2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
43 #include <asm/sizes.h>
46 #include "mmci_qcom_dml.h"
48 #define DRIVER_NAME "mmci-pl18x"
50 static unsigned int fmax = 515633;
53 * struct variant_data - MMCI variant-specific quirks
54 * @clkreg: default value for MCICLOCK register
55 * @clkreg_enable: enable value for MMCICLOCK register
56 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
57 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
58 * @datalength_bits: number of bits in the MMCIDATALENGTH register
59 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
60 * is asserted (likewise for RX)
61 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
62 * is asserted (likewise for RX)
63 * @data_cmd_enable: enable value for data commands.
64 * @st_sdio: enable ST specific SDIO logic
65 * @st_clkdiv: true if using a ST-specific clock divider algorithm
66 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
67 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
68 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
70 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
71 * @pwrreg_powerup: power up value for MMCIPOWER register
72 * @f_max: maximum clk frequency supported by the controller.
73 * @signal_direction: input/out direction of bus signals can be indicated
74 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
75 * @busy_detect: true if busy detection on dat0 is supported
76 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
77 * @explicit_mclk_control: enable explicit mclk control in driver.
78 * @qcom_fifo: enables qcom specific fifo pio read logic.
79 * @qcom_dml: enables qcom specific dma glue for dma transfers.
80 * @reversed_irq_handling: handle data irq before cmd irq.
84 unsigned int clkreg_enable;
85 unsigned int clkreg_8bit_bus_enable;
86 unsigned int clkreg_neg_edge_enable;
87 unsigned int datalength_bits;
88 unsigned int fifosize;
89 unsigned int fifohalfsize;
90 unsigned int data_cmd_enable;
91 unsigned int datactrl_mask_ddrmode;
92 unsigned int datactrl_mask_sdio;
95 bool blksz_datactrl16;
99 bool signal_direction;
103 bool explicit_mclk_control;
106 bool reversed_irq_handling;
109 static struct variant_data variant_arm = {
111 .fifohalfsize = 8 * 4,
112 .datalength_bits = 16,
113 .pwrreg_powerup = MCI_PWR_UP,
115 .reversed_irq_handling = true,
118 static struct variant_data variant_arm_extended_fifo = {
120 .fifohalfsize = 64 * 4,
121 .datalength_bits = 16,
122 .pwrreg_powerup = MCI_PWR_UP,
126 static struct variant_data variant_arm_extended_fifo_hwfc = {
128 .fifohalfsize = 64 * 4,
129 .clkreg_enable = MCI_ARM_HWFCEN,
130 .datalength_bits = 16,
131 .pwrreg_powerup = MCI_PWR_UP,
135 static struct variant_data variant_u300 = {
137 .fifohalfsize = 8 * 4,
138 .clkreg_enable = MCI_ST_U300_HWFCEN,
139 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 .datalength_bits = 16,
141 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
143 .pwrreg_powerup = MCI_PWR_ON,
145 .signal_direction = true,
146 .pwrreg_clkgate = true,
147 .pwrreg_nopower = true,
150 static struct variant_data variant_nomadik = {
152 .fifohalfsize = 8 * 4,
153 .clkreg = MCI_CLK_ENABLE,
154 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
155 .datalength_bits = 24,
156 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
159 .pwrreg_powerup = MCI_PWR_ON,
161 .signal_direction = true,
162 .pwrreg_clkgate = true,
163 .pwrreg_nopower = true,
166 static struct variant_data variant_ux500 = {
168 .fifohalfsize = 8 * 4,
169 .clkreg = MCI_CLK_ENABLE,
170 .clkreg_enable = MCI_ST_UX500_HWFCEN,
171 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
172 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
173 .datalength_bits = 24,
174 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
177 .pwrreg_powerup = MCI_PWR_ON,
179 .signal_direction = true,
180 .pwrreg_clkgate = true,
182 .pwrreg_nopower = true,
185 static struct variant_data variant_ux500v2 = {
187 .fifohalfsize = 8 * 4,
188 .clkreg = MCI_CLK_ENABLE,
189 .clkreg_enable = MCI_ST_UX500_HWFCEN,
190 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
191 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
192 .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE,
193 .datalength_bits = 24,
194 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
197 .blksz_datactrl16 = true,
198 .pwrreg_powerup = MCI_PWR_ON,
200 .signal_direction = true,
201 .pwrreg_clkgate = true,
203 .pwrreg_nopower = true,
206 static struct variant_data variant_qcom = {
208 .fifohalfsize = 8 * 4,
209 .clkreg = MCI_CLK_ENABLE,
210 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
211 MCI_QCOM_CLK_SELECT_IN_FBCLK,
212 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
213 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
214 .data_cmd_enable = MCI_QCOM_CSPM_DATCMD,
215 .blksz_datactrl4 = true,
216 .datalength_bits = 24,
217 .pwrreg_powerup = MCI_PWR_UP,
219 .explicit_mclk_control = true,
224 static int mmci_card_busy(struct mmc_host *mmc)
226 struct mmci_host *host = mmc_priv(mmc);
230 pm_runtime_get_sync(mmc_dev(mmc));
232 spin_lock_irqsave(&host->lock, flags);
233 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
235 spin_unlock_irqrestore(&host->lock, flags);
237 pm_runtime_mark_last_busy(mmc_dev(mmc));
238 pm_runtime_put_autosuspend(mmc_dev(mmc));
244 * Validate mmc prerequisites
246 static int mmci_validate_data(struct mmci_host *host,
247 struct mmc_data *data)
252 if (!is_power_of_2(data->blksz)) {
253 dev_err(mmc_dev(host->mmc),
254 "unsupported block size (%d bytes)\n", data->blksz);
261 static void mmci_reg_delay(struct mmci_host *host)
264 * According to the spec, at least three feedback clock cycles
265 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
266 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
267 * Worst delay time during card init is at 100 kHz => 30 us.
