1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
12 #include "transaction.h"
13 #include "print-tree.h"
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 struct btrfs_fs_info *fs_info,
25 struct extent_buffer *dst,
26 struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28 struct btrfs_fs_info *fs_info,
29 struct extent_buffer *dst_buf,
30 struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
34 struct btrfs_path *btrfs_alloc_path(void)
36 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
40 * set all locked nodes in the path to blocking locks. This should
41 * be done before scheduling
43 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
46 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
47 if (!p->nodes[i] || !p->locks[i])
50 * If we currently have a spinning reader or writer lock this
51 * will bump the count of blocking holders and drop the
54 if (p->locks[i] == BTRFS_READ_LOCK) {
55 btrfs_set_lock_blocking_read(p->nodes[i]);
56 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
57 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
58 btrfs_set_lock_blocking_write(p->nodes[i]);
59 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64 /* this also releases the path */
65 void btrfs_free_path(struct btrfs_path *p)
69 btrfs_release_path(p);
70 kmem_cache_free(btrfs_path_cachep, p);
74 * path release drops references on the extent buffers in the path
75 * and it drops any locks held by this path
77 * It is safe to call this on paths that no locks or extent buffers held.
79 noinline void btrfs_release_path(struct btrfs_path *p)
83 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
88 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
91 free_extent_buffer(p->nodes[i]);
97 * safely gets a reference on the root node of a tree. A lock
98 * is not taken, so a concurrent writer may put a different node
99 * at the root of the tree. See btrfs_lock_root_node for the
102 * The extent buffer returned by this has a reference taken, so
103 * it won't disappear. It may stop being the root of the tree
104 * at any time because there are no locks held.
106 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
108 struct extent_buffer *eb;
112 eb = rcu_dereference(root->node);
115 * RCU really hurts here, we could free up the root node because
116 * it was COWed but we may not get the new root node yet so do
117 * the inc_not_zero dance and if it doesn't work then
118 * synchronize_rcu and try again.
120 if (atomic_inc_not_zero(&eb->refs)) {
130 /* loop around taking references on and locking the root node of the
131 * tree until you end up with a lock on the root. A locked buffer
132 * is returned, with a reference held.
134 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
136 struct extent_buffer *eb;
139 eb = btrfs_root_node(root);
141 if (eb == root->node)
143 btrfs_tree_unlock(eb);
144 free_extent_buffer(eb);
149 /* loop around taking references on and locking the root node of the
150 * tree until you end up with a lock on the root. A locked buffer
151 * is returned, with a reference held.
153 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
155 struct extent_buffer *eb;
158 eb = btrfs_root_node(root);
159 btrfs_tree_read_lock(eb);
160 if (eb == root->node)
162 btrfs_tree_read_unlock(eb);
163 free_extent_buffer(eb);
168 /* cowonly root (everything not a reference counted cow subvolume), just get
169 * put onto a simple dirty list. transaction.c walks this to make sure they
170 * get properly updated on disk.
172 static void add_root_to_dirty_list(struct btrfs_root *root)
174 struct btrfs_fs_info *fs_info = root->fs_info;
176 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
177 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
180 spin_lock(&fs_info->trans_lock);
181 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
182 /* Want the extent tree to be the last on the list */
183 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
184 list_move_tail(&root->dirty_list,
185 &fs_info->dirty_cowonly_roots);
187 list_move(&root->dirty_list,
188 &fs_info->dirty_cowonly_roots);
190 spin_unlock(&fs_info->trans_lock);
194 * used by snapshot creation to make a copy of a root for a tree with
195 * a given objectid. The buffer with the new root node is returned in
196 * cow_ret, and this func returns zero on success or a negative error code.
198 int btrfs_copy_root(struct btrfs_trans_handle *trans,
199 struct btrfs_root *root,
200 struct extent_buffer *buf,
201 struct extent_buffer **cow_ret, u64 new_root_objectid)
203 struct btrfs_fs_info *fs_info = root->fs_info;
204 struct extent_buffer *cow;
207 struct btrfs_disk_key disk_key;
209 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210 trans->transid != fs_info->running_transaction->transid);
211 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
212 trans->transid != root->last_trans);
214 level = btrfs_header_level(buf);
216 btrfs_item_key(buf, &disk_key, 0);
218 btrfs_node_key(buf, &disk_key, 0);
220 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
221 &disk_key, level, buf->start, 0);
225 copy_extent_buffer_full(cow, buf);
226 btrfs_set_header_bytenr(cow, cow->start);
227 btrfs_set_header_generation(cow, trans->transid);
228 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 BTRFS_HEADER_FLAG_RELOC);
231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
234 btrfs_set_header_owner(cow, new_root_objectid);
236 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
238 WARN_ON(btrfs_header_generation(buf) > trans->transid);
239 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
240 ret = btrfs_inc_ref(trans, root, cow, 1);
242 ret = btrfs_inc_ref(trans, root, cow, 0);
247 btrfs_mark_buffer_dirty(cow);
256 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
257 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
259 MOD_LOG_ROOT_REPLACE,
262 struct tree_mod_root {
267 struct tree_mod_elem {
273 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
276 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
279 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
280 struct btrfs_disk_key key;
283 /* this is used for op == MOD_LOG_MOVE_KEYS */
289 /* this is used for op == MOD_LOG_ROOT_REPLACE */
290 struct tree_mod_root old_root;
294 * Pull a new tree mod seq number for our operation.
296 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
298 return atomic64_inc_return(&fs_info->tree_mod_seq);
302 * This adds a new blocker to the tree mod log's blocker list if the @elem
303 * passed does not already have a sequence number set. So when a caller expects
304 * to record tree modifications, it should ensure to set elem->seq to zero
305 * before calling btrfs_get_tree_mod_seq.
306 * Returns a fresh, unused tree log modification sequence number, even if no new
309 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
310 struct seq_list *elem)
312 write_lock(&fs_info->tree_mod_log_lock);
313 spin_lock(&fs_info->tree_mod_seq_lock);
315 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
316 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
318 spin_unlock(&fs_info->tree_mod_seq_lock);
319 write_unlock(&fs_info->tree_mod_log_lock);
324 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
325 struct seq_list *elem)
327 struct rb_root *tm_root;
328 struct rb_node *node;
329 struct rb_node *next;
330 struct seq_list *cur_elem;
331 struct tree_mod_elem *tm;
332 u64 min_seq = (u64)-1;
333 u64 seq_putting = elem->seq;
338 spin_lock(&fs_info->tree_mod_seq_lock);
339 list_del(&elem->list);
342 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
343 if (cur_elem->seq < min_seq) {
344 if (seq_putting > cur_elem->seq) {
346 * blocker with lower sequence number exists, we
347 * cannot remove anything from the log
349 spin_unlock(&fs_info->tree_mod_seq_lock);
352 min_seq = cur_elem->seq;
355 spin_unlock(&fs_info->tree_mod_seq_lock);
358 * anything that's lower than the lowest existing (read: blocked)
359 * sequence number can be removed from the tree.
361 write_lock(&fs_info->tree_mod_log_lock);
362 tm_root = &fs_info->tree_mod_log;
363 for (node = rb_first(tm_root); node; node = next) {
364 next = rb_next(node);
365 tm = rb_entry(node, struct tree_mod_elem, node);
366 if (tm->seq > min_seq)
368 rb_erase(node, tm_root);
371 write_unlock(&fs_info->tree_mod_log_lock);
375 * key order of the log:
376 * node/leaf start address -> sequence
378 * The 'start address' is the logical address of the *new* root node
379 * for root replace operations, or the logical address of the affected
380 * block for all other operations.
382 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
385 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
387 struct rb_root *tm_root;
388 struct rb_node **new;
389 struct rb_node *parent = NULL;
390 struct tree_mod_elem *cur;
392 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
394 tm_root = &fs_info->tree_mod_log;
395 new = &tm_root->rb_node;
397 cur = rb_entry(*new, struct tree_mod_elem, node);
399 if (cur->logical < tm->logical)
400 new = &((*new)->rb_left);
401 else if (cur->logical > tm->logical)
402 new = &((*new)->rb_right);
403 else if (cur->seq < tm->seq)
404 new = &((*new)->rb_left);
405 else if (cur->seq > tm->seq)
406 new = &((*new)->rb_right);
411 rb_link_node(&tm->node, parent, new);
412 rb_insert_color(&tm->node, tm_root);
417 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
418 * returns zero with the tree_mod_log_lock acquired. The caller must hold
419 * this until all tree mod log insertions are recorded in the rb tree and then
420 * write unlock fs_info::tree_mod_log_lock.
422 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
423 struct extent_buffer *eb) {
425 if (list_empty(&(fs_info)->tree_mod_seq_list))
427 if (eb && btrfs_header_level(eb) == 0)
430 write_lock(&fs_info->tree_mod_log_lock);
431 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
432 write_unlock(&fs_info->tree_mod_log_lock);
439 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
440 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
441 struct extent_buffer *eb)
444 if (list_empty(&(fs_info)->tree_mod_seq_list))
446 if (eb && btrfs_header_level(eb) == 0)
452 static struct tree_mod_elem *
453 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
454 enum mod_log_op op, gfp_t flags)
456 struct tree_mod_elem *tm;
458 tm = kzalloc(sizeof(*tm), flags);
462 tm->logical = eb->start;
463 if (op != MOD_LOG_KEY_ADD) {
464 btrfs_node_key(eb, &tm->key, slot);
465 tm->blockptr = btrfs_node_blockptr(eb, slot);
469 tm->generation = btrfs_node_ptr_generation(eb, slot);
470 RB_CLEAR_NODE(&tm->node);
475 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
476 enum mod_log_op op, gfp_t flags)
478 struct tree_mod_elem *tm;
481 if (!tree_mod_need_log(eb->fs_info, eb))
484 tm = alloc_tree_mod_elem(eb, slot, op, flags);
488 if (tree_mod_dont_log(eb->fs_info, eb)) {
493 ret = __tree_mod_log_insert(eb->fs_info, tm);
494 write_unlock(&eb->fs_info->tree_mod_log_lock);
501 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
502 int dst_slot, int src_slot, int nr_items)
504 struct tree_mod_elem *tm = NULL;
505 struct tree_mod_elem **tm_list = NULL;
510 if (!tree_mod_need_log(eb->fs_info, eb))
513 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
517 tm = kzalloc(sizeof(*tm), GFP_NOFS);
523 tm->logical = eb->start;
525 tm->move.dst_slot = dst_slot;
526 tm->move.nr_items = nr_items;
527 tm->op = MOD_LOG_MOVE_KEYS;
529 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
530 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
531 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
538 if (tree_mod_dont_log(eb->fs_info, eb))
543 * When we override something during the move, we log these removals.
544 * This can only happen when we move towards the beginning of the
545 * buffer, i.e. dst_slot < src_slot.
547 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
548 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
553 ret = __tree_mod_log_insert(eb->fs_info, tm);
556 write_unlock(&eb->fs_info->tree_mod_log_lock);
561 for (i = 0; i < nr_items; i++) {
562 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
563 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
567 write_unlock(&eb->fs_info->tree_mod_log_lock);
575 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
576 struct tree_mod_elem **tm_list,
582 for (i = nritems - 1; i >= 0; i--) {
583 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
585 for (j = nritems - 1; j > i; j--)
586 rb_erase(&tm_list[j]->node,
587 &fs_info->tree_mod_log);
595 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
596 struct extent_buffer *new_root, int log_removal)
598 struct btrfs_fs_info *fs_info = old_root->fs_info;
599 struct tree_mod_elem *tm = NULL;
600 struct tree_mod_elem **tm_list = NULL;
605 if (!tree_mod_need_log(fs_info, NULL))
608 if (log_removal && btrfs_header_level(old_root) > 0) {
609 nritems = btrfs_header_nritems(old_root);
610 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
616 for (i = 0; i < nritems; i++) {
617 tm_list[i] = alloc_tree_mod_elem(old_root, i,
618 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
626 tm = kzalloc(sizeof(*tm), GFP_NOFS);
632 tm->logical = new_root->start;
633 tm->old_root.logical = old_root->start;
634 tm->old_root.level = btrfs_header_level(old_root);
635 tm->generation = btrfs_header_generation(old_root);
636 tm->op = MOD_LOG_ROOT_REPLACE;
638 if (tree_mod_dont_log(fs_info, NULL))
642 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
644 ret = __tree_mod_log_insert(fs_info, tm);
646 write_unlock(&fs_info->tree_mod_log_lock);
655 for (i = 0; i < nritems; i++)
664 static struct tree_mod_elem *
665 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668 struct rb_root *tm_root;
669 struct rb_node *node;
670 struct tree_mod_elem *cur = NULL;
671 struct tree_mod_elem *found = NULL;
673 read_lock(&fs_info->tree_mod_log_lock);
674 tm_root = &fs_info->tree_mod_log;
675 node = tm_root->rb_node;
677 cur = rb_entry(node, struct tree_mod_elem, node);
678 if (cur->logical < start) {
679 node = node->rb_left;
680 } else if (cur->logical > start) {
681 node = node->rb_right;
682 } else if (cur->seq < min_seq) {
683 node = node->rb_left;
684 } else if (!smallest) {
685 /* we want the node with the highest seq */
687 BUG_ON(found->seq > cur->seq);
689 node = node->rb_left;
690 } else if (cur->seq > min_seq) {
691 /* we want the node with the smallest seq */
693 BUG_ON(found->seq < cur->seq);
695 node = node->rb_right;
701 read_unlock(&fs_info->tree_mod_log_lock);
707 * this returns the element from the log with the smallest time sequence
708 * value that's in the log (the oldest log item). any element with a time
709 * sequence lower than min_seq will be ignored.
711 static struct tree_mod_elem *
712 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
715 return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 * this returns the element from the log with the largest time sequence
720 * value that's in the log (the most recent log item). any element with
721 * a time sequence lower than min_seq will be ignored.
723 static struct tree_mod_elem *
724 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
726 return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
731 struct extent_buffer *src, unsigned long dst_offset,
732 unsigned long src_offset, int nr_items)
735 struct tree_mod_elem **tm_list = NULL;
736 struct tree_mod_elem **tm_list_add, **tm_list_rem;
740 if (!tree_mod_need_log(fs_info, NULL))
743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
746 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
751 tm_list_add = tm_list;
752 tm_list_rem = tm_list + nr_items;
753 for (i = 0; i < nr_items; i++) {
754 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
755 MOD_LOG_KEY_REMOVE, GFP_NOFS);
756 if (!tm_list_rem[i]) {
761 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
762 MOD_LOG_KEY_ADD, GFP_NOFS);
763 if (!tm_list_add[i]) {
769 if (tree_mod_dont_log(fs_info, NULL))
773 for (i = 0; i < nr_items; i++) {
774 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
777 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
782 write_unlock(&fs_info->tree_mod_log_lock);
788 for (i = 0; i < nr_items * 2; i++) {
789 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
790 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
794 write_unlock(&fs_info->tree_mod_log_lock);
800 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
802 struct tree_mod_elem **tm_list = NULL;
807 if (btrfs_header_level(eb) == 0)
810 if (!tree_mod_need_log(eb->fs_info, NULL))
813 nritems = btrfs_header_nritems(eb);
814 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
818 for (i = 0; i < nritems; i++) {
819 tm_list[i] = alloc_tree_mod_elem(eb, i,
820 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
827 if (tree_mod_dont_log(eb->fs_info, eb))
830 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
831 write_unlock(&eb->fs_info->tree_mod_log_lock);
839 for (i = 0; i < nritems; i++)
847 * check if the tree block can be shared by multiple trees
849 int btrfs_block_can_be_shared(struct btrfs_root *root,
850 struct extent_buffer *buf)
853 * Tree blocks not in reference counted trees and tree roots
854 * are never shared. If a block was allocated after the last
855 * snapshot and the block was not allocated by tree relocation,
856 * we know the block is not shared.
858 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
859 buf != root->node && buf != root->commit_root &&
860 (btrfs_header_generation(buf) <=
861 btrfs_root_last_snapshot(&root->root_item) ||
862 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
868 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
869 struct btrfs_root *root,
870 struct extent_buffer *buf,
871 struct extent_buffer *cow,
874 struct btrfs_fs_info *fs_info = root->fs_info;
882 * Backrefs update rules:
884 * Always use full backrefs for extent pointers in tree block
885 * allocated by tree relocation.
