]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_gem.c
Merge tag 'riscv-for-linus-5.19-mw0' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / vc4 / vc4_gem.c
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30 #include <linux/dma-fence-array.h>
31
32 #include <drm/drm_syncobj.h>
33
34 #include "uapi/drm/vc4_drm.h"
35 #include "vc4_drv.h"
36 #include "vc4_regs.h"
37 #include "vc4_trace.h"
38
39 static void
40 vc4_queue_hangcheck(struct drm_device *dev)
41 {
42         struct vc4_dev *vc4 = to_vc4_dev(dev);
43
44         mod_timer(&vc4->hangcheck.timer,
45                   round_jiffies_up(jiffies + msecs_to_jiffies(100)));
46 }
47
48 struct vc4_hang_state {
49         struct drm_vc4_get_hang_state user_state;
50
51         u32 bo_count;
52         struct drm_gem_object **bo;
53 };
54
55 static void
56 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
57 {
58         unsigned int i;
59
60         for (i = 0; i < state->user_state.bo_count; i++)
61                 drm_gem_object_put(state->bo[i]);
62
63         kfree(state);
64 }
65
66 int
67 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
68                          struct drm_file *file_priv)
69 {
70         struct drm_vc4_get_hang_state *get_state = data;
71         struct drm_vc4_get_hang_state_bo *bo_state;
72         struct vc4_hang_state *kernel_state;
73         struct drm_vc4_get_hang_state *state;
74         struct vc4_dev *vc4 = to_vc4_dev(dev);
75         unsigned long irqflags;
76         u32 i;
77         int ret = 0;
78
79         if (!vc4->v3d) {
80                 DRM_DEBUG("VC4_GET_HANG_STATE with no VC4 V3D probed\n");
81                 return -ENODEV;
82         }
83
84         spin_lock_irqsave(&vc4->job_lock, irqflags);
85         kernel_state = vc4->hang_state;
86         if (!kernel_state) {
87                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
88                 return -ENOENT;
89         }
90         state = &kernel_state->user_state;
91
92         /* If the user's array isn't big enough, just return the
93          * required array size.
94          */
95         if (get_state->bo_count < state->bo_count) {
96                 get_state->bo_count = state->bo_count;
97                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
98                 return 0;
99         }
100
101         vc4->hang_state = NULL;
102         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
103
104         /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
105         state->bo = get_state->bo;
106         memcpy(get_state, state, sizeof(*state));
107
108         bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
109         if (!bo_state) {
110                 ret = -ENOMEM;
111                 goto err_free;
112         }
113
114         for (i = 0; i < state->bo_count; i++) {
115                 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
116                 u32 handle;
117
118                 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
119                                             &handle);
120
121                 if (ret) {
122                         state->bo_count = i;
123                         goto err_delete_handle;
124                 }
125                 bo_state[i].handle = handle;
126                 bo_state[i].paddr = vc4_bo->base.paddr;
127                 bo_state[i].size = vc4_bo->base.base.size;
128         }
129
130         if (copy_to_user(u64_to_user_ptr(get_state->bo),
131                          bo_state,
132                          state->bo_count * sizeof(*bo_state)))
133                 ret = -EFAULT;
134
135 err_delete_handle:
136         if (ret) {
137                 for (i = 0; i < state->bo_count; i++)
138                         drm_gem_handle_delete(file_priv, bo_state[i].handle);
139         }
140
141 err_free:
142         vc4_free_hang_state(dev, kernel_state);
143         kfree(bo_state);
144
145         return ret;
146 }
147
148 static void
149 vc4_save_hang_state(struct drm_device *dev)
150 {
151         struct vc4_dev *vc4 = to_vc4_dev(dev);
152         struct drm_vc4_get_hang_state *state;
153         struct vc4_hang_state *kernel_state;
154         struct vc4_exec_info *exec[2];
155         struct vc4_bo *bo;
156         unsigned long irqflags;
157         unsigned int i, j, k, unref_list_count;
158
159         kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
160         if (!kernel_state)
161                 return;
162
163         state = &kernel_state->user_state;
164
165         spin_lock_irqsave(&vc4->job_lock, irqflags);
166         exec[0] = vc4_first_bin_job(vc4);
167         exec[1] = vc4_first_render_job(vc4);
168         if (!exec[0] && !exec[1]) {
169                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
170                 return;
171         }
172
173         /* Get the bos from both binner and renderer into hang state. */
174         state->bo_count = 0;
175         for (i = 0; i < 2; i++) {
176                 if (!exec[i])
177                         continue;
178
179                 unref_list_count = 0;
180                 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
181                         unref_list_count++;
182                 state->bo_count += exec[i]->bo_count + unref_list_count;
183         }
184
185         kernel_state->bo = kcalloc(state->bo_count,
186                                    sizeof(*kernel_state->bo), GFP_ATOMIC);
187
188         if (!kernel_state->bo) {
189                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
190                 return;
191         }
192
193         k = 0;
194         for (i = 0; i < 2; i++) {
195                 if (!exec[i])
196                         continue;
197
198                 for (j = 0; j < exec[i]->bo_count; j++) {
199                         bo = to_vc4_bo(&exec[i]->bo[j]->base);
200
201                         /* Retain BOs just in case they were marked purgeable.
202                          * This prevents the BO from being purged before
203                          * someone had a chance to dump the hang state.
