2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
54 #include "core_priv.h"
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57 struct rdma_ah_attr *ah_attr);
59 static const char * const ib_events[] = {
60 [IB_EVENT_CQ_ERR] = "CQ error",
61 [IB_EVENT_QP_FATAL] = "QP fatal error",
62 [IB_EVENT_QP_REQ_ERR] = "QP request error",
63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
64 [IB_EVENT_COMM_EST] = "communication established",
65 [IB_EVENT_SQ_DRAINED] = "send queue drained",
66 [IB_EVENT_PATH_MIG] = "path migration successful",
67 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
68 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
69 [IB_EVENT_PORT_ACTIVE] = "port active",
70 [IB_EVENT_PORT_ERR] = "port error",
71 [IB_EVENT_LID_CHANGE] = "LID change",
72 [IB_EVENT_PKEY_CHANGE] = "P_key change",
73 [IB_EVENT_SM_CHANGE] = "SM change",
74 [IB_EVENT_SRQ_ERR] = "SRQ error",
75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
78 [IB_EVENT_GID_CHANGE] = "GID changed",
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86 ib_events[index] : "unrecognized event";
88 EXPORT_SYMBOL(ib_event_msg);
90 static const char * const wc_statuses[] = {
91 [IB_WC_SUCCESS] = "success",
92 [IB_WC_LOC_LEN_ERR] = "local length error",
93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
95 [IB_WC_LOC_PROT_ERR] = "local protection error",
96 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
97 [IB_WC_MW_BIND_ERR] = "memory management operation error",
98 [IB_WC_BAD_RESP_ERR] = "bad response error",
99 [IB_WC_LOC_ACCESS_ERR] = "local access error",
100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
101 [IB_WC_REM_ACCESS_ERR] = "remote access error",
102 [IB_WC_REM_OP_ERR] = "remote operation error",
103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
107 [IB_WC_REM_ABORT_ERR] = "operation aborted",
108 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
110 [IB_WC_FATAL_ERR] = "fatal error",
111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
112 [IB_WC_GENERAL_ERR] = "general error",
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
117 size_t index = status;
119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120 wc_statuses[index] : "unrecognized status";
122 EXPORT_SYMBOL(ib_wc_status_msg);
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 case IB_RATE_2_5_GBPS: return 1;
128 case IB_RATE_5_GBPS: return 2;
129 case IB_RATE_10_GBPS: return 4;
130 case IB_RATE_20_GBPS: return 8;
131 case IB_RATE_30_GBPS: return 12;
132 case IB_RATE_40_GBPS: return 16;
133 case IB_RATE_60_GBPS: return 24;
134 case IB_RATE_80_GBPS: return 32;
135 case IB_RATE_120_GBPS: return 48;
136 case IB_RATE_14_GBPS: return 6;
137 case IB_RATE_56_GBPS: return 22;
138 case IB_RATE_112_GBPS: return 45;
139 case IB_RATE_168_GBPS: return 67;
140 case IB_RATE_25_GBPS: return 10;
141 case IB_RATE_100_GBPS: return 40;
142 case IB_RATE_200_GBPS: return 80;
143 case IB_RATE_300_GBPS: return 120;
144 case IB_RATE_28_GBPS: return 11;
145 case IB_RATE_50_GBPS: return 20;
146 case IB_RATE_400_GBPS: return 160;
147 case IB_RATE_600_GBPS: return 240;
151 EXPORT_SYMBOL(ib_rate_to_mult);
153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 case 1: return IB_RATE_2_5_GBPS;
157 case 2: return IB_RATE_5_GBPS;
158 case 4: return IB_RATE_10_GBPS;
159 case 8: return IB_RATE_20_GBPS;
160 case 12: return IB_RATE_30_GBPS;
161 case 16: return IB_RATE_40_GBPS;
162 case 24: return IB_RATE_60_GBPS;
163 case 32: return IB_RATE_80_GBPS;
164 case 48: return IB_RATE_120_GBPS;
165 case 6: return IB_RATE_14_GBPS;
166 case 22: return IB_RATE_56_GBPS;
167 case 45: return IB_RATE_112_GBPS;
168 case 67: return IB_RATE_168_GBPS;
169 case 10: return IB_RATE_25_GBPS;
170 case 40: return IB_RATE_100_GBPS;
171 case 80: return IB_RATE_200_GBPS;
172 case 120: return IB_RATE_300_GBPS;
173 case 11: return IB_RATE_28_GBPS;
174 case 20: return IB_RATE_50_GBPS;
175 case 160: return IB_RATE_400_GBPS;
176 case 240: return IB_RATE_600_GBPS;
177 default: return IB_RATE_PORT_CURRENT;
180 EXPORT_SYMBOL(mult_to_ib_rate);
182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 case IB_RATE_2_5_GBPS: return 2500;
186 case IB_RATE_5_GBPS: return 5000;
187 case IB_RATE_10_GBPS: return 10000;
188 case IB_RATE_20_GBPS: return 20000;
189 case IB_RATE_30_GBPS: return 30000;
190 case IB_RATE_40_GBPS: return 40000;
191 case IB_RATE_60_GBPS: return 60000;
192 case IB_RATE_80_GBPS: return 80000;
193 case IB_RATE_120_GBPS: return 120000;
194 case IB_RATE_14_GBPS: return 14062;
195 case IB_RATE_56_GBPS: return 56250;
196 case IB_RATE_112_GBPS: return 112500;
197 case IB_RATE_168_GBPS: return 168750;
198 case IB_RATE_25_GBPS: return 25781;
199 case IB_RATE_100_GBPS: return 103125;
200 case IB_RATE_200_GBPS: return 206250;
201 case IB_RATE_300_GBPS: return 309375;
202 case IB_RATE_28_GBPS: return 28125;
203 case IB_RATE_50_GBPS: return 53125;
204 case IB_RATE_400_GBPS: return 425000;
205 case IB_RATE_600_GBPS: return 637500;
209 EXPORT_SYMBOL(ib_rate_to_mbps);
211 __attribute_const__ enum rdma_transport_type
212 rdma_node_get_transport(enum rdma_node_type node_type)
215 if (node_type == RDMA_NODE_USNIC)
216 return RDMA_TRANSPORT_USNIC;
217 if (node_type == RDMA_NODE_USNIC_UDP)
218 return RDMA_TRANSPORT_USNIC_UDP;
219 if (node_type == RDMA_NODE_RNIC)
220 return RDMA_TRANSPORT_IWARP;
221 if (node_type == RDMA_NODE_UNSPECIFIED)
222 return RDMA_TRANSPORT_UNSPECIFIED;
224 return RDMA_TRANSPORT_IB;
226 EXPORT_SYMBOL(rdma_node_get_transport);
228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
230 enum rdma_transport_type lt;
231 if (device->ops.get_link_layer)
232 return device->ops.get_link_layer(device, port_num);
234 lt = rdma_node_get_transport(device->node_type);
235 if (lt == RDMA_TRANSPORT_IB)
236 return IB_LINK_LAYER_INFINIBAND;
238 return IB_LINK_LAYER_ETHERNET;
240 EXPORT_SYMBOL(rdma_port_get_link_layer);
242 /* Protection domains */
245 * ib_alloc_pd - Allocates an unused protection domain.
246 * @device: The device on which to allocate the protection domain.
248 * A protection domain object provides an association between QPs, shared
249 * receive queues, address handles, memory regions, and memory windows.