887 * If a shared tree block is no longer referenced by its owner
888 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
889 * use full backrefs for extent pointers in tree block.
891 * If a tree block is been relocating
892 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
893 * use full backrefs for extent pointers in tree block.
894 * The reason for this is some operations (such as drop tree)
895 * are only allowed for blocks use full backrefs.
898 if (btrfs_block_can_be_shared(root, buf)) {
899 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
900 btrfs_header_level(buf), 1,
906 btrfs_handle_fs_error(fs_info, ret, NULL);
911 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
912 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
913 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
918 owner = btrfs_header_owner(buf);
919 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
920 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
923 if ((owner == root->root_key.objectid ||
924 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
925 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
926 ret = btrfs_inc_ref(trans, root, buf, 1);
930 if (root->root_key.objectid ==
931 BTRFS_TREE_RELOC_OBJECTID) {
932 ret = btrfs_dec_ref(trans, root, buf, 0);
935 ret = btrfs_inc_ref(trans, root, cow, 1);
939 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
942 if (root->root_key.objectid ==
943 BTRFS_TREE_RELOC_OBJECTID)
944 ret = btrfs_inc_ref(trans, root, cow, 1);
946 ret = btrfs_inc_ref(trans, root, cow, 0);
950 if (new_flags != 0) {
951 int level = btrfs_header_level(buf);
953 ret = btrfs_set_disk_extent_flags(trans, fs_info,
956 new_flags, level, 0);
961 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
962 if (root->root_key.objectid ==
963 BTRFS_TREE_RELOC_OBJECTID)
964 ret = btrfs_inc_ref(trans, root, cow, 1);
966 ret = btrfs_inc_ref(trans, root, cow, 0);
969 ret = btrfs_dec_ref(trans, root, buf, 1);
973 clean_tree_block(fs_info, buf);
979 static struct extent_buffer *alloc_tree_block_no_bg_flush(
980 struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
983 const struct btrfs_disk_key *disk_key,
988 struct btrfs_fs_info *fs_info = root->fs_info;
989 struct extent_buffer *ret;
992 * If we are COWing a node/leaf from the extent, chunk, device or free
993 * space trees, make sure that we do not finish block group creation of
994 * pending block groups. We do this to avoid a deadlock.
995 * COWing can result in allocation of a new chunk, and flushing pending
996 * block groups (btrfs_create_pending_block_groups()) can be triggered
997 * when finishing allocation of a new chunk. Creation of a pending block
998 * group modifies the extent, chunk, device and free space trees,
999 * therefore we could deadlock with ourselves since we are holding a
1000 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1002 * For similar reasons, we also need to delay flushing pending block
1003 * groups when splitting a leaf or node, from one of those trees, since
1004 * we are holding a write lock on it and its parent or when inserting a
1005 * new root node for one of those trees.
1007 if (root == fs_info->extent_root ||
1008 root == fs_info->chunk_root ||
1009 root == fs_info->dev_root ||
1010 root == fs_info->free_space_root)
1011 trans->can_flush_pending_bgs = false;
1013 ret = btrfs_alloc_tree_block(trans, root, parent_start,
1014 root->root_key.objectid, disk_key, level,
1016 trans->can_flush_pending_bgs = true;
1022 * does the dirty work in cow of a single block. The parent block (if
1023 * supplied) is updated to point to the new cow copy. The new buffer is marked
1024 * dirty and returned locked. If you modify the block it needs to be marked
1027 * search_start -- an allocation hint for the new block
1029 * empty_size -- a hint that you plan on doing more cow. This is the size in
1030 * bytes the allocator should try to find free next to the block it returns.
1031 * This is just a hint and may be ignored by the allocator.
1033 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1034 struct btrfs_root *root,
1035 struct extent_buffer *buf,
1036 struct extent_buffer *parent, int parent_slot,
1037 struct extent_buffer **cow_ret,
1038 u64 search_start, u64 empty_size)
1040 struct btrfs_fs_info *fs_info = root->fs_info;
1041 struct btrfs_disk_key disk_key;
1042 struct extent_buffer *cow;
1045 int unlock_orig = 0;
1046 u64 parent_start = 0;
1048 if (*cow_ret == buf)
1051 btrfs_assert_tree_locked(buf);
1053 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054 trans->transid != fs_info->running_transaction->transid);
1055 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1056 trans->transid != root->last_trans);
1058 level = btrfs_header_level(buf);
1061 btrfs_item_key(buf, &disk_key, 0);
1063 btrfs_node_key(buf, &disk_key, 0);
1065 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1066 parent_start = parent->start;
1068 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1069 level, search_start, empty_size);
1071 return PTR_ERR(cow);
1073 /* cow is set to blocking by btrfs_init_new_buffer */
1075 copy_extent_buffer_full(cow, buf);
1076 btrfs_set_header_bytenr(cow, cow->start);
1077 btrfs_set_header_generation(cow, trans->transid);
1078 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1079 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1080 BTRFS_HEADER_FLAG_RELOC);
1081 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1082 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1084 btrfs_set_header_owner(cow, root->root_key.objectid);
1086 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1088 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1090 btrfs_abort_transaction(trans, ret);
1094 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1095 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1097 btrfs_abort_transaction(trans, ret);
1102 if (buf == root->node) {
1103 WARN_ON(parent && parent != buf);
1104 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1105 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1106 parent_start = buf->start;
1108 extent_buffer_get(cow);
1109 ret = tree_mod_log_insert_root(root->node, cow, 1);
1111 rcu_assign_pointer(root->node, cow);
1113 btrfs_free_tree_block(trans, root, buf, parent_start,
1115 free_extent_buffer(buf);
1116 add_root_to_dirty_list(root);
1118 WARN_ON(trans->transid != btrfs_header_generation(parent));
1119 tree_mod_log_insert_key(parent, parent_slot,
1120 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1121 btrfs_set_node_blockptr(parent, parent_slot,
1123 btrfs_set_node_ptr_generation(parent, parent_slot,
1125 btrfs_mark_buffer_dirty(parent);
1127 ret = tree_mod_log_free_eb(buf);
1129 btrfs_abort_transaction(trans, ret);
1133 btrfs_free_tree_block(trans, root, buf, parent_start,
1137 btrfs_tree_unlock(buf);
1138 free_extent_buffer_stale(buf);
1139 btrfs_mark_buffer_dirty(cow);
1145 * returns the logical address of the oldest predecessor of the given root.
1146 * entries older than time_seq are ignored.
1148 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1149 struct extent_buffer *eb_root, u64 time_seq)
1151 struct tree_mod_elem *tm;
1152 struct tree_mod_elem *found = NULL;
1153 u64 root_logical = eb_root->start;
1160 * the very last operation that's logged for a root is the
1161 * replacement operation (if it is replaced at all). this has
1162 * the logical address of the *new* root, making it the very
1163 * first operation that's logged for this root.
1166 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1171 * if there are no tree operation for the oldest root, we simply
1172 * return it. this should only happen if that (old) root is at
1179 * if there's an operation that's not a root replacement, we
1180 * found the oldest version of our root. normally, we'll find a
1181 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1183 if (tm->op != MOD_LOG_ROOT_REPLACE)
1187 root_logical = tm->old_root.logical;
1191 /* if there's no old root to return, return what we found instead */
1199 * tm is a pointer to the first operation to rewind within eb. then, all
1200 * previous operations will be rewound (until we reach something older than
1204 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1205 u64 time_seq, struct tree_mod_elem *first_tm)
1208 struct rb_node *next;
1209 struct tree_mod_elem *tm = first_tm;
1210 unsigned long o_dst;
1211 unsigned long o_src;
1212 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1214 n = btrfs_header_nritems(eb);
1215 read_lock(&fs_info->tree_mod_log_lock);
1216 while (tm && tm->seq >= time_seq) {
1218 * all the operations are recorded with the operator used for
1219 * the modification. as we're going backwards, we do the
1220 * opposite of each operation here.
1223 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1224 BUG_ON(tm->slot < n);
1226 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1227 case MOD_LOG_KEY_REMOVE:
1228 btrfs_set_node_key(eb, &tm->key, tm->slot);
1229 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1230 btrfs_set_node_ptr_generation(eb, tm->slot,
1234 case MOD_LOG_KEY_REPLACE:
1235 BUG_ON(tm->slot >= n);
1236 btrfs_set_node_key(eb, &tm->key, tm->slot);
1237 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1238 btrfs_set_node_ptr_generation(eb, tm->slot,
1241 case MOD_LOG_KEY_ADD:
1242 /* if a move operation is needed it's in the log */
1245 case MOD_LOG_MOVE_KEYS:
1246 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1247 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1248 memmove_extent_buffer(eb, o_dst, o_src,
1249 tm->move.nr_items * p_size);
1251 case MOD_LOG_ROOT_REPLACE:
1253 * this operation is special. for roots, this must be
1254 * handled explicitly before rewinding.
1255 * for non-roots, this operation may exist if the node
1256 * was a root: root A -> child B; then A gets empty and
1257 * B is promoted to the new root. in the mod log, we'll
1258 * have a root-replace operation for B, a tree block
1259 * that is no root. we simply ignore that operation.
1263 next = rb_next(&tm->node);
1266 tm = rb_entry(next, struct tree_mod_elem, node);
1267 if (tm->logical != first_tm->logical)
1270 read_unlock(&fs_info->tree_mod_log_lock);
1271 btrfs_set_header_nritems(eb, n);
1275 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1276 * is returned. If rewind operations happen, a fresh buffer is returned. The
1277 * returned buffer is always read-locked. If the returned buffer is not the
1278 * input buffer, the lock on the input buffer is released and the input buffer
1279 * is freed (its refcount is decremented).
1281 static struct extent_buffer *
1282 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1283 struct extent_buffer *eb, u64 time_seq)
1285 struct extent_buffer *eb_rewin;
1286 struct tree_mod_elem *tm;
1291 if (btrfs_header_level(eb) == 0)
1294 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1298 btrfs_set_path_blocking(path);
1299 btrfs_set_lock_blocking_read(eb);
1301 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1302 BUG_ON(tm->slot != 0);
1303 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1305 btrfs_tree_read_unlock_blocking(eb);
1306 free_extent_buffer(eb);
1309 btrfs_set_header_bytenr(eb_rewin, eb->start);
1310 btrfs_set_header_backref_rev(eb_rewin,
1311 btrfs_header_backref_rev(eb));
1312 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1313 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1315 eb_rewin = btrfs_clone_extent_buffer(eb);
1317 btrfs_tree_read_unlock_blocking(eb);
1318 free_extent_buffer(eb);
1323 btrfs_tree_read_unlock_blocking(eb);
1324 free_extent_buffer(eb);
1326 btrfs_tree_read_lock(eb_rewin);
1327 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1328 WARN_ON(btrfs_header_nritems(eb_rewin) >
1329 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1335 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1336 * value. If there are no changes, the current root->root_node is returned. If
1337 * anything changed in between, there's a fresh buffer allocated on which the
1338 * rewind operations are done. In any case, the returned buffer is read locked.
1339 * Returns NULL on error (with no locks held).
1341 static inline struct extent_buffer *
1342 get_old_root(struct btrfs_root *root, u64 time_seq)
1344 struct btrfs_fs_info *fs_info = root->fs_info;
1345 struct tree_mod_elem *tm;
1346 struct extent_buffer *eb = NULL;
1347 struct extent_buffer *eb_root;
1348 struct extent_buffer *old;
1349 struct tree_mod_root *old_root = NULL;
1350 u64 old_generation = 0;
1354 eb_root = btrfs_read_lock_root_node(root);
1355 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1359 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1360 old_root = &tm->old_root;
1361 old_generation = tm->generation;
1362 logical = old_root->logical;
1363 level = old_root->level;
1365 logical = eb_root->start;
1366 level = btrfs_header_level(eb_root);
1369 tm = tree_mod_log_search(fs_info, logical, time_seq);
1370 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1371 btrfs_tree_read_unlock(eb_root);
1372 free_extent_buffer(eb_root);
1373 old = read_tree_block(fs_info, logical, 0, level, NULL);
1374 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1376 free_extent_buffer(old);
1378 "failed to read tree block %llu from get_old_root",
1381 eb = btrfs_clone_extent_buffer(old);
1382 free_extent_buffer(old);
1384 } else if (old_root) {
1385 btrfs_tree_read_unlock(eb_root);
1386 free_extent_buffer(eb_root);
1387 eb = alloc_dummy_extent_buffer(fs_info, logical);
1389 btrfs_set_lock_blocking_read(eb_root);
1390 eb = btrfs_clone_extent_buffer(eb_root);
1391 btrfs_tree_read_unlock_blocking(eb_root);
1392 free_extent_buffer(eb_root);
1397 btrfs_tree_read_lock(eb);
1399 btrfs_set_header_bytenr(eb, eb->start);
1400 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1401 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1402 btrfs_set_header_level(eb, old_root->level);
1403 btrfs_set_header_generation(eb, old_generation);
1406 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1408 WARN_ON(btrfs_header_level(eb) != 0);
1409 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1414 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1416 struct tree_mod_elem *tm;
1418 struct extent_buffer *eb_root = btrfs_root_node(root);
1420 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1421 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1422 level = tm->old_root.level;
1424 level = btrfs_header_level(eb_root);
1426 free_extent_buffer(eb_root);
1431 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1432 struct btrfs_root *root,
1433 struct extent_buffer *buf)
1435 if (btrfs_is_testing(root->fs_info))
1438 /* Ensure we can see the FORCE_COW bit */
1439 smp_mb__before_atomic();
1442 * We do not need to cow a block if
1443 * 1) this block is not created or changed in this transaction;
1444 * 2) this block does not belong to TREE_RELOC tree;
1445 * 3) the root is not forced COW.
1447 * What is forced COW:
1448 * when we create snapshot during committing the transaction,
1449 * after we've finished copying src root, we must COW the shared
1450 * block to ensure the metadata consistency.
1452 if (btrfs_header_generation(buf) == trans->transid &&
1453 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1454 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1455 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1456 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1462 * cows a single block, see __btrfs_cow_block for the real work.
1463 * This version of it has extra checks so that a block isn't COWed more than
1464 * once per transaction, as long as it hasn't been written yet
1466 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1467 struct btrfs_root *root, struct extent_buffer *buf,
1468 struct extent_buffer *parent, int parent_slot,
1469 struct extent_buffer **cow_ret)
1471 struct btrfs_fs_info *fs_info = root->fs_info;
1475 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1477 "COW'ing blocks on a fs root that's being dropped");
1479 if (trans->transaction != fs_info->running_transaction)
1480 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1482 fs_info->running_transaction->transid);
1484 if (trans->transid != fs_info->generation)
1485 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1486 trans->transid, fs_info->generation);
1488 if (!should_cow_block(trans, root, buf)) {
1489 trans->dirty = true;
1494 search_start = buf->start & ~((u64)SZ_1G - 1);
1497 btrfs_set_lock_blocking_write(parent);
1498 btrfs_set_lock_blocking_write(buf);
1501 * Before CoWing this block for later modification, check if it's
1502 * the subtree root and do the delayed subtree trace if needed.
1504 * Also We don't care about the error, as it's handled internally.