268 * Worst delay time when up and running is at 25 MHz => 120 ns.
270 if (host->cclk < 25000000)
277 * This must be called with host->lock held
279 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
281 if (host->clk_reg != clk) {
283 writel(clk, host->base + MMCICLOCK);
288 * This must be called with host->lock held
290 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
292 if (host->pwr_reg != pwr) {
294 writel(pwr, host->base + MMCIPOWER);
299 * This must be called with host->lock held
301 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
303 /* Keep ST Micro busy mode if enabled */
304 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
306 if (host->datactrl_reg != datactrl) {
307 host->datactrl_reg = datactrl;
308 writel(datactrl, host->base + MMCIDATACTRL);
313 * This must be called with host->lock held
315 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
317 struct variant_data *variant = host->variant;
318 u32 clk = variant->clkreg;
320 /* Make sure cclk reflects the current calculated clock */
324 if (variant->explicit_mclk_control) {
325 host->cclk = host->mclk;
326 } else if (desired >= host->mclk) {
327 clk = MCI_CLK_BYPASS;
328 if (variant->st_clkdiv)
329 clk |= MCI_ST_UX500_NEG_EDGE;
330 host->cclk = host->mclk;
331 } else if (variant->st_clkdiv) {
333 * DB8500 TRM says f = mclk / (clkdiv + 2)
334 * => clkdiv = (mclk / f) - 2
335 * Round the divider up so we don't exceed the max
338 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
341 host->cclk = host->mclk / (clk + 2);
344 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
345 * => clkdiv = mclk / (2 * f) - 1
347 clk = host->mclk / (2 * desired) - 1;
350 host->cclk = host->mclk / (2 * (clk + 1));
353 clk |= variant->clkreg_enable;
354 clk |= MCI_CLK_ENABLE;
355 /* This hasn't proven to be worthwhile */
356 /* clk |= MCI_CLK_PWRSAVE; */
359 /* Set actual clock for debug */
360 host->mmc->actual_clock = host->cclk;
362 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
364 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
365 clk |= variant->clkreg_8bit_bus_enable;
367 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
368 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
369 clk |= variant->clkreg_neg_edge_enable;
371 mmci_write_clkreg(host, clk);
375 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
377 writel(0, host->base + MMCICOMMAND);
384 mmc_request_done(host->mmc, mrq);
386 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
387 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
390 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
392 void __iomem *base = host->base;
394 if (host->singleirq) {
395 unsigned int mask0 = readl(base + MMCIMASK0);
397 mask0 &= ~MCI_IRQ1MASK;
400 writel(mask0, base + MMCIMASK0);
403 writel(mask, base + MMCIMASK1);
406 static void mmci_stop_data(struct mmci_host *host)
408 mmci_write_datactrlreg(host, 0);
409 mmci_set_mask1(host, 0);
413 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
415 unsigned int flags = SG_MITER_ATOMIC;
417 if (data->flags & MMC_DATA_READ)
418 flags |= SG_MITER_TO_SG;
420 flags |= SG_MITER_FROM_SG;
422 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
426 * All the DMA operation mode stuff goes inside this ifdef.
427 * This assumes that you have a generic DMA device interface,
428 * no custom DMA interfaces are supported.
430 #ifdef CONFIG_DMA_ENGINE
431 static void mmci_dma_setup(struct mmci_host *host)
433 const char *rxname, *txname;
434 struct variant_data *variant = host->variant;
436 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
437 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
439 /* initialize pre request cookie */
440 host->next_data.cookie = 1;
443 * If only an RX channel is specified, the driver will
444 * attempt to use it bidirectionally, however if it is
445 * is specified but cannot be located, DMA will be disabled.
447 if (host->dma_rx_channel && !host->dma_tx_channel)
448 host->dma_tx_channel = host->dma_rx_channel;
450 if (host->dma_rx_channel)
451 rxname = dma_chan_name(host->dma_rx_channel);
455 if (host->dma_tx_channel)
456 txname = dma_chan_name(host->dma_tx_channel);
460 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
464 * Limit the maximum segment size in any SG entry according to
465 * the parameters of the DMA engine device.
467 if (host->dma_tx_channel) {
468 struct device *dev = host->dma_tx_channel->device->dev;
469 unsigned int max_seg_size = dma_get_max_seg_size(dev);
471 if (max_seg_size < host->mmc->max_seg_size)
472 host->mmc->max_seg_size = max_seg_size;
474 if (host->dma_rx_channel) {
475 struct device *dev = host->dma_rx_channel->device->dev;
476 unsigned int max_seg_size = dma_get_max_seg_size(dev);
478 if (max_seg_size < host->mmc->max_seg_size)
479 host->mmc->max_seg_size = max_seg_size;
482 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
483 if (dml_hw_init(host, host->mmc->parent->of_node))
484 variant->qcom_dml = false;
488 * This is used in or so inline it
489 * so it can be discarded.
