1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
4 * MCP2510 support and bug fixes by Christian Pellegrin
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
22 #include <linux/bitfield.h>
23 #include <linux/can/core.h>
24 #include <linux/can/dev.h>
25 #include <linux/can/led.h>
26 #include <linux/clk.h>
27 #include <linux/completion.h>
28 #include <linux/delay.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/gpio.h>
32 #include <linux/gpio/driver.h>
33 #include <linux/interrupt.h>
35 #include <linux/iopoll.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/netdevice.h>
39 #include <linux/platform_device.h>
40 #include <linux/property.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/slab.h>
43 #include <linux/spi/spi.h>
44 #include <linux/uaccess.h>
46 /* SPI interface instruction set */
47 #define INSTRUCTION_WRITE 0x02
48 #define INSTRUCTION_READ 0x03
49 #define INSTRUCTION_BIT_MODIFY 0x05
50 #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
51 #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
52 #define INSTRUCTION_RESET 0xC0
56 #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
58 /* MPC251x registers */
60 # define BFPCTRL_B0BFM BIT(0)
61 # define BFPCTRL_B1BFM BIT(1)
62 # define BFPCTRL_BFM(n) (BFPCTRL_B0BFM << (n))
63 # define BFPCTRL_BFM_MASK GENMASK(1, 0)
64 # define BFPCTRL_B0BFE BIT(2)
65 # define BFPCTRL_B1BFE BIT(3)
66 # define BFPCTRL_BFE(n) (BFPCTRL_B0BFE << (n))
67 # define BFPCTRL_BFE_MASK GENMASK(3, 2)
68 # define BFPCTRL_B0BFS BIT(4)
69 # define BFPCTRL_B1BFS BIT(5)
70 # define BFPCTRL_BFS(n) (BFPCTRL_B0BFS << (n))
71 # define BFPCTRL_BFS_MASK GENMASK(5, 4)
72 #define TXRTSCTRL 0x0d
73 # define TXRTSCTRL_B0RTSM BIT(0)
74 # define TXRTSCTRL_B1RTSM BIT(1)
75 # define TXRTSCTRL_B2RTSM BIT(2)
76 # define TXRTSCTRL_RTSM(n) (TXRTSCTRL_B0RTSM << (n))
77 # define TXRTSCTRL_RTSM_MASK GENMASK(2, 0)
78 # define TXRTSCTRL_B0RTS BIT(3)
79 # define TXRTSCTRL_B1RTS BIT(4)
80 # define TXRTSCTRL_B2RTS BIT(5)
81 # define TXRTSCTRL_RTS(n) (TXRTSCTRL_B0RTS << (n))
82 # define TXRTSCTRL_RTS_MASK GENMASK(5, 3)
85 # define CANCTRL_REQOP_MASK 0xe0
86 # define CANCTRL_REQOP_CONF 0x80
87 # define CANCTRL_REQOP_LISTEN_ONLY 0x60
88 # define CANCTRL_REQOP_LOOPBACK 0x40
89 # define CANCTRL_REQOP_SLEEP 0x20
90 # define CANCTRL_REQOP_NORMAL 0x00
91 # define CANCTRL_OSM 0x08
92 # define CANCTRL_ABAT 0x10
96 # define CNF1_SJW_SHIFT 6
98 # define CNF2_BTLMODE 0x80
99 # define CNF2_SAM 0x40
100 # define CNF2_PS1_SHIFT 3
102 # define CNF3_SOF 0x08
103 # define CNF3_WAKFIL 0x04
104 # define CNF3_PHSEG2_MASK 0x07
106 # define CANINTE_MERRE 0x80
107 # define CANINTE_WAKIE 0x40
108 # define CANINTE_ERRIE 0x20
109 # define CANINTE_TX2IE 0x10
110 # define CANINTE_TX1IE 0x08
111 # define CANINTE_TX0IE 0x04
112 # define CANINTE_RX1IE 0x02
113 # define CANINTE_RX0IE 0x01
115 # define CANINTF_MERRF 0x80
116 # define CANINTF_WAKIF 0x40
117 # define CANINTF_ERRIF 0x20
118 # define CANINTF_TX2IF 0x10
119 # define CANINTF_TX1IF 0x08
120 # define CANINTF_TX0IF 0x04
121 # define CANINTF_RX1IF 0x02
122 # define CANINTF_RX0IF 0x01
123 # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
124 # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
125 # define CANINTF_ERR (CANINTF_ERRIF)
127 # define EFLG_EWARN 0x01
128 # define EFLG_RXWAR 0x02
129 # define EFLG_TXWAR 0x04
130 # define EFLG_RXEP 0x08
131 # define EFLG_TXEP 0x10
132 # define EFLG_TXBO 0x20
133 # define EFLG_RX0OVR 0x40
134 # define EFLG_RX1OVR 0x80
135 #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
136 # define TXBCTRL_ABTF 0x40
137 # define TXBCTRL_MLOA 0x20
138 # define TXBCTRL_TXERR 0x10
139 # define TXBCTRL_TXREQ 0x08
140 #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
141 # define SIDH_SHIFT 3
142 #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
143 # define SIDL_SID_MASK 7
144 # define SIDL_SID_SHIFT 5
145 # define SIDL_EXIDE_SHIFT 3
146 # define SIDL_EID_SHIFT 16