1506 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1507 ret = __btrfs_cow_block(trans, root, buf, parent,
1508 parent_slot, cow_ret, search_start, 0);
1510 trace_btrfs_cow_block(root, buf, *cow_ret);
1516 * helper function for defrag to decide if two blocks pointed to by a
1517 * node are actually close by
1519 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1521 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1523 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1529 * compare two keys in a memcmp fashion
1531 static int comp_keys(const struct btrfs_disk_key *disk,
1532 const struct btrfs_key *k2)
1534 struct btrfs_key k1;
1536 btrfs_disk_key_to_cpu(&k1, disk);
1538 return btrfs_comp_cpu_keys(&k1, k2);
1542 * same as comp_keys only with two btrfs_key's
1544 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1546 if (k1->objectid > k2->objectid)
1548 if (k1->objectid < k2->objectid)
1550 if (k1->type > k2->type)
1552 if (k1->type < k2->type)
1554 if (k1->offset > k2->offset)
1556 if (k1->offset < k2->offset)
1562 * this is used by the defrag code to go through all the
1563 * leaves pointed to by a node and reallocate them so that
1564 * disk order is close to key order
1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567 struct btrfs_root *root, struct extent_buffer *parent,
1568 int start_slot, u64 *last_ret,
1569 struct btrfs_key *progress)
1571 struct btrfs_fs_info *fs_info = root->fs_info;
1572 struct extent_buffer *cur;
1575 u64 search_start = *last_ret;
1585 int progress_passed = 0;
1586 struct btrfs_disk_key disk_key;
1588 parent_level = btrfs_header_level(parent);
1590 WARN_ON(trans->transaction != fs_info->running_transaction);
1591 WARN_ON(trans->transid != fs_info->generation);
1593 parent_nritems = btrfs_header_nritems(parent);
1594 blocksize = fs_info->nodesize;
1595 end_slot = parent_nritems - 1;
1597 if (parent_nritems <= 1)
1600 btrfs_set_lock_blocking_write(parent);
1602 for (i = start_slot; i <= end_slot; i++) {
1603 struct btrfs_key first_key;
1606 btrfs_node_key(parent, &disk_key, i);
1607 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1610 progress_passed = 1;
1611 blocknr = btrfs_node_blockptr(parent, i);
1612 gen = btrfs_node_ptr_generation(parent, i);
1613 btrfs_node_key_to_cpu(parent, &first_key, i);
1614 if (last_block == 0)
1615 last_block = blocknr;
1618 other = btrfs_node_blockptr(parent, i - 1);
1619 close = close_blocks(blocknr, other, blocksize);
1621 if (!close && i < end_slot) {
1622 other = btrfs_node_blockptr(parent, i + 1);
1623 close = close_blocks(blocknr, other, blocksize);
1626 last_block = blocknr;
1630 cur = find_extent_buffer(fs_info, blocknr);
1632 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1635 if (!cur || !uptodate) {
1637 cur = read_tree_block(fs_info, blocknr, gen,
1641 return PTR_ERR(cur);
1642 } else if (!extent_buffer_uptodate(cur)) {
1643 free_extent_buffer(cur);
1646 } else if (!uptodate) {
1647 err = btrfs_read_buffer(cur, gen,
1648 parent_level - 1,&first_key);
1650 free_extent_buffer(cur);
1655 if (search_start == 0)
1656 search_start = last_block;
1658 btrfs_tree_lock(cur);
1659 btrfs_set_lock_blocking_write(cur);
1660 err = __btrfs_cow_block(trans, root, cur, parent, i,
1663 (end_slot - i) * blocksize));
1665 btrfs_tree_unlock(cur);
1666 free_extent_buffer(cur);
1669 search_start = cur->start;
1670 last_block = cur->start;
1671 *last_ret = search_start;
1672 btrfs_tree_unlock(cur);
1673 free_extent_buffer(cur);
1679 * search for key in the extent_buffer. The items start at offset p,
1680 * and they are item_size apart. There are 'max' items in p.
1682 * the slot in the array is returned via slot, and it points to
1683 * the place where you would insert key if it is not found in
1686 * slot may point to max if the key is bigger than all of the keys
1688 static noinline int generic_bin_search(struct extent_buffer *eb,
1689 unsigned long p, int item_size,
1690 const struct btrfs_key *key,
1697 struct btrfs_disk_key *tmp = NULL;
1698 struct btrfs_disk_key unaligned;
1699 unsigned long offset;
1701 unsigned long map_start = 0;
1702 unsigned long map_len = 0;
1706 btrfs_err(eb->fs_info,
1707 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1708 __func__, low, high, eb->start,
1709 btrfs_header_owner(eb), btrfs_header_level(eb));
1713 while (low < high) {
1714 mid = (low + high) / 2;
1715 offset = p + mid * item_size;
1717 if (!kaddr || offset < map_start ||
1718 (offset + sizeof(struct btrfs_disk_key)) >
1719 map_start + map_len) {
1721 err = map_private_extent_buffer(eb, offset,
1722 sizeof(struct btrfs_disk_key),
1723 &kaddr, &map_start, &map_len);
1726 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1728 } else if (err == 1) {
1729 read_extent_buffer(eb, &unaligned,
1730 offset, sizeof(unaligned));
1737 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1740 ret = comp_keys(tmp, key);
1756 * simple bin_search frontend that does the right thing for
1759 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1760 int level, int *slot)
1763 return generic_bin_search(eb,
1764 offsetof(struct btrfs_leaf, items),
1765 sizeof(struct btrfs_item),
1766 key, btrfs_header_nritems(eb),
1769 return generic_bin_search(eb,
1770 offsetof(struct btrfs_node, ptrs),
1771 sizeof(struct btrfs_key_ptr),
1772 key, btrfs_header_nritems(eb),
1776 static void root_add_used(struct btrfs_root *root, u32 size)
1778 spin_lock(&root->accounting_lock);
1779 btrfs_set_root_used(&root->root_item,
1780 btrfs_root_used(&root->root_item) + size);
1781 spin_unlock(&root->accounting_lock);
1784 static void root_sub_used(struct btrfs_root *root, u32 size)
1786 spin_lock(&root->accounting_lock);
1787 btrfs_set_root_used(&root->root_item,
1788 btrfs_root_used(&root->root_item) - size);
1789 spin_unlock(&root->accounting_lock);
1792 /* given a node and slot number, this reads the blocks it points to. The
1793 * extent buffer is returned with a reference taken (but unlocked).
1795 static noinline struct extent_buffer *
1796 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1799 int level = btrfs_header_level(parent);
1800 struct extent_buffer *eb;
1801 struct btrfs_key first_key;
1803 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1804 return ERR_PTR(-ENOENT);
1808 btrfs_node_key_to_cpu(parent, &first_key, slot);
1809 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1810 btrfs_node_ptr_generation(parent, slot),
1811 level - 1, &first_key);
1812 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1813 free_extent_buffer(eb);
1821 * node level balancing, used to make sure nodes are in proper order for
1822 * item deletion. We balance from the top down, so we have to make sure
1823 * that a deletion won't leave an node completely empty later on.
1825 static noinline int balance_level(struct btrfs_trans_handle *trans,
1826 struct btrfs_root *root,
1827 struct btrfs_path *path, int level)
1829 struct btrfs_fs_info *fs_info = root->fs_info;
1830 struct extent_buffer *right = NULL;
1831 struct extent_buffer *mid;
1832 struct extent_buffer *left = NULL;
1833 struct extent_buffer *parent = NULL;
1837 int orig_slot = path->slots[level];
1842 mid = path->nodes[level];
1844 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1845 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1846 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1848 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1850 if (level < BTRFS_MAX_LEVEL - 1) {
1851 parent = path->nodes[level + 1];
1852 pslot = path->slots[level + 1];
1856 * deal with the case where there is only one pointer in the root
1857 * by promoting the node below to a root
1860 struct extent_buffer *child;
1862 if (btrfs_header_nritems(mid) != 1)
1865 /* promote the child to a root */
1866 child = read_node_slot(fs_info, mid, 0);
1867 if (IS_ERR(child)) {
1868 ret = PTR_ERR(child);
1869 btrfs_handle_fs_error(fs_info, ret, NULL);
1873 btrfs_tree_lock(child);
1874 btrfs_set_lock_blocking_write(child);
1875 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1877 btrfs_tree_unlock(child);
1878 free_extent_buffer(child);
1882 ret = tree_mod_log_insert_root(root->node, child, 1);
1884 rcu_assign_pointer(root->node, child);
1886 add_root_to_dirty_list(root);
1887 btrfs_tree_unlock(child);
1889 path->locks[level] = 0;
1890 path->nodes[level] = NULL;
1891 clean_tree_block(fs_info, mid);
1892 btrfs_tree_unlock(mid);
1893 /* once for the path */
1894 free_extent_buffer(mid);
1896 root_sub_used(root, mid->len);
1897 btrfs_free_tree_block(trans, root, mid, 0, 1);
1898 /* once for the root ptr */
1899 free_extent_buffer_stale(mid);
1902 if (btrfs_header_nritems(mid) >
1903 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1906 left = read_node_slot(fs_info, parent, pslot - 1);
1911 btrfs_tree_lock(left);
1912 btrfs_set_lock_blocking_write(left);
1913 wret = btrfs_cow_block(trans, root, left,
1914 parent, pslot - 1, &left);
1921 right = read_node_slot(fs_info, parent, pslot + 1);
1926 btrfs_tree_lock(right);
1927 btrfs_set_lock_blocking_write(right);
1928 wret = btrfs_cow_block(trans, root, right,
1929 parent, pslot + 1, &right);
1936 /* first, try to make some room in the middle buffer */
1938 orig_slot += btrfs_header_nritems(left);
1939 wret = push_node_left(trans, fs_info, left, mid, 1);
1945 * then try to empty the right most buffer into the middle
1948 wret = push_node_left(trans, fs_info, mid, right, 1);
1949 if (wret < 0 && wret != -ENOSPC)
1951 if (btrfs_header_nritems(right) == 0) {
1952 clean_tree_block(fs_info, right);
1953 btrfs_tree_unlock(right);
1954 del_ptr(root, path, level + 1, pslot + 1);
1955 root_sub_used(root, right->len);
1956 btrfs_free_tree_block(trans, root, right, 0, 1);
1957 free_extent_buffer_stale(right);
1960 struct btrfs_disk_key right_key;
1961 btrfs_node_key(right, &right_key, 0);
1962 ret = tree_mod_log_insert_key(parent, pslot + 1,
1963 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1965 btrfs_set_node_key(parent, &right_key, pslot + 1);
1966 btrfs_mark_buffer_dirty(parent);
1969 if (btrfs_header_nritems(mid) == 1) {
1971 * we're not allowed to leave a node with one item in the
1972 * tree during a delete. A deletion from lower in the tree
1973 * could try to delete the only pointer in this node.
1974 * So, pull some keys from the left.
1975 * There has to be a left pointer at this point because
1976 * otherwise we would have pulled some pointers from the
1981 btrfs_handle_fs_error(fs_info, ret, NULL);
1984 wret = balance_node_right(trans, fs_info, mid, left);
1990 wret = push_node_left(trans, fs_info, left, mid, 1);
1996 if (btrfs_header_nritems(mid) == 0) {
1997 clean_tree_block(fs_info, mid);
1998 btrfs_tree_unlock(mid);
1999 del_ptr(root, path, level + 1, pslot);
2000 root_sub_used(root, mid->len);
2001 btrfs_free_tree_block(trans, root, mid, 0, 1);
2002 free_extent_buffer_stale(mid);
2005 /* update the parent key to reflect our changes */
2006 struct btrfs_disk_key mid_key;
2007 btrfs_node_key(mid, &mid_key, 0);
2008 ret = tree_mod_log_insert_key(parent, pslot,
2009 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2011 btrfs_set_node_key(parent, &mid_key, pslot);
2012 btrfs_mark_buffer_dirty(parent);
2015 /* update the path */
2017 if (btrfs_header_nritems(left) > orig_slot) {
2018 extent_buffer_get(left);
2019 /* left was locked after cow */
2020 path->nodes[level] = left;
2021 path->slots[level + 1] -= 1;
2022 path->slots[level] = orig_slot;
2024 btrfs_tree_unlock(mid);
2025 free_extent_buffer(mid);
2028 orig_slot -= btrfs_header_nritems(left);
2029 path->slots[level] = orig_slot;
2032 /* double check we haven't messed things up */
2034 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2038 btrfs_tree_unlock(right);
2039 free_extent_buffer(right);
2042 if (path->nodes[level] != left)
2043 btrfs_tree_unlock(left);
2044 free_extent_buffer(left);
2049 /* Node balancing for insertion. Here we only split or push nodes around
2050 * when they are completely full. This is also done top down, so we
2051 * have to be pessimistic.
2053 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2054 struct btrfs_root *root,
2055 struct btrfs_path *path, int level)
2057 struct btrfs_fs_info *fs_info = root->fs_info;
2058 struct extent_buffer *right = NULL;
2059 struct extent_buffer *mid;
2060 struct extent_buffer *left = NULL;
2061 struct extent_buffer *parent = NULL;
2065 int orig_slot = path->slots[level];
2070 mid = path->nodes[level];
2071 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2073 if (level < BTRFS_MAX_LEVEL - 1) {
2074 parent = path->nodes[level + 1];
2075 pslot = path->slots[level + 1];
2081 left = read_node_slot(fs_info, parent, pslot - 1);
2085 /* first, try to make some room in the middle buffer */
2089 btrfs_tree_lock(left);
2090 btrfs_set_lock_blocking_write(left);
2092 left_nr = btrfs_header_nritems(left);
2093 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2096 ret = btrfs_cow_block(trans, root, left, parent,
2101 wret = push_node_left(trans, fs_info,
2108 struct btrfs_disk_key disk_key;
2109 orig_slot += left_nr;
2110 btrfs_node_key(mid, &disk_key, 0);
2111 ret = tree_mod_log_insert_key(parent, pslot,
2112 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2114 btrfs_set_node_key(parent, &disk_key, pslot);
2115 btrfs_mark_buffer_dirty(parent);
2116 if (btrfs_header_nritems(left) > orig_slot) {
2117 path->nodes[level] = left;
2118 path->slots[level + 1] -= 1;
2119 path->slots[level] = orig_slot;
2120 btrfs_tree_unlock(mid);
2121 free_extent_buffer(mid);
2124 btrfs_header_nritems(left);
2125 path->slots[level] = orig_slot;
2126 btrfs_tree_unlock(left);
2127 free_extent_buffer(left);
2131 btrfs_tree_unlock(left);
2132 free_extent_buffer(left);
2134 right = read_node_slot(fs_info, parent, pslot + 1);
2139 * then try to empty the right most buffer into the middle
2144 btrfs_tree_lock(right);
2145 btrfs_set_lock_blocking_write(right);
2147 right_nr = btrfs_header_nritems(right);
2148 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2151 ret = btrfs_cow_block(trans, root, right,
2157 wret = balance_node_right(trans, fs_info,
2164 struct btrfs_disk_key disk_key;
2166 btrfs_node_key(right, &disk_key, 0);
2167 ret = tree_mod_log_insert_key(parent, pslot + 1,
2168 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2170 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2171 btrfs_mark_buffer_dirty(parent);
2173 if (btrfs_header_nritems(mid) <= orig_slot) {
2174 path->nodes[level] = right;
2175 path->slots[level + 1] += 1;
2176 path->slots[level] = orig_slot -
2177 btrfs_header_nritems(mid);
2178 btrfs_tree_unlock(mid);
2179 free_extent_buffer(mid);
2181 btrfs_tree_unlock(right);
2182 free_extent_buffer(right);
2186 btrfs_tree_unlock(right);
2187 free_extent_buffer(right);
2193 * readahead one full node of leaves, finding things that are close
2194 * to the block in 'slot', and triggering ra on them.
2196 static void reada_for_search(struct btrfs_fs_info *fs_info,
2197 struct btrfs_path *path,
2198 int level, int slot, u64 objectid)
2200 struct extent_buffer *node;
2201 struct btrfs_disk_key disk_key;
2206 struct extent_buffer *eb;
2214 if (!path->nodes[level])
2217 node = path->nodes[level];
2219 search = btrfs_node_blockptr(node, slot);
2220 blocksize = fs_info->nodesize;
2221 eb = find_extent_buffer(fs_info, search);
2223 free_extent_buffer(eb);
2229 nritems = btrfs_header_nritems(node);
2233 if (path->reada == READA_BACK) {
2237 } else if (path->reada == READA_FORWARD) {
2242 if (path->reada == READA_BACK && objectid) {
2243 btrfs_node_key(node, &disk_key, nr);
2244 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2247 search = btrfs_node_blockptr(node, nr);
2248 if ((search <= target && target - search <= 65536) ||
2249 (search > target && search - target <= 65536)) {
2250 readahead_tree_block(fs_info, search);
2254 if ((nread > 65536 || nscan > 32))
2259 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2260 struct btrfs_path *path, int level)
2264 struct extent_buffer *parent;
2265 struct extent_buffer *eb;
2270 parent = path->nodes[level + 1];
2274 nritems = btrfs_header_nritems(parent);
2275 slot = path->slots[level + 1];
2278 block1 = btrfs_node_blockptr(parent, slot - 1);
2279 gen = btrfs_node_ptr_generation(parent, slot - 1);
2280 eb = find_extent_buffer(fs_info, block1);
2282 * if we get -eagain from btrfs_buffer_uptodate, we
2283 * don't want to return eagain here. That will loop
2286 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2288 free_extent_buffer(eb);
2290 if (slot + 1 < nritems) {
2291 block2 = btrfs_node_blockptr(parent, slot + 1);
2292 gen = btrfs_node_ptr_generation(parent, slot + 1);
2293 eb = find_extent_buffer(fs_info, block2);
2294 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2296 free_extent_buffer(eb);
2300 readahead_tree_block(fs_info, block1);
2302 readahead_tree_block(fs_info, block2);
2307 * when we walk down the tree, it is usually safe to unlock the higher layers
2308 * in the tree. The exceptions are when our path goes through slot 0, because
2309 * operations on the tree might require changing key pointers higher up in the
2312 * callers might also have set path->keep_locks, which tells this code to keep
2313 * the lock if the path points to the last slot in the block. This is part of
2314 * walking through the tree, and selecting the next slot in the higher block.