204                          */
205                         WARN_ON(!refcount_read(&bo->usecnt));
206                         refcount_inc(&bo->usecnt);
207                         drm_gem_object_get(&exec[i]->bo[j]->base);
208                         kernel_state->bo[k++] = &exec[i]->bo[j]->base;
209                 }
210
211                 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
212                         /* No need to retain BOs coming from the ->unref_list
213                          * because they are naturally unpurgeable.
214                          */
215                         drm_gem_object_get(&bo->base.base);
216                         kernel_state->bo[k++] = &bo->base.base;
217                 }
218         }
219
220         WARN_ON_ONCE(k != state->bo_count);
221
222         if (exec[0])
223                 state->start_bin = exec[0]->ct0ca;
224         if (exec[1])
225                 state->start_render = exec[1]->ct1ca;
226
227         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
228
229         state->ct0ca = V3D_READ(V3D_CTNCA(0));
230         state->ct0ea = V3D_READ(V3D_CTNEA(0));
231
232         state->ct1ca = V3D_READ(V3D_CTNCA(1));
233         state->ct1ea = V3D_READ(V3D_CTNEA(1));
234
235         state->ct0cs = V3D_READ(V3D_CTNCS(0));
236         state->ct1cs = V3D_READ(V3D_CTNCS(1));
237
238         state->ct0ra0 = V3D_READ(V3D_CT00RA0);
239         state->ct1ra0 = V3D_READ(V3D_CT01RA0);
240
241         state->bpca = V3D_READ(V3D_BPCA);
242         state->bpcs = V3D_READ(V3D_BPCS);
243         state->bpoa = V3D_READ(V3D_BPOA);
244         state->bpos = V3D_READ(V3D_BPOS);
245
246         state->vpmbase = V3D_READ(V3D_VPMBASE);
247
248         state->dbge = V3D_READ(V3D_DBGE);
249         state->fdbgo = V3D_READ(V3D_FDBGO);
250         state->fdbgb = V3D_READ(V3D_FDBGB);
251         state->fdbgr = V3D_READ(V3D_FDBGR);
252         state->fdbgs = V3D_READ(V3D_FDBGS);
253         state->errstat = V3D_READ(V3D_ERRSTAT);
254
255         /* We need to turn purgeable BOs into unpurgeable ones so that
256          * userspace has a chance to dump the hang state before the kernel
257          * decides to purge those BOs.
258          * Note that BO consistency at dump time cannot be guaranteed. For
259          * example, if the owner of these BOs decides to re-use them or mark
260          * them purgeable again there's nothing we can do to prevent it.
261          */
262         for (i = 0; i < kernel_state->user_state.bo_count; i++) {
263                 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
264
265                 if (bo->madv == __VC4_MADV_NOTSUPP)
266                         continue;
267
268                 mutex_lock(&bo->madv_lock);
269                 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
270                         bo->madv = VC4_MADV_WILLNEED;
271                 refcount_dec(&bo->usecnt);
272                 mutex_unlock(&bo->madv_lock);
273         }
274
275         spin_lock_irqsave(&vc4->job_lock, irqflags);
276         if (vc4->hang_state) {
277                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
278                 vc4_free_hang_state(dev, kernel_state);
279         } else {
280                 vc4->hang_state = kernel_state;
281                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
282         }
283 }
284
285 static void
286 vc4_reset(struct drm_device *dev)
287 {
288         struct vc4_dev *vc4 = to_vc4_dev(dev);
289
290         DRM_INFO("Resetting GPU.\n");
291
292         mutex_lock(&vc4->power_lock);
293         if (vc4->power_refcount) {
294                 /* Power the device off and back on the by dropping the
295                  * reference on runtime PM.
296                  */
297                 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
298                 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
299         }
300         mutex_unlock(&vc4->power_lock);
301
302         vc4_irq_reset(dev);
303
304         /* Rearm the hangcheck -- another job might have been waiting
305          * for our hung one to get kicked off, and vc4_irq_reset()
306          * would have started it.
307          */
308         vc4_queue_hangcheck(dev);
309 }
310
311 static void
312 vc4_reset_work(struct work_struct *work)
313 {
314         struct vc4_dev *vc4 =
315                 container_of(work, struct vc4_dev, hangcheck.reset_work);
316
317         vc4_save_hang_state(&vc4->base);
318
319         vc4_reset(&vc4->base);
320 }
321
322 static void
323 vc4_hangcheck_elapsed(struct timer_list *t)
324 {
325         struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
326         struct drm_device *dev = &vc4->base;
327         uint32_t ct0ca, ct1ca;
328         unsigned long irqflags;
329         struct vc4_exec_info *bin_exec, *render_exec;
330
331         spin_lock_irqsave(&vc4->job_lock, irqflags);
332
333         bin_exec = vc4_first_bin_job(vc4);
334         render_exec = vc4_first_render_job(vc4);
335
336         /* If idle, we can stop watching for hangs. */
337         if (!bin_exec && !render_exec) {
338                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
339                 return;
340         }
341
342         ct0ca = V3D_READ(V3D_CTNCA(0));
343         ct1ca = V3D_READ(V3D_CTNCA(1));
344
345         /* If we've made any progress in execution, rearm the timer
346          * and wait.
347          */
348         if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
349             (render_exec && ct1ca != render_exec->last_ct1ca)) {
350                 if (bin_exec)
351                         bin_exec->last_ct0ca = ct0ca;
352                 if (render_exec)
353                         render_exec->last_ct1ca = ct1ca;
354                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
355                 vc4_queue_hangcheck(dev);
356                 return;
357         }
358
359         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
360
361         /* We've gone too long with no progress, reset.  This has to
362          * be done from a work struct, since resetting can sleep and
363          * this timer hook isn't allowed to.