251 * Every PD has a local_dma_lkey which can be used as the lkey value for local
254 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
258 int mr_access_flags = 0;
261 pd = rdma_zalloc_drv_obj(device, ib_pd);
263 return ERR_PTR(-ENOMEM);
267 pd->__internal_mr = NULL;
268 atomic_set(&pd->usecnt, 0);
271 pd->res.type = RDMA_RESTRACK_PD;
272 rdma_restrack_set_task(&pd->res, caller);
274 ret = device->ops.alloc_pd(pd, NULL);
279 rdma_restrack_kadd(&pd->res);
281 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
282 pd->local_dma_lkey = device->local_dma_lkey;
284 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
286 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
287 pr_warn("%s: enabling unsafe global rkey\n", caller);
288 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
291 if (mr_access_flags) {
294 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
300 mr->device = pd->device;
303 mr->need_inval = false;
305 pd->__internal_mr = mr;
307 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
308 pd->local_dma_lkey = pd->__internal_mr->lkey;
310 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
311 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
316 EXPORT_SYMBOL(__ib_alloc_pd);
319 * ib_dealloc_pd - Deallocates a protection domain.
320 * @pd: The protection domain to deallocate.
321 * @udata: Valid user data or NULL for kernel object
323 * It is an error to call this function while any resources in the pd still
324 * exist. The caller is responsible to synchronously destroy them and
325 * guarantee no new allocations will happen.
327 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
331 if (pd->__internal_mr) {
332 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
334 pd->__internal_mr = NULL;
337 /* uverbs manipulates usecnt with proper locking, while the kabi
338 requires the caller to guarantee we can't race here. */
339 WARN_ON(atomic_read(&pd->usecnt));
341 rdma_restrack_del(&pd->res);
342 pd->device->ops.dealloc_pd(pd, udata);
345 EXPORT_SYMBOL(ib_dealloc_pd_user);
347 /* Address handles */
350 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
351 * @dest: Pointer to destination ah_attr. Contents of the destination
352 * pointer is assumed to be invalid and attribute are overwritten.
353 * @src: Pointer to source ah_attr.
355 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
356 const struct rdma_ah_attr *src)
359 if (dest->grh.sgid_attr)
360 rdma_hold_gid_attr(dest->grh.sgid_attr);
362 EXPORT_SYMBOL(rdma_copy_ah_attr);
365 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
366 * @old: Pointer to existing ah_attr which needs to be replaced.
367 * old is assumed to be valid or zero'd
368 * @new: Pointer to the new ah_attr.
370 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
371 * old the ah_attr is valid; after that it copies the new attribute and holds
372 * the reference to the replaced ah_attr.
374 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
375 const struct rdma_ah_attr *new)
377 rdma_destroy_ah_attr(old);
379 if (old->grh.sgid_attr)
380 rdma_hold_gid_attr(old->grh.sgid_attr);
382 EXPORT_SYMBOL(rdma_replace_ah_attr);
385 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
386 * @dest: Pointer to destination ah_attr to copy to.
387 * dest is assumed to be valid or zero'd
388 * @src: Pointer to the new ah_attr.
390 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
391 * if it is valid. This also transfers ownership of internal references from
392 * src to dest, making src invalid in the process. No new reference of the src
395 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
397 rdma_destroy_ah_attr(dest);
399 src->grh.sgid_attr = NULL;
401 EXPORT_SYMBOL(rdma_move_ah_attr);
404 * Validate that the rdma_ah_attr is valid for the device before passing it
407 static int rdma_check_ah_attr(struct ib_device *device,
408 struct rdma_ah_attr *ah_attr)
410 if (!rdma_is_port_valid(device, ah_attr->port_num))
413 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
414 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
415 !(ah_attr->ah_flags & IB_AH_GRH))
418 if (ah_attr->grh.sgid_attr) {
420 * Make sure the passed sgid_attr is consistent with the
423 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
424 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
431 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
432 * On success the caller is responsible to call rdma_unfill_sgid_attr().
434 static int rdma_fill_sgid_attr(struct ib_device *device,
435 struct rdma_ah_attr *ah_attr,
436 const struct ib_gid_attr **old_sgid_attr)
438 const struct ib_gid_attr *sgid_attr;
439 struct ib_global_route *grh;
442 *old_sgid_attr = ah_attr->grh.sgid_attr;
444 ret = rdma_check_ah_attr(device, ah_attr);
448 if (!(ah_attr->ah_flags & IB_AH_GRH))
451 grh = rdma_ah_retrieve_grh(ah_attr);
456 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
457 if (IS_ERR(sgid_attr))
458 return PTR_ERR(sgid_attr);
460 /* Move ownerhip of the kref into the ah_attr */
461 grh->sgid_attr = sgid_attr;
465 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
466 const struct ib_gid_attr *old_sgid_attr)
469 * Fill didn't change anything, the caller retains ownership of
472 if (ah_attr->grh.sgid_attr == old_sgid_attr)
476 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
477 * doesn't see any change in the rdma_ah_attr. If we get here
478 * old_sgid_attr is NULL.
480 rdma_destroy_ah_attr(ah_attr);
483 static const struct ib_gid_attr *
484 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
485 const struct ib_gid_attr *old_attr)
488 rdma_put_gid_attr(old_attr);
489 if (ah_attr->ah_flags & IB_AH_GRH) {
490 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
491 return ah_attr->grh.sgid_attr;
496 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
497 struct rdma_ah_attr *ah_attr,
499 struct ib_udata *udata)
501 struct ib_device *device = pd->device;
505 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
507 if (!device->ops.create_ah)
508 return ERR_PTR(-EOPNOTSUPP);
510 ah = rdma_zalloc_drv_obj_gfp(
512 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
514 return ERR_PTR(-ENOMEM);
518 ah->type = ah_attr->type;
519 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
521 ret = device->ops.create_ah(ah, ah_attr, flags, udata);
527 atomic_inc(&pd->usecnt);
532 * rdma_create_ah - Creates an address handle for the
533 * given address vector.
534 * @pd: The protection domain associated with the address handle.
535 * @ah_attr: The attributes of the address vector.
536 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
538 * It returns 0 on success and returns appropriate error code on error.
539 * The address handle is used to reference a local or global destination
540 * in all UD QP post sends.
542 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
545 const struct ib_gid_attr *old_sgid_attr;
549 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
553 ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
555 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
558 EXPORT_SYMBOL(rdma_create_ah);
561 * rdma_create_user_ah - Creates an address handle for the
562 * given address vector.
563 * It resolves destination mac address for ah attribute of RoCE type.
564 * @pd: The protection domain associated with the address handle.
565 * @ah_attr: The attributes of the address vector.
566 * @udata: pointer to user's input output buffer information need by
569 * It returns 0 on success and returns appropriate error code on error.
570 * The address handle is used to reference a local or global destination
571 * in all UD QP post sends.
573 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
574 struct rdma_ah_attr *ah_attr,
575 struct ib_udata *udata)
577 const struct ib_gid_attr *old_sgid_attr;
581 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
585 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
586 err = ib_resolve_eth_dmac(pd->device, ah_attr);
593 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
596 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
599 EXPORT_SYMBOL(rdma_create_user_ah);
601 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
603 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
604 struct iphdr ip4h_checked;
605 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
607 /* If it's IPv6, the version must be 6, otherwise, the first
608 * 20 bytes (before the IPv4 header) are garbled.