2316 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2317 * if lowest_unlock is 1, level 0 won't be unlocked
2319 static noinline void unlock_up(struct btrfs_path *path, int level,
2320 int lowest_unlock, int min_write_lock_level,
2321 int *write_lock_level)
2324 int skip_level = level;
2326 struct extent_buffer *t;
2328 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2329 if (!path->nodes[i])
2331 if (!path->locks[i])
2333 if (!no_skips && path->slots[i] == 0) {
2337 if (!no_skips && path->keep_locks) {
2340 nritems = btrfs_header_nritems(t);
2341 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2346 if (skip_level < i && i >= lowest_unlock)
2350 if (i >= lowest_unlock && i > skip_level) {
2351 btrfs_tree_unlock_rw(t, path->locks[i]);
2353 if (write_lock_level &&
2354 i > min_write_lock_level &&
2355 i <= *write_lock_level) {
2356 *write_lock_level = i - 1;
2363 * This releases any locks held in the path starting at level and
2364 * going all the way up to the root.
2366 * btrfs_search_slot will keep the lock held on higher nodes in a few
2367 * corner cases, such as COW of the block at slot zero in the node. This
2368 * ignores those rules, and it should only be called when there are no
2369 * more updates to be done higher up in the tree.
2371 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2375 if (path->keep_locks)
2378 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2379 if (!path->nodes[i])
2381 if (!path->locks[i])
2383 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2389 * helper function for btrfs_search_slot. The goal is to find a block
2390 * in cache without setting the path to blocking. If we find the block
2391 * we return zero and the path is unchanged.
2393 * If we can't find the block, we set the path blocking and do some
2394 * reada. -EAGAIN is returned and the search must be repeated.
2397 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2398 struct extent_buffer **eb_ret, int level, int slot,
2399 const struct btrfs_key *key)
2401 struct btrfs_fs_info *fs_info = root->fs_info;
2404 struct extent_buffer *b = *eb_ret;
2405 struct extent_buffer *tmp;
2406 struct btrfs_key first_key;
2410 blocknr = btrfs_node_blockptr(b, slot);
2411 gen = btrfs_node_ptr_generation(b, slot);
2412 parent_level = btrfs_header_level(b);
2413 btrfs_node_key_to_cpu(b, &first_key, slot);
2415 tmp = find_extent_buffer(fs_info, blocknr);
2417 /* first we do an atomic uptodate check */
2418 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2423 /* the pages were up to date, but we failed
2424 * the generation number check. Do a full
2425 * read for the generation number that is correct.
2426 * We must do this without dropping locks so
2427 * we can trust our generation number
2429 btrfs_set_path_blocking(p);
2431 /* now we're allowed to do a blocking uptodate check */
2432 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2437 free_extent_buffer(tmp);
2438 btrfs_release_path(p);
2443 * reduce lock contention at high levels
2444 * of the btree by dropping locks before
2445 * we read. Don't release the lock on the current
2446 * level because we need to walk this node to figure
2447 * out which blocks to read.
2449 btrfs_unlock_up_safe(p, level + 1);
2450 btrfs_set_path_blocking(p);
2452 if (p->reada != READA_NONE)
2453 reada_for_search(fs_info, p, level, slot, key->objectid);
2456 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2460 * If the read above didn't mark this buffer up to date,
2461 * it will never end up being up to date. Set ret to EIO now
2462 * and give up so that our caller doesn't loop forever
2465 if (!extent_buffer_uptodate(tmp))
2467 free_extent_buffer(tmp);
2472 btrfs_release_path(p);
2477 * helper function for btrfs_search_slot. This does all of the checks
2478 * for node-level blocks and does any balancing required based on
2481 * If no extra work was required, zero is returned. If we had to
2482 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2486 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2487 struct btrfs_root *root, struct btrfs_path *p,
2488 struct extent_buffer *b, int level, int ins_len,
2489 int *write_lock_level)
2491 struct btrfs_fs_info *fs_info = root->fs_info;
2494 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2495 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2498 if (*write_lock_level < level + 1) {
2499 *write_lock_level = level + 1;
2500 btrfs_release_path(p);
2504 btrfs_set_path_blocking(p);
2505 reada_for_balance(fs_info, p, level);
2506 sret = split_node(trans, root, p, level);
2513 b = p->nodes[level];
2514 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2515 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2518 if (*write_lock_level < level + 1) {
2519 *write_lock_level = level + 1;
2520 btrfs_release_path(p);
2524 btrfs_set_path_blocking(p);
2525 reada_for_balance(fs_info, p, level);
2526 sret = balance_level(trans, root, p, level);
2532 b = p->nodes[level];
2534 btrfs_release_path(p);
2537 BUG_ON(btrfs_header_nritems(b) == 1);
2547 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2548 int level, int *prev_cmp, int *slot)
2550 if (*prev_cmp != 0) {
2551 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2560 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2561 u64 iobjectid, u64 ioff, u8 key_type,
2562 struct btrfs_key *found_key)
2565 struct btrfs_key key;
2566 struct extent_buffer *eb;
2571 key.type = key_type;
2572 key.objectid = iobjectid;
2575 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2579 eb = path->nodes[0];
2580 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2581 ret = btrfs_next_leaf(fs_root, path);
2584 eb = path->nodes[0];
2587 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2588 if (found_key->type != key.type ||
2589 found_key->objectid != key.objectid)
2595 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2596 struct btrfs_path *p,
2597 int write_lock_level)
2599 struct btrfs_fs_info *fs_info = root->fs_info;
2600 struct extent_buffer *b;
2604 /* We try very hard to do read locks on the root */
2605 root_lock = BTRFS_READ_LOCK;
2607 if (p->search_commit_root) {
2609 * The commit roots are read only so we always do read locks,
2610 * and we always must hold the commit_root_sem when doing
2611 * searches on them, the only exception is send where we don't
2612 * want to block transaction commits for a long time, so
2613 * we need to clone the commit root in order to avoid races
2614 * with transaction commits that create a snapshot of one of
2615 * the roots used by a send operation.
2617 if (p->need_commit_sem) {
2618 down_read(&fs_info->commit_root_sem);
2619 b = btrfs_clone_extent_buffer(root->commit_root);
2620 up_read(&fs_info->commit_root_sem);
2622 return ERR_PTR(-ENOMEM);
2625 b = root->commit_root;
2626 extent_buffer_get(b);
2628 level = btrfs_header_level(b);
2630 * Ensure that all callers have set skip_locking when
2631 * p->search_commit_root = 1.
2633 ASSERT(p->skip_locking == 1);
2638 if (p->skip_locking) {
2639 b = btrfs_root_node(root);
2640 level = btrfs_header_level(b);
2645 * If the level is set to maximum, we can skip trying to get the read
2648 if (write_lock_level < BTRFS_MAX_LEVEL) {
2650 * We don't know the level of the root node until we actually
2651 * have it read locked
2653 b = btrfs_read_lock_root_node(root);
2654 level = btrfs_header_level(b);
2655 if (level > write_lock_level)
2658 /* Whoops, must trade for write lock */
2659 btrfs_tree_read_unlock(b);
2660 free_extent_buffer(b);
2663 b = btrfs_lock_root_node(root);
2664 root_lock = BTRFS_WRITE_LOCK;
2666 /* The level might have changed, check again */
2667 level = btrfs_header_level(b);
2670 p->nodes[level] = b;
2671 if (!p->skip_locking)
2672 p->locks[level] = root_lock;
2674 * Callers are responsible for dropping b's references.
2681 * btrfs_search_slot - look for a key in a tree and perform necessary
2682 * modifications to preserve tree invariants.
2684 * @trans: Handle of transaction, used when modifying the tree
2685 * @p: Holds all btree nodes along the search path
2686 * @root: The root node of the tree
2687 * @key: The key we are looking for
2688 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2689 * deletions it's -1. 0 for plain searches
2690 * @cow: boolean should CoW operations be performed. Must always be 1
2691 * when modifying the tree.
2693 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2694 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2696 * If @key is found, 0 is returned and you can find the item in the leaf level
2697 * of the path (level 0)
2699 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2700 * points to the slot where it should be inserted
2702 * If an error is encountered while searching the tree a negative error number
2705 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2706 const struct btrfs_key *key, struct btrfs_path *p,
2707 int ins_len, int cow)
2709 struct btrfs_fs_info *fs_info = root->fs_info;
2710 struct extent_buffer *b;
2715 int lowest_unlock = 1;
2716 /* everything at write_lock_level or lower must be write locked */
2717 int write_lock_level = 0;
2718 u8 lowest_level = 0;
2719 int min_write_lock_level;
2722 lowest_level = p->lowest_level;
2723 WARN_ON(lowest_level && ins_len > 0);
2724 WARN_ON(p->nodes[0] != NULL);
2725 BUG_ON(!cow && ins_len);
2730 /* when we are removing items, we might have to go up to level
2731 * two as we update tree pointers Make sure we keep write
2732 * for those levels as well
2734 write_lock_level = 2;
2735 } else if (ins_len > 0) {
2737 * for inserting items, make sure we have a write lock on
2738 * level 1 so we can update keys
2740 write_lock_level = 1;
2744 write_lock_level = -1;
2746 if (cow && (p->keep_locks || p->lowest_level))
2747 write_lock_level = BTRFS_MAX_LEVEL;
2749 min_write_lock_level = write_lock_level;
2753 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2760 level = btrfs_header_level(b);
2763 * setup the path here so we can release it under lock
2764 * contention with the cow code
2767 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2770 * if we don't really need to cow this block
2771 * then we don't want to set the path blocking,
2772 * so we test it here
2774 if (!should_cow_block(trans, root, b)) {
2775 trans->dirty = true;
2780 * must have write locks on this node and the
2783 if (level > write_lock_level ||
2784 (level + 1 > write_lock_level &&
2785 level + 1 < BTRFS_MAX_LEVEL &&
2786 p->nodes[level + 1])) {
2787 write_lock_level = level + 1;
2788 btrfs_release_path(p);
2792 btrfs_set_path_blocking(p);
2794 err = btrfs_cow_block(trans, root, b, NULL, 0,
2797 err = btrfs_cow_block(trans, root, b,
2798 p->nodes[level + 1],
2799 p->slots[level + 1], &b);
2806 p->nodes[level] = b;
2808 * Leave path with blocking locks to avoid massive
2809 * lock context switch, this is made on purpose.
2813 * we have a lock on b and as long as we aren't changing
2814 * the tree, there is no way to for the items in b to change.
2815 * It is safe to drop the lock on our parent before we
2816 * go through the expensive btree search on b.
2818 * If we're inserting or deleting (ins_len != 0), then we might
2819 * be changing slot zero, which may require changing the parent.
2820 * So, we can't drop the lock until after we know which slot
2821 * we're operating on.
2823 if (!ins_len && !p->keep_locks) {
2826 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2827 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2832 ret = key_search(b, key, level, &prev_cmp, &slot);
2838 if (ret && slot > 0) {
2842 p->slots[level] = slot;
2843 err = setup_nodes_for_search(trans, root, p, b, level,
2844 ins_len, &write_lock_level);
2851 b = p->nodes[level];
2852 slot = p->slots[level];
2855 * slot 0 is special, if we change the key
2856 * we have to update the parent pointer
2857 * which means we must have a write lock
2860 if (slot == 0 && ins_len &&
2861 write_lock_level < level + 1) {
2862 write_lock_level = level + 1;
2863 btrfs_release_path(p);
2867 unlock_up(p, level, lowest_unlock,
2868 min_write_lock_level, &write_lock_level);
2870 if (level == lowest_level) {
2876 err = read_block_for_search(root, p, &b, level,
2885 if (!p->skip_locking) {
2886 level = btrfs_header_level(b);
2887 if (level <= write_lock_level) {
2888 err = btrfs_try_tree_write_lock(b);
2890 btrfs_set_path_blocking(p);
2893 p->locks[level] = BTRFS_WRITE_LOCK;
2895 err = btrfs_tree_read_lock_atomic(b);
2897 btrfs_set_path_blocking(p);
2898 btrfs_tree_read_lock(b);
2900 p->locks[level] = BTRFS_READ_LOCK;
2902 p->nodes[level] = b;
2905 p->slots[level] = slot;
2907 btrfs_leaf_free_space(fs_info, b) < ins_len) {
2908 if (write_lock_level < 1) {
2909 write_lock_level = 1;
2910 btrfs_release_path(p);
2914 btrfs_set_path_blocking(p);
2915 err = split_leaf(trans, root, key,
2916 p, ins_len, ret == 0);
2924 if (!p->search_for_split)
2925 unlock_up(p, level, lowest_unlock,
2926 min_write_lock_level, NULL);
2933 * we don't really know what they plan on doing with the path
2934 * from here on, so for now just mark it as blocking
2936 if (!p->leave_spinning)
2937 btrfs_set_path_blocking(p);
2938 if (ret < 0 && !p->skip_release_on_error)
2939 btrfs_release_path(p);
2944 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2945 * current state of the tree together with the operations recorded in the tree
2946 * modification log to search for the key in a previous version of this tree, as
2947 * denoted by the time_seq parameter.
2949 * Naturally, there is no support for insert, delete or cow operations.
2951 * The resulting path and return value will be set up as if we called
2952 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2954 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2955 struct btrfs_path *p, u64 time_seq)
2957 struct btrfs_fs_info *fs_info = root->fs_info;
2958 struct extent_buffer *b;
2963 int lowest_unlock = 1;
2964 u8 lowest_level = 0;
2967 lowest_level = p->lowest_level;
2968 WARN_ON(p->nodes[0] != NULL);
2970 if (p->search_commit_root) {
2972 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2976 b = get_old_root(root, time_seq);
2981 level = btrfs_header_level(b);
2982 p->locks[level] = BTRFS_READ_LOCK;
2985 level = btrfs_header_level(b);
2986 p->nodes[level] = b;
2989 * we have a lock on b and as long as we aren't changing
2990 * the tree, there is no way to for the items in b to change.
2991 * It is safe to drop the lock on our parent before we
2992 * go through the expensive btree search on b.
2994 btrfs_unlock_up_safe(p, level + 1);
2997 * Since we can unwind ebs we want to do a real search every
3001 ret = key_search(b, key, level, &prev_cmp, &slot);
3007 if (ret && slot > 0) {
3011 p->slots[level] = slot;
3012 unlock_up(p, level, lowest_unlock, 0, NULL);
3014 if (level == lowest_level) {
3020 err = read_block_for_search(root, p, &b, level,
3029 level = btrfs_header_level(b);
3030 err = btrfs_tree_read_lock_atomic(b);
3032 btrfs_set_path_blocking(p);
3033 btrfs_tree_read_lock(b);
3035 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3040 p->locks[level] = BTRFS_READ_LOCK;
3041 p->nodes[level] = b;
3043 p->slots[level] = slot;
3044 unlock_up(p, level, lowest_unlock, 0, NULL);
3050 if (!p->leave_spinning)
3051 btrfs_set_path_blocking(p);
3053 btrfs_release_path(p);
3059 * helper to use instead of search slot if no exact match is needed but
3060 * instead the next or previous item should be returned.
3061 * When find_higher is true, the next higher item is returned, the next lower
3063 * When return_any and find_higher are both true, and no higher item is found,
3064 * return the next lower instead.
3065 * When return_any is true and find_higher is false, and no lower item is found,
3066 * return the next higher instead.
