1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/string.h>
29 #include <linux/ioport.h>
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
42 #include <asm/fsl_lbc.h>
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
48 /* mtd information per set */
51 struct nand_chip chip;
52 struct fsl_lbc_ctrl *ctrl;
55 int bank; /* Chip select bank number */
56 u8 __iomem *vbase; /* Chip select base virtual address */
57 int page_size; /* NAND page size (0=512, 1=2048) */
58 unsigned int fmr; /* FCM Flash Mode Register value */
61 /* Freescale eLBC FCM controller information */
63 struct fsl_elbc_fcm_ctrl {
64 struct nand_hw_control controller;
65 struct fsl_elbc_mtd *chips[MAX_BANKS];
67 u8 __iomem *addr; /* Address of assigned FCM buffer */
68 unsigned int page; /* Last page written to / read from */
69 unsigned int read_bytes; /* Number of bytes read during command */
70 unsigned int column; /* Saved column from SEQIN */
71 unsigned int index; /* Pointer to next byte to 'read' */
72 unsigned int status; /* status read from LTESR after last op */
73 unsigned int mdr; /* UPM/FCM Data Register value */
74 unsigned int use_mdr; /* Non zero if the MDR is to be set */
75 unsigned int oob; /* Non zero if operating on OOB data */
76 unsigned int counter; /* counter for the initializations */
77 unsigned int max_bitflips; /* Saved during READ0 cmd */
80 /* These map to the positions used by the FCM hardware ECC generator */
82 /* Small Page FLASH with FMR[ECCM] = 0 */
83 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
86 .oobfree = { {0, 5}, {9, 7} },
89 /* Small Page FLASH with FMR[ECCM] = 1 */
90 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
93 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
96 /* Large Page FLASH with FMR[ECCM] = 0 */
97 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
99 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
100 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
103 /* Large Page FLASH with FMR[ECCM] = 1 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
106 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
107 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
111 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
112 * interfere with ECC positions, that's why we implement our own descriptors.
113 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
115 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
116 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
118 static struct nand_bbt_descr bbt_main_descr = {
119 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
120 NAND_BBT_2BIT | NAND_BBT_VERSION,
125 .pattern = bbt_pattern,
128 static struct nand_bbt_descr bbt_mirror_descr = {
129 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
130 NAND_BBT_2BIT | NAND_BBT_VERSION,
135 .pattern = mirror_pattern,
138 /*=================================*/
141 * Set up the FCM hardware block and page address fields, and the fcm
142 * structure addr field to point to the correct FCM buffer in memory
144 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
146 struct nand_chip *chip = mtd_to_nand(mtd);
147 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
148 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
149 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
150 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
153 elbc_fcm_ctrl->page = page_addr;
155 if (priv->page_size) {
157 * large page size chip : FPAR[PI] save the lowest 6 bits,
158 * FBAR[BLK] save the other bits.
160 out_be32(&lbc->fbar, page_addr >> 6);
162 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
163 (oob ? FPAR_LP_MS : 0) | column);
164 buf_num = (page_addr & 1) << 2;
167 * small page size chip : FPAR[PI] save the lowest 5 bits,
168 * FBAR[BLK] save the other bits.