491 static inline void mmci_dma_release(struct mmci_host *host)
493 if (host->dma_rx_channel)
494 dma_release_channel(host->dma_rx_channel);
495 if (host->dma_tx_channel)
496 dma_release_channel(host->dma_tx_channel);
497 host->dma_rx_channel = host->dma_tx_channel = NULL;
500 static void mmci_dma_data_error(struct mmci_host *host)
502 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
503 dmaengine_terminate_all(host->dma_current);
504 host->dma_current = NULL;
505 host->dma_desc_current = NULL;
506 host->data->host_cookie = 0;
509 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
511 struct dma_chan *chan;
512 enum dma_data_direction dir;
514 if (data->flags & MMC_DATA_READ) {
515 dir = DMA_FROM_DEVICE;
516 chan = host->dma_rx_channel;
519 chan = host->dma_tx_channel;
522 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
525 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
530 /* Wait up to 1ms for the DMA to complete */
532 status = readl(host->base + MMCISTATUS);
533 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
539 * Check to see whether we still have some data left in the FIFO -
540 * this catches DMA controllers which are unable to monitor the
541 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
542 * contiguous buffers. On TX, we'll get a FIFO underrun error.
544 if (status & MCI_RXDATAAVLBLMASK) {
545 mmci_dma_data_error(host);
550 if (!data->host_cookie)
551 mmci_dma_unmap(host, data);
554 * Use of DMA with scatter-gather is impossible.
555 * Give up with DMA and switch back to PIO mode.
557 if (status & MCI_RXDATAAVLBLMASK) {
558 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
559 mmci_dma_release(host);
562 host->dma_current = NULL;
563 host->dma_desc_current = NULL;
566 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
567 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
568 struct dma_chan **dma_chan,
569 struct dma_async_tx_descriptor **dma_desc)
571 struct variant_data *variant = host->variant;
572 struct dma_slave_config conf = {
573 .src_addr = host->phybase + MMCIFIFO,
574 .dst_addr = host->phybase + MMCIFIFO,
575 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
576 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
577 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
578 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
581 struct dma_chan *chan;
582 struct dma_device *device;
583 struct dma_async_tx_descriptor *desc;
584 enum dma_data_direction buffer_dirn;
586 unsigned long flags = DMA_CTRL_ACK;
588 if (data->flags & MMC_DATA_READ) {
589 conf.direction = DMA_DEV_TO_MEM;
590 buffer_dirn = DMA_FROM_DEVICE;
591 chan = host->dma_rx_channel;
593 conf.direction = DMA_MEM_TO_DEV;
594 buffer_dirn = DMA_TO_DEVICE;
595 chan = host->dma_tx_channel;
598 /* If there's no DMA channel, fall back to PIO */
602 /* If less than or equal to the fifo size, don't bother with DMA */
603 if (data->blksz * data->blocks <= variant->fifosize)
606 device = chan->device;
607 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
611 if (host->variant->qcom_dml)
612 flags |= DMA_PREP_INTERRUPT;
614 dmaengine_slave_config(chan, &conf);
615 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
616 conf.direction, flags);
626 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
630 static inline int mmci_dma_prep_data(struct mmci_host *host,
631 struct mmc_data *data)
633 /* Check if next job is already prepared. */
634 if (host->dma_current && host->dma_desc_current)
637 /* No job were prepared thus do it now. */
638 return __mmci_dma_prep_data(host, data, &host->dma_current,
639 &host->dma_desc_current);
642 static inline int mmci_dma_prep_next(struct mmci_host *host,
643 struct mmc_data *data)
645 struct mmci_host_next *nd = &host->next_data;
646 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
649 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
652 struct mmc_data *data = host->data;
654 ret = mmci_dma_prep_data(host, host->data);
658 /* Okay, go for it. */
659 dev_vdbg(mmc_dev(host->mmc),
660 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
661 data->sg_len, data->blksz, data->blocks, data->flags);
662 dmaengine_submit(host->dma_desc_current);
663 dma_async_issue_pending(host->dma_current);
665 if (host->variant->qcom_dml)
666 dml_start_xfer(host, data);
668 datactrl |= MCI_DPSM_DMAENABLE;
670 /* Trigger the DMA transfer */
671 mmci_write_datactrlreg(host, datactrl);
674 * Let the MMCI say when the data is ended and it's time
675 * to fire next DMA request. When that happens, MMCI will
676 * call mmci_data_end()
678 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
679 host->base + MMCIMASK0);
683 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
685 struct mmci_host_next *next = &host->next_data;
687 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
688 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
690 host->dma_desc_current = next->dma_desc;
691 host->dma_current = next->dma_chan;
692 next->dma_desc = NULL;
693 next->dma_chan = NULL;
696 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
699 struct mmci_host *host = mmc_priv(mmc);
700 struct mmc_data *data = mrq->data;
701 struct mmci_host_next *nd = &host->next_data;
706 BUG_ON(data->host_cookie);