147 # define SIDL_EID_MASK 3
148 #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
149 #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
150 #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
151 # define DLC_RTR_SHIFT 6
152 #define TXBCTRL_OFF 0
153 #define TXBSIDH_OFF 1
154 #define TXBSIDL_OFF 2
155 #define TXBEID8_OFF 3
156 #define TXBEID0_OFF 4
159 #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
160 # define RXBCTRL_BUKT 0x04
161 # define RXBCTRL_RXM0 0x20
162 # define RXBCTRL_RXM1 0x40
163 #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
164 # define RXBSIDH_SHIFT 3
165 #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
166 # define RXBSIDL_IDE 0x08
167 # define RXBSIDL_SRR 0x10
168 # define RXBSIDL_EID 3
169 # define RXBSIDL_SHIFT 5
170 #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
171 #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
172 #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
173 # define RXBDLC_LEN_MASK 0x0f
174 # define RXBDLC_RTR 0x40
175 #define RXBCTRL_OFF 0
176 #define RXBSIDH_OFF 1
177 #define RXBSIDL_OFF 2
178 #define RXBEID8_OFF 3
179 #define RXBEID0_OFF 4
182 #define RXFSID(n) ((n < 3) ? 0 : 4)
183 #define RXFSIDH(n) ((n) * 4 + RXFSID(n))
184 #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
185 #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
186 #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
187 #define RXMSIDH(n) ((n) * 4 + 0x20)
188 #define RXMSIDL(n) ((n) * 4 + 0x21)
189 #define RXMEID8(n) ((n) * 4 + 0x22)
190 #define RXMEID0(n) ((n) * 4 + 0x23)
192 #define GET_BYTE(val, byte) \
193 (((val) >> ((byte) * 8)) & 0xff)
194 #define SET_BYTE(val, byte) \
195 (((val) & 0xff) << ((byte) * 8))
197 /* Buffer size required for the largest SPI transfer (i.e., reading a
200 #define CAN_FRAME_MAX_DATA_LEN 8
201 #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
202 #define CAN_FRAME_MAX_BITS 128
204 #define TX_ECHO_SKB_MAX 1
206 #define MCP251X_OST_DELAY_MS (5)
208 #define DEVICE_NAME "mcp251x"
210 static const struct can_bittiming_const mcp251x_bittiming_const = {
223 CAN_MCP251X_MCP2510 = 0x2510,
224 CAN_MCP251X_MCP2515 = 0x2515,
225 CAN_MCP251X_MCP25625 = 0x25625,
228 struct mcp251x_priv {
230 struct net_device *net;
231 struct spi_device *spi;
232 enum mcp251x_model model;
234 struct mutex mcp_lock; /* SPI device lock */
239 struct sk_buff *tx_skb;
242 struct workqueue_struct *wq;
243 struct work_struct tx_work;
244 struct work_struct restart_work;
248 #define AFTER_SUSPEND_UP 1
249 #define AFTER_SUSPEND_DOWN 2
250 #define AFTER_SUSPEND_POWER 4
251 #define AFTER_SUSPEND_RESTART 8
253 struct regulator *power;
254 struct regulator *transceiver;
256 #ifdef CONFIG_GPIOLIB
257 struct gpio_chip gpio;
262 #define MCP251X_IS(_model) \
263 static inline int mcp251x_is_##_model(struct spi_device *spi) \
265 struct mcp251x_priv *priv = spi_get_drvdata(spi); \
266 return priv->model == CAN_MCP251X_MCP##_model; \
271 static void mcp251x_clean(struct net_device *net)
273 struct mcp251x_priv *priv = netdev_priv(net);
275 if (priv->tx_skb || priv->tx_len)
276 net->stats.tx_errors++;
277 dev_kfree_skb(priv->tx_skb);
279 can_free_echo_skb(priv->net, 0, NULL);
284 /* Note about handling of error return of mcp251x_spi_trans: accessing
285 * registers via SPI is not really different conceptually than using
286 * normal I/O assembler instructions, although it's much more
287 * complicated from a practical POV. So it's not advisable to always
288 * check the return value of this function. Imagine that every
289 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
290 * error();", it would be a great mess (well there are some situation
291 * when exception handling C++ like could be useful after all). So we
292 * just check that transfers are OK at the beginning of our
293 * conversation with the chip and to avoid doing really nasty things
294 * (like injecting bogus packets in the network stack).