3067 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3070 int btrfs_search_slot_for_read(struct btrfs_root *root,
3071 const struct btrfs_key *key,
3072 struct btrfs_path *p, int find_higher,
3076 struct extent_buffer *leaf;
3079 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3083 * a return value of 1 means the path is at the position where the
3084 * item should be inserted. Normally this is the next bigger item,
3085 * but in case the previous item is the last in a leaf, path points
3086 * to the first free slot in the previous leaf, i.e. at an invalid
3092 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3093 ret = btrfs_next_leaf(root, p);
3099 * no higher item found, return the next
3104 btrfs_release_path(p);
3108 if (p->slots[0] == 0) {
3109 ret = btrfs_prev_leaf(root, p);
3114 if (p->slots[0] == btrfs_header_nritems(leaf))
3121 * no lower item found, return the next
3126 btrfs_release_path(p);
3136 * adjust the pointers going up the tree, starting at level
3137 * making sure the right key of each node is points to 'key'.
3138 * This is used after shifting pointers to the left, so it stops
3139 * fixing up pointers when a given leaf/node is not in slot 0 of the
3143 static void fixup_low_keys(struct btrfs_path *path,
3144 struct btrfs_disk_key *key, int level)
3147 struct extent_buffer *t;
3150 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3151 int tslot = path->slots[i];
3153 if (!path->nodes[i])
3156 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3159 btrfs_set_node_key(t, key, tslot);
3160 btrfs_mark_buffer_dirty(path->nodes[i]);
3169 * This function isn't completely safe. It's the caller's responsibility
3170 * that the new key won't break the order
3172 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3173 struct btrfs_path *path,
3174 const struct btrfs_key *new_key)
3176 struct btrfs_disk_key disk_key;
3177 struct extent_buffer *eb;
3180 eb = path->nodes[0];
3181 slot = path->slots[0];
3183 btrfs_item_key(eb, &disk_key, slot - 1);
3184 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3186 if (slot < btrfs_header_nritems(eb) - 1) {
3187 btrfs_item_key(eb, &disk_key, slot + 1);
3188 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3191 btrfs_cpu_key_to_disk(&disk_key, new_key);
3192 btrfs_set_item_key(eb, &disk_key, slot);
3193 btrfs_mark_buffer_dirty(eb);
3195 fixup_low_keys(path, &disk_key, 1);
3199 * try to push data from one node into the next node left in the
3202 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3203 * error, and > 0 if there was no room in the left hand block.
3205 static int push_node_left(struct btrfs_trans_handle *trans,
3206 struct btrfs_fs_info *fs_info,
3207 struct extent_buffer *dst,
3208 struct extent_buffer *src, int empty)
3215 src_nritems = btrfs_header_nritems(src);
3216 dst_nritems = btrfs_header_nritems(dst);
3217 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3218 WARN_ON(btrfs_header_generation(src) != trans->transid);
3219 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3221 if (!empty && src_nritems <= 8)
3224 if (push_items <= 0)
3228 push_items = min(src_nritems, push_items);
3229 if (push_items < src_nritems) {
3230 /* leave at least 8 pointers in the node if
3231 * we aren't going to empty it
3233 if (src_nritems - push_items < 8) {
3234 if (push_items <= 8)
3240 push_items = min(src_nritems - 8, push_items);
3242 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3245 btrfs_abort_transaction(trans, ret);
3248 copy_extent_buffer(dst, src,
3249 btrfs_node_key_ptr_offset(dst_nritems),
3250 btrfs_node_key_ptr_offset(0),
3251 push_items * sizeof(struct btrfs_key_ptr));
3253 if (push_items < src_nritems) {
3255 * Don't call tree_mod_log_insert_move here, key removal was
3256 * already fully logged by tree_mod_log_eb_copy above.
3258 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3259 btrfs_node_key_ptr_offset(push_items),
3260 (src_nritems - push_items) *
3261 sizeof(struct btrfs_key_ptr));
3263 btrfs_set_header_nritems(src, src_nritems - push_items);
3264 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3265 btrfs_mark_buffer_dirty(src);
3266 btrfs_mark_buffer_dirty(dst);
3272 * try to push data from one node into the next node right in the
3275 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3276 * error, and > 0 if there was no room in the right hand block.
3278 * this will only push up to 1/2 the contents of the left node over
3280 static int balance_node_right(struct btrfs_trans_handle *trans,
3281 struct btrfs_fs_info *fs_info,
3282 struct extent_buffer *dst,
3283 struct extent_buffer *src)
3291 WARN_ON(btrfs_header_generation(src) != trans->transid);
3292 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3294 src_nritems = btrfs_header_nritems(src);
3295 dst_nritems = btrfs_header_nritems(dst);
3296 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3297 if (push_items <= 0)
3300 if (src_nritems < 4)
3303 max_push = src_nritems / 2 + 1;
3304 /* don't try to empty the node */
3305 if (max_push >= src_nritems)
3308 if (max_push < push_items)
3309 push_items = max_push;
3311 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3313 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3314 btrfs_node_key_ptr_offset(0),
3316 sizeof(struct btrfs_key_ptr));
3318 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3319 src_nritems - push_items, push_items);
3321 btrfs_abort_transaction(trans, ret);
3324 copy_extent_buffer(dst, src,
3325 btrfs_node_key_ptr_offset(0),
3326 btrfs_node_key_ptr_offset(src_nritems - push_items),
3327 push_items * sizeof(struct btrfs_key_ptr));
3329 btrfs_set_header_nritems(src, src_nritems - push_items);
3330 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3332 btrfs_mark_buffer_dirty(src);
3333 btrfs_mark_buffer_dirty(dst);
3339 * helper function to insert a new root level in the tree.
3340 * A new node is allocated, and a single item is inserted to
3341 * point to the existing root
3343 * returns zero on success or < 0 on failure.
3345 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3346 struct btrfs_root *root,
3347 struct btrfs_path *path, int level)
3349 struct btrfs_fs_info *fs_info = root->fs_info;
3351 struct extent_buffer *lower;
3352 struct extent_buffer *c;
3353 struct extent_buffer *old;
3354 struct btrfs_disk_key lower_key;
3357 BUG_ON(path->nodes[level]);
3358 BUG_ON(path->nodes[level-1] != root->node);
3360 lower = path->nodes[level-1];
3362 btrfs_item_key(lower, &lower_key, 0);
3364 btrfs_node_key(lower, &lower_key, 0);
3366 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3367 root->node->start, 0);
3371 root_add_used(root, fs_info->nodesize);
3373 btrfs_set_header_nritems(c, 1);
3374 btrfs_set_node_key(c, &lower_key, 0);
3375 btrfs_set_node_blockptr(c, 0, lower->start);
3376 lower_gen = btrfs_header_generation(lower);
3377 WARN_ON(lower_gen != trans->transid);
3379 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3381 btrfs_mark_buffer_dirty(c);
3384 ret = tree_mod_log_insert_root(root->node, c, 0);
3386 rcu_assign_pointer(root->node, c);
3388 /* the super has an extra ref to root->node */
3389 free_extent_buffer(old);
3391 add_root_to_dirty_list(root);
3392 extent_buffer_get(c);
3393 path->nodes[level] = c;
3394 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3395 path->slots[level] = 0;
3400 * worker function to insert a single pointer in a node.
3401 * the node should have enough room for the pointer already
3403 * slot and level indicate where you want the key to go, and
3404 * blocknr is the block the key points to.
3406 static void insert_ptr(struct btrfs_trans_handle *trans,
3407 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3408 struct btrfs_disk_key *key, u64 bytenr,
3409 int slot, int level)
3411 struct extent_buffer *lower;
3415 BUG_ON(!path->nodes[level]);
3416 btrfs_assert_tree_locked(path->nodes[level]);
3417 lower = path->nodes[level];
3418 nritems = btrfs_header_nritems(lower);
3419 BUG_ON(slot > nritems);
3420 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3421 if (slot != nritems) {
3423 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3427 memmove_extent_buffer(lower,
3428 btrfs_node_key_ptr_offset(slot + 1),
3429 btrfs_node_key_ptr_offset(slot),
3430 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3433 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3437 btrfs_set_node_key(lower, key, slot);
3438 btrfs_set_node_blockptr(lower, slot, bytenr);
3439 WARN_ON(trans->transid == 0);
3440 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441 btrfs_set_header_nritems(lower, nritems + 1);
3442 btrfs_mark_buffer_dirty(lower);
3446 * split the node at the specified level in path in two.
3447 * The path is corrected to point to the appropriate node after the split
3449 * Before splitting this tries to make some room in the node by pushing
3450 * left and right, if either one works, it returns right away.
3452 * returns 0 on success and < 0 on failure
3454 static noinline int split_node(struct btrfs_trans_handle *trans,
3455 struct btrfs_root *root,
3456 struct btrfs_path *path, int level)
3458 struct btrfs_fs_info *fs_info = root->fs_info;
3459 struct extent_buffer *c;
3460 struct extent_buffer *split;
3461 struct btrfs_disk_key disk_key;
3466 c = path->nodes[level];
3467 WARN_ON(btrfs_header_generation(c) != trans->transid);
3468 if (c == root->node) {
3470 * trying to split the root, lets make a new one
3472 * tree mod log: We don't log_removal old root in
3473 * insert_new_root, because that root buffer will be kept as a
3474 * normal node. We are going to log removal of half of the
3475 * elements below with tree_mod_log_eb_copy. We're holding a
3476 * tree lock on the buffer, which is why we cannot race with
3477 * other tree_mod_log users.
3479 ret = insert_new_root(trans, root, path, level + 1);
3483 ret = push_nodes_for_insert(trans, root, path, level);
3484 c = path->nodes[level];
3485 if (!ret && btrfs_header_nritems(c) <
3486 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3492 c_nritems = btrfs_header_nritems(c);
3493 mid = (c_nritems + 1) / 2;
3494 btrfs_node_key(c, &disk_key, mid);
3496 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3499 return PTR_ERR(split);
3501 root_add_used(root, fs_info->nodesize);
3502 ASSERT(btrfs_header_level(c) == level);
3504 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3506 btrfs_abort_transaction(trans, ret);
3509 copy_extent_buffer(split, c,
3510 btrfs_node_key_ptr_offset(0),
3511 btrfs_node_key_ptr_offset(mid),
3512 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3513 btrfs_set_header_nritems(split, c_nritems - mid);
3514 btrfs_set_header_nritems(c, mid);
3517 btrfs_mark_buffer_dirty(c);
3518 btrfs_mark_buffer_dirty(split);
3520 insert_ptr(trans, fs_info, path, &disk_key, split->start,
3521 path->slots[level + 1] + 1, level + 1);
3523 if (path->slots[level] >= mid) {
3524 path->slots[level] -= mid;
3525 btrfs_tree_unlock(c);
3526 free_extent_buffer(c);
3527 path->nodes[level] = split;
3528 path->slots[level + 1] += 1;
3530 btrfs_tree_unlock(split);
3531 free_extent_buffer(split);
3537 * how many bytes are required to store the items in a leaf. start
3538 * and nr indicate which items in the leaf to check. This totals up the
3539 * space used both by the item structs and the item data
3541 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3543 struct btrfs_item *start_item;
3544 struct btrfs_item *end_item;
3545 struct btrfs_map_token token;
3547 int nritems = btrfs_header_nritems(l);
3548 int end = min(nritems, start + nr) - 1;
3552 btrfs_init_map_token(&token);
3553 start_item = btrfs_item_nr(start);
3554 end_item = btrfs_item_nr(end);
3555 data_len = btrfs_token_item_offset(l, start_item, &token) +
3556 btrfs_token_item_size(l, start_item, &token);
3557 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3558 data_len += sizeof(struct btrfs_item) * nr;
3559 WARN_ON(data_len < 0);
3564 * The space between the end of the leaf items and
3565 * the start of the leaf data. IOW, how much room
3566 * the leaf has left for both items and data
3568 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3569 struct extent_buffer *leaf)
3571 int nritems = btrfs_header_nritems(leaf);
3574 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3577 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3579 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3580 leaf_space_used(leaf, 0, nritems), nritems);
3586 * min slot controls the lowest index we're willing to push to the
3587 * right. We'll push up to and including min_slot, but no lower
3589 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3590 struct btrfs_path *path,
3591 int data_size, int empty,
3592 struct extent_buffer *right,
3593 int free_space, u32 left_nritems,
3596 struct extent_buffer *left = path->nodes[0];
3597 struct extent_buffer *upper = path->nodes[1];
3598 struct btrfs_map_token token;
3599 struct btrfs_disk_key disk_key;
3604 struct btrfs_item *item;
3610 btrfs_init_map_token(&token);
3615 nr = max_t(u32, 1, min_slot);
3617 if (path->slots[0] >= left_nritems)
3618 push_space += data_size;
3620 slot = path->slots[1];
3621 i = left_nritems - 1;
3623 item = btrfs_item_nr(i);
3625 if (!empty && push_items > 0) {
3626 if (path->slots[0] > i)
3628 if (path->slots[0] == i) {
3629 int space = btrfs_leaf_free_space(fs_info, left);
3630 if (space + push_space * 2 > free_space)
3635 if (path->slots[0] == i)
3636 push_space += data_size;
3638 this_item_size = btrfs_item_size(left, item);
3639 if (this_item_size + sizeof(*item) + push_space > free_space)
3643 push_space += this_item_size + sizeof(*item);
3649 if (push_items == 0)
3652 WARN_ON(!empty && push_items == left_nritems);
3654 /* push left to right */
3655 right_nritems = btrfs_header_nritems(right);
3657 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3658 push_space -= leaf_data_end(fs_info, left);
3660 /* make room in the right data area */
3661 data_end = leaf_data_end(fs_info, right);
3662 memmove_extent_buffer(right,
3663 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3664 BTRFS_LEAF_DATA_OFFSET + data_end,
3665 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3667 /* copy from the left data area */
3668 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3669 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3670 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3673 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3674 btrfs_item_nr_offset(0),
3675 right_nritems * sizeof(struct btrfs_item));
3677 /* copy the items from left to right */
3678 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3679 btrfs_item_nr_offset(left_nritems - push_items),
3680 push_items * sizeof(struct btrfs_item));
3682 /* update the item pointers */
3683 right_nritems += push_items;
3684 btrfs_set_header_nritems(right, right_nritems);
3685 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3686 for (i = 0; i < right_nritems; i++) {
3687 item = btrfs_item_nr(i);
3688 push_space -= btrfs_token_item_size(right, item, &token);
3689 btrfs_set_token_item_offset(right, item, push_space, &token);
3692 left_nritems -= push_items;
3693 btrfs_set_header_nritems(left, left_nritems);
3696 btrfs_mark_buffer_dirty(left);
3698 clean_tree_block(fs_info, left);
3700 btrfs_mark_buffer_dirty(right);
3702 btrfs_item_key(right, &disk_key, 0);
3703 btrfs_set_node_key(upper, &disk_key, slot + 1);
3704 btrfs_mark_buffer_dirty(upper);
3706 /* then fixup the leaf pointer in the path */
3707 if (path->slots[0] >= left_nritems) {
3708 path->slots[0] -= left_nritems;
3709 if (btrfs_header_nritems(path->nodes[0]) == 0)
3710 clean_tree_block(fs_info, path->nodes[0]);
3711 btrfs_tree_unlock(path->nodes[0]);
3712 free_extent_buffer(path->nodes[0]);
3713 path->nodes[0] = right;
3714 path->slots[1] += 1;
3716 btrfs_tree_unlock(right);
3717 free_extent_buffer(right);
3722 btrfs_tree_unlock(right);
3723 free_extent_buffer(right);
3728 * push some data in the path leaf to the right, trying to free up at
3729 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3731 * returns 1 if the push failed because the other node didn't have enough
3732 * room, 0 if everything worked out and < 0 if there were major errors.
3734 * this will push starting from min_slot to the end of the leaf. It won't
3735 * push any slot lower than min_slot
3737 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3738 *root, struct btrfs_path *path,
3739 int min_data_size, int data_size,
3740 int empty, u32 min_slot)
3742 struct btrfs_fs_info *fs_info = root->fs_info;
3743 struct extent_buffer *left = path->nodes[0];
3744 struct extent_buffer *right;
3745 struct extent_buffer *upper;
3751 if (!path->nodes[1])
3754 slot = path->slots[1];
3755 upper = path->nodes[1];
3756 if (slot >= btrfs_header_nritems(upper) - 1)
3759 btrfs_assert_tree_locked(path->nodes[1]);
3761 right = read_node_slot(fs_info, upper, slot + 1);
3763 * slot + 1 is not valid or we fail to read the right node,
3764 * no big deal, just return.
