsigned int)jiffies;
118 tlp->tx_new = hp->tx_new;
119 tlp->tx_old = hp->tx_old;
122 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123 local_irq_restore(flags);
125 static __inline__ void tx_dump_log(void)
129 this = txlog_cur_entry;
130 for (i = 0; i < TX_LOG_LEN; i++) {
131 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
133 tx_log[this].tx_new, tx_log[this].tx_old,
134 tx_log[this].action, tx_log[this].status);
135 this = (this + 1) & (TX_LOG_LEN - 1);
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
140 struct hmeal_init_block *hb = hp->happy_block;
141 struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
144 for (i = 0; i < TX_RING_SIZE; i+=4) {
145 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
147 le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148 le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149 le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150 le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
154 #define tx_add_log(hp, a, s) do { } while(0)
155 #define tx_dump_log() do { } while(0)
156 #define tx_dump_ring(hp) do { } while(0)
160 #define HMD(x) printk x
165 /* #define AUTO_SWITCH_DEBUG */
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x) printk x
173 #define DEFAULT_IPG0 16 /* For lance-mode only */
174 #define DEFAULT_IPG1 8 /* For all modes */
175 #define DEFAULT_IPG2 4 /* For all modes */
176 #define DEFAULT_JAMSIZE 4 /* Toe jam */
178 /* NOTE: In the descriptor writes one _must_ write the address
179 * member _first_. The card must not be allowed to see
180 * the updated descriptor flags until the address is
181 * correct. I've added a write memory barrier between
182 * the two stores so that I can sleep well at night... -DaveM
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
188 sbus_writel(val, reg);
191 static u32 sbus_hme_read32(void __iomem *reg)
193 return sbus_readl(reg);
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
198 rxd->rx_addr = (__force hme32)addr;
200 rxd->rx_flags = (__force hme32)flags;
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
205 txd->tx_addr = (__force hme32)addr;
207 txd->tx_flags = (__force hme32)flags;
210 static u32 sbus_hme_read_desc32(hme32 *p)
212 return (__force u32)*p;
215 static void pci_hme_write32(void __iomem *reg, u32 val)
220 static u32 pci_hme_read32(void __iomem *reg)
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
227 rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
229 rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
234 txd->tx_addr = (__force hme32)cpu_to_le32(addr);
236 txd->tx_flags = (__force hme32)cpu_to_le32(flags);
239 static u32 pci_hme_read_desc32(hme32 *p)
241 return le32_to_cpup((__le32 *)p);
244 #define hme_write32(__hp, __reg, __val) \
245 ((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247 ((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251 ((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253 ((__hp)->read_desc32(__p))
254 #define hme_dma_map(__hp, __ptr, __size, __dir) \
255 ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
257 ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
259 ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
261 ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
264 /* SBUS only compilation */
265 #define hme_write32(__hp, __reg, __val) \
266 sbus_writel((__val), (__reg))
267 #define hme_read32(__hp, __reg) \
269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
270 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
272 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
274 #define hme_write_txd(__hp, __txd, __flags, __addr) \
275 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
277 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
279 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
280 #define hme_dma_map(__hp, __ptr, __size, __dir) \
281 dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
283 dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
285 dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
287 dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
289 /* PCI only compilation */
290 #define hme_write32(__hp, __reg, __val) \
291 writel((__val), (__reg))
292 #define hme_read32(__hp, __reg) \
294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
295 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
297 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
299 #define hme_write_txd(__hp, __txd, __flags, __addr) \
300 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
302 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
304 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
306 return le32_to_cpup((__le32 *)p);
308 #define hme_dma_map(__hp, __ptr, __size, __dir) \
309 pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
311 pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
313 pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
315 pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
320 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
321 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
323 hme_write32(hp, tregs + TCVR_BBDATA, bit);
324 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
325 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
329 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
333 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
334 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
335 ret = hme_read32(hp, tregs + TCVR_CFG);
337 ret &= TCV_CFG_MDIO0;
339 ret &= TCV_CFG_MDIO1;
345 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
349 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
351 retval = hme_read32(hp, tregs + TCVR_CFG);
353 retval &= TCV_CFG_MDIO0;
355 retval &= TCV_CFG_MDIO1;
356 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
361 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
363 static int happy_meal_bb_read(struct happy_meal *hp,
364 void __iomem *tregs, int reg)
370 ASD(("happy_meal_bb_read: reg=%d ", reg));
372 /* Enable the MIF BitBang outputs. */
373 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
375 /* Force BitBang into the idle state. */
376 for (i = 0; i < 32; i++)
377 BB_PUT_BIT(hp, tregs, 1);
379 /* Give it the read sequence. */
380 BB_PUT_BIT(hp, tregs, 0);
381 BB_PUT_BIT(hp, tregs, 1);
382 BB_PUT_BIT(hp, tregs, 1);
383 BB_PUT_BIT(hp, tregs, 0);
385 /* Give it the PHY address. */
386 tmp = hp->paddr & 0xff;
387 for (i = 4; i >= 0; i--)
388 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
390 /* Tell it what register we want to read. */
392 for (i = 4; i >= 0; i--)
393 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
395 /* Close down the MIF BitBang outputs. */
396 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
398 /* Now read in the value. */
399 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
400 for (i = 15; i >= 0; i--)
401 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
402 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405 ASD(("value=%x\n", retval));
409 static void happy_meal_bb_write(struct happy_meal *hp,
410 void __iomem *tregs, int reg,
411 unsigned short value)
416 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
418 /* Enable the MIF BitBang outputs. */
419 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
421 /* Force BitBang into the idle state. */
422 for (i = 0; i < 32; i++)
423 BB_PUT_BIT(hp, tregs, 1);
425 /* Give it write sequence. */
426 BB_PUT_BIT(hp, tregs, 0);
427 BB_PUT_BIT(hp, tregs, 1);
428 BB_PUT_BIT(hp, tregs, 0);
429 BB_PUT_BIT(hp, tregs, 1);
431 /* Give it the PHY address. */
432 tmp = (hp->paddr & 0xff);
433 for (i = 4; i >= 0; i--)
434 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
436 /* Tell it what register we will be writing. */
438 for (i = 4; i >= 0; i--)
439 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
441 /* Tell it to become ready for the bits. */
442 BB_PUT_BIT(hp, tregs, 1);
443 BB_PUT_BIT(hp, tregs, 0);
445 for (i = 15; i >= 0; i--)
446 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
448 /* Close down the MIF BitBang outputs. */
449 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
452 #define TCVR_READ_TRIES 16
454 static int happy_meal_tcvr_read(struct happy_meal *hp,
455 void __iomem *tregs, int reg)
457 int tries = TCVR_READ_TRIES;
460 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
461 if (hp->tcvr_type == none) {
462 ASD(("no transceiver, value=TCVR_FAILURE\n"));
466 if (!(hp->happy_flags & HFLAG_FENABLE)) {
467 ASD(("doing bit bang\n"));
468 return happy_meal_bb_read(hp, tregs, reg);
471 hme_write32(hp, tregs + TCVR_FRAME,
472 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
473 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
476 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
479 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
480 ASD(("value=%04x\n", retval));
484 #define TCVR_WRITE_TRIES 16
486 static void happy_meal_tcvr_write(struct happy_meal *hp,
487 void __iomem *tregs, int reg,
488 unsigned short value)
490 int tries = TCVR_WRITE_TRIES;
492 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
494 /* Welcome to Sun Microsystems, can I take your order please? */
495 if (!(hp->happy_flags & HFLAG_FENABLE)) {
496 happy_meal_bb_write(hp, tregs, reg, value);
500 /* Would you like fries with that? */
501 hme_write32(hp, tregs + TCVR_FRAME,
502 (FRAME_WRITE | (hp->paddr << 23) |
503 ((reg & 0xff) << 18) | (value & 0xffff)));
504 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
509 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
511 /* Fifty-two cents is your change, have a nice day. */
514 /* Auto negotiation. The scheme is very simple. We have a timer routine
515 * that keeps watching the auto negotiation process as it progresses.
516 * The DP83840 is first told to start doing it's thing, we set up the time
517 * and place the timer state machine in it's initial state.
519 * Here the timer peeks at the DP83840 status registers at each click to see
520 * if the auto negotiation has completed, we assume here that the DP83840 PHY
521 * will time out at some point and just tell us what (didn't) happen. For
522 * complete coverage we only allow so many of the ticks at this level to run,
523 * when this has expired we print a warning message and try another strategy.
524 * This "other" strategy is to force the interface into various speed/duplex
525 * configurations and we stop when we see a link-up condition before the
526 * maximum number of "peek" ticks have occurred.
528 * Once a valid link status has been detected we configure the BigMAC and
529 * the rest of the Happy Meal to speak the most efficient protocol we could
530 * get a clean link for. The priority for link configurations, highest first
532 * 100 Base-T Full Duplex
533 * 100 Base-T Half Duplex
534 * 10 Base-T Full Duplex
535 * 10 Base-T Half Duplex
537 * We start a new timer now, after a successful auto negotiation status has
538 * been detected. This timer just waits for the link-up bit to get set in
539 * the BMCR of the DP83840. When this occurs we print a kernel log message
540 * describing the link type in use and the fact that it is up.
542 * If a fatal error of some sort is signalled and detected in the interrupt
543 * service routine, and the chip is reset, or the link is ifconfig'd down
544 * and then back up, this entire process repeats itself all over again.