296 static int mcp251x_spi_trans(struct spi_device *spi, int len)
298 struct mcp251x_priv *priv = spi_get_drvdata(spi);
299 struct spi_transfer t = {
300 .tx_buf = priv->spi_tx_buf,
301 .rx_buf = priv->spi_rx_buf,
305 struct spi_message m;
308 spi_message_init(&m);
309 spi_message_add_tail(&t, &m);
311 ret = spi_sync(spi, &m);
313 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
317 static int mcp251x_spi_write(struct spi_device *spi, int len)
319 struct mcp251x_priv *priv = spi_get_drvdata(spi);
322 ret = spi_write(spi, priv->spi_tx_buf, len);
324 dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
329 static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
331 struct mcp251x_priv *priv = spi_get_drvdata(spi);
334 priv->spi_tx_buf[0] = INSTRUCTION_READ;
335 priv->spi_tx_buf[1] = reg;
337 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
338 spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
340 mcp251x_spi_trans(spi, 3);
341 val = priv->spi_rx_buf[2];
347 static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
349 struct mcp251x_priv *priv = spi_get_drvdata(spi);
351 priv->spi_tx_buf[0] = INSTRUCTION_READ;
352 priv->spi_tx_buf[1] = reg;
354 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
357 spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
361 mcp251x_spi_trans(spi, 4);
363 *v1 = priv->spi_rx_buf[2];
364 *v2 = priv->spi_rx_buf[3];
368 static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
370 struct mcp251x_priv *priv = spi_get_drvdata(spi);
372 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
373 priv->spi_tx_buf[1] = reg;
374 priv->spi_tx_buf[2] = val;
376 mcp251x_spi_write(spi, 3);
379 static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
381 struct mcp251x_priv *priv = spi_get_drvdata(spi);
383 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
384 priv->spi_tx_buf[1] = reg;
385 priv->spi_tx_buf[2] = v1;
386 priv->spi_tx_buf[3] = v2;
388 mcp251x_spi_write(spi, 4);
391 static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
394 struct mcp251x_priv *priv = spi_get_drvdata(spi);
396 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
397 priv->spi_tx_buf[1] = reg;
398 priv->spi_tx_buf[2] = mask;
399 priv->spi_tx_buf[3] = val;
401 mcp251x_spi_write(spi, 4);
404 static u8 mcp251x_read_stat(struct spi_device *spi)
406 return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
409 #define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
410 readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
411 delay_us, timeout_us)
413 #ifdef CONFIG_GPIOLIB
415 MCP251X_GPIO_TX0RTS = 0, /* inputs */
418 MCP251X_GPIO_RX0BF, /* outputs */
422 #define MCP251X_GPIO_INPUT_MASK \
423 GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
424 #define MCP251X_GPIO_OUTPUT_MASK \
425 GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
427 static const char * const mcp251x_gpio_names[] = {
428 [MCP251X_GPIO_TX0RTS] = "TX0RTS", /* inputs */
429 [MCP251X_GPIO_TX1RTS] = "TX1RTS",
430 [MCP251X_GPIO_TX2RTS] = "TX2RTS",
431 [MCP251X_GPIO_RX0BF] = "RX0BF", /* outputs */
432 [MCP251X_GPIO_RX1BF] = "RX1BF",
435 static inline bool mcp251x_gpio_is_input(unsigned int offset)
437 return offset <= MCP251X_GPIO_TX2RTS;
440 static int mcp251x_gpio_request(struct gpio_chip *chip,
443 struct mcp251x_priv *priv = gpiochip_get_data(chip);
446 /* nothing to be done for inputs */
447 if (mcp251x_gpio_is_input(offset))
450 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
452 mutex_lock(&priv->mcp_lock);
453 mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
454 mutex_unlock(&priv->mcp_lock);
456 priv->reg_bfpctrl |= val;
461 static void mcp251x_gpio_free(struct gpio_chip *chip,
464 struct mcp251x_priv *priv = gpiochip_get_data(chip);
467 /* nothing to be done for inputs */
468 if (mcp251x_gpio_is_input(offset))
471 val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
473 mutex_lock(&priv->mcp_lock);
474 mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
475 mutex_unlock(&priv->mcp_lock);
477 priv->reg_bfpctrl &= ~val;
480 static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
483 if (mcp251x_gpio_is_input(offset))
486 return GPIOF_DIR_OUT;
489 static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
491 struct mcp251x_priv *priv = gpiochip_get_data(chip);
494 if (mcp251x_gpio_is_input(offset)) {
496 mask = TXRTSCTRL_RTS(offset);
499 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
502 mutex_lock(&priv->mcp_lock);
503 val = mcp251x_read_reg(priv->spi, reg);
504 mutex_unlock(&priv->mcp_lock);
506 return !!(val & mask);
509 static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
510 unsigned long *maskp, unsigned long *bitsp)
512 struct mcp251x_priv *priv = gpiochip_get_data(chip);