364          */
365         schedule_work(&vc4->hangcheck.reset_work);
366 }
367
368 static void
369 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
370 {
371         struct vc4_dev *vc4 = to_vc4_dev(dev);
372
373         /* Set the current and end address of the control list.
374          * Writing the end register is what starts the job.
375          */
376         V3D_WRITE(V3D_CTNCA(thread), start);
377         V3D_WRITE(V3D_CTNEA(thread), end);
378 }
379
380 int
381 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
382                    bool interruptible)
383 {
384         struct vc4_dev *vc4 = to_vc4_dev(dev);
385         int ret = 0;
386         unsigned long timeout_expire;
387         DEFINE_WAIT(wait);
388
389         if (vc4->finished_seqno >= seqno)
390                 return 0;
391
392         if (timeout_ns == 0)
393                 return -ETIME;
394
395         timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
396
397         trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
398         for (;;) {
399                 prepare_to_wait(&vc4->job_wait_queue, &wait,
400                                 interruptible ? TASK_INTERRUPTIBLE :
401                                 TASK_UNINTERRUPTIBLE);
402
403                 if (interruptible && signal_pending(current)) {
404                         ret = -ERESTARTSYS;
405                         break;
406                 }
407
408                 if (vc4->finished_seqno >= seqno)
409                         break;
410
411                 if (timeout_ns != ~0ull) {
412                         if (time_after_eq(jiffies, timeout_expire)) {
413                                 ret = -ETIME;
414                                 break;
415                         }
416                         schedule_timeout(timeout_expire - jiffies);
417                 } else {
418                         schedule();
419                 }
420         }
421
422         finish_wait(&vc4->job_wait_queue, &wait);
423         trace_vc4_wait_for_seqno_end(dev, seqno);
424
425         return ret;
426 }
427
428 static void
429 vc4_flush_caches(struct drm_device *dev)
430 {
431         struct vc4_dev *vc4 = to_vc4_dev(dev);
432
433         /* Flush the GPU L2 caches.  These caches sit on top of system
434          * L3 (the 128kb or so shared with the CPU), and are
435          * non-allocating in the L3.
436          */
437         V3D_WRITE(V3D_L2CACTL,
438                   V3D_L2CACTL_L2CCLR);
439
440         V3D_WRITE(V3D_SLCACTL,
441                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
442                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
443                   VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
444                   VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
445 }
446
447 static void
448 vc4_flush_texture_caches(struct drm_device *dev)
449 {
450         struct vc4_dev *vc4 = to_vc4_dev(dev);
451
452         V3D_WRITE(V3D_L2CACTL,
453                   V3D_L2CACTL_L2CCLR);
454
455         V3D_WRITE(V3D_SLCACTL,
456                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
457                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
458 }
459
460 /* Sets the registers for the next job to be actually be executed in
461  * the hardware.
462  *
463  * The job_lock should be held during this.
464  */
465 void
466 vc4_submit_next_bin_job(struct drm_device *dev)
467 {
468         struct vc4_dev *vc4 = to_vc4_dev(dev);
469         struct vc4_exec_info *exec;
470
471 again:
472         exec = vc4_first_bin_job(vc4);
473         if (!exec)
474                 return;
475
476         vc4_flush_caches(dev);
477
478         /* Only start the perfmon if it was not already started by a previous
479          * job.
480          */
481         if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
482                 vc4_perfmon_start(vc4, exec->perfmon);
483
484         /* Either put the job in the binner if it uses the binner, or
485          * immediately move it to the to-be-rendered queue.
486          */
487         if (exec->ct0ca != exec->ct0ea) {
488                 trace_vc4_submit_cl(dev, false, exec->seqno, exec->ct0ca,
489                                     exec->ct0ea);
490                 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
491         } else {
492                 struct vc4_exec_info *next;
493
494                 vc4_move_job_to_render(dev, exec);
495                 next = vc4_first_bin_job(vc4);
496
497                 /* We can't start the next bin job if the previous job had a
498                  * different perfmon instance attached to it. The same goes
499                  * if one of them had a perfmon attached to it and the other
500                  * one doesn't.
501                  */
502                 if (next && next->perfmon == exec->perfmon)
503                         goto again;
504         }
505 }
506
507 void
508 vc4_submit_next_render_job(struct drm_device *dev)
509 {
510         struct vc4_dev *vc4 = to_vc4_dev(dev);
511         struct vc4_exec_info *exec = vc4_first_render_job(vc4);
512
513         if (!exec)
514                 return;
515
516         /* A previous RCL may have written to one of our textures, and
517          * our full cache flush at bin time may have occurred before
518          * that RCL completed.  Flush the texture cache now, but not
519          * the instructions or uniforms (since we don't write those
520          * from an RCL).
