]> Git Repo - linux.git/blob - drivers/usb/host/xhci.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72
73         do {
74                 result = readl(ptr);
75                 if (result == ~(u32)0)          /* card removed */
76                         return -ENODEV;
77                 result &= mask;
78                 if (result == done)
79                         return 0;
80                 udelay(1);
81                 usec--;
82         } while (usec > 0);
83         return -ETIMEDOUT;
84 }
85
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91         u32 halted;
92         u32 cmd;
93         u32 mask;
94
95         mask = ~(XHCI_IRQS);
96         halted = readl(&xhci->op_regs->status) & STS_HALT;
97         if (!halted)
98                 mask &= ~CMD_RUN;
99
100         cmd = readl(&xhci->op_regs->command);
101         cmd &= mask;
102         writel(cmd, &xhci->op_regs->command);
103 }
104
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115         int ret;
116         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117         xhci_quiesce(xhci);
118
119         ret = xhci_handshake(&xhci->op_regs->status,
120                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121         if (ret) {
122                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123                 return ret;
124         }
125         xhci->xhc_state |= XHCI_STATE_HALTED;
126         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret)
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170         u32 command;
171         u32 state;
172         int ret;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command,
202                         CMD_RESET, 0, 10 * 1000 * 1000);
203         if (ret)
204                 return ret;
205
206         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208
209         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210                          "Wait for controller to be ready for doorbell rings");
211         /*
212          * xHCI cannot write to any doorbells or operational registers other
213          * than status until the "Controller Not Ready" flag is cleared.
214          */
215         ret = xhci_handshake(&xhci->op_regs->status,
216                         STS_CNR, 0, 10 * 1000 * 1000);
217
218         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb2_rhub.bus_state.suspended_ports = 0;
220         xhci->usb2_rhub.bus_state.resuming_ports = 0;
221         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222         xhci->usb3_rhub.bus_state.suspended_ports = 0;
223         xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225         return ret;
226 }
227
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231         int err, i;
232         u64 val;
233
234         /*
235          * Some Renesas controllers get into a weird state if they are
236          * reset while programmed with 64bit addresses (they will preserve
237          * the top half of the address in internal, non visible
238          * registers). You end up with half the address coming from the
239          * kernel, and the other half coming from the firmware. Also,
240          * changing the programming leads to extra accesses even if the
241          * controller is supposed to be halted. The controller ends up with
242          * a fatal fault, and is then ripe for being properly reset.
243          *
244          * Special care is taken to only apply this if the device is behind
245          * an iommu. Doing anything when there is no iommu is definitely
246          * unsafe...
247          */
248         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
249                 return;
250
251         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
252
253         /* Clear HSEIE so that faults do not get signaled */
254         val = readl(&xhci->op_regs->command);
255         val &= ~CMD_HSEIE;
256         writel(val, &xhci->op_regs->command);
257
258         /* Clear HSE (aka FATAL) */
259         val = readl(&xhci->op_regs->status);
260         val |= STS_FATAL;
261         writel(val, &xhci->op_regs->status);
262
263         /* Now zero the registers, and brace for impact */
264         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
265         if (upper_32_bits(val))
266                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
267         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
268         if (upper_32_bits(val))
269                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
270
271         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
272                 struct xhci_intr_reg __iomem *ir;
273
274                 ir = &xhci->run_regs->ir_set[i];
275                 val = xhci_read_64(xhci, &ir->erst_base);
276                 if (upper_32_bits(val))
277                         xhci_write_64(xhci, 0, &ir->erst_base);
278                 val= xhci_read_64(xhci, &ir->erst_dequeue);
279                 if (upper_32_bits(val))
280                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
281         }
282
283         /* Wait for the fault to appear. It will be cleared on reset */
284         err = xhci_handshake(&xhci->op_regs->status,
285                              STS_FATAL, STS_FATAL,
286                              XHCI_MAX_HALT_USEC);
287         if (!err)
288                 xhci_info(xhci, "Fault detected\n");
289 }
290
291 #ifdef CONFIG_USB_PCI
292 /*
293  * Set up MSI
294  */
295 static int xhci_setup_msi(struct xhci_hcd *xhci)
296 {
297         int ret;
298         /*
299          * TODO:Check with MSI Soc for sysdev
300          */
301         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
302
303         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
304         if (ret < 0) {
305                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
306                                 "failed to allocate MSI entry");
307                 return ret;
308         }
309
310         ret = request_irq(pdev->irq, xhci_msi_irq,
311                                 0, "xhci_hcd", xhci_to_hcd(xhci));
312         if (ret) {
313                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
314                                 "disable MSI interrupt");
315                 pci_free_irq_vectors(pdev);
316         }
317
318         return ret;
319 }
320
321 /*
322  * Set up MSI-X
323  */
324 static int xhci_setup_msix(struct xhci_hcd *xhci)
325 {
326         int i, ret = 0;
327         struct usb_hcd *hcd = xhci_to_hcd(xhci);
328         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329
330         /*
331          * calculate number of msi-x vectors supported.
332          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
333          *   with max number of interrupters based on the xhci HCSPARAMS1.
334          * - num_online_cpus: maximum msi-x vectors per CPUs core.
335          *   Add additional 1 vector to ensure always available interrupt.
336          */
337         xhci->msix_count = min(num_online_cpus() + 1,
338                                 HCS_MAX_INTRS(xhci->hcs_params1));
339
340         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
341                         PCI_IRQ_MSIX);
342         if (ret < 0) {
343                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
344                                 "Failed to enable MSI-X");
345                 return ret;
346         }
347
348         for (i = 0; i < xhci->msix_count; i++) {
349                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
350                                 "xhci_hcd", xhci_to_hcd(xhci));
351                 if (ret)
352                         goto disable_msix;
353         }
354
355         hcd->msix_enabled = 1;
356         return ret;
357
358 disable_msix:
359         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
360         while (--i >= 0)
361                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
362         pci_free_irq_vectors(pdev);
363         return ret;
364 }
365
366 /* Free any IRQs and disable MSI-X */
367 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
368 {
369         struct usb_hcd *hcd = xhci_to_hcd(xhci);
370         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
371
372         if (xhci->quirks & XHCI_PLAT)
373                 return;
374
375         /* return if using legacy interrupt */
376         if (hcd->irq > 0)
377                 return;
378
379         if (hcd->msix_enabled) {
380                 int i;
381
382                 for (i = 0; i < xhci->msix_count; i++)
383                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
384         } else {
385                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
386         }
387
388         pci_free_irq_vectors(pdev);
389         hcd->msix_enabled = 0;
390 }
391
392 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
393 {
394         struct usb_hcd *hcd = xhci_to_hcd(xhci);
395
396         if (hcd->msix_enabled) {
397                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
398                 int i;
399
400                 for (i = 0; i < xhci->msix_count; i++)
401                         synchronize_irq(pci_irq_vector(pdev, i));
402         }
403 }
404
405 static int xhci_try_enable_msi(struct usb_hcd *hcd)
406 {
407         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
408         struct pci_dev  *pdev;
409         int ret;
410
411         /* The xhci platform device has set up IRQs through usb_add_hcd. */
412         if (xhci->quirks & XHCI_PLAT)
413                 return 0;
414
415         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
416         /*
417          * Some Fresco Logic host controllers advertise MSI, but fail to
418          * generate interrupts.  Don't even try to enable MSI.
419          */
420         if (xhci->quirks & XHCI_BROKEN_MSI)
421                 goto legacy_irq;
422
423         /* unregister the legacy interrupt */
424         if (hcd->irq)
425                 free_irq(hcd->irq, hcd);
426         hcd->irq = 0;
427
428         ret = xhci_setup_msix(xhci);
429         if (ret)
430                 /* fall back to msi*/
431                 ret = xhci_setup_msi(xhci);
432
433         if (!ret) {
434                 hcd->msi_enabled = 1;
435                 return 0;
436         }
437
438         if (!pdev->irq) {
439                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
440                 return -EINVAL;
441         }
442
443  legacy_irq:
444         if (!strlen(hcd->irq_descr))
445                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
446                          hcd->driver->description, hcd->self.busnum);
447
448         /* fall back to legacy interrupt*/
449         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
450                         hcd->irq_descr, hcd);
451         if (ret) {
452                 xhci_err(xhci, "request interrupt %d failed\n",
453                                 pdev->irq);
454                 return ret;
455         }
456         hcd->irq = pdev->irq;
457         return 0;
458 }
459
460 #else
461
462 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
463 {
464         return 0;
465 }
466
467 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
468 {
469 }
470
471 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
472 {
473 }
474
475 #endif
476
477 static void compliance_mode_recovery(struct timer_list *t)
478 {
479         struct xhci_hcd *xhci;
480         struct usb_hcd *hcd;
481         struct xhci_hub *rhub;
482         u32 temp;
483         int i;
484
485         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
486         rhub = &xhci->usb3_rhub;
487
488         for (i = 0; i < rhub->num_ports; i++) {
489                 temp = readl(rhub->ports[i]->addr);
490                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
491                         /*
492                          * Compliance Mode Detected. Letting USB Core
493                          * handle the Warm Reset
494                          */
495                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                                         "Compliance mode detected->port %d",
497                                         i + 1);
498                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499                                         "Attempting compliance mode recovery");
500                         hcd = xhci->shared_hcd;
501
502                         if (hcd->state == HC_STATE_SUSPENDED)
503                                 usb_hcd_resume_root_hub(hcd);
504
505                         usb_hcd_poll_rh_status(hcd);
506                 }
507         }
508
509         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
510                 mod_timer(&xhci->comp_mode_recovery_timer,
511                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
512 }
513
514 /*
515  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
516  * that causes ports behind that hardware to enter compliance mode sometimes.
517  * The quirk creates a timer that polls every 2 seconds the link state of
518  * each host controller's port and recovers it by issuing a Warm reset
519  * if Compliance mode is detected, otherwise the port will become "dead" (no
520  * device connections or disconnections will be detected anymore). Becasue no
521  * status event is generated when entering compliance mode (per xhci spec),
522  * this quirk is needed on systems that have the failing hardware installed.
523  */
524 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
525 {
526         xhci->port_status_u0 = 0;
527         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
528                     0);
529         xhci->comp_mode_recovery_timer.expires = jiffies +
530                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
531
532         add_timer(&xhci->comp_mode_recovery_timer);
533         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
534                         "Compliance mode recovery timer initialized");
535 }
536
537 /*
538  * This function identifies the systems that have installed the SN65LVPE502CP
539  * USB3.0 re-driver and that need the Compliance Mode Quirk.
540  * Systems:
541  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
542  */
543 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
544 {
545         const char *dmi_product_name, *dmi_sys_vendor;
546
547         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
548         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
549         if (!dmi_product_name || !dmi_sys_vendor)
550                 return false;
551
552         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
553                 return false;
554
555         if (strstr(dmi_product_name, "Z420") ||
556                         strstr(dmi_product_name, "Z620") ||
557                         strstr(dmi_product_name, "Z820") ||
558                         strstr(dmi_product_name, "Z1 Workstation"))
559                 return true;
560
561         return false;
562 }
563
564 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
565 {
566         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
567 }
568
569
570 /*
571  * Initialize memory for HCD and xHC (one-time init).
572  *
573  * Program the PAGESIZE register, initialize the device context array, create
574  * device contexts (?), set up a command ring segment (or two?), create event
575  * ring (one for now).
576  */
577 static int xhci_init(struct usb_hcd *hcd)
578 {
579         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
580         int retval = 0;
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
583         spin_lock_init(&xhci->lock);
584         if (xhci->hci_version == 0x95 && link_quirk) {
585                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
586                                 "QUIRK: Not clearing Link TRB chain bits.");
587                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
588         } else {
589                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
590                                 "xHCI doesn't need link TRB QUIRK");
591         }
592         retval = xhci_mem_init(xhci, GFP_KERNEL);
593         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
594
595         /* Initializing Compliance Mode Recovery Data If Needed */
596         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
597                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
598                 compliance_mode_recovery_timer_init(xhci);
599         }
600
601         return retval;
602 }
603
604 /*-------------------------------------------------------------------------*/
605
606
607 static int xhci_run_finished(struct xhci_hcd *xhci)
608 {
609         if (xhci_start(xhci)) {
610                 xhci_halt(xhci);
611                 return -ENODEV;
612         }
613         xhci->shared_hcd->state = HC_STATE_RUNNING;
614         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
615
616         if (xhci->quirks & XHCI_NEC_HOST)
617                 xhci_ring_cmd_db(xhci);
618
619         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
620                         "Finished xhci_run for USB3 roothub");
621         return 0;
622 }
623
624 /*
625  * Start the HC after it was halted.
626  *
627  * This function is called by the USB core when the HC driver is added.
628  * Its opposite is xhci_stop().
629  *
630  * xhci_init() must be called once before this function can be called.
631  * Reset the HC, enable device slot contexts, program DCBAAP, and
632  * set command ring pointer and event ring pointer.
633  *
634  * Setup MSI-X vectors and enable interrupts.
635  */
636 int xhci_run(struct usb_hcd *hcd)
637 {
638         u32 temp;
639         u64 temp_64;
640         int ret;
641         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
642
643         /* Start the xHCI host controller running only after the USB 2.0 roothub
644          * is setup.
645          */
646
647         hcd->uses_new_polling = 1;
648         if (!usb_hcd_is_primary_hcd(hcd))
649                 return xhci_run_finished(xhci);
650
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
652
653         ret = xhci_try_enable_msi(hcd);
654         if (ret)
655                 return ret;
656
657         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
658         temp_64 &= ~ERST_PTR_MASK;
659         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
660                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
661
662         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
663                         "// Set the interrupt modulation register");
664         temp = readl(&xhci->ir_set->irq_control);
665         temp &= ~ER_IRQ_INTERVAL_MASK;
666         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
667         writel(temp, &xhci->ir_set->irq_control);
668
669         /* Set the HCD state before we enable the irqs */
670         temp = readl(&xhci->op_regs->command);
671         temp |= (CMD_EIE);
672         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673                         "// Enable interrupts, cmd = 0x%x.", temp);
674         writel(temp, &xhci->op_regs->command);
675
676         temp = readl(&xhci->ir_set->irq_pending);
677         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
678                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
679                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
680         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
681
682         if (xhci->quirks & XHCI_NEC_HOST) {
683                 struct xhci_command *command;
684
685                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
686                 if (!command)
687                         return -ENOMEM;
688
689                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
690                                 TRB_TYPE(TRB_NEC_GET_FW));
691                 if (ret)
692                         xhci_free_command(xhci, command);
693         }
694         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695                         "Finished xhci_run for USB2 roothub");
696
697         xhci_dbc_init(xhci);
698
699         xhci_debugfs_init(xhci);
700
701         return 0;
702 }
703 EXPORT_SYMBOL_GPL(xhci_run);
704
705 /*
706  * Stop xHCI driver.
707  *
708  * This function is called by the USB core when the HC driver is removed.
709  * Its opposite is xhci_run().
710  *
711  * Disable device contexts, disable IRQs, and quiesce the HC.
712  * Reset the HC, finish any completed transactions, and cleanup memory.
713  */
714 static void xhci_stop(struct usb_hcd *hcd)
715 {
716         u32 temp;
717         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718
719         mutex_lock(&xhci->mutex);
720
721         /* Only halt host and free memory after both hcds are removed */
722         if (!usb_hcd_is_primary_hcd(hcd)) {
723                 mutex_unlock(&xhci->mutex);
724                 return;
725         }
726
727         xhci_dbc_exit(xhci);
728
729         spin_lock_irq(&xhci->lock);
730         xhci->xhc_state |= XHCI_STATE_HALTED;
731         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
732         xhci_halt(xhci);
733         xhci_reset(xhci);
734         spin_unlock_irq(&xhci->lock);
735
736         xhci_cleanup_msix(xhci);
737
738         /* Deleting Compliance Mode Recovery Timer */
739         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
740                         (!(xhci_all_ports_seen_u0(xhci)))) {
741                 del_timer_sync(&xhci->comp_mode_recovery_timer);
742                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
743                                 "%s: compliance mode recovery timer deleted",
744                                 __func__);
745         }
746
747         if (xhci->quirks & XHCI_AMD_PLL_FIX)
748                 usb_amd_dev_put();
749
750         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
751                         "// Disabling event ring interrupts");
752         temp = readl(&xhci->op_regs->status);
753         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
754         temp = readl(&xhci->ir_set->irq_pending);
755         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
756
757         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
758         xhci_mem_cleanup(xhci);
759         xhci_debugfs_exit(xhci);
760         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761                         "xhci_stop completed - status = %x",
762                         readl(&xhci->op_regs->status));
763         mutex_unlock(&xhci->mutex);
764 }
765
766 /*
767  * Shutdown HC (not bus-specific)
768  *
769  * This is called when the machine is rebooting or halting.  We assume that the
770  * machine will be powered off, and the HC's internal state will be reset.
771  * Don't bother to free memory.
772  *
773  * This will only ever be called with the main usb_hcd (the USB3 roothub).
774  */
775 static void xhci_shutdown(struct usb_hcd *hcd)
776 {
777         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
778
779         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
780                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
781
782         spin_lock_irq(&xhci->lock);
783         xhci_halt(xhci);
784         /* Workaround for spurious wakeups at shutdown with HSW */
785         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
786                 xhci_reset(xhci);
787         spin_unlock_irq(&xhci->lock);
788
789         xhci_cleanup_msix(xhci);
790
791         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
792                         "xhci_shutdown completed - status = %x",
793                         readl(&xhci->op_regs->status));
794
795         /* Yet another workaround for spurious wakeups at shutdown with HSW */
796         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
797                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
798 }
799
800 #ifdef CONFIG_PM
801 static void xhci_save_registers(struct xhci_hcd *xhci)
802 {
803         xhci->s3.command = readl(&xhci->op_regs->command);
804         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
805         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
806         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
807         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
808         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
809         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
810         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
811         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
812 }
813
814 static void xhci_restore_registers(struct xhci_hcd *xhci)
815 {
816         writel(xhci->s3.command, &xhci->op_regs->command);
817         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
818         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
819         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
820         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
821         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
822         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
823         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
824         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
825 }
826
827 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
828 {
829         u64     val_64;
830
831         /* step 2: initialize command ring buffer */
832         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
833         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
834                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
835                                       xhci->cmd_ring->dequeue) &
836                  (u64) ~CMD_RING_RSVD_BITS) |
837                 xhci->cmd_ring->cycle_state;
838         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
839                         "// Setting command ring address to 0x%llx",
840                         (long unsigned long) val_64);
841         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
842 }
843
844 /*
845  * The whole command ring must be cleared to zero when we suspend the host.
846  *
847  * The host doesn't save the command ring pointer in the suspend well, so we
848  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
849  * aligned, because of the reserved bits in the command ring dequeue pointer
850  * register.  Therefore, we can't just set the dequeue pointer back in the
851  * middle of the ring (TRBs are 16-byte aligned).
852  */
853 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
854 {
855         struct xhci_ring *ring;
856         struct xhci_segment *seg;
857
858         ring = xhci->cmd_ring;
859         seg = ring->deq_seg;
860         do {
861                 memset(seg->trbs, 0,
862                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
863                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
864                         cpu_to_le32(~TRB_CYCLE);
865                 seg = seg->next;
866         } while (seg != ring->deq_seg);
867
868         /* Reset the software enqueue and dequeue pointers */
869         ring->deq_seg = ring->first_seg;
870         ring->dequeue = ring->first_seg->trbs;
871         ring->enq_seg = ring->deq_seg;
872         ring->enqueue = ring->dequeue;
873
874         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
875         /*
876          * Ring is now zeroed, so the HW should look for change of ownership
877          * when the cycle bit is set to 1.