513 unsigned long bits = 0;
516 mutex_lock(&priv->mcp_lock);
517 if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
518 val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
519 val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
520 bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
522 if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
523 val = mcp251x_read_reg(priv->spi, BFPCTRL);
524 val = FIELD_GET(BFPCTRL_BFS_MASK, val);
525 bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
527 mutex_unlock(&priv->mcp_lock);
533 static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
536 struct mcp251x_priv *priv = gpiochip_get_data(chip);
539 mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
540 val = value ? mask : 0;
542 mutex_lock(&priv->mcp_lock);
543 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
544 mutex_unlock(&priv->mcp_lock);
546 priv->reg_bfpctrl &= ~mask;
547 priv->reg_bfpctrl |= val;
551 mcp251x_gpio_set_multiple(struct gpio_chip *chip,
552 unsigned long *maskp, unsigned long *bitsp)
554 struct mcp251x_priv *priv = gpiochip_get_data(chip);
557 mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
558 mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
560 val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
561 val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
566 mutex_lock(&priv->mcp_lock);
567 mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
568 mutex_unlock(&priv->mcp_lock);
570 priv->reg_bfpctrl &= ~mask;
571 priv->reg_bfpctrl |= val;
574 static void mcp251x_gpio_restore(struct spi_device *spi)
576 struct mcp251x_priv *priv = spi_get_drvdata(spi);
578 mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
581 static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
583 struct gpio_chip *gpio = &priv->gpio;
585 if (!device_property_present(&priv->spi->dev, "gpio-controller"))
588 /* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
589 gpio->label = priv->spi->modalias;
590 gpio->parent = &priv->spi->dev;
591 gpio->owner = THIS_MODULE;
592 gpio->request = mcp251x_gpio_request;
593 gpio->free = mcp251x_gpio_free;
594 gpio->get_direction = mcp251x_gpio_get_direction;
595 gpio->get = mcp251x_gpio_get;
596 gpio->get_multiple = mcp251x_gpio_get_multiple;
597 gpio->set = mcp251x_gpio_set;
598 gpio->set_multiple = mcp251x_gpio_set_multiple;
600 gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
601 gpio->names = mcp251x_gpio_names;
602 gpio->can_sleep = true;
603 #ifdef CONFIG_OF_GPIO
604 gpio->of_node = priv->spi->dev.of_node;
607 return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
610 static inline void mcp251x_gpio_restore(struct spi_device *spi)
614 static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
620 static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
621 int len, int tx_buf_idx)
623 struct mcp251x_priv *priv = spi_get_drvdata(spi);
625 if (mcp251x_is_2510(spi)) {
628 for (i = 1; i < TXBDAT_OFF + len; i++)
629 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
632 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
633 mcp251x_spi_write(spi, TXBDAT_OFF + len);
637 static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
640 struct mcp251x_priv *priv = spi_get_drvdata(spi);
641 u32 sid, eid, exide, rtr;
642 u8 buf[SPI_TRANSFER_BUF_LEN];
644 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
646 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
648 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
649 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
650 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
652 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
653 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
654 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
655 (exide << SIDL_EXIDE_SHIFT) |
656 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
657 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
658 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
659 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
660 memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
661 mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
663 /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
664 priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
665 mcp251x_spi_write(priv->spi, 1);
668 static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
671 struct mcp251x_priv *priv = spi_get_drvdata(spi);
673 if (mcp251x_is_2510(spi)) {
676 for (i = 1; i < RXBDAT_OFF; i++)
677 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
679 len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
680 for (; i < (RXBDAT_OFF + len); i++)
681 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
683 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