546 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
548 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
550 /* Downgrade from full to half duplex. Only possible
553 if (hp->sw_bmcr & BMCR_FULLDPLX) {
554 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
555 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
559 /* Downgrade from 100 to 10. */
560 if (hp->sw_bmcr & BMCR_SPEED100) {
561 hp->sw_bmcr &= ~(BMCR_SPEED100);
562 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
566 /* We've tried everything. */
570 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
572 printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
573 if (hp->tcvr_type == external)
577 printk("transceiver at ");
578 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
579 if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
580 if (hp->sw_lpa & LPA_100FULL)
581 printk("100Mb/s, Full Duplex.\n");
583 printk("100Mb/s, Half Duplex.\n");
585 if (hp->sw_lpa & LPA_10FULL)
586 printk("10Mb/s, Full Duplex.\n");
588 printk("10Mb/s, Half Duplex.\n");
592 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
594 printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
595 if (hp->tcvr_type == external)
599 printk("transceiver at ");
600 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
601 if (hp->sw_bmcr & BMCR_SPEED100)
605 if (hp->sw_bmcr & BMCR_FULLDPLX)
606 printk("Full Duplex.\n");
608 printk("Half Duplex.\n");
611 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
615 /* All we care about is making sure the bigmac tx_cfg has a
616 * proper duplex setting.
618 if (hp->timer_state == arbwait) {
619 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
620 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
622 if (hp->sw_lpa & LPA_100FULL)
624 else if (hp->sw_lpa & LPA_100HALF)
626 else if (hp->sw_lpa & LPA_10FULL)
631 /* Forcing a link mode. */
632 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
633 if (hp->sw_bmcr & BMCR_FULLDPLX)
639 /* Before changing other bits in the tx_cfg register, and in
640 * general any of other the TX config registers too, you
643 * 2) Poll with reads until that bit reads back as zero
644 * 3) Make TX configuration changes
645 * 4) Set Enable once more
647 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
648 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
649 ~(BIGMAC_TXCFG_ENABLE));
650 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
653 hp->happy_flags |= HFLAG_FULL;
654 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
655 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
656 BIGMAC_TXCFG_FULLDPLX);
658 hp->happy_flags &= ~(HFLAG_FULL);
659 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
660 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
661 ~(BIGMAC_TXCFG_FULLDPLX));
663 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
664 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
665 BIGMAC_TXCFG_ENABLE);
671 static int happy_meal_init(struct happy_meal *hp);
673 static int is_lucent_phy(struct happy_meal *hp)
675 void __iomem *tregs = hp->tcvregs;
676 unsigned short mr2, mr3;
679 mr2 = happy_meal_tcvr_read(hp, tregs, 2);
680 mr3 = happy_meal_tcvr_read(hp, tregs, 3);
681 if ((mr2 & 0xffff) == 0x0180 &&
682 ((mr3 & 0xffff) >> 10) == 0x1d)
688 static void happy_meal_timer(struct timer_list *t)
690 struct happy_meal *hp = from_timer(hp, t, happy_timer);
691 void __iomem *tregs = hp->tcvregs;
692 int restart_timer = 0;
694 spin_lock_irq(&hp->happy_lock);
697 switch(hp->timer_state) {
699 /* Only allow for 5 ticks, thats 10 seconds and much too
700 * long to wait for arbitration to complete.
702 if (hp->timer_ticks >= 10) {
703 /* Enter force mode. */
705 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
706 printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
708 hp->sw_bmcr = BMCR_SPEED100;
709 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
711 if (!is_lucent_phy(hp)) {
712 /* OK, seems we need do disable the transceiver for the first
713 * tick to make sure we get an accurate link state at the
716 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
717 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
718 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
720 hp->timer_state = ltrywait;
724 /* Anything interesting happen? */
725 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
726 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
729 /* Just what we've been waiting for... */
730 ret = set_happy_link_modes(hp, tregs);
732 /* Ooops, something bad happened, go to force
735 * XXX Broken hubs which don't support 802.3u
736 * XXX auto-negotiation make this happen as well.
741 /* Success, at least so far, advance our state engine. */
742 hp->timer_state = lupwait;
751 /* Auto negotiation was successful and we are awaiting a
752 * link up status. I have decided to let this timer run
753 * forever until some sort of error is signalled, reporting
754 * a message to the user at 10 second intervals.
756 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
757 if (hp->sw_bmsr & BMSR_LSTATUS) {
758 /* Wheee, it's up, display the link mode in use and put
759 * the timer to sleep.
761 display_link_mode(hp, tregs);
762 hp->timer_state = asleep;
765 if (hp->timer_ticks >= 10) {
766 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
767 "not completely up.\n", hp->dev->name);
777 /* Making the timeout here too long can make it take
778 * annoyingly long to attempt all of the link mode
779 * permutations, but then again this is essentially
780 * error recovery code for the most part.
782 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
783 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
784 if (hp->timer_ticks == 1) {
785 if (!is_lucent_phy(hp)) {
786 /* Re-enable transceiver, we'll re-enable the transceiver next
787 * tick, then check link state on the following tick.
789 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
790 happy_meal_tcvr_write(hp, tregs,
791 DP83840_CSCONFIG, hp->sw_csconfig);
796 if (hp->timer_ticks == 2) {
797 if (!is_lucent_phy(hp)) {
798 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
799 happy_meal_tcvr_write(hp, tregs,
800 DP83840_CSCONFIG, hp->sw_csconfig);
805 if (hp->sw_bmsr & BMSR_LSTATUS) {
806 /* Force mode selection success. */
807 display_forced_link_mode(hp, tregs);
808 set_happy_link_modes(hp, tregs); /* XXX error? then what? */
809 hp->timer_state = asleep;
812 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
815 ret = try_next_permutation(hp, tregs);
817 /* Aieee, tried them all, reset the
818 * chip and try all over again.
821 /* Let the user know... */
822 printk(KERN_NOTICE "%s: Link down, cable problem?\n",
825 ret = happy_meal_init(hp);
828 printk(KERN_ERR "%s: Error, cannot re-init the "
829 "Happy Meal.\n", hp->dev->name);
833 if (!is_lucent_phy(hp)) {
834 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
836 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
837 happy_meal_tcvr_write(hp, tregs,
838 DP83840_CSCONFIG, hp->sw_csconfig);
850 /* Can't happens.... */
851 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
855 hp->timer_state = asleep; /* foo on you */
860 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
861 add_timer(&hp->happy_timer);
865 spin_unlock_irq(&hp->happy_lock);
868 #define TX_RESET_TRIES 32
869 #define RX_RESET_TRIES 32
871 /* hp->happy_lock must be held */
872 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
874 int tries = TX_RESET_TRIES;
876 HMD(("happy_meal_tx_reset: reset, "));
878 /* Would you like to try our SMCC Delux? */
879 hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
880 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
883 /* Lettuce, tomato, buggy hardware (no extra charge)? */
885 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
891 /* hp->happy_lock must be held */
892 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
894 int tries = RX_RESET_TRIES;
896 HMD(("happy_meal_rx_reset: reset, "));
898 /* We have a special on GNU/Viking hardware bugs today. */
899 hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
900 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
903 /* Will that be all? */
905 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
907 /* Don't forget your vik_1137125_wa. Have a nice day. */
911 #define STOP_TRIES 16
913 /* hp->happy_lock must be held */
914 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
916 int tries = STOP_TRIES;
918 HMD(("happy_meal_stop: reset, "));
920 /* We're consolidating our STB products, it's your lucky day. */
921 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
922 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
925 /* Come back next week when we are "Sun Microelectronics". */
927 printk(KERN_ERR "happy meal: Fry guys.");
929 /* Remember: "Different name, same old buggy as shit hardware." */
933 /* hp->happy_lock must be held */
934 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
936 struct net_device_stats *stats = &hp->dev->stats;
938 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
939 hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
941 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
942 hme_write32(hp, bregs + BMAC_UNALECTR, 0);
944 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
945 hme_write32(hp, bregs + BMAC_GLECTR, 0);
947 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
950 (hme_read32(hp, bregs + BMAC_EXCTR) +
951 hme_read32(hp, bregs + BMAC_LTCTR));
952 hme_write32(hp, bregs + BMAC_EXCTR, 0);
953 hme_write32(hp, bregs + BMAC_LTCTR, 0);
956 /* hp->happy_lock must be held */
957 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
959 ASD(("happy_meal_poll_stop: "));
961 /* If polling disabled or not polling already, nothing to do. */
962 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
963 (HFLAG_POLLENABLE | HFLAG_POLL)) {
964 HMD(("not polling, return\n"));
968 /* Shut up the MIF. */
969 ASD(("were polling, mif ints off, "));
970 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
972 /* Turn off polling. */
973 ASD(("polling off, "));
974 hme_write32(hp, tregs + TCVR_CFG,
975 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
977 /* We are no longer polling. */
978 hp->happy_flags &= ~(HFLAG_POLL);
980 /* Let the bits set. */
985 /* Only Sun can take such nice parts and fuck up the programming interface
986 * like this. Good job guys...