878          */
879         ring->cycle_state = 1;
880
881         /*
882          * Reset the hardware dequeue pointer.
883          * Yes, this will need to be re-written after resume, but we're paranoid
884          * and want to make sure the hardware doesn't access bogus memory
885          * because, say, the BIOS or an SMI started the host without changing
886          * the command ring pointers.
887          */
888         xhci_set_cmd_ring_deq(xhci);
889 }
890
891 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
892 {
893         struct xhci_port **ports;
894         int port_index;
895         unsigned long flags;
896         u32 t1, t2, portsc;
897
898         spin_lock_irqsave(&xhci->lock, flags);
899
900         /* disable usb3 ports Wake bits */
901         port_index = xhci->usb3_rhub.num_ports;
902         ports = xhci->usb3_rhub.ports;
903         while (port_index--) {
904                 t1 = readl(ports[port_index]->addr);
905                 portsc = t1;
906                 t1 = xhci_port_state_to_neutral(t1);
907                 t2 = t1 & ~PORT_WAKE_BITS;
908                 if (t1 != t2) {
909                         writel(t2, ports[port_index]->addr);
910                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
911                                  xhci->usb3_rhub.hcd->self.busnum,
912                                  port_index + 1, portsc, t2);
913                 }
914         }
915
916         /* disable usb2 ports Wake bits */
917         port_index = xhci->usb2_rhub.num_ports;
918         ports = xhci->usb2_rhub.ports;
919         while (port_index--) {
920                 t1 = readl(ports[port_index]->addr);
921                 portsc = t1;
922                 t1 = xhci_port_state_to_neutral(t1);
923                 t2 = t1 & ~PORT_WAKE_BITS;
924                 if (t1 != t2) {
925                         writel(t2, ports[port_index]->addr);
926                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
927                                  xhci->usb2_rhub.hcd->self.busnum,
928                                  port_index + 1, portsc, t2);
929                 }
930         }
931         spin_unlock_irqrestore(&xhci->lock, flags);
932 }
933
934 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
935 {
936         struct xhci_port        **ports;
937         int                     port_index;
938         u32                     status;
939         u32                     portsc;
940
941         status = readl(&xhci->op_regs->status);
942         if (status & STS_EINT)
943                 return true;
944         /*
945          * Checking STS_EINT is not enough as there is a lag between a change
946          * bit being set and the Port Status Change Event that it generated
947          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
948          */
949
950         port_index = xhci->usb2_rhub.num_ports;
951         ports = xhci->usb2_rhub.ports;
952         while (port_index--) {
953                 portsc = readl(ports[port_index]->addr);
954                 if (portsc & PORT_CHANGE_MASK ||
955                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
956                         return true;
957         }
958         port_index = xhci->usb3_rhub.num_ports;
959         ports = xhci->usb3_rhub.ports;
960         while (port_index--) {
961                 portsc = readl(ports[port_index]->addr);
962                 if (portsc & PORT_CHANGE_MASK ||
963                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
964                         return true;
965         }
966         return false;
967 }
968
969 /*
970  * Stop HC (not bus-specific)
971  *
972  * This is called when the machine transition into S3/S4 mode.
973  *
974  */
975 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
976 {
977         int                     rc = 0;
978         unsigned int            delay = XHCI_MAX_HALT_USEC;
979         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
980         u32                     command;
981         u32                     res;
982
983         if (!hcd->state)
984                 return 0;
985
986         if (hcd->state != HC_STATE_SUSPENDED ||
987                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
988                 return -EINVAL;
989
990         xhci_dbc_suspend(xhci);
991
992         /* Clear root port wake on bits if wakeup not allowed. */
993         if (!do_wakeup)
994                 xhci_disable_port_wake_on_bits(xhci);
995
996         /* Don't poll the roothubs on bus suspend. */
997         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
998         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999         del_timer_sync(&hcd->rh_timer);
1000         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001         del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004                 usleep_range(1000, 1500);
1005
1006         spin_lock_irq(&xhci->lock);
1007         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009         /* step 1: stop endpoint */
1010         /* skipped assuming that port suspend has done */
1011
1012         /* step 2: clear Run/Stop bit */
1013         command = readl(&xhci->op_regs->command);
1014         command &= ~CMD_RUN;
1015         writel(command, &xhci->op_regs->command);
1016
1017         /* Some chips from Fresco Logic need an extraordinary delay */
1018         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020         if (xhci_handshake(&xhci->op_regs->status,
1021                       STS_HALT, STS_HALT, delay)) {
1022                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023                 spin_unlock_irq(&xhci->lock);
1024                 return -ETIMEDOUT;
1025         }
1026         xhci_clear_command_ring(xhci);
1027
1028         /* step 3: save registers */
1029         xhci_save_registers(xhci);
1030
1031         /* step 4: set CSS flag */
1032         command = readl(&xhci->op_regs->command);
1033         command |= CMD_CSS;
1034         writel(command, &xhci->op_regs->command);
1035         xhci->broken_suspend = 0;
1036         if (xhci_handshake(&xhci->op_regs->status,
1037                                 STS_SAVE, 0, 10 * 1000)) {
1038         /*
1039          * AMD SNPS xHC 3.0 occasionally does not clear the
1040          * SSS bit of USBSTS and when driver tries to poll
1041          * to see if the xHC clears BIT(8) which never happens
1042          * and driver assumes that controller is not responding
1043          * and times out. To workaround this, its good to check
1044          * if SRE and HCE bits are not set (as per xhci
1045          * Section 5.4.2) and bypass the timeout.
1046          */
1047                 res = readl(&xhci->op_regs->status);
1048                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049                     (((res & STS_SRE) == 0) &&
1050                                 ((res & STS_HCE) == 0))) {
1051                         xhci->broken_suspend = 1;
1052                 } else {
1053                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054                         spin_unlock_irq(&xhci->lock);
1055                         return -ETIMEDOUT;
1056                 }
1057         }
1058         spin_unlock_irq(&xhci->lock);
1059
1060         /*
1061          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062          * is about to be suspended.
1063          */
1064         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065                         (!(xhci_all_ports_seen_u0(xhci)))) {
1066                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1067                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068                                 "%s: compliance mode recovery timer deleted",
1069                                 __func__);
1070         }
1071
1072         /* step 5: remove core well power */
1073         /* synchronize irq when using MSI-X */
1074         xhci_msix_sync_irqs(xhci);
1075
1076         return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080 /*
1081  * start xHC (not bus-specific)
1082  *
1083  * This is called when the machine transition from S3/S4 mode.
1084  *
1085  */
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088         u32                     command, temp = 0;
1089         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1090         struct usb_hcd          *secondary_hcd;
1091         int                     retval = 0;
1092         bool                    comp_timer_running = false;
1093
1094         if (!hcd->state)
1095                 return 0;
1096
1097         /* Wait a bit if either of the roothubs need to settle from the
1098          * transition into bus suspend.
1099          */
1100
1101         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1102             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1103                 msleep(100);
1104
1105         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1106         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1107
1108         spin_lock_irq(&xhci->lock);
1109         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1110                 hibernated = true;
1111
1112         if (!hibernated) {
1113                 /* step 1: restore register */
1114                 xhci_restore_registers(xhci);
1115                 /* step 2: initialize command ring buffer */
1116                 xhci_set_cmd_ring_deq(xhci);
1117                 /* step 3: restore state and start state*/
1118                 /* step 3: set CRS flag */
1119                 command = readl(&xhci->op_regs->command);
1120                 command |= CMD_CRS;
1121                 writel(command, &xhci->op_regs->command);
1122                 /*
1123                  * Some controllers take up to 55+ ms to complete the controller
1124                  * restore so setting the timeout to 100ms. Xhci specification
1125                  * doesn't mention any timeout value.
1126                  */
1127                 if (xhci_handshake(&xhci->op_regs->status,
1128                               STS_RESTORE, 0, 100 * 1000)) {
1129                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1130                         spin_unlock_irq(&xhci->lock);
1131                         return -ETIMEDOUT;
1132                 }
1133                 temp = readl(&xhci->op_regs->status);
1134         }
1135
1136         /* If restore operation fails, re-initialize the HC during resume */
1137         if ((temp & STS_SRE) || hibernated) {
1138
1139                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1140                                 !(xhci_all_ports_seen_u0(xhci))) {
1141                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1142                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1143                                 "Compliance Mode Recovery Timer deleted!");
1144                 }
1145
1146                 /* Let the USB core know _both_ roothubs lost power. */
1147                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1148                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1149
1150                 xhci_dbg(xhci, "Stop HCD\n");
1151                 xhci_halt(xhci);
1152                 xhci_zero_64b_regs(xhci);
1153                 xhci_reset(xhci);
1154                 spin_unlock_irq(&xhci->lock);
1155                 xhci_cleanup_msix(xhci);
1156
1157                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1158                 temp = readl(&xhci->op_regs->status);
1159                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1160                 temp = readl(&xhci->ir_set->irq_pending);
1161                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1162
1163                 xhci_dbg(xhci, "cleaning up memory\n");
1164                 xhci_mem_cleanup(xhci);
1165                 xhci_debugfs_exit(xhci);
1166                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1167                             readl(&xhci->op_regs->status));
1168
1169                 /* USB core calls the PCI reinit and start functions twice:
1170                  * first with the primary HCD, and then with the secondary HCD.
1171                  * If we don't do the same, the host will never be started.
1172                  */
1173                 if (!usb_hcd_is_primary_hcd(hcd))
1174                         secondary_hcd = hcd;
1175                 else
1176                         secondary_hcd = xhci->shared_hcd;
1177
1178                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1179                 retval = xhci_init(hcd->primary_hcd);
1180                 if (retval)
1181                         return retval;
1182                 comp_timer_running = true;
1183
1184                 xhci_dbg(xhci, "Start the primary HCD\n");
1185                 retval = xhci_run(hcd->primary_hcd);
1186                 if (!retval) {
1187                         xhci_dbg(xhci, "Start the secondary HCD\n");
1188                         retval = xhci_run(secondary_hcd);
1189                 }
1190                 hcd->state = HC_STATE_SUSPENDED;
1191                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1192                 goto done;
1193         }
1194
1195         /* step 4: set Run/Stop bit */
1196         command = readl(&xhci->op_regs->command);
1197         command |= CMD_RUN;
1198         writel(command, &xhci->op_regs->command);
1199         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1200                   0, 250 * 1000);
1201
1202         /* step 5: walk topology and initialize portsc,
1203          * portpmsc and portli
1204          */
1205         /* this is done in bus_resume */
1206
1207         /* step 6: restart each of the previously
1208          * Running endpoints by ringing their doorbells
1209          */
1210
1211         spin_unlock_irq(&xhci->lock);
1212
1213         xhci_dbc_resume(xhci);
1214
1215  done:
1216         if (retval == 0) {
1217                 /* Resume root hubs only when have pending events. */
1218                 if (xhci_pending_portevent(xhci)) {
1219                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1220                         usb_hcd_resume_root_hub(hcd);
1221                 }
1222         }
1223
1224         /*
1225          * If system is subject to the Quirk, Compliance Mode Timer needs to
1226          * be re-initialized Always after a system resume. Ports are subject
1227          * to suffer the Compliance Mode issue again. It doesn't matter if
1228          * ports have entered previously to U0 before system's suspension.
1229          */
1230         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1231                 compliance_mode_recovery_timer_init(xhci);
1232
1233         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1234                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1235
1236         /* Re-enable port polling. */
1237         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1238         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1239         usb_hcd_poll_rh_status(xhci->shared_hcd);
1240         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1241         usb_hcd_poll_rh_status(hcd);
1242
1243         return retval;
1244 }
1245 EXPORT_SYMBOL_GPL(xhci_resume);
1246 #endif  /* CONFIG_PM */
1247
1248 /*-------------------------------------------------------------------------*/
1249
1250 /*
1251  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1252  * we'll copy the actual data into the TRB address register. This is limited to
1253  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1254  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1255  */
1256 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1257                                 gfp_t mem_flags)
1258 {
1259         if (xhci_urb_suitable_for_idt(urb))
1260                 return 0;
1261
1262         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1263 }
1264
1265 /**
1266  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1267  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1268  * value to right shift 1 for the bitmask.
1269  *
1270  * Index  = (epnum * 2) + direction - 1,
1271  * where direction = 0 for OUT, 1 for IN.
1272  * For control endpoints, the IN index is used (OUT index is unused), so
1273  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1274  */
1275 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1276 {
1277         unsigned int index;
1278         if (usb_endpoint_xfer_control(desc))
1279                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1280         else
1281                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1282                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1283         return index;
1284 }
1285
1286 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1287  * address from the XHCI endpoint index.
1288  */
1289 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1290 {
1291         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1292         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1293         return direction | number;
1294 }
1295
1296 /* Find the flag for this endpoint (for use in the control context).  Use the
1297  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1298  * bit 1, etc.
1299  */
1300 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1301 {
1302         return 1 << (xhci_get_endpoint_index(desc) + 1);
1303 }
1304
1305 /* Find the flag for this endpoint (for use in the control context).  Use the
1306  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1307  * bit 1, etc.
1308  */
1309 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1310 {
1311         return 1 << (ep_index + 1);
1312 }
1313
1314 /* Compute the last valid endpoint context index.  Basically, this is the
1315  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1316  * we find the most significant bit set in the added contexts flags.
1317  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1318  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1319  */
1320 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1321 {
1322         return fls(added_ctxs) - 1;
1323 }
1324
1325 /* Returns 1 if the arguments are OK;
1326  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1327  */
1328 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1329                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1330                 const char *func) {
1331         struct xhci_hcd *xhci;
1332         struct xhci_virt_device *virt_dev;
1333
1334         if (!hcd || (check_ep && !ep) || !udev) {
1335                 pr_debug("xHCI %s called with invalid args\n", func);
1336                 return -EINVAL;
1337         }
1338         if (!udev->parent) {
1339                 pr_debug("xHCI %s called for root hub\n", func);
1340                 return 0;
1341         }
1342
1343         xhci = hcd_to_xhci(hcd);
1344         if (check_virt_dev) {
1345                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1346                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1347                                         func);
1348                         return -EINVAL;
1349                 }
1350
1351                 virt_dev = xhci->devs[udev->slot_id];
1352                 if (virt_dev->udev != udev) {
1353                         xhci_dbg(xhci, "xHCI %s called with udev and "
1354                                           "virt_dev does not match\n", func);
1355                         return -EINVAL;
1356                 }
1357         }
1358
1359         if (xhci->xhc_state & XHCI_STATE_HALTED)
1360                 return -ENODEV;
1361
1362         return 1;
1363 }
1364
1365 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1366                 struct usb_device *udev, struct xhci_command *command,
1367                 bool ctx_change, bool must_succeed);
1368
1369 /*
1370  * Full speed devices may have a max packet size greater than 8 bytes, but the
1371  * USB core doesn't know that until it reads the first 8 bytes of the
1372  * descriptor.  If the usb_device's max packet size changes after that point,
1373  * we need to issue an evaluate context command and wait on it.
1374  */
1375 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1376                 unsigned int ep_index, struct urb *urb)
1377 {
1378         struct xhci_container_ctx *out_ctx;
1379         struct xhci_input_control_ctx *ctrl_ctx;
1380         struct xhci_ep_ctx *ep_ctx;
1381         struct xhci_command *command;
1382         int max_packet_size;
1383         int hw_max_packet_size;
1384         int ret = 0;
1385
1386         out_ctx = xhci->devs[slot_id]->out_ctx;
1387         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1388         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1389         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1390         if (hw_max_packet_size != max_packet_size) {
1391                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1392                                 "Max Packet Size for ep 0 changed.");
1393                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1394                                 "Max packet size in usb_device = %d",
1395                                 max_packet_size);
1396                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1397                                 "Max packet size in xHCI HW = %d",
1398                                 hw_max_packet_size);
1399                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1400                                 "Issuing evaluate context command.");
1401
1402                 /* Set up the input context flags for the command */
1403                 /* FIXME: This won't work if a non-default control endpoint
1404                  * changes max packet sizes.
1405                  */
1406
1407                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1408                 if (!command)
1409                         return -ENOMEM;
1410
1411                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1412                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1413                 if (!ctrl_ctx) {
1414                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1415                                         __func__);
1416                         ret = -ENOMEM;
1417                         goto command_cleanup;
1418                 }
1419                 /* Set up the modified control endpoint 0 */
1420                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1421                                 xhci->devs[slot_id]->out_ctx, ep_index);
1422
1423                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1424                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1425                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1426
1427                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1428                 ctrl_ctx->drop_flags = 0;
1429
1430                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1431                                 true, false);
1432
1433                 /* Clean up the input context for later use by bandwidth
1434                  * functions.
1435                  */
1436                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1437 command_cleanup:
1438                 kfree(command->completion);
1439                 kfree(command);
1440         }
1441         return ret;
1442 }
1443
1444 /*
1445  * non-error returns are a promise to giveback() the urb later
1446  * we drop ownership so next owner (or urb unlink) can get it
1447  */
1448 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1449 {
1450         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1451         unsigned long flags;
1452         int ret = 0;
1453         unsigned int slot_id, ep_index;
1454         unsigned int *ep_state;
1455         struct urb_priv *urb_priv;
1456         int num_tds;
1457
1458         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1459                                         true, true, __func__) <= 0)
1460                 return -EINVAL;
1461
1462         slot_id = urb->dev->slot_id;
1463         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1464         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1465
1466         if (!HCD_HW_ACCESSIBLE(hcd)) {
1467                 if (!in_interrupt())
1468                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1469                 return -ESHUTDOWN;
1470         }
1471
1472         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1473                 num_tds = urb->number_of_packets;
1474         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1475             urb->transfer_buffer_length > 0 &&
1476             urb->transfer_flags & URB_ZERO_PACKET &&
1477             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1478                 num_tds = 2;
1479         else
1480                 num_tds = 1;
1481
1482         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1483         if (!urb_priv)
1484                 return -ENOMEM;
1485
1486         urb_priv->num_tds = num_tds;
1487         urb_priv->num_tds_done = 0;
1488         urb->hcpriv = urb_priv;
1489
1490         trace_xhci_urb_enqueue(urb);
1491
1492         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1493                 /* Check to see if the max packet size for the default control
1494                  * endpoint changed during FS device enumeration
1495                  */
1496                 if (urb->dev->speed == USB_SPEED_FULL) {
1497                         ret = xhci_check_maxpacket(xhci, slot_id,
1498                                         ep_index, urb);
1499                         if (ret < 0) {
1500                                 xhci_urb_free_priv(urb_priv);
1501                                 urb->hcpriv = NULL;
1502                                 return ret;
1503                         }
1504                 }
1505         }
1506
1507         spin_lock_irqsave(&xhci->lock, flags);
1508
1509         if (xhci->xhc_state & XHCI_STATE_DYING) {
1510                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1511                          urb->ep->desc.bEndpointAddress, urb);
1512                 ret = -ESHUTDOWN;
1513                 goto free_priv;
1514         }
1515         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1516                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1517                           *ep_state);
1518                 ret = -EINVAL;
1519                 goto free_priv;
1520         }
1521         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1522                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1523                 ret = -EINVAL;
1524                 goto free_priv;
1525         }
1526
1527         switch (usb_endpoint_type(&urb->ep->desc)) {
1528
1529         case USB_ENDPOINT_XFER_CONTROL:
1530                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1531                                          slot_id, ep_index);
1532                 break;
1533         case USB_ENDPOINT_XFER_BULK:
1534                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1535                                          slot_id, ep_index);
1536                 break;
1537         case USB_ENDPOINT_XFER_INT:
1538                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1539                                 slot_id, ep_index);
1540                 break;
1541         case USB_ENDPOINT_XFER_ISOC:
1542                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1543                                 slot_id, ep_index);
1544         }
1545
1546         if (ret) {
1547 free_priv:
1548                 xhci_urb_free_priv(urb_priv);
1549                 urb->hcpriv = NULL;
1550         }
1551         spin_unlock_irqrestore(&xhci->lock, flags);
1552         return ret;
1553 }
1554
1555 /*
1556  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1557  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1558  * should pick up where it left off in the TD, unless a Set Transfer Ring
1559  * Dequeue Pointer is issued.
