2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126 #include <net/cls_cgroup.h>
128 #include <linux/filter.h>
135 * Each address family might have different locking rules, so we have
136 * one slock key per address family:
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
142 * Make lock validator output more readable. (we pre-construct these
143 * strings build-time, so that runtime initialization of socket
146 static const char *const af_family_key_strings[AF_MAX+1] = {
147 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
148 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
149 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
150 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
151 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
152 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
153 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
154 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
155 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
156 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
157 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
158 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
159 "sk_lock-AF_IEEE802154",
162 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
163 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
164 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
165 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
166 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
167 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
168 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
169 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
170 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
171 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
172 "slock-27" , "slock-28" , "slock-AF_CAN" ,
173 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
174 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
175 "slock-AF_IEEE802154",
178 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
179 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
180 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
181 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
182 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
183 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
184 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
185 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
186 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
187 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
188 "clock-27" , "clock-28" , "clock-AF_CAN" ,
189 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
190 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
191 "clock-AF_IEEE802154",
196 * sk_callback_lock locking rules are per-address-family,
197 * so split the lock classes by using a per-AF key:
199 static struct lock_class_key af_callback_keys[AF_MAX];
201 /* Take into consideration the size of the struct sk_buff overhead in the
202 * determination of these values, since that is non-constant across
203 * platforms. This makes socket queueing behavior and performance
204 * not depend upon such differences.
206 #define _SK_MEM_PACKETS 256
207 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
208 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211 /* Run time adjustable parameters. */
212 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
213 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
214 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
215 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217 /* Maximal space eaten by iovec or ancilliary data plus some space */
218 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
219 EXPORT_SYMBOL(sysctl_optmem_max);
221 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
222 int net_cls_subsys_id = -1;
223 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
226 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
230 if (optlen < sizeof(tv))
232 if (copy_from_user(&tv, optval, sizeof(tv)))
234 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
238 static int warned __read_mostly;
241 if (warned < 10 && net_ratelimit()) {
243 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
244 "tries to set negative timeout\n",
245 current->comm, task_pid_nr(current));
249 *timeo_p = MAX_SCHEDULE_TIMEOUT;
250 if (tv.tv_sec == 0 && tv.tv_usec == 0)
252 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
253 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
257 static void sock_warn_obsolete_bsdism(const char *name)
260 static char warncomm[TASK_COMM_LEN];
261 if (strcmp(warncomm, current->comm) && warned < 5) {
262 strcpy(warncomm, current->comm);
263 printk(KERN_WARNING "process `%s' is using obsolete "
264 "%s SO_BSDCOMPAT\n", warncomm, name);
269 static void sock_disable_timestamp(struct sock *sk, int flag)
271 if (sock_flag(sk, flag)) {
272 sock_reset_flag(sk, flag);
273 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
274 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
275 net_disable_timestamp();
281 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
286 struct sk_buff_head *list = &sk->sk_receive_queue;
288 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
289 number of warnings when compiling with -W --ANK
291 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
292 (unsigned)sk->sk_rcvbuf) {
293 atomic_inc(&sk->sk_drops);
297 err = sk_filter(sk, skb);
301 if (!sk_rmem_schedule(sk, skb->truesize)) {
302 atomic_inc(&sk->sk_drops);
307 skb_set_owner_r(skb, sk);
309 /* Cache the SKB length before we tack it onto the receive
310 * queue. Once it is added it no longer belongs to us and
311 * may be freed by other threads of control pulling packets
316 /* we escape from rcu protected region, make sure we dont leak
321 spin_lock_irqsave(&list->lock, flags);
322 skb->dropcount = atomic_read(&sk->sk_drops);
323 __skb_queue_tail(list, skb);
324 spin_unlock_irqrestore(&list->lock, flags);
326 if (!sock_flag(sk, SOCK_DEAD))
327 sk->sk_data_ready(sk, skb_len);
330 EXPORT_SYMBOL(sock_queue_rcv_skb);
332 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334 int rc = NET_RX_SUCCESS;
336 if (sk_filter(sk, skb))
337 goto discard_and_relse;
341 if (sk_rcvqueues_full(sk, skb)) {
342 atomic_inc(&sk->sk_drops);
343 goto discard_and_relse;
346 bh_lock_sock_nested(sk);
349 if (!sock_owned_by_user(sk)) {
351 * trylock + unlock semantics:
353 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355 rc = sk_backlog_rcv(sk, skb);
357 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
358 } else if (sk_add_backlog(sk, skb)) {
360 atomic_inc(&sk->sk_drops);
361 goto discard_and_relse;
372 EXPORT_SYMBOL(sk_receive_skb);
374 void sk_reset_txq(struct sock *sk)
376 sk_tx_queue_clear(sk);
378 EXPORT_SYMBOL(sk_reset_txq);
380 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382 struct dst_entry *dst = __sk_dst_get(sk);
384 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
385 sk_tx_queue_clear(sk);
386 rcu_assign_pointer(sk->sk_dst_cache, NULL);
393 EXPORT_SYMBOL(__sk_dst_check);
395 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397 struct dst_entry *dst = sk_dst_get(sk);
399 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
407 EXPORT_SYMBOL(sk_dst_check);
409 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411 int ret = -ENOPROTOOPT;
412 #ifdef CONFIG_NETDEVICES
413 struct net *net = sock_net(sk);
414 char devname[IFNAMSIZ];
419 if (!capable(CAP_NET_RAW))
426 /* Bind this socket to a particular device like "eth0",
427 * as specified in the passed interface name. If the
428 * name is "" or the option length is zero the socket
431 if (optlen > IFNAMSIZ - 1)
432 optlen = IFNAMSIZ - 1;
433 memset(devname, 0, sizeof(devname));
436 if (copy_from_user(devname, optval, optlen))
440 if (devname[0] != '\0') {
441 struct net_device *dev;
444 dev = dev_get_by_name_rcu(net, devname);
446 index = dev->ifindex;
454 sk->sk_bound_dev_if = index;
466 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
469 sock_set_flag(sk, bit);
471 sock_reset_flag(sk, bit);
475 * This is meant for all protocols to use and covers goings on
476 * at the socket level. Everything here is generic.
