2 * SPDX-License-Identifier: MIT
4 * Copyright © 2008,2010 Intel Corporation
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
12 #include <drm/drm_syncobj.h>
14 #include "display/intel_frontbuffer.h"
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_trace.h"
29 #include "i915_user_extensions.h"
35 /** This vma's place in the execbuf reservation list */
36 struct drm_i915_gem_exec_object2 *exec;
37 struct list_head bind_link;
38 struct list_head reloc_link;
40 struct hlist_node node;
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
52 #define __EXEC_OBJECT_HAS_PIN BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
54 #define __EXEC_OBJECT_USERPTR_INIT BIT(28)
55 #define __EXEC_OBJECT_NEEDS_MAP BIT(27)
56 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
57 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
58 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
60 #define __EXEC_HAS_RELOC BIT(31)
61 #define __EXEC_ENGINE_PINNED BIT(30)
62 #define __EXEC_USERPTR_USED BIT(29)
63 #define __EXEC_INTERNAL_FLAGS (~0u << 29)
64 #define UPDATE PIN_OFFSET_FIXED
66 #define BATCH_OFFSET_BIAS (256*1024)
68 #define __I915_EXEC_ILLEGAL_FLAGS \
69 (__I915_EXEC_UNKNOWN_FLAGS | \
70 I915_EXEC_CONSTANTS_MASK | \
71 I915_EXEC_RESOURCE_STREAMER)
73 /* Catch emission of unexpected errors for CI! */
74 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
77 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 * DOC: User command execution
85 * Userspace submits commands to be executed on the GPU as an instruction
86 * stream within a GEM object we call a batchbuffer. This instructions may
87 * refer to other GEM objects containing auxiliary state such as kernels,
88 * samplers, render targets and even secondary batchbuffers. Userspace does
89 * not know where in the GPU memory these objects reside and so before the
90 * batchbuffer is passed to the GPU for execution, those addresses in the
91 * batchbuffer and auxiliary objects are updated. This is known as relocation,
92 * or patching. To try and avoid having to relocate each object on the next
93 * execution, userspace is told the location of those objects in this pass,
94 * but this remains just a hint as the kernel may choose a new location for
95 * any object in the future.
97 * At the level of talking to the hardware, submitting a batchbuffer for the
98 * GPU to execute is to add content to a buffer from which the HW
99 * command streamer is reading.
101 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
102 * Execlists, this command is not placed on the same buffer as the
105 * 2. Add a command to invalidate caches to the buffer.
107 * 3. Add a batchbuffer start command to the buffer; the start command is
108 * essentially a token together with the GPU address of the batchbuffer
111 * 4. Add a pipeline flush to the buffer.
113 * 5. Add a memory write command to the buffer to record when the GPU
114 * is done executing the batchbuffer. The memory write writes the
115 * global sequence number of the request, ``i915_request::global_seqno``;
116 * the i915 driver uses the current value in the register to determine
117 * if the GPU has completed the batchbuffer.
119 * 6. Add a user interrupt command to the buffer. This command instructs
120 * the GPU to issue an interrupt when the command, pipeline flush and
121 * memory write are completed.
123 * 7. Inform the hardware of the additional commands added to the buffer
124 * (by updating the tail pointer).
126 * Processing an execbuf ioctl is conceptually split up into a few phases.
128 * 1. Validation - Ensure all the pointers, handles and flags are valid.