610 if (ip6h->version != 6)
611 return (ip4h->version == 4) ? 4 : 0;
612 /* version may be 6 or 4 because the first 20 bytes could be garbled */
614 /* RoCE v2 requires no options, thus header length
621 * We can't write on scattered buffers so we need to copy to
624 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
625 ip4h_checked.check = 0;
626 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
627 /* if IPv4 header checksum is OK, believe it */
628 if (ip4h->check == ip4h_checked.check)
632 EXPORT_SYMBOL(ib_get_rdma_header_version);
634 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
636 const struct ib_grh *grh)
640 if (rdma_protocol_ib(device, port_num))
641 return RDMA_NETWORK_IB;
643 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
645 if (grh_version == 4)
646 return RDMA_NETWORK_IPV4;
648 if (grh->next_hdr == IPPROTO_UDP)
649 return RDMA_NETWORK_IPV6;
651 return RDMA_NETWORK_ROCE_V1;
654 struct find_gid_index_context {
656 enum ib_gid_type gid_type;
659 static bool find_gid_index(const union ib_gid *gid,
660 const struct ib_gid_attr *gid_attr,
663 struct find_gid_index_context *ctx = context;
665 if (ctx->gid_type != gid_attr->gid_type)
668 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
669 (is_vlan_dev(gid_attr->ndev) &&
670 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
676 static const struct ib_gid_attr *
677 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
678 u16 vlan_id, const union ib_gid *sgid,
679 enum ib_gid_type gid_type)
681 struct find_gid_index_context context = {.vlan_id = vlan_id,
682 .gid_type = gid_type};
684 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
688 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
689 enum rdma_network_type net_type,
690 union ib_gid *sgid, union ib_gid *dgid)
692 struct sockaddr_in src_in;
693 struct sockaddr_in dst_in;
694 __be32 src_saddr, dst_saddr;
699 if (net_type == RDMA_NETWORK_IPV4) {
700 memcpy(&src_in.sin_addr.s_addr,
701 &hdr->roce4grh.saddr, 4);
702 memcpy(&dst_in.sin_addr.s_addr,
703 &hdr->roce4grh.daddr, 4);
704 src_saddr = src_in.sin_addr.s_addr;
705 dst_saddr = dst_in.sin_addr.s_addr;
706 ipv6_addr_set_v4mapped(src_saddr,
707 (struct in6_addr *)sgid);
708 ipv6_addr_set_v4mapped(dst_saddr,
709 (struct in6_addr *)dgid);
711 } else if (net_type == RDMA_NETWORK_IPV6 ||
712 net_type == RDMA_NETWORK_IB) {
713 *dgid = hdr->ibgrh.dgid;
714 *sgid = hdr->ibgrh.sgid;
720 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
722 /* Resolve destination mac address and hop limit for unicast destination
723 * GID entry, considering the source GID entry as well.
724 * ah_attribute must have have valid port_num, sgid_index.
726 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
727 struct rdma_ah_attr *ah_attr)
729 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
730 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
731 int hop_limit = 0xff;
734 /* If destination is link local and source GID is RoCEv1,
735 * IP stack is not used.
737 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
738 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
739 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
744 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
746 sgid_attr, &hop_limit);
748 grh->hop_limit = hop_limit;
753 * This function initializes address handle attributes from the incoming packet.
754 * Incoming packet has dgid of the receiver node on which this code is
755 * getting executed and, sgid contains the GID of the sender.
757 * When resolving mac address of destination, the arrived dgid is used
758 * as sgid and, sgid is used as dgid because sgid contains destinations
759 * GID whom to respond to.
761 * On success the caller is responsible to call rdma_destroy_ah_attr on the
764 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
765 const struct ib_wc *wc, const struct ib_grh *grh,
766 struct rdma_ah_attr *ah_attr)
770 enum rdma_network_type net_type = RDMA_NETWORK_IB;
771 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
772 const struct ib_gid_attr *sgid_attr;
779 memset(ah_attr, 0, sizeof *ah_attr);
780 ah_attr->type = rdma_ah_find_type(device, port_num);
781 if (rdma_cap_eth_ah(device, port_num)) {
782 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
783 net_type = wc->network_hdr_type;
785 net_type = ib_get_net_type_by_grh(device, port_num, grh);
786 gid_type = ib_network_to_gid_type(net_type);
788 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
793 rdma_ah_set_sl(ah_attr, wc->sl);
794 rdma_ah_set_port_num(ah_attr, port_num);
796 if (rdma_protocol_roce(device, port_num)) {
797 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
798 wc->vlan_id : 0xffff;
800 if (!(wc->wc_flags & IB_WC_GRH))
803 sgid_attr = get_sgid_attr_from_eth(device, port_num,
806 if (IS_ERR(sgid_attr))
807 return PTR_ERR(sgid_attr);
809 flow_class = be32_to_cpu(grh->version_tclass_flow);
810 rdma_move_grh_sgid_attr(ah_attr,
812 flow_class & 0xFFFFF,
814 (flow_class >> 20) & 0xFF,
817 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
819 rdma_destroy_ah_attr(ah_attr);
823 rdma_ah_set_dlid(ah_attr, wc->slid);
824 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
826 if ((wc->wc_flags & IB_WC_GRH) == 0)
829 if (dgid.global.interface_id !=
830 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
831 sgid_attr = rdma_find_gid_by_port(
832 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
834 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
836 if (IS_ERR(sgid_attr))
837 return PTR_ERR(sgid_attr);
838 flow_class = be32_to_cpu(grh->version_tclass_flow);
839 rdma_move_grh_sgid_attr(ah_attr,
841 flow_class & 0xFFFFF,
843 (flow_class >> 20) & 0xFF,
849 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
852 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
855 * @attr: Pointer to AH attribute structure
856 * @dgid: Destination GID
857 * @flow_label: Flow label
858 * @hop_limit: Hop limit
859 * @traffic_class: traffic class
860 * @sgid_attr: Pointer to SGID attribute
862 * This takes ownership of the sgid_attr reference. The caller must ensure
863 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
864 * calling this function.
866 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
867 u32 flow_label, u8 hop_limit, u8 traffic_class,
868 const struct ib_gid_attr *sgid_attr)
870 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
872 attr->grh.sgid_attr = sgid_attr;
874 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
877 * rdma_destroy_ah_attr - Release reference to SGID attribute of
879 * @ah_attr: Pointer to ah attribute
881 * Release reference to the SGID attribute of the ah attribute if it is
882 * non NULL. It is safe to call this multiple times, and safe to call it on
883 * a zero initialized ah_attr.
885 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
887 if (ah_attr->grh.sgid_attr) {
888 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
889 ah_attr->grh.sgid_attr = NULL;
892 EXPORT_SYMBOL(rdma_destroy_ah_attr);
894 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
895 const struct ib_grh *grh, u8 port_num)
897 struct rdma_ah_attr ah_attr;
901 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
905 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
907 rdma_destroy_ah_attr(&ah_attr);
910 EXPORT_SYMBOL(ib_create_ah_from_wc);
912 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
914 const struct ib_gid_attr *old_sgid_attr;
917 if (ah->type != ah_attr->type)
920 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
924 ret = ah->device->ops.modify_ah ?
925 ah->device->ops.modify_ah(ah, ah_attr) :
928 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
929 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
932 EXPORT_SYMBOL(rdma_modify_ah);
934 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
936 ah_attr->grh.sgid_attr = NULL;
938 return ah->device->ops.query_ah ?
939 ah->device->ops.query_ah(ah, ah_attr) :
942 EXPORT_SYMBOL(rdma_query_ah);
944 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
946 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
949 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
953 ah->device->ops.destroy_ah(ah, flags);
954 atomic_dec(&pd->usecnt);
956 rdma_put_gid_attr(sgid_attr);
961 EXPORT_SYMBOL(rdma_destroy_ah_user);
963 /* Shared receive queues */
965 struct ib_srq *ib_create_srq(struct ib_pd *pd,
966 struct ib_srq_init_attr *srq_init_attr)
971 if (!pd->device->ops.create_srq)
972 return ERR_PTR(-EOPNOTSUPP);
974 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
976 return ERR_PTR(-ENOMEM);
978 srq->device = pd->device;
980 srq->event_handler = srq_init_attr->event_handler;
981 srq->srq_context = srq_init_attr->srq_context;
982 srq->srq_type = srq_init_attr->srq_type;
984 if (ib_srq_has_cq(srq->srq_type)) {
985 srq->ext.cq = srq_init_attr->ext.cq;
986 atomic_inc(&srq->ext.cq->usecnt);
988 if (srq->srq_type == IB_SRQT_XRC) {
989 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
990 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
992 atomic_inc(&pd->usecnt);
994 ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
996 atomic_dec(&srq->pd->usecnt);
997 if (srq->srq_type == IB_SRQT_XRC)
998 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
999 if (ib_srq_has_cq(srq->srq_type))
1000 atomic_dec(&srq->ext.cq->usecnt);
1002 return ERR_PTR(ret);
1007 EXPORT_SYMBOL(ib_create_srq);
1009 int ib_modify_srq(struct ib_srq *srq,
1010 struct ib_srq_attr *srq_attr,
1011 enum ib_srq_attr_mask srq_attr_mask)
1013 return srq->device->ops.modify_srq ?