170 out_be32(&lbc->fbar, page_addr >> 5);
172 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
173 (oob ? FPAR_SP_MS : 0) | column);
174 buf_num = page_addr & 7;
177 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
178 elbc_fcm_ctrl->index = column;
180 /* for OOB data point to the second half of the buffer */
182 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
184 dev_vdbg(priv->dev, "set_addr: bank=%d, "
185 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
186 "index %x, pes %d ps %d\n",
187 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
188 elbc_fcm_ctrl->index,
189 chip->phys_erase_shift, chip->page_shift);
193 * execute FCM command and wait for it to complete
195 static int fsl_elbc_run_command(struct mtd_info *mtd)
197 struct nand_chip *chip = mtd_to_nand(mtd);
198 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
199 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
200 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
201 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
203 /* Setup the FMR[OP] to execute without write protection */
204 out_be32(&lbc->fmr, priv->fmr | 3);
205 if (elbc_fcm_ctrl->use_mdr)
206 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
209 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
210 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
212 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
213 "fbcr=%08x bank=%d\n",
214 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
215 in_be32(&lbc->fbcr), priv->bank);
217 ctrl->irq_status = 0;
218 /* execute special operation */
219 out_be32(&lbc->lsor, priv->bank);
221 /* wait for FCM complete flag or timeout */
222 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
223 FCM_TIMEOUT_MSECS * HZ/1000);
224 elbc_fcm_ctrl->status = ctrl->irq_status;
225 /* store mdr value in case it was needed */
226 if (elbc_fcm_ctrl->use_mdr)
227 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
229 elbc_fcm_ctrl->use_mdr = 0;
231 if (elbc_fcm_ctrl->status != LTESR_CC) {
233 "command failed: fir %x fcr %x status %x mdr %x\n",
234 in_be32(&lbc->fir), in_be32(&lbc->fcr),
235 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
239 if (chip->ecc.mode != NAND_ECC_HW)
242 elbc_fcm_ctrl->max_bitflips = 0;
244 if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
245 uint32_t lteccr = in_be32(&lbc->lteccr);
247 * if command was a full page read and the ELBC
248 * has the LTECCR register, then bits 12-15 (ppc order) of
249 * LTECCR indicates which 512 byte sub-pages had fixed errors.
250 * bits 28-31 are uncorrectable errors, marked elsewhere.
251 * for small page nand only 1 bit is used.
252 * if the ELBC doesn't have the lteccr register it reads 0
253 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
254 * count the number of sub-pages with bitflips and update
255 * ecc_stats.corrected accordingly.
257 if (lteccr & 0x000F000F)
258 out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
259 if (lteccr & 0x000F0000) {
260 mtd->ecc_stats.corrected++;
261 elbc_fcm_ctrl->max_bitflips = 1;
268 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
270 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
271 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
272 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
274 if (priv->page_size) {
276 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
277 (FIR_OP_CA << FIR_OP1_SHIFT) |
278 (FIR_OP_PA << FIR_OP2_SHIFT) |
279 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
280 (FIR_OP_RBW << FIR_OP4_SHIFT));
282 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
283 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
286 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
287 (FIR_OP_CA << FIR_OP1_SHIFT) |
288 (FIR_OP_PA << FIR_OP2_SHIFT) |
289 (FIR_OP_RBW << FIR_OP3_SHIFT));
292 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
294 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
298 /* cmdfunc send commands to the FCM */
299 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
300 int column, int page_addr)
302 struct nand_chip *chip = mtd_to_nand(mtd);
303 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
304 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
305 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
306 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
308 elbc_fcm_ctrl->use_mdr = 0;
310 /* clear the read buffer */
311 elbc_fcm_ctrl->read_bytes = 0;
312 if (command != NAND_CMD_PAGEPROG)
313 elbc_fcm_ctrl->index = 0;
316 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
323 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
324 " 0x%x, column: 0x%x.\n", page_addr, column);
327 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
328 set_addr(mtd, 0, page_addr, 0);
330 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
331 elbc_fcm_ctrl->index += column;
333 fsl_elbc_do_read(chip, 0);
334 fsl_elbc_run_command(mtd);
337 /* READOOB reads only the OOB because no ECC is performed. */
338 case NAND_CMD_READOOB:
340 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
341 " 0x%x, column: 0x%x.\n", page_addr, column);
343 out_be32(&lbc->fbcr, mtd->oobsize - column);
344 set_addr(mtd, column, page_addr, 1);
346 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
348 fsl_elbc_do_read(chip, 1);
349 fsl_elbc_run_command(mtd);
352 case NAND_CMD_READID:
354 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
356 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