129 * 2. Reservation - Assign GPU address space for every object
130 * 3. Relocation - Update any addresses to point to the final locations
131 * 4. Serialisation - Order the request with respect to its dependencies
132 * 5. Construction - Construct a request to execute the batchbuffer
133 * 6. Submission (at some point in the future execution)
135 * Reserving resources for the execbuf is the most complicated phase. We
136 * neither want to have to migrate the object in the address space, nor do
137 * we want to have to update any relocations pointing to this object. Ideally,
138 * we want to leave the object where it is and for all the existing relocations
139 * to match. If the object is given a new address, or if userspace thinks the
140 * object is elsewhere, we have to parse all the relocation entries and update
141 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
142 * all the target addresses in all of its objects match the value in the
143 * relocation entries and that they all match the presumed offsets given by the
144 * list of execbuffer objects. Using this knowledge, we know that if we haven't
145 * moved any buffers, all the relocation entries are valid and we can skip
146 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
147 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
149 * The addresses written in the objects must match the corresponding
150 * reloc.presumed_offset which in turn must match the corresponding
153 * Any render targets written to in the batch must be flagged with
156 * To avoid stalling, execobject.offset should match the current
157 * address of that object within the active context.
159 * The reservation is done is multiple phases. First we try and keep any
160 * object already bound in its current location - so as long as meets the
161 * constraints imposed by the new execbuffer. Any object left unbound after the
162 * first pass is then fitted into any available idle space. If an object does
163 * not fit, all objects are removed from the reservation and the process rerun
164 * after sorting the objects into a priority order (more difficult to fit
165 * objects are tried first). Failing that, the entire VM is cleared and we try
166 * to fit the execbuf once last time before concluding that it simply will not
169 * A small complication to all of this is that we allow userspace not only to
170 * specify an alignment and a size for the object in the address space, but
171 * we also allow userspace to specify the exact offset. This objects are
172 * simpler to place (the location is known a priori) all we have to do is make
173 * sure the space is available.
175 * Once all the objects are in place, patching up the buried pointers to point
176 * to the final locations is a fairly simple job of walking over the relocation
177 * entry arrays, looking up the right address and rewriting the value into
178 * the object. Simple! ... The relocation entries are stored in user memory
179 * and so to access them we have to copy them into a local buffer. That copy
180 * has to avoid taking any pagefaults as they may lead back to a GEM object
181 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
182 * the relocation into multiple passes. First we try to do everything within an
183 * atomic context (avoid the pagefaults) which requires that we never wait. If
184 * we detect that we may wait, or if we need to fault, then we have to fallback
185 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
186 * bells yet?) Dropping the mutex means that we lose all the state we have
187 * built up so far for the execbuf and we must reset any global data. However,
188 * we do leave the objects pinned in their final locations - which is a
189 * potential issue for concurrent execbufs. Once we have left the mutex, we can
190 * allocate and copy all the relocation entries into a large array at our
191 * leisure, reacquire the mutex, reclaim all the objects and other state and
192 * then proceed to update any incorrect addresses with the objects.
194 * As we process the relocation entries, we maintain a record of whether the
195 * object is being written to. Using NORELOC, we expect userspace to provide
196 * this information instead. We also check whether we can skip the relocation
197 * by comparing the expected value inside the relocation entry with the target's
198 * final address. If they differ, we have to map the current object and rewrite
199 * the 4 or 8 byte pointer within.
201 * Serialising an execbuf is quite simple according to the rules of the GEM
202 * ABI. Execution within each context is ordered by the order of submission.
203 * Writes to any GEM object are in order of submission and are exclusive. Reads
204 * from a GEM object are unordered with respect to other reads, but ordered by
205 * writes. A write submitted after a read cannot occur before the read, and
206 * similarly any read submitted after a write cannot occur before the write.
207 * Writes are ordered between engines such that only one write occurs at any
208 * time (completing any reads beforehand) - using semaphores where available
209 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
210 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
211 * reads before starting, and any read (either using set-domain or pread) must
212 * flush all GPU writes before starting. (Note we only employ a barrier before,
213 * we currently rely on userspace not concurrently starting a new execution
214 * whilst reading or writing to an object. This may be an advantage or not
215 * depending on how much you trust userspace not to shoot themselves in the
216 * foot.) Serialisation may just result in the request being inserted into
217 * a DAG awaiting its turn, but most simple is to wait on the CPU until
218 * all dependencies are resolved.
