2 * Freescale UPM NAND driver.
4 * Copyright © 2007-2008 MontaVista Software, Inc.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/nand_ecc.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/of_address.h>
22 #include <linux/of_platform.h>
23 #include <linux/of_gpio.h>
25 #include <linux/slab.h>
26 #include <asm/fsl_lbc.h>
28 #define FSL_UPM_WAIT_RUN_PATTERN 0x1
29 #define FSL_UPM_WAIT_WRITE_BYTE 0x2
30 #define FSL_UPM_WAIT_WRITE_BUFFER 0x4
34 struct nand_chip chip;
36 struct mtd_partition *parts;
38 uint8_t upm_addr_offset;
39 uint8_t upm_cmd_offset;
40 void __iomem *io_base;
41 int rnb_gpio[NAND_MAX_CHIPS];
42 uint32_t mchip_offsets[NAND_MAX_CHIPS];
44 uint32_t mchip_number;
49 static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
51 return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
55 static int fun_chip_ready(struct mtd_info *mtd)
57 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
59 if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
62 dev_vdbg(fun->dev, "busy\n");
66 static void fun_wait_rnb(struct fsl_upm_nand *fun)
68 if (fun->rnb_gpio[fun->mchip_number] >= 0) {
69 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
72 while (--cnt && !fun_chip_ready(mtd))
75 dev_err(fun->dev, "tired waiting for RNB\n");
81 static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
83 struct nand_chip *chip = mtd_to_nand(mtd);
84 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
87 if (!(ctrl & fun->last_ctrl)) {
88 fsl_upm_end_pattern(&fun->upm);
90 if (cmd == NAND_CMD_NONE)
93 fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
96 if (ctrl & NAND_CTRL_CHANGE) {
98 fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
99 else if (ctrl & NAND_CLE)
100 fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
103 mar = (cmd << (32 - fun->upm.width)) |
104 fun->mchip_offsets[fun->mchip_number];
105 fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar);
107 if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
111 static void fun_select_chip(struct mtd_info *mtd, int mchip_nr)
113 struct nand_chip *chip = mtd_to_nand(mtd);
114 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
116 if (mchip_nr == -1) {
117 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
118 } else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
119 fun->mchip_number = mchip_nr;
120 chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
121 chip->IO_ADDR_W = chip->IO_ADDR_R;
127 static uint8_t fun_read_byte(struct mtd_info *mtd)
129 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
131 return in_8(fun->chip.IO_ADDR_R);
134 static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
136 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
139 for (i = 0; i < len; i++)
140 buf[i] = in_8(fun->chip.IO_ADDR_R);
143 static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
145 struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
148 for (i = 0; i < len; i++) {
149 out_8(fun->chip.IO_ADDR_W, buf[i]);
150 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
153 if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
157 static int fun_chip_init(struct fsl_upm_nand *fun,
158 const struct device_node *upm_np,
159 const struct resource *io_res)
161 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
163 struct device_node *flash_np;
165 fun->chip.IO_ADDR_R = fun->io_base;
166 fun->chip.IO_ADDR_W = fun->io_base;
167 fun->chip.cmd_ctrl = fun_cmd_ctrl;
168 fun->chip.chip_delay = fun->chip_delay;
169 fun->chip.read_byte = fun_read_byte;
170 fun->chip.read_buf = fun_read_buf;
171 fun->chip.write_buf = fun_write_buf;
172 fun->chip.ecc.mode = NAND_ECC_SOFT;
173 if (fun->mchip_count > 1)
174 fun->chip.select_chip = fun_select_chip;
176 if (fun->rnb_gpio[0] >= 0)
177 fun->chip.dev_ready = fun_chip_ready;
179 mtd->dev.parent = fun->dev;
181 flash_np = of_get_next_child(upm_np, NULL);
185 nand_set_flash_node(&fun->chip, flash_np);
186 mtd->name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start,
193 ret = nand_scan(mtd, fun->mchip_count);
197 ret = mtd_device_register(mtd, NULL, 0);
199 of_node_put(flash_np);
205 static int fun_probe(struct platform_device *ofdev)
207 struct fsl_upm_nand *fun;
208 struct resource io_res;
215 fun = kzalloc(sizeof(*fun), GFP_KERNEL);
219 ret = of_address_to_resource(ofdev->dev.of_node, 0, &io_res);
221 dev_err(&ofdev->dev, "can't get IO base\n");
225 ret = fsl_upm_find(io_res.start, &fun->upm);
227 dev_err(&ofdev->dev, "can't find UPM\n");
231 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
233 if (!prop || size != sizeof(uint32_t)) {
234 dev_err(&ofdev->dev, "can't get UPM address offset\n");
238 fun->upm_addr_offset = *prop;
240 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
241 if (!prop || size != sizeof(uint32_t)) {
242 dev_err(&ofdev->dev, "can't get UPM command offset\n");
246 fun->upm_cmd_offset = *prop;
248 prop = of_get_property(ofdev->dev.of_node,
249 "fsl,upm-addr-line-cs-offsets", &size);
250 if (prop && (size / sizeof(uint32_t)) > 0) {
251 fun->mchip_count = size / sizeof(uint32_t);
252 if (fun->mchip_count >= NAND_MAX_CHIPS) {
253 dev_err(&ofdev->dev, "too much multiple chips\n");
256 for (i = 0; i < fun->mchip_count; i++)
257 fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
259 fun->mchip_count = 1;
262 for (i = 0; i < fun->mchip_count; i++) {
263 fun->rnb_gpio[i] = -1;
264 rnb_gpio = of_get_gpio(ofdev->dev.of_node, i);
266 ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev));
269 "can't request RNB gpio #%d\n", i);
272 gpio_direction_input(rnb_gpio);
273 fun->rnb_gpio[i] = rnb_gpio;
274 } else if (rnb_gpio == -EINVAL) {
275 dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
280 prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL);
282 fun->chip_delay = be32_to_cpup(prop);
284 fun->chip_delay = 50;
286 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size);
287 if (prop && size == sizeof(uint32_t))
288 fun->wait_flags = be32_to_cpup(prop);
290 fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN |
291 FSL_UPM_WAIT_WRITE_BYTE;
293 fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start,
294 resource_size(&io_res));
300 fun->dev = &ofdev->dev;
301 fun->last_ctrl = NAND_CLE;
303 ret = fun_chip_init(fun, ofdev->dev.of_node, &io_res);
307 dev_set_drvdata(&ofdev->dev, fun);
311 for (i = 0; i < fun->mchip_count; i++) {
312 if (fun->rnb_gpio[i] < 0)
314 gpio_free(fun->rnb_gpio[i]);
322 static int fun_remove(struct platform_device *ofdev)
324 struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
325 struct mtd_info *mtd = nand_to_mtd(&fun->chip);
331 for (i = 0; i < fun->mchip_count; i++) {
332 if (fun->rnb_gpio[i] < 0)
334 gpio_free(fun->rnb_gpio[i]);
342 static const struct of_device_id of_fun_match[] = {
343 { .compatible = "fsl,upm-nand" },
346 MODULE_DEVICE_TABLE(of, of_fun_match);
348 static struct platform_driver of_fun_driver = {
350 .name = "fsl,upm-nand",
351 .of_match_table = of_fun_match,
354 .remove = fun_remove,
357 module_platform_driver(of_fun_driver);
359 MODULE_LICENSE("GPL");
361 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
362 "LocalBus User-Programmable Machine");