684 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
685 spi_write_then_read(spi, priv->spi_tx_buf, 1,
687 SPI_TRANSFER_BUF_LEN);
688 memcpy(buf + 1, priv->spi_rx_buf,
689 SPI_TRANSFER_BUF_LEN - 1);
691 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
692 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
697 static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
699 struct mcp251x_priv *priv = spi_get_drvdata(spi);
701 struct can_frame *frame;
702 u8 buf[SPI_TRANSFER_BUF_LEN];
704 skb = alloc_can_skb(priv->net, &frame);
706 dev_err(&spi->dev, "cannot allocate RX skb\n");
707 priv->net->stats.rx_dropped++;
711 mcp251x_hw_rx_frame(spi, buf, buf_idx);
712 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
713 /* Extended ID format */
714 frame->can_id = CAN_EFF_FLAG;
716 /* Extended ID part */
717 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
718 SET_BYTE(buf[RXBEID8_OFF], 1) |
719 SET_BYTE(buf[RXBEID0_OFF], 0) |
720 /* Standard ID part */
721 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
722 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
723 /* Remote transmission request */
724 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
725 frame->can_id |= CAN_RTR_FLAG;
727 /* Standard ID format */
729 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
730 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
731 if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
732 frame->can_id |= CAN_RTR_FLAG;
735 frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
736 memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
738 priv->net->stats.rx_packets++;
739 priv->net->stats.rx_bytes += frame->len;
741 can_led_event(priv->net, CAN_LED_EVENT_RX);
746 static void mcp251x_hw_sleep(struct spi_device *spi)
748 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
751 /* May only be called when device is sleeping! */
752 static int mcp251x_hw_wake(struct spi_device *spi)
757 /* Force wakeup interrupt to wake device, but don't execute IST */
758 disable_irq(spi->irq);
759 mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
761 /* Wait for oscillator startup timer after wake up */
762 mdelay(MCP251X_OST_DELAY_MS);
764 /* Put device into config mode */
765 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
767 /* Wait for the device to enter config mode */
768 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
769 MCP251X_OST_DELAY_MS * 1000,
772 dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
776 /* Disable and clear pending interrupts */
777 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
778 enable_irq(spi->irq);
783 static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
784 struct net_device *net)
786 struct mcp251x_priv *priv = netdev_priv(net);
787 struct spi_device *spi = priv->spi;
789 if (priv->tx_skb || priv->tx_len) {
790 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
791 return NETDEV_TX_BUSY;
794 if (can_dropped_invalid_skb(net, skb))
797 netif_stop_queue(net);
799 queue_work(priv->wq, &priv->tx_work);
804 static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
806 struct mcp251x_priv *priv = netdev_priv(net);
811 /* We have to delay work since SPI I/O may sleep */
812 priv->can.state = CAN_STATE_ERROR_ACTIVE;
813 priv->restart_tx = 1;
814 if (priv->can.restart_ms == 0)
815 priv->after_suspend = AFTER_SUSPEND_RESTART;
816 queue_work(priv->wq, &priv->restart_work);
825 static int mcp251x_set_normal_mode(struct spi_device *spi)
827 struct mcp251x_priv *priv = spi_get_drvdata(spi);
831 /* Enable interrupts */
832 mcp251x_write_reg(spi, CANINTE,
833 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
834 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
836 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
837 /* Put device into loopback mode */
838 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
839 } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
840 /* Put device into listen-only mode */
841 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
843 /* Put device into normal mode */
844 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
846 /* Wait for the device to enter normal mode */
847 ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
848 MCP251X_OST_DELAY_MS * 1000,
851 dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
855 priv->can.state = CAN_STATE_ERROR_ACTIVE;
859 static int mcp251x_do_set_bittiming(struct net_device *net)
861 struct mcp251x_priv *priv = netdev_priv(net);
862 struct can_bittiming *bt = &priv->can.bittiming;
863 struct spi_device *spi = priv->spi;
865 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
867 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