220 * After all of that, is just a matter of closing the request and handing it to
221 * the hardware (well, leaving it in a queue to be executed). However, we also
222 * offer the ability for batchbuffers to be run with elevated privileges so
223 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
224 * Before any batch is given extra privileges we first must check that it
225 * contains no nefarious instructions, we check that each instruction is from
226 * our whitelist and all registers are also from an allowed list. We first
227 * copy the user's batchbuffer to a shadow (so that the user doesn't have
228 * access to it, either by the CPU or GPU as we scan it) and then parse each
229 * instruction. If everything is ok, we set a flag telling the hardware to run
230 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
234 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
235 struct dma_fence *dma_fence;
237 struct dma_fence_chain *chain_fence;
240 struct i915_execbuffer {
241 struct drm_i915_private *i915; /** i915 backpointer */
242 struct drm_file *file; /** per-file lookup tables and limits */
243 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
244 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
247 struct intel_engine_cs *engine; /** engine to queue the request to */
248 struct intel_context *context; /* logical state for the request */
249 struct i915_gem_context *gem_context; /** caller's context */
251 struct i915_request *request; /** our request to build */
252 struct eb_vma *batch; /** identity of the batch obj/vma */
253 struct i915_vma *trampoline; /** trampoline used for chaining */
255 /** actual size of execobj[] as we may extend it for the cmdparser */
256 unsigned int buffer_count;
258 /** list of vma not yet bound during reservation phase */
259 struct list_head unbound;
261 /** list of vma that have execobj.relocation_count */
262 struct list_head relocs;
264 struct i915_gem_ww_ctx ww;
267 * Track the most recently used object for relocations, as we
268 * frequently have to perform multiple relocations within the same
272 struct drm_mm_node node; /** temporary GTT binding */
273 unsigned long vaddr; /** Current kmap address */
274 unsigned long page; /** Currently mapped page index */
275 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
276 bool use_64bit_reloc : 1;
279 bool needs_unfenced : 1;
281 struct i915_request *rq;
283 unsigned int rq_size;
284 struct intel_gt_buffer_pool_node *pool;
287 struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
288 struct intel_context *reloc_context;
290 u64 invalid_flags; /** Set of execobj.flags that are invalid */
291 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
293 u64 batch_len; /** Length of batch within object */
294 u32 batch_start_offset; /** Location within object of batch */
295 u32 batch_flags; /** Flags composed for emit_bb_start() */
296 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
299 * Indicate either the size of the hastable used to resolve
300 * relocation handles, or if negative that we are using a direct
301 * index into the execobj[].
304 struct hlist_head *buckets; /** ht for relocation handles */
306 struct eb_fence *fences;
307 unsigned long num_fences;
310 static int eb_parse(struct i915_execbuffer *eb);
311 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
313 static void eb_unpin_engine(struct i915_execbuffer *eb);
315 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
317 return intel_engine_requires_cmd_parser(eb->engine) ||
318 (intel_engine_using_cmd_parser(eb->engine) &&
319 eb->args->batch_len);
322 static int eb_create(struct i915_execbuffer *eb)
324 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
325 unsigned int size = 1 + ilog2(eb->buffer_count);
328 * Without a 1:1 association between relocation handles and
329 * the execobject[] index, we instead create a hashtable.
330 * We size it dynamically based on available memory, starting
331 * first with 1:1 assocative hash and scaling back until
332 * the allocation succeeds.
334 * Later on we use a positive lut_size to indicate we are
335 * using this hashtable, and a negative value to indicate a
341 /* While we can still reduce the allocation size, don't
342 * raise a warning and allow the allocation to fail.