1560  *
1561  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1562  * the ring.  Since the ring is a contiguous structure, they can't be physically
1563  * removed.  Instead, there are two options:
1564  *
1565  *  1) If the HC is in the middle of processing the URB to be canceled, we
1566  *     simply move the ring's dequeue pointer past those TRBs using the Set
1567  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1568  *     when drivers timeout on the last submitted URB and attempt to cancel.
1569  *
1570  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1571  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1572  *     HC will need to invalidate the any TRBs it has cached after the stop
1573  *     endpoint command, as noted in the xHCI 0.95 errata.
1574  *
1575  *  3) The TD may have completed by the time the Stop Endpoint Command
1576  *     completes, so software needs to handle that case too.
1577  *
1578  * This function should protect against the TD enqueueing code ringing the
1579  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1580  * It also needs to account for multiple cancellations on happening at the same
1581  * time for the same endpoint.
1582  *
1583  * Note that this function can be called in any context, or so says
1584  * usb_hcd_unlink_urb()
1585  */
1586 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1587 {
1588         unsigned long flags;
1589         int ret, i;
1590         u32 temp;
1591         struct xhci_hcd *xhci;
1592         struct urb_priv *urb_priv;
1593         struct xhci_td *td;
1594         unsigned int ep_index;
1595         struct xhci_ring *ep_ring;
1596         struct xhci_virt_ep *ep;
1597         struct xhci_command *command;
1598         struct xhci_virt_device *vdev;
1599
1600         xhci = hcd_to_xhci(hcd);
1601         spin_lock_irqsave(&xhci->lock, flags);
1602
1603         trace_xhci_urb_dequeue(urb);
1604
1605         /* Make sure the URB hasn't completed or been unlinked already */
1606         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1607         if (ret)
1608                 goto done;
1609
1610         /* give back URB now if we can't queue it for cancel */
1611         vdev = xhci->devs[urb->dev->slot_id];
1612         urb_priv = urb->hcpriv;
1613         if (!vdev || !urb_priv)
1614                 goto err_giveback;
1615
1616         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1617         ep = &vdev->eps[ep_index];
1618         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1619         if (!ep || !ep_ring)
1620                 goto err_giveback;
1621
1622         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1623         temp = readl(&xhci->op_regs->status);
1624         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1625                 xhci_hc_died(xhci);
1626                 goto done;
1627         }
1628
1629         /*
1630          * check ring is not re-allocated since URB was enqueued. If it is, then
1631          * make sure none of the ring related pointers in this URB private data
1632          * are touched, such as td_list, otherwise we overwrite freed data
1633          */
1634         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1635                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1636                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1637                         td = &urb_priv->td[i];
1638                         if (!list_empty(&td->cancelled_td_list))
1639                                 list_del_init(&td->cancelled_td_list);
1640                 }
1641                 goto err_giveback;
1642         }
1643
1644         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1645                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1646                                 "HC halted, freeing TD manually.");
1647                 for (i = urb_priv->num_tds_done;
1648                      i < urb_priv->num_tds;
1649                      i++) {
1650                         td = &urb_priv->td[i];
1651                         if (!list_empty(&td->td_list))
1652                                 list_del_init(&td->td_list);
1653                         if (!list_empty(&td->cancelled_td_list))
1654                                 list_del_init(&td->cancelled_td_list);
1655                 }
1656                 goto err_giveback;
1657         }
1658
1659         i = urb_priv->num_tds_done;
1660         if (i < urb_priv->num_tds)
1661                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1662                                 "Cancel URB %p, dev %s, ep 0x%x, "
1663                                 "starting at offset 0x%llx",
1664                                 urb, urb->dev->devpath,
1665                                 urb->ep->desc.bEndpointAddress,
1666                                 (unsigned long long) xhci_trb_virt_to_dma(
1667                                         urb_priv->td[i].start_seg,
1668                                         urb_priv->td[i].first_trb));
1669
1670         for (; i < urb_priv->num_tds; i++) {
1671                 td = &urb_priv->td[i];
1672                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1673         }
1674
1675         /* Queue a stop endpoint command, but only if this is
1676          * the first cancellation to be handled.
1677          */
1678         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1679                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1680                 if (!command) {
1681                         ret = -ENOMEM;
1682                         goto done;
1683                 }
1684                 ep->ep_state |= EP_STOP_CMD_PENDING;
1685                 ep->stop_cmd_timer.expires = jiffies +
1686                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1687                 add_timer(&ep->stop_cmd_timer);
1688                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1689                                          ep_index, 0);
1690                 xhci_ring_cmd_db(xhci);
1691         }
1692 done:
1693         spin_unlock_irqrestore(&xhci->lock, flags);
1694         return ret;
1695
1696 err_giveback:
1697         if (urb_priv)
1698                 xhci_urb_free_priv(urb_priv);
1699         usb_hcd_unlink_urb_from_ep(hcd, urb);
1700         spin_unlock_irqrestore(&xhci->lock, flags);
1701         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1702         return ret;
1703 }
1704
1705 /* Drop an endpoint from a new bandwidth configuration for this device.
1706  * Only one call to this function is allowed per endpoint before
1707  * check_bandwidth() or reset_bandwidth() must be called.
1708  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1709  * add the endpoint to the schedule with possibly new parameters denoted by a
1710  * different endpoint descriptor in usb_host_endpoint.
1711  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1712  * not allowed.
1713  *
1714  * The USB core will not allow URBs to be queued to an endpoint that is being
1715  * disabled, so there's no need for mutual exclusion to protect
1716  * the xhci->devs[slot_id] structure.
1717  */
1718 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1719                 struct usb_host_endpoint *ep)
1720 {
1721         struct xhci_hcd *xhci;
1722         struct xhci_container_ctx *in_ctx, *out_ctx;
1723         struct xhci_input_control_ctx *ctrl_ctx;
1724         unsigned int ep_index;
1725         struct xhci_ep_ctx *ep_ctx;
1726         u32 drop_flag;
1727         u32 new_add_flags, new_drop_flags;
1728         int ret;
1729
1730         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1731         if (ret <= 0)
1732                 return ret;
1733         xhci = hcd_to_xhci(hcd);
1734         if (xhci->xhc_state & XHCI_STATE_DYING)
1735                 return -ENODEV;
1736
1737         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1738         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1739         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1740                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1741                                 __func__, drop_flag);
1742                 return 0;
1743         }
1744
1745         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1746         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1747         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1748         if (!ctrl_ctx) {
1749                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1750                                 __func__);
1751                 return 0;
1752         }
1753
1754         ep_index = xhci_get_endpoint_index(&ep->desc);
1755         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1756         /* If the HC already knows the endpoint is disabled,
1757          * or the HCD has noted it is disabled, ignore this request
1758          */
1759         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1760             le32_to_cpu(ctrl_ctx->drop_flags) &
1761             xhci_get_endpoint_flag(&ep->desc)) {
1762                 /* Do not warn when called after a usb_device_reset */
1763                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1764                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1765                                   __func__, ep);
1766                 return 0;
1767         }
1768
1769         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1770         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1771
1772         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1773         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1774
1775         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1776
1777         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1778
1779         if (xhci->quirks & XHCI_MTK_HOST)
1780                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1781
1782         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1783                         (unsigned int) ep->desc.bEndpointAddress,
1784                         udev->slot_id,
1785                         (unsigned int) new_drop_flags,
1786                         (unsigned int) new_add_flags);
1787         return 0;
1788 }
1789
1790 /* Add an endpoint to a new possible bandwidth configuration for this device.
1791  * Only one call to this function is allowed per endpoint before
1792  * check_bandwidth() or reset_bandwidth() must be called.
1793  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1794  * add the endpoint to the schedule with possibly new parameters denoted by a
1795  * different endpoint descriptor in usb_host_endpoint.
1796  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1797  * not allowed.
1798  *
1799  * The USB core will not allow URBs to be queued to an endpoint until the
1800  * configuration or alt setting is installed in the device, so there's no need
1801  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1802  */
1803 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1804                 struct usb_host_endpoint *ep)
1805 {
1806         struct xhci_hcd *xhci;
1807         struct xhci_container_ctx *in_ctx;
1808         unsigned int ep_index;
1809         struct xhci_input_control_ctx *ctrl_ctx;
1810         struct xhci_ep_ctx *ep_ctx;
1811         u32 added_ctxs;
1812         u32 new_add_flags, new_drop_flags;
1813         struct xhci_virt_device *virt_dev;
1814         int ret = 0;
1815
1816         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1817         if (ret <= 0) {
1818                 /* So we won't queue a reset ep command for a root hub */
1819                 ep->hcpriv = NULL;
1820                 return ret;
1821         }
1822         xhci = hcd_to_xhci(hcd);
1823         if (xhci->xhc_state & XHCI_STATE_DYING)
1824                 return -ENODEV;
1825
1826         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1827         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1828                 /* FIXME when we have to issue an evaluate endpoint command to
1829                  * deal with ep0 max packet size changing once we get the
1830                  * descriptors
1831                  */
1832                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1833                                 __func__, added_ctxs);
1834                 return 0;
1835         }
1836
1837         virt_dev = xhci->devs[udev->slot_id];
1838         in_ctx = virt_dev->in_ctx;
1839         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1840         if (!ctrl_ctx) {
1841                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1842                                 __func__);
1843                 return 0;
1844         }
1845
1846         ep_index = xhci_get_endpoint_index(&ep->desc);
1847         /* If this endpoint is already in use, and the upper layers are trying
1848          * to add it again without dropping it, reject the addition.
1849          */
1850         if (virt_dev->eps[ep_index].ring &&
1851                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1852                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1853                                 "without dropping it.\n",
1854                                 (unsigned int) ep->desc.bEndpointAddress);
1855                 return -EINVAL;
1856         }
1857
1858         /* If the HCD has already noted the endpoint is enabled,
1859          * ignore this request.
1860          */
1861         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1862                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1863                                 __func__, ep);
1864                 return 0;
1865         }
1866
1867         /*
1868          * Configuration and alternate setting changes must be done in
1869          * process context, not interrupt context (or so documenation
1870          * for usb_set_interface() and usb_set_configuration() claim).
1871          */
1872         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1873                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1874                                 __func__, ep->desc.bEndpointAddress);
1875                 return -ENOMEM;
1876         }
1877
1878         if (xhci->quirks & XHCI_MTK_HOST) {
1879                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1880                 if (ret < 0) {
1881                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1882                         virt_dev->eps[ep_index].new_ring = NULL;
1883                         return ret;
1884                 }
1885         }
1886
1887         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1888         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1889
1890         /* If xhci_endpoint_disable() was called for this endpoint, but the
1891          * xHC hasn't been notified yet through the check_bandwidth() call,
1892          * this re-adds a new state for the endpoint from the new endpoint
1893          * descriptors.  We must drop and re-add this endpoint, so we leave the
1894          * drop flags alone.
1895          */
1896         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1897
1898         /* Store the usb_device pointer for later use */
1899         ep->hcpriv = udev;
1900
1901         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1902         trace_xhci_add_endpoint(ep_ctx);
1903
1904         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1905
1906         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1907                         (unsigned int) ep->desc.bEndpointAddress,
1908                         udev->slot_id,
1909                         (unsigned int) new_drop_flags,
1910                         (unsigned int) new_add_flags);
1911         return 0;
1912 }
1913
1914 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1915 {
1916         struct xhci_input_control_ctx *ctrl_ctx;
1917         struct xhci_ep_ctx *ep_ctx;
1918         struct xhci_slot_ctx *slot_ctx;
1919         int i;
1920
1921         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1922         if (!ctrl_ctx) {
1923                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1924                                 __func__);
1925                 return;
1926         }
1927
1928         /* When a device's add flag and drop flag are zero, any subsequent
1929          * configure endpoint command will leave that endpoint's state
1930          * untouched.  Make sure we don't leave any old state in the input
1931          * endpoint contexts.
1932          */
1933         ctrl_ctx->drop_flags = 0;
1934         ctrl_ctx->add_flags = 0;
1935         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1936         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1937         /* Endpoint 0 is always valid */
1938         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1939         for (i = 1; i < 31; i++) {
1940                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1941                 ep_ctx->ep_info = 0;
1942                 ep_ctx->ep_info2 = 0;
1943                 ep_ctx->deq = 0;
1944                 ep_ctx->tx_info = 0;
1945         }
1946 }
1947
1948 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1949                 struct usb_device *udev, u32 *cmd_status)
1950 {
1951         int ret;
1952
1953         switch (*cmd_status) {
1954         case COMP_COMMAND_ABORTED:
1955         case COMP_COMMAND_RING_STOPPED:
1956                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1957                 ret = -ETIME;
1958                 break;
1959         case COMP_RESOURCE_ERROR:
1960                 dev_warn(&udev->dev,
1961                          "Not enough host controller resources for new device state.\n");
1962                 ret = -ENOMEM;
1963                 /* FIXME: can we allocate more resources for the HC? */
1964                 break;
1965         case COMP_BANDWIDTH_ERROR:
1966         case COMP_SECONDARY_BANDWIDTH_ERROR:
1967                 dev_warn(&udev->dev,
1968                          "Not enough bandwidth for new device state.\n");
1969                 ret = -ENOSPC;
1970                 /* FIXME: can we go back to the old state? */
1971                 break;
1972         case COMP_TRB_ERROR:
1973                 /* the HCD set up something wrong */
1974                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1975                                 "add flag = 1, "
1976                                 "and endpoint is not disabled.\n");
1977                 ret = -EINVAL;
1978                 break;
1979         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1980                 dev_warn(&udev->dev,
1981                          "ERROR: Incompatible device for endpoint configure command.\n");
1982                 ret = -ENODEV;
1983                 break;
1984         case COMP_SUCCESS:
1985                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1986                                 "Successful Endpoint Configure command");
1987                 ret = 0;
1988                 break;
1989         default:
1990                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1991                                 *cmd_status);
1992                 ret = -EINVAL;
1993                 break;
1994         }
1995         return ret;
1996 }
1997
1998 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1999                 struct usb_device *udev, u32 *cmd_status)
2000 {
2001         int ret;
2002
2003         switch (*cmd_status) {
2004         case COMP_COMMAND_ABORTED:
2005         case COMP_COMMAND_RING_STOPPED:
2006                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2007                 ret = -ETIME;
2008                 break;
2009         case COMP_PARAMETER_ERROR:
2010                 dev_warn(&udev->dev,
2011                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2012                 ret = -EINVAL;
2013                 break;
2014         case COMP_SLOT_NOT_ENABLED_ERROR:
2015                 dev_warn(&udev->dev,
2016                         "WARN: slot not enabled for evaluate context command.\n");
2017                 ret = -EINVAL;
2018                 break;
2019         case COMP_CONTEXT_STATE_ERROR:
2020                 dev_warn(&udev->dev,
2021                         "WARN: invalid context state for evaluate context command.\n");
2022                 ret = -EINVAL;
2023                 break;
2024         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2025                 dev_warn(&udev->dev,
2026                         "ERROR: Incompatible device for evaluate context command.\n");
2027                 ret = -ENODEV;
2028                 break;
2029         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2030                 /* Max Exit Latency too large error */
2031                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2032                 ret = -EINVAL;
2033                 break;
2034         case COMP_SUCCESS:
2035                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2036                                 "Successful evaluate context command");
2037                 ret = 0;
2038                 break;
2039         default:
2040                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2041                         *cmd_status);
2042                 ret = -EINVAL;
2043                 break;
2044         }
2045         return ret;
2046 }
2047
2048 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2049                 struct xhci_input_control_ctx *ctrl_ctx)
2050 {
2051         u32 valid_add_flags;
2052         u32 valid_drop_flags;
2053
2054         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2055          * (bit 1).  The default control endpoint is added during the Address
2056          * Device command and is never removed until the slot is disabled.
2057          */
2058         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2059         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2060
2061         /* Use hweight32 to count the number of ones in the add flags, or
2062          * number of endpoints added.  Don't count endpoints that are changed
2063          * (both added and dropped).
2064          */
2065         return hweight32(valid_add_flags) -
2066                 hweight32(valid_add_flags & valid_drop_flags);
2067 }
2068
2069 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2070                 struct xhci_input_control_ctx *ctrl_ctx)
2071 {
2072         u32 valid_add_flags;
2073         u32 valid_drop_flags;
2074
2075         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2076         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2077
2078         return hweight32(valid_drop_flags) -
2079                 hweight32(valid_add_flags & valid_drop_flags);
2080 }
2081
2082 /*
2083  * We need to reserve the new number of endpoints before the configure endpoint
2084  * command completes.  We can't subtract the dropped endpoints from the number
2085  * of active endpoints until the command completes because we can oversubscribe
2086  * the host in this case:
2087  *
2088  *  - the first configure endpoint command drops more endpoints than it adds
2089  *  - a second configure endpoint command that adds more endpoints is queued
2090  *  - the first configure endpoint command fails, so the config is unchanged
2091  *  - the second command may succeed, even though there isn't enough resources
2092  *
2093  * Must be called with xhci->lock held.
2094  */
2095 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2096                 struct xhci_input_control_ctx *ctrl_ctx)
2097 {
2098         u32 added_eps;
2099
2100         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2101         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2102                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2103                                 "Not enough ep ctxs: "
2104                                 "%u active, need to add %u, limit is %u.",
2105                                 xhci->num_active_eps, added_eps,
2106                                 xhci->limit_active_eps);
2107                 return -ENOMEM;
2108         }
2109         xhci->num_active_eps += added_eps;
2110         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2111                         "Adding %u ep ctxs, %u now active.", added_eps,
2112                         xhci->num_active_eps);
2113         return 0;
2114 }
2115
2116 /*
2117  * The configure endpoint was failed by the xHC for some other reason, so we
2118  * need to revert the resources that failed configuration would have used.
2119  *
2120  * Must be called with xhci->lock held.
2121  */
2122 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2123                 struct xhci_input_control_ctx *ctrl_ctx)
2124 {
2125         u32 num_failed_eps;
2126
2127         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2128         xhci->num_active_eps -= num_failed_eps;
2129         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2130                         "Removing %u failed ep ctxs, %u now active.",
2131                         num_failed_eps,
2132                         xhci->num_active_eps);
2133 }
2134
2135 /*
2136  * Now that the command has completed, clean up the active endpoint count by
2137  * subtracting out the endpoints that were dropped (but not changed).
2138  *
2139  * Must be called with xhci->lock held.