357 (FIR_OP_UA << FIR_OP1_SHIFT) |
358 (FIR_OP_RBW << FIR_OP2_SHIFT));
359 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
361 * although currently it's 8 bytes for READID, we always read
362 * the maximum 256 bytes(for PARAM)
364 out_be32(&lbc->fbcr, 256);
365 elbc_fcm_ctrl->read_bytes = 256;
366 elbc_fcm_ctrl->use_mdr = 1;
367 elbc_fcm_ctrl->mdr = column;
368 set_addr(mtd, 0, 0, 0);
369 fsl_elbc_run_command(mtd);
372 /* ERASE1 stores the block and page address */
373 case NAND_CMD_ERASE1:
375 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
376 "page_addr: 0x%x.\n", page_addr);
377 set_addr(mtd, 0, page_addr, 0);
380 /* ERASE2 uses the block and page address from ERASE1 */
381 case NAND_CMD_ERASE2:
382 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
385 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
386 (FIR_OP_PA << FIR_OP1_SHIFT) |
387 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
388 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
389 (FIR_OP_RS << FIR_OP4_SHIFT));
392 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
393 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
394 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
396 out_be32(&lbc->fbcr, 0);
397 elbc_fcm_ctrl->read_bytes = 0;
398 elbc_fcm_ctrl->use_mdr = 1;
400 fsl_elbc_run_command(mtd);
403 /* SEQIN sets up the addr buffer and all registers except the length */
404 case NAND_CMD_SEQIN: {
407 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
408 "page_addr: 0x%x, column: 0x%x.\n",
411 elbc_fcm_ctrl->column = column;
412 elbc_fcm_ctrl->use_mdr = 1;
414 if (column >= mtd->writesize) {
416 column -= mtd->writesize;
417 elbc_fcm_ctrl->oob = 1;
419 WARN_ON(column != 0);
420 elbc_fcm_ctrl->oob = 0;
423 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
424 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
425 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
427 if (priv->page_size) {
429 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
430 (FIR_OP_CA << FIR_OP1_SHIFT) |
431 (FIR_OP_PA << FIR_OP2_SHIFT) |
432 (FIR_OP_WB << FIR_OP3_SHIFT) |
433 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
434 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
435 (FIR_OP_RS << FIR_OP6_SHIFT));
438 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
439 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
440 (FIR_OP_CA << FIR_OP2_SHIFT) |
441 (FIR_OP_PA << FIR_OP3_SHIFT) |
442 (FIR_OP_WB << FIR_OP4_SHIFT) |
443 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
444 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
445 (FIR_OP_RS << FIR_OP7_SHIFT));
447 if (elbc_fcm_ctrl->oob)
448 /* OOB area --> READOOB */
449 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
451 /* First 256 bytes --> READ0 */
452 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
455 out_be32(&lbc->fcr, fcr);
456 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
460 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
461 case NAND_CMD_PAGEPROG: {
463 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
464 "writing %d bytes.\n", elbc_fcm_ctrl->index);
466 /* if the write did not start at 0 or is not a full page
467 * then set the exact length, otherwise use a full page
468 * write so the HW generates the ECC.
470 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
471 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
473 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
475 out_be32(&lbc->fbcr, 0);
477 fsl_elbc_run_command(mtd);
481 /* CMD_STATUS must read the status byte while CEB is active */
482 /* Note - it does not wait for the ready line */
483 case NAND_CMD_STATUS:
485 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
486 (FIR_OP_RBW << FIR_OP1_SHIFT));
487 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
488 out_be32(&lbc->fbcr, 1);
489 set_addr(mtd, 0, 0, 0);
490 elbc_fcm_ctrl->read_bytes = 1;
492 fsl_elbc_run_command(mtd);
494 /* The chip always seems to report that it is
495 * write-protected, even when it is not.
497 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
500 /* RESET without waiting for the ready line */
502 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
503 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
504 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
505 fsl_elbc_run_command(mtd);
510 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
515 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
517 /* The hardware does not seem to support multiple
523 * Write buf to the FCM Controller Data Buffer
525 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
527 struct nand_chip *chip = mtd_to_nand(mtd);
528 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
529 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
530 unsigned int bufsize = mtd->writesize + mtd->oobsize;
533 dev_err(priv->dev, "write_buf of %d bytes", len);
534 elbc_fcm_ctrl->status = 0;
538 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
540 "write_buf beyond end of buffer "
541 "(%d requested, %u available)\n",
542 len, bufsize - elbc_fcm_ctrl->index);
543 len = bufsize - elbc_fcm_ctrl->index;
546 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
548 * This is workaround for the weird elbc hangs during nand write,
549 * Scott Wood says: "...perhaps difference in how long it takes a
550 * write to make it through the localbus compared to a write to IMMR
551 * is causing problems, and sync isn't helping for some reason."