343 * On the last pass though, we want to try as hard
344 * as possible to perform the allocation and warn
349 flags |= __GFP_NORETRY | __GFP_NOWARN;
351 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
362 eb->lut_size = -eb->buffer_count;
369 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
370 const struct i915_vma *vma,
373 if (vma->node.size < entry->pad_to_size)
376 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
379 if (flags & EXEC_OBJECT_PINNED &&
380 vma->node.start != entry->offset)
383 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
384 vma->node.start < BATCH_OFFSET_BIAS)
387 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
388 (vma->node.start + vma->node.size + 4095) >> 32)
391 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
392 !i915_vma_is_map_and_fenceable(vma))
398 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
399 unsigned int exec_flags)
403 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
404 pin_flags |= PIN_GLOBAL;
407 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
408 * limit address to the first 4GBs for unflagged objects.
410 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
411 pin_flags |= PIN_ZONE_4G;
413 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
414 pin_flags |= PIN_MAPPABLE;
416 if (exec_flags & EXEC_OBJECT_PINNED)
417 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
418 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
419 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
425 eb_pin_vma(struct i915_execbuffer *eb,
426 const struct drm_i915_gem_exec_object2 *entry,
429 struct i915_vma *vma = ev->vma;
434 pin_flags = vma->node.start;
436 pin_flags = entry->offset & PIN_OFFSET_MASK;
438 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
439 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
440 pin_flags |= PIN_GLOBAL;
442 /* Attempt to reuse the current location if available */
443 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
448 if (entry->flags & EXEC_OBJECT_PINNED)
451 /* Failing that pick any _free_ space if suitable */
452 err = i915_vma_pin_ww(vma, &eb->ww,
455 eb_pin_flags(entry, ev->flags) |
456 PIN_USER | PIN_NOEVICT);
461 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
462 err = i915_vma_pin_fence(vma);
469 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
472 ev->flags |= __EXEC_OBJECT_HAS_PIN;
473 if (eb_vma_misplaced(entry, vma, ev->flags))
480 eb_unreserve_vma(struct eb_vma *ev)
482 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
485 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
486 __i915_vma_unpin_fence(ev->vma);
488 __i915_vma_unpin(ev->vma);
489 ev->flags &= ~__EXEC_OBJECT_RESERVED;
493 eb_validate_vma(struct i915_execbuffer *eb,
494 struct drm_i915_gem_exec_object2 *entry,
495 struct i915_vma *vma)
497 /* Relocations are disallowed for all platforms after TGL-LP. This
498 * also covers all platforms with local memory.
500 if (entry->relocation_count &&
501 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504 if (unlikely(entry->flags & eb->invalid_flags))
507 if (unlikely(entry->alignment &&
508 !is_power_of_2_u64(entry->alignment)))
512 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
513 * any non-page-aligned or non-canonical addresses.
515 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
516 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519 /* pad_to_size was once a reserved field, so sanitize it */
520 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
521 if (unlikely(offset_in_page(entry->pad_to_size)))
524 entry->pad_to_size = 0;
527 * From drm_mm perspective address space is continuous,
528 * so from this point we're always using non-canonical
531 entry->offset = gen8_noncanonical_addr(entry->offset);
533 if (!eb->reloc_cache.has_fence) {
534 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
536 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
537 eb->reloc_cache.needs_unfenced) &&
538 i915_gem_object_is_tiled(vma->obj))
539 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542 if (!(entry->flags & EXEC_OBJECT_PINNED))
543 entry->flags |= eb->context_flags;
549 eb_add_vma(struct i915_execbuffer *eb,
550 unsigned int i, unsigned batch_idx,
551 struct i915_vma *vma)
553 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
554 struct eb_vma *ev = &eb->vma[i];
558 ev->flags = entry->flags;
560 if (eb->lut_size > 0) {
561 ev->handle = entry->handle;
562 hlist_add_head(&ev->node,
563 &eb->buckets[hash_32(entry->handle,
567 if (entry->relocation_count)
568 list_add_tail(&ev->reloc_link, &eb->relocs);
571 * SNA is doing fancy tricks with compressing batch buffers, which leads
572 * to negative relocation deltas. Usually that works out ok since the
573 * relocate address is still positive, except when the batch is placed
574 * very low in the GTT. Ensure this doesn't happen.