2140  */
2141 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2142                 struct xhci_input_control_ctx *ctrl_ctx)
2143 {
2144         u32 num_dropped_eps;
2145
2146         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2147         xhci->num_active_eps -= num_dropped_eps;
2148         if (num_dropped_eps)
2149                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2150                                 "Removing %u dropped ep ctxs, %u now active.",
2151                                 num_dropped_eps,
2152                                 xhci->num_active_eps);
2153 }
2154
2155 static unsigned int xhci_get_block_size(struct usb_device *udev)
2156 {
2157         switch (udev->speed) {
2158         case USB_SPEED_LOW:
2159         case USB_SPEED_FULL:
2160                 return FS_BLOCK;
2161         case USB_SPEED_HIGH:
2162                 return HS_BLOCK;
2163         case USB_SPEED_SUPER:
2164         case USB_SPEED_SUPER_PLUS:
2165                 return SS_BLOCK;
2166         case USB_SPEED_UNKNOWN:
2167         case USB_SPEED_WIRELESS:
2168         default:
2169                 /* Should never happen */
2170                 return 1;
2171         }
2172 }
2173
2174 static unsigned int
2175 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2176 {
2177         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2178                 return LS_OVERHEAD;
2179         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2180                 return FS_OVERHEAD;
2181         return HS_OVERHEAD;
2182 }
2183
2184 /* If we are changing a LS/FS device under a HS hub,
2185  * make sure (if we are activating a new TT) that the HS bus has enough
2186  * bandwidth for this new TT.
2187  */
2188 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2189                 struct xhci_virt_device *virt_dev,
2190                 int old_active_eps)
2191 {
2192         struct xhci_interval_bw_table *bw_table;
2193         struct xhci_tt_bw_info *tt_info;
2194
2195         /* Find the bandwidth table for the root port this TT is attached to. */
2196         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2197         tt_info = virt_dev->tt_info;
2198         /* If this TT already had active endpoints, the bandwidth for this TT
2199          * has already been added.  Removing all periodic endpoints (and thus
2200          * making the TT enactive) will only decrease the bandwidth used.
2201          */
2202         if (old_active_eps)
2203                 return 0;
2204         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2205                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2206                         return -ENOMEM;
2207                 return 0;
2208         }
2209         /* Not sure why we would have no new active endpoints...
2210          *
2211          * Maybe because of an Evaluate Context change for a hub update or a
2212          * control endpoint 0 max packet size change?
2213          * FIXME: skip the bandwidth calculation in that case.
2214          */
2215         return 0;
2216 }
2217
2218 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2219                 struct xhci_virt_device *virt_dev)
2220 {
2221         unsigned int bw_reserved;
2222
2223         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2224         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2225                 return -ENOMEM;
2226
2227         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2228         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2229                 return -ENOMEM;
2230
2231         return 0;
2232 }
2233
2234 /*
2235  * This algorithm is a very conservative estimate of the worst-case scheduling
2236  * scenario for any one interval.  The hardware dynamically schedules the
2237  * packets, so we can't tell which microframe could be the limiting factor in
2238  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2239  *
2240  * Obviously, we can't solve an NP complete problem to find the minimum worst
2241  * case scenario.  Instead, we come up with an estimate that is no less than
2242  * the worst case bandwidth used for any one microframe, but may be an
2243  * over-estimate.
2244  *
2245  * We walk the requirements for each endpoint by interval, starting with the
2246  * smallest interval, and place packets in the schedule where there is only one
2247  * possible way to schedule packets for that interval.  In order to simplify
2248  * this algorithm, we record the largest max packet size for each interval, and
2249  * assume all packets will be that size.
2250  *
2251  * For interval 0, we obviously must schedule all packets for each interval.
2252  * The bandwidth for interval 0 is just the amount of data to be transmitted
2253  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2254  * the number of packets).
2255  *
2256  * For interval 1, we have two possible microframes to schedule those packets
2257  * in.  For this algorithm, if we can schedule the same number of packets for
2258  * each possible scheduling opportunity (each microframe), we will do so.  The
2259  * remaining number of packets will be saved to be transmitted in the gaps in
2260  * the next interval's scheduling sequence.
2261  *
2262  * As we move those remaining packets to be scheduled with interval 2 packets,
2263  * we have to double the number of remaining packets to transmit.  This is
2264  * because the intervals are actually powers of 2, and we would be transmitting
2265  * the previous interval's packets twice in this interval.  We also have to be
2266  * sure that when we look at the largest max packet size for this interval, we
2267  * also look at the largest max packet size for the remaining packets and take
2268  * the greater of the two.
2269  *
2270  * The algorithm continues to evenly distribute packets in each scheduling
2271  * opportunity, and push the remaining packets out, until we get to the last
2272  * interval.  Then those packets and their associated overhead are just added
2273  * to the bandwidth used.
2274  */
2275 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2276                 struct xhci_virt_device *virt_dev,
2277                 int old_active_eps)
2278 {
2279         unsigned int bw_reserved;
2280         unsigned int max_bandwidth;
2281         unsigned int bw_used;
2282         unsigned int block_size;
2283         struct xhci_interval_bw_table *bw_table;
2284         unsigned int packet_size = 0;
2285         unsigned int overhead = 0;
2286         unsigned int packets_transmitted = 0;
2287         unsigned int packets_remaining = 0;
2288         unsigned int i;
2289
2290         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2291                 return xhci_check_ss_bw(xhci, virt_dev);
2292
2293         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2294                 max_bandwidth = HS_BW_LIMIT;
2295                 /* Convert percent of bus BW reserved to blocks reserved */
2296                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2297         } else {
2298                 max_bandwidth = FS_BW_LIMIT;
2299                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2300         }
2301
2302         bw_table = virt_dev->bw_table;
2303         /* We need to translate the max packet size and max ESIT payloads into
2304          * the units the hardware uses.
2305          */
2306         block_size = xhci_get_block_size(virt_dev->udev);
2307
2308         /* If we are manipulating a LS/FS device under a HS hub, double check
2309          * that the HS bus has enough bandwidth if we are activing a new TT.
2310          */
2311         if (virt_dev->tt_info) {
2312                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2313                                 "Recalculating BW for rootport %u",
2314                                 virt_dev->real_port);
2315                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2316                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2317                                         "newly activated TT.\n");
2318                         return -ENOMEM;
2319                 }
2320                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2321                                 "Recalculating BW for TT slot %u port %u",
2322                                 virt_dev->tt_info->slot_id,
2323                                 virt_dev->tt_info->ttport);
2324         } else {
2325                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2326                                 "Recalculating BW for rootport %u",
2327                                 virt_dev->real_port);
2328         }
2329
2330         /* Add in how much bandwidth will be used for interval zero, or the
2331          * rounded max ESIT payload + number of packets * largest overhead.
2332          */
2333         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2334                 bw_table->interval_bw[0].num_packets *
2335                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2336
2337         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2338                 unsigned int bw_added;
2339                 unsigned int largest_mps;
2340                 unsigned int interval_overhead;
2341
2342                 /*
2343                  * How many packets could we transmit in this interval?
2344                  * If packets didn't fit in the previous interval, we will need
2345                  * to transmit that many packets twice within this interval.
2346                  */
2347                 packets_remaining = 2 * packets_remaining +
2348                         bw_table->interval_bw[i].num_packets;
2349
2350                 /* Find the largest max packet size of this or the previous
2351                  * interval.
2352                  */
2353                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2354                         largest_mps = 0;
2355                 else {
2356                         struct xhci_virt_ep *virt_ep;
2357                         struct list_head *ep_entry;
2358
2359                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2360                         virt_ep = list_entry(ep_entry,
2361                                         struct xhci_virt_ep, bw_endpoint_list);
2362                         /* Convert to blocks, rounding up */
2363                         largest_mps = DIV_ROUND_UP(
2364                                         virt_ep->bw_info.max_packet_size,
2365                                         block_size);
2366                 }
2367                 if (largest_mps > packet_size)
2368                         packet_size = largest_mps;
2369
2370                 /* Use the larger overhead of this or the previous interval. */
2371                 interval_overhead = xhci_get_largest_overhead(
2372                                 &bw_table->interval_bw[i]);
2373                 if (interval_overhead > overhead)
2374                         overhead = interval_overhead;
2375
2376                 /* How many packets can we evenly distribute across
2377                  * (1 << (i + 1)) possible scheduling opportunities?
2378                  */
2379                 packets_transmitted = packets_remaining >> (i + 1);
2380
2381                 /* Add in the bandwidth used for those scheduled packets */
2382                 bw_added = packets_transmitted * (overhead + packet_size);
2383
2384                 /* How many packets do we have remaining to transmit? */
2385                 packets_remaining = packets_remaining % (1 << (i + 1));
2386
2387                 /* What largest max packet size should those packets have? */
2388                 /* If we've transmitted all packets, don't carry over the
2389                  * largest packet size.
2390                  */
2391                 if (packets_remaining == 0) {
2392                         packet_size = 0;
2393                         overhead = 0;
2394                 } else if (packets_transmitted > 0) {
2395                         /* Otherwise if we do have remaining packets, and we've
2396                          * scheduled some packets in this interval, take the
2397                          * largest max packet size from endpoints with this
2398                          * interval.
2399                          */
2400                         packet_size = largest_mps;
2401                         overhead = interval_overhead;
2402                 }
2403                 /* Otherwise carry over packet_size and overhead from the last
2404                  * time we had a remainder.
2405                  */
2406                 bw_used += bw_added;
2407                 if (bw_used > max_bandwidth) {
2408                         xhci_warn(xhci, "Not enough bandwidth. "
2409                                         "Proposed: %u, Max: %u\n",
2410                                 bw_used, max_bandwidth);
2411                         return -ENOMEM;
2412                 }
2413         }
2414         /*
2415          * Ok, we know we have some packets left over after even-handedly
2416          * scheduling interval 15.  We don't know which microframes they will
2417          * fit into, so we over-schedule and say they will be scheduled every
2418          * microframe.
2419          */
2420         if (packets_remaining > 0)
2421                 bw_used += overhead + packet_size;
2422
2423         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2424                 unsigned int port_index = virt_dev->real_port - 1;
2425
2426                 /* OK, we're manipulating a HS device attached to a
2427                  * root port bandwidth domain.  Include the number of active TTs
2428                  * in the bandwidth used.
2429                  */
2430                 bw_used += TT_HS_OVERHEAD *
2431                         xhci->rh_bw[port_index].num_active_tts;
2432         }
2433
2434         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2435                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2436                 "Available: %u " "percent",
2437                 bw_used, max_bandwidth, bw_reserved,
2438                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2439                 max_bandwidth);
2440
2441         bw_used += bw_reserved;
2442         if (bw_used > max_bandwidth) {
2443                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2444                                 bw_used, max_bandwidth);
2445                 return -ENOMEM;
2446         }
2447
2448         bw_table->bw_used = bw_used;
2449         return 0;
2450 }
2451
2452 static bool xhci_is_async_ep(unsigned int ep_type)
2453 {
2454         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2455                                         ep_type != ISOC_IN_EP &&
2456                                         ep_type != INT_IN_EP);
2457 }
2458
2459 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2460 {
2461         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2462 }
2463
2464 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2465 {
2466         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2467
2468         if (ep_bw->ep_interval == 0)
2469                 return SS_OVERHEAD_BURST +
2470                         (ep_bw->mult * ep_bw->num_packets *
2471                                         (SS_OVERHEAD + mps));
2472         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2473                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2474                                 1 << ep_bw->ep_interval);
2475
2476 }
2477
2478 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2479                 struct xhci_bw_info *ep_bw,
2480                 struct xhci_interval_bw_table *bw_table,
2481                 struct usb_device *udev,
2482                 struct xhci_virt_ep *virt_ep,
2483                 struct xhci_tt_bw_info *tt_info)
2484 {
2485         struct xhci_interval_bw *interval_bw;
2486         int normalized_interval;
2487
2488         if (xhci_is_async_ep(ep_bw->type))
2489                 return;
2490
2491         if (udev->speed >= USB_SPEED_SUPER) {
2492                 if (xhci_is_sync_in_ep(ep_bw->type))
2493                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2494                                 xhci_get_ss_bw_consumed(ep_bw);
2495                 else
2496                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2497                                 xhci_get_ss_bw_consumed(ep_bw);
2498                 return;
2499         }
2500
2501         /* SuperSpeed endpoints never get added to intervals in the table, so
2502          * this check is only valid for HS/FS/LS devices.
2503          */
2504         if (list_empty(&virt_ep->bw_endpoint_list))
2505                 return;
2506         /* For LS/FS devices, we need to translate the interval expressed in
2507          * microframes to frames.
2508          */
2509         if (udev->speed == USB_SPEED_HIGH)
2510                 normalized_interval = ep_bw->ep_interval;
2511         else
2512                 normalized_interval = ep_bw->ep_interval - 3;
2513
2514         if (normalized_interval == 0)
2515                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2516         interval_bw = &bw_table->interval_bw[normalized_interval];
2517         interval_bw->num_packets -= ep_bw->num_packets;
2518         switch (udev->speed) {
2519         case USB_SPEED_LOW:
2520                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2521                 break;
2522         case USB_SPEED_FULL:
2523                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2524                 break;
2525         case USB_SPEED_HIGH:
2526                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2527                 break;
2528         case USB_SPEED_SUPER:
2529         case USB_SPEED_SUPER_PLUS:
2530         case USB_SPEED_UNKNOWN:
2531         case USB_SPEED_WIRELESS:
2532                 /* Should never happen because only LS/FS/HS endpoints will get
2533                  * added to the endpoint list.
2534                  */
2535                 return;
2536         }
2537         if (tt_info)
2538                 tt_info->active_eps -= 1;
2539         list_del_init(&virt_ep->bw_endpoint_list);
2540 }
2541
2542 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2543                 struct xhci_bw_info *ep_bw,
2544                 struct xhci_interval_bw_table *bw_table,
2545                 struct usb_device *udev,
2546                 struct xhci_virt_ep *virt_ep,
2547                 struct xhci_tt_bw_info *tt_info)
2548 {
2549         struct xhci_interval_bw *interval_bw;
2550         struct xhci_virt_ep *smaller_ep;
2551         int normalized_interval;
2552
2553         if (xhci_is_async_ep(ep_bw->type))
2554                 return;
2555
2556         if (udev->speed == USB_SPEED_SUPER) {
2557                 if (xhci_is_sync_in_ep(ep_bw->type))
2558                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2559                                 xhci_get_ss_bw_consumed(ep_bw);
2560                 else
2561                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2562                                 xhci_get_ss_bw_consumed(ep_bw);
2563                 return;
2564         }
2565
2566         /* For LS/FS devices, we need to translate the interval expressed in
2567          * microframes to frames.
2568          */
2569         if (udev->speed == USB_SPEED_HIGH)
2570                 normalized_interval = ep_bw->ep_interval;
2571         else
2572                 normalized_interval = ep_bw->ep_interval - 3;
2573
2574         if (normalized_interval == 0)
2575                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2576         interval_bw = &bw_table->interval_bw[normalized_interval];
2577         interval_bw->num_packets += ep_bw->num_packets;
2578         switch (udev->speed) {
2579         case USB_SPEED_LOW:
2580                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2581                 break;
2582         case USB_SPEED_FULL:
2583                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2584                 break;
2585         case USB_SPEED_HIGH:
2586                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2587                 break;
2588         case USB_SPEED_SUPER:
2589         case USB_SPEED_SUPER_PLUS:
2590         case USB_SPEED_UNKNOWN:
2591         case USB_SPEED_WIRELESS:
2592                 /* Should never happen because only LS/FS/HS endpoints will get
2593                  * added to the endpoint list.
2594                  */
2595                 return;
2596         }
2597
2598         if (tt_info)
2599                 tt_info->active_eps += 1;
2600         /* Insert the endpoint into the list, largest max packet size first. */
2601         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2602                         bw_endpoint_list) {
2603                 if (ep_bw->max_packet_size >=
2604                                 smaller_ep->bw_info.max_packet_size) {
2605                         /* Add the new ep before the smaller endpoint */
2606                         list_add_tail(&virt_ep->bw_endpoint_list,
2607                                         &smaller_ep->bw_endpoint_list);
2608                         return;
2609                 }
2610         }
2611         /* Add the new endpoint at the end of the list. */
2612         list_add_tail(&virt_ep->bw_endpoint_list,
2613                         &interval_bw->endpoints);
2614 }
2615
2616 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2617                 struct xhci_virt_device *virt_dev,
2618                 int old_active_eps)
2619 {
2620         struct xhci_root_port_bw_info *rh_bw_info;
2621         if (!virt_dev->tt_info)
2622                 return;
2623
2624         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2625         if (old_active_eps == 0 &&
2626                                 virt_dev->tt_info->active_eps != 0) {
2627                 rh_bw_info->num_active_tts += 1;
2628                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2629         } else if (old_active_eps != 0 &&
2630                                 virt_dev->tt_info->active_eps == 0) {
2631                 rh_bw_info->num_active_tts -= 1;
2632                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2633         }
2634 }
2635
2636 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2637                 struct xhci_virt_device *virt_dev,
2638                 struct xhci_container_ctx *in_ctx)
2639 {
2640         struct xhci_bw_info ep_bw_info[31];
2641         int i;
2642         struct xhci_input_control_ctx *ctrl_ctx;
2643         int old_active_eps = 0;
2644
2645         if (virt_dev->tt_info)
2646                 old_active_eps = virt_dev->tt_info->active_eps;
2647
2648         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2649         if (!ctrl_ctx) {
2650                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2651                                 __func__);
2652                 return -ENOMEM;
2653         }
2654
2655         for (i = 0; i < 31; i++) {
2656                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2657                         continue;
2658
2659                 /* Make a copy of the BW info in case we need to revert this */
2660                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2661                                 sizeof(ep_bw_info[i]));
2662                 /* Drop the endpoint from the interval table if the endpoint is
2663                  * being dropped or changed.
2664                  */
2665                 if (EP_IS_DROPPED(ctrl_ctx, i))
2666                         xhci_drop_ep_from_interval_table(xhci,
2667                                         &virt_dev->eps[i].bw_info,
2668                                         virt_dev->bw_table,
2669                                         virt_dev->udev,
2670                                         &virt_dev->eps[i],
2671                                         virt_dev->tt_info);
2672         }
2673         /* Overwrite the information stored in the endpoints' bw_info */
2674         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2675         for (i = 0; i < 31; i++) {
2676                 /* Add any changed or added endpoints to the interval table */
2677                 if (EP_IS_ADDED(ctrl_ctx, i))
2678                         xhci_add_ep_to_interval_table(xhci,
2679                                         &virt_dev->eps[i].bw_info,
2680                                         virt_dev->bw_table,
2681                                         virt_dev->udev,
2682                                         &virt_dev->eps[i],
2683                                         virt_dev->tt_info);
2684         }
2685
2686         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2687                 /* Ok, this fits in the bandwidth we have.
2688                  * Update the number of active TTs.
2689                  */
2690                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2691                 return 0;
2692         }
2693
2694         /* We don't have enough bandwidth for this, revert the stored info. */
2695         for (i = 0; i < 31; i++) {
2696                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2697                         continue;
2698
2699                 /* Drop the new copies of any added or changed endpoints from
2700                  * the interval table.
2701                  */
2702                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2703                         xhci_drop_ep_from_interval_table(xhci,
2704                                         &virt_dev->eps[i].bw_info,
2705                                         virt_dev->bw_table,
2706                                         virt_dev->udev,
2707                                         &virt_dev->eps[i],
2708                                         virt_dev->tt_info);
2709                 }
2710                 /* Revert the endpoint back to its old information */
2711                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2712                                 sizeof(ep_bw_info[i]));
2713                 /* Add any changed or dropped endpoints back into the table */
2714                 if (EP_IS_DROPPED(ctrl_ctx, i))
2715                         xhci_add_ep_to_interval_table(xhci,
2716                                         &virt_dev->eps[i].bw_info,
2717                                         virt_dev->bw_table,
2718                                         virt_dev->udev,
2719                                         &virt_dev->eps[i],
2720                                         virt_dev->tt_info);
2721         }
2722         return -ENOMEM;
2723 }
2724
2725
2726 /* Issue a configure endpoint command or evaluate context command
2727  * and wait for it to finish.