868 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
870 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
872 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
873 (bt->phase_seg2 - 1));
874 dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
875 mcp251x_read_reg(spi, CNF1),
876 mcp251x_read_reg(spi, CNF2),
877 mcp251x_read_reg(spi, CNF3));
882 static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
884 mcp251x_do_set_bittiming(net);
886 mcp251x_write_reg(spi, RXBCTRL(0),
887 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
888 mcp251x_write_reg(spi, RXBCTRL(1),
889 RXBCTRL_RXM0 | RXBCTRL_RXM1);
893 static int mcp251x_hw_reset(struct spi_device *spi)
895 struct mcp251x_priv *priv = spi_get_drvdata(spi);
899 /* Wait for oscillator startup timer after power up */
900 mdelay(MCP251X_OST_DELAY_MS);
902 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
903 ret = mcp251x_spi_write(spi, 1);
907 /* Wait for oscillator startup timer after reset */
908 mdelay(MCP251X_OST_DELAY_MS);
910 /* Wait for reset to finish */
911 ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
912 MCP251X_OST_DELAY_MS * 1000,
915 dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
919 static int mcp251x_hw_probe(struct spi_device *spi)
924 ret = mcp251x_hw_reset(spi);
928 ctrl = mcp251x_read_reg(spi, CANCTRL);
930 dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
932 /* Check for power up default value */
933 if ((ctrl & 0x17) != 0x07)
939 static int mcp251x_power_enable(struct regulator *reg, int enable)
941 if (IS_ERR_OR_NULL(reg))
945 return regulator_enable(reg);
947 return regulator_disable(reg);
950 static int mcp251x_stop(struct net_device *net)
952 struct mcp251x_priv *priv = netdev_priv(net);
953 struct spi_device *spi = priv->spi;
957 priv->force_quit = 1;
958 free_irq(spi->irq, priv);
960 mutex_lock(&priv->mcp_lock);
962 /* Disable and clear pending interrupts */
963 mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
965 mcp251x_write_reg(spi, TXBCTRL(0), 0);
968 mcp251x_hw_sleep(spi);
970 mcp251x_power_enable(priv->transceiver, 0);
972 priv->can.state = CAN_STATE_STOPPED;
974 mutex_unlock(&priv->mcp_lock);
976 can_led_event(net, CAN_LED_EVENT_STOP);
981 static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
984 struct can_frame *frame;
986 skb = alloc_can_err_skb(net, &frame);
988 frame->can_id |= can_id;
989 frame->data[1] = data1;
992 netdev_err(net, "cannot allocate error skb\n");
996 static void mcp251x_tx_work_handler(struct work_struct *ws)
998 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1000 struct spi_device *spi = priv->spi;
1001 struct net_device *net = priv->net;
1002 struct can_frame *frame;
1004 mutex_lock(&priv->mcp_lock);
1006 if (priv->can.state == CAN_STATE_BUS_OFF) {
1009 frame = (struct can_frame *)priv->tx_skb->data;
1011 if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1012 frame->len = CAN_FRAME_MAX_DATA_LEN;
1013 mcp251x_hw_tx(spi, frame, 0);
1014 priv->tx_len = 1 + frame->len;
1015 can_put_echo_skb(priv->tx_skb, net, 0, 0);
1016 priv->tx_skb = NULL;
1019 mutex_unlock(&priv->mcp_lock);
1022 static void mcp251x_restart_work_handler(struct work_struct *ws)
1024 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1026 struct spi_device *spi = priv->spi;
1027 struct net_device *net = priv->net;
1029 mutex_lock(&priv->mcp_lock);
1030 if (priv->after_suspend) {
1031 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1032 mcp251x_hw_reset(spi);
1033 mcp251x_setup(net, spi);
1034 mcp251x_gpio_restore(spi);
1036 mcp251x_hw_wake(spi);
1038 priv->force_quit = 0;
1039 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1040 mcp251x_set_normal_mode(spi);
1041 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1042 netif_device_attach(net);
1044 mcp251x_set_normal_mode(spi);
1045 netif_wake_queue(net);
1047 mcp251x_hw_sleep(spi);
1049 priv->after_suspend = 0;
1052 if (priv->restart_tx) {
1053 priv->restart_tx = 0;
1054 mcp251x_write_reg(spi, TXBCTRL(0), 0);
1056 netif_wake_queue(net);
1057 mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1059 mutex_unlock(&priv->mcp_lock);
1062 static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1064 struct mcp251x_priv *priv = dev_id;
1065 struct spi_device *spi = priv->spi;
1066 struct net_device *net = priv->net;
1068 mutex_lock(&priv->mcp_lock);
1069 while (!priv->force_quit) {
1070 enum can_state new_state;
1073 int can_id = 0, data1 = 0;
1075 mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1077 /* mask out flags we don't care about */
1078 intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1080 /* receive buffer 0 */
1081 if (intf & CANINTF_RX0IF) {
1082 mcp251x_hw_rx(spi, 0);
1083 /* Free one buffer ASAP
1084 * (The MCP2515/25625 does this automatically.)