1014 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1015 NULL) : -EOPNOTSUPP;
1017 EXPORT_SYMBOL(ib_modify_srq);
1019 int ib_query_srq(struct ib_srq *srq,
1020 struct ib_srq_attr *srq_attr)
1022 return srq->device->ops.query_srq ?
1023 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1025 EXPORT_SYMBOL(ib_query_srq);
1027 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1029 if (atomic_read(&srq->usecnt))
1032 srq->device->ops.destroy_srq(srq, udata);
1034 atomic_dec(&srq->pd->usecnt);
1035 if (srq->srq_type == IB_SRQT_XRC)
1036 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1037 if (ib_srq_has_cq(srq->srq_type))
1038 atomic_dec(&srq->ext.cq->usecnt);
1043 EXPORT_SYMBOL(ib_destroy_srq_user);
1047 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1049 struct ib_qp *qp = context;
1050 unsigned long flags;
1052 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1053 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1054 if (event->element.qp->event_handler)
1055 event->element.qp->event_handler(event, event->element.qp->qp_context);
1056 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1059 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1061 mutex_lock(&xrcd->tgt_qp_mutex);
1062 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1063 mutex_unlock(&xrcd->tgt_qp_mutex);
1066 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1067 void (*event_handler)(struct ib_event *, void *),
1071 unsigned long flags;
1074 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1076 return ERR_PTR(-ENOMEM);
1078 qp->real_qp = real_qp;
1079 err = ib_open_shared_qp_security(qp, real_qp->device);
1082 return ERR_PTR(err);
1085 qp->real_qp = real_qp;
1086 atomic_inc(&real_qp->usecnt);
1087 qp->device = real_qp->device;
1088 qp->event_handler = event_handler;
1089 qp->qp_context = qp_context;
1090 qp->qp_num = real_qp->qp_num;
1091 qp->qp_type = real_qp->qp_type;
1093 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1094 list_add(&qp->open_list, &real_qp->open_list);
1095 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1100 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1101 struct ib_qp_open_attr *qp_open_attr)
1103 struct ib_qp *qp, *real_qp;
1105 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1106 return ERR_PTR(-EINVAL);
1108 qp = ERR_PTR(-EINVAL);
1109 mutex_lock(&xrcd->tgt_qp_mutex);
1110 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1111 if (real_qp->qp_num == qp_open_attr->qp_num) {
1112 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1113 qp_open_attr->qp_context);
1117 mutex_unlock(&xrcd->tgt_qp_mutex);
1120 EXPORT_SYMBOL(ib_open_qp);
1122 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1123 struct ib_qp_init_attr *qp_init_attr,
1124 struct ib_udata *udata)
1126 struct ib_qp *real_qp = qp;
1128 qp->event_handler = __ib_shared_qp_event_handler;
1129 qp->qp_context = qp;
1131 qp->send_cq = qp->recv_cq = NULL;
1133 qp->xrcd = qp_init_attr->xrcd;
1134 atomic_inc(&qp_init_attr->xrcd->usecnt);
1135 INIT_LIST_HEAD(&qp->open_list);
1137 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1138 qp_init_attr->qp_context);
1142 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1146 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
1147 struct ib_qp_init_attr *qp_init_attr,
1148 struct ib_udata *udata)
1150 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1154 if (qp_init_attr->rwq_ind_tbl &&
1155 (qp_init_attr->recv_cq ||
1156 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1157 qp_init_attr->cap.max_recv_sge))
1158 return ERR_PTR(-EINVAL);
1161 * If the callers is using the RDMA API calculate the resources
1162 * needed for the RDMA READ/WRITE operations.
1164 * Note that these callers need to pass in a port number.
1166 if (qp_init_attr->cap.max_rdma_ctxs)
1167 rdma_rw_init_qp(device, qp_init_attr);
1169 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1173 ret = ib_create_qp_security(qp, device);
1177 qp->qp_type = qp_init_attr->qp_type;
1178 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1180 atomic_set(&qp->usecnt, 0);
1182 spin_lock_init(&qp->mr_lock);
1183 INIT_LIST_HEAD(&qp->rdma_mrs);
1184 INIT_LIST_HEAD(&qp->sig_mrs);
1187 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1188 struct ib_qp *xrc_qp =
1189 create_xrc_qp_user(qp, qp_init_attr, udata);
1191 if (IS_ERR(xrc_qp)) {
1192 ret = PTR_ERR(xrc_qp);
1198 qp->event_handler = qp_init_attr->event_handler;
1199 qp->qp_context = qp_init_attr->qp_context;
1200 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1204 qp->recv_cq = qp_init_attr->recv_cq;
1205 if (qp_init_attr->recv_cq)
1206 atomic_inc(&qp_init_attr->recv_cq->usecnt);
1207 qp->srq = qp_init_attr->srq;
1209 atomic_inc(&qp_init_attr->srq->usecnt);
1212 qp->send_cq = qp_init_attr->send_cq;
1215 atomic_inc(&pd->usecnt);
1216 if (qp_init_attr->send_cq)
1217 atomic_inc(&qp_init_attr->send_cq->usecnt);
1218 if (qp_init_attr->rwq_ind_tbl)
1219 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1221 if (qp_init_attr->cap.max_rdma_ctxs) {
1222 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1228 * Note: all hw drivers guarantee that max_send_sge is lower than
1229 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1230 * max_send_sge <= max_sge_rd.