708 if (mmci_validate_data(host, data))
711 if (!mmci_dma_prep_next(host, data))
712 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
715 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
718 struct mmci_host *host = mmc_priv(mmc);
719 struct mmc_data *data = mrq->data;
721 if (!data || !data->host_cookie)
724 mmci_dma_unmap(host, data);
727 struct mmci_host_next *next = &host->next_data;
728 struct dma_chan *chan;
729 if (data->flags & MMC_DATA_READ)
730 chan = host->dma_rx_channel;
732 chan = host->dma_tx_channel;
733 dmaengine_terminate_all(chan);
735 if (host->dma_desc_current == next->dma_desc)
736 host->dma_desc_current = NULL;
738 if (host->dma_current == next->dma_chan)
739 host->dma_current = NULL;
741 next->dma_desc = NULL;
742 next->dma_chan = NULL;
743 data->host_cookie = 0;
748 /* Blank functions if the DMA engine is not available */
749 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
752 static inline void mmci_dma_setup(struct mmci_host *host)
756 static inline void mmci_dma_release(struct mmci_host *host)
760 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
764 static inline void mmci_dma_finalize(struct mmci_host *host,
765 struct mmc_data *data)
769 static inline void mmci_dma_data_error(struct mmci_host *host)
773 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
778 #define mmci_pre_request NULL
779 #define mmci_post_request NULL
783 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
785 struct variant_data *variant = host->variant;
786 unsigned int datactrl, timeout, irqmask;
787 unsigned long long clks;
791 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
792 data->blksz, data->blocks, data->flags);
795 host->size = data->blksz * data->blocks;
796 data->bytes_xfered = 0;
798 clks = (unsigned long long)data->timeout_ns * host->cclk;
799 do_div(clks, NSEC_PER_SEC);
801 timeout = data->timeout_clks + (unsigned int)clks;
804 writel(timeout, base + MMCIDATATIMER);
805 writel(host->size, base + MMCIDATALENGTH);
807 blksz_bits = ffs(data->blksz) - 1;
808 BUG_ON(1 << blksz_bits != data->blksz);
810 if (variant->blksz_datactrl16)
811 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
812 else if (variant->blksz_datactrl4)
813 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
815 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
817 if (data->flags & MMC_DATA_READ)
818 datactrl |= MCI_DPSM_DIRECTION;
820 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
823 datactrl |= variant->datactrl_mask_sdio;
826 * The ST Micro variant for SDIO small write transfers
827 * needs to have clock H/W flow control disabled,
828 * otherwise the transfer will not start. The threshold
829 * depends on the rate of MCLK.
831 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
833 (host->size <= 8 && host->mclk > 50000000)))
834 clk = host->clk_reg & ~variant->clkreg_enable;
836 clk = host->clk_reg | variant->clkreg_enable;
838 mmci_write_clkreg(host, clk);
841 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
842 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
843 datactrl |= variant->datactrl_mask_ddrmode;
846 * Attempt to use DMA operation mode, if this
847 * should fail, fall back to PIO mode
849 if (!mmci_dma_start_data(host, datactrl))
852 /* IRQ mode, map the SG list for CPU reading/writing */
853 mmci_init_sg(host, data);
855 if (data->flags & MMC_DATA_READ) {
856 irqmask = MCI_RXFIFOHALFFULLMASK;
859 * If we have less than the fifo 'half-full' threshold to
860 * transfer, trigger a PIO interrupt as soon as any data
863 if (host->size < variant->fifohalfsize)
864 irqmask |= MCI_RXDATAAVLBLMASK;
867 * We don't actually need to include "FIFO empty" here
868 * since its implicit in "FIFO half empty".
870 irqmask = MCI_TXFIFOHALFEMPTYMASK;
873 mmci_write_datactrlreg(host, datactrl);
874 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
875 mmci_set_mask1(host, irqmask);
879 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
881 void __iomem *base = host->base;
883 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
884 cmd->opcode, cmd->arg, cmd->flags);
886 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
887 writel(0, base + MMCICOMMAND);
888 mmci_reg_delay(host);
891 c |= cmd->opcode | MCI_CPSM_ENABLE;
892 if (cmd->flags & MMC_RSP_PRESENT) {
893 if (cmd->flags & MMC_RSP_136)
894 c |= MCI_CPSM_LONGRSP;
895 c |= MCI_CPSM_RESPONSE;
898 c |= MCI_CPSM_INTERRUPT;
900 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
901 c |= host->variant->data_cmd_enable;
905 writel(cmd->arg, base + MMCIARGUMENT);
906 writel(c, base + MMCICOMMAND);
910 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
913 /* Make sure we have data to handle */
917 /* First check for errors */
918 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
919 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
922 /* Terminate the DMA transfer */
923 if (dma_inprogress(host)) {
924 mmci_dma_data_error(host);
925 mmci_dma_unmap(host, data);
929 * Calculate how far we are into the transfer. Note that
930 * the data counter gives the number of bytes transferred
931 * on the MMC bus, not on the host side. On reads, this
932 * can be as much as a FIFO-worth of data ahead. This
933 * matters for FIFO overruns only.