2728  */
2729 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2730                 struct usb_device *udev,
2731                 struct xhci_command *command,
2732                 bool ctx_change, bool must_succeed)
2733 {
2734         int ret;
2735         unsigned long flags;
2736         struct xhci_input_control_ctx *ctrl_ctx;
2737         struct xhci_virt_device *virt_dev;
2738         struct xhci_slot_ctx *slot_ctx;
2739
2740         if (!command)
2741                 return -EINVAL;
2742
2743         spin_lock_irqsave(&xhci->lock, flags);
2744
2745         if (xhci->xhc_state & XHCI_STATE_DYING) {
2746                 spin_unlock_irqrestore(&xhci->lock, flags);
2747                 return -ESHUTDOWN;
2748         }
2749
2750         virt_dev = xhci->devs[udev->slot_id];
2751
2752         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2753         if (!ctrl_ctx) {
2754                 spin_unlock_irqrestore(&xhci->lock, flags);
2755                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2756                                 __func__);
2757                 return -ENOMEM;
2758         }
2759
2760         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2761                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2762                 spin_unlock_irqrestore(&xhci->lock, flags);
2763                 xhci_warn(xhci, "Not enough host resources, "
2764                                 "active endpoint contexts = %u\n",
2765                                 xhci->num_active_eps);
2766                 return -ENOMEM;
2767         }
2768         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2769             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2770                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2771                         xhci_free_host_resources(xhci, ctrl_ctx);
2772                 spin_unlock_irqrestore(&xhci->lock, flags);
2773                 xhci_warn(xhci, "Not enough bandwidth\n");
2774                 return -ENOMEM;
2775         }
2776
2777         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2778
2779         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2780         trace_xhci_configure_endpoint(slot_ctx);
2781
2782         if (!ctx_change)
2783                 ret = xhci_queue_configure_endpoint(xhci, command,
2784                                 command->in_ctx->dma,
2785                                 udev->slot_id, must_succeed);
2786         else
2787                 ret = xhci_queue_evaluate_context(xhci, command,
2788                                 command->in_ctx->dma,
2789                                 udev->slot_id, must_succeed);
2790         if (ret < 0) {
2791                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2792                         xhci_free_host_resources(xhci, ctrl_ctx);
2793                 spin_unlock_irqrestore(&xhci->lock, flags);
2794                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2795                                 "FIXME allocate a new ring segment");
2796                 return -ENOMEM;
2797         }
2798         xhci_ring_cmd_db(xhci);
2799         spin_unlock_irqrestore(&xhci->lock, flags);
2800
2801         /* Wait for the configure endpoint command to complete */
2802         wait_for_completion(command->completion);
2803
2804         if (!ctx_change)
2805                 ret = xhci_configure_endpoint_result(xhci, udev,
2806                                                      &command->status);
2807         else
2808                 ret = xhci_evaluate_context_result(xhci, udev,
2809                                                    &command->status);
2810
2811         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2812                 spin_lock_irqsave(&xhci->lock, flags);
2813                 /* If the command failed, remove the reserved resources.
2814                  * Otherwise, clean up the estimate to include dropped eps.
2815                  */
2816                 if (ret)
2817                         xhci_free_host_resources(xhci, ctrl_ctx);
2818                 else
2819                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2820                 spin_unlock_irqrestore(&xhci->lock, flags);
2821         }
2822         return ret;
2823 }
2824
2825 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2826         struct xhci_virt_device *vdev, int i)
2827 {
2828         struct xhci_virt_ep *ep = &vdev->eps[i];
2829
2830         if (ep->ep_state & EP_HAS_STREAMS) {
2831                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2832                                 xhci_get_endpoint_address(i));
2833                 xhci_free_stream_info(xhci, ep->stream_info);
2834                 ep->stream_info = NULL;
2835                 ep->ep_state &= ~EP_HAS_STREAMS;
2836         }
2837 }
2838
2839 /* Called after one or more calls to xhci_add_endpoint() or
2840  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2841  * to call xhci_reset_bandwidth().
2842  *
2843  * Since we are in the middle of changing either configuration or
2844  * installing a new alt setting, the USB core won't allow URBs to be
2845  * enqueued for any endpoint on the old config or interface.  Nothing
2846  * else should be touching the xhci->devs[slot_id] structure, so we
2847  * don't need to take the xhci->lock for manipulating that.
2848  */
2849 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2850 {
2851         int i;
2852         int ret = 0;
2853         struct xhci_hcd *xhci;
2854         struct xhci_virt_device *virt_dev;
2855         struct xhci_input_control_ctx *ctrl_ctx;
2856         struct xhci_slot_ctx *slot_ctx;
2857         struct xhci_command *command;
2858
2859         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2860         if (ret <= 0)
2861                 return ret;
2862         xhci = hcd_to_xhci(hcd);
2863         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2864                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2865                 return -ENODEV;
2866
2867         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2868         virt_dev = xhci->devs[udev->slot_id];
2869
2870         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2871         if (!command)
2872                 return -ENOMEM;
2873
2874         command->in_ctx = virt_dev->in_ctx;
2875
2876         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2877         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2878         if (!ctrl_ctx) {
2879                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2880                                 __func__);
2881                 ret = -ENOMEM;
2882                 goto command_cleanup;
2883         }
2884         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2885         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2886         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2887
2888         /* Don't issue the command if there's no endpoints to update. */
2889         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2890             ctrl_ctx->drop_flags == 0) {
2891                 ret = 0;
2892                 goto command_cleanup;
2893         }
2894         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2895         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2896         for (i = 31; i >= 1; i--) {
2897                 __le32 le32 = cpu_to_le32(BIT(i));
2898
2899                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2900                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2901                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2902                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2903                         break;
2904                 }
2905         }
2906
2907         ret = xhci_configure_endpoint(xhci, udev, command,
2908                         false, false);
2909         if (ret)
2910                 /* Callee should call reset_bandwidth() */
2911                 goto command_cleanup;
2912
2913         /* Free any rings that were dropped, but not changed. */
2914         for (i = 1; i < 31; i++) {
2915                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2916                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2917                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2918                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2919                 }
2920         }
2921         xhci_zero_in_ctx(xhci, virt_dev);
2922         /*
2923          * Install any rings for completely new endpoints or changed endpoints,
2924          * and free any old rings from changed endpoints.
2925          */
2926         for (i = 1; i < 31; i++) {
2927                 if (!virt_dev->eps[i].new_ring)
2928                         continue;
2929                 /* Only free the old ring if it exists.
2930                  * It may not if this is the first add of an endpoint.
2931                  */
2932                 if (virt_dev->eps[i].ring) {
2933                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2934                 }
2935                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2936                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2937                 virt_dev->eps[i].new_ring = NULL;
2938         }
2939 command_cleanup:
2940         kfree(command->completion);
2941         kfree(command);
2942
2943         return ret;
2944 }
2945
2946 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2947 {
2948         struct xhci_hcd *xhci;
2949         struct xhci_virt_device *virt_dev;
2950         int i, ret;
2951
2952         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2953         if (ret <= 0)
2954                 return;
2955         xhci = hcd_to_xhci(hcd);
2956
2957         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2958         virt_dev = xhci->devs[udev->slot_id];
2959         /* Free any rings allocated for added endpoints */
2960         for (i = 0; i < 31; i++) {
2961                 if (virt_dev->eps[i].new_ring) {
2962                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2963                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2964                         virt_dev->eps[i].new_ring = NULL;
2965                 }
2966         }
2967         xhci_zero_in_ctx(xhci, virt_dev);
2968 }
2969
2970 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2971                 struct xhci_container_ctx *in_ctx,
2972                 struct xhci_container_ctx *out_ctx,
2973                 struct xhci_input_control_ctx *ctrl_ctx,
2974                 u32 add_flags, u32 drop_flags)
2975 {
2976         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2977         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2978         xhci_slot_copy(xhci, in_ctx, out_ctx);
2979         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2980 }
2981
2982 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2983                 unsigned int slot_id, unsigned int ep_index,
2984                 struct xhci_dequeue_state *deq_state)
2985 {
2986         struct xhci_input_control_ctx *ctrl_ctx;
2987         struct xhci_container_ctx *in_ctx;
2988         struct xhci_ep_ctx *ep_ctx;
2989         u32 added_ctxs;
2990         dma_addr_t addr;
2991
2992         in_ctx = xhci->devs[slot_id]->in_ctx;
2993         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2994         if (!ctrl_ctx) {
2995                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2996                                 __func__);
2997                 return;
2998         }
2999
3000         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3001                         xhci->devs[slot_id]->out_ctx, ep_index);
3002         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3003         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3004                         deq_state->new_deq_ptr);
3005         if (addr == 0) {
3006                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3007                                 "reset ep command\n");
3008                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3009                                 deq_state->new_deq_seg,
3010                                 deq_state->new_deq_ptr);
3011                 return;
3012         }
3013         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3014
3015         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3016         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3017                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3018                         added_ctxs, added_ctxs);
3019 }
3020
3021 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3022                                unsigned int stream_id, struct xhci_td *td)
3023 {
3024         struct xhci_dequeue_state deq_state;
3025         struct usb_device *udev = td->urb->dev;
3026
3027         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3028                         "Cleaning up stalled endpoint ring");
3029         /* We need to move the HW's dequeue pointer past this TD,
3030          * or it will attempt to resend it on the next doorbell ring.
3031          */
3032         xhci_find_new_dequeue_state(xhci, udev->slot_id,
3033                         ep_index, stream_id, td, &deq_state);
3034
3035         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3036                 return;
3037
3038         /* HW with the reset endpoint quirk will use the saved dequeue state to
3039          * issue a configure endpoint command later.
3040          */
3041         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3042                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3043                                 "Queueing new dequeue state");
3044                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3045                                 ep_index, &deq_state);
3046         } else {
3047                 /* Better hope no one uses the input context between now and the
3048                  * reset endpoint completion!
3049                  * XXX: No idea how this hardware will react when stream rings
3050                  * are enabled.
3051                  */
3052                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3053                                 "Setting up input context for "
3054                                 "configure endpoint command");
3055                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3056                                 ep_index, &deq_state);
3057         }
3058 }
3059
3060 /*
3061  * Called after usb core issues a clear halt control message.
3062  * The host side of the halt should already be cleared by a reset endpoint
3063  * command issued when the STALL event was received.
3064  *
3065  * The reset endpoint command may only be issued to endpoints in the halted
3066  * state. For software that wishes to reset the data toggle or sequence number
3067  * of an endpoint that isn't in the halted state this function will issue a
3068  * configure endpoint command with the Drop and Add bits set for the target
3069  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3070  */
3071
3072 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3073                 struct usb_host_endpoint *host_ep)
3074 {
3075         struct xhci_hcd *xhci;
3076         struct usb_device *udev;
3077         struct xhci_virt_device *vdev;
3078         struct xhci_virt_ep *ep;
3079         struct xhci_input_control_ctx *ctrl_ctx;
3080         struct xhci_command *stop_cmd, *cfg_cmd;
3081         unsigned int ep_index;
3082         unsigned long flags;
3083         u32 ep_flag;
3084
3085         xhci = hcd_to_xhci(hcd);
3086         if (!host_ep->hcpriv)
3087                 return;
3088         udev = (struct usb_device *) host_ep->hcpriv;
3089         vdev = xhci->devs[udev->slot_id];
3090         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3091         ep = &vdev->eps[ep_index];
3092
3093         /* Bail out if toggle is already being cleared by a endpoint reset */
3094         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3095                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3096                 return;
3097         }
3098         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3099         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3100             usb_endpoint_xfer_isoc(&host_ep->desc))
3101                 return;
3102
3103         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3104
3105         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3106                 return;
3107
3108         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3109         if (!stop_cmd)
3110                 return;
3111
3112         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3113         if (!cfg_cmd)
3114                 goto cleanup;
3115
3116         spin_lock_irqsave(&xhci->lock, flags);
3117
3118         /* block queuing new trbs and ringing ep doorbell */
3119         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3120
3121         /*
3122          * Make sure endpoint ring is empty before resetting the toggle/seq.
3123          * Driver is required to synchronously cancel all transfer request.
3124          * Stop the endpoint to force xHC to update the output context
3125          */
3126
3127         if (!list_empty(&ep->ring->td_list)) {
3128                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3129                 spin_unlock_irqrestore(&xhci->lock, flags);
3130                 xhci_free_command(xhci, cfg_cmd);
3131                 goto cleanup;
3132         }
3133         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3134         xhci_ring_cmd_db(xhci);
3135         spin_unlock_irqrestore(&xhci->lock, flags);
3136
3137         wait_for_completion(stop_cmd->completion);
3138
3139         spin_lock_irqsave(&xhci->lock, flags);
3140
3141         /* config ep command clears toggle if add and drop ep flags are set */
3142         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3143         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3144                                            ctrl_ctx, ep_flag, ep_flag);
3145         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3146
3147         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3148                                       udev->slot_id, false);
3149         xhci_ring_cmd_db(xhci);
3150         spin_unlock_irqrestore(&xhci->lock, flags);
3151
3152         wait_for_completion(cfg_cmd->completion);
3153
3154         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3155         xhci_free_command(xhci, cfg_cmd);
3156 cleanup:
3157         xhci_free_command(xhci, stop_cmd);
3158 }
3159
3160 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3161                 struct usb_device *udev, struct usb_host_endpoint *ep,
3162                 unsigned int slot_id)
3163 {
3164         int ret;
3165         unsigned int ep_index;
3166         unsigned int ep_state;
3167
3168         if (!ep)
3169                 return -EINVAL;
3170         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3171         if (ret <= 0)
3172                 return -EINVAL;
3173         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3174                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3175                                 " descriptor for ep 0x%x does not support streams\n",
3176                                 ep->desc.bEndpointAddress);
3177                 return -EINVAL;
3178         }
3179
3180         ep_index = xhci_get_endpoint_index(&ep->desc);
3181         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3182         if (ep_state & EP_HAS_STREAMS ||
3183                         ep_state & EP_GETTING_STREAMS) {
3184                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3185                                 "already has streams set up.\n",
3186                                 ep->desc.bEndpointAddress);
3187                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3188                                 "dynamic stream context array reallocation.\n");
3189                 return -EINVAL;
3190         }
3191         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3192                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3193                                 "endpoint 0x%x; URBs are pending.\n",
3194                                 ep->desc.bEndpointAddress);
3195                 return -EINVAL;
3196         }
3197         return 0;
3198 }
3199
3200 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3201                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3202 {
3203         unsigned int max_streams;
3204
3205         /* The stream context array size must be a power of two */
3206         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3207         /*
3208          * Find out how many primary stream array entries the host controller
3209          * supports.  Later we may use secondary stream arrays (similar to 2nd
3210          * level page entries), but that's an optional feature for xHCI host
3211          * controllers. xHCs must support at least 4 stream IDs.
3212          */
3213         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3214         if (*num_stream_ctxs > max_streams) {
3215                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3216                                 max_streams);
3217                 *num_stream_ctxs = max_streams;
3218                 *num_streams = max_streams;
3219         }
3220 }
3221
3222 /* Returns an error code if one of the endpoint already has streams.
3223  * This does not change any data structures, it only checks and gathers
3224  * information.
3225  */
3226 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3227                 struct usb_device *udev,
3228                 struct usb_host_endpoint **eps, unsigned int num_eps,
3229                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3230 {
3231         unsigned int max_streams;
3232         unsigned int endpoint_flag;
3233         int i;
3234         int ret;
3235
3236         for (i = 0; i < num_eps; i++) {
3237                 ret = xhci_check_streams_endpoint(xhci, udev,
3238                                 eps[i], udev->slot_id);
3239                 if (ret < 0)
3240                         return ret;
3241
3242                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3243                 if (max_streams < (*num_streams - 1)) {
3244                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3245                                         eps[i]->desc.bEndpointAddress,
3246                                         max_streams);
3247                         *num_streams = max_streams+1;
3248                 }
3249
3250                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3251                 if (*changed_ep_bitmask & endpoint_flag)
3252                         return -EINVAL;
3253                 *changed_ep_bitmask |= endpoint_flag;
3254         }
3255         return 0;
3256 }
3257
3258 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3259                 struct usb_device *udev,
3260                 struct usb_host_endpoint **eps, unsigned int num_eps)
3261 {
3262         u32 changed_ep_bitmask = 0;
3263         unsigned int slot_id;
3264         unsigned int ep_index;
3265         unsigned int ep_state;
3266         int i;
3267
3268         slot_id = udev->slot_id;
3269         if (!xhci->devs[slot_id])
3270                 return 0;
3271
3272         for (i = 0; i < num_eps; i++) {
3273                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3274                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3275                 /* Are streams already being freed for the endpoint? */
3276                 if (ep_state & EP_GETTING_NO_STREAMS) {
3277                         xhci_warn(xhci, "WARN Can't disable streams for "
3278                                         "endpoint 0x%x, "
3279                                         "streams are being disabled already\n",
3280                                         eps[i]->desc.bEndpointAddress);
3281                         return 0;
3282                 }
3283                 /* Are there actually any streams to free? */
3284                 if (!(ep_state & EP_HAS_STREAMS) &&
3285                                 !(ep_state & EP_GETTING_STREAMS)) {
3286                         xhci_warn(xhci, "WARN Can't disable streams for "
3287                                         "endpoint 0x%x, "
3288                                         "streams are already disabled!\n",
3289                                         eps[i]->desc.bEndpointAddress);
3290                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3291                                         "with non-streams endpoint\n");
3292                         return 0;
3293                 }
3294                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3295         }
3296         return changed_ep_bitmask;
3297 }
3298
3299 /*
3300  * The USB device drivers use this function (through the HCD interface in USB
3301  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3302  * coordinate mass storage command queueing across multiple endpoints (basically
3303  * a stream ID == a task ID).
3304  *
3305  * Setting up streams involves allocating the same size stream context array
3306  * for each endpoint and issuing a configure endpoint command for all endpoints.
3307  *
3308  * Don't allow the call to succeed if one endpoint only supports one stream
3309  * (which means it doesn't support streams at all).
3310  *
3311  * Drivers may get less stream IDs than they asked for, if the host controller
3312  * hardware or endpoints claim they can't support the number of requested
3313  * stream IDs.
3314  */
3315 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3316                 struct usb_host_endpoint **eps, unsigned int num_eps,
3317                 unsigned int num_streams, gfp_t mem_flags)
3318 {
3319         int i, ret;
3320         struct xhci_hcd *xhci;
3321         struct xhci_virt_device *vdev;
3322         struct xhci_command *config_cmd;
3323         struct xhci_input_control_ctx *ctrl_ctx;
3324         unsigned int ep_index;
3325         unsigned int num_stream_ctxs;
3326         unsigned int max_packet;
3327         unsigned long flags;
3328         u32 changed_ep_bitmask = 0;
3329
3330         if (!eps)
3331                 return -EINVAL;
3332
3333         /* Add one to the number of streams requested to account for
3334          * stream 0 that is reserved for xHCI usage.
3335          */
3336         num_streams += 1;
3337         xhci = hcd_to_xhci(hcd);
3338         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3339                         num_streams);
3340
3341         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3342         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3343                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3344                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3345                 return -ENOSYS;
3346         }
3347
3348         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3349         if (!config_cmd)
3350                 return -ENOMEM;
3351
3352         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3353         if (!ctrl_ctx) {
3354                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3355                                 __func__);
3356                 xhci_free_command(xhci, config_cmd);
3357                 return -ENOMEM;
3358         }
3359
3360         /* Check to make sure all endpoints are not already configured for
3361          * streams.  While we're at it, find the maximum number of streams that
3362          * all the endpoints will support and check for duplicate endpoints.