552 * Reading back the last byte helps though.
554 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
556 elbc_fcm_ctrl->index += len;
560 * read a byte from either the FCM hardware buffer if it has any data left
561 * otherwise issue a command to read a single byte.
563 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
565 struct nand_chip *chip = mtd_to_nand(mtd);
566 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
567 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
569 /* If there are still bytes in the FCM, then use the next byte. */
570 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
571 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
573 dev_err(priv->dev, "read_byte beyond end of buffer\n");
578 * Read from the FCM Controller Data Buffer
580 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
582 struct nand_chip *chip = mtd_to_nand(mtd);
583 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
584 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
590 avail = min((unsigned int)len,
591 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
592 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
593 elbc_fcm_ctrl->index += avail;
597 "read_buf beyond end of buffer "
598 "(%d requested, %d available)\n",
602 /* This function is called after Program and Erase Operations to
603 * check for success or failure.
605 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
607 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
608 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
610 if (elbc_fcm_ctrl->status != LTESR_CC)
611 return NAND_STATUS_FAIL;
613 /* The chip always seems to report that it is
614 * write-protected, even when it is not.
616 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
619 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
621 struct nand_chip *chip = mtd_to_nand(mtd);
622 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
623 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
624 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
627 /* calculate FMR Address Length field */
629 if (chip->pagemask & 0xffff0000)
631 if (chip->pagemask & 0xff000000)
634 priv->fmr |= al << FMR_AL_SHIFT;
636 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
638 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
640 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
642 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
644 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
646 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
648 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
650 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
651 chip->phys_erase_shift);
652 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
654 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
656 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
658 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
660 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
662 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
663 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
664 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
666 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
668 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
671 /* adjust Option Register and ECC to match Flash page size */
672 if (mtd->writesize == 512) {
674 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
675 } else if (mtd->writesize == 2048) {
677 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
678 /* adjust ecc setup if needed */
679 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
681 chip->ecc.size = 512;
682 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
683 &fsl_elbc_oob_lp_eccm1 :
684 &fsl_elbc_oob_lp_eccm0;
688 "fsl_elbc_init: page size %d is not supported\n",
696 static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
697 uint8_t *buf, int oob_required, int page)
699 struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
700 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
701 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
703 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
705 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
707 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
708 mtd->ecc_stats.failed++;
710 return elbc_fcm_ctrl->max_bitflips;
713 /* ECC will be calculated automatically, and errors will be detected in
716 static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
717 const uint8_t *buf, int oob_required, int page)
719 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
720 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
725 /* ECC will be calculated automatically, and errors will be detected in
728 static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
729 uint32_t offset, uint32_t data_len,
730 const uint8_t *buf, int oob_required, int page)
732 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
733 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
738 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
740 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
741 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
742 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
743 struct nand_chip *chip = &priv->chip;