479 int sock_setsockopt(struct socket *sock, int level, int optname,
480 char __user *optval, unsigned int optlen)
482 struct sock *sk = sock->sk;
489 * Options without arguments
492 if (optname == SO_BINDTODEVICE)
493 return sock_bindtodevice(sk, optval, optlen);
495 if (optlen < sizeof(int))
498 if (get_user(val, (int __user *)optval))
501 valbool = val ? 1 : 0;
507 if (val && !capable(CAP_NET_ADMIN))
510 sock_valbool_flag(sk, SOCK_DBG, valbool);
513 sk->sk_reuse = valbool;
522 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
525 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
528 /* Don't error on this BSD doesn't and if you think
529 about it this is right. Otherwise apps have to
530 play 'guess the biggest size' games. RCVBUF/SNDBUF
531 are treated in BSD as hints */
533 if (val > sysctl_wmem_max)
534 val = sysctl_wmem_max;
536 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
537 if ((val * 2) < SOCK_MIN_SNDBUF)
538 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540 sk->sk_sndbuf = val * 2;
543 * Wake up sending tasks if we
546 sk->sk_write_space(sk);
550 if (!capable(CAP_NET_ADMIN)) {
557 /* Don't error on this BSD doesn't and if you think
558 about it this is right. Otherwise apps have to
559 play 'guess the biggest size' games. RCVBUF/SNDBUF
560 are treated in BSD as hints */
562 if (val > sysctl_rmem_max)
563 val = sysctl_rmem_max;
565 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567 * We double it on the way in to account for
568 * "struct sk_buff" etc. overhead. Applications
569 * assume that the SO_RCVBUF setting they make will
570 * allow that much actual data to be received on that
573 * Applications are unaware that "struct sk_buff" and
574 * other overheads allocate from the receive buffer
575 * during socket buffer allocation.
577 * And after considering the possible alternatives,
578 * returning the value we actually used in getsockopt
579 * is the most desirable behavior.
581 if ((val * 2) < SOCK_MIN_RCVBUF)
582 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584 sk->sk_rcvbuf = val * 2;
588 if (!capable(CAP_NET_ADMIN)) {
596 if (sk->sk_protocol == IPPROTO_TCP)
597 tcp_set_keepalive(sk, valbool);
599 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
603 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
607 sk->sk_no_check = valbool;
611 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
612 sk->sk_priority = val;
618 if (optlen < sizeof(ling)) {
619 ret = -EINVAL; /* 1003.1g */
622 if (copy_from_user(&ling, optval, sizeof(ling))) {
627 sock_reset_flag(sk, SOCK_LINGER);
629 #if (BITS_PER_LONG == 32)
630 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
631 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
634 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
635 sock_set_flag(sk, SOCK_LINGER);
640 sock_warn_obsolete_bsdism("setsockopt");
645 set_bit(SOCK_PASSCRED, &sock->flags);
647 clear_bit(SOCK_PASSCRED, &sock->flags);
653 if (optname == SO_TIMESTAMP)
654 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
657 sock_set_flag(sk, SOCK_RCVTSTAMP);
658 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660 sock_reset_flag(sk, SOCK_RCVTSTAMP);
661 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
665 case SO_TIMESTAMPING:
666 if (val & ~SOF_TIMESTAMPING_MASK) {
670 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
671 val & SOF_TIMESTAMPING_TX_HARDWARE);
672 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
673 val & SOF_TIMESTAMPING_TX_SOFTWARE);
674 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
675 val & SOF_TIMESTAMPING_RX_HARDWARE);
676 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
677 sock_enable_timestamp(sk,
678 SOCK_TIMESTAMPING_RX_SOFTWARE);
680 sock_disable_timestamp(sk,
681 SOCK_TIMESTAMPING_RX_SOFTWARE);
682 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
683 val & SOF_TIMESTAMPING_SOFTWARE);
684 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
685 val & SOF_TIMESTAMPING_SYS_HARDWARE);
686 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
687 val & SOF_TIMESTAMPING_RAW_HARDWARE);
693 sk->sk_rcvlowat = val ? : 1;
697 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
701 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
704 case SO_ATTACH_FILTER:
706 if (optlen == sizeof(struct sock_fprog)) {
707 struct sock_fprog fprog;
710 if (copy_from_user(&fprog, optval, sizeof(fprog)))
713 ret = sk_attach_filter(&fprog, sk);
717 case SO_DETACH_FILTER:
718 ret = sk_detach_filter(sk);
723 set_bit(SOCK_PASSSEC, &sock->flags);
725 clear_bit(SOCK_PASSSEC, &sock->flags);
728 if (!capable(CAP_NET_ADMIN))
734 /* We implement the SO_SNDLOWAT etc to
735 not be settable (1003.1g 5.3) */
738 sock_set_flag(sk, SOCK_RXQ_OVFL);
740 sock_reset_flag(sk, SOCK_RXQ_OVFL);
749 EXPORT_SYMBOL(sock_setsockopt);
752 int sock_getsockopt(struct socket *sock, int level, int optname,
753 char __user *optval, int __user *optlen)
755 struct sock *sk = sock->sk;
763 int lv = sizeof(int);
766 if (get_user(len, optlen))
771 memset(&v, 0, sizeof(v));
775 v.val = sock_flag(sk, SOCK_DBG);
779 v.val = sock_flag(sk, SOCK_LOCALROUTE);
783 v.val = !!sock_flag(sk, SOCK_BROADCAST);
787 v.val = sk->sk_sndbuf;
791 v.val = sk->sk_rcvbuf;
795 v.val = sk->sk_reuse;
799 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
807 v.val = sk->sk_protocol;
811 v.val = sk->sk_family;
815 v.val = -sock_error(sk);
817 v.val = xchg(&sk->sk_err_soft, 0);
821 v.val = !!sock_flag(sk, SOCK_URGINLINE);
825 v.val = sk->sk_no_check;
829 v.val = sk->sk_priority;
834 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
835 v.ling.l_linger = sk->sk_lingertime / HZ;
839 sock_warn_obsolete_bsdism("getsockopt");
843 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
844 !sock_flag(sk, SOCK_RCVTSTAMPNS);
848 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
851 case SO_TIMESTAMPING:
853 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
854 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
855 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
856 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
857 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
858 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
859 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
860 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
861 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
862 v.val |= SOF_TIMESTAMPING_SOFTWARE;
863 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
864 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
865 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
866 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
870 lv = sizeof(struct timeval);
871 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
875 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
876 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
881 lv = sizeof(struct timeval);
882 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
886 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
887 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
892 v.val = sk->sk_rcvlowat;
900 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
904 if (len > sizeof(sk->sk_peercred))
905 len = sizeof(sk->sk_peercred);
906 if (copy_to_user(optval, &sk->sk_peercred, len))
914 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
918 if (copy_to_user(optval, address, len))
923 /* Dubious BSD thing... Probably nobody even uses it, but
924 * the UNIX standard wants it for whatever reason... -DaveM
927 v.val = sk->sk_state == TCP_LISTEN;
931 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
935 return security_socket_getpeersec_stream(sock, optval, optlen, len);
942 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
951 if (copy_to_user(optval, &v, len))
954 if (put_user(len, optlen))
960 * Initialize an sk_lock.