935 remain = readl(host->base + MMCIDATACNT);
936 success = data->blksz * data->blocks - remain;
938 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
940 if (status & MCI_DATACRCFAIL) {
941 /* Last block was not successful */
943 data->error = -EILSEQ;
944 } else if (status & MCI_DATATIMEOUT) {
945 data->error = -ETIMEDOUT;
946 } else if (status & MCI_STARTBITERR) {
947 data->error = -ECOMM;
948 } else if (status & MCI_TXUNDERRUN) {
950 } else if (status & MCI_RXOVERRUN) {
951 if (success > host->variant->fifosize)
952 success -= host->variant->fifosize;
957 data->bytes_xfered = round_down(success, data->blksz);
960 if (status & MCI_DATABLOCKEND)
961 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
963 if (status & MCI_DATAEND || data->error) {
964 if (dma_inprogress(host))
965 mmci_dma_finalize(host, data);
966 mmci_stop_data(host);
969 /* The error clause is handled above, success! */
970 data->bytes_xfered = data->blksz * data->blocks;
972 if (!data->stop || host->mrq->sbc) {
973 mmci_request_end(host, data->mrq);
975 mmci_start_command(host, data->stop, 0);
981 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
984 void __iomem *base = host->base;
990 sbc = (cmd == host->mrq->sbc);
991 busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
993 if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
994 MCI_CMDSENT|MCI_CMDRESPEND)))
997 /* Check if we need to wait for busy completion. */
998 if (host->busy_status && (status & MCI_ST_CARDBUSY))
1001 /* Enable busy completion if needed and supported. */
1002 if (!host->busy_status && busy_resp &&
1003 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1004 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1005 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1007 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1011 /* At busy completion, mask the IRQ and complete the request. */
1012 if (host->busy_status) {
1013 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1015 host->busy_status = 0;
1020 if (status & MCI_CMDTIMEOUT) {
1021 cmd->error = -ETIMEDOUT;
1022 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1023 cmd->error = -EILSEQ;
1025 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1026 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1027 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1028 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1031 if ((!sbc && !cmd->data) || cmd->error) {
1033 /* Terminate the DMA transfer */
1034 if (dma_inprogress(host)) {
1035 mmci_dma_data_error(host);
1036 mmci_dma_unmap(host, host->data);
1038 mmci_stop_data(host);
1040 mmci_request_end(host, host->mrq);
1042 mmci_start_command(host, host->mrq->cmd, 0);
1043 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1044 mmci_start_data(host, cmd->data);
1048 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1050 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1053 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1056 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1057 * from the fifo range should be used
1059 if (status & MCI_RXFIFOHALFFULL)
1060 return host->variant->fifohalfsize;
1061 else if (status & MCI_RXDATAAVLBL)
1067 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1069 void __iomem *base = host->base;
1071 u32 status = readl(host->base + MMCISTATUS);
1072 int host_remain = host->size;
1075 int count = host->get_rx_fifocnt(host, status, host_remain);
1084 * SDIO especially may want to send something that is
1085 * not divisible by 4 (as opposed to card sectors
1086 * etc). Therefore make sure to always read the last bytes
1087 * while only doing full 32-bit reads towards the FIFO.
1089 if (unlikely(count & 0x3)) {
1091 unsigned char buf[4];
1092 ioread32_rep(base + MMCIFIFO, buf, 1);
1093 memcpy(ptr, buf, count);
1095 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1099 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1104 host_remain -= count;
1109 status = readl(base + MMCISTATUS);
1110 } while (status & MCI_RXDATAAVLBL);
1112 return ptr - buffer;
1115 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1117 struct variant_data *variant = host->variant;
1118 void __iomem *base = host->base;
1122 unsigned int count, maxcnt;
1124 maxcnt = status & MCI_TXFIFOEMPTY ?
1125 variant->fifosize : variant->fifohalfsize;
1126 count = min(remain, maxcnt);
1129 * SDIO especially may want to send something that is
1130 * not divisible by 4 (as opposed to card sectors
1131 * etc), and the FIFO only accept full 32-bit writes.
1132 * So compensate by adding +3 on the count, a single
1133 * byte become a 32bit write, 7 bytes will be two
1136 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1144 status = readl(base + MMCISTATUS);
1145 } while (status & MCI_TXFIFOHALFEMPTY);
1147 return ptr - buffer;
1151 * PIO data transfer IRQ handler.
1153 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1155 struct mmci_host *host = dev_id;
1156 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1157 struct variant_data *variant = host->variant;
1158 void __iomem *base = host->base;
1159 unsigned long flags;
1162 status = readl(base + MMCISTATUS);
1164 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1166 local_irq_save(flags);
1169 unsigned int remain, len;
1173 * For write, we only need to test the half-empty flag
1174 * here - if the FIFO is completely empty, then by
1175 * definition it is more than half empty.
1177 * For read, check for data available.
1179 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1182 if (!sg_miter_next(sg_miter))
1185 buffer = sg_miter->addr;
1186 remain = sg_miter->length;
1189 if (status & MCI_RXACTIVE)
1190 len = mmci_pio_read(host, buffer, remain);
1191 if (status & MCI_TXACTIVE)
1192 len = mmci_pio_write(host, buffer, remain, status);
1194 sg_miter->consumed = len;
1202 status = readl(base + MMCISTATUS);
1205 sg_miter_stop(sg_miter);
1207 local_irq_restore(flags);
1210 * If we have less than the fifo 'half-full' threshold to transfer,
1211 * trigger a PIO interrupt as soon as any data is available.