988 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
989 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
991 /* hp->happy_lock must be held */
992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
995 int result, tries = TCVR_RESET_TRIES;
997 tconfig = hme_read32(hp, tregs + TCVR_CFG);
998 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
999 if (hp->tcvr_type == external) {
1001 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002 hp->tcvr_type = internal;
1003 hp->paddr = TCV_PADDR_ITX;
1005 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1006 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1007 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008 if (result == TCVR_FAILURE) {
1009 ASD(("phyread_fail>\n"));
1012 ASD(("phyread_ok,PSELECT>"));
1013 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014 hp->tcvr_type = external;
1015 hp->paddr = TCV_PADDR_ETX;
1017 if (tconfig & TCV_CFG_MDIO1) {
1018 ASD(("internal<PSELECT,"));
1019 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1021 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1022 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1023 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024 if (result == TCVR_FAILURE) {
1025 ASD(("phyread_fail>\n"));
1028 ASD(("phyread_ok,~PSELECT>"));
1029 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030 hp->tcvr_type = internal;
1031 hp->paddr = TCV_PADDR_ITX;
1035 ASD(("BMCR_RESET "));
1036 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1039 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040 if (result == TCVR_FAILURE)
1042 hp->sw_bmcr = result;
1043 if (!(result & BMCR_RESET))
1048 ASD(("BMCR RESET FAILED!\n"));
1051 ASD(("RESET_OK\n"));
1053 /* Get fresh copies of the PHY registers. */
1054 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1060 hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1063 tries = TCVR_UNISOLATE_TRIES;
1065 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066 if (result == TCVR_FAILURE)
1068 if (!(result & BMCR_ISOLATE))
1073 ASD((" FAILED!\n"));
1076 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077 if (!is_lucent_phy(hp)) {
1078 result = happy_meal_tcvr_read(hp, tregs,
1080 happy_meal_tcvr_write(hp, tregs,
1081 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1086 /* Figure out whether we have an internal or external transceiver.
1088 * hp->happy_lock must be held
1090 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1092 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1094 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095 if (hp->happy_flags & HFLAG_POLL) {
1096 /* If we are polling, we must stop to get the transceiver type. */
1097 ASD(("<polling> "));
1098 if (hp->tcvr_type == internal) {
1099 if (tconfig & TCV_CFG_MDIO1) {
1100 ASD(("<internal> <poll stop> "));
1101 happy_meal_poll_stop(hp, tregs);
1102 hp->paddr = TCV_PADDR_ETX;
1103 hp->tcvr_type = external;
1104 ASD(("<external>\n"));
1105 tconfig &= ~(TCV_CFG_PENABLE);
1106 tconfig |= TCV_CFG_PSELECT;
1107 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1110 if (hp->tcvr_type == external) {
1111 ASD(("<external> "));
1112 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113 ASD(("<poll stop> "));
1114 happy_meal_poll_stop(hp, tregs);
1115 hp->paddr = TCV_PADDR_ITX;
1116 hp->tcvr_type = internal;
1117 ASD(("<internal>\n"));
1118 hme_write32(hp, tregs + TCVR_CFG,
1119 hme_read32(hp, tregs + TCVR_CFG) &
1120 ~(TCV_CFG_PSELECT));
1128 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1130 /* Else we can just work off of the MDIO bits. */
1131 ASD(("<not polling> "));
1132 if (reread & TCV_CFG_MDIO1) {
1133 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134 hp->paddr = TCV_PADDR_ETX;
1135 hp->tcvr_type = external;
1136 ASD(("<external>\n"));
1138 if (reread & TCV_CFG_MDIO0) {
1139 hme_write32(hp, tregs + TCVR_CFG,
1140 tconfig & ~(TCV_CFG_PSELECT));
1141 hp->paddr = TCV_PADDR_ITX;
1142 hp->tcvr_type = internal;
1143 ASD(("<internal>\n"));
1145 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146 hp->tcvr_type = none; /* Grrr... */
1153 /* The receive ring buffers are a bit tricky to get right. Here goes...
1155 * The buffers we dma into must be 64 byte aligned. So we use a special
1156 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1159 * We use skb_reserve() to align the data block we get in the skb. We
1160 * also program the etxregs->cfg register to use an offset of 2. This
1161 * imperical constant plus the ethernet header size will always leave
1162 * us with a nicely aligned ip header once we pass things up to the
1165 * The numbers work out to:
1167 * Max ethernet frame size 1518
1168 * Ethernet header size 14
1169 * Happy Meal base offset 2
1171 * Say a skb data area is at 0xf001b010, and its size alloced is
1172 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1174 * First our alloc_skb() routine aligns the data base to a 64 byte
1175 * boundary. We now have 0xf001b040 as our skb data address. We
1176 * plug this into the receive descriptor address.
1178 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179 * So now the data we will end up looking at starts at 0xf001b042. When
1180 * the packet arrives, we will check out the size received and subtract
1181 * this from the skb->length. Then we just pass the packet up to the
1182 * protocols as is, and allocate a new skb to replace this slot we have
1183 * just received from.
1185 * The ethernet layer will strip the ether header from the front of the
1186 * skb we just sent to it, this leaves us with the ip header sitting
1187 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1188 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1189 * bit checksum is obtained from the low bits of the receive descriptor
1192 * skb->csum = rxd->rx_flags & 0xffff;
1193 * skb->ip_summed = CHECKSUM_COMPLETE;
1195 * before sending off the skb to the protocols, and we are good as gold.
1197 static void happy_meal_clean_rings(struct happy_meal *hp)
1201 for (i = 0; i < RX_RING_SIZE; i++) {
1202 if (hp->rx_skbs[i] != NULL) {
1203 struct sk_buff *skb = hp->rx_skbs[i];
1204 struct happy_meal_rxd *rxd;
1207 rxd = &hp->happy_block->happy_meal_rxd[i];
1208 dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209 dma_unmap_single(hp->dma_dev, dma_addr,
1210 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1211 dev_kfree_skb_any(skb);
1212 hp->rx_skbs[i] = NULL;
1216 for (i = 0; i < TX_RING_SIZE; i++) {
1217 if (hp->tx_skbs[i] != NULL) {
1218 struct sk_buff *skb = hp->tx_skbs[i];
1219 struct happy_meal_txd *txd;
1223 hp->tx_skbs[i] = NULL;
1225 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1226 txd = &hp->happy_block->happy_meal_txd[i];
1227 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1229 dma_unmap_single(hp->dma_dev, dma_addr,
1230 (hme_read_desc32(hp, &txd->tx_flags)
1234 dma_unmap_page(hp->dma_dev, dma_addr,
1235 (hme_read_desc32(hp, &txd->tx_flags)
1239 if (frag != skb_shinfo(skb)->nr_frags)
1243 dev_kfree_skb_any(skb);
1248 /* hp->happy_lock must be held */
1249 static void happy_meal_init_rings(struct happy_meal *hp)
1251 struct hmeal_init_block *hb = hp->happy_block;
1254 HMD(("happy_meal_init_rings: counters to zero, "));
1255 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1257 /* Free any skippy bufs left around in the rings. */
1259 happy_meal_clean_rings(hp);
1261 /* Now get new skippy bufs for the receive ring. */
1262 HMD(("init rxring, "));
1263 for (i = 0; i < RX_RING_SIZE; i++) {
1264 struct sk_buff *skb;
1267 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1269 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1272 hp->rx_skbs[i] = skb;
1274 /* Because we reserve afterwards. */
1275 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1276 mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1278 if (dma_mapping_error(hp->dma_dev, mapping)) {
1279 dev_kfree_skb_any(skb);
1280 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1283 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1284 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1286 skb_reserve(skb, RX_OFFSET);
1289 HMD(("init txring, "));
1290 for (i = 0; i < TX_RING_SIZE; i++)
1291 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1296 /* hp->happy_lock must be held */
1298 happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1299 void __iomem *tregs,
1300 const struct ethtool_link_ksettings *ep)
1304 /* Read all of the registers we are interested in now. */
1305 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1306 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1307 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1308 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1310 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1312 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1313 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1314 /* Advertise everything we can support. */
1315 if (hp->sw_bmsr & BMSR_10HALF)
1316 hp->sw_advertise |= (ADVERTISE_10HALF);
1318 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1320 if (hp->sw_bmsr & BMSR_10FULL)
1321 hp->sw_advertise |= (ADVERTISE_10FULL);
1323 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1324 if (hp->sw_bmsr & BMSR_100HALF)
1325 hp->sw_advertise |= (ADVERTISE_100HALF);
1327 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1328 if (hp->sw_bmsr & BMSR_100FULL)
1329 hp->sw_advertise |= (ADVERTISE_100FULL);
1331 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1332 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1334 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1335 * XXX and this is because the DP83840 does not support it, changes
1336 * XXX would need to be made to the tx/rx logic in the driver as well
1337 * XXX so I completely skip checking for it in the BMSR for now.
1340 #ifdef AUTO_SWITCH_DEBUG
1341 ASD(("%s: Advertising [ ", hp->dev->name));
1342 if (hp->sw_advertise & ADVERTISE_10HALF)
1344 if (hp->sw_advertise & ADVERTISE_10FULL)
1346 if (hp->sw_advertise & ADVERTISE_100HALF)
1348 if (hp->sw_advertise & ADVERTISE_100FULL)
1352 /* Enable Auto-Negotiation, this is usually on already... */
1353 hp->sw_bmcr |= BMCR_ANENABLE;
1354 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1356 /* Restart it to make sure it is going. */
1357 hp->sw_bmcr |= BMCR_ANRESTART;
1358 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1360 /* BMCR_ANRESTART self clears when the process has begun. */
1362 timeout = 64; /* More than enough. */
1364 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1365 if (!(hp->sw_bmcr & BMCR_ANRESTART))
1366 break; /* got it. */
1370 printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1371 "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1372 printk(KERN_NOTICE "%s: Performing force link detection.\n",
1376 hp->timer_state = arbwait;
1380 /* Force the link up, trying first a particular mode.