1086 if (mcp251x_is_2510(spi))
1087 mcp251x_write_bits(spi, CANINTF,
1088 CANINTF_RX0IF, 0x00);
1091 /* receive buffer 1 */
1092 if (intf & CANINTF_RX1IF) {
1093 mcp251x_hw_rx(spi, 1);
1094 /* The MCP2515/25625 does this automatically. */
1095 if (mcp251x_is_2510(spi))
1096 clear_intf |= CANINTF_RX1IF;
1099 /* any error or tx interrupt we need to clear? */
1100 if (intf & (CANINTF_ERR | CANINTF_TX))
1101 clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1103 mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1105 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1106 mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1108 /* Update can state */
1109 if (eflag & EFLG_TXBO) {
1110 new_state = CAN_STATE_BUS_OFF;
1111 can_id |= CAN_ERR_BUSOFF;
1112 } else if (eflag & EFLG_TXEP) {
1113 new_state = CAN_STATE_ERROR_PASSIVE;
1114 can_id |= CAN_ERR_CRTL;
1115 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1116 } else if (eflag & EFLG_RXEP) {
1117 new_state = CAN_STATE_ERROR_PASSIVE;
1118 can_id |= CAN_ERR_CRTL;
1119 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1120 } else if (eflag & EFLG_TXWAR) {
1121 new_state = CAN_STATE_ERROR_WARNING;
1122 can_id |= CAN_ERR_CRTL;
1123 data1 |= CAN_ERR_CRTL_TX_WARNING;
1124 } else if (eflag & EFLG_RXWAR) {
1125 new_state = CAN_STATE_ERROR_WARNING;
1126 can_id |= CAN_ERR_CRTL;
1127 data1 |= CAN_ERR_CRTL_RX_WARNING;
1129 new_state = CAN_STATE_ERROR_ACTIVE;
1132 /* Update can state statistics */
1133 switch (priv->can.state) {
1134 case CAN_STATE_ERROR_ACTIVE:
1135 if (new_state >= CAN_STATE_ERROR_WARNING &&
1136 new_state <= CAN_STATE_BUS_OFF)
1137 priv->can.can_stats.error_warning++;
1139 case CAN_STATE_ERROR_WARNING:
1140 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1141 new_state <= CAN_STATE_BUS_OFF)
1142 priv->can.can_stats.error_passive++;
1147 priv->can.state = new_state;
1149 if (intf & CANINTF_ERRIF) {
1150 /* Handle overflow counters */
1151 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1152 if (eflag & EFLG_RX0OVR) {
1153 net->stats.rx_over_errors++;
1154 net->stats.rx_errors++;
1156 if (eflag & EFLG_RX1OVR) {
1157 net->stats.rx_over_errors++;
1158 net->stats.rx_errors++;
1160 can_id |= CAN_ERR_CRTL;
1161 data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1163 mcp251x_error_skb(net, can_id, data1);
1166 if (priv->can.state == CAN_STATE_BUS_OFF) {
1167 if (priv->can.restart_ms == 0) {
1168 priv->force_quit = 1;
1169 priv->can.can_stats.bus_off++;
1171 mcp251x_hw_sleep(spi);
1179 if (intf & CANINTF_TX) {
1180 net->stats.tx_packets++;
1181 net->stats.tx_bytes += priv->tx_len - 1;
1182 can_led_event(net, CAN_LED_EVENT_TX);
1184 can_get_echo_skb(net, 0, NULL);
1187 netif_wake_queue(net);
1190 mutex_unlock(&priv->mcp_lock);
1194 static int mcp251x_open(struct net_device *net)
1196 struct mcp251x_priv *priv = netdev_priv(net);
1197 struct spi_device *spi = priv->spi;
1198 unsigned long flags = 0;
1201 ret = open_candev(net);
1203 dev_err(&spi->dev, "unable to set initial baudrate!\n");
1207 mutex_lock(&priv->mcp_lock);
1208 mcp251x_power_enable(priv->transceiver, 1);
1210 priv->force_quit = 0;
1211 priv->tx_skb = NULL;
1214 if (!dev_fwnode(&spi->dev))
1215 flags = IRQF_TRIGGER_FALLING;
1217 ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1218 flags | IRQF_ONESHOT, dev_name(&spi->dev),
1221 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1225 ret = mcp251x_hw_wake(spi);
1228 ret = mcp251x_setup(net, spi);
1231 ret = mcp251x_set_normal_mode(spi);
1235 can_led_event(net, CAN_LED_EVENT_OPEN);
1237 netif_wake_queue(net);
1238 mutex_unlock(&priv->mcp_lock);
1243 free_irq(spi->irq, priv);
1244 mcp251x_hw_sleep(spi);
1246 mcp251x_power_enable(priv->transceiver, 0);
1248 mutex_unlock(&priv->mcp_lock);
1252 static const struct net_device_ops mcp251x_netdev_ops = {
1253 .ndo_open = mcp251x_open,
1254 .ndo_stop = mcp251x_stop,
1255 .ndo_start_xmit = mcp251x_hard_start_xmit,
1256 .ndo_change_mtu = can_change_mtu,
1259 static const struct of_device_id mcp251x_of_match[] = {
1261 .compatible = "microchip,mcp2510",
1262 .data = (void *)CAN_MCP251X_MCP2510,
1265 .compatible = "microchip,mcp2515",
1266 .data = (void *)CAN_MCP251X_MCP2515,
1269 .compatible = "microchip,mcp25625",
1270 .data = (void *)CAN_MCP251X_MCP25625,
1274 MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1276 static const struct spi_device_id mcp251x_id_table[] = {
1279 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510,
1283 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515,
1287 .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP25625,