3363          */
3364         spin_lock_irqsave(&xhci->lock, flags);
3365         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3366                         num_eps, &num_streams, &changed_ep_bitmask);
3367         if (ret < 0) {
3368                 xhci_free_command(xhci, config_cmd);
3369                 spin_unlock_irqrestore(&xhci->lock, flags);
3370                 return ret;
3371         }
3372         if (num_streams <= 1) {
3373                 xhci_warn(xhci, "WARN: endpoints can't handle "
3374                                 "more than one stream.\n");
3375                 xhci_free_command(xhci, config_cmd);
3376                 spin_unlock_irqrestore(&xhci->lock, flags);
3377                 return -EINVAL;
3378         }
3379         vdev = xhci->devs[udev->slot_id];
3380         /* Mark each endpoint as being in transition, so
3381          * xhci_urb_enqueue() will reject all URBs.
3382          */
3383         for (i = 0; i < num_eps; i++) {
3384                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3385                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3386         }
3387         spin_unlock_irqrestore(&xhci->lock, flags);
3388
3389         /* Setup internal data structures and allocate HW data structures for
3390          * streams (but don't install the HW structures in the input context
3391          * until we're sure all memory allocation succeeded).
3392          */
3393         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3394         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3395                         num_stream_ctxs, num_streams);
3396
3397         for (i = 0; i < num_eps; i++) {
3398                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3399                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3400                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3401                                 num_stream_ctxs,
3402                                 num_streams,
3403                                 max_packet, mem_flags);
3404                 if (!vdev->eps[ep_index].stream_info)
3405                         goto cleanup;
3406                 /* Set maxPstreams in endpoint context and update deq ptr to
3407                  * point to stream context array. FIXME
3408                  */
3409         }
3410
3411         /* Set up the input context for a configure endpoint command. */
3412         for (i = 0; i < num_eps; i++) {
3413                 struct xhci_ep_ctx *ep_ctx;
3414
3415                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3416                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3417
3418                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3419                                 vdev->out_ctx, ep_index);
3420                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3421                                 vdev->eps[ep_index].stream_info);
3422         }
3423         /* Tell the HW to drop its old copy of the endpoint context info
3424          * and add the updated copy from the input context.
3425          */
3426         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3427                         vdev->out_ctx, ctrl_ctx,
3428                         changed_ep_bitmask, changed_ep_bitmask);
3429
3430         /* Issue and wait for the configure endpoint command */
3431         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3432                         false, false);
3433
3434         /* xHC rejected the configure endpoint command for some reason, so we
3435          * leave the old ring intact and free our internal streams data
3436          * structure.
3437          */
3438         if (ret < 0)
3439                 goto cleanup;
3440
3441         spin_lock_irqsave(&xhci->lock, flags);
3442         for (i = 0; i < num_eps; i++) {
3443                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3444                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3445                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3446                          udev->slot_id, ep_index);
3447                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3448         }
3449         xhci_free_command(xhci, config_cmd);
3450         spin_unlock_irqrestore(&xhci->lock, flags);
3451
3452         /* Subtract 1 for stream 0, which drivers can't use */
3453         return num_streams - 1;
3454
3455 cleanup:
3456         /* If it didn't work, free the streams! */
3457         for (i = 0; i < num_eps; i++) {
3458                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3459                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3460                 vdev->eps[ep_index].stream_info = NULL;
3461                 /* FIXME Unset maxPstreams in endpoint context and
3462                  * update deq ptr to point to normal string ring.
3463                  */
3464                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3465                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3466                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3467         }
3468         xhci_free_command(xhci, config_cmd);
3469         return -ENOMEM;
3470 }
3471
3472 /* Transition the endpoint from using streams to being a "normal" endpoint
3473  * without streams.
3474  *
3475  * Modify the endpoint context state, submit a configure endpoint command,
3476  * and free all endpoint rings for streams if that completes successfully.
3477  */
3478 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3479                 struct usb_host_endpoint **eps, unsigned int num_eps,
3480                 gfp_t mem_flags)
3481 {
3482         int i, ret;
3483         struct xhci_hcd *xhci;
3484         struct xhci_virt_device *vdev;
3485         struct xhci_command *command;
3486         struct xhci_input_control_ctx *ctrl_ctx;
3487         unsigned int ep_index;
3488         unsigned long flags;
3489         u32 changed_ep_bitmask;
3490
3491         xhci = hcd_to_xhci(hcd);
3492         vdev = xhci->devs[udev->slot_id];
3493
3494         /* Set up a configure endpoint command to remove the streams rings */
3495         spin_lock_irqsave(&xhci->lock, flags);
3496         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3497                         udev, eps, num_eps);
3498         if (changed_ep_bitmask == 0) {
3499                 spin_unlock_irqrestore(&xhci->lock, flags);
3500                 return -EINVAL;
3501         }
3502
3503         /* Use the xhci_command structure from the first endpoint.  We may have
3504          * allocated too many, but the driver may call xhci_free_streams() for
3505          * each endpoint it grouped into one call to xhci_alloc_streams().
3506          */
3507         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3508         command = vdev->eps[ep_index].stream_info->free_streams_command;
3509         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3510         if (!ctrl_ctx) {
3511                 spin_unlock_irqrestore(&xhci->lock, flags);
3512                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3513                                 __func__);
3514                 return -EINVAL;
3515         }
3516
3517         for (i = 0; i < num_eps; i++) {
3518                 struct xhci_ep_ctx *ep_ctx;
3519
3520                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3521                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3522                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3523                         EP_GETTING_NO_STREAMS;
3524
3525                 xhci_endpoint_copy(xhci, command->in_ctx,
3526                                 vdev->out_ctx, ep_index);
3527                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3528                                 &vdev->eps[ep_index]);
3529         }
3530         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3531                         vdev->out_ctx, ctrl_ctx,
3532                         changed_ep_bitmask, changed_ep_bitmask);
3533         spin_unlock_irqrestore(&xhci->lock, flags);
3534
3535         /* Issue and wait for the configure endpoint command,
3536          * which must succeed.
3537          */
3538         ret = xhci_configure_endpoint(xhci, udev, command,
3539                         false, true);
3540
3541         /* xHC rejected the configure endpoint command for some reason, so we
3542          * leave the streams rings intact.
3543          */
3544         if (ret < 0)
3545                 return ret;
3546
3547         spin_lock_irqsave(&xhci->lock, flags);
3548         for (i = 0; i < num_eps; i++) {
3549                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3550                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3551                 vdev->eps[ep_index].stream_info = NULL;
3552                 /* FIXME Unset maxPstreams in endpoint context and
3553                  * update deq ptr to point to normal string ring.
3554                  */
3555                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3556                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3557         }
3558         spin_unlock_irqrestore(&xhci->lock, flags);
3559
3560         return 0;
3561 }
3562
3563 /*
3564  * Deletes endpoint resources for endpoints that were active before a Reset
3565  * Device command, or a Disable Slot command.  The Reset Device command leaves
3566  * the control endpoint intact, whereas the Disable Slot command deletes it.
3567  *
3568  * Must be called with xhci->lock held.
3569  */
3570 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3571         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3572 {
3573         int i;
3574         unsigned int num_dropped_eps = 0;
3575         unsigned int drop_flags = 0;
3576
3577         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3578                 if (virt_dev->eps[i].ring) {
3579                         drop_flags |= 1 << i;
3580                         num_dropped_eps++;
3581                 }
3582         }
3583         xhci->num_active_eps -= num_dropped_eps;
3584         if (num_dropped_eps)
3585                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3586                                 "Dropped %u ep ctxs, flags = 0x%x, "
3587                                 "%u now active.",
3588                                 num_dropped_eps, drop_flags,
3589                                 xhci->num_active_eps);
3590 }
3591
3592 /*
3593  * This submits a Reset Device Command, which will set the device state to 0,
3594  * set the device address to 0, and disable all the endpoints except the default
3595  * control endpoint.  The USB core should come back and call
3596  * xhci_address_device(), and then re-set up the configuration.  If this is
3597  * called because of a usb_reset_and_verify_device(), then the old alternate
3598  * settings will be re-installed through the normal bandwidth allocation
3599  * functions.
3600  *
3601  * Wait for the Reset Device command to finish.  Remove all structures
3602  * associated with the endpoints that were disabled.  Clear the input device
3603  * structure? Reset the control endpoint 0 max packet size?
3604  *
3605  * If the virt_dev to be reset does not exist or does not match the udev,
3606  * it means the device is lost, possibly due to the xHC restore error and
3607  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3608  * re-allocate the device.
3609  */
3610 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3611                 struct usb_device *udev)
3612 {
3613         int ret, i;
3614         unsigned long flags;
3615         struct xhci_hcd *xhci;
3616         unsigned int slot_id;
3617         struct xhci_virt_device *virt_dev;
3618         struct xhci_command *reset_device_cmd;
3619         struct xhci_slot_ctx *slot_ctx;
3620         int old_active_eps = 0;
3621
3622         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3623         if (ret <= 0)
3624                 return ret;
3625         xhci = hcd_to_xhci(hcd);
3626         slot_id = udev->slot_id;
3627         virt_dev = xhci->devs[slot_id];
3628         if (!virt_dev) {
3629                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3630                                 "not exist. Re-allocate the device\n", slot_id);
3631                 ret = xhci_alloc_dev(hcd, udev);
3632                 if (ret == 1)
3633                         return 0;
3634                 else
3635                         return -EINVAL;
3636         }
3637
3638         if (virt_dev->tt_info)
3639                 old_active_eps = virt_dev->tt_info->active_eps;
3640
3641         if (virt_dev->udev != udev) {
3642                 /* If the virt_dev and the udev does not match, this virt_dev
3643                  * may belong to another udev.
3644                  * Re-allocate the device.
3645                  */
3646                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3647                                 "not match the udev. Re-allocate the device\n",
3648                                 slot_id);
3649                 ret = xhci_alloc_dev(hcd, udev);
3650                 if (ret == 1)
3651                         return 0;
3652                 else
3653                         return -EINVAL;
3654         }
3655
3656         /* If device is not setup, there is no point in resetting it */
3657         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3658         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3659                                                 SLOT_STATE_DISABLED)
3660                 return 0;
3661
3662         trace_xhci_discover_or_reset_device(slot_ctx);
3663
3664         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3665         /* Allocate the command structure that holds the struct completion.
3666          * Assume we're in process context, since the normal device reset
3667          * process has to wait for the device anyway.  Storage devices are
3668          * reset as part of error handling, so use GFP_NOIO instead of
3669          * GFP_KERNEL.
3670          */
3671         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3672         if (!reset_device_cmd) {
3673                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3674                 return -ENOMEM;
3675         }
3676
3677         /* Attempt to submit the Reset Device command to the command ring */
3678         spin_lock_irqsave(&xhci->lock, flags);
3679
3680         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3681         if (ret) {
3682                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3683                 spin_unlock_irqrestore(&xhci->lock, flags);
3684                 goto command_cleanup;
3685         }
3686         xhci_ring_cmd_db(xhci);
3687         spin_unlock_irqrestore(&xhci->lock, flags);
3688
3689         /* Wait for the Reset Device command to finish */
3690         wait_for_completion(reset_device_cmd->completion);
3691
3692         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3693          * unless we tried to reset a slot ID that wasn't enabled,
3694          * or the device wasn't in the addressed or configured state.
3695          */
3696         ret = reset_device_cmd->status;
3697         switch (ret) {
3698         case COMP_COMMAND_ABORTED:
3699         case COMP_COMMAND_RING_STOPPED:
3700                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3701                 ret = -ETIME;
3702                 goto command_cleanup;
3703         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3704         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3705                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3706                                 slot_id,
3707                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3708                 xhci_dbg(xhci, "Not freeing device rings.\n");
3709                 /* Don't treat this as an error.  May change my mind later. */
3710                 ret = 0;
3711                 goto command_cleanup;
3712         case COMP_SUCCESS:
3713                 xhci_dbg(xhci, "Successful reset device command.\n");
3714                 break;
3715         default:
3716                 if (xhci_is_vendor_info_code(xhci, ret))
3717                         break;
3718                 xhci_warn(xhci, "Unknown completion code %u for "
3719                                 "reset device command.\n", ret);
3720                 ret = -EINVAL;
3721                 goto command_cleanup;
3722         }
3723
3724         /* Free up host controller endpoint resources */
3725         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3726                 spin_lock_irqsave(&xhci->lock, flags);
3727                 /* Don't delete the default control endpoint resources */
3728                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3729                 spin_unlock_irqrestore(&xhci->lock, flags);
3730         }
3731
3732         /* Everything but endpoint 0 is disabled, so free the rings. */
3733         for (i = 1; i < 31; i++) {
3734                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3735
3736                 if (ep->ep_state & EP_HAS_STREAMS) {
3737                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3738                                         xhci_get_endpoint_address(i));
3739                         xhci_free_stream_info(xhci, ep->stream_info);
3740                         ep->stream_info = NULL;
3741                         ep->ep_state &= ~EP_HAS_STREAMS;
3742                 }
3743
3744                 if (ep->ring) {
3745                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3746                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3747                 }
3748                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3749                         xhci_drop_ep_from_interval_table(xhci,
3750                                         &virt_dev->eps[i].bw_info,
3751                                         virt_dev->bw_table,
3752                                         udev,
3753                                         &virt_dev->eps[i],
3754                                         virt_dev->tt_info);
3755                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3756         }
3757         /* If necessary, update the number of active TTs on this root port */
3758         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3759         ret = 0;
3760
3761 command_cleanup:
3762         xhci_free_command(xhci, reset_device_cmd);
3763         return ret;
3764 }
3765
3766 /*
3767  * At this point, the struct usb_device is about to go away, the device has
3768  * disconnected, and all traffic has been stopped and the endpoints have been
3769  * disabled.  Free any HC data structures associated with that device.
3770  */
3771 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3772 {
3773         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3774         struct xhci_virt_device *virt_dev;
3775         struct xhci_slot_ctx *slot_ctx;
3776         int i, ret;
3777
3778 #ifndef CONFIG_USB_DEFAULT_PERSIST
3779         /*
3780          * We called pm_runtime_get_noresume when the device was attached.
3781          * Decrement the counter here to allow controller to runtime suspend
3782          * if no devices remain.
3783          */
3784         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3785                 pm_runtime_put_noidle(hcd->self.controller);
3786 #endif
3787
3788         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3789         /* If the host is halted due to driver unload, we still need to free the
3790          * device.
3791          */
3792         if (ret <= 0 && ret != -ENODEV)
3793                 return;
3794
3795         virt_dev = xhci->devs[udev->slot_id];
3796         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3797         trace_xhci_free_dev(slot_ctx);
3798
3799         /* Stop any wayward timer functions (which may grab the lock) */
3800         for (i = 0; i < 31; i++) {
3801                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3802                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3803         }
3804         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3805         virt_dev->udev = NULL;
3806         ret = xhci_disable_slot(xhci, udev->slot_id);
3807         if (ret)
3808                 xhci_free_virt_device(xhci, udev->slot_id);
3809 }
3810
3811 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3812 {
3813         struct xhci_command *command;
3814         unsigned long flags;
3815         u32 state;
3816         int ret = 0;
3817
3818         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3819         if (!command)
3820                 return -ENOMEM;
3821
3822         spin_lock_irqsave(&xhci->lock, flags);
3823         /* Don't disable the slot if the host controller is dead. */
3824         state = readl(&xhci->op_regs->status);
3825         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3826                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3827                 spin_unlock_irqrestore(&xhci->lock, flags);
3828                 kfree(command);
3829                 return -ENODEV;
3830         }
3831
3832         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3833                                 slot_id);
3834         if (ret) {
3835                 spin_unlock_irqrestore(&xhci->lock, flags);
3836                 kfree(command);
3837                 return ret;
3838         }
3839         xhci_ring_cmd_db(xhci);
3840         spin_unlock_irqrestore(&xhci->lock, flags);
3841         return ret;
3842 }
3843
3844 /*
3845  * Checks if we have enough host controller resources for the default control
3846  * endpoint.
3847  *
3848  * Must be called with xhci->lock held.
3849  */
3850 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3851 {
3852         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3853                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3854                                 "Not enough ep ctxs: "
3855                                 "%u active, need to add 1, limit is %u.",
3856                                 xhci->num_active_eps, xhci->limit_active_eps);
3857                 return -ENOMEM;
3858         }
3859         xhci->num_active_eps += 1;
3860         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3861                         "Adding 1 ep ctx, %u now active.",
3862                         xhci->num_active_eps);
3863         return 0;
3864 }
3865
3866
3867 /*
3868  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3869  * timed out, or allocating memory failed.  Returns 1 on success.
3870  */
3871 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3872 {
3873         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3874         struct xhci_virt_device *vdev;
3875         struct xhci_slot_ctx *slot_ctx;
3876         unsigned long flags;
3877         int ret, slot_id;
3878         struct xhci_command *command;
3879
3880         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3881         if (!command)
3882                 return 0;
3883
3884         spin_lock_irqsave(&xhci->lock, flags);
3885         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3886         if (ret) {
3887                 spin_unlock_irqrestore(&xhci->lock, flags);
3888                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3889                 xhci_free_command(xhci, command);
3890                 return 0;
3891         }
3892         xhci_ring_cmd_db(xhci);
3893         spin_unlock_irqrestore(&xhci->lock, flags);
3894
3895         wait_for_completion(command->completion);
3896         slot_id = command->slot_id;
3897
3898         if (!slot_id || command->status != COMP_SUCCESS) {
3899                 xhci_err(xhci, "Error while assigning device slot ID\n");
3900                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3901                                 HCS_MAX_SLOTS(
3902                                         readl(&xhci->cap_regs->hcs_params1)));
3903                 xhci_free_command(xhci, command);
3904                 return 0;
3905         }
3906
3907         xhci_free_command(xhci, command);
3908
3909         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3910                 spin_lock_irqsave(&xhci->lock, flags);
3911                 ret = xhci_reserve_host_control_ep_resources(xhci);
3912                 if (ret) {
3913                         spin_unlock_irqrestore(&xhci->lock, flags);
3914                         xhci_warn(xhci, "Not enough host resources, "
3915                                         "active endpoint contexts = %u\n",
3916                                         xhci->num_active_eps);
3917                         goto disable_slot;
3918                 }
3919                 spin_unlock_irqrestore(&xhci->lock, flags);
3920         }
3921         /* Use GFP_NOIO, since this function can be called from
3922          * xhci_discover_or_reset_device(), which may be called as part of
3923          * mass storage driver error handling.
3924          */
3925         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3926                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3927                 goto disable_slot;
3928         }
3929         vdev = xhci->devs[slot_id];
3930         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3931         trace_xhci_alloc_dev(slot_ctx);
3932
3933         udev->slot_id = slot_id;
3934
3935         xhci_debugfs_create_slot(xhci, slot_id);
3936
3937 #ifndef CONFIG_USB_DEFAULT_PERSIST
3938         /*
3939          * If resetting upon resume, we can't put the controller into runtime
3940          * suspend if there is a device attached.
3941          */
3942         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3943                 pm_runtime_get_noresume(hcd->self.controller);
3944 #endif
3945
3946         /* Is this a LS or FS device under a HS hub? */
3947         /* Hub or peripherial? */
3948         return 1;
3949
3950 disable_slot:
3951         ret = xhci_disable_slot(xhci, udev->slot_id);
3952         if (ret)
3953                 xhci_free_virt_device(xhci, udev->slot_id);
3954
3955         return 0;
3956 }
3957
3958 /*
3959  * Issue an Address Device command and optionally send a corresponding
3960  * SetAddress request to the device.