1213 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1214 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1217 * If we run out of data, disable the data IRQs; this
1218 * prevents a race where the FIFO becomes empty before
1219 * the chip itself has disabled the data path, and
1220 * stops us racing with our data end IRQ.
1222 if (host->size == 0) {
1223 mmci_set_mask1(host, 0);
1224 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1231 * Handle completion of command and data transfers.
1233 static irqreturn_t mmci_irq(int irq, void *dev_id)
1235 struct mmci_host *host = dev_id;
1239 spin_lock(&host->lock);
1242 status = readl(host->base + MMCISTATUS);
1244 if (host->singleirq) {
1245 if (status & readl(host->base + MMCIMASK1))
1246 mmci_pio_irq(irq, dev_id);
1248 status &= ~MCI_IRQ1MASK;
1252 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1253 * enabled) since the HW seems to be triggering the IRQ on both
1254 * edges while monitoring DAT0 for busy completion.
1256 status &= readl(host->base + MMCIMASK0);
1257 writel(status, host->base + MMCICLEAR);
1259 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1261 if (host->variant->reversed_irq_handling) {
1262 mmci_data_irq(host, host->data, status);
1263 mmci_cmd_irq(host, host->cmd, status);
1265 mmci_cmd_irq(host, host->cmd, status);
1266 mmci_data_irq(host, host->data, status);
1269 /* Don't poll for busy completion in irq context. */
1270 if (host->busy_status)
1271 status &= ~MCI_ST_CARDBUSY;
1276 spin_unlock(&host->lock);
1278 return IRQ_RETVAL(ret);
1281 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1283 struct mmci_host *host = mmc_priv(mmc);
1284 unsigned long flags;
1286 WARN_ON(host->mrq != NULL);
1288 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1289 if (mrq->cmd->error) {
1290 mmc_request_done(mmc, mrq);
1294 pm_runtime_get_sync(mmc_dev(mmc));
1296 spin_lock_irqsave(&host->lock, flags);
1301 mmci_get_next_data(host, mrq->data);
1303 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1304 mmci_start_data(host, mrq->data);
1307 mmci_start_command(host, mrq->sbc, 0);
1309 mmci_start_command(host, mrq->cmd, 0);
1311 spin_unlock_irqrestore(&host->lock, flags);
1314 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1316 struct mmci_host *host = mmc_priv(mmc);
1317 struct variant_data *variant = host->variant;
1319 unsigned long flags;
1322 pm_runtime_get_sync(mmc_dev(mmc));
1324 if (host->plat->ios_handler &&
1325 host->plat->ios_handler(mmc_dev(mmc), ios))
1326 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1328 switch (ios->power_mode) {
1330 if (!IS_ERR(mmc->supply.vmmc))
1331 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1333 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1334 regulator_disable(mmc->supply.vqmmc);
1335 host->vqmmc_enabled = false;
1340 if (!IS_ERR(mmc->supply.vmmc))
1341 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1344 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1345 * and instead uses MCI_PWR_ON so apply whatever value is
1346 * configured in the variant data.
1348 pwr |= variant->pwrreg_powerup;
1352 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1353 ret = regulator_enable(mmc->supply.vqmmc);
1355 dev_err(mmc_dev(mmc),
1356 "failed to enable vqmmc regulator\n");
1358 host->vqmmc_enabled = true;
1365 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1367 * The ST Micro variant has some additional bits
1368 * indicating signal direction for the signals in
1369 * the SD/MMC bus and feedback-clock usage.
1371 pwr |= host->pwr_reg_add;
1373 if (ios->bus_width == MMC_BUS_WIDTH_4)
1374 pwr &= ~MCI_ST_DATA74DIREN;
1375 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1376 pwr &= (~MCI_ST_DATA74DIREN &
1377 ~MCI_ST_DATA31DIREN &
1378 ~MCI_ST_DATA2DIREN);
1381 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1382 if (host->hw_designer != AMBA_VENDOR_ST)
1386 * The ST Micro variant use the ROD bit for something
1387 * else and only has OD (Open Drain).
1394 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1395 * gating the clock, the MCI_PWR_ON bit is cleared.