962 * (We also register the sk_lock with the lock validator.)
964 static inline void sock_lock_init(struct sock *sk)
966 sock_lock_init_class_and_name(sk,
967 af_family_slock_key_strings[sk->sk_family],
968 af_family_slock_keys + sk->sk_family,
969 af_family_key_strings[sk->sk_family],
970 af_family_keys + sk->sk_family);
974 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
975 * even temporarly, because of RCU lookups. sk_node should also be left as is.
977 static void sock_copy(struct sock *nsk, const struct sock *osk)
979 #ifdef CONFIG_SECURITY_NETWORK
980 void *sptr = nsk->sk_security;
982 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
983 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
984 sizeof(osk->sk_tx_queue_mapping));
985 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
986 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
987 #ifdef CONFIG_SECURITY_NETWORK
988 nsk->sk_security = sptr;
989 security_sk_clone(osk, nsk);
993 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
997 struct kmem_cache *slab;
1001 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1004 if (priority & __GFP_ZERO) {
1006 * caches using SLAB_DESTROY_BY_RCU should let
1007 * sk_node.next un-modified. Special care is taken
1008 * when initializing object to zero.
1010 if (offsetof(struct sock, sk_node.next) != 0)
1011 memset(sk, 0, offsetof(struct sock, sk_node.next));
1012 memset(&sk->sk_node.pprev, 0,
1013 prot->obj_size - offsetof(struct sock,
1018 sk = kmalloc(prot->obj_size, priority);
1021 kmemcheck_annotate_bitfield(sk, flags);
1023 if (security_sk_alloc(sk, family, priority))
1026 if (!try_module_get(prot->owner))
1028 sk_tx_queue_clear(sk);
1034 security_sk_free(sk);
1037 kmem_cache_free(slab, sk);
1043 static void sk_prot_free(struct proto *prot, struct sock *sk)
1045 struct kmem_cache *slab;
1046 struct module *owner;
1048 owner = prot->owner;
1051 security_sk_free(sk);
1053 kmem_cache_free(slab, sk);
1059 #ifdef CONFIG_CGROUPS
1060 void sock_update_classid(struct sock *sk)
1062 u32 classid = task_cls_classid(current);
1064 if (classid && classid != sk->sk_classid)
1065 sk->sk_classid = classid;
1067 EXPORT_SYMBOL(sock_update_classid);
1071 * sk_alloc - All socket objects are allocated here
1072 * @net: the applicable net namespace
1073 * @family: protocol family
1074 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1075 * @prot: struct proto associated with this new sock instance
1077 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1082 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1084 sk->sk_family = family;
1086 * See comment in struct sock definition to understand
1087 * why we need sk_prot_creator -acme
1089 sk->sk_prot = sk->sk_prot_creator = prot;
1091 sock_net_set(sk, get_net(net));
1092 atomic_set(&sk->sk_wmem_alloc, 1);
1094 sock_update_classid(sk);
1099 EXPORT_SYMBOL(sk_alloc);
1101 static void __sk_free(struct sock *sk)
1103 struct sk_filter *filter;
1105 if (sk->sk_destruct)
1106 sk->sk_destruct(sk);
1108 filter = rcu_dereference_check(sk->sk_filter,
1109 atomic_read(&sk->sk_wmem_alloc) == 0);
1111 sk_filter_uncharge(sk, filter);
1112 rcu_assign_pointer(sk->sk_filter, NULL);
1115 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1116 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1118 if (atomic_read(&sk->sk_omem_alloc))
1119 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1120 __func__, atomic_read(&sk->sk_omem_alloc));
1122 put_net(sock_net(sk));
1123 sk_prot_free(sk->sk_prot_creator, sk);
1126 void sk_free(struct sock *sk)
1129 * We substract one from sk_wmem_alloc and can know if
1130 * some packets are still in some tx queue.
1131 * If not null, sock_wfree() will call __sk_free(sk) later
1133 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1136 EXPORT_SYMBOL(sk_free);
1139 * Last sock_put should drop referrence to sk->sk_net. It has already
1140 * been dropped in sk_change_net. Taking referrence to stopping namespace
1142 * Take referrence to a socket to remove it from hash _alive_ and after that
1143 * destroy it in the context of init_net.