1232 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1233 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1234 device->attrs.max_sge_rd);
1240 return ERR_PTR(ret);
1243 EXPORT_SYMBOL(ib_create_qp_user);
1245 static const struct {
1247 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1248 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1249 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1251 [IB_QPS_RESET] = { .valid = 1 },
1255 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1258 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1259 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1261 IB_QP_ACCESS_FLAGS),
1262 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1264 IB_QP_ACCESS_FLAGS),
1265 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1267 IB_QP_ACCESS_FLAGS),
1268 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1270 IB_QP_ACCESS_FLAGS),
1271 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1273 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1279 [IB_QPS_RESET] = { .valid = 1 },
1280 [IB_QPS_ERR] = { .valid = 1 },
1284 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1287 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1289 IB_QP_ACCESS_FLAGS),
1290 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1292 IB_QP_ACCESS_FLAGS),
1293 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1295 IB_QP_ACCESS_FLAGS),
1296 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1298 IB_QP_ACCESS_FLAGS),
1299 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1301 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1308 [IB_QPT_UC] = (IB_QP_AV |
1312 [IB_QPT_RC] = (IB_QP_AV |
1316 IB_QP_MAX_DEST_RD_ATOMIC |
1317 IB_QP_MIN_RNR_TIMER),
1318 [IB_QPT_XRC_INI] = (IB_QP_AV |
1322 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1326 IB_QP_MAX_DEST_RD_ATOMIC |
1327 IB_QP_MIN_RNR_TIMER),
1330 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1332 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1333 IB_QP_ACCESS_FLAGS |
1335 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1336 IB_QP_ACCESS_FLAGS |
1338 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1339 IB_QP_ACCESS_FLAGS |
1341 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1342 IB_QP_ACCESS_FLAGS |
1344 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1346 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1352 [IB_QPS_RESET] = { .valid = 1 },
1353 [IB_QPS_ERR] = { .valid = 1 },
1357 [IB_QPT_UD] = IB_QP_SQ_PSN,
1358 [IB_QPT_UC] = IB_QP_SQ_PSN,
1359 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1363 IB_QP_MAX_QP_RD_ATOMIC),
1364 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1368 IB_QP_MAX_QP_RD_ATOMIC),
1369 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1371 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1372 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1375 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1377 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1379 IB_QP_ACCESS_FLAGS |
1380 IB_QP_PATH_MIG_STATE),
1381 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1383 IB_QP_ACCESS_FLAGS |
1384 IB_QP_MIN_RNR_TIMER |
1385 IB_QP_PATH_MIG_STATE),
1386 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1388 IB_QP_ACCESS_FLAGS |
1389 IB_QP_PATH_MIG_STATE),
1390 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1392 IB_QP_ACCESS_FLAGS |
1393 IB_QP_MIN_RNR_TIMER |
1394 IB_QP_PATH_MIG_STATE),
1395 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1397 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1399 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1404 [IB_QPS_RESET] = { .valid = 1 },
1405 [IB_QPS_ERR] = { .valid = 1 },
1409 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1411 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1412 IB_QP_ACCESS_FLAGS |
1414 IB_QP_PATH_MIG_STATE),
1415 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1416 IB_QP_ACCESS_FLAGS |
1418 IB_QP_PATH_MIG_STATE |
1419 IB_QP_MIN_RNR_TIMER),
1420 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1421 IB_QP_ACCESS_FLAGS |
1423 IB_QP_PATH_MIG_STATE),
1424 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1425 IB_QP_ACCESS_FLAGS |
1427 IB_QP_PATH_MIG_STATE |
1428 IB_QP_MIN_RNR_TIMER),
1429 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1431 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1433 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1439 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1440 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1441 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1442 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1443 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1444 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1445 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1450 [IB_QPS_RESET] = { .valid = 1 },
1451 [IB_QPS_ERR] = { .valid = 1 },
1455 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1457 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1459 IB_QP_ACCESS_FLAGS |
1460 IB_QP_PATH_MIG_STATE),
1461 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1463 IB_QP_ACCESS_FLAGS |
1464 IB_QP_MIN_RNR_TIMER |
1465 IB_QP_PATH_MIG_STATE),
1466 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1468 IB_QP_ACCESS_FLAGS |
1469 IB_QP_PATH_MIG_STATE),
1470 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1472 IB_QP_ACCESS_FLAGS |
1473 IB_QP_MIN_RNR_TIMER |
1474 IB_QP_PATH_MIG_STATE),
1475 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1477 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1484 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1486 [IB_QPT_UC] = (IB_QP_AV |
1488 IB_QP_ACCESS_FLAGS |
1490 IB_QP_PATH_MIG_STATE),
1491 [IB_QPT_RC] = (IB_QP_PORT |
1496 IB_QP_MAX_QP_RD_ATOMIC |
1497 IB_QP_MAX_DEST_RD_ATOMIC |
1499 IB_QP_ACCESS_FLAGS |
1501 IB_QP_MIN_RNR_TIMER |
1502 IB_QP_PATH_MIG_STATE),
1503 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1508 IB_QP_MAX_QP_RD_ATOMIC |
1510 IB_QP_ACCESS_FLAGS |
1512 IB_QP_PATH_MIG_STATE),
1513 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1516 IB_QP_MAX_DEST_RD_ATOMIC |
1518 IB_QP_ACCESS_FLAGS |
1520 IB_QP_MIN_RNR_TIMER |
1521 IB_QP_PATH_MIG_STATE),
1522 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1524 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1530 [IB_QPS_RESET] = { .valid = 1 },
1531 [IB_QPS_ERR] = { .valid = 1 },
1535 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1537 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1538 IB_QP_ACCESS_FLAGS),
1539 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1541 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1547 [IB_QPS_RESET] = { .valid = 1 },
1548 [IB_QPS_ERR] = { .valid = 1 }
1552 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1553 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1555 enum ib_qp_attr_mask req_param, opt_param;
1557 if (mask & IB_QP_CUR_STATE &&
1558 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1559 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1562 if (!qp_state_table[cur_state][next_state].valid)
1565 req_param = qp_state_table[cur_state][next_state].req_param[type];
1566 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1568 if ((mask & req_param) != req_param)
1571 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1576 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1579 * ib_resolve_eth_dmac - Resolve destination mac address
1580 * @device: Device to consider
1581 * @ah_attr: address handle attribute which describes the
1582 * source and destination parameters
1583 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1584 * returns 0 on success or appropriate error code. It initializes the
1585 * necessary ah_attr fields when call is successful.
1587 static int ib_resolve_eth_dmac(struct ib_device *device,
1588 struct rdma_ah_attr *ah_attr)
1592 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1593 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1596 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1597 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1599 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1600 (char *)ah_attr->roce.dmac);
1603 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1608 static bool is_qp_type_connected(const struct ib_qp *qp)
1610 return (qp->qp_type == IB_QPT_UC ||
1611 qp->qp_type == IB_QPT_RC ||
1612 qp->qp_type == IB_QPT_XRC_INI ||
1613 qp->qp_type == IB_QPT_XRC_TGT);
1617 * IB core internal function to perform QP attributes modification.
1619 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1620 int attr_mask, struct ib_udata *udata)
1622 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1623 const struct ib_gid_attr *old_sgid_attr_av;
1624 const struct ib_gid_attr *old_sgid_attr_alt_av;
1627 if (attr_mask & IB_QP_AV) {
1628 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1633 if (attr_mask & IB_QP_ALT_PATH) {
1635 * FIXME: This does not track the migration state, so if the
1636 * user loads a new alternate path after the HW has migrated
1637 * from primary->alternate we will keep the wrong
1638 * references. This is OK for IB because the reference
1639 * counting does not serve any functional purpose.
1641 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1642 &old_sgid_attr_alt_av);
1647 * Today the core code can only handle alternate paths and APM
1648 * for IB. Ban them in roce mode.
1650 if (!(rdma_protocol_ib(qp->device,
1651 attr->alt_ah_attr.port_num) &&
1652 rdma_protocol_ib(qp->device, port))) {
1659 * If the user provided the qp_attr then we have to resolve it. Kernel
1660 * users have to provide already resolved rdma_ah_attr's
1662 if (udata && (attr_mask & IB_QP_AV) &&
1663 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1664 is_qp_type_connected(qp)) {
1665 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1670 if (rdma_ib_or_roce(qp->device, port)) {
1671 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1672 dev_warn(&qp->device->dev,
1673 "%s rq_psn overflow, masking to 24 bits\n",
1675 attr->rq_psn &= 0xffffff;
1678 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1679 dev_warn(&qp->device->dev,
1680 " %s sq_psn overflow, masking to 24 bits\n",
1682 attr->sq_psn &= 0xffffff;
1686 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1690 if (attr_mask & IB_QP_PORT)
1691 qp->port = attr->port_num;
1692 if (attr_mask & IB_QP_AV)
1694 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1695 if (attr_mask & IB_QP_ALT_PATH)
1696 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1697 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1700 if (attr_mask & IB_QP_ALT_PATH)
1701 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1703 if (attr_mask & IB_QP_AV)
1704 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1709 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1710 * @ib_qp: The QP to modify.
1711 * @attr: On input, specifies the QP attributes to modify. On output,
1712 * the current values of selected QP attributes are returned.
1713 * @attr_mask: A bit-mask used to specify which attributes of the QP
1714 * are being modified.
1715 * @udata: pointer to user's input output buffer information
1716 * are being modified.