521          */
522         vc4_flush_texture_caches(dev);
523
524         trace_vc4_submit_cl(dev, true, exec->seqno, exec->ct1ca, exec->ct1ea);
525         submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
526 }
527
528 void
529 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
530 {
531         struct vc4_dev *vc4 = to_vc4_dev(dev);
532         bool was_empty = list_empty(&vc4->render_job_list);
533
534         list_move_tail(&exec->head, &vc4->render_job_list);
535         if (was_empty)
536                 vc4_submit_next_render_job(dev);
537 }
538
539 static void
540 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
541 {
542         struct vc4_bo *bo;
543         unsigned i;
544
545         for (i = 0; i < exec->bo_count; i++) {
546                 bo = to_vc4_bo(&exec->bo[i]->base);
547                 bo->seqno = seqno;
548
549                 dma_resv_add_fence(bo->base.base.resv, exec->fence,
550                                    DMA_RESV_USAGE_READ);
551         }
552
553         list_for_each_entry(bo, &exec->unref_list, unref_head) {
554                 bo->seqno = seqno;
555         }
556
557         for (i = 0; i < exec->rcl_write_bo_count; i++) {
558                 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
559                 bo->write_seqno = seqno;
560
561                 dma_resv_add_fence(bo->base.base.resv, exec->fence,
562                                    DMA_RESV_USAGE_WRITE);
563         }
564 }
565
566 static void
567 vc4_unlock_bo_reservations(struct drm_device *dev,
568                            struct vc4_exec_info *exec,
569                            struct ww_acquire_ctx *acquire_ctx)
570 {
571         int i;
572
573         for (i = 0; i < exec->bo_count; i++) {
574                 struct drm_gem_object *bo = &exec->bo[i]->base;
575
576                 dma_resv_unlock(bo->resv);
577         }
578
579         ww_acquire_fini(acquire_ctx);
580 }
581
582 /* Takes the reservation lock on all the BOs being referenced, so that
583  * at queue submit time we can update the reservations.
584  *
585  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
586  * (all of which are on exec->unref_list).  They're entirely private
587  * to vc4, so we don't attach dma-buf fences to them.
588  */
589 static int
590 vc4_lock_bo_reservations(struct drm_device *dev,
591                          struct vc4_exec_info *exec,
592                          struct ww_acquire_ctx *acquire_ctx)
593 {
594         int contended_lock = -1;
595         int i, ret;
596         struct drm_gem_object *bo;
597
598         ww_acquire_init(acquire_ctx, &reservation_ww_class);
599
600 retry:
601         if (contended_lock != -1) {
602                 bo = &exec->bo[contended_lock]->base;
603                 ret = dma_resv_lock_slow_interruptible(bo->resv, acquire_ctx);
604                 if (ret) {
605                         ww_acquire_done(acquire_ctx);
606                         return ret;
607                 }
608         }
609
610         for (i = 0; i < exec->bo_count; i++) {
611                 if (i == contended_lock)
612                         continue;
613
614                 bo = &exec->bo[i]->base;
615
616                 ret = dma_resv_lock_interruptible(bo->resv, acquire_ctx);
617                 if (ret) {
618                         int j;
619
620                         for (j = 0; j < i; j++) {
621                                 bo = &exec->bo[j]->base;
622                                 dma_resv_unlock(bo->resv);
623                         }
624
625                         if (contended_lock != -1 && contended_lock >= i) {
626                                 bo = &exec->bo[contended_lock]->base;
627
628                                 dma_resv_unlock(bo->resv);
629                         }
630
631                         if (ret == -EDEADLK) {
632                                 contended_lock = i;
633                                 goto retry;
634                         }
635
636                         ww_acquire_done(acquire_ctx);
637                         return ret;
638                 }
639         }
640
641         ww_acquire_done(acquire_ctx);
642
643         /* Reserve space for our shared (read-only) fence references,
644          * before we commit the CL to the hardware.
645          */
646         for (i = 0; i < exec->bo_count; i++) {
647                 bo = &exec->bo[i]->base;
648
649                 ret = dma_resv_reserve_fences(bo->resv, 1);
650                 if (ret) {
651                         vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
652                         return ret;
653                 }
654         }
655
656         return 0;
657 }
658
659 /* Queues a struct vc4_exec_info for execution.  If no job is
660  * currently executing, then submits it.
661  *
662  * Unlike most GPUs, our hardware only handles one command list at a
663  * time.  To queue multiple jobs at once, we'd need to edit the
664  * previous command list to have a jump to the new one at the end, and
665  * then bump the end address.  That's a change for a later date,
666  * though.
667  */
668 static int
669 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
670                  struct ww_acquire_ctx *acquire_ctx,
671                  struct drm_syncobj *out_sync)
672 {
673         struct vc4_dev *vc4 = to_vc4_dev(dev);
674         struct vc4_exec_info *renderjob;
675         uint64_t seqno;
676         unsigned long irqflags;
677         struct vc4_fence *fence;
678
679         fence = kzalloc(sizeof(*fence), GFP_KERNEL);
680         if (!fence)
681                 return -ENOMEM;
682         fence->dev = dev;
683
684         spin_lock_irqsave(&vc4->job_lock, irqflags);
685
686         seqno = ++vc4->emit_seqno;
687         exec->seqno = seqno;
688
689         dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
690                        vc4->dma_fence_context, exec->seqno);
691         fence->seqno = exec->seqno;
692         exec->fence = &fence->base;
693
694         if (out_sync)
695                 drm_syncobj_replace_fence(out_sync, exec->fence);
696
697         vc4_update_bo_seqnos(exec, seqno);
698
699         vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
700
701         list_add_tail(&exec->head, &vc4->bin_job_list);
702
703         /* If no bin job was executing and if the render job (if any) has the
704          * same perfmon as our job attached to it (or if both jobs don't have
705          * perfmon activated), then kick ours off.  Otherwise, it'll get
706          * started when the previous job's flush/render done interrupt occurs.