1397 if (!ios->clock && variant->pwrreg_clkgate)
1400 if (host->variant->explicit_mclk_control &&
1401 ios->clock != host->clock_cache) {
1402 ret = clk_set_rate(host->clk, ios->clock);
1404 dev_err(mmc_dev(host->mmc),
1405 "Error setting clock rate (%d)\n", ret);
1407 host->mclk = clk_get_rate(host->clk);
1409 host->clock_cache = ios->clock;
1411 spin_lock_irqsave(&host->lock, flags);
1413 mmci_set_clkreg(host, ios->clock);
1414 mmci_write_pwrreg(host, pwr);
1415 mmci_reg_delay(host);
1417 spin_unlock_irqrestore(&host->lock, flags);
1419 pm_runtime_mark_last_busy(mmc_dev(mmc));
1420 pm_runtime_put_autosuspend(mmc_dev(mmc));
1423 static int mmci_get_cd(struct mmc_host *mmc)
1425 struct mmci_host *host = mmc_priv(mmc);
1426 struct mmci_platform_data *plat = host->plat;
1427 unsigned int status = mmc_gpio_get_cd(mmc);
1429 if (status == -ENOSYS) {
1431 return 1; /* Assume always present */
1433 status = plat->status(mmc_dev(host->mmc));
1438 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1442 if (!IS_ERR(mmc->supply.vqmmc)) {
1444 pm_runtime_get_sync(mmc_dev(mmc));
1446 switch (ios->signal_voltage) {
1447 case MMC_SIGNAL_VOLTAGE_330:
1448 ret = regulator_set_voltage(mmc->supply.vqmmc,
1451 case MMC_SIGNAL_VOLTAGE_180:
1452 ret = regulator_set_voltage(mmc->supply.vqmmc,
1455 case MMC_SIGNAL_VOLTAGE_120:
1456 ret = regulator_set_voltage(mmc->supply.vqmmc,
1462 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1464 pm_runtime_mark_last_busy(mmc_dev(mmc));
1465 pm_runtime_put_autosuspend(mmc_dev(mmc));
1471 static struct mmc_host_ops mmci_ops = {
1472 .request = mmci_request,
1473 .pre_req = mmci_pre_request,
1474 .post_req = mmci_post_request,
1475 .set_ios = mmci_set_ios,
1476 .get_ro = mmc_gpio_get_ro,
1477 .get_cd = mmci_get_cd,
1478 .start_signal_voltage_switch = mmci_sig_volt_switch,
1481 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1483 struct mmci_host *host = mmc_priv(mmc);
1484 int ret = mmc_of_parse(mmc);
1489 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1490 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1491 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1492 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1493 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1494 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1495 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1496 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1497 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1498 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1499 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1500 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1502 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1503 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1504 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1505 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1510 static int mmci_probe(struct amba_device *dev,
1511 const struct amba_id *id)
1513 struct mmci_platform_data *plat = dev->dev.platform_data;
1514 struct device_node *np = dev->dev.of_node;
1515 struct variant_data *variant = id->data;
1516 struct mmci_host *host;
1517 struct mmc_host *mmc;
1520 /* Must have platform data or Device Tree. */
1522 dev_err(&dev->dev, "No plat data or DT found\n");
1527 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1532 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1536 ret = mmci_of_parse(np, mmc);
1540 host = mmc_priv(mmc);
1543 host->hw_designer = amba_manf(dev);
1544 host->hw_revision = amba_rev(dev);
1545 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1546 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1548 host->clk = devm_clk_get(&dev->dev, NULL);
1549 if (IS_ERR(host->clk)) {
1550 ret = PTR_ERR(host->clk);
1554 ret = clk_prepare_enable(host->clk);
1558 if (variant->qcom_fifo)
1559 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1561 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1564 host->variant = variant;
1565 host->mclk = clk_get_rate(host->clk);
1567 * According to the spec, mclk is max 100 MHz,
1568 * so we try to adjust the clock down to this,
1571 if (host->mclk > variant->f_max) {
1572 ret = clk_set_rate(host->clk, variant->f_max);
1575 host->mclk = clk_get_rate(host->clk);
1576 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1580 host->phybase = dev->res.start;
1581 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1582 if (IS_ERR(host->base)) {
1583 ret = PTR_ERR(host->base);
1588 * The ARM and ST versions of the block have slightly different
1589 * clock divider equations which means that the minimum divider
1591 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1593 if (variant->st_clkdiv)
1594 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1595 else if (variant->explicit_mclk_control)
1596 mmc->f_min = clk_round_rate(host->clk, 100000);
1598 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1600 * If no maximum operating frequency is supplied, fall back to use
1601 * the module parameter, which has a (low) default value in case it
1602 * is not specified. Either value must not exceed the clock rate into
1603 * the block, of course.
1606 mmc->f_max = variant->explicit_mclk_control ?
1607 min(variant->f_max, mmc->f_max) :
1608 min(host->mclk, mmc->f_max);
1610 mmc->f_max = variant->explicit_mclk_control ?
1611 fmax : min(host->mclk, fmax);
1614 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1616 /* Get regulators and the supported OCR mask */
1617 ret = mmc_regulator_get_supply(mmc);
1618 if (ret == -EPROBE_DEFER)
1621 if (!mmc->ocr_avail)
1622 mmc->ocr_avail = plat->ocr_mask;
1623 else if (plat->ocr_mask)
1624 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1626 /* DT takes precedence over platform data. */
1628 if (!plat->cd_invert)
1629 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1630 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1633 /* We support these capabilities. */
1634 mmc->caps |= MMC_CAP_CMD23;
1636 if (variant->busy_detect) {
1637 mmci_ops.card_busy = mmci_card_busy;
1638 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1639 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1640 mmc->max_busy_timeout = 0;
1643 mmc->ops = &mmci_ops;
1645 /* We support these PM capabilities. */
1646 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1651 mmc->max_segs = NR_SG;
1654 * Since only a certain number of bits are valid in the data length
1655 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1658 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1661 * Set the maximum segment size. Since we aren't doing DMA
1662 * (yet) we are only limited by the data length register.