1381 * Either we are here at the request of ethtool or
1382 * because the Happy Meal would not start to autoneg.
1385 /* Disable auto-negotiation in BMCR, enable the duplex and
1386 * speed setting, init the timer state machine, and fire it off.
1388 if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1389 hp->sw_bmcr = BMCR_SPEED100;
1391 if (ep->base.speed == SPEED_100)
1392 hp->sw_bmcr = BMCR_SPEED100;
1395 if (ep->base.duplex == DUPLEX_FULL)
1396 hp->sw_bmcr |= BMCR_FULLDPLX;
1398 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1400 if (!is_lucent_phy(hp)) {
1401 /* OK, seems we need do disable the transceiver for the first
1402 * tick to make sure we get an accurate link state at the
1405 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1407 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1408 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1411 hp->timer_state = ltrywait;
1414 hp->timer_ticks = 0;
1415 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1416 add_timer(&hp->happy_timer);
1419 /* hp->happy_lock must be held */
1420 static int happy_meal_init(struct happy_meal *hp)
1422 void __iomem *gregs = hp->gregs;
1423 void __iomem *etxregs = hp->etxregs;
1424 void __iomem *erxregs = hp->erxregs;
1425 void __iomem *bregs = hp->bigmacregs;
1426 void __iomem *tregs = hp->tcvregs;
1428 unsigned char *e = &hp->dev->dev_addr[0];
1430 /* If auto-negotiation timer is running, kill it. */
1431 del_timer(&hp->happy_timer);
1433 HMD(("happy_meal_init: happy_flags[%08x] ",
1435 if (!(hp->happy_flags & HFLAG_INIT)) {
1436 HMD(("set HFLAG_INIT, "));
1437 hp->happy_flags |= HFLAG_INIT;
1438 happy_meal_get_counters(hp, bregs);
1442 HMD(("to happy_meal_poll_stop\n"));
1443 happy_meal_poll_stop(hp, tregs);
1445 /* Stop transmitter and receiver. */
1446 HMD(("happy_meal_init: to happy_meal_stop\n"));
1447 happy_meal_stop(hp, gregs);
1449 /* Alloc and reset the tx/rx descriptor chains. */
1450 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1451 happy_meal_init_rings(hp);
1453 /* Shut up the MIF. */
1454 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1455 hme_read32(hp, tregs + TCVR_IMASK)));
1456 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1458 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1459 if (hp->happy_flags & HFLAG_FENABLE) {
1460 HMD(("use frame old[%08x], ",
1461 hme_read32(hp, tregs + TCVR_CFG)));
1462 hme_write32(hp, tregs + TCVR_CFG,
1463 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1465 HMD(("use bitbang old[%08x], ",
1466 hme_read32(hp, tregs + TCVR_CFG)));
1467 hme_write32(hp, tregs + TCVR_CFG,
1468 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1471 /* Check the state of the transceiver. */
1472 HMD(("to happy_meal_transceiver_check\n"));
1473 happy_meal_transceiver_check(hp, tregs);
1475 /* Put the Big Mac into a sane state. */
1476 HMD(("happy_meal_init: "));
1477 switch(hp->tcvr_type) {
1479 /* Cannot operate if we don't know the transceiver type! */
1480 HMD(("AAIEEE no transceiver type, EAGAIN"));
1484 /* Using the MII buffers. */
1485 HMD(("internal, using MII, "));
1486 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1490 /* Not using the MII, disable it. */
1491 HMD(("external, disable MII, "));
1492 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1496 if (happy_meal_tcvr_reset(hp, tregs))
1499 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1500 HMD(("tx/rx reset, "));
1501 happy_meal_tx_reset(hp, bregs);
1502 happy_meal_rx_reset(hp, bregs);
1504 /* Set jam size and inter-packet gaps to reasonable defaults. */
1505 HMD(("jsize/ipg1/ipg2, "));
1506 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1507 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1508 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1510 /* Load up the MAC address and random seed. */
1511 HMD(("rseed/macaddr, "));
1513 /* The docs recommend to use the 10LSB of our MAC here. */
1514 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1516 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1517 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1518 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1521 if ((hp->dev->flags & IFF_ALLMULTI) ||
1522 (netdev_mc_count(hp->dev) > 64)) {
1523 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1524 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1525 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1526 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1527 } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1529 struct netdev_hw_addr *ha;
1532 memset(hash_table, 0, sizeof(hash_table));
1533 netdev_for_each_mc_addr(ha, hp->dev) {
1534 crc = ether_crc_le(6, ha->addr);
1536 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1539 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1540 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1541 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1544 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1545 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1546 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1549 /* Set the RX and TX ring ptrs. */
1550 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1551 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1552 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1553 hme_write32(hp, erxregs + ERX_RING,
1554 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1555 hme_write32(hp, etxregs + ETX_RING,
1556 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558 /* Parity issues in the ERX unit of some HME revisions can cause some
1559 * registers to not be written unless their parity is even. Detect such
1560 * lost writes and simply rewrite with a low bit set (which will be ignored
1561 * since the rxring needs to be 2K aligned).
1563 if (hme_read32(hp, erxregs + ERX_RING) !=
1564 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1565 hme_write32(hp, erxregs + ERX_RING,
1566 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1569 /* Set the supported burst sizes. */
1570 HMD(("happy_meal_init: old[%08x] bursts<",
1571 hme_read32(hp, gregs + GREG_CFG)));
1573 #ifndef CONFIG_SPARC
1574 /* It is always PCI and can handle 64byte bursts. */
1575 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577 if ((hp->happy_bursts & DMA_BURST64) &&
1578 ((hp->happy_flags & HFLAG_PCI) != 0
1580 || sbus_can_burst64()
1583 u32 gcfg = GREG_CFG_BURST64;
1585 /* I have no idea if I should set the extended
1586 * transfer mode bit for Cheerio, so for now I
1590 if ((hp->happy_flags & HFLAG_PCI) == 0) {
1591 struct platform_device *op = hp->happy_dev;
1592 if (sbus_can_dma_64bit()) {
1593 sbus_set_sbus64(&op->dev,
1595 gcfg |= GREG_CFG_64BIT;
1601 hme_write32(hp, gregs + GREG_CFG, gcfg);
1602 } else if (hp->happy_bursts & DMA_BURST32) {
1604 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1605 } else if (hp->happy_bursts & DMA_BURST16) {
1607 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1610 hme_write32(hp, gregs + GREG_CFG, 0);
1612 #endif /* CONFIG_SPARC */
1614 /* Turn off interrupts we do not want to hear. */
1615 HMD((", enable global interrupts, "));
1616 hme_write32(hp, gregs + GREG_IMASK,
1617 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1618 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620 /* Set the transmit ring buffer size. */
1621 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1622 hme_read32(hp, etxregs + ETX_RSIZE)));
1623 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625 /* Enable transmitter DVMA. */
1626 HMD(("tx dma enable old[%08x], ",
1627 hme_read32(hp, etxregs + ETX_CFG)));
1628 hme_write32(hp, etxregs + ETX_CFG,
1629 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631 /* This chip really rots, for the receiver sometimes when you
1632 * write to its control registers not all the bits get there
1633 * properly. I cannot think of a sane way to provide complete
1634 * coverage for this hardware bug yet.
1636 HMD(("erx regs bug old[%08x]\n",
1637 hme_read32(hp, erxregs + ERX_CFG)));
1638 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1639 regtmp = hme_read32(hp, erxregs + ERX_CFG);
1640 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1641 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1642 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1643 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1644 ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1645 /* XXX Should return failure here... */
1648 /* Enable Big Mac hash table filter. */
1649 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1650 hme_read32(hp, bregs + BMAC_RXCFG)));
1651 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1652 if (hp->dev->flags & IFF_PROMISC)
1653 rxcfg |= BIGMAC_RXCFG_PMISC;
1654 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656 /* Let the bits settle in the chip. */
1659 /* Ok, configure the Big Mac transmitter. */
1660 HMD(("BIGMAC init, "));
1662 if (hp->happy_flags & HFLAG_FULL)
1663 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665 /* Don't turn on the "don't give up" bit for now. It could cause hme
1666 * to deadlock with the PHY if a Jabber occurs.