707          */
708         renderjob = vc4_first_render_job(vc4);
709         if (vc4_first_bin_job(vc4) == exec &&
710             (!renderjob || renderjob->perfmon == exec->perfmon)) {
711                 vc4_submit_next_bin_job(dev);
712                 vc4_queue_hangcheck(dev);
713         }
714
715         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
716
717         return 0;
718 }
719
720 /**
721  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
722  * referenced by the job.
723  * @dev: DRM device
724  * @file_priv: DRM file for this fd
725  * @exec: V3D job being set up
726  *
727  * The command validator needs to reference BOs by their index within
728  * the submitted job's BO list.  This does the validation of the job's
729  * BO list and reference counting for the lifetime of the job.
730  */
731 static int
732 vc4_cl_lookup_bos(struct drm_device *dev,
733                   struct drm_file *file_priv,
734                   struct vc4_exec_info *exec)
735 {
736         struct drm_vc4_submit_cl *args = exec->args;
737         uint32_t *handles;
738         int ret = 0;
739         int i;
740
741         exec->bo_count = args->bo_handle_count;
742
743         if (!exec->bo_count) {
744                 /* See comment on bo_index for why we have to check
745                  * this.
746                  */
747                 DRM_DEBUG("Rendering requires BOs to validate\n");
748                 return -EINVAL;
749         }
750
751         exec->bo = kvmalloc_array(exec->bo_count,
752                                     sizeof(struct drm_gem_cma_object *),
753                                     GFP_KERNEL | __GFP_ZERO);
754         if (!exec->bo) {
755                 DRM_ERROR("Failed to allocate validated BO pointers\n");
756                 return -ENOMEM;
757         }
758
759         handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
760         if (!handles) {
761                 ret = -ENOMEM;
762                 DRM_ERROR("Failed to allocate incoming GEM handles\n");
763                 goto fail;
764         }
765
766         if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
767                            exec->bo_count * sizeof(uint32_t))) {
768                 ret = -EFAULT;
769                 DRM_ERROR("Failed to copy in GEM handles\n");
770                 goto fail;
771         }
772
773         spin_lock(&file_priv->table_lock);
774         for (i = 0; i < exec->bo_count; i++) {
775                 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
776                                                      handles[i]);
777                 if (!bo) {
778                         DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
779                                   i, handles[i]);
780                         ret = -EINVAL;
781                         break;
782                 }
783
784                 drm_gem_object_get(bo);
785                 exec->bo[i] = (struct drm_gem_cma_object *)bo;
786         }
787         spin_unlock(&file_priv->table_lock);
788
789         if (ret)
790                 goto fail_put_bo;
791
792         for (i = 0; i < exec->bo_count; i++) {
793                 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
794                 if (ret)
795                         goto fail_dec_usecnt;
796         }
797
798         kvfree(handles);
799         return 0;
800
801 fail_dec_usecnt:
802         /* Decrease usecnt on acquired objects.
803          * We cannot rely on  vc4_complete_exec() to release resources here,
804          * because vc4_complete_exec() has no information about which BO has
805          * had its ->usecnt incremented.
806          * To make things easier we just free everything explicitly and set
807          * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
808          * step.
809          */
810         for (i-- ; i >= 0; i--)
811                 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
812
813 fail_put_bo:
814         /* Release any reference to acquired objects. */
815         for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
816                 drm_gem_object_put(&exec->bo[i]->base);
817
818 fail:
819         kvfree(handles);
820         kvfree(exec->bo);
821         exec->bo = NULL;
822         return ret;
823 }
824
825 static int
826 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
827 {
828         struct drm_vc4_submit_cl *args = exec->args;
829         struct vc4_dev *vc4 = to_vc4_dev(dev);
830         void *temp = NULL;
831         void *bin;
832         int ret = 0;
833         uint32_t bin_offset = 0;
834         uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
835                                              16);
836         uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
837         uint32_t exec_size = uniforms_offset + args->uniforms_size;
838         uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
839                                           args->shader_rec_count);
840         struct vc4_bo *bo;
841
842         if (shader_rec_offset < args->bin_cl_size ||
843             uniforms_offset < shader_rec_offset ||
844             exec_size < uniforms_offset ||
845             args->shader_rec_count >= (UINT_MAX /
846                                           sizeof(struct vc4_shader_state)) ||
847             temp_size < exec_size) {
848                 DRM_DEBUG("overflow in exec arguments\n");
849                 ret = -EINVAL;
850                 goto fail;
851         }
852
853         /* Allocate space where we'll store the copied in user command lists
854          * and shader records.
855          *
856          * We don't just copy directly into the BOs because we need to
857          * read the contents back for validation, and I think the
858          * bo->vaddr is uncached access.