3961  */
3962 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3963                              enum xhci_setup_dev setup)
3964 {
3965         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3966         unsigned long flags;
3967         struct xhci_virt_device *virt_dev;
3968         int ret = 0;
3969         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3970         struct xhci_slot_ctx *slot_ctx;
3971         struct xhci_input_control_ctx *ctrl_ctx;
3972         u64 temp_64;
3973         struct xhci_command *command = NULL;
3974
3975         mutex_lock(&xhci->mutex);
3976
3977         if (xhci->xhc_state) {  /* dying, removing or halted */
3978                 ret = -ESHUTDOWN;
3979                 goto out;
3980         }
3981
3982         if (!udev->slot_id) {
3983                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3984                                 "Bad Slot ID %d", udev->slot_id);
3985                 ret = -EINVAL;
3986                 goto out;
3987         }
3988
3989         virt_dev = xhci->devs[udev->slot_id];
3990
3991         if (WARN_ON(!virt_dev)) {
3992                 /*
3993                  * In plug/unplug torture test with an NEC controller,
3994                  * a zero-dereference was observed once due to virt_dev = 0.
3995                  * Print useful debug rather than crash if it is observed again!
3996                  */
3997                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3998                         udev->slot_id);
3999                 ret = -EINVAL;
4000                 goto out;
4001         }
4002         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4003         trace_xhci_setup_device_slot(slot_ctx);
4004
4005         if (setup == SETUP_CONTEXT_ONLY) {
4006                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4007                     SLOT_STATE_DEFAULT) {
4008                         xhci_dbg(xhci, "Slot already in default state\n");
4009                         goto out;
4010                 }
4011         }
4012
4013         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4014         if (!command) {
4015                 ret = -ENOMEM;
4016                 goto out;
4017         }
4018
4019         command->in_ctx = virt_dev->in_ctx;
4020
4021         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4022         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4023         if (!ctrl_ctx) {
4024                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4025                                 __func__);
4026                 ret = -EINVAL;
4027                 goto out;
4028         }
4029         /*
4030          * If this is the first Set Address since device plug-in or
4031          * virt_device realloaction after a resume with an xHCI power loss,
4032          * then set up the slot context.
4033          */
4034         if (!slot_ctx->dev_info)
4035                 xhci_setup_addressable_virt_dev(xhci, udev);
4036         /* Otherwise, update the control endpoint ring enqueue pointer. */
4037         else
4038                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4039         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4040         ctrl_ctx->drop_flags = 0;
4041
4042         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4043                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4044
4045         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4046         spin_lock_irqsave(&xhci->lock, flags);
4047         trace_xhci_setup_device(virt_dev);
4048         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4049                                         udev->slot_id, setup);
4050         if (ret) {
4051                 spin_unlock_irqrestore(&xhci->lock, flags);
4052                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4053                                 "FIXME: allocate a command ring segment");
4054                 goto out;
4055         }
4056         xhci_ring_cmd_db(xhci);
4057         spin_unlock_irqrestore(&xhci->lock, flags);
4058
4059         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4060         wait_for_completion(command->completion);
4061
4062         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4063          * the SetAddress() "recovery interval" required by USB and aborting the
4064          * command on a timeout.
4065          */
4066         switch (command->status) {
4067         case COMP_COMMAND_ABORTED:
4068         case COMP_COMMAND_RING_STOPPED:
4069                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4070                 ret = -ETIME;
4071                 break;
4072         case COMP_CONTEXT_STATE_ERROR:
4073         case COMP_SLOT_NOT_ENABLED_ERROR:
4074                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4075                          act, udev->slot_id);
4076                 ret = -EINVAL;
4077                 break;
4078         case COMP_USB_TRANSACTION_ERROR:
4079                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4080
4081                 mutex_unlock(&xhci->mutex);
4082                 ret = xhci_disable_slot(xhci, udev->slot_id);
4083                 if (!ret)
4084                         xhci_alloc_dev(hcd, udev);
4085                 kfree(command->completion);
4086                 kfree(command);
4087                 return -EPROTO;
4088         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4089                 dev_warn(&udev->dev,
4090                          "ERROR: Incompatible device for setup %s command\n", act);
4091                 ret = -ENODEV;
4092                 break;
4093         case COMP_SUCCESS:
4094                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4095                                "Successful setup %s command", act);
4096                 break;
4097         default:
4098                 xhci_err(xhci,
4099                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4100                          act, command->status);
4101                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4102                 ret = -EINVAL;
4103                 break;
4104         }
4105         if (ret)
4106                 goto out;
4107         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4108         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4109                         "Op regs DCBAA ptr = %#016llx", temp_64);
4110         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4111                 "Slot ID %d dcbaa entry @%p = %#016llx",
4112                 udev->slot_id,
4113                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4114                 (unsigned long long)
4115                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4116         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4117                         "Output Context DMA address = %#08llx",
4118                         (unsigned long long)virt_dev->out_ctx->dma);
4119         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4120                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4121         /*
4122          * USB core uses address 1 for the roothubs, so we add one to the
4123          * address given back to us by the HC.
4124          */
4125         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4126                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4127         /* Zero the input context control for later use */
4128         ctrl_ctx->add_flags = 0;
4129         ctrl_ctx->drop_flags = 0;
4130
4131         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4132                        "Internal device address = %d",
4133                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4134 out:
4135         mutex_unlock(&xhci->mutex);
4136         if (command) {
4137                 kfree(command->completion);
4138                 kfree(command);
4139         }
4140         return ret;
4141 }
4142
4143 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4144 {
4145         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4146 }
4147
4148 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4149 {
4150         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4151 }
4152
4153 /*
4154  * Transfer the port index into real index in the HW port status
4155  * registers. Caculate offset between the port's PORTSC register
4156  * and port status base. Divide the number of per port register
4157  * to get the real index. The raw port number bases 1.
4158  */
4159 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4160 {
4161         struct xhci_hub *rhub;
4162
4163         rhub = xhci_get_rhub(hcd);
4164         return rhub->ports[port1 - 1]->hw_portnum + 1;
4165 }
4166
4167 /*
4168  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4169  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4170  */
4171 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4172                         struct usb_device *udev, u16 max_exit_latency)
4173 {
4174         struct xhci_virt_device *virt_dev;
4175         struct xhci_command *command;
4176         struct xhci_input_control_ctx *ctrl_ctx;
4177         struct xhci_slot_ctx *slot_ctx;
4178         unsigned long flags;
4179         int ret;
4180
4181         spin_lock_irqsave(&xhci->lock, flags);
4182
4183         virt_dev = xhci->devs[udev->slot_id];
4184
4185         /*
4186          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4187          * xHC was re-initialized. Exit latency will be set later after
4188          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4189          */
4190
4191         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4192                 spin_unlock_irqrestore(&xhci->lock, flags);
4193                 return 0;
4194         }
4195
4196         /* Attempt to issue an Evaluate Context command to change the MEL. */
4197         command = xhci->lpm_command;
4198         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4199         if (!ctrl_ctx) {
4200                 spin_unlock_irqrestore(&xhci->lock, flags);
4201                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4202                                 __func__);
4203                 return -ENOMEM;
4204         }
4205
4206         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4207         spin_unlock_irqrestore(&xhci->lock, flags);
4208
4209         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4210         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4211         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4212         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4213         slot_ctx->dev_state = 0;
4214
4215         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4216                         "Set up evaluate context for LPM MEL change.");
4217
4218         /* Issue and wait for the evaluate context command. */
4219         ret = xhci_configure_endpoint(xhci, udev, command,
4220                         true, true);
4221
4222         if (!ret) {
4223                 spin_lock_irqsave(&xhci->lock, flags);
4224                 virt_dev->current_mel = max_exit_latency;
4225                 spin_unlock_irqrestore(&xhci->lock, flags);
4226         }
4227         return ret;
4228 }
4229
4230 #ifdef CONFIG_PM
4231
4232 /* BESL to HIRD Encoding array for USB2 LPM */
4233 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4234         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4235
4236 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4237 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4238                                         struct usb_device *udev)
4239 {
4240         int u2del, besl, besl_host;
4241         int besl_device = 0;
4242         u32 field;
4243
4244         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4245         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4246
4247         if (field & USB_BESL_SUPPORT) {
4248                 for (besl_host = 0; besl_host < 16; besl_host++) {
4249                         if (xhci_besl_encoding[besl_host] >= u2del)
4250                                 break;
4251                 }
4252                 /* Use baseline BESL value as default */
4253                 if (field & USB_BESL_BASELINE_VALID)
4254                         besl_device = USB_GET_BESL_BASELINE(field);
4255                 else if (field & USB_BESL_DEEP_VALID)
4256                         besl_device = USB_GET_BESL_DEEP(field);
4257         } else {
4258                 if (u2del <= 50)
4259                         besl_host = 0;
4260                 else
4261                         besl_host = (u2del - 51) / 75 + 1;
4262         }
4263
4264         besl = besl_host + besl_device;
4265         if (besl > 15)
4266                 besl = 15;
4267
4268         return besl;
4269 }
4270
4271 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4272 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4273 {
4274         u32 field;
4275         int l1;
4276         int besld = 0;
4277         int hirdm = 0;
4278
4279         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4280
4281         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4282         l1 = udev->l1_params.timeout / 256;
4283
4284         /* device has preferred BESLD */
4285         if (field & USB_BESL_DEEP_VALID) {
4286                 besld = USB_GET_BESL_DEEP(field);
4287                 hirdm = 1;
4288         }
4289
4290         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4291 }
4292
4293 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4294                         struct usb_device *udev, int enable)
4295 {
4296         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4297         struct xhci_port **ports;
4298         __le32 __iomem  *pm_addr, *hlpm_addr;
4299         u32             pm_val, hlpm_val, field;
4300         unsigned int    port_num;
4301         unsigned long   flags;
4302         int             hird, exit_latency;
4303         int             ret;
4304
4305         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4306                         !udev->lpm_capable)
4307                 return -EPERM;
4308
4309         if (!udev->parent || udev->parent->parent ||
4310                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4311                 return -EPERM;
4312
4313         if (udev->usb2_hw_lpm_capable != 1)
4314                 return -EPERM;
4315
4316         spin_lock_irqsave(&xhci->lock, flags);
4317
4318         ports = xhci->usb2_rhub.ports;
4319         port_num = udev->portnum - 1;
4320         pm_addr = ports[port_num]->addr + PORTPMSC;
4321         pm_val = readl(pm_addr);
4322         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4323         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4324
4325         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4326                         enable ? "enable" : "disable", port_num + 1);
4327
4328         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4329                 /* Host supports BESL timeout instead of HIRD */
4330                 if (udev->usb2_hw_lpm_besl_capable) {
4331                         /* if device doesn't have a preferred BESL value use a
4332                          * default one which works with mixed HIRD and BESL
4333                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4334                          */
4335                         if ((field & USB_BESL_SUPPORT) &&
4336                             (field & USB_BESL_BASELINE_VALID))
4337                                 hird = USB_GET_BESL_BASELINE(field);
4338                         else
4339                                 hird = udev->l1_params.besl;
4340
4341                         exit_latency = xhci_besl_encoding[hird];
4342                         spin_unlock_irqrestore(&xhci->lock, flags);
4343
4344                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4345                          * input context for link powermanagement evaluate
4346                          * context commands. It is protected by hcd->bandwidth
4347                          * mutex and is shared by all devices. We need to set
4348                          * the max ext latency in USB 2 BESL LPM as well, so
4349                          * use the same mutex and xhci_change_max_exit_latency()
4350                          */
4351                         mutex_lock(hcd->bandwidth_mutex);
4352                         ret = xhci_change_max_exit_latency(xhci, udev,
4353                                                            exit_latency);
4354                         mutex_unlock(hcd->bandwidth_mutex);
4355
4356                         if (ret < 0)
4357                                 return ret;
4358                         spin_lock_irqsave(&xhci->lock, flags);
4359
4360                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4361                         writel(hlpm_val, hlpm_addr);
4362                         /* flush write */
4363                         readl(hlpm_addr);
4364                 } else {
4365                         hird = xhci_calculate_hird_besl(xhci, udev);
4366                 }
4367
4368                 pm_val &= ~PORT_HIRD_MASK;
4369                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4370                 writel(pm_val, pm_addr);
4371                 pm_val = readl(pm_addr);
4372                 pm_val |= PORT_HLE;
4373                 writel(pm_val, pm_addr);
4374                 /* flush write */
4375                 readl(pm_addr);
4376         } else {
4377                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4378                 writel(pm_val, pm_addr);
4379                 /* flush write */
4380                 readl(pm_addr);
4381                 if (udev->usb2_hw_lpm_besl_capable) {
4382                         spin_unlock_irqrestore(&xhci->lock, flags);
4383                         mutex_lock(hcd->bandwidth_mutex);
4384                         xhci_change_max_exit_latency(xhci, udev, 0);
4385                         mutex_unlock(hcd->bandwidth_mutex);
4386                         return 0;
4387                 }
4388         }
4389
4390         spin_unlock_irqrestore(&xhci->lock, flags);
4391         return 0;
4392 }
4393
4394 /* check if a usb2 port supports a given extened capability protocol
4395  * only USB2 ports extended protocol capability values are cached.
4396  * Return 1 if capability is supported
4397  */
4398 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4399                                            unsigned capability)
4400 {
4401         u32 port_offset, port_count;
4402         int i;
4403
4404         for (i = 0; i < xhci->num_ext_caps; i++) {
4405                 if (xhci->ext_caps[i] & capability) {
4406                         /* port offsets starts at 1 */
4407                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4408                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4409                         if (port >= port_offset &&
4410                             port < port_offset + port_count)
4411                                 return 1;
4412                 }
4413         }
4414         return 0;
4415 }
4416
4417 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4418 {
4419         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4420         int             portnum = udev->portnum - 1;
4421
4422         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4423                 return 0;
4424
4425         /* we only support lpm for non-hub device connected to root hub yet */
4426         if (!udev->parent || udev->parent->parent ||
4427                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4428                 return 0;
4429
4430         if (xhci->hw_lpm_support == 1 &&
4431                         xhci_check_usb2_port_capability(
4432                                 xhci, portnum, XHCI_HLC)) {
4433                 udev->usb2_hw_lpm_capable = 1;
4434                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4435                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4436                 if (xhci_check_usb2_port_capability(xhci, portnum,
4437                                         XHCI_BLC))
4438                         udev->usb2_hw_lpm_besl_capable = 1;
4439         }
4440
4441         return 0;
4442 }
4443
4444 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4445
4446 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4447 static unsigned long long xhci_service_interval_to_ns(
4448                 struct usb_endpoint_descriptor *desc)
4449 {
4450         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4451 }
4452
4453 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4454                 enum usb3_link_state state)
4455 {
4456         unsigned long long sel;
4457         unsigned long long pel;
4458         unsigned int max_sel_pel;
4459         char *state_name;
4460
4461         switch (state) {
4462         case USB3_LPM_U1:
4463                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4464                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4465                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4466                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4467                 state_name = "U1";
4468                 break;
4469         case USB3_LPM_U2:
4470                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4471                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4472                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4473                 state_name = "U2";
4474                 break;
4475         default:
4476                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4477                                 __func__);
4478                 return USB3_LPM_DISABLED;
4479         }
4480
4481         if (sel <= max_sel_pel && pel <= max_sel_pel)
4482                 return USB3_LPM_DEVICE_INITIATED;
4483
4484         if (sel > max_sel_pel)
4485                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4486                                 "due to long SEL %llu ms\n",
4487                                 state_name, sel);
4488         else
4489                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4490                                 "due to long PEL %llu ms\n",
4491                                 state_name, pel);
4492         return USB3_LPM_DISABLED;
4493 }
4494
4495 /* The U1 timeout should be the maximum of the following values:
4496  *  - For control endpoints, U1 system exit latency (SEL) * 3
4497  *  - For bulk endpoints, U1 SEL * 5
4498  *  - For interrupt endpoints:
4499  *    - Notification EPs, U1 SEL * 3
4500  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4501  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4502  */
4503 static unsigned long long xhci_calculate_intel_u1_timeout(
4504                 struct usb_device *udev,
4505                 struct usb_endpoint_descriptor *desc)
4506 {
4507         unsigned long long timeout_ns;
4508         int ep_type;
4509         int intr_type;
4510
4511         ep_type = usb_endpoint_type(desc);
4512         switch (ep_type) {
4513         case USB_ENDPOINT_XFER_CONTROL:
4514                 timeout_ns = udev->u1_params.sel * 3;
4515                 break;
4516         case USB_ENDPOINT_XFER_BULK:
4517                 timeout_ns = udev->u1_params.sel * 5;
4518                 break;
4519         case USB_ENDPOINT_XFER_INT:
4520                 intr_type = usb_endpoint_interrupt_type(desc);
4521                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4522                         timeout_ns = udev->u1_params.sel * 3;
4523                         break;
4524                 }
4525                 /* Otherwise the calculation is the same as isoc eps */
4526                 /* fall through */
4527         case USB_ENDPOINT_XFER_ISOC:
4528                 timeout_ns = xhci_service_interval_to_ns(desc);
4529                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4530                 if (timeout_ns < udev->u1_params.sel * 2)
4531                         timeout_ns = udev->u1_params.sel * 2;
4532                 break;
4533         default:
4534                 return 0;
4535         }
4536
4537         return timeout_ns;
4538 }
4539
4540 /* Returns the hub-encoded U1 timeout value. */
4541 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4542                 struct usb_device *udev,
4543                 struct usb_endpoint_descriptor *desc)
4544 {
4545         unsigned long long timeout_ns;
4546
4547         /* Prevent U1 if service interval is shorter than U1 exit latency */
4548         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4549                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4550                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4551                         return USB3_LPM_DISABLED;
4552                 }
4553         }
4554
4555         if (xhci->quirks & XHCI_INTEL_HOST)
4556                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4557         else
4558                 timeout_ns = udev->u1_params.sel;
4559
4560         /* The U1 timeout is encoded in 1us intervals.
4561          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4562          */
4563         if (timeout_ns == USB3_LPM_DISABLED)
4564                 timeout_ns = 1;
4565         else
4566                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4567
4568         /* If the necessary timeout value is bigger than what we can set in the
4569          * USB 3.0 hub, we have to disable hub-initiated U1.
4570          */
4571         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4572                 return timeout_ns;
4573         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4574                         "due to long timeout %llu ms\n", timeout_ns);
4575         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4576 }
4577
4578 /* The U2 timeout should be the maximum of:
4579  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4580  *  - largest bInterval of any active periodic endpoint (to avoid going
4581  *    into lower power link states between intervals).
4582  *  - the U2 Exit Latency of the device
4583  */
4584 static unsigned long long xhci_calculate_intel_u2_timeout(
4585                 struct usb_device *udev,
4586                 struct usb_endpoint_descriptor *desc)
4587 {
4588         unsigned long long timeout_ns;
4589         unsigned long long u2_del_ns;
4590
4591         timeout_ns = 10 * 1000 * 1000;
4592
4593         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4594                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4595                 timeout_ns = xhci_service_interval_to_ns(desc);
4596
4597         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4598         if (u2_del_ns > timeout_ns)
4599                 timeout_ns = u2_del_ns;
4600
4601         return timeout_ns;
4602 }
4603
4604 /* Returns the hub-encoded U2 timeout value. */
4605 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4606                 struct usb_device *udev,
4607                 struct usb_endpoint_descriptor *desc)
4608 {
4609         unsigned long long timeout_ns;
4610
4611         /* Prevent U2 if service interval is shorter than U2 exit latency */
4612         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4613                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4614                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4615                         return USB3_LPM_DISABLED;
4616                 }
4617         }
4618
4619         if (xhci->quirks & XHCI_INTEL_HOST)
4620                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4621         else
4622                 timeout_ns = udev->u2_params.sel;
4623
4624         /* The U2 timeout is encoded in 256us intervals */
4625         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4626         /* If the necessary timeout value is bigger than what we can set in the
4627          * USB 3.0 hub, we have to disable hub-initiated U2.