1664 mmc->max_seg_size = mmc->max_req_size;
1667 * Block size can be up to 2048 bytes, but must be a power of two.
1669 mmc->max_blk_size = 1 << 11;
1672 * Limit the number of blocks transferred so that we don't overflow
1673 * the maximum request size.
1675 mmc->max_blk_count = mmc->max_req_size >> 11;
1677 spin_lock_init(&host->lock);
1679 writel(0, host->base + MMCIMASK0);
1680 writel(0, host->base + MMCIMASK1);
1681 writel(0xfff, host->base + MMCICLEAR);
1685 * - not using DT but using a descriptor table, or
1686 * - using a table of descriptors ALONGSIDE DT, or
1687 * look up these descriptors named "cd" and "wp" right here, fail
1688 * silently of these do not exist and proceed to try platform data
1691 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1693 if (ret == -EPROBE_DEFER)
1695 else if (gpio_is_valid(plat->gpio_cd)) {
1696 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1702 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1704 if (ret == -EPROBE_DEFER)
1706 else if (gpio_is_valid(plat->gpio_wp)) {
1707 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1714 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1715 DRIVER_NAME " (cmd)", host);
1720 host->singleirq = true;
1722 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1723 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1728 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1730 amba_set_drvdata(dev, mmc);
1732 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1733 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1734 amba_rev(dev), (unsigned long long)dev->res.start,
1735 dev->irq[0], dev->irq[1]);
1737 mmci_dma_setup(host);
1739 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1740 pm_runtime_use_autosuspend(&dev->dev);
1744 pm_runtime_put(&dev->dev);
1748 clk_disable_unprepare(host->clk);
1754 static int mmci_remove(struct amba_device *dev)
1756 struct mmc_host *mmc = amba_get_drvdata(dev);
1759 struct mmci_host *host = mmc_priv(mmc);
1762 * Undo pm_runtime_put() in probe. We use the _sync
1763 * version here so that we can access the primecell.
1765 pm_runtime_get_sync(&dev->dev);
1767 mmc_remove_host(mmc);
1769 writel(0, host->base + MMCIMASK0);
1770 writel(0, host->base + MMCIMASK1);
1772 writel(0, host->base + MMCICOMMAND);
1773 writel(0, host->base + MMCIDATACTRL);
1775 mmci_dma_release(host);
1776 clk_disable_unprepare(host->clk);
1784 static void mmci_save(struct mmci_host *host)
1786 unsigned long flags;
1788 spin_lock_irqsave(&host->lock, flags);
1790 writel(0, host->base + MMCIMASK0);
1791 if (host->variant->pwrreg_nopower) {
1792 writel(0, host->base + MMCIDATACTRL);
1793 writel(0, host->base + MMCIPOWER);
1794 writel(0, host->base + MMCICLOCK);
1796 mmci_reg_delay(host);
1798 spin_unlock_irqrestore(&host->lock, flags);
1801 static void mmci_restore(struct mmci_host *host)
1803 unsigned long flags;
1805 spin_lock_irqsave(&host->lock, flags);
1807 if (host->variant->pwrreg_nopower) {
1808 writel(host->clk_reg, host->base + MMCICLOCK);
1809 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1810 writel(host->pwr_reg, host->base + MMCIPOWER);
1812 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1813 mmci_reg_delay(host);
1815 spin_unlock_irqrestore(&host->lock, flags);
1818 static int mmci_runtime_suspend(struct device *dev)
1820 struct amba_device *adev = to_amba_device(dev);
1821 struct mmc_host *mmc = amba_get_drvdata(adev);
1824 struct mmci_host *host = mmc_priv(mmc);
1825 pinctrl_pm_select_sleep_state(dev);
1827 clk_disable_unprepare(host->clk);
1833 static int mmci_runtime_resume(struct device *dev)
1835 struct amba_device *adev = to_amba_device(dev);
1836 struct mmc_host *mmc = amba_get_drvdata(adev);
1839 struct mmci_host *host = mmc_priv(mmc);
1840 clk_prepare_enable(host->clk);
1842 pinctrl_pm_select_default_state(dev);
1849 static const struct dev_pm_ops mmci_dev_pm_ops = {
1850 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1851 pm_runtime_force_resume)
1852 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1855 static struct amba_id mmci_ids[] = {
1859 .data = &variant_arm,
1864 .data = &variant_arm_extended_fifo,
1869 .data = &variant_arm_extended_fifo_hwfc,
1874 .data = &variant_arm,
1876 /* ST Micro variants */
1880 .data = &variant_u300,
1885 .data = &variant_nomadik,
1890 .data = &variant_nomadik,
1895 .data = &variant_ux500,
1900 .data = &variant_ux500v2,
1902 /* Qualcomm variants */
1906 .data = &variant_qcom,
1911 MODULE_DEVICE_TABLE(amba, mmci_ids);
1913 static struct amba_driver mmci_driver = {
1915 .name = DRIVER_NAME,
1916 .pm = &mmci_dev_pm_ops,
1918 .probe = mmci_probe,
1919 .remove = mmci_remove,
1920 .id_table = mmci_ids,
1923 module_amba_driver(mmci_driver);
1925 module_param(fmax, uint, 0444);
1927 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1928 MODULE_LICENSE("GPL");