859          */
860         temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
861         if (!temp) {
862                 DRM_ERROR("Failed to allocate storage for copying "
863                           "in bin/render CLs.\n");
864                 ret = -ENOMEM;
865                 goto fail;
866         }
867         bin = temp + bin_offset;
868         exec->shader_rec_u = temp + shader_rec_offset;
869         exec->uniforms_u = temp + uniforms_offset;
870         exec->shader_state = temp + exec_size;
871         exec->shader_state_size = args->shader_rec_count;
872
873         if (copy_from_user(bin,
874                            u64_to_user_ptr(args->bin_cl),
875                            args->bin_cl_size)) {
876                 ret = -EFAULT;
877                 goto fail;
878         }
879
880         if (copy_from_user(exec->shader_rec_u,
881                            u64_to_user_ptr(args->shader_rec),
882                            args->shader_rec_size)) {
883                 ret = -EFAULT;
884                 goto fail;
885         }
886
887         if (copy_from_user(exec->uniforms_u,
888                            u64_to_user_ptr(args->uniforms),
889                            args->uniforms_size)) {
890                 ret = -EFAULT;
891                 goto fail;
892         }
893
894         bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
895         if (IS_ERR(bo)) {
896                 DRM_ERROR("Couldn't allocate BO for binning\n");
897                 ret = PTR_ERR(bo);
898                 goto fail;
899         }
900         exec->exec_bo = &bo->base;
901
902         list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
903                       &exec->unref_list);
904
905         exec->ct0ca = exec->exec_bo->paddr + bin_offset;
906
907         exec->bin_u = bin;
908
909         exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
910         exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
911         exec->shader_rec_size = args->shader_rec_size;
912
913         exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
914         exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
915         exec->uniforms_size = args->uniforms_size;
916
917         ret = vc4_validate_bin_cl(dev,
918                                   exec->exec_bo->vaddr + bin_offset,
919                                   bin,
920                                   exec);
921         if (ret)
922                 goto fail;
923
924         ret = vc4_validate_shader_recs(dev, exec);
925         if (ret)
926                 goto fail;
927
928         if (exec->found_tile_binning_mode_config_packet) {
929                 ret = vc4_v3d_bin_bo_get(vc4, &exec->bin_bo_used);
930                 if (ret)
931                         goto fail;
932         }
933
934         /* Block waiting on any previous rendering into the CS's VBO,
935          * IB, or textures, so that pixels are actually written by the
936          * time we try to read them.
937          */
938         ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
939
940 fail:
941         kvfree(temp);
942         return ret;
943 }
944
945 static void
946 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
947 {
948         struct vc4_dev *vc4 = to_vc4_dev(dev);
949         unsigned long irqflags;
950         unsigned i;
951
952         /* If we got force-completed because of GPU reset rather than
953          * through our IRQ handler, signal the fence now.
954          */
955         if (exec->fence) {
956                 dma_fence_signal(exec->fence);
957                 dma_fence_put(exec->fence);
958         }
959
960         if (exec->bo) {
961                 for (i = 0; i < exec->bo_count; i++) {
962                         struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
963
964                         vc4_bo_dec_usecnt(bo);
965                         drm_gem_object_put(&exec->bo[i]->base);
966                 }
967                 kvfree(exec->bo);
968         }
969
970         while (!list_empty(&exec->unref_list)) {
971                 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
972                                                      struct vc4_bo, unref_head);
973                 list_del(&bo->unref_head);
974                 drm_gem_object_put(&bo->base.base);
975         }
976
977         /* Free up the allocation of any bin slots we used. */
978         spin_lock_irqsave(&vc4->job_lock, irqflags);
979         vc4->bin_alloc_used &= ~exec->bin_slots;
980         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
981
982         /* Release the reference on the binner BO if needed. */
983         if (exec->bin_bo_used)
984                 vc4_v3d_bin_bo_put(vc4);
985
986         /* Release the reference we had on the perf monitor. */
987         vc4_perfmon_put(exec->perfmon);
988
989         vc4_v3d_pm_put(vc4);
990
991         kfree(exec);
992 }
993
994 void
995 vc4_job_handle_completed(struct vc4_dev *vc4)
996 {
997         unsigned long irqflags;
998         struct vc4_seqno_cb *cb, *cb_temp;
999
1000         spin_lock_irqsave(&vc4->job_lock, irqflags);
1001         while (!list_empty(&vc4->job_done_list)) {
1002                 struct vc4_exec_info *exec =
1003                         list_first_entry(&vc4->job_done_list,
1004                                          struct vc4_exec_info, head);
1005                 list_del(&exec->head);
1006
1007                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1008                 vc4_complete_exec(&vc4->base, exec);
1009                 spin_lock_irqsave(&vc4->job_lock, irqflags);
1010         }
1011
1012         list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
1013                 if (cb->seqno <= vc4->finished_seqno) {
1014                         list_del_init(&cb->work.entry);
1015                         schedule_work(&cb->work);
1016                 }
1017         }
1018
1019         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1020 }
1021
1022 static void vc4_seqno_cb_work(struct work_struct *work)
1023 {
1024         struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1025
1026         cb->func(cb);
1027 }
1028
1029 int vc4_queue_seqno_cb(struct drm_device *dev,
1030                        struct vc4_seqno_cb *cb, uint64_t seqno,
1031                        void (*func)(struct vc4_seqno_cb *cb))
1032 {
1033         struct vc4_dev *vc4 = to_vc4_dev(dev);
1034         unsigned long irqflags;
1035
1036         cb->func = func;
1037         INIT_WORK(&cb->work, vc4_seqno_cb_work);
1038
1039         spin_lock_irqsave(&vc4->job_lock, irqflags);
1040         if (seqno > vc4->finished_seqno) {
1041                 cb->seqno = seqno;
1042                 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1043         } else {
1044                 schedule_work(&cb->work);
1045         }
1046         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1047
1048         return 0;
1049 }
1050
1051 /* Scheduled when any job has been completed, this walks the list of
1052  * jobs that had completed and unrefs their BOs and frees their exec
1053  * structs.