1145 void sk_release_kernel(struct sock *sk)
1147 if (sk == NULL || sk->sk_socket == NULL)
1151 sock_release(sk->sk_socket);
1152 release_net(sock_net(sk));
1153 sock_net_set(sk, get_net(&init_net));
1156 EXPORT_SYMBOL(sk_release_kernel);
1158 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1162 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1163 if (newsk != NULL) {
1164 struct sk_filter *filter;
1166 sock_copy(newsk, sk);
1169 get_net(sock_net(newsk));
1170 sk_node_init(&newsk->sk_node);
1171 sock_lock_init(newsk);
1172 bh_lock_sock(newsk);
1173 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1174 newsk->sk_backlog.len = 0;
1176 atomic_set(&newsk->sk_rmem_alloc, 0);
1178 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1180 atomic_set(&newsk->sk_wmem_alloc, 1);
1181 atomic_set(&newsk->sk_omem_alloc, 0);
1182 skb_queue_head_init(&newsk->sk_receive_queue);
1183 skb_queue_head_init(&newsk->sk_write_queue);
1184 #ifdef CONFIG_NET_DMA
1185 skb_queue_head_init(&newsk->sk_async_wait_queue);
1188 spin_lock_init(&newsk->sk_dst_lock);
1189 rwlock_init(&newsk->sk_callback_lock);
1190 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1191 af_callback_keys + newsk->sk_family,
1192 af_family_clock_key_strings[newsk->sk_family]);
1194 newsk->sk_dst_cache = NULL;
1195 newsk->sk_wmem_queued = 0;
1196 newsk->sk_forward_alloc = 0;
1197 newsk->sk_send_head = NULL;
1198 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1200 sock_reset_flag(newsk, SOCK_DONE);
1201 skb_queue_head_init(&newsk->sk_error_queue);
1203 filter = newsk->sk_filter;
1205 sk_filter_charge(newsk, filter);
1207 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1208 /* It is still raw copy of parent, so invalidate
1209 * destructor and make plain sk_free() */
1210 newsk->sk_destruct = NULL;
1217 newsk->sk_priority = 0;
1219 * Before updating sk_refcnt, we must commit prior changes to memory
1220 * (Documentation/RCU/rculist_nulls.txt for details)
1223 atomic_set(&newsk->sk_refcnt, 2);
1226 * Increment the counter in the same struct proto as the master
1227 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1228 * is the same as sk->sk_prot->socks, as this field was copied
1231 * This _changes_ the previous behaviour, where
1232 * tcp_create_openreq_child always was incrementing the
1233 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1234 * to be taken into account in all callers. -acme
1236 sk_refcnt_debug_inc(newsk);
1237 sk_set_socket(newsk, NULL);
1238 newsk->sk_wq = NULL;
1240 if (newsk->sk_prot->sockets_allocated)
1241 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1243 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1244 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1245 net_enable_timestamp();
1250 EXPORT_SYMBOL_GPL(sk_clone);
1252 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1254 __sk_dst_set(sk, dst);
1255 sk->sk_route_caps = dst->dev->features;
1256 if (sk->sk_route_caps & NETIF_F_GSO)
1257 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1258 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1259 if (sk_can_gso(sk)) {
1260 if (dst->header_len) {
1261 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1263 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1264 sk->sk_gso_max_size = dst->dev->gso_max_size;
1268 EXPORT_SYMBOL_GPL(sk_setup_caps);
1270 void __init sk_init(void)
1272 if (totalram_pages <= 4096) {
1273 sysctl_wmem_max = 32767;
1274 sysctl_rmem_max = 32767;
1275 sysctl_wmem_default = 32767;
1276 sysctl_rmem_default = 32767;
1277 } else if (totalram_pages >= 131072) {
1278 sysctl_wmem_max = 131071;
1279 sysctl_rmem_max = 131071;
1284 * Simple resource managers for sockets.
1289 * Write buffer destructor automatically called from kfree_skb.
1291 void sock_wfree(struct sk_buff *skb)
1293 struct sock *sk = skb->sk;
1294 unsigned int len = skb->truesize;
1296 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1298 * Keep a reference on sk_wmem_alloc, this will be released
1299 * after sk_write_space() call
1301 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1302 sk->sk_write_space(sk);
1306 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1307 * could not do because of in-flight packets
1309 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1312 EXPORT_SYMBOL(sock_wfree);
1315 * Read buffer destructor automatically called from kfree_skb.
1317 void sock_rfree(struct sk_buff *skb)
1319 struct sock *sk = skb->sk;
1321 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1322 sk_mem_uncharge(skb->sk, skb->truesize);
1324 EXPORT_SYMBOL(sock_rfree);
1327 int sock_i_uid(struct sock *sk)
1331 read_lock(&sk->sk_callback_lock);
1332 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1333 read_unlock(&sk->sk_callback_lock);
1336 EXPORT_SYMBOL(sock_i_uid);
1338 unsigned long sock_i_ino(struct sock *sk)
1342 read_lock(&sk->sk_callback_lock);
1343 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1344 read_unlock(&sk->sk_callback_lock);
1347 EXPORT_SYMBOL(sock_i_ino);
1350 * Allocate a skb from the socket's send buffer.
1352 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1355 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1356 struct sk_buff *skb = alloc_skb(size, priority);
1358 skb_set_owner_w(skb, sk);
1364 EXPORT_SYMBOL(sock_wmalloc);
1367 * Allocate a skb from the socket's receive buffer.
1369 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1372 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1373 struct sk_buff *skb = alloc_skb(size, priority);
1375 skb_set_owner_r(skb, sk);
1383 * Allocate a memory block from the socket's option memory buffer.
1385 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1387 if ((unsigned)size <= sysctl_optmem_max &&
1388 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1390 /* First do the add, to avoid the race if kmalloc
1393 atomic_add(size, &sk->sk_omem_alloc);
1394 mem = kmalloc(size, priority);
1397 atomic_sub(size, &sk->sk_omem_alloc);
1401 EXPORT_SYMBOL(sock_kmalloc);
1404 * Free an option memory block.
1406 void sock_kfree_s(struct sock *sk, void *mem, int size)
1409 atomic_sub(size, &sk->sk_omem_alloc);
1411 EXPORT_SYMBOL(sock_kfree_s);
1413 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1414 I think, these locks should be removed for datagram sockets.