1717 * It returns 0 on success and returns appropriate error code on error.
1719 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1720 int attr_mask, struct ib_udata *udata)
1722 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1724 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1726 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1730 struct net_device *netdev;
1731 struct ethtool_link_ksettings lksettings;
1733 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1736 netdev = ib_device_get_netdev(dev, port_num);
1741 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1747 netdev_speed = lksettings.base.speed;
1749 netdev_speed = SPEED_1000;
1750 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1754 if (netdev_speed <= SPEED_1000) {
1755 *width = IB_WIDTH_1X;
1756 *speed = IB_SPEED_SDR;
1757 } else if (netdev_speed <= SPEED_10000) {
1758 *width = IB_WIDTH_1X;
1759 *speed = IB_SPEED_FDR10;
1760 } else if (netdev_speed <= SPEED_20000) {
1761 *width = IB_WIDTH_4X;
1762 *speed = IB_SPEED_DDR;
1763 } else if (netdev_speed <= SPEED_25000) {
1764 *width = IB_WIDTH_1X;
1765 *speed = IB_SPEED_EDR;
1766 } else if (netdev_speed <= SPEED_40000) {
1767 *width = IB_WIDTH_4X;
1768 *speed = IB_SPEED_FDR10;
1770 *width = IB_WIDTH_4X;
1771 *speed = IB_SPEED_EDR;
1776 EXPORT_SYMBOL(ib_get_eth_speed);
1778 int ib_modify_qp(struct ib_qp *qp,
1779 struct ib_qp_attr *qp_attr,
1782 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1784 EXPORT_SYMBOL(ib_modify_qp);
1786 int ib_query_qp(struct ib_qp *qp,
1787 struct ib_qp_attr *qp_attr,
1789 struct ib_qp_init_attr *qp_init_attr)
1791 qp_attr->ah_attr.grh.sgid_attr = NULL;
1792 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1794 return qp->device->ops.query_qp ?
1795 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1796 qp_init_attr) : -EOPNOTSUPP;
1798 EXPORT_SYMBOL(ib_query_qp);
1800 int ib_close_qp(struct ib_qp *qp)
1802 struct ib_qp *real_qp;
1803 unsigned long flags;
1805 real_qp = qp->real_qp;
1809 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1810 list_del(&qp->open_list);
1811 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1813 atomic_dec(&real_qp->usecnt);
1815 ib_close_shared_qp_security(qp->qp_sec);
1820 EXPORT_SYMBOL(ib_close_qp);
1822 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1824 struct ib_xrcd *xrcd;
1825 struct ib_qp *real_qp;
1828 real_qp = qp->real_qp;
1829 xrcd = real_qp->xrcd;
1831 mutex_lock(&xrcd->tgt_qp_mutex);
1833 if (atomic_read(&real_qp->usecnt) == 0)
1834 list_del(&real_qp->xrcd_list);
1837 mutex_unlock(&xrcd->tgt_qp_mutex);
1840 ret = ib_destroy_qp(real_qp);
1842 atomic_dec(&xrcd->usecnt);
1844 __ib_insert_xrcd_qp(xrcd, real_qp);
1850 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1852 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1853 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1855 struct ib_cq *scq, *rcq;
1857 struct ib_rwq_ind_table *ind_tbl;
1858 struct ib_qp_security *sec;
1861 WARN_ON_ONCE(qp->mrs_used > 0);
1863 if (atomic_read(&qp->usecnt))
1866 if (qp->real_qp != qp)
1867 return __ib_destroy_shared_qp(qp);
1873 ind_tbl = qp->rwq_ind_tbl;
1876 ib_destroy_qp_security_begin(sec);
1879 rdma_rw_cleanup_mrs(qp);
1881 rdma_restrack_del(&qp->res);
1882 ret = qp->device->ops.destroy_qp(qp, udata);
1884 if (alt_path_sgid_attr)
1885 rdma_put_gid_attr(alt_path_sgid_attr);
1887 rdma_put_gid_attr(av_sgid_attr);
1889 atomic_dec(&pd->usecnt);
1891 atomic_dec(&scq->usecnt);
1893 atomic_dec(&rcq->usecnt);
1895 atomic_dec(&srq->usecnt);
1897 atomic_dec(&ind_tbl->usecnt);
1899 ib_destroy_qp_security_end(sec);
1902 ib_destroy_qp_security_abort(sec);
1907 EXPORT_SYMBOL(ib_destroy_qp_user);
1909 /* Completion queues */
1911 struct ib_cq *__ib_create_cq(struct ib_device *device,
1912 ib_comp_handler comp_handler,
1913 void (*event_handler)(struct ib_event *, void *),
1915 const struct ib_cq_init_attr *cq_attr,
1920 cq = device->ops.create_cq(device, cq_attr, NULL);
1923 cq->device = device;
1925 cq->comp_handler = comp_handler;
1926 cq->event_handler = event_handler;
1927 cq->cq_context = cq_context;
1928 atomic_set(&cq->usecnt, 0);
1929 cq->res.type = RDMA_RESTRACK_CQ;
1930 rdma_restrack_set_task(&cq->res, caller);
1931 rdma_restrack_kadd(&cq->res);
1936 EXPORT_SYMBOL(__ib_create_cq);
1938 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1940 return cq->device->ops.modify_cq ?
1941 cq->device->ops.modify_cq(cq, cq_count,
1942 cq_period) : -EOPNOTSUPP;
1944 EXPORT_SYMBOL(rdma_set_cq_moderation);
1946 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1948 if (atomic_read(&cq->usecnt))
1951 rdma_restrack_del(&cq->res);
1952 return cq->device->ops.destroy_cq(cq, udata);
1954 EXPORT_SYMBOL(ib_destroy_cq_user);
1956 int ib_resize_cq(struct ib_cq *cq, int cqe)
1958 return cq->device->ops.resize_cq ?
1959 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1961 EXPORT_SYMBOL(ib_resize_cq);
1963 /* Memory regions */
1965 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1967 struct ib_pd *pd = mr->pd;
1968 struct ib_dm *dm = mr->dm;
1971 rdma_restrack_del(&mr->res);
1972 ret = mr->device->ops.dereg_mr(mr, udata);
1974 atomic_dec(&pd->usecnt);
1976 atomic_dec(&dm->usecnt);
1981 EXPORT_SYMBOL(ib_dereg_mr_user);
1984 * ib_alloc_mr() - Allocates a memory region
1985 * @pd: protection domain associated with the region
1986 * @mr_type: memory region type
1987 * @max_num_sg: maximum sg entries available for registration.
1988 * @udata: user data or null for kernel objects
1991 * Memory registeration page/sg lists must not exceed max_num_sg.
1992 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1993 * max_num_sg * used_page_size.