1668 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670 /* Give up after 16 TX attempts. */
1671 hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673 /* Enable the output drivers no matter what. */
1674 regtmp = BIGMAC_XCFG_ODENABLE;
1676 /* If card can do lance mode, enable it. */
1677 if (hp->happy_flags & HFLAG_LANCE)
1678 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680 /* Disable the MII buffers if using external transceiver. */
1681 if (hp->tcvr_type == external)
1682 regtmp |= BIGMAC_XCFG_MIIDISAB;
1684 HMD(("XIF config old[%08x], ",
1685 hme_read32(hp, bregs + BMAC_XIFCFG)));
1686 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688 /* Start things up. */
1689 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1690 hme_read32(hp, bregs + BMAC_TXCFG),
1691 hme_read32(hp, bregs + BMAC_RXCFG)));
1693 /* Set larger TX/RX size to allow for 802.1q */
1694 hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1695 hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697 hme_write32(hp, bregs + BMAC_TXCFG,
1698 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1699 hme_write32(hp, bregs + BMAC_RXCFG,
1700 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702 /* Get the autonegotiation started, and the watch timer ticking. */
1703 happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1709 /* hp->happy_lock must be held */
1710 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712 void __iomem *tregs = hp->tcvregs;
1713 void __iomem *bregs = hp->bigmacregs;
1714 void __iomem *gregs = hp->gregs;
1716 happy_meal_stop(hp, gregs);
1717 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1718 if (hp->happy_flags & HFLAG_FENABLE)
1719 hme_write32(hp, tregs + TCVR_CFG,
1720 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722 hme_write32(hp, tregs + TCVR_CFG,
1723 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1724 happy_meal_transceiver_check(hp, tregs);
1725 switch(hp->tcvr_type) {
1729 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1732 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1735 if (happy_meal_tcvr_reset(hp, tregs))
1738 /* Latch PHY registers as of now. */
1739 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1740 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742 /* Advertise everything we can support. */
1743 if (hp->sw_bmsr & BMSR_10HALF)
1744 hp->sw_advertise |= (ADVERTISE_10HALF);
1746 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748 if (hp->sw_bmsr & BMSR_10FULL)
1749 hp->sw_advertise |= (ADVERTISE_10FULL);
1751 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1752 if (hp->sw_bmsr & BMSR_100HALF)
1753 hp->sw_advertise |= (ADVERTISE_100HALF);
1755 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1756 if (hp->sw_bmsr & BMSR_100FULL)
1757 hp->sw_advertise |= (ADVERTISE_100FULL);
1759 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761 /* Update the PHY advertisement register. */
1762 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1765 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1766 * the hardware, so we cannot re-read it and get a correct value.
1768 * hp->happy_lock must be held
1770 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1774 /* Only print messages for non-counter related interrupts. */
1775 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1776 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1777 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1778 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1779 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1782 hp->dev->name, status);
1784 if (status & GREG_STAT_RFIFOVF) {
1785 /* Receive FIFO overflow is harmless and the hardware will take
1786 care of it, just some packets are lost. Who cares. */
1787 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1790 if (status & GREG_STAT_STSTERR) {
1791 /* BigMAC SQE link test failed. */
1792 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1796 if (status & GREG_STAT_TFIFO_UND) {
1797 /* Transmit FIFO underrun, again DMA error likely. */
1798 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1803 if (status & GREG_STAT_MAXPKTERR) {
1804 /* Driver error, tried to transmit something larger
1805 * than ethernet max mtu.
1807 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1811 if (status & GREG_STAT_NORXD) {
1812 /* This is harmless, it just means the system is
1813 * quite loaded and the incoming packet rate was
1814 * faster than the interrupt handler could keep up
1817 printk(KERN_INFO "%s: Happy Meal out of receive "
1818 "descriptors, packet dropped.\n",
1822 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1823 /* All sorts of DMA receive errors. */
1824 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1825 if (status & GREG_STAT_RXERR)
1826 printk("GenericError ");
1827 if (status & GREG_STAT_RXPERR)
1828 printk("ParityError ");
1829 if (status & GREG_STAT_RXTERR)
1830 printk("RxTagBotch ");
1835 if (status & GREG_STAT_EOPERR) {
1836 /* Driver bug, didn't set EOP bit in tx descriptor given
1837 * to the happy meal.
1839 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1844 if (status & GREG_STAT_MIFIRQ) {
1845 /* MIF signalled an interrupt, were we polling it? */
1846 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1850 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1851 /* All sorts of transmit DMA errors. */
1852 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1853 if (status & GREG_STAT_TXEACK)
1854 printk("GenericError ");
1855 if (status & GREG_STAT_TXLERR)
1856 printk("LateError ");
1857 if (status & GREG_STAT_TXPERR)
1858 printk("ParityError ");
1859 if (status & GREG_STAT_TXTERR)
1860 printk("TagBotch ");
1865 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1866 /* Bus or parity error when cpu accessed happy meal registers
1867 * or it's internal FIFO's. Should never see this.
1869 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871 (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1876 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1877 happy_meal_init(hp);
1883 /* hp->happy_lock must be held */
1884 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886 void __iomem *tregs = hp->tcvregs;
1888 printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1889 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1890 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892 /* Use the fastest transmission protocol possible. */
1893 if (hp->sw_lpa & LPA_100FULL) {
1894 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1895 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1896 } else if (hp->sw_lpa & LPA_100HALF) {
1897 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1898 hp->sw_bmcr |= BMCR_SPEED100;
1899 } else if (hp->sw_lpa & LPA_10FULL) {
1900 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1901 hp->sw_bmcr |= BMCR_FULLDPLX;
1903 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907 /* Finally stop polling and shut up the MIF. */
1908 happy_meal_poll_stop(hp, tregs);
1912 #define TXD(x) printk x
1917 /* hp->happy_lock must be held */
1918 static void happy_meal_tx(struct happy_meal *hp)
1920 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1921 struct happy_meal_txd *this;
1922 struct net_device *dev = hp->dev;
1927 while (elem != hp->tx_new) {
1928 struct sk_buff *skb;
1929 u32 flags, dma_addr, dma_len;
1932 TXD(("[%d]", elem));
1933 this = &txbase[elem];
1934 flags = hme_read_desc32(hp, &this->tx_flags);
1935 if (flags & TXFLAG_OWN)
1937 skb = hp->tx_skbs[elem];
1938 if (skb_shinfo(skb)->nr_frags) {
1941 last = elem + skb_shinfo(skb)->nr_frags;
1942 last &= (TX_RING_SIZE - 1);
1943 flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1944 if (flags & TXFLAG_OWN)
1947 hp->tx_skbs[elem] = NULL;
1948 dev->stats.tx_bytes += skb->len;
1950 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1951 dma_addr = hme_read_desc32(hp, &this->tx_addr);
1952 dma_len = hme_read_desc32(hp, &this->tx_flags);
1954 dma_len &= TXFLAG_SIZE;
1956 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1958 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1960 elem = NEXT_TX(elem);
1961 this = &txbase[elem];
1964 dev_consume_skb_irq(skb);
1965 dev->stats.tx_packets++;
1970 if (netif_queue_stopped(dev) &&
1971 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1972 netif_wake_queue(dev);
1976 #define RXD(x) printk x
1981 /* Originally I used to handle the allocation failure by just giving back just
1982 * that one ring buffer to the happy meal. Problem is that usually when that
1983 * condition is triggered, the happy meal expects you to do something reasonable
1984 * with all of the packets it has DMA'd in. So now I just drop the entire
1985 * ring when we cannot get a new skb and give them all back to the happy meal,
1986 * maybe things will be "happier" now.
1988 * hp->happy_lock must be held
1990 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1992 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1993 struct happy_meal_rxd *this;
1994 int elem = hp->rx_new, drops = 0;
1998 this = &rxbase[elem];
1999 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2000 struct sk_buff *skb;
2001 int len = flags >> 16;
2002 u16 csum = flags & RXFLAG_CSUM;
2003 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2005 RXD(("[%d ", elem));
2007 /* Check for errors. */
2008 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2009 RXD(("ERR(%08x)]", flags));
2010 dev->stats.rx_errors++;
2012 dev->stats.rx_length_errors++;
2013 if (len & (RXFLAG_OVERFLOW >> 16)) {
2014 dev->stats.rx_over_errors++;
2015 dev->stats.rx_fifo_errors++;
2018 /* Return it to the Happy meal. */
2020 dev->stats.rx_dropped++;
2021 hme_write_rxd(hp, this,
2022 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2026 skb = hp->rx_skbs[elem];
2027 if (len > RX_COPY_THRESHOLD) {
2028 struct sk_buff *new_skb;
2031 /* Now refill the entry, if we can. */
2032 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2033 if (new_skb == NULL) {
2037 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2038 mapping = dma_map_single(hp->dma_dev, new_skb->data,
2041 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2042 dev_kfree_skb_any(new_skb);
2047 dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2048 hp->rx_skbs[elem] = new_skb;
2049 hme_write_rxd(hp, this,
2050 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2052 skb_reserve(new_skb, RX_OFFSET);
2054 /* Trim the original skb for the netif. */
2057 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2059 if (copy_skb == NULL) {
2064 skb_reserve(copy_skb, 2);
2065 skb_put(copy_skb, len);
2066 dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2067 skb_copy_from_linear_data(skb, copy_skb->data, len);
2068 dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2069 /* Reuse original ring buffer. */
2070 hme_write_rxd(hp, this,
2071 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2077 /* This card is _fucking_ hot... */
2078 skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2079 skb->ip_summed = CHECKSUM_COMPLETE;
2081 RXD(("len=%d csum=%4x]", len, csum));
2082 skb->protocol = eth_type_trans(skb, dev);
2085 dev->stats.rx_packets++;
2086 dev->stats.rx_bytes += len;
2088 elem = NEXT_RX(elem);
2089 this = &rxbase[elem];
2093 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2097 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099 struct net_device *dev = dev_id;
2100 struct happy_meal *hp = netdev_priv(dev);
2101 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2103 HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105 spin_lock(&hp->happy_lock);
2107 if (happy_status & GREG_STAT_ERRORS) {
2109 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2113 if (happy_status & GREG_STAT_MIFIRQ) {
2115 happy_meal_mif_interrupt(hp);
2118 if (happy_status & GREG_STAT_TXALL) {
2123 if (happy_status & GREG_STAT_RXTOHOST) {
2125 happy_meal_rx(hp, dev);
2130 spin_unlock(&hp->happy_lock);
2136 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138 struct quattro *qp = (struct quattro *) cookie;
2141 for (i = 0; i < 4; i++) {
2142 struct net_device *dev = qp->happy_meals[i];
2143 struct happy_meal *hp = netdev_priv(dev);
2144 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2146 HMD(("quattro_interrupt: status=%08x ", happy_status));
2148 if (!(happy_status & (GREG_STAT_ERRORS |
2151 GREG_STAT_RXTOHOST)))
2154 spin_lock(&hp->happy_lock);
2156 if (happy_status & GREG_STAT_ERRORS) {
2158 if (happy_meal_is_not_so_happy(hp, happy_status))
2162 if (happy_status & GREG_STAT_MIFIRQ) {
2164 happy_meal_mif_interrupt(hp);
2167 if (happy_status & GREG_STAT_TXALL) {
2172 if (happy_status & GREG_STAT_RXTOHOST) {
2174 happy_meal_rx(hp, dev);
2178 spin_unlock(&hp->happy_lock);
2186 static int happy_meal_open(struct net_device *dev)
2188 struct happy_meal *hp = netdev_priv(dev);
2191 HMD(("happy_meal_open: "));
2193 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2194 * into a single source which we register handling at probe time.