1054  */
1055 static void
1056 vc4_job_done_work(struct work_struct *work)
1057 {
1058         struct vc4_dev *vc4 =
1059                 container_of(work, struct vc4_dev, job_done_work);
1060
1061         vc4_job_handle_completed(vc4);
1062 }
1063
1064 static int
1065 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1066                                 uint64_t seqno,
1067                                 uint64_t *timeout_ns)
1068 {
1069         unsigned long start = jiffies;
1070         int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1071
1072         if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1073                 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1074
1075                 if (*timeout_ns >= delta)
1076                         *timeout_ns -= delta;
1077         }
1078
1079         return ret;
1080 }
1081
1082 int
1083 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1084                      struct drm_file *file_priv)
1085 {
1086         struct drm_vc4_wait_seqno *args = data;
1087
1088         return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1089                                                &args->timeout_ns);
1090 }
1091
1092 int
1093 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1094                   struct drm_file *file_priv)
1095 {
1096         int ret;
1097         struct drm_vc4_wait_bo *args = data;
1098         struct drm_gem_object *gem_obj;
1099         struct vc4_bo *bo;
1100
1101         if (args->pad != 0)
1102                 return -EINVAL;
1103
1104         gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1105         if (!gem_obj) {
1106                 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1107                 return -EINVAL;
1108         }
1109         bo = to_vc4_bo(gem_obj);
1110
1111         ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1112                                               &args->timeout_ns);
1113
1114         drm_gem_object_put(gem_obj);
1115         return ret;
1116 }
1117
1118 /**
1119  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1120  * @dev: DRM device
1121  * @data: ioctl argument
1122  * @file_priv: DRM file for this fd
1123  *
1124  * This is the main entrypoint for userspace to submit a 3D frame to
1125  * the GPU.  Userspace provides the binner command list (if
1126  * applicable), and the kernel sets up the render command list to draw
1127  * to the framebuffer described in the ioctl, using the command lists
1128  * that the 3D engine's binner will produce.
1129  */
1130 int
1131 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1132                     struct drm_file *file_priv)
1133 {
1134         struct vc4_dev *vc4 = to_vc4_dev(dev);
1135         struct vc4_file *vc4file = file_priv->driver_priv;
1136         struct drm_vc4_submit_cl *args = data;
1137         struct drm_syncobj *out_sync = NULL;
1138         struct vc4_exec_info *exec;
1139         struct ww_acquire_ctx acquire_ctx;
1140         struct dma_fence *in_fence;
1141         int ret = 0;
1142
1143         trace_vc4_submit_cl_ioctl(dev, args->bin_cl_size,
1144                                   args->shader_rec_size,
1145                                   args->bo_handle_count);
1146
1147         if (!vc4->v3d) {
1148                 DRM_DEBUG("VC4_SUBMIT_CL with no VC4 V3D probed\n");
1149                 return -ENODEV;
1150         }
1151
1152         if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1153                              VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1154                              VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1155                              VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1156                 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1157                 return -EINVAL;
1158         }
1159
1160         if (args->pad2 != 0) {
1161                 DRM_DEBUG("Invalid pad: 0x%08x\n", args->pad2);
1162                 return -EINVAL;
1163         }
1164
1165         exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1166         if (!exec) {
1167                 DRM_ERROR("malloc failure on exec struct\n");
1168                 return -ENOMEM;
1169         }
1170
1171         ret = vc4_v3d_pm_get(vc4);
1172         if (ret) {
1173                 kfree(exec);
1174                 return ret;
1175         }
1176
1177         exec->args = args;
1178         INIT_LIST_HEAD(&exec->unref_list);
1179
1180         ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1181         if (ret)
1182                 goto fail;
1183
1184         if (args->perfmonid) {
1185                 exec->perfmon = vc4_perfmon_find(vc4file,
1186                                                  args->perfmonid);
1187                 if (!exec->perfmon) {
1188                         ret = -ENOENT;
1189                         goto fail;
1190                 }
1191         }
1192
1193         if (args->in_sync) {
1194                 ret = drm_syncobj_find_fence(file_priv, args->in_sync,
1195                                              0, 0, &in_fence);
1196                 if (ret)
1197                         goto fail;
1198
1199                 /* When the fence (or fence array) is exclusively from our
1200                  * context we can skip the wait since jobs are executed in
1201                  * order of their submission through this ioctl and this can
1202                  * only have fences from a prior job.
1203                  */
1204                 if (!dma_fence_match_context(in_fence,
1205                                              vc4->dma_fence_context)) {
1206                         ret = dma_fence_wait(in_fence, true);
1207                         if (ret) {
1208                                 dma_fence_put(in_fence);
1209                                 goto fail;
1210                         }
1211                 }
1212
1213                 dma_fence_put(in_fence);
1214         }
1215
1216         if (exec->args->bin_cl_size != 0) {
1217                 ret = vc4_get_bcl(dev, exec);
1218                 if (ret)
1219                         goto fail;
1220         } else {
1221                 exec->ct0ca = 0;
1222                 exec->ct0ea = 0;
1223         }
1224
1225         ret = vc4_get_rcl(dev, exec);
1226         if (ret)
1227                 goto fail;
1228
1229         ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1230         if (ret)
1231                 goto fail;
1232
1233         if (args->out_sync) {
1234                 out_sync = drm_syncobj_find(file_priv, args->out_sync);
1235                 if (!out_sync) {
1236                         ret = -EINVAL;
1237                         goto fail;
1238                 }
1239
1240                 /* We replace the fence in out_sync in vc4_queue_submit since
1241                  * the render job could execute immediately after that call.