1291 MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1293 static int mcp251x_can_probe(struct spi_device *spi)
1295 const void *match = device_get_match_data(&spi->dev);
1296 struct net_device *net;
1297 struct mcp251x_priv *priv;
1302 clk = devm_clk_get_optional(&spi->dev, NULL);
1304 return PTR_ERR(clk);
1306 freq = clk_get_rate(clk);
1308 device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1311 if (freq < 1000000 || freq > 25000000)
1314 /* Allocate can/net device */
1315 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1319 ret = clk_prepare_enable(clk);
1323 net->netdev_ops = &mcp251x_netdev_ops;
1324 net->flags |= IFF_ECHO;
1326 priv = netdev_priv(net);
1327 priv->can.bittiming_const = &mcp251x_bittiming_const;
1328 priv->can.do_set_mode = mcp251x_do_set_mode;
1329 priv->can.clock.freq = freq / 2;
1330 priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1331 CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1333 priv->model = (enum mcp251x_model)(uintptr_t)match;
1335 priv->model = spi_get_device_id(spi)->driver_data;
1339 spi_set_drvdata(spi, priv);
1341 /* Configure the SPI bus */
1342 spi->bits_per_word = 8;
1343 if (mcp251x_is_2510(spi))
1344 spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1346 spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1347 ret = spi_setup(spi);
1351 priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1352 priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1353 if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1354 (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1355 ret = -EPROBE_DEFER;
1359 ret = mcp251x_power_enable(priv->power, 1);
1363 priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1369 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1370 INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1373 mutex_init(&priv->mcp_lock);
1375 priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1377 if (!priv->spi_tx_buf) {
1382 priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1384 if (!priv->spi_rx_buf) {
1389 SET_NETDEV_DEV(net, &spi->dev);
1391 /* Here is OK to not lock the MCP, no one knows about it yet */
1392 ret = mcp251x_hw_probe(spi);
1395 dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1400 mcp251x_hw_sleep(spi);
1402 ret = register_candev(net);
1406 devm_can_led_init(net);
1408 ret = mcp251x_gpio_setup(priv);
1412 netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1416 destroy_workqueue(priv->wq);
1418 mcp251x_power_enable(priv->power, 0);
1421 clk_disable_unprepare(clk);
1426 dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1430 static int mcp251x_can_remove(struct spi_device *spi)
1432 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1433 struct net_device *net = priv->net;
1435 unregister_candev(net);
1437 mcp251x_power_enable(priv->power, 0);
1439 destroy_workqueue(priv->wq);
1442 clk_disable_unprepare(priv->clk);
1449 static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1451 struct spi_device *spi = to_spi_device(dev);
1452 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1453 struct net_device *net = priv->net;
1455 priv->force_quit = 1;
1456 disable_irq(spi->irq);
1457 /* Note: at this point neither IST nor workqueues are running.
1458 * open/stop cannot be called anyway so locking is not needed
1460 if (netif_running(net)) {
1461 netif_device_detach(net);
1463 mcp251x_hw_sleep(spi);
1464 mcp251x_power_enable(priv->transceiver, 0);
1465 priv->after_suspend = AFTER_SUSPEND_UP;
1467 priv->after_suspend = AFTER_SUSPEND_DOWN;
1470 mcp251x_power_enable(priv->power, 0);
1471 priv->after_suspend |= AFTER_SUSPEND_POWER;
1476 static int __maybe_unused mcp251x_can_resume(struct device *dev)
1478 struct spi_device *spi = to_spi_device(dev);
1479 struct mcp251x_priv *priv = spi_get_drvdata(spi);
1481 if (priv->after_suspend & AFTER_SUSPEND_POWER)
1482 mcp251x_power_enable(priv->power, 1);
1483 if (priv->after_suspend & AFTER_SUSPEND_UP)
1484 mcp251x_power_enable(priv->transceiver, 1);
1486 if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1487 queue_work(priv->wq, &priv->restart_work);
1489 priv->after_suspend = 0;
1491 priv->force_quit = 0;
1492 enable_irq(spi->irq);
1496 static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1497 mcp251x_can_resume);
1499 static struct spi_driver mcp251x_can_driver = {
1501 .name = DEVICE_NAME,
1502 .of_match_table = mcp251x_of_match,
1503 .pm = &mcp251x_can_pm_ops,
1505 .id_table = mcp251x_id_table,
1506 .probe = mcp251x_can_probe,
1507 .remove = mcp251x_can_remove,
1509 module_spi_driver(mcp251x_can_driver);
1513 MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1514 MODULE_LICENSE("GPL v2");