2196 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2197 res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2201 printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2208 HMD(("to happy_meal_init\n"));
2210 spin_lock_irq(&hp->happy_lock);
2211 res = happy_meal_init(hp);
2212 spin_unlock_irq(&hp->happy_lock);
2214 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2215 free_irq(hp->irq, dev);
2219 static int happy_meal_close(struct net_device *dev)
2221 struct happy_meal *hp = netdev_priv(dev);
2223 spin_lock_irq(&hp->happy_lock);
2224 happy_meal_stop(hp, hp->gregs);
2225 happy_meal_clean_rings(hp);
2227 /* If auto-negotiation timer is running, kill it. */
2228 del_timer(&hp->happy_timer);
2230 spin_unlock_irq(&hp->happy_lock);
2232 /* On Quattro QFE cards, all hme interrupts are concentrated
2233 * into a single source which we register handling at probe
2234 * time and never unregister.
2236 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2237 free_irq(hp->irq, dev);
2243 #define SXD(x) printk x
2248 static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
2250 struct happy_meal *hp = netdev_priv(dev);
2252 printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2254 printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2255 hme_read32(hp, hp->gregs + GREG_STAT),
2256 hme_read32(hp, hp->etxregs + ETX_CFG),
2257 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259 spin_lock_irq(&hp->happy_lock);
2260 happy_meal_init(hp);
2261 spin_unlock_irq(&hp->happy_lock);
2263 netif_wake_queue(dev);
2266 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2267 u32 first_len, u32 first_entry, u32 entry)
2269 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2271 dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2273 first_entry = NEXT_TX(first_entry);
2274 while (first_entry != entry) {
2275 struct happy_meal_txd *this = &txbase[first_entry];
2278 addr = hme_read_desc32(hp, &this->tx_addr);
2279 len = hme_read_desc32(hp, &this->tx_flags);
2281 dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2285 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2286 struct net_device *dev)
2288 struct happy_meal *hp = netdev_priv(dev);
2292 tx_flags = TXFLAG_OWN;
2293 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2294 const u32 csum_start_off = skb_checksum_start_offset(skb);
2295 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2297 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2298 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2299 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2302 spin_lock_irq(&hp->happy_lock);
2304 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2305 netif_stop_queue(dev);
2306 spin_unlock_irq(&hp->happy_lock);
2307 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2309 return NETDEV_TX_BUSY;
2313 SXD(("SX<l[%d]e[%d]>", len, entry));
2314 hp->tx_skbs[entry] = skb;
2316 if (skb_shinfo(skb)->nr_frags == 0) {
2320 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2321 if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2323 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2324 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2325 (tx_flags | (len & TXFLAG_SIZE)),
2327 entry = NEXT_TX(entry);
2329 u32 first_len, first_mapping;
2330 int frag, first_entry = entry;
2332 /* We must give this initial chunk to the device last.
2333 * Otherwise we could race with the device.
2335 first_len = skb_headlen(skb);
2336 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2338 if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2340 entry = NEXT_TX(entry);
2342 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2343 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2344 u32 len, mapping, this_txflags;
2346 len = skb_frag_size(this_frag);
2347 mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2348 0, len, DMA_TO_DEVICE);
2349 if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2350 unmap_partial_tx_skb(hp, first_mapping, first_len,
2351 first_entry, entry);
2354 this_txflags = tx_flags;
2355 if (frag == skb_shinfo(skb)->nr_frags - 1)
2356 this_txflags |= TXFLAG_EOP;
2357 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2358 (this_txflags | (len & TXFLAG_SIZE)),
2360 entry = NEXT_TX(entry);
2362 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2363 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2369 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2370 netif_stop_queue(dev);
2373 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2375 spin_unlock_irq(&hp->happy_lock);
2377 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2378 return NETDEV_TX_OK;
2381 hp->tx_skbs[hp->tx_new] = NULL;
2382 spin_unlock_irq(&hp->happy_lock);
2384 dev_kfree_skb_any(skb);
2385 dev->stats.tx_dropped++;
2386 return NETDEV_TX_OK;
2389 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2391 struct happy_meal *hp = netdev_priv(dev);
2393 spin_lock_irq(&hp->happy_lock);
2394 happy_meal_get_counters(hp, hp->bigmacregs);
2395 spin_unlock_irq(&hp->happy_lock);
2400 static void happy_meal_set_multicast(struct net_device *dev)
2402 struct happy_meal *hp = netdev_priv(dev);
2403 void __iomem *bregs = hp->bigmacregs;
2404 struct netdev_hw_addr *ha;
2407 spin_lock_irq(&hp->happy_lock);
2409 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2410 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2411 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2412 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2413 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2414 } else if (dev->flags & IFF_PROMISC) {
2415 hme_write32(hp, bregs + BMAC_RXCFG,
2416 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2420 memset(hash_table, 0, sizeof(hash_table));
2421 netdev_for_each_mc_addr(ha, dev) {
2422 crc = ether_crc_le(6, ha->addr);
2424 hash_table[crc >> 4] |= 1 << (crc & 0xf);
2426 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2427 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2428 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2429 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2432 spin_unlock_irq(&hp->happy_lock);
2435 /* Ethtool support... */
2436 static int hme_get_link_ksettings(struct net_device *dev,
2437 struct ethtool_link_ksettings *cmd)
2439 struct happy_meal *hp = netdev_priv(dev);
2444 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2445 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2446 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2448 /* XXX hardcoded stuff for now */
2449 cmd->base.port = PORT_TP; /* XXX no MII support */
2450 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2452 /* Record PHY settings. */
2453 spin_lock_irq(&hp->happy_lock);
2454 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2455 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2456 spin_unlock_irq(&hp->happy_lock);
2458 if (hp->sw_bmcr & BMCR_ANENABLE) {
2459 cmd->base.autoneg = AUTONEG_ENABLE;
2460 speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2461 SPEED_100 : SPEED_10);
2462 if (speed == SPEED_100)
2464 (hp->sw_lpa & (LPA_100FULL)) ?
2465 DUPLEX_FULL : DUPLEX_HALF;
2468 (hp->sw_lpa & (LPA_10FULL)) ?
2469 DUPLEX_FULL : DUPLEX_HALF;
2471 cmd->base.autoneg = AUTONEG_DISABLE;
2472 speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2474 (hp->sw_bmcr & BMCR_FULLDPLX) ?
2475 DUPLEX_FULL : DUPLEX_HALF;
2477 cmd->base.speed = speed;
2478 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2484 static int hme_set_link_ksettings(struct net_device *dev,
2485 const struct ethtool_link_ksettings *cmd)
2487 struct happy_meal *hp = netdev_priv(dev);
2489 /* Verify the settings we care about. */
2490 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2491 cmd->base.autoneg != AUTONEG_DISABLE)
2493 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2494 ((cmd->base.speed != SPEED_100 &&
2495 cmd->base.speed != SPEED_10) ||
2496 (cmd->base.duplex != DUPLEX_HALF &&
2497 cmd->base.duplex != DUPLEX_FULL)))
2500 /* Ok, do it to it. */
2501 spin_lock_irq(&hp->happy_lock);
2502 del_timer(&hp->happy_timer);
2503 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2504 spin_unlock_irq(&hp->happy_lock);
2509 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2511 struct happy_meal *hp = netdev_priv(dev);
2513 strlcpy(info->driver, "sunhme", sizeof(info->driver));
2514 strlcpy(info->version, "2.02", sizeof(info->version));
2515 if (hp->happy_flags & HFLAG_PCI) {
2516 struct pci_dev *pdev = hp->happy_dev;
2517 strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2521 const struct linux_prom_registers *regs;
2522 struct platform_device *op = hp->happy_dev;
2523 regs = of_get_property(op->dev.of_node, "regs", NULL);
2525 snprintf(info->bus_info, sizeof(info->bus_info),
2532 static u32 hme_get_link(struct net_device *dev)
2534 struct happy_meal *hp = netdev_priv(dev);
2536 spin_lock_irq(&hp->happy_lock);
2537 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2538 spin_unlock_irq(&hp->happy_lock);
2540 return hp->sw_bmsr & BMSR_LSTATUS;
2543 static const struct ethtool_ops hme_ethtool_ops = {
2544 .get_drvinfo = hme_get_drvinfo,
2545 .get_link = hme_get_link,
2546 .get_link_ksettings = hme_get_link_ksettings,
2547 .set_link_ksettings = hme_set_link_ksettings,
2550 static int hme_version_printed;
2553 /* Given a happy meal sbus device, find it's quattro parent.