3769 btrfs_tree_lock(right);
3770 btrfs_set_lock_blocking_write(right);
3772 free_space = btrfs_leaf_free_space(fs_info, right);
3773 if (free_space < data_size)
3776 /* cow and double check */
3777 ret = btrfs_cow_block(trans, root, right, upper,
3782 free_space = btrfs_leaf_free_space(fs_info, right);
3783 if (free_space < data_size)
3786 left_nritems = btrfs_header_nritems(left);
3787 if (left_nritems == 0)
3790 if (path->slots[0] == left_nritems && !empty) {
3791 /* Key greater than all keys in the leaf, right neighbor has
3792 * enough room for it and we're not emptying our leaf to delete
3793 * it, therefore use right neighbor to insert the new item and
3794 * no need to touch/dirty our left leaf. */
3795 btrfs_tree_unlock(left);
3796 free_extent_buffer(left);
3797 path->nodes[0] = right;
3803 return __push_leaf_right(fs_info, path, min_data_size, empty,
3804 right, free_space, left_nritems, min_slot);
3806 btrfs_tree_unlock(right);
3807 free_extent_buffer(right);
3812 * push some data in the path leaf to the left, trying to free up at
3813 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3815 * max_slot can put a limit on how far into the leaf we'll push items. The
3816 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3819 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3820 struct btrfs_path *path, int data_size,
3821 int empty, struct extent_buffer *left,
3822 int free_space, u32 right_nritems,
3825 struct btrfs_disk_key disk_key;
3826 struct extent_buffer *right = path->nodes[0];
3830 struct btrfs_item *item;
3831 u32 old_left_nritems;
3835 u32 old_left_item_size;
3836 struct btrfs_map_token token;
3838 btrfs_init_map_token(&token);
3841 nr = min(right_nritems, max_slot);
3843 nr = min(right_nritems - 1, max_slot);
3845 for (i = 0; i < nr; i++) {
3846 item = btrfs_item_nr(i);
3848 if (!empty && push_items > 0) {
3849 if (path->slots[0] < i)
3851 if (path->slots[0] == i) {
3852 int space = btrfs_leaf_free_space(fs_info, right);
3853 if (space + push_space * 2 > free_space)
3858 if (path->slots[0] == i)
3859 push_space += data_size;
3861 this_item_size = btrfs_item_size(right, item);
3862 if (this_item_size + sizeof(*item) + push_space > free_space)
3866 push_space += this_item_size + sizeof(*item);
3869 if (push_items == 0) {
3873 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3875 /* push data from right to left */
3876 copy_extent_buffer(left, right,
3877 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878 btrfs_item_nr_offset(0),
3879 push_items * sizeof(struct btrfs_item));
3881 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3882 btrfs_item_offset_nr(right, push_items - 1);
3884 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3885 leaf_data_end(fs_info, left) - push_space,
3886 BTRFS_LEAF_DATA_OFFSET +
3887 btrfs_item_offset_nr(right, push_items - 1),
3889 old_left_nritems = btrfs_header_nritems(left);
3890 BUG_ON(old_left_nritems <= 0);
3892 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3893 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3896 item = btrfs_item_nr(i);
3898 ioff = btrfs_token_item_offset(left, item, &token);
3899 btrfs_set_token_item_offset(left, item,
3900 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3903 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3905 /* fixup right node */
3906 if (push_items > right_nritems)
3907 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3910 if (push_items < right_nritems) {
3911 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912 leaf_data_end(fs_info, right);
3913 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3914 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3915 BTRFS_LEAF_DATA_OFFSET +
3916 leaf_data_end(fs_info, right), push_space);
3918 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919 btrfs_item_nr_offset(push_items),
3920 (btrfs_header_nritems(right) - push_items) *
3921 sizeof(struct btrfs_item));
3923 right_nritems -= push_items;
3924 btrfs_set_header_nritems(right, right_nritems);
3925 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3926 for (i = 0; i < right_nritems; i++) {
3927 item = btrfs_item_nr(i);
3929 push_space = push_space - btrfs_token_item_size(right,
3931 btrfs_set_token_item_offset(right, item, push_space, &token);
3934 btrfs_mark_buffer_dirty(left);
3936 btrfs_mark_buffer_dirty(right);
3938 clean_tree_block(fs_info, right);
3940 btrfs_item_key(right, &disk_key, 0);
3941 fixup_low_keys(path, &disk_key, 1);
3943 /* then fixup the leaf pointer in the path */
3944 if (path->slots[0] < push_items) {
3945 path->slots[0] += old_left_nritems;
3946 btrfs_tree_unlock(path->nodes[0]);
3947 free_extent_buffer(path->nodes[0]);
3948 path->nodes[0] = left;
3949 path->slots[1] -= 1;
3951 btrfs_tree_unlock(left);
3952 free_extent_buffer(left);
3953 path->slots[0] -= push_items;
3955 BUG_ON(path->slots[0] < 0);
3958 btrfs_tree_unlock(left);
3959 free_extent_buffer(left);
3964 * push some data in the path leaf to the left, trying to free up at
3965 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3967 * max_slot can put a limit on how far into the leaf we'll push items. The
3968 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972 *root, struct btrfs_path *path, int min_data_size,
3973 int data_size, int empty, u32 max_slot)
3975 struct btrfs_fs_info *fs_info = root->fs_info;
3976 struct extent_buffer *right = path->nodes[0];
3977 struct extent_buffer *left;
3983 slot = path->slots[1];
3986 if (!path->nodes[1])
3989 right_nritems = btrfs_header_nritems(right);
3990 if (right_nritems == 0)
3993 btrfs_assert_tree_locked(path->nodes[1]);
3995 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3997 * slot - 1 is not valid or we fail to read the left node,
3998 * no big deal, just return.
4003 btrfs_tree_lock(left);
4004 btrfs_set_lock_blocking_write(left);
4006 free_space = btrfs_leaf_free_space(fs_info, left);
4007 if (free_space < data_size) {
4012 /* cow and double check */
4013 ret = btrfs_cow_block(trans, root, left,
4014 path->nodes[1], slot - 1, &left);
4016 /* we hit -ENOSPC, but it isn't fatal here */
4022 free_space = btrfs_leaf_free_space(fs_info, left);
4023 if (free_space < data_size) {
4028 return __push_leaf_left(fs_info, path, min_data_size,
4029 empty, left, free_space, right_nritems,
4032 btrfs_tree_unlock(left);
4033 free_extent_buffer(left);
4038 * split the path's leaf in two, making sure there is at least data_size
4039 * available for the resulting leaf level of the path.
4041 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4042 struct btrfs_fs_info *fs_info,
4043 struct btrfs_path *path,
4044 struct extent_buffer *l,
4045 struct extent_buffer *right,
4046 int slot, int mid, int nritems)
4051 struct btrfs_disk_key disk_key;
4052 struct btrfs_map_token token;
4054 btrfs_init_map_token(&token);
4056 nritems = nritems - mid;
4057 btrfs_set_header_nritems(right, nritems);
4058 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4060 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4061 btrfs_item_nr_offset(mid),
4062 nritems * sizeof(struct btrfs_item));
4064 copy_extent_buffer(right, l,
4065 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4066 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4067 leaf_data_end(fs_info, l), data_copy_size);
4069 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4071 for (i = 0; i < nritems; i++) {
4072 struct btrfs_item *item = btrfs_item_nr(i);
4075 ioff = btrfs_token_item_offset(right, item, &token);
4076 btrfs_set_token_item_offset(right, item,
4077 ioff + rt_data_off, &token);
4080 btrfs_set_header_nritems(l, mid);
4081 btrfs_item_key(right, &disk_key, 0);
4082 insert_ptr(trans, fs_info, path, &disk_key, right->start,
4083 path->slots[1] + 1, 1);
4085 btrfs_mark_buffer_dirty(right);
4086 btrfs_mark_buffer_dirty(l);
4087 BUG_ON(path->slots[0] != slot);
4090 btrfs_tree_unlock(path->nodes[0]);
4091 free_extent_buffer(path->nodes[0]);
4092 path->nodes[0] = right;
4093 path->slots[0] -= mid;
4094 path->slots[1] += 1;
4096 btrfs_tree_unlock(right);
4097 free_extent_buffer(right);
4100 BUG_ON(path->slots[0] < 0);
4104 * double splits happen when we need to insert a big item in the middle
4105 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4106 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4109 * We avoid this by trying to push the items on either side of our target
4110 * into the adjacent leaves. If all goes well we can avoid the double split
4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4114 struct btrfs_root *root,
4115 struct btrfs_path *path,
4118 struct btrfs_fs_info *fs_info = root->fs_info;
4123 int space_needed = data_size;
4125 slot = path->slots[0];
4126 if (slot < btrfs_header_nritems(path->nodes[0]))
4127 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4130 * try to push all the items after our slot into the
4133 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4140 nritems = btrfs_header_nritems(path->nodes[0]);
4142 * our goal is to get our slot at the start or end of a leaf. If
4143 * we've done so we're done
4145 if (path->slots[0] == 0 || path->slots[0] == nritems)
4148 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4151 /* try to push all the items before our slot into the next leaf */
4152 slot = path->slots[0];
4153 space_needed = data_size;
4155 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4156 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4169 * split the path's leaf in two, making sure there is at least data_size
4170 * available for the resulting leaf level of the path.
4172 * returns 0 if all went well and < 0 on failure.
4174 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4175 struct btrfs_root *root,
4176 const struct btrfs_key *ins_key,
4177 struct btrfs_path *path, int data_size,
4180 struct btrfs_disk_key disk_key;
4181 struct extent_buffer *l;
4185 struct extent_buffer *right;
4186 struct btrfs_fs_info *fs_info = root->fs_info;
4190 int num_doubles = 0;
4191 int tried_avoid_double = 0;
4194 slot = path->slots[0];
4195 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4196 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4199 /* first try to make some room by pushing left and right */
4200 if (data_size && path->nodes[1]) {
4201 int space_needed = data_size;
4203 if (slot < btrfs_header_nritems(l))
4204 space_needed -= btrfs_leaf_free_space(fs_info, l);
4206 wret = push_leaf_right(trans, root, path, space_needed,
4207 space_needed, 0, 0);
4211 space_needed = data_size;
4213 space_needed -= btrfs_leaf_free_space(fs_info,
4215 wret = push_leaf_left(trans, root, path, space_needed,
4216 space_needed, 0, (u32)-1);
4222 /* did the pushes work? */
4223 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4227 if (!path->nodes[1]) {
4228 ret = insert_new_root(trans, root, path, 1);
4235 slot = path->slots[0];
4236 nritems = btrfs_header_nritems(l);
4237 mid = (nritems + 1) / 2;
4241 leaf_space_used(l, mid, nritems - mid) + data_size >
4242 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4243 if (slot >= nritems) {
4247 if (mid != nritems &&
4248 leaf_space_used(l, mid, nritems - mid) +
4249 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4250 if (data_size && !tried_avoid_double)
4251 goto push_for_double;
4257 if (leaf_space_used(l, 0, mid) + data_size >
4258 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4259 if (!extend && data_size && slot == 0) {
4261 } else if ((extend || !data_size) && slot == 0) {
4265 if (mid != nritems &&
4266 leaf_space_used(l, mid, nritems - mid) +
4267 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4268 if (data_size && !tried_avoid_double)
4269 goto push_for_double;
4277 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4279 btrfs_item_key(l, &disk_key, mid);
4281 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4284 return PTR_ERR(right);
4286 root_add_used(root, fs_info->nodesize);
4290 btrfs_set_header_nritems(right, 0);
4291 insert_ptr(trans, fs_info, path, &disk_key,
4292 right->start, path->slots[1] + 1, 1);
4293 btrfs_tree_unlock(path->nodes[0]);
4294 free_extent_buffer(path->nodes[0]);
4295 path->nodes[0] = right;
4297 path->slots[1] += 1;
4299 btrfs_set_header_nritems(right, 0);
4300 insert_ptr(trans, fs_info, path, &disk_key,
4301 right->start, path->slots[1], 1);
4302 btrfs_tree_unlock(path->nodes[0]);
4303 free_extent_buffer(path->nodes[0]);
4304 path->nodes[0] = right;
4306 if (path->slots[1] == 0)
4307 fixup_low_keys(path, &disk_key, 1);
4310 * We create a new leaf 'right' for the required ins_len and
4311 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4312 * the content of ins_len to 'right'.
4317 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4320 BUG_ON(num_doubles != 0);
4328 push_for_double_split(trans, root, path, data_size);
4329 tried_avoid_double = 1;
4330 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4335 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4336 struct btrfs_root *root,
4337 struct btrfs_path *path, int ins_len)
4339 struct btrfs_fs_info *fs_info = root->fs_info;
4340 struct btrfs_key key;
4341 struct extent_buffer *leaf;
4342 struct btrfs_file_extent_item *fi;
4347 leaf = path->nodes[0];
4348 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4350 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4351 key.type != BTRFS_EXTENT_CSUM_KEY);
4353 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4356 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4357 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4358 fi = btrfs_item_ptr(leaf, path->slots[0],
4359 struct btrfs_file_extent_item);
4360 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4362 btrfs_release_path(path);
4364 path->keep_locks = 1;
4365 path->search_for_split = 1;
4366 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4367 path->search_for_split = 0;
4374 leaf = path->nodes[0];
4375 /* if our item isn't there, return now */
4376 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4379 /* the leaf has changed, it now has room. return now */
4380 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4383 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4384 fi = btrfs_item_ptr(leaf, path->slots[0],
4385 struct btrfs_file_extent_item);
4386 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4390 btrfs_set_path_blocking(path);
4391 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4395 path->keep_locks = 0;
4396 btrfs_unlock_up_safe(path, 1);
4399 path->keep_locks = 0;
4403 static noinline int split_item(struct btrfs_fs_info *fs_info,
4404 struct btrfs_path *path,
4405 const struct btrfs_key *new_key,
4406 unsigned long split_offset)
4408 struct extent_buffer *leaf;
4409 struct btrfs_item *item;
4410 struct btrfs_item *new_item;
4416 struct btrfs_disk_key disk_key;
4418 leaf = path->nodes[0];
4419 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4421 btrfs_set_path_blocking(path);
4423 item = btrfs_item_nr(path->slots[0]);
4424 orig_offset = btrfs_item_offset(leaf, item);
4425 item_size = btrfs_item_size(leaf, item);
4427 buf = kmalloc(item_size, GFP_NOFS);
4431 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4432 path->slots[0]), item_size);
4434 slot = path->slots[0] + 1;
4435 nritems = btrfs_header_nritems(leaf);
4436 if (slot != nritems) {
4437 /* shift the items */
4438 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4439 btrfs_item_nr_offset(slot),
4440 (nritems - slot) * sizeof(struct btrfs_item));
4443 btrfs_cpu_key_to_disk(&disk_key, new_key);
4444 btrfs_set_item_key(leaf, &disk_key, slot);
4446 new_item = btrfs_item_nr(slot);
4448 btrfs_set_item_offset(leaf, new_item, orig_offset);
4449 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4451 btrfs_set_item_offset(leaf, item,
4452 orig_offset + item_size - split_offset);
4453 btrfs_set_item_size(leaf, item, split_offset);
4455 btrfs_set_header_nritems(leaf, nritems + 1);
4457 /* write the data for the start of the original item */
4458 write_extent_buffer(leaf, buf,
4459 btrfs_item_ptr_offset(leaf, path->slots[0]),
4462 /* write the data for the new item */
4463 write_extent_buffer(leaf, buf + split_offset,
4464 btrfs_item_ptr_offset(leaf, slot),
4465 item_size - split_offset);
4466 btrfs_mark_buffer_dirty(leaf);
4468 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4474 * This function splits a single item into two items,
4475 * giving 'new_key' to the new item and splitting the
4476 * old one at split_offset (from the start of the item).
4478 * The path may be released by this operation. After
4479 * the split, the path is pointing to the old item. The
4480 * new item is going to be in the same node as the old one.
4482 * Note, the item being split must be smaller enough to live alone on
4483 * a tree block with room for one extra struct btrfs_item
4485 * This allows us to split the item in place, keeping a lock on the
4486 * leaf the entire time.
4488 int btrfs_split_item(struct btrfs_trans_handle *trans,
4489 struct btrfs_root *root,
4490 struct btrfs_path *path,
4491 const struct btrfs_key *new_key,
4492 unsigned long split_offset)
4495 ret = setup_leaf_for_split(trans, root, path,
4496 sizeof(struct btrfs_item));
4500 ret = split_item(root->fs_info, path, new_key, split_offset);
4505 * This function duplicate a item, giving 'new_key' to the new item.