1996 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
1997 u32 max_num_sg, struct ib_udata *udata)
2001 if (!pd->device->ops.alloc_mr)
2002 return ERR_PTR(-EOPNOTSUPP);
2004 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2006 mr->device = pd->device;
2010 atomic_inc(&pd->usecnt);
2011 mr->need_inval = false;
2012 mr->res.type = RDMA_RESTRACK_MR;
2013 rdma_restrack_kadd(&mr->res);
2018 EXPORT_SYMBOL(ib_alloc_mr_user);
2020 /* "Fast" memory regions */
2022 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2023 int mr_access_flags,
2024 struct ib_fmr_attr *fmr_attr)
2028 if (!pd->device->ops.alloc_fmr)
2029 return ERR_PTR(-EOPNOTSUPP);
2031 fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2033 fmr->device = pd->device;
2035 atomic_inc(&pd->usecnt);
2040 EXPORT_SYMBOL(ib_alloc_fmr);
2042 int ib_unmap_fmr(struct list_head *fmr_list)
2046 if (list_empty(fmr_list))
2049 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2050 return fmr->device->ops.unmap_fmr(fmr_list);
2052 EXPORT_SYMBOL(ib_unmap_fmr);
2054 int ib_dealloc_fmr(struct ib_fmr *fmr)
2060 ret = fmr->device->ops.dealloc_fmr(fmr);
2062 atomic_dec(&pd->usecnt);
2066 EXPORT_SYMBOL(ib_dealloc_fmr);
2068 /* Multicast groups */
2070 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2072 struct ib_qp_init_attr init_attr = {};
2073 struct ib_qp_attr attr = {};
2074 int num_eth_ports = 0;
2077 /* If QP state >= init, it is assigned to a port and we can check this
2080 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2081 if (attr.qp_state >= IB_QPS_INIT) {
2082 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2083 IB_LINK_LAYER_INFINIBAND)
2089 /* Can't get a quick answer, iterate over all ports */
2090 for (port = 0; port < qp->device->phys_port_cnt; port++)
2091 if (rdma_port_get_link_layer(qp->device, port) !=
2092 IB_LINK_LAYER_INFINIBAND)
2095 /* If we have at lease one Ethernet port, RoCE annex declares that
2096 * multicast LID should be ignored. We can't tell at this step if the
2097 * QP belongs to an IB or Ethernet port.
2102 /* If all the ports are IB, we can check according to IB spec. */
2104 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2105 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2108 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2112 if (!qp->device->ops.attach_mcast)
2115 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2116 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2119 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2121 atomic_inc(&qp->usecnt);
2124 EXPORT_SYMBOL(ib_attach_mcast);
2126 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2130 if (!qp->device->ops.detach_mcast)
2133 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2134 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2137 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2139 atomic_dec(&qp->usecnt);
2142 EXPORT_SYMBOL(ib_detach_mcast);
2144 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2146 struct ib_xrcd *xrcd;
2148 if (!device->ops.alloc_xrcd)
2149 return ERR_PTR(-EOPNOTSUPP);
2151 xrcd = device->ops.alloc_xrcd(device, NULL);
2152 if (!IS_ERR(xrcd)) {
2153 xrcd->device = device;
2155 atomic_set(&xrcd->usecnt, 0);
2156 mutex_init(&xrcd->tgt_qp_mutex);
2157 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2162 EXPORT_SYMBOL(__ib_alloc_xrcd);
2164 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2169 if (atomic_read(&xrcd->usecnt))
2172 while (!list_empty(&xrcd->tgt_qp_list)) {
2173 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2174 ret = ib_destroy_qp(qp);
2179 return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2181 EXPORT_SYMBOL(ib_dealloc_xrcd);
2184 * ib_create_wq - Creates a WQ associated with the specified protection
2186 * @pd: The protection domain associated with the WQ.
2187 * @wq_attr: A list of initial attributes required to create the
2188 * WQ. If WQ creation succeeds, then the attributes are updated to
2189 * the actual capabilities of the created WQ.
2191 * wq_attr->max_wr and wq_attr->max_sge determine
2192 * the requested size of the WQ, and set to the actual values allocated
2194 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2195 * at least as large as the requested values.
2197 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2198 struct ib_wq_init_attr *wq_attr)
2202 if (!pd->device->ops.create_wq)
2203 return ERR_PTR(-EOPNOTSUPP);
2205 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2207 wq->event_handler = wq_attr->event_handler;
2208 wq->wq_context = wq_attr->wq_context;
2209 wq->wq_type = wq_attr->wq_type;
2210 wq->cq = wq_attr->cq;
2211 wq->device = pd->device;
2214 atomic_inc(&pd->usecnt);
2215 atomic_inc(&wq_attr->cq->usecnt);
2216 atomic_set(&wq->usecnt, 0);
2220 EXPORT_SYMBOL(ib_create_wq);
2223 * ib_destroy_wq - Destroys the specified user WQ.
2224 * @wq: The WQ to destroy.
2225 * @udata: Valid user data
2227 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2230 struct ib_cq *cq = wq->cq;
2231 struct ib_pd *pd = wq->pd;
2233 if (atomic_read(&wq->usecnt))
2236 err = wq->device->ops.destroy_wq(wq, udata);
2238 atomic_dec(&pd->usecnt);
2239 atomic_dec(&cq->usecnt);
2243 EXPORT_SYMBOL(ib_destroy_wq);
2246 * ib_modify_wq - Modifies the specified WQ.
2247 * @wq: The WQ to modify.
2248 * @wq_attr: On input, specifies the WQ attributes to modify.
2249 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2250 * are being modified.
2251 * On output, the current values of selected WQ attributes are returned.
2253 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2258 if (!wq->device->ops.modify_wq)
2261 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2264 EXPORT_SYMBOL(ib_modify_wq);
2267 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2268 * @device: The device on which to create the rwq indirection table.
2269 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2270 * create the Indirection Table.
2272 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2273 * than the created ib_rwq_ind_table object and the caller is responsible
2274 * for its memory allocation/free.
2276 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2277 struct ib_rwq_ind_table_init_attr *init_attr)
2279 struct ib_rwq_ind_table *rwq_ind_table;
2283 if (!device->ops.create_rwq_ind_table)
2284 return ERR_PTR(-EOPNOTSUPP);
2286 table_size = (1 << init_attr->log_ind_tbl_size);
2287 rwq_ind_table = device->ops.create_rwq_ind_table(device,
2289 if (IS_ERR(rwq_ind_table))
2290 return rwq_ind_table;
2292 rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2293 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2294 rwq_ind_table->device = device;
2295 rwq_ind_table->uobject = NULL;
2296 atomic_set(&rwq_ind_table->usecnt, 0);
2298 for (i = 0; i < table_size; i++)
2299 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2301 return rwq_ind_table;
2303 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2306 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2307 * @wq_ind_table: The Indirection Table to destroy.
2309 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2312 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2313 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2315 if (atomic_read(&rwq_ind_table->usecnt))
2318 err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2320 for (i = 0; i < table_size; i++)
2321 atomic_dec(&ind_tbl[i]->usecnt);
2326 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2328 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2329 struct ib_mr_status *mr_status)
2331 if (!mr->device->ops.check_mr_status)
2334 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2336 EXPORT_SYMBOL(ib_check_mr_status);
2338 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2341 if (!device->ops.set_vf_link_state)
2344 return device->ops.set_vf_link_state(device, vf, port, state);
2346 EXPORT_SYMBOL(ib_set_vf_link_state);
2348 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2349 struct ifla_vf_info *info)
2351 if (!device->ops.get_vf_config)
2354 return device->ops.get_vf_config(device, vf, port, info);
2356 EXPORT_SYMBOL(ib_get_vf_config);
2358 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2359 struct ifla_vf_stats *stats)
2361 if (!device->ops.get_vf_stats)
2364 return device->ops.get_vf_stats(device, vf, port, stats);
2366 EXPORT_SYMBOL(ib_get_vf_stats);
2368 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2371 if (!device->ops.set_vf_guid)
2374 return device->ops.set_vf_guid(device, vf, port, guid, type);
2376 EXPORT_SYMBOL(ib_set_vf_guid);
2379 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2380 * and set it the memory region.
2381 * @mr: memory region
2382 * @sg: dma mapped scatterlist
2383 * @sg_nents: number of entries in sg
2384 * @sg_offset: offset in bytes into sg
2385 * @page_size: page vector desired page size
2388 * - The first sg element is allowed to have an offset.
2389 * - Each sg element must either be aligned to page_size or virtually
2390 * contiguous to the previous element. In case an sg element has a
2391 * non-contiguous offset, the mapping prefix will not include it.
2392 * - The last sg element is allowed to have length less than page_size.
2393 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2394 * then only max_num_sg entries will be mapped.
2395 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2396 * constraints holds and the page_size argument is ignored.