2554 * If none exist, allocate and return a new one.
2556 * Return NULL on failure.
2558 static struct quattro *quattro_sbus_find(struct platform_device *child)
2560 struct device *parent = child->dev.parent;
2561 struct platform_device *op;
2564 op = to_platform_device(parent);
2565 qp = platform_get_drvdata(op);
2569 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2573 for (i = 0; i < 4; i++)
2574 qp->happy_meals[i] = NULL;
2576 qp->quattro_dev = child;
2577 qp->next = qfe_sbus_list;
2580 platform_set_drvdata(op, qp);
2585 /* After all quattro cards have been probed, we call these functions
2586 * to register the IRQ handlers for the cards that have been
2587 * successfully probed and skip the cards that failed to initialize
2589 static int __init quattro_sbus_register_irqs(void)
2593 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2594 struct platform_device *op = qp->quattro_dev;
2595 int err, qfe_slot, skip = 0;
2597 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2598 if (!qp->happy_meals[qfe_slot])
2604 err = request_irq(op->archdata.irqs[0],
2605 quattro_sbus_interrupt,
2606 IRQF_SHARED, "Quattro",
2609 printk(KERN_ERR "Quattro HME: IRQ registration "
2610 "error %d.\n", err);
2618 static void quattro_sbus_free_irqs(void)
2622 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2623 struct platform_device *op = qp->quattro_dev;
2624 int qfe_slot, skip = 0;
2626 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2627 if (!qp->happy_meals[qfe_slot])
2633 free_irq(op->archdata.irqs[0], qp);
2636 #endif /* CONFIG_SBUS */
2639 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2641 struct pci_dev *bdev = pdev->bus->self;
2644 if (!bdev) return NULL;
2645 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2646 struct pci_dev *qpdev = qp->quattro_dev;
2651 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2655 for (i = 0; i < 4; i++)
2656 qp->happy_meals[i] = NULL;
2658 qp->quattro_dev = bdev;
2659 qp->next = qfe_pci_list;
2662 /* No range tricks necessary on PCI. */
2667 #endif /* CONFIG_PCI */
2669 static const struct net_device_ops hme_netdev_ops = {
2670 .ndo_open = happy_meal_open,
2671 .ndo_stop = happy_meal_close,
2672 .ndo_start_xmit = happy_meal_start_xmit,
2673 .ndo_tx_timeout = happy_meal_tx_timeout,
2674 .ndo_get_stats = happy_meal_get_stats,
2675 .ndo_set_rx_mode = happy_meal_set_multicast,
2676 .ndo_set_mac_address = eth_mac_addr,
2677 .ndo_validate_addr = eth_validate_addr,
2681 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2683 struct device_node *dp = op->dev.of_node, *sbus_dp;
2684 struct quattro *qp = NULL;
2685 struct happy_meal *hp;
2686 struct net_device *dev;
2687 int i, qfe_slot = -1;
2690 sbus_dp = op->dev.parent->of_node;
2692 /* We can match PCI devices too, do not accept those here. */
2693 if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2697 qp = quattro_sbus_find(op);
2700 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2701 if (qp->happy_meals[qfe_slot] == NULL)
2708 dev = alloc_etherdev(sizeof(struct happy_meal));
2711 SET_NETDEV_DEV(dev, &op->dev);
2713 if (hme_version_printed++ == 0)
2714 printk(KERN_INFO "%s", version);
2716 /* If user did not specify a MAC address specifically, use
2717 * the Quattro local-mac-address property...
2719 for (i = 0; i < 6; i++) {
2720 if (macaddr[i] != 0)
2723 if (i < 6) { /* a mac address was given */
2724 for (i = 0; i < 6; i++)
2725 dev->dev_addr[i] = macaddr[i];
2728 const unsigned char *addr;
2731 addr = of_get_property(dp, "local-mac-address", &len);
2733 if (qfe_slot != -1 && addr && len == ETH_ALEN)
2734 memcpy(dev->dev_addr, addr, ETH_ALEN);
2736 memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2739 hp = netdev_priv(dev);
2742 hp->dma_dev = &op->dev;
2744 spin_lock_init(&hp->happy_lock);
2748 hp->qfe_parent = qp;
2749 hp->qfe_ent = qfe_slot;
2750 qp->happy_meals[qfe_slot] = dev;
2753 hp->gregs = of_ioremap(&op->resource[0], 0,
2754 GREG_REG_SIZE, "HME Global Regs");
2756 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2757 goto err_out_free_netdev;
2760 hp->etxregs = of_ioremap(&op->resource[1], 0,
2761 ETX_REG_SIZE, "HME TX Regs");
2763 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2764 goto err_out_iounmap;
2767 hp->erxregs = of_ioremap(&op->resource[2], 0,
2768 ERX_REG_SIZE, "HME RX Regs");
2770 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2771 goto err_out_iounmap;
2774 hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2775 BMAC_REG_SIZE, "HME BIGMAC Regs");
2776 if (!hp->bigmacregs) {
2777 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2778 goto err_out_iounmap;
2781 hp->tcvregs = of_ioremap(&op->resource[4], 0,
2782 TCVR_REG_SIZE, "HME Tranceiver Regs");
2784 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2785 goto err_out_iounmap;
2788 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2789 if (hp->hm_revision == 0xff)
2790 hp->hm_revision = 0xa0;
2792 /* Now enable the feature flags we can. */
2793 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2794 hp->happy_flags = HFLAG_20_21;
2795 else if (hp->hm_revision != 0xa0)
2796 hp->happy_flags = HFLAG_NOT_A0;
2799 hp->happy_flags |= HFLAG_QUATTRO;
2801 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2802 hp->happy_bursts = of_getintprop_default(sbus_dp,
2803 "burst-sizes", 0x00);
2805 hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2810 if (!hp->happy_block)
2811 goto err_out_iounmap;
2813 /* Force check of the link first time we are brought up. */
2816 /* Force timer state to 'asleep' with count of zero. */
2817 hp->timer_state = asleep;
2818 hp->timer_ticks = 0;
2820 timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2823 dev->netdev_ops = &hme_netdev_ops;
2824 dev->watchdog_timeo = 5*HZ;
2825 dev->ethtool_ops = &hme_ethtool_ops;
2827 /* Happy Meal can do it all... */
2828 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2829 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2831 hp->irq = op->archdata.irqs[0];
2833 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2834 /* Hook up SBUS register/descriptor accessors. */
2835 hp->read_desc32 = sbus_hme_read_desc32;
2836 hp->write_txd = sbus_hme_write_txd;
2837 hp->write_rxd = sbus_hme_write_rxd;
2838 hp->read32 = sbus_hme_read32;
2839 hp->write32 = sbus_hme_write32;
2842 /* Grrr, Happy Meal comes up by default not advertising
2843 * full duplex 100baseT capabilities, fix this.