4506 * It guarantees both items live in the same tree leaf and the new item
4507 * is contiguous with the original item.
4509 * This allows us to split file extent in place, keeping a lock on the
4510 * leaf the entire time.
4512 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4513 struct btrfs_root *root,
4514 struct btrfs_path *path,
4515 const struct btrfs_key *new_key)
4517 struct extent_buffer *leaf;
4521 leaf = path->nodes[0];
4522 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4523 ret = setup_leaf_for_split(trans, root, path,
4524 item_size + sizeof(struct btrfs_item));
4529 setup_items_for_insert(root, path, new_key, &item_size,
4530 item_size, item_size +
4531 sizeof(struct btrfs_item), 1);
4532 leaf = path->nodes[0];
4533 memcpy_extent_buffer(leaf,
4534 btrfs_item_ptr_offset(leaf, path->slots[0]),
4535 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4541 * make the item pointed to by the path smaller. new_size indicates
4542 * how small to make it, and from_end tells us if we just chop bytes
4543 * off the end of the item or if we shift the item to chop bytes off
4546 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4547 struct btrfs_path *path, u32 new_size, int from_end)
4550 struct extent_buffer *leaf;
4551 struct btrfs_item *item;
4553 unsigned int data_end;
4554 unsigned int old_data_start;
4555 unsigned int old_size;
4556 unsigned int size_diff;
4558 struct btrfs_map_token token;
4560 btrfs_init_map_token(&token);
4562 leaf = path->nodes[0];
4563 slot = path->slots[0];
4565 old_size = btrfs_item_size_nr(leaf, slot);
4566 if (old_size == new_size)
4569 nritems = btrfs_header_nritems(leaf);
4570 data_end = leaf_data_end(fs_info, leaf);
4572 old_data_start = btrfs_item_offset_nr(leaf, slot);
4574 size_diff = old_size - new_size;
4577 BUG_ON(slot >= nritems);
4580 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4582 /* first correct the data pointers */
4583 for (i = slot; i < nritems; i++) {
4585 item = btrfs_item_nr(i);
4587 ioff = btrfs_token_item_offset(leaf, item, &token);
4588 btrfs_set_token_item_offset(leaf, item,
4589 ioff + size_diff, &token);
4592 /* shift the data */
4594 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4595 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4596 data_end, old_data_start + new_size - data_end);
4598 struct btrfs_disk_key disk_key;
4601 btrfs_item_key(leaf, &disk_key, slot);
4603 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4605 struct btrfs_file_extent_item *fi;
4607 fi = btrfs_item_ptr(leaf, slot,
4608 struct btrfs_file_extent_item);
4609 fi = (struct btrfs_file_extent_item *)(
4610 (unsigned long)fi - size_diff);
4612 if (btrfs_file_extent_type(leaf, fi) ==
4613 BTRFS_FILE_EXTENT_INLINE) {
4614 ptr = btrfs_item_ptr_offset(leaf, slot);
4615 memmove_extent_buffer(leaf, ptr,
4617 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4621 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4622 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4623 data_end, old_data_start - data_end);
4625 offset = btrfs_disk_key_offset(&disk_key);
4626 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4627 btrfs_set_item_key(leaf, &disk_key, slot);
4629 fixup_low_keys(path, &disk_key, 1);
4632 item = btrfs_item_nr(slot);
4633 btrfs_set_item_size(leaf, item, new_size);
4634 btrfs_mark_buffer_dirty(leaf);
4636 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4637 btrfs_print_leaf(leaf);
4643 * make the item pointed to by the path bigger, data_size is the added size.
4645 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4649 struct extent_buffer *leaf;
4650 struct btrfs_item *item;
4652 unsigned int data_end;
4653 unsigned int old_data;
4654 unsigned int old_size;
4656 struct btrfs_map_token token;
4658 btrfs_init_map_token(&token);
4660 leaf = path->nodes[0];
4662 nritems = btrfs_header_nritems(leaf);
4663 data_end = leaf_data_end(fs_info, leaf);
4665 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4666 btrfs_print_leaf(leaf);
4669 slot = path->slots[0];
4670 old_data = btrfs_item_end_nr(leaf, slot);
4673 if (slot >= nritems) {
4674 btrfs_print_leaf(leaf);
4675 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4681 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4683 /* first correct the data pointers */
4684 for (i = slot; i < nritems; i++) {
4686 item = btrfs_item_nr(i);
4688 ioff = btrfs_token_item_offset(leaf, item, &token);
4689 btrfs_set_token_item_offset(leaf, item,
4690 ioff - data_size, &token);
4693 /* shift the data */
4694 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4695 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4696 data_end, old_data - data_end);
4698 data_end = old_data;
4699 old_size = btrfs_item_size_nr(leaf, slot);
4700 item = btrfs_item_nr(slot);
4701 btrfs_set_item_size(leaf, item, old_size + data_size);
4702 btrfs_mark_buffer_dirty(leaf);
4704 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4705 btrfs_print_leaf(leaf);
4711 * this is a helper for btrfs_insert_empty_items, the main goal here is
4712 * to save stack depth by doing the bulk of the work in a function
4713 * that doesn't call btrfs_search_slot
4715 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4716 const struct btrfs_key *cpu_key, u32 *data_size,
4717 u32 total_data, u32 total_size, int nr)
4719 struct btrfs_fs_info *fs_info = root->fs_info;
4720 struct btrfs_item *item;
4723 unsigned int data_end;
4724 struct btrfs_disk_key disk_key;
4725 struct extent_buffer *leaf;
4727 struct btrfs_map_token token;
4729 if (path->slots[0] == 0) {
4730 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4731 fixup_low_keys(path, &disk_key, 1);
4733 btrfs_unlock_up_safe(path, 1);
4735 btrfs_init_map_token(&token);
4737 leaf = path->nodes[0];
4738 slot = path->slots[0];
4740 nritems = btrfs_header_nritems(leaf);
4741 data_end = leaf_data_end(fs_info, leaf);
4743 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4744 btrfs_print_leaf(leaf);
4745 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4746 total_size, btrfs_leaf_free_space(fs_info, leaf));
4750 if (slot != nritems) {
4751 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4753 if (old_data < data_end) {
4754 btrfs_print_leaf(leaf);
4755 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4756 slot, old_data, data_end);
4760 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4762 /* first correct the data pointers */
4763 for (i = slot; i < nritems; i++) {
4766 item = btrfs_item_nr(i);
4767 ioff = btrfs_token_item_offset(leaf, item, &token);
4768 btrfs_set_token_item_offset(leaf, item,
4769 ioff - total_data, &token);
4771 /* shift the items */
4772 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4773 btrfs_item_nr_offset(slot),
4774 (nritems - slot) * sizeof(struct btrfs_item));
4776 /* shift the data */
4777 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4778 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4779 data_end, old_data - data_end);
4780 data_end = old_data;
4783 /* setup the item for the new data */
4784 for (i = 0; i < nr; i++) {
4785 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4786 btrfs_set_item_key(leaf, &disk_key, slot + i);
4787 item = btrfs_item_nr(slot + i);
4788 btrfs_set_token_item_offset(leaf, item,
4789 data_end - data_size[i], &token);
4790 data_end -= data_size[i];
4791 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4794 btrfs_set_header_nritems(leaf, nritems + nr);
4795 btrfs_mark_buffer_dirty(leaf);
4797 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4798 btrfs_print_leaf(leaf);
4804 * Given a key and some data, insert items into the tree.
4805 * This does all the path init required, making room in the tree if needed.
4807 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4808 struct btrfs_root *root,
4809 struct btrfs_path *path,
4810 const struct btrfs_key *cpu_key, u32 *data_size,
4819 for (i = 0; i < nr; i++)
4820 total_data += data_size[i];
4822 total_size = total_data + (nr * sizeof(struct btrfs_item));
4823 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4829 slot = path->slots[0];
4832 setup_items_for_insert(root, path, cpu_key, data_size,
4833 total_data, total_size, nr);
4838 * Given a key and some data, insert an item into the tree.
4839 * This does all the path init required, making room in the tree if needed.
4841 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4842 const struct btrfs_key *cpu_key, void *data,
4846 struct btrfs_path *path;
4847 struct extent_buffer *leaf;
4850 path = btrfs_alloc_path();
4853 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4855 leaf = path->nodes[0];
4856 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4857 write_extent_buffer(leaf, data, ptr, data_size);
4858 btrfs_mark_buffer_dirty(leaf);
4860 btrfs_free_path(path);
4865 * delete the pointer from a given node.
4867 * the tree should have been previously balanced so the deletion does not
4870 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4871 int level, int slot)
4873 struct extent_buffer *parent = path->nodes[level];
4877 nritems = btrfs_header_nritems(parent);
4878 if (slot != nritems - 1) {
4880 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4881 nritems - slot - 1);
4884 memmove_extent_buffer(parent,
4885 btrfs_node_key_ptr_offset(slot),
4886 btrfs_node_key_ptr_offset(slot + 1),
4887 sizeof(struct btrfs_key_ptr) *
4888 (nritems - slot - 1));
4890 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4896 btrfs_set_header_nritems(parent, nritems);
4897 if (nritems == 0 && parent == root->node) {
4898 BUG_ON(btrfs_header_level(root->node) != 1);
4899 /* just turn the root into a leaf and break */
4900 btrfs_set_header_level(root->node, 0);
4901 } else if (slot == 0) {
4902 struct btrfs_disk_key disk_key;
4904 btrfs_node_key(parent, &disk_key, 0);
4905 fixup_low_keys(path, &disk_key, level + 1);
4907 btrfs_mark_buffer_dirty(parent);
4911 * a helper function to delete the leaf pointed to by path->slots[1] and
4914 * This deletes the pointer in path->nodes[1] and frees the leaf
4915 * block extent. zero is returned if it all worked out, < 0 otherwise.
4917 * The path must have already been setup for deleting the leaf, including
4918 * all the proper balancing. path->nodes[1] must be locked.
4920 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4921 struct btrfs_root *root,
4922 struct btrfs_path *path,
4923 struct extent_buffer *leaf)
4925 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4926 del_ptr(root, path, 1, path->slots[1]);
4929 * btrfs_free_extent is expensive, we want to make sure we
4930 * aren't holding any locks when we call it
4932 btrfs_unlock_up_safe(path, 0);
4934 root_sub_used(root, leaf->len);
4936 extent_buffer_get(leaf);
4937 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4938 free_extent_buffer_stale(leaf);
4941 * delete the item at the leaf level in path. If that empties
4942 * the leaf, remove it from the tree
4944 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4945 struct btrfs_path *path, int slot, int nr)
4947 struct btrfs_fs_info *fs_info = root->fs_info;
4948 struct extent_buffer *leaf;
4949 struct btrfs_item *item;
4956 struct btrfs_map_token token;
4958 btrfs_init_map_token(&token);
4960 leaf = path->nodes[0];
4961 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4963 for (i = 0; i < nr; i++)
4964 dsize += btrfs_item_size_nr(leaf, slot + i);
4966 nritems = btrfs_header_nritems(leaf);
4968 if (slot + nr != nritems) {
4969 int data_end = leaf_data_end(fs_info, leaf);
4971 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4973 BTRFS_LEAF_DATA_OFFSET + data_end,
4974 last_off - data_end);
4976 for (i = slot + nr; i < nritems; i++) {
4979 item = btrfs_item_nr(i);
4980 ioff = btrfs_token_item_offset(leaf, item, &token);
4981 btrfs_set_token_item_offset(leaf, item,
4982 ioff + dsize, &token);
4985 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4986 btrfs_item_nr_offset(slot + nr),
4987 sizeof(struct btrfs_item) *
4988 (nritems - slot - nr));
4990 btrfs_set_header_nritems(leaf, nritems - nr);
4993 /* delete the leaf if we've emptied it */
4995 if (leaf == root->node) {
4996 btrfs_set_header_level(leaf, 0);
4998 btrfs_set_path_blocking(path);
4999 clean_tree_block(fs_info, leaf);
5000 btrfs_del_leaf(trans, root, path, leaf);
5003 int used = leaf_space_used(leaf, 0, nritems);
5005 struct btrfs_disk_key disk_key;
5007 btrfs_item_key(leaf, &disk_key, 0);
5008 fixup_low_keys(path, &disk_key, 1);
5011 /* delete the leaf if it is mostly empty */
5012 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5013 /* push_leaf_left fixes the path.
5014 * make sure the path still points to our leaf
5015 * for possible call to del_ptr below
5017 slot = path->slots[1];
5018 extent_buffer_get(leaf);
5020 btrfs_set_path_blocking(path);
5021 wret = push_leaf_left(trans, root, path, 1, 1,
5023 if (wret < 0 && wret != -ENOSPC)
5026 if (path->nodes[0] == leaf &&
5027 btrfs_header_nritems(leaf)) {
5028 wret = push_leaf_right(trans, root, path, 1,
5030 if (wret < 0 && wret != -ENOSPC)
5034 if (btrfs_header_nritems(leaf) == 0) {
5035 path->slots[1] = slot;
5036 btrfs_del_leaf(trans, root, path, leaf);
5037 free_extent_buffer(leaf);
5040 /* if we're still in the path, make sure
5041 * we're dirty. Otherwise, one of the
5042 * push_leaf functions must have already
5043 * dirtied this buffer
5045 if (path->nodes[0] == leaf)
5046 btrfs_mark_buffer_dirty(leaf);
5047 free_extent_buffer(leaf);
5050 btrfs_mark_buffer_dirty(leaf);
5057 * search the tree again to find a leaf with lesser keys
5058 * returns 0 if it found something or 1 if there are no lesser leaves.
5059 * returns < 0 on io errors.
5061 * This may release the path, and so you may lose any locks held at the
5064 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5066 struct btrfs_key key;
5067 struct btrfs_disk_key found_key;
5070 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5072 if (key.offset > 0) {
5074 } else if (key.type > 0) {
5076 key.offset = (u64)-1;
5077 } else if (key.objectid > 0) {
5080 key.offset = (u64)-1;
5085 btrfs_release_path(path);
5086 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5089 btrfs_item_key(path->nodes[0], &found_key, 0);
5090 ret = comp_keys(&found_key, &key);
5092 * We might have had an item with the previous key in the tree right
5093 * before we released our path. And after we released our path, that
5094 * item might have been pushed to the first slot (0) of the leaf we
5095 * were holding due to a tree balance. Alternatively, an item with the
5096 * previous key can exist as the only element of a leaf (big fat item).
5097 * Therefore account for these 2 cases, so that our callers (like
5098 * btrfs_previous_item) don't miss an existing item with a key matching
5099 * the previous key we computed above.
5107 * A helper function to walk down the tree starting at min_key, and looking
5108 * for nodes or leaves that are have a minimum transaction id.
5109 * This is used by the btree defrag code, and tree logging
5111 * This does not cow, but it does stuff the starting key it finds back
5112 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5113 * key and get a writable path.
5115 * This honors path->lowest_level to prevent descent past a given level
5118 * min_trans indicates the oldest transaction that you are interested
5119 * in walking through. Any nodes or leaves older than min_trans are
5120 * skipped over (without reading them).
5122 * returns zero if something useful was found, < 0 on error and 1 if there
5123 * was nothing in the tree that matched the search criteria.
5125 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5126 struct btrfs_path *path,
5129 struct btrfs_fs_info *fs_info = root->fs_info;
5130 struct extent_buffer *cur;
5131 struct btrfs_key found_key;
5137 int keep_locks = path->keep_locks;
5139 path->keep_locks = 1;
5141 cur = btrfs_read_lock_root_node(root);
5142 level = btrfs_header_level(cur);
5143 WARN_ON(path->nodes[level]);
5144 path->nodes[level] = cur;
5145 path->locks[level] = BTRFS_READ_LOCK;
5147 if (btrfs_header_generation(cur) < min_trans) {
5152 nritems = btrfs_header_nritems(cur);
5153 level = btrfs_header_level(cur);
5154 sret = btrfs_bin_search(cur, min_key, level, &slot);
5160 /* at the lowest level, we're done, setup the path and exit */
5161 if (level == path->lowest_level) {
5162 if (slot >= nritems)
5165 path->slots[level] = slot;
5166 btrfs_item_key_to_cpu(cur, &found_key, slot);
5169 if (sret && slot > 0)
5172 * check this node pointer against the min_trans parameters.