576 * Note that actual hangs have only been observed on gen7, but for
577 * paranoia do it everywhere.
579 if (i == batch_idx) {
580 if (entry->relocation_count &&
581 !(ev->flags & EXEC_OBJECT_PINNED))
582 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
583 if (eb->reloc_cache.has_fence)
584 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
590 static inline int use_cpu_reloc(const struct reloc_cache *cache,
591 const struct drm_i915_gem_object *obj)
593 if (!i915_gem_object_has_struct_page(obj))
596 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
599 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
602 return (cache->has_llc ||
604 obj->cache_level != I915_CACHE_NONE);
607 static int eb_reserve_vma(struct i915_execbuffer *eb,
611 struct drm_i915_gem_exec_object2 *entry = ev->exec;
612 struct i915_vma *vma = ev->vma;
615 if (drm_mm_node_allocated(&vma->node) &&
616 eb_vma_misplaced(entry, vma, ev->flags)) {
617 err = i915_vma_unbind(vma);
622 err = i915_vma_pin_ww(vma, &eb->ww,
623 entry->pad_to_size, entry->alignment,
624 eb_pin_flags(entry, ev->flags) | pin_flags);
628 if (entry->offset != vma->node.start) {
629 entry->offset = vma->node.start | UPDATE;
630 eb->args->flags |= __EXEC_HAS_RELOC;
633 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
634 err = i915_vma_pin_fence(vma);
641 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
644 ev->flags |= __EXEC_OBJECT_HAS_PIN;
645 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
650 static int eb_reserve(struct i915_execbuffer *eb)
652 const unsigned int count = eb->buffer_count;
653 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
654 struct list_head last;
656 unsigned int i, pass;
660 * Attempt to pin all of the buffers into the GTT.
661 * This is done in 3 phases:
663 * 1a. Unbind all objects that do not match the GTT constraints for
664 * the execbuffer (fenceable, mappable, alignment etc).
665 * 1b. Increment pin count for already bound objects.
666 * 2. Bind new objects.
667 * 3. Decrement pin count.
669 * This avoid unnecessary unbinding of later objects in order to make
670 * room for the earlier objects *unless* we need to defragment.
674 list_for_each_entry(ev, &eb->unbound, bind_link) {
675 err = eb_reserve_vma(eb, ev, pin_flags);
682 /* Resort *all* the objects into priority order */
683 INIT_LIST_HEAD(&eb->unbound);
684 INIT_LIST_HEAD(&last);
685 for (i = 0; i < count; i++) {
690 if (flags & EXEC_OBJECT_PINNED &&
691 flags & __EXEC_OBJECT_HAS_PIN)
694 eb_unreserve_vma(ev);
696 if (flags & EXEC_OBJECT_PINNED)
697 /* Pinned must have their slot */
698 list_add(&ev->bind_link, &eb->unbound);
699 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
700 /* Map require the lowest 256MiB (aperture) */
701 list_add_tail(&ev->bind_link, &eb->unbound);
702 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
703 /* Prioritise 4GiB region for restricted bo */
704 list_add(&ev->bind_link, &last);
706 list_add_tail(&ev->bind_link, &last);
708 list_splice_tail(&last, &eb->unbound);
715 /* Too fragmented, unbind everything and retry */
716 mutex_lock(&eb->context->vm->mutex);
717 err = i915_gem_evict_vm(eb->context->vm);
718 mutex_unlock(&eb->context->vm->mutex);
727 pin_flags = PIN_USER;
731 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
733 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
736 return eb->buffer_count - 1;
739 static int eb_select_context(struct i915_execbuffer *eb)
741 struct i915_gem_context *ctx;
743 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
747 eb->gem_context = ctx;
748 if (rcu_access_pointer(ctx->vm))