2845 spin_lock_irq(&hp->happy_lock);
2846 happy_meal_set_initial_advertisement(hp);
2847 spin_unlock_irq(&hp->happy_lock);
2849 err = register_netdev(hp->dev);
2851 printk(KERN_ERR "happymeal: Cannot register net device, "
2853 goto err_out_free_coherent;
2856 platform_set_drvdata(op, hp);
2859 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2860 dev->name, qfe_slot);
2862 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2865 printk("%pM\n", dev->dev_addr);
2869 err_out_free_coherent:
2870 dma_free_coherent(hp->dma_dev,
2877 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2879 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2881 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2883 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2885 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2888 qp->happy_meals[qfe_slot] = NULL;
2890 err_out_free_netdev:
2899 #ifndef CONFIG_SPARC
2900 static int is_quattro_p(struct pci_dev *pdev)
2902 struct pci_dev *busdev = pdev->bus->self;
2903 struct pci_dev *this_pdev;
2906 if (busdev == NULL ||
2907 busdev->vendor != PCI_VENDOR_ID_DEC ||
2908 busdev->device != PCI_DEVICE_ID_DEC_21153)
2912 list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2913 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2914 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2924 /* Fetch MAC address from vital product data of PCI ROM. */
2925 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2929 for (this_offset = 0x20; this_offset < len; this_offset++) {
2930 void __iomem *p = rom_base + this_offset;
2932 if (readb(p + 0) != 0x90 ||
2933 readb(p + 1) != 0x00 ||
2934 readb(p + 2) != 0x09 ||
2935 readb(p + 3) != 0x4e ||
2936 readb(p + 4) != 0x41 ||
2937 readb(p + 5) != 0x06)
2946 for (i = 0; i < 6; i++)
2947 dev_addr[i] = readb(p + i);
2955 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2958 void __iomem *p = pci_map_rom(pdev, &size);
2964 if (is_quattro_p(pdev))
2965 index = PCI_SLOT(pdev->devfn);
2967 found = readb(p) == 0x55 &&
2968 readb(p + 1) == 0xaa &&
2969 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2970 pci_unmap_rom(pdev, p);
2975 /* Sun MAC prefix then 3 random bytes. */
2979 get_random_bytes(&dev_addr[3], 3);
2981 #endif /* !(CONFIG_SPARC) */
2983 static int happy_meal_pci_probe(struct pci_dev *pdev,
2984 const struct pci_device_id *ent)
2986 struct quattro *qp = NULL;
2988 struct device_node *dp;
2990 struct happy_meal *hp;
2991 struct net_device *dev;
2992 void __iomem *hpreg_base;
2993 unsigned long hpreg_res;
2994 int i, qfe_slot = -1;
2998 /* Now make sure pci_dev cookie is there. */
3000 dp = pci_device_to_OF_node(pdev);
3001 snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
3003 if (is_quattro_p(pdev))
3004 strcpy(prom_name, "SUNW,qfe");
3006 strcpy(prom_name, "SUNW,hme");
3011 if (pci_enable_device(pdev))
3013 pci_set_master(pdev);
3015 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3016 qp = quattro_pci_find(pdev);
3019 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3020 if (qp->happy_meals[qfe_slot] == NULL)
3026 dev = alloc_etherdev(sizeof(struct happy_meal));
3030 SET_NETDEV_DEV(dev, &pdev->dev);
3032 if (hme_version_printed++ == 0)
3033 printk(KERN_INFO "%s", version);
3035 hp = netdev_priv(dev);
3037 hp->happy_dev = pdev;
3038 hp->dma_dev = &pdev->dev;
3040 spin_lock_init(&hp->happy_lock);
3043 hp->qfe_parent = qp;
3044 hp->qfe_ent = qfe_slot;
3045 qp->happy_meals[qfe_slot] = dev;
3048 hpreg_res = pci_resource_start(pdev, 0);
3050 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3051 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3052 goto err_out_clear_quattro;
3054 if (pci_request_regions(pdev, DRV_NAME)) {
3055 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3057 goto err_out_clear_quattro;
3060 if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3061 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3062 goto err_out_free_res;
3065 for (i = 0; i < 6; i++) {
3066 if (macaddr[i] != 0)
3069 if (i < 6) { /* a mac address was given */
3070 for (i = 0; i < 6; i++)
3071 dev->dev_addr[i] = macaddr[i];
3075 const unsigned char *addr;
3078 if (qfe_slot != -1 &&
3079 (addr = of_get_property(dp, "local-mac-address", &len))
3082 memcpy(dev->dev_addr, addr, ETH_ALEN);
3084 memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3087 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3091 /* Layout registers. */
3092 hp->gregs = (hpreg_base + 0x0000UL);
3093 hp->etxregs = (hpreg_base + 0x2000UL);
3094 hp->erxregs = (hpreg_base + 0x4000UL);
3095 hp->bigmacregs = (hpreg_base + 0x6000UL);
3096 hp->tcvregs = (hpreg_base + 0x7000UL);
3099 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3100 if (hp->hm_revision == 0xff)
3101 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3103 /* works with this on non-sparc hosts */
3104 hp->hm_revision = 0x20;
3107 /* Now enable the feature flags we can. */
3108 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3109 hp->happy_flags = HFLAG_20_21;
3110 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3111 hp->happy_flags = HFLAG_NOT_A0;
3114 hp->happy_flags |= HFLAG_QUATTRO;
3116 /* And of course, indicate this is PCI. */
3117 hp->happy_flags |= HFLAG_PCI;
3120 /* Assume PCI happy meals can handle all burst sizes. */
3121 hp->happy_bursts = DMA_BURSTBITS;
3124 hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3125 &hp->hblock_dvma, GFP_KERNEL);
3127 if (!hp->happy_block)
3128 goto err_out_iounmap;
3131 hp->timer_state = asleep;
3132 hp->timer_ticks = 0;
3134 timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3136 hp->irq = pdev->irq;
3138 dev->netdev_ops = &hme_netdev_ops;
3139 dev->watchdog_timeo = 5*HZ;
3140 dev->ethtool_ops = &hme_ethtool_ops;
3142 /* Happy Meal can do it all... */
3143 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3144 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3146 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3147 /* Hook up PCI register/descriptor accessors. */
3148 hp->read_desc32 = pci_hme_read_desc32;
3149 hp->write_txd = pci_hme_write_txd;
3150 hp->write_rxd = pci_hme_write_rxd;
3151 hp->read32 = pci_hme_read32;
3152 hp->write32 = pci_hme_write32;
3155 /* Grrr, Happy Meal comes up by default not advertising
3156 * full duplex 100baseT capabilities, fix this.
3158 spin_lock_irq(&hp->happy_lock);
3159 happy_meal_set_initial_advertisement(hp);
3160 spin_unlock_irq(&hp->happy_lock);
3162 err = register_netdev(hp->dev);
3164 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3166 goto err_out_iounmap;
3169 pci_set_drvdata(pdev, hp);
3172 struct pci_dev *qpdev = qp->quattro_dev;
3175 if (!strncmp(dev->name, "eth", 3)) {
3176 int i = simple_strtoul(dev->name + 3, NULL, 10);
3177 sprintf(prom_name, "-%d", i + 3);
3179 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3180 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3181 qpdev->device == PCI_DEVICE_ID_DEC_21153)
3182 printk("DEC 21153 PCI Bridge\n");
3184 printk("unknown bridge %04x.%04x\n",
3185 qpdev->vendor, qpdev->device);
3189 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3190 dev->name, qfe_slot);
3192 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3195 printk("%pM\n", dev->dev_addr);
3203 pci_release_regions(pdev);
3205 err_out_clear_quattro:
3207 qp->happy_meals[qfe_slot] = NULL;
3215 static void happy_meal_pci_remove(struct pci_dev *pdev)
3217 struct happy_meal *hp = pci_get_drvdata(pdev);
3218 struct net_device *net_dev = hp->dev;
3220 unregister_netdev(net_dev);
3222 dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3223 hp->happy_block, hp->hblock_dvma);
3225 pci_release_regions(hp->happy_dev);
3227 free_netdev(net_dev);
3230 static const struct pci_device_id happymeal_pci_ids[] = {
3231 { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3232 { } /* Terminating entry */
3235 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3237 static struct pci_driver hme_pci_driver = {
3239 .id_table = happymeal_pci_ids,
3240 .probe = happy_meal_pci_probe,
3241 .remove = happy_meal_pci_remove,
3244 static int __init happy_meal_pci_init(void)
3246 return pci_register_driver(&hme_pci_driver);
3249 static void happy_meal_pci_exit(void)
3251 pci_unregister_driver(&hme_pci_driver);
3253 while (qfe_pci_list) {
3254 struct quattro *qfe = qfe_pci_list;
3255 struct quattro *next = qfe->next;
3259 qfe_pci_list = next;
3266 static const struct of_device_id hme_sbus_match[];
3267 static int hme_sbus_probe(struct platform_device *op)
3269 const struct of_device_id *match;
3270 struct device_node *dp = op->dev.of_node;
3271 const char *model = of_get_property(dp, "model", NULL);
3274 match = of_match_device(hme_sbus_match, &op->dev);
3277 is_qfe = (match->data != NULL);
3279 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3282 return happy_meal_sbus_probe_one(op, is_qfe);
3285 static int hme_sbus_remove(struct platform_device *op)
3287 struct happy_meal *hp = platform_get_drvdata(op);
3288 struct net_device *net_dev = hp->dev;
3290 unregister_netdev(net_dev);
3292 /* XXX qfe parent interrupt... */
3294 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3295 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3296 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3297 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3298 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3299 dma_free_coherent(hp->dma_dev,
3304 free_netdev(net_dev);
3309 static const struct of_device_id hme_sbus_match[] = {
3324 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3326 static struct platform_driver hme_sbus_driver = {
3329 .of_match_table = hme_sbus_match,
3331 .probe = hme_sbus_probe,
3332 .remove = hme_sbus_remove,
3335 static int __init happy_meal_sbus_init(void)
3339 err = platform_driver_register(&hme_sbus_driver);
3341 err = quattro_sbus_register_irqs();
3346 static void happy_meal_sbus_exit(void)
3348 platform_driver_unregister(&hme_sbus_driver);
3349 quattro_sbus_free_irqs();
3351 while (qfe_sbus_list) {
3352 struct quattro *qfe = qfe_sbus_list;
3353 struct quattro *next = qfe->next;
3357 qfe_sbus_list = next;
3362 static int __init happy_meal_probe(void)
3367 err = happy_meal_sbus_init();
3371 err = happy_meal_pci_init();
3374 happy_meal_sbus_exit();
3383 static void __exit happy_meal_exit(void)
3386 happy_meal_sbus_exit();
3389 happy_meal_pci_exit();
3393 module_init(happy_meal_probe);
3394 module_exit(happy_meal_exit);