1416 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1420 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1424 if (signal_pending(current))
1426 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1427 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1428 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1430 if (sk->sk_shutdown & SEND_SHUTDOWN)
1434 timeo = schedule_timeout(timeo);
1436 finish_wait(sk_sleep(sk), &wait);
1442 * Generic send/receive buffer handlers
1445 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1446 unsigned long data_len, int noblock,
1449 struct sk_buff *skb;
1454 gfp_mask = sk->sk_allocation;
1455 if (gfp_mask & __GFP_WAIT)
1456 gfp_mask |= __GFP_REPEAT;
1458 timeo = sock_sndtimeo(sk, noblock);
1460 err = sock_error(sk);
1465 if (sk->sk_shutdown & SEND_SHUTDOWN)
1468 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1469 skb = alloc_skb(header_len, gfp_mask);
1474 /* No pages, we're done... */
1478 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1479 skb->truesize += data_len;
1480 skb_shinfo(skb)->nr_frags = npages;
1481 for (i = 0; i < npages; i++) {
1485 page = alloc_pages(sk->sk_allocation, 0);
1488 skb_shinfo(skb)->nr_frags = i;
1493 frag = &skb_shinfo(skb)->frags[i];
1495 frag->page_offset = 0;
1496 frag->size = (data_len >= PAGE_SIZE ?
1499 data_len -= PAGE_SIZE;
1502 /* Full success... */
1508 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1509 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1513 if (signal_pending(current))
1515 timeo = sock_wait_for_wmem(sk, timeo);
1518 skb_set_owner_w(skb, sk);
1522 err = sock_intr_errno(timeo);
1527 EXPORT_SYMBOL(sock_alloc_send_pskb);
1529 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1530 int noblock, int *errcode)
1532 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1534 EXPORT_SYMBOL(sock_alloc_send_skb);
1536 static void __lock_sock(struct sock *sk)
1541 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1542 TASK_UNINTERRUPTIBLE);
1543 spin_unlock_bh(&sk->sk_lock.slock);
1545 spin_lock_bh(&sk->sk_lock.slock);
1546 if (!sock_owned_by_user(sk))
1549 finish_wait(&sk->sk_lock.wq, &wait);
1552 static void __release_sock(struct sock *sk)
1554 struct sk_buff *skb = sk->sk_backlog.head;
1557 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1561 struct sk_buff *next = skb->next;
1563 WARN_ON_ONCE(skb_dst_is_noref(skb));
1565 sk_backlog_rcv(sk, skb);
1568 * We are in process context here with softirqs
1569 * disabled, use cond_resched_softirq() to preempt.
1570 * This is safe to do because we've taken the backlog
1573 cond_resched_softirq();
1576 } while (skb != NULL);
1579 } while ((skb = sk->sk_backlog.head) != NULL);
1582 * Doing the zeroing here guarantee we can not loop forever
1583 * while a wild producer attempts to flood us.
1585 sk->sk_backlog.len = 0;
1589 * sk_wait_data - wait for data to arrive at sk_receive_queue
1590 * @sk: sock to wait on
1591 * @timeo: for how long
1593 * Now socket state including sk->sk_err is changed only under lock,
1594 * hence we may omit checks after joining wait queue.
1595 * We check receive queue before schedule() only as optimization;
1596 * it is very likely that release_sock() added new data.
1598 int sk_wait_data(struct sock *sk, long *timeo)
1603 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1604 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1605 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1606 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1607 finish_wait(sk_sleep(sk), &wait);
1610 EXPORT_SYMBOL(sk_wait_data);
1613 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1615 * @size: memory size to allocate
1616 * @kind: allocation type
1618 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1619 * rmem allocation. This function assumes that protocols which have
1620 * memory_pressure use sk_wmem_queued as write buffer accounting.
1622 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1624 struct proto *prot = sk->sk_prot;
1625 int amt = sk_mem_pages(size);
1628 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1629 allocated = atomic_add_return(amt, prot->memory_allocated);
1632 if (allocated <= prot->sysctl_mem[0]) {
1633 if (prot->memory_pressure && *prot->memory_pressure)
1634 *prot->memory_pressure = 0;
1638 /* Under pressure. */
1639 if (allocated > prot->sysctl_mem[1])
1640 if (prot->enter_memory_pressure)
1641 prot->enter_memory_pressure(sk);
1643 /* Over hard limit. */
1644 if (allocated > prot->sysctl_mem[2])
1645 goto suppress_allocation;
1647 /* guarantee minimum buffer size under pressure */
1648 if (kind == SK_MEM_RECV) {
1649 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1651 } else { /* SK_MEM_SEND */
1652 if (sk->sk_type == SOCK_STREAM) {
1653 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1655 } else if (atomic_read(&sk->sk_wmem_alloc) <
1656 prot->sysctl_wmem[0])
1660 if (prot->memory_pressure) {
1663 if (!*prot->memory_pressure)
1665 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1666 if (prot->sysctl_mem[2] > alloc *
1667 sk_mem_pages(sk->sk_wmem_queued +
1668 atomic_read(&sk->sk_rmem_alloc) +
1669 sk->sk_forward_alloc))
1673 suppress_allocation:
1675 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1676 sk_stream_moderate_sndbuf(sk);
1678 /* Fail only if socket is _under_ its sndbuf.
1679 * In this case we cannot block, so that we have to fail.
1681 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1685 /* Alas. Undo changes. */
1686 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1687 atomic_sub(amt, prot->memory_allocated);
1690 EXPORT_SYMBOL(__sk_mem_schedule);
1693 * __sk_reclaim - reclaim memory_allocated
1696 void __sk_mem_reclaim(struct sock *sk)
1698 struct proto *prot = sk->sk_prot;
1700 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1701 prot->memory_allocated);
1702 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1704 if (prot->memory_pressure && *prot->memory_pressure &&
1705 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1706 *prot->memory_pressure = 0;
1708 EXPORT_SYMBOL(__sk_mem_reclaim);
1712 * Set of default routines for initialising struct proto_ops when
1713 * the protocol does not support a particular function. In certain
1714 * cases where it makes no sense for a protocol to have a "do nothing"
1715 * function, some default processing is provided.