5173 * If it is too old, old, skip to the next one.
5175 while (slot < nritems) {
5178 gen = btrfs_node_ptr_generation(cur, slot);
5179 if (gen < min_trans) {
5187 * we didn't find a candidate key in this node, walk forward
5188 * and find another one
5190 if (slot >= nritems) {
5191 path->slots[level] = slot;
5192 btrfs_set_path_blocking(path);
5193 sret = btrfs_find_next_key(root, path, min_key, level,
5196 btrfs_release_path(path);
5202 /* save our key for returning back */
5203 btrfs_node_key_to_cpu(cur, &found_key, slot);
5204 path->slots[level] = slot;
5205 if (level == path->lowest_level) {
5209 btrfs_set_path_blocking(path);
5210 cur = read_node_slot(fs_info, cur, slot);
5216 btrfs_tree_read_lock(cur);
5218 path->locks[level - 1] = BTRFS_READ_LOCK;
5219 path->nodes[level - 1] = cur;
5220 unlock_up(path, level, 1, 0, NULL);
5223 path->keep_locks = keep_locks;
5225 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5226 btrfs_set_path_blocking(path);
5227 memcpy(min_key, &found_key, sizeof(found_key));
5232 static int tree_move_down(struct btrfs_fs_info *fs_info,
5233 struct btrfs_path *path,
5236 struct extent_buffer *eb;
5238 BUG_ON(*level == 0);
5239 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5243 path->nodes[*level - 1] = eb;
5244 path->slots[*level - 1] = 0;
5249 static int tree_move_next_or_upnext(struct btrfs_path *path,
5250 int *level, int root_level)
5254 nritems = btrfs_header_nritems(path->nodes[*level]);
5256 path->slots[*level]++;
5258 while (path->slots[*level] >= nritems) {
5259 if (*level == root_level)
5263 path->slots[*level] = 0;
5264 free_extent_buffer(path->nodes[*level]);
5265 path->nodes[*level] = NULL;
5267 path->slots[*level]++;
5269 nritems = btrfs_header_nritems(path->nodes[*level]);
5276 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5279 static int tree_advance(struct btrfs_fs_info *fs_info,
5280 struct btrfs_path *path,
5281 int *level, int root_level,
5283 struct btrfs_key *key)
5287 if (*level == 0 || !allow_down) {
5288 ret = tree_move_next_or_upnext(path, level, root_level);
5290 ret = tree_move_down(fs_info, path, level);
5294 btrfs_item_key_to_cpu(path->nodes[*level], key,
5295 path->slots[*level]);
5297 btrfs_node_key_to_cpu(path->nodes[*level], key,
5298 path->slots[*level]);
5303 static int tree_compare_item(struct btrfs_path *left_path,
5304 struct btrfs_path *right_path,
5309 unsigned long off1, off2;
5311 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5312 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5316 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5317 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5318 right_path->slots[0]);
5320 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5322 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5329 #define ADVANCE_ONLY_NEXT -1
5332 * This function compares two trees and calls the provided callback for
5333 * every changed/new/deleted item it finds.
5334 * If shared tree blocks are encountered, whole subtrees are skipped, making
5335 * the compare pretty fast on snapshotted subvolumes.
5337 * This currently works on commit roots only. As commit roots are read only,
5338 * we don't do any locking. The commit roots are protected with transactions.
5339 * Transactions are ended and rejoined when a commit is tried in between.
5341 * This function checks for modifications done to the trees while comparing.
5342 * If it detects a change, it aborts immediately.
5344 int btrfs_compare_trees(struct btrfs_root *left_root,
5345 struct btrfs_root *right_root,
5346 btrfs_changed_cb_t changed_cb, void *ctx)
5348 struct btrfs_fs_info *fs_info = left_root->fs_info;
5351 struct btrfs_path *left_path = NULL;
5352 struct btrfs_path *right_path = NULL;
5353 struct btrfs_key left_key;
5354 struct btrfs_key right_key;
5355 char *tmp_buf = NULL;
5356 int left_root_level;
5357 int right_root_level;
5360 int left_end_reached;
5361 int right_end_reached;
5369 left_path = btrfs_alloc_path();
5374 right_path = btrfs_alloc_path();
5380 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5386 left_path->search_commit_root = 1;
5387 left_path->skip_locking = 1;
5388 right_path->search_commit_root = 1;
5389 right_path->skip_locking = 1;
5392 * Strategy: Go to the first items of both trees. Then do
5394 * If both trees are at level 0
5395 * Compare keys of current items
5396 * If left < right treat left item as new, advance left tree
5398 * If left > right treat right item as deleted, advance right tree
5400 * If left == right do deep compare of items, treat as changed if
5401 * needed, advance both trees and repeat
5402 * If both trees are at the same level but not at level 0
5403 * Compare keys of current nodes/leafs
5404 * If left < right advance left tree and repeat
5405 * If left > right advance right tree and repeat
5406 * If left == right compare blockptrs of the next nodes/leafs
5407 * If they match advance both trees but stay at the same level
5409 * If they don't match advance both trees while allowing to go
5411 * If tree levels are different
5412 * Advance the tree that needs it and repeat
5414 * Advancing a tree means:
5415 * If we are at level 0, try to go to the next slot. If that's not
5416 * possible, go one level up and repeat. Stop when we found a level
5417 * where we could go to the next slot. We may at this point be on a
5420 * If we are not at level 0 and not on shared tree blocks, go one
5423 * If we are not at level 0 and on shared tree blocks, go one slot to
5424 * the right if possible or go up and right.
5427 down_read(&fs_info->commit_root_sem);
5428 left_level = btrfs_header_level(left_root->commit_root);
5429 left_root_level = left_level;
5430 left_path->nodes[left_level] =
5431 btrfs_clone_extent_buffer(left_root->commit_root);
5432 if (!left_path->nodes[left_level]) {
5433 up_read(&fs_info->commit_root_sem);
5438 right_level = btrfs_header_level(right_root->commit_root);
5439 right_root_level = right_level;
5440 right_path->nodes[right_level] =
5441 btrfs_clone_extent_buffer(right_root->commit_root);
5442 if (!right_path->nodes[right_level]) {
5443 up_read(&fs_info->commit_root_sem);
5447 up_read(&fs_info->commit_root_sem);
5449 if (left_level == 0)
5450 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5451 &left_key, left_path->slots[left_level]);
5453 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5454 &left_key, left_path->slots[left_level]);
5455 if (right_level == 0)
5456 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5457 &right_key, right_path->slots[right_level]);
5459 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5460 &right_key, right_path->slots[right_level]);
5462 left_end_reached = right_end_reached = 0;
5463 advance_left = advance_right = 0;
5466 if (advance_left && !left_end_reached) {
5467 ret = tree_advance(fs_info, left_path, &left_level,
5469 advance_left != ADVANCE_ONLY_NEXT,
5472 left_end_reached = ADVANCE;
5477 if (advance_right && !right_end_reached) {
5478 ret = tree_advance(fs_info, right_path, &right_level,
5480 advance_right != ADVANCE_ONLY_NEXT,
5483 right_end_reached = ADVANCE;
5489 if (left_end_reached && right_end_reached) {
5492 } else if (left_end_reached) {
5493 if (right_level == 0) {
5494 ret = changed_cb(left_path, right_path,
5496 BTRFS_COMPARE_TREE_DELETED,
5501 advance_right = ADVANCE;
5503 } else if (right_end_reached) {
5504 if (left_level == 0) {
5505 ret = changed_cb(left_path, right_path,
5507 BTRFS_COMPARE_TREE_NEW,
5512 advance_left = ADVANCE;
5516 if (left_level == 0 && right_level == 0) {
5517 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5519 ret = changed_cb(left_path, right_path,
5521 BTRFS_COMPARE_TREE_NEW,
5525 advance_left = ADVANCE;
5526 } else if (cmp > 0) {
5527 ret = changed_cb(left_path, right_path,
5529 BTRFS_COMPARE_TREE_DELETED,
5533 advance_right = ADVANCE;
5535 enum btrfs_compare_tree_result result;
5537 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5538 ret = tree_compare_item(left_path, right_path,
5541 result = BTRFS_COMPARE_TREE_CHANGED;
5543 result = BTRFS_COMPARE_TREE_SAME;
5544 ret = changed_cb(left_path, right_path,
5545 &left_key, result, ctx);
5548 advance_left = ADVANCE;
5549 advance_right = ADVANCE;
5551 } else if (left_level == right_level) {
5552 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5554 advance_left = ADVANCE;
5555 } else if (cmp > 0) {
5556 advance_right = ADVANCE;
5558 left_blockptr = btrfs_node_blockptr(
5559 left_path->nodes[left_level],
5560 left_path->slots[left_level]);
5561 right_blockptr = btrfs_node_blockptr(
5562 right_path->nodes[right_level],
5563 right_path->slots[right_level]);
5564 left_gen = btrfs_node_ptr_generation(
5565 left_path->nodes[left_level],
5566 left_path->slots[left_level]);
5567 right_gen = btrfs_node_ptr_generation(
5568 right_path->nodes[right_level],
5569 right_path->slots[right_level]);
5570 if (left_blockptr == right_blockptr &&
5571 left_gen == right_gen) {
5573 * As we're on a shared block, don't
5574 * allow to go deeper.
5576 advance_left = ADVANCE_ONLY_NEXT;
5577 advance_right = ADVANCE_ONLY_NEXT;
5579 advance_left = ADVANCE;
5580 advance_right = ADVANCE;
5583 } else if (left_level < right_level) {
5584 advance_right = ADVANCE;
5586 advance_left = ADVANCE;
5591 btrfs_free_path(left_path);
5592 btrfs_free_path(right_path);
5598 * this is similar to btrfs_next_leaf, but does not try to preserve
5599 * and fixup the path. It looks for and returns the next key in the
5600 * tree based on the current path and the min_trans parameters.
5602 * 0 is returned if another key is found, < 0 if there are any errors
5603 * and 1 is returned if there are no higher keys in the tree
5605 * path->keep_locks should be set to 1 on the search made before
5606 * calling this function.
5608 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5609 struct btrfs_key *key, int level, u64 min_trans)
5612 struct extent_buffer *c;
5614 WARN_ON(!path->keep_locks);
5615 while (level < BTRFS_MAX_LEVEL) {
5616 if (!path->nodes[level])
5619 slot = path->slots[level] + 1;
5620 c = path->nodes[level];
5622 if (slot >= btrfs_header_nritems(c)) {
5625 struct btrfs_key cur_key;
5626 if (level + 1 >= BTRFS_MAX_LEVEL ||
5627 !path->nodes[level + 1])
5630 if (path->locks[level + 1]) {
5635 slot = btrfs_header_nritems(c) - 1;
5637 btrfs_item_key_to_cpu(c, &cur_key, slot);
5639 btrfs_node_key_to_cpu(c, &cur_key, slot);
5641 orig_lowest = path->lowest_level;
5642 btrfs_release_path(path);
5643 path->lowest_level = level;
5644 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5646 path->lowest_level = orig_lowest;
5650 c = path->nodes[level];
5651 slot = path->slots[level];
5658 btrfs_item_key_to_cpu(c, key, slot);
5660 u64 gen = btrfs_node_ptr_generation(c, slot);
5662 if (gen < min_trans) {
5666 btrfs_node_key_to_cpu(c, key, slot);
5674 * search the tree again to find a leaf with greater keys
5675 * returns 0 if it found something or 1 if there are no greater leaves.
5676 * returns < 0 on io errors.
5678 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5680 return btrfs_next_old_leaf(root, path, 0);
5683 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5688 struct extent_buffer *c;
5689 struct extent_buffer *next;
5690 struct btrfs_key key;
5693 int old_spinning = path->leave_spinning;
5694 int next_rw_lock = 0;
5696 nritems = btrfs_header_nritems(path->nodes[0]);
5700 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5705 btrfs_release_path(path);
5707 path->keep_locks = 1;
5708 path->leave_spinning = 1;
5711 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5714 path->keep_locks = 0;
5719 nritems = btrfs_header_nritems(path->nodes[0]);
5721 * by releasing the path above we dropped all our locks. A balance
5722 * could have added more items next to the key that used to be
5723 * at the very end of the block. So, check again here and
5724 * advance the path if there are now more items available.
5726 if (nritems > 0 && path->slots[0] < nritems - 1) {
5733 * So the above check misses one case:
5734 * - after releasing the path above, someone has removed the item that
5735 * used to be at the very end of the block, and balance between leafs
5736 * gets another one with bigger key.offset to replace it.
5738 * This one should be returned as well, or we can get leaf corruption
5739 * later(esp. in __btrfs_drop_extents()).
5741 * And a bit more explanation about this check,
5742 * with ret > 0, the key isn't found, the path points to the slot
5743 * where it should be inserted, so the path->slots[0] item must be the
5746 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5751 while (level < BTRFS_MAX_LEVEL) {
5752 if (!path->nodes[level]) {
5757 slot = path->slots[level] + 1;
5758 c = path->nodes[level];
5759 if (slot >= btrfs_header_nritems(c)) {
5761 if (level == BTRFS_MAX_LEVEL) {
5769 btrfs_tree_unlock_rw(next, next_rw_lock);
5770 free_extent_buffer(next);
5774 next_rw_lock = path->locks[level];
5775 ret = read_block_for_search(root, path, &next, level,
5781 btrfs_release_path(path);
5785 if (!path->skip_locking) {
5786 ret = btrfs_try_tree_read_lock(next);
5787 if (!ret && time_seq) {
5789 * If we don't get the lock, we may be racing
5790 * with push_leaf_left, holding that lock while
5791 * itself waiting for the leaf we've currently
5792 * locked. To solve this situation, we give up
5793 * on our lock and cycle.
5795 free_extent_buffer(next);
5796 btrfs_release_path(path);
5801 btrfs_set_path_blocking(path);
5802 btrfs_tree_read_lock(next);
5804 next_rw_lock = BTRFS_READ_LOCK;
5808 path->slots[level] = slot;
5811 c = path->nodes[level];
5812 if (path->locks[level])
5813 btrfs_tree_unlock_rw(c, path->locks[level]);
5815 free_extent_buffer(c);
5816 path->nodes[level] = next;
5817 path->slots[level] = 0;
5818 if (!path->skip_locking)
5819 path->locks[level] = next_rw_lock;
5823 ret = read_block_for_search(root, path, &next, level,
5829 btrfs_release_path(path);
5833 if (!path->skip_locking) {
5834 ret = btrfs_try_tree_read_lock(next);
5836 btrfs_set_path_blocking(path);
5837 btrfs_tree_read_lock(next);
5839 next_rw_lock = BTRFS_READ_LOCK;
5844 unlock_up(path, 0, 1, 0, NULL);
5845 path->leave_spinning = old_spinning;
5847 btrfs_set_path_blocking(path);
5853 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5854 * searching until it gets past min_objectid or finds an item of 'type'
5856 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5858 int btrfs_previous_item(struct btrfs_root *root,
5859 struct btrfs_path *path, u64 min_objectid,
5862 struct btrfs_key found_key;
5863 struct extent_buffer *leaf;
5868 if (path->slots[0] == 0) {
5869 btrfs_set_path_blocking(path);
5870 ret = btrfs_prev_leaf(root, path);
5876 leaf = path->nodes[0];
5877 nritems = btrfs_header_nritems(leaf);
5880 if (path->slots[0] == nritems)
5883 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5884 if (found_key.objectid < min_objectid)
5886 if (found_key.type == type)
5888 if (found_key.objectid == min_objectid &&
5889 found_key.type < type)
5896 * search in extent tree to find a previous Metadata/Data extent item with
5899 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5901 int btrfs_previous_extent_item(struct btrfs_root *root,
5902 struct btrfs_path *path, u64 min_objectid)
5904 struct btrfs_key found_key;
5905 struct extent_buffer *leaf;
5910 if (path->slots[0] == 0) {
5911 btrfs_set_path_blocking(path);
5912 ret = btrfs_prev_leaf(root, path);
5918 leaf = path->nodes[0];
5919 nritems = btrfs_header_nritems(leaf);
5922 if (path->slots[0] == nritems)
5925 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5926 if (found_key.objectid < min_objectid)
5928 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5929 found_key.type == BTRFS_METADATA_ITEM_KEY)
5931 if (found_key.objectid == min_objectid &&
5932 found_key.type < BTRFS_EXTENT_ITEM_KEY)