4628          */
4629         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4630                 return timeout_ns;
4631         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4632                         "due to long timeout %llu ms\n", timeout_ns);
4633         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4634 }
4635
4636 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4637                 struct usb_device *udev,
4638                 struct usb_endpoint_descriptor *desc,
4639                 enum usb3_link_state state,
4640                 u16 *timeout)
4641 {
4642         if (state == USB3_LPM_U1)
4643                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4644         else if (state == USB3_LPM_U2)
4645                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4646
4647         return USB3_LPM_DISABLED;
4648 }
4649
4650 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4651                 struct usb_device *udev,
4652                 struct usb_endpoint_descriptor *desc,
4653                 enum usb3_link_state state,
4654                 u16 *timeout)
4655 {
4656         u16 alt_timeout;
4657
4658         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4659                 desc, state, timeout);
4660
4661         /* If we found we can't enable hub-initiated LPM, or
4662          * the U1 or U2 exit latency was too high to allow
4663          * device-initiated LPM as well, just stop searching.
4664          */
4665         if (alt_timeout == USB3_LPM_DISABLED ||
4666                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4667                 *timeout = alt_timeout;
4668                 return -E2BIG;
4669         }
4670         if (alt_timeout > *timeout)
4671                 *timeout = alt_timeout;
4672         return 0;
4673 }
4674
4675 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4676                 struct usb_device *udev,
4677                 struct usb_host_interface *alt,
4678                 enum usb3_link_state state,
4679                 u16 *timeout)
4680 {
4681         int j;
4682
4683         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4684                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4685                                         &alt->endpoint[j].desc, state, timeout))
4686                         return -E2BIG;
4687                 continue;
4688         }
4689         return 0;
4690 }
4691
4692 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4693                 enum usb3_link_state state)
4694 {
4695         struct usb_device *parent;
4696         unsigned int num_hubs;
4697
4698         if (state == USB3_LPM_U2)
4699                 return 0;
4700
4701         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4702         for (parent = udev->parent, num_hubs = 0; parent->parent;
4703                         parent = parent->parent)
4704                 num_hubs++;
4705
4706         if (num_hubs < 2)
4707                 return 0;
4708
4709         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4710                         " below second-tier hub.\n");
4711         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4712                         "to decrease power consumption.\n");
4713         return -E2BIG;
4714 }
4715
4716 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4717                 struct usb_device *udev,
4718                 enum usb3_link_state state)
4719 {
4720         if (xhci->quirks & XHCI_INTEL_HOST)
4721                 return xhci_check_intel_tier_policy(udev, state);
4722         else
4723                 return 0;
4724 }
4725
4726 /* Returns the U1 or U2 timeout that should be enabled.
4727  * If the tier check or timeout setting functions return with a non-zero exit
4728  * code, that means the timeout value has been finalized and we shouldn't look
4729  * at any more endpoints.
4730  */
4731 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4732                         struct usb_device *udev, enum usb3_link_state state)
4733 {
4734         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4735         struct usb_host_config *config;
4736         char *state_name;
4737         int i;
4738         u16 timeout = USB3_LPM_DISABLED;
4739
4740         if (state == USB3_LPM_U1)
4741                 state_name = "U1";
4742         else if (state == USB3_LPM_U2)
4743                 state_name = "U2";
4744         else {
4745                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4746                                 state);
4747                 return timeout;
4748         }
4749
4750         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4751                 return timeout;
4752
4753         /* Gather some information about the currently installed configuration
4754          * and alternate interface settings.
4755          */
4756         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4757                         state, &timeout))
4758                 return timeout;
4759
4760         config = udev->actconfig;
4761         if (!config)
4762                 return timeout;
4763
4764         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4765                 struct usb_driver *driver;
4766                 struct usb_interface *intf = config->interface[i];
4767
4768                 if (!intf)
4769                         continue;
4770
4771                 /* Check if any currently bound drivers want hub-initiated LPM
4772                  * disabled.
4773                  */
4774                 if (intf->dev.driver) {
4775                         driver = to_usb_driver(intf->dev.driver);
4776                         if (driver && driver->disable_hub_initiated_lpm) {
4777                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4778                                                 "at request of driver %s\n",
4779                                                 state_name, driver->name);
4780                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4781                         }
4782                 }
4783
4784                 /* Not sure how this could happen... */
4785                 if (!intf->cur_altsetting)
4786                         continue;
4787
4788                 if (xhci_update_timeout_for_interface(xhci, udev,
4789                                         intf->cur_altsetting,
4790                                         state, &timeout))
4791                         return timeout;
4792         }
4793         return timeout;
4794 }
4795
4796 static int calculate_max_exit_latency(struct usb_device *udev,
4797                 enum usb3_link_state state_changed,
4798                 u16 hub_encoded_timeout)
4799 {
4800         unsigned long long u1_mel_us = 0;
4801         unsigned long long u2_mel_us = 0;
4802         unsigned long long mel_us = 0;
4803         bool disabling_u1;
4804         bool disabling_u2;
4805         bool enabling_u1;
4806         bool enabling_u2;
4807
4808         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4809                         hub_encoded_timeout == USB3_LPM_DISABLED);
4810         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4811                         hub_encoded_timeout == USB3_LPM_DISABLED);
4812
4813         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4814                         hub_encoded_timeout != USB3_LPM_DISABLED);
4815         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4816                         hub_encoded_timeout != USB3_LPM_DISABLED);
4817
4818         /* If U1 was already enabled and we're not disabling it,
4819          * or we're going to enable U1, account for the U1 max exit latency.
4820          */
4821         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4822                         enabling_u1)
4823                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4824         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4825                         enabling_u2)
4826                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4827
4828         if (u1_mel_us > u2_mel_us)
4829                 mel_us = u1_mel_us;
4830         else
4831                 mel_us = u2_mel_us;
4832         /* xHCI host controller max exit latency field is only 16 bits wide. */
4833         if (mel_us > MAX_EXIT) {
4834                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4835                                 "is too big.\n", mel_us);
4836                 return -E2BIG;
4837         }
4838         return mel_us;
4839 }
4840
4841 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4842 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4843                         struct usb_device *udev, enum usb3_link_state state)
4844 {
4845         struct xhci_hcd *xhci;
4846         u16 hub_encoded_timeout;
4847         int mel;
4848         int ret;
4849
4850         xhci = hcd_to_xhci(hcd);
4851         /* The LPM timeout values are pretty host-controller specific, so don't
4852          * enable hub-initiated timeouts unless the vendor has provided
4853          * information about their timeout algorithm.
4854          */
4855         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4856                         !xhci->devs[udev->slot_id])
4857                 return USB3_LPM_DISABLED;
4858
4859         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4860         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4861         if (mel < 0) {
4862                 /* Max Exit Latency is too big, disable LPM. */
4863                 hub_encoded_timeout = USB3_LPM_DISABLED;
4864                 mel = 0;
4865         }
4866
4867         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4868         if (ret)
4869                 return ret;
4870         return hub_encoded_timeout;
4871 }
4872
4873 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4874                         struct usb_device *udev, enum usb3_link_state state)
4875 {
4876         struct xhci_hcd *xhci;
4877         u16 mel;
4878
4879         xhci = hcd_to_xhci(hcd);
4880         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4881                         !xhci->devs[udev->slot_id])
4882                 return 0;
4883
4884         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4885         return xhci_change_max_exit_latency(xhci, udev, mel);
4886 }
4887 #else /* CONFIG_PM */
4888
4889 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4890                                 struct usb_device *udev, int enable)
4891 {
4892         return 0;
4893 }
4894
4895 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4896 {
4897         return 0;
4898 }
4899
4900 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4901                         struct usb_device *udev, enum usb3_link_state state)
4902 {
4903         return USB3_LPM_DISABLED;
4904 }
4905
4906 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4907                         struct usb_device *udev, enum usb3_link_state state)
4908 {
4909         return 0;
4910 }
4911 #endif  /* CONFIG_PM */
4912
4913 /*-------------------------------------------------------------------------*/
4914
4915 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4916  * internal data structures for the device.
4917  */
4918 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4919                         struct usb_tt *tt, gfp_t mem_flags)
4920 {
4921         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4922         struct xhci_virt_device *vdev;
4923         struct xhci_command *config_cmd;
4924         struct xhci_input_control_ctx *ctrl_ctx;
4925         struct xhci_slot_ctx *slot_ctx;
4926         unsigned long flags;
4927         unsigned think_time;
4928         int ret;
4929
4930         /* Ignore root hubs */
4931         if (!hdev->parent)
4932                 return 0;
4933
4934         vdev = xhci->devs[hdev->slot_id];
4935         if (!vdev) {
4936                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4937                 return -EINVAL;
4938         }
4939
4940         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4941         if (!config_cmd)
4942                 return -ENOMEM;
4943
4944         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4945         if (!ctrl_ctx) {
4946                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4947                                 __func__);
4948                 xhci_free_command(xhci, config_cmd);
4949                 return -ENOMEM;
4950         }
4951
4952         spin_lock_irqsave(&xhci->lock, flags);
4953         if (hdev->speed == USB_SPEED_HIGH &&
4954                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4955                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4956                 xhci_free_command(xhci, config_cmd);
4957                 spin_unlock_irqrestore(&xhci->lock, flags);
4958                 return -ENOMEM;
4959         }
4960
4961         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4962         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4963         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4964         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4965         /*
4966          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4967          * but it may be already set to 1 when setup an xHCI virtual
4968          * device, so clear it anyway.
4969          */
4970         if (tt->multi)
4971                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4972         else if (hdev->speed == USB_SPEED_FULL)
4973                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4974
4975         if (xhci->hci_version > 0x95) {
4976                 xhci_dbg(xhci, "xHCI version %x needs hub "
4977                                 "TT think time and number of ports\n",
4978                                 (unsigned int) xhci->hci_version);
4979                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4980                 /* Set TT think time - convert from ns to FS bit times.
4981                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4982                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4983                  *
4984                  * xHCI 1.0: this field shall be 0 if the device is not a
4985                  * High-spped hub.
4986                  */
4987                 think_time = tt->think_time;
4988                 if (think_time != 0)
4989                         think_time = (think_time / 666) - 1;
4990                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4991                         slot_ctx->tt_info |=
4992                                 cpu_to_le32(TT_THINK_TIME(think_time));
4993         } else {
4994                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4995                                 "TT think time or number of ports\n",
4996                                 (unsigned int) xhci->hci_version);
4997         }
4998         slot_ctx->dev_state = 0;
4999         spin_unlock_irqrestore(&xhci->lock, flags);
5000
5001         xhci_dbg(xhci, "Set up %s for hub device.\n",
5002                         (xhci->hci_version > 0x95) ?
5003                         "configure endpoint" : "evaluate context");
5004
5005         /* Issue and wait for the configure endpoint or
5006          * evaluate context command.
5007          */
5008         if (xhci->hci_version > 0x95)
5009                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5010                                 false, false);
5011         else
5012                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5013                                 true, false);
5014
5015         xhci_free_command(xhci, config_cmd);
5016         return ret;
5017 }
5018
5019 static int xhci_get_frame(struct usb_hcd *hcd)
5020 {
5021         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5022         /* EHCI mods by the periodic size.  Why? */
5023         return readl(&xhci->run_regs->microframe_index) >> 3;
5024 }
5025
5026 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5027 {
5028         struct xhci_hcd         *xhci;
5029         /*
5030          * TODO: Check with DWC3 clients for sysdev according to
5031          * quirks
5032          */
5033         struct device           *dev = hcd->self.sysdev;
5034         unsigned int            minor_rev;
5035         int                     retval;
5036
5037         /* Accept arbitrarily long scatter-gather lists */
5038         hcd->self.sg_tablesize = ~0;
5039
5040         /* support to build packet from discontinuous buffers */
5041         hcd->self.no_sg_constraint = 1;
5042
5043         /* XHCI controllers don't stop the ep queue on short packets :| */
5044         hcd->self.no_stop_on_short = 1;
5045
5046         xhci = hcd_to_xhci(hcd);
5047
5048         if (usb_hcd_is_primary_hcd(hcd)) {
5049                 xhci->main_hcd = hcd;
5050                 xhci->usb2_rhub.hcd = hcd;
5051                 /* Mark the first roothub as being USB 2.0.
5052                  * The xHCI driver will register the USB 3.0 roothub.
5053                  */
5054                 hcd->speed = HCD_USB2;
5055                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5056                 /*
5057                  * USB 2.0 roothub under xHCI has an integrated TT,
5058                  * (rate matching hub) as opposed to having an OHCI/UHCI
5059                  * companion controller.
5060                  */
5061                 hcd->has_tt = 1;
5062         } else {
5063                 /*
5064                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5065                  * minor revision instead of sbrn
5066                  */
5067                 minor_rev = xhci->usb3_rhub.min_rev;
5068                 if (minor_rev) {
5069                         hcd->speed = HCD_USB31;
5070                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5071                 }
5072                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5073                           minor_rev,
5074                           minor_rev ? "Enhanced" : "");
5075
5076                 xhci->usb3_rhub.hcd = hcd;
5077                 /* xHCI private pointer was set in xhci_pci_probe for the second
5078                  * registered roothub.
5079                  */
5080                 return 0;
5081         }
5082
5083         mutex_init(&xhci->mutex);
5084         xhci->cap_regs = hcd->regs;
5085         xhci->op_regs = hcd->regs +
5086                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5087         xhci->run_regs = hcd->regs +
5088                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5089         /* Cache read-only capability registers */
5090         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5091         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5092         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5093         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5094         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5095         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5096         if (xhci->hci_version > 0x100)
5097                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5098
5099         xhci->quirks |= quirks;
5100
5101         get_quirks(dev, xhci);
5102
5103         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5104          * success event after a short transfer. This quirk will ignore such
5105          * spurious event.
5106          */
5107         if (xhci->hci_version > 0x96)
5108                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5109
5110         /* Make sure the HC is halted. */
5111         retval = xhci_halt(xhci);
5112         if (retval)
5113                 return retval;
5114
5115         xhci_zero_64b_regs(xhci);
5116
5117         xhci_dbg(xhci, "Resetting HCD\n");
5118         /* Reset the internal HC memory state and registers. */
5119         retval = xhci_reset(xhci);
5120         if (retval)
5121                 return retval;
5122         xhci_dbg(xhci, "Reset complete\n");
5123
5124         /*
5125          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5126          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5127          * address memory pointers actually. So, this driver clears the AC64
5128          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5129          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5130          */
5131         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5132                 xhci->hcc_params &= ~BIT(0);
5133
5134         /* Set dma_mask and coherent_dma_mask to 64-bits,
5135          * if xHC supports 64-bit addressing */
5136         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5137                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5138                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5139                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5140         } else {
5141                 /*
5142                  * This is to avoid error in cases where a 32-bit USB
5143                  * controller is used on a 64-bit capable system.
5144                  */
5145                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5146                 if (retval)
5147                         return retval;
5148                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5149                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5150         }
5151
5152         xhci_dbg(xhci, "Calling HCD init\n");
5153         /* Initialize HCD and host controller data structures. */
5154         retval = xhci_init(hcd);
5155         if (retval)
5156                 return retval;
5157         xhci_dbg(xhci, "Called HCD init\n");
5158
5159         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5160                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5161
5162         return 0;
5163 }
5164 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5165
5166 static const struct hc_driver xhci_hc_driver = {
5167         .description =          "xhci-hcd",
5168         .product_desc =         "xHCI Host Controller",
5169         .hcd_priv_size =        sizeof(struct xhci_hcd),
5170
5171         /*
5172          * generic hardware linkage
5173          */
5174         .irq =                  xhci_irq,
5175         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5176
5177         /*
5178          * basic lifecycle operations
5179          */
5180         .reset =                NULL, /* set in xhci_init_driver() */
5181         .start =                xhci_run,
5182         .stop =                 xhci_stop,
5183         .shutdown =             xhci_shutdown,
5184
5185         /*
5186          * managing i/o requests and associated device resources
5187          */
5188         .map_urb_for_dma =      xhci_map_urb_for_dma,
5189         .urb_enqueue =          xhci_urb_enqueue,
5190         .urb_dequeue =          xhci_urb_dequeue,
5191         .alloc_dev =            xhci_alloc_dev,
5192         .free_dev =             xhci_free_dev,
5193         .alloc_streams =        xhci_alloc_streams,
5194         .free_streams =         xhci_free_streams,
5195         .add_endpoint =         xhci_add_endpoint,
5196         .drop_endpoint =        xhci_drop_endpoint,
5197         .endpoint_reset =       xhci_endpoint_reset,
5198         .check_bandwidth =      xhci_check_bandwidth,
5199         .reset_bandwidth =      xhci_reset_bandwidth,
5200         .address_device =       xhci_address_device,
5201         .enable_device =        xhci_enable_device,
5202         .update_hub_device =    xhci_update_hub_device,
5203         .reset_device =         xhci_discover_or_reset_device,
5204
5205         /*
5206          * scheduling support
5207          */
5208         .get_frame_number =     xhci_get_frame,
5209
5210         /*
5211          * root hub support
5212          */
5213         .hub_control =          xhci_hub_control,
5214         .hub_status_data =      xhci_hub_status_data,
5215         .bus_suspend =          xhci_bus_suspend,
5216         .bus_resume =           xhci_bus_resume,
5217         .get_resuming_ports =   xhci_get_resuming_ports,
5218
5219         /*
5220          * call back when device connected and addressed
5221          */
5222         .update_device =        xhci_update_device,
5223         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5224         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5225         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5226         .find_raw_port_number = xhci_find_raw_port_number,
5227 };
5228
5229 void xhci_init_driver(struct hc_driver *drv,
5230                       const struct xhci_driver_overrides *over)
5231 {
5232         BUG_ON(!over);
5233
5234         /* Copy the generic table to drv then apply the overrides */
5235         *drv = xhci_hc_driver;
5236
5237         if (over) {
5238                 drv->hcd_priv_size += over->extra_priv_size;
5239                 if (over->reset)
5240                         drv->reset = over->reset;
5241                 if (over->start)
5242                         drv->start = over->start;
5243         }
5244 }
5245 EXPORT_SYMBOL_GPL(xhci_init_driver);
5246
5247 MODULE_DESCRIPTION(DRIVER_DESC);
5248 MODULE_AUTHOR(DRIVER_AUTHOR);
5249 MODULE_LICENSE("GPL");
5250
5251 static int __init xhci_hcd_init(void)
5252 {
5253         /*
5254          * Check the compiler generated sizes of structures that must be laid
5255          * out in specific ways for hardware access.
5256          */
5257         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5258         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5259         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5260         /* xhci_device_control has eight fields, and also
5261          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5262          */
5263         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5264         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5265         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5266         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5267         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5268         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5269         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5270
5271         if (usb_disabled())
5272                 return -ENODEV;
5273
5274         xhci_debugfs_create_root();
5275
5276         return 0;
5277 }
5278
5279 /*
5280  * If an init function is provided, an exit function must also be provided
5281  * to allow module unload.
5282  */
5283 static void __exit xhci_hcd_fini(void)
5284 {
5285         xhci_debugfs_remove_root();
5286 }
5287
5288 module_init(xhci_hcd_init);
5289 module_exit(xhci_hcd_fini);
This page took 0.345354 seconds and 4 git commands to generate.