1718 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1722 EXPORT_SYMBOL(sock_no_bind);
1724 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1729 EXPORT_SYMBOL(sock_no_connect);
1731 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1735 EXPORT_SYMBOL(sock_no_socketpair);
1737 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1741 EXPORT_SYMBOL(sock_no_accept);
1743 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1748 EXPORT_SYMBOL(sock_no_getname);
1750 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1754 EXPORT_SYMBOL(sock_no_poll);
1756 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1760 EXPORT_SYMBOL(sock_no_ioctl);
1762 int sock_no_listen(struct socket *sock, int backlog)
1766 EXPORT_SYMBOL(sock_no_listen);
1768 int sock_no_shutdown(struct socket *sock, int how)
1772 EXPORT_SYMBOL(sock_no_shutdown);
1774 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1775 char __user *optval, unsigned int optlen)
1779 EXPORT_SYMBOL(sock_no_setsockopt);
1781 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1782 char __user *optval, int __user *optlen)
1786 EXPORT_SYMBOL(sock_no_getsockopt);
1788 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1793 EXPORT_SYMBOL(sock_no_sendmsg);
1795 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1796 size_t len, int flags)
1800 EXPORT_SYMBOL(sock_no_recvmsg);
1802 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1804 /* Mirror missing mmap method error code */
1807 EXPORT_SYMBOL(sock_no_mmap);
1809 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1812 struct msghdr msg = {.msg_flags = flags};
1814 char *kaddr = kmap(page);
1815 iov.iov_base = kaddr + offset;
1817 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1821 EXPORT_SYMBOL(sock_no_sendpage);
1824 * Default Socket Callbacks
1827 static void sock_def_wakeup(struct sock *sk)
1829 struct socket_wq *wq;
1832 wq = rcu_dereference(sk->sk_wq);
1833 if (wq_has_sleeper(wq))
1834 wake_up_interruptible_all(&wq->wait);
1838 static void sock_def_error_report(struct sock *sk)
1840 struct socket_wq *wq;
1843 wq = rcu_dereference(sk->sk_wq);
1844 if (wq_has_sleeper(wq))
1845 wake_up_interruptible_poll(&wq->wait, POLLERR);
1846 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1850 static void sock_def_readable(struct sock *sk, int len)
1852 struct socket_wq *wq;
1855 wq = rcu_dereference(sk->sk_wq);
1856 if (wq_has_sleeper(wq))
1857 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1858 POLLRDNORM | POLLRDBAND);
1859 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1863 static void sock_def_write_space(struct sock *sk)
1865 struct socket_wq *wq;
1869 /* Do not wake up a writer until he can make "significant"
1872 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1873 wq = rcu_dereference(sk->sk_wq);
1874 if (wq_has_sleeper(wq))
1875 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1876 POLLWRNORM | POLLWRBAND);
1878 /* Should agree with poll, otherwise some programs break */
1879 if (sock_writeable(sk))
1880 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1886 static void sock_def_destruct(struct sock *sk)
1888 kfree(sk->sk_protinfo);
1891 void sk_send_sigurg(struct sock *sk)
1893 if (sk->sk_socket && sk->sk_socket->file)
1894 if (send_sigurg(&sk->sk_socket->file->f_owner))
1895 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1897 EXPORT_SYMBOL(sk_send_sigurg);
1899 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1900 unsigned long expires)
1902 if (!mod_timer(timer, expires))
1905 EXPORT_SYMBOL(sk_reset_timer);
1907 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1909 if (timer_pending(timer) && del_timer(timer))
1912 EXPORT_SYMBOL(sk_stop_timer);
1914 void sock_init_data(struct socket *sock, struct sock *sk)
1916 skb_queue_head_init(&sk->sk_receive_queue);
1917 skb_queue_head_init(&sk->sk_write_queue);
1918 skb_queue_head_init(&sk->sk_error_queue);
1919 #ifdef CONFIG_NET_DMA
1920 skb_queue_head_init(&sk->sk_async_wait_queue);
1923 sk->sk_send_head = NULL;
1925 init_timer(&sk->sk_timer);
1927 sk->sk_allocation = GFP_KERNEL;
1928 sk->sk_rcvbuf = sysctl_rmem_default;
1929 sk->sk_sndbuf = sysctl_wmem_default;
1930 sk->sk_state = TCP_CLOSE;
1931 sk_set_socket(sk, sock);
1933 sock_set_flag(sk, SOCK_ZAPPED);
1936 sk->sk_type = sock->type;
1937 sk->sk_wq = sock->wq;
1942 spin_lock_init(&sk->sk_dst_lock);
1943 rwlock_init(&sk->sk_callback_lock);
1944 lockdep_set_class_and_name(&sk->sk_callback_lock,
1945 af_callback_keys + sk->sk_family,
1946 af_family_clock_key_strings[sk->sk_family]);
1948 sk->sk_state_change = sock_def_wakeup;
1949 sk->sk_data_ready = sock_def_readable;
1950 sk->sk_write_space = sock_def_write_space;
1951 sk->sk_error_report = sock_def_error_report;
1952 sk->sk_destruct = sock_def_destruct;
1954 sk->sk_sndmsg_page = NULL;
1955 sk->sk_sndmsg_off = 0;
1957 sk->sk_peercred.pid = 0;
1958 sk->sk_peercred.uid = -1;
1959 sk->sk_peercred.gid = -1;
1960 sk->sk_write_pending = 0;
1961 sk->sk_rcvlowat = 1;
1962 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1963 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1965 sk->sk_stamp = ktime_set(-1L, 0);
1968 * Before updating sk_refcnt, we must commit prior changes to memory
1969 * (Documentation/RCU/rculist_nulls.txt for details)
1972 atomic_set(&sk->sk_refcnt, 1);
1973 atomic_set(&sk->sk_drops, 0);
1975 EXPORT_SYMBOL(sock_init_data);