1242                  * If it finishes before our ioctl processing resumes the
1243                  * render job fence could already have been freed.
1244                  */
1245         }
1246
1247         /* Clear this out of the struct we'll be putting in the queue,
1248          * since it's part of our stack.
1249          */
1250         exec->args = NULL;
1251
1252         ret = vc4_queue_submit(dev, exec, &acquire_ctx, out_sync);
1253
1254         /* The syncobj isn't part of the exec data and we need to free our
1255          * reference even if job submission failed.
1256          */
1257         if (out_sync)
1258                 drm_syncobj_put(out_sync);
1259
1260         if (ret)
1261                 goto fail;
1262
1263         /* Return the seqno for our job. */
1264         args->seqno = vc4->emit_seqno;
1265
1266         return 0;
1267
1268 fail:
1269         vc4_complete_exec(&vc4->base, exec);
1270
1271         return ret;
1272 }
1273
1274 static void vc4_gem_destroy(struct drm_device *dev, void *unused);
1275 int vc4_gem_init(struct drm_device *dev)
1276 {
1277         struct vc4_dev *vc4 = to_vc4_dev(dev);
1278
1279         vc4->dma_fence_context = dma_fence_context_alloc(1);
1280
1281         INIT_LIST_HEAD(&vc4->bin_job_list);
1282         INIT_LIST_HEAD(&vc4->render_job_list);
1283         INIT_LIST_HEAD(&vc4->job_done_list);
1284         INIT_LIST_HEAD(&vc4->seqno_cb_list);
1285         spin_lock_init(&vc4->job_lock);
1286
1287         INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1288         timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1289
1290         INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1291
1292         mutex_init(&vc4->power_lock);
1293
1294         INIT_LIST_HEAD(&vc4->purgeable.list);
1295         mutex_init(&vc4->purgeable.lock);
1296
1297         return drmm_add_action_or_reset(dev, vc4_gem_destroy, NULL);
1298 }
1299
1300 static void vc4_gem_destroy(struct drm_device *dev, void *unused)
1301 {
1302         struct vc4_dev *vc4 = to_vc4_dev(dev);
1303
1304         /* Waiting for exec to finish would need to be done before
1305          * unregistering V3D.
1306          */
1307         WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1308
1309         /* V3D should already have disabled its interrupt and cleared
1310          * the overflow allocation registers.  Now free the object.
1311          */
1312         if (vc4->bin_bo) {
1313                 drm_gem_object_put(&vc4->bin_bo->base.base);
1314                 vc4->bin_bo = NULL;
1315         }
1316
1317         if (vc4->hang_state)
1318                 vc4_free_hang_state(dev, vc4->hang_state);
1319 }
1320
1321 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1322                           struct drm_file *file_priv)
1323 {
1324         struct drm_vc4_gem_madvise *args = data;
1325         struct drm_gem_object *gem_obj;
1326         struct vc4_bo *bo;
1327         int ret;
1328
1329         switch (args->madv) {
1330         case VC4_MADV_DONTNEED:
1331         case VC4_MADV_WILLNEED:
1332                 break;
1333         default:
1334                 return -EINVAL;
1335         }
1336
1337         if (args->pad != 0)
1338                 return -EINVAL;
1339
1340         gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1341         if (!gem_obj) {
1342                 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1343                 return -ENOENT;
1344         }
1345
1346         bo = to_vc4_bo(gem_obj);
1347
1348         /* Only BOs exposed to userspace can be purged. */
1349         if (bo->madv == __VC4_MADV_NOTSUPP) {
1350                 DRM_DEBUG("madvise not supported on this BO\n");
1351                 ret = -EINVAL;
1352                 goto out_put_gem;
1353         }
1354
1355         /* Not sure it's safe to purge imported BOs. Let's just assume it's
1356          * not until proven otherwise.
1357          */
1358         if (gem_obj->import_attach) {
1359                 DRM_DEBUG("madvise not supported on imported BOs\n");
1360                 ret = -EINVAL;
1361                 goto out_put_gem;
1362         }
1363
1364         mutex_lock(&bo->madv_lock);
1365
1366         if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1367             !refcount_read(&bo->usecnt)) {
1368                 /* If the BO is about to be marked as purgeable, is not used
1369                  * and is not already purgeable or purged, add it to the
1370                  * purgeable list.
1371                  */
1372                 vc4_bo_add_to_purgeable_pool(bo);
1373         } else if (args->madv == VC4_MADV_WILLNEED &&
1374                    bo->madv == VC4_MADV_DONTNEED &&
1375                    !refcount_read(&bo->usecnt)) {
1376                 /* The BO has not been purged yet, just remove it from
1377                  * the purgeable list.
1378                  */
1379                 vc4_bo_remove_from_purgeable_pool(bo);
1380         }
1381
1382         /* Save the purged state. */
1383         args->retained = bo->madv != __VC4_MADV_PURGED;
1384
1385         /* Update internal madv state only if the bo was not purged. */
1386         if (bo->madv != __VC4_MADV_PURGED)
1387                 bo->madv = args->madv;
1388
1389         mutex_unlock(&bo->madv_lock);
1390
1391         ret = 0;
1392
1393 out_put_gem:
1394         drm_gem_object_put(gem_obj);
1395
1396         return ret;
1397 }
This page took 0.116218 seconds and 4 git commands to generate.