2398 * Returns the number of sg elements that were mapped to the memory region.
2400 * After this completes successfully, the memory region
2401 * is ready for registration.
2403 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2404 unsigned int *sg_offset, unsigned int page_size)
2406 if (unlikely(!mr->device->ops.map_mr_sg))
2409 mr->page_size = page_size;
2411 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2413 EXPORT_SYMBOL(ib_map_mr_sg);
2416 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2418 * @mr: memory region
2419 * @sgl: dma mapped scatterlist
2420 * @sg_nents: number of entries in sg
2421 * @sg_offset_p: IN: start offset in bytes into sg
2422 * OUT: offset in bytes for element n of the sg of the first
2423 * byte that has not been processed where n is the return
2424 * value of this function.
2425 * @set_page: driver page assignment function pointer
2427 * Core service helper for drivers to convert the largest
2428 * prefix of given sg list to a page vector. The sg list
2429 * prefix converted is the prefix that meet the requirements
2432 * Returns the number of sg elements that were assigned to
2435 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2436 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2438 struct scatterlist *sg;
2439 u64 last_end_dma_addr = 0;
2440 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2441 unsigned int last_page_off = 0;
2442 u64 page_mask = ~((u64)mr->page_size - 1);
2445 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2448 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2451 for_each_sg(sgl, sg, sg_nents, i) {
2452 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2453 u64 prev_addr = dma_addr;
2454 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2455 u64 end_dma_addr = dma_addr + dma_len;
2456 u64 page_addr = dma_addr & page_mask;
2459 * For the second and later elements, check whether either the
2460 * end of element i-1 or the start of element i is not aligned
2461 * on a page boundary.
2463 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2464 /* Stop mapping if there is a gap. */
2465 if (last_end_dma_addr != dma_addr)
2469 * Coalesce this element with the last. If it is small
2470 * enough just update mr->length. Otherwise start
2471 * mapping from the next page.
2477 ret = set_page(mr, page_addr);
2478 if (unlikely(ret < 0)) {
2479 sg_offset = prev_addr - sg_dma_address(sg);
2480 mr->length += prev_addr - dma_addr;
2482 *sg_offset_p = sg_offset;
2483 return i || sg_offset ? i : ret;
2485 prev_addr = page_addr;
2487 page_addr += mr->page_size;
2488 } while (page_addr < end_dma_addr);
2490 mr->length += dma_len;
2491 last_end_dma_addr = end_dma_addr;
2492 last_page_off = end_dma_addr & ~page_mask;
2501 EXPORT_SYMBOL(ib_sg_to_pages);
2503 struct ib_drain_cqe {
2505 struct completion done;
2508 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2510 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2513 complete(&cqe->done);
2517 * Post a WR and block until its completion is reaped for the SQ.
2519 static void __ib_drain_sq(struct ib_qp *qp)
2521 struct ib_cq *cq = qp->send_cq;
2522 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2523 struct ib_drain_cqe sdrain;
2524 struct ib_rdma_wr swr = {
2527 { .wr_cqe = &sdrain.cqe, },
2528 .opcode = IB_WR_RDMA_WRITE,
2533 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2535 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2539 sdrain.cqe.done = ib_drain_qp_done;
2540 init_completion(&sdrain.done);
2542 ret = ib_post_send(qp, &swr.wr, NULL);
2544 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2548 if (cq->poll_ctx == IB_POLL_DIRECT)
2549 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2550 ib_process_cq_direct(cq, -1);
2552 wait_for_completion(&sdrain.done);
2556 * Post a WR and block until its completion is reaped for the RQ.
2558 static void __ib_drain_rq(struct ib_qp *qp)
2560 struct ib_cq *cq = qp->recv_cq;
2561 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2562 struct ib_drain_cqe rdrain;
2563 struct ib_recv_wr rwr = {};
2566 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2568 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2572 rwr.wr_cqe = &rdrain.cqe;
2573 rdrain.cqe.done = ib_drain_qp_done;
2574 init_completion(&rdrain.done);
2576 ret = ib_post_recv(qp, &rwr, NULL);
2578 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2582 if (cq->poll_ctx == IB_POLL_DIRECT)
2583 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2584 ib_process_cq_direct(cq, -1);
2586 wait_for_completion(&rdrain.done);
2590 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2592 * @qp: queue pair to drain
2594 * If the device has a provider-specific drain function, then
2595 * call that. Otherwise call the generic drain function
2600 * ensure there is room in the CQ and SQ for the drain work request and
2603 * allocate the CQ using ib_alloc_cq().
2605 * ensure that there are no other contexts that are posting WRs concurrently.
2606 * Otherwise the drain is not guaranteed.
2608 void ib_drain_sq(struct ib_qp *qp)
2610 if (qp->device->ops.drain_sq)
2611 qp->device->ops.drain_sq(qp);
2615 EXPORT_SYMBOL(ib_drain_sq);
2618 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2620 * @qp: queue pair to drain
2622 * If the device has a provider-specific drain function, then
2623 * call that. Otherwise call the generic drain function
2628 * ensure there is room in the CQ and RQ for the drain work request and
2631 * allocate the CQ using ib_alloc_cq().
2633 * ensure that there are no other contexts that are posting WRs concurrently.
2634 * Otherwise the drain is not guaranteed.
2636 void ib_drain_rq(struct ib_qp *qp)
2638 if (qp->device->ops.drain_rq)
2639 qp->device->ops.drain_rq(qp);
2643 EXPORT_SYMBOL(ib_drain_rq);
2646 * ib_drain_qp() - Block until all CQEs have been consumed by the
2647 * application on both the RQ and SQ.
2648 * @qp: queue pair to drain
2652 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2655 * allocate the CQs using ib_alloc_cq().
2657 * ensure that there are no other contexts that are posting WRs concurrently.
2658 * Otherwise the drain is not guaranteed.
2660 void ib_drain_qp(struct ib_qp *qp)
2666 EXPORT_SYMBOL(ib_drain_qp);
2668 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2669 enum rdma_netdev_t type, const char *name,
2670 unsigned char name_assign_type,
2671 void (*setup)(struct net_device *))
2673 struct rdma_netdev_alloc_params params;
2674 struct net_device *netdev;
2677 if (!device->ops.rdma_netdev_get_params)
2678 return ERR_PTR(-EOPNOTSUPP);
2680 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2685 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2686 setup, params.txqs, params.rxqs);
2688 return ERR_PTR(-ENOMEM);
2692 EXPORT_SYMBOL(rdma_alloc_netdev);
2694 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2695 enum rdma_netdev_t type, const char *name,
2696 unsigned char name_assign_type,
2697 void (*setup)(struct net_device *),
2698 struct net_device *netdev)
2700 struct rdma_netdev_alloc_params params;
2703 if (!device->ops.rdma_netdev_get_params)
2706 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2711 return params.initialize_rdma_netdev(device, port_num,
2712 netdev, params.param);
2714 EXPORT_SYMBOL(rdma_init_netdev);
2716 void __rdma_block_iter_start(struct ib_block_iter *biter,
2717 struct scatterlist *sglist, unsigned int nents,
2720 memset(biter, 0, sizeof(struct ib_block_iter));
2721 biter->__sg = sglist;
2722 biter->__sg_nents = nents;
2724 /* Driver provides best block size to use */
2725 biter->__pg_bit = __fls(pgsz);
2727 EXPORT_SYMBOL(__rdma_block_iter_start);
2729 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2731 unsigned int block_offset;
2733 if (!biter->__sg_nents || !biter->__sg)
2736 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2737 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2738 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2740 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2741 biter->__sg_advance = 0;
2742 biter->__sg = sg_next(biter->__sg);
2743 biter->__sg_nents--;
2748 EXPORT_SYMBOL(__rdma_block_iter_next);