1977 void lock_sock_nested(struct sock *sk, int subclass)
1980 spin_lock_bh(&sk->sk_lock.slock);
1981 if (sk->sk_lock.owned)
1983 sk->sk_lock.owned = 1;
1984 spin_unlock(&sk->sk_lock.slock);
1986 * The sk_lock has mutex_lock() semantics here:
1988 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1991 EXPORT_SYMBOL(lock_sock_nested);
1993 void release_sock(struct sock *sk)
1996 * The sk_lock has mutex_unlock() semantics:
1998 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2000 spin_lock_bh(&sk->sk_lock.slock);
2001 if (sk->sk_backlog.tail)
2003 sk->sk_lock.owned = 0;
2004 if (waitqueue_active(&sk->sk_lock.wq))
2005 wake_up(&sk->sk_lock.wq);
2006 spin_unlock_bh(&sk->sk_lock.slock);
2008 EXPORT_SYMBOL(release_sock);
2011 * lock_sock_fast - fast version of lock_sock
2014 * This version should be used for very small section, where process wont block
2015 * return false if fast path is taken
2016 * sk_lock.slock locked, owned = 0, BH disabled
2017 * return true if slow path is taken
2018 * sk_lock.slock unlocked, owned = 1, BH enabled
2020 bool lock_sock_fast(struct sock *sk)
2023 spin_lock_bh(&sk->sk_lock.slock);
2025 if (!sk->sk_lock.owned)
2027 * Note : We must disable BH
2032 sk->sk_lock.owned = 1;
2033 spin_unlock(&sk->sk_lock.slock);
2035 * The sk_lock has mutex_lock() semantics here:
2037 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2041 EXPORT_SYMBOL(lock_sock_fast);
2043 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2046 if (!sock_flag(sk, SOCK_TIMESTAMP))
2047 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2048 tv = ktime_to_timeval(sk->sk_stamp);
2049 if (tv.tv_sec == -1)
2051 if (tv.tv_sec == 0) {
2052 sk->sk_stamp = ktime_get_real();
2053 tv = ktime_to_timeval(sk->sk_stamp);
2055 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2057 EXPORT_SYMBOL(sock_get_timestamp);
2059 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2062 if (!sock_flag(sk, SOCK_TIMESTAMP))
2063 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2064 ts = ktime_to_timespec(sk->sk_stamp);
2065 if (ts.tv_sec == -1)
2067 if (ts.tv_sec == 0) {
2068 sk->sk_stamp = ktime_get_real();
2069 ts = ktime_to_timespec(sk->sk_stamp);
2071 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2073 EXPORT_SYMBOL(sock_get_timestampns);
2075 void sock_enable_timestamp(struct sock *sk, int flag)
2077 if (!sock_flag(sk, flag)) {
2078 sock_set_flag(sk, flag);
2080 * we just set one of the two flags which require net
2081 * time stamping, but time stamping might have been on
2082 * already because of the other one
2085 flag == SOCK_TIMESTAMP ?
2086 SOCK_TIMESTAMPING_RX_SOFTWARE :
2088 net_enable_timestamp();
2093 * Get a socket option on an socket.
2095 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2096 * asynchronous errors should be reported by getsockopt. We assume
2097 * this means if you specify SO_ERROR (otherwise whats the point of it).
2099 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2100 char __user *optval, int __user *optlen)
2102 struct sock *sk = sock->sk;
2104 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2106 EXPORT_SYMBOL(sock_common_getsockopt);
2108 #ifdef CONFIG_COMPAT
2109 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2110 char __user *optval, int __user *optlen)
2112 struct sock *sk = sock->sk;
2114 if (sk->sk_prot->compat_getsockopt != NULL)
2115 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2117 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2119 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2122 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2123 struct msghdr *msg, size_t size, int flags)
2125 struct sock *sk = sock->sk;
2129 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2130 flags & ~MSG_DONTWAIT, &addr_len);
2132 msg->msg_namelen = addr_len;
2135 EXPORT_SYMBOL(sock_common_recvmsg);
2138 * Set socket options on an inet socket.
2140 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2141 char __user *optval, unsigned int optlen)
2143 struct sock *sk = sock->sk;
2145 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2147 EXPORT_SYMBOL(sock_common_setsockopt);
2149 #ifdef CONFIG_COMPAT
2150 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2151 char __user *optval, unsigned int optlen)
2153 struct sock *sk = sock->sk;
2155 if (sk->sk_prot->compat_setsockopt != NULL)
2156 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2158 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2160 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2163 void sk_common_release(struct sock *sk)
2165 if (sk->sk_prot->destroy)
2166 sk->sk_prot->destroy(sk);
2169 * Observation: when sock_common_release is called, processes have
2170 * no access to socket. But net still has.
2171 * Step one, detach it from networking:
2173 * A. Remove from hash tables.
2176 sk->sk_prot->unhash(sk);
2179 * In this point socket cannot receive new packets, but it is possible
2180 * that some packets are in flight because some CPU runs receiver and
2181 * did hash table lookup before we unhashed socket. They will achieve
2182 * receive queue and will be purged by socket destructor.
2184 * Also we still have packets pending on receive queue and probably,
2185 * our own packets waiting in device queues. sock_destroy will drain
2186 * receive queue, but transmitted packets will delay socket destruction
2187 * until the last reference will be released.