744 struct mtd_info *mtd = nand_to_mtd(chip);
746 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
748 /* Fill in fsl_elbc_mtd structure */
749 mtd->dev.parent = priv->dev;
750 nand_set_flash_node(chip, priv->dev->of_node);
752 /* set timeout to maximum */
753 priv->fmr = 15 << FMR_CWTO_SHIFT;
754 if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
755 priv->fmr |= FMR_ECCM;
757 /* fill in nand_chip structure */
758 /* set up function call table */
759 chip->read_byte = fsl_elbc_read_byte;
760 chip->write_buf = fsl_elbc_write_buf;
761 chip->read_buf = fsl_elbc_read_buf;
762 chip->select_chip = fsl_elbc_select_chip;
763 chip->cmdfunc = fsl_elbc_cmdfunc;
764 chip->waitfunc = fsl_elbc_wait;
766 chip->bbt_td = &bbt_main_descr;
767 chip->bbt_md = &bbt_mirror_descr;
769 /* set up nand options */
770 chip->bbt_options = NAND_BBT_USE_FLASH;
772 chip->controller = &elbc_fcm_ctrl->controller;
773 nand_set_controller_data(chip, priv);
775 chip->ecc.read_page = fsl_elbc_read_page;
776 chip->ecc.write_page = fsl_elbc_write_page;
777 chip->ecc.write_subpage = fsl_elbc_write_subpage;
779 /* If CS Base Register selects full hardware ECC then use it */
780 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
782 chip->ecc.mode = NAND_ECC_HW;
783 /* put in small page settings and adjust later if needed */
784 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
785 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
786 chip->ecc.size = 512;
788 chip->ecc.strength = 1;
790 /* otherwise fall back to default software ECC */
791 chip->ecc.mode = NAND_ECC_SOFT;
797 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
799 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
800 struct mtd_info *mtd = nand_to_mtd(&priv->chip);
807 iounmap(priv->vbase);
809 elbc_fcm_ctrl->chips[priv->bank] = NULL;
814 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
816 static int fsl_elbc_nand_probe(struct platform_device *pdev)
818 struct fsl_lbc_regs __iomem *lbc;
819 struct fsl_elbc_mtd *priv;
821 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
822 static const char *part_probe_types[]
823 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
827 struct device_node *node = pdev->dev.of_node;
828 struct mtd_info *mtd;
830 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
832 lbc = fsl_lbc_ctrl_dev->regs;
833 dev = fsl_lbc_ctrl_dev->dev;
835 /* get, allocate and map the memory resource */
836 ret = of_address_to_resource(node, 0, &res);
838 dev_err(dev, "failed to get resource\n");
842 /* find which chip select it is connected to */
843 for (bank = 0; bank < MAX_BANKS; bank++)
844 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
845 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
846 (in_be32(&lbc->bank[bank].br) &
847 in_be32(&lbc->bank[bank].or) & BR_BA)
848 == fsl_lbc_addr(res.start))
851 if (bank >= MAX_BANKS) {
852 dev_err(dev, "address did not match any chip selects\n");
856 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
860 mutex_lock(&fsl_elbc_nand_mutex);
861 if (!fsl_lbc_ctrl_dev->nand) {
862 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
863 if (!elbc_fcm_ctrl) {
864 mutex_unlock(&fsl_elbc_nand_mutex);
868 elbc_fcm_ctrl->counter++;
870 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
871 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
872 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
874 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
876 mutex_unlock(&fsl_elbc_nand_mutex);
878 elbc_fcm_ctrl->chips[bank] = priv;
880 priv->ctrl = fsl_lbc_ctrl_dev;
881 priv->dev = &pdev->dev;
882 dev_set_drvdata(priv->dev, priv);
884 priv->vbase = ioremap(res.start, resource_size(&res));
886 dev_err(dev, "failed to map chip region\n");
891 mtd = nand_to_mtd(&priv->chip);
892 mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
893 if (!nand_to_mtd(&priv->chip)->name) {
898 ret = fsl_elbc_chip_init(priv);
902 ret = nand_scan_ident(mtd, 1, NULL);
906 ret = fsl_elbc_chip_init_tail(mtd);
910 ret = nand_scan_tail(mtd);
914 /* First look for RedBoot table or partitions on the command
915 * line, these take precedence over device tree information */
916 mtd_device_parse_register(mtd, part_probe_types, NULL,
919 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
920 (unsigned long long)res.start, priv->bank);
924 fsl_elbc_chip_remove(priv);
928 static int fsl_elbc_nand_remove(struct platform_device *pdev)
930 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
931 struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
933 fsl_elbc_chip_remove(priv);
935 mutex_lock(&fsl_elbc_nand_mutex);
936 elbc_fcm_ctrl->counter--;
937 if (!elbc_fcm_ctrl->counter) {
938 fsl_lbc_ctrl_dev->nand = NULL;
939 kfree(elbc_fcm_ctrl);
941 mutex_unlock(&fsl_elbc_nand_mutex);
947 static const struct of_device_id fsl_elbc_nand_match[] = {
948 { .compatible = "fsl,elbc-fcm-nand", },
951 MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
953 static struct platform_driver fsl_elbc_nand_driver = {
955 .name = "fsl,elbc-fcm-nand",
956 .of_match_table = fsl_elbc_nand_match,
958 .probe = fsl_elbc_nand_probe,
959 .remove = fsl_elbc_nand_remove,
962 module_platform_driver(fsl_elbc_nand_driver);
964 MODULE_LICENSE("GPL");
965 MODULE_AUTHOR("Freescale");
966 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");