2192 xfrm_sk_free_policy(sk);
2194 sk_refcnt_debug_release(sk);
2197 EXPORT_SYMBOL(sk_common_release);
2199 static DEFINE_RWLOCK(proto_list_lock);
2200 static LIST_HEAD(proto_list);
2202 #ifdef CONFIG_PROC_FS
2203 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2205 int val[PROTO_INUSE_NR];
2208 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2210 #ifdef CONFIG_NET_NS
2211 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2213 int cpu = smp_processor_id();
2214 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2216 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2218 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2220 int cpu, idx = prot->inuse_idx;
2223 for_each_possible_cpu(cpu)
2224 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2226 return res >= 0 ? res : 0;
2228 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2230 static int __net_init sock_inuse_init_net(struct net *net)
2232 net->core.inuse = alloc_percpu(struct prot_inuse);
2233 return net->core.inuse ? 0 : -ENOMEM;
2236 static void __net_exit sock_inuse_exit_net(struct net *net)
2238 free_percpu(net->core.inuse);
2241 static struct pernet_operations net_inuse_ops = {
2242 .init = sock_inuse_init_net,
2243 .exit = sock_inuse_exit_net,
2246 static __init int net_inuse_init(void)
2248 if (register_pernet_subsys(&net_inuse_ops))
2249 panic("Cannot initialize net inuse counters");
2254 core_initcall(net_inuse_init);
2256 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2258 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2260 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2262 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2264 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2266 int cpu, idx = prot->inuse_idx;
2269 for_each_possible_cpu(cpu)
2270 res += per_cpu(prot_inuse, cpu).val[idx];
2272 return res >= 0 ? res : 0;
2274 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2277 static void assign_proto_idx(struct proto *prot)
2279 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2281 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2282 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2286 set_bit(prot->inuse_idx, proto_inuse_idx);
2289 static void release_proto_idx(struct proto *prot)
2291 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2292 clear_bit(prot->inuse_idx, proto_inuse_idx);
2295 static inline void assign_proto_idx(struct proto *prot)
2299 static inline void release_proto_idx(struct proto *prot)
2304 int proto_register(struct proto *prot, int alloc_slab)
2307 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2308 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2311 if (prot->slab == NULL) {
2312 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2317 if (prot->rsk_prot != NULL) {
2318 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2319 if (prot->rsk_prot->slab_name == NULL)
2320 goto out_free_sock_slab;
2322 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2323 prot->rsk_prot->obj_size, 0,
2324 SLAB_HWCACHE_ALIGN, NULL);
2326 if (prot->rsk_prot->slab == NULL) {
2327 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2329 goto out_free_request_sock_slab_name;
2333 if (prot->twsk_prot != NULL) {
2334 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2336 if (prot->twsk_prot->twsk_slab_name == NULL)
2337 goto out_free_request_sock_slab;
2339 prot->twsk_prot->twsk_slab =
2340 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2341 prot->twsk_prot->twsk_obj_size,
2343 SLAB_HWCACHE_ALIGN |
2346 if (prot->twsk_prot->twsk_slab == NULL)
2347 goto out_free_timewait_sock_slab_name;
2351 write_lock(&proto_list_lock);
2352 list_add(&prot->node, &proto_list);
2353 assign_proto_idx(prot);
2354 write_unlock(&proto_list_lock);
2357 out_free_timewait_sock_slab_name:
2358 kfree(prot->twsk_prot->twsk_slab_name);
2359 out_free_request_sock_slab:
2360 if (prot->rsk_prot && prot->rsk_prot->slab) {
2361 kmem_cache_destroy(prot->rsk_prot->slab);
2362 prot->rsk_prot->slab = NULL;
2364 out_free_request_sock_slab_name:
2366 kfree(prot->rsk_prot->slab_name);
2368 kmem_cache_destroy(prot->slab);
2373 EXPORT_SYMBOL(proto_register);
2375 void proto_unregister(struct proto *prot)
2377 write_lock(&proto_list_lock);
2378 release_proto_idx(prot);
2379 list_del(&prot->node);
2380 write_unlock(&proto_list_lock);
2382 if (prot->slab != NULL) {
2383 kmem_cache_destroy(prot->slab);
2387 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2388 kmem_cache_destroy(prot->rsk_prot->slab);
2389 kfree(prot->rsk_prot->slab_name);
2390 prot->rsk_prot->slab = NULL;
2393 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2394 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2395 kfree(prot->twsk_prot->twsk_slab_name);
2396 prot->twsk_prot->twsk_slab = NULL;
2399 EXPORT_SYMBOL(proto_unregister);
2401 #ifdef CONFIG_PROC_FS
2402 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2403 __acquires(proto_list_lock)
2405 read_lock(&proto_list_lock);
2406 return seq_list_start_head(&proto_list, *pos);
2409 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2411 return seq_list_next(v, &proto_list, pos);
2414 static void proto_seq_stop(struct seq_file *seq, void *v)
2415 __releases(proto_list_lock)
2417 read_unlock(&proto_list_lock);
2420 static char proto_method_implemented(const void *method)
2422 return method == NULL ? 'n' : 'y';
2425 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2427 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2428 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2431 sock_prot_inuse_get(seq_file_net(seq), proto),
2432 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2433 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2435 proto->slab == NULL ? "no" : "yes",
2436 module_name(proto->owner),
2437 proto_method_implemented(proto->close),
2438 proto_method_implemented(proto->connect),
2439 proto_method_implemented(proto->disconnect),
2440 proto_method_implemented(proto->accept),
2441 proto_method_implemented(proto->ioctl),
2442 proto_method_implemented(proto->init),
2443 proto_method_implemented(proto->destroy),
2444 proto_method_implemented(proto->shutdown),
2445 proto_method_implemented(proto->setsockopt),
2446 proto_method_implemented(proto->getsockopt),
2447 proto_method_implemented(proto->sendmsg),
2448 proto_method_implemented(proto->recvmsg),
2449 proto_method_implemented(proto->sendpage),
2450 proto_method_implemented(proto->bind),
2451 proto_method_implemented(proto->backlog_rcv),
2452 proto_method_implemented(proto->hash),
2453 proto_method_implemented(proto->unhash),
2454 proto_method_implemented(proto->get_port),
2455 proto_method_implemented(proto->enter_memory_pressure));
2458 static int proto_seq_show(struct seq_file *seq, void *v)
2460 if (v == &proto_list)
2461 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2470 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2472 proto_seq_printf(seq, list_entry(v, struct proto, node));
2476 static const struct seq_operations proto_seq_ops = {
2477 .start = proto_seq_start,
2478 .next = proto_seq_next,
2479 .stop = proto_seq_stop,
2480 .show = proto_seq_show,
2483 static int proto_seq_open(struct inode *inode, struct file *file)
2485 return seq_open_net(inode, file, &proto_seq_ops,
2486 sizeof(struct seq_net_private));
2489 static const struct file_operations proto_seq_fops = {
2490 .owner = THIS_MODULE,
2491 .open = proto_seq_open,
2493 .llseek = seq_lseek,
2494 .release = seq_release_net,
2497 static __net_init int proto_init_net(struct net *net)
2499 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2505 static __net_exit void proto_exit_net(struct net *net)
2507 proc_net_remove(net, "protocols");
2511 static __net_initdata struct pernet_operations proto_net_ops = {
2512 .init = proto_init_net,
2513 .exit = proto_exit_net,
2516 static int __init proto_init(void)
2518 return register_pernet_subsys(&proto_net_ops);
2521 subsys_initcall(proto_init);
2523 #endif /* PROC_FS */