749 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
751 eb->context_flags = 0;
752 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
753 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
758 static int __eb_add_lut(struct i915_execbuffer *eb,
759 u32 handle, struct i915_vma *vma)
761 struct i915_gem_context *ctx = eb->gem_context;
762 struct i915_lut_handle *lut;
765 lut = i915_lut_handle_alloc();
770 if (!atomic_fetch_inc(&vma->open_count))
771 i915_vma_reopen(vma);
772 lut->handle = handle;
775 /* Check that the context hasn't been closed in the meantime */
777 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
778 struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
780 if (unlikely(vm && vma->vm != vm))
781 err = -EAGAIN; /* user racing with ctx set-vm */
782 else if (likely(!i915_gem_context_is_closed(ctx)))
783 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
786 if (err == 0) { /* And nor has this handle */
787 struct drm_i915_gem_object *obj = vma->obj;
789 spin_lock(&obj->lut_lock);
790 if (idr_find(&eb->file->object_idr, handle) == obj) {
791 list_add(&lut->obj_link, &obj->lut_list);
793 radix_tree_delete(&ctx->handles_vma, handle);
796 spin_unlock(&obj->lut_lock);
798 mutex_unlock(&ctx->lut_mutex);
808 i915_lut_handle_free(lut);
812 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
814 struct i915_address_space *vm = eb->context->vm;
817 struct drm_i915_gem_object *obj;
818 struct i915_vma *vma;
822 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
823 if (likely(vma && vma->vm == vm))
824 vma = i915_vma_tryget(vma);
829 obj = i915_gem_object_lookup(eb->file, handle);
831 return ERR_PTR(-ENOENT);
833 vma = i915_vma_instance(obj, vm, NULL);
835 i915_gem_object_put(obj);
839 err = __eb_add_lut(eb, handle, vma);
843 i915_gem_object_put(obj);
849 static int eb_lookup_vmas(struct i915_execbuffer *eb)
851 struct drm_i915_private *i915 = eb->i915;
852 unsigned int batch = eb_batch_index(eb);
856 INIT_LIST_HEAD(&eb->relocs);
858 for (i = 0; i < eb->buffer_count; i++) {
859 struct i915_vma *vma;
861 vma = eb_lookup_vma(eb, eb->exec[i].handle);
867 err = eb_validate_vma(eb, &eb->exec[i], vma);
873 eb_add_vma(eb, i, batch, vma);
875 if (i915_gem_object_is_userptr(vma->obj)) {
876 err = i915_gem_object_userptr_submit_init(vma->obj);
878 if (i + 1 < eb->buffer_count) {
880 * Execbuffer code expects last vma entry to be NULL,
881 * since we already initialized this entry,
882 * set the next value to NULL or we mess up
885 eb->vma[i + 1].vma = NULL;
891 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
892 eb->args->flags |= __EXEC_USERPTR_USED;
896 if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
898 "Attempting to use self-modifying batch buffer\n");
902 if (range_overflows_t(u64,
903 eb->batch_start_offset, eb->batch_len,
904 eb->batch->vma->size)) {
905 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
909 if (eb->batch_len == 0)
910 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
911 if (unlikely(eb->batch_len == 0)) { /* impossible! */
912 drm_dbg(&i915->drm, "Invalid batch length\n");
919 eb->vma[i].vma = NULL;
923 static int eb_validate_vmas(struct i915_execbuffer *eb)
928 INIT_LIST_HEAD(&eb->unbound);
930 for (i = 0; i < eb->buffer_count; i++) {
931 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
932 struct eb_vma *ev = &eb->vma[i];
933 struct i915_vma *vma = ev->vma;
935 err = i915_gem_object_lock(vma->obj, &eb->ww);
939 err = eb_pin_vma(eb, entry, ev);
944 if (entry->offset != vma->node.start) {
945 entry->offset = vma->node.start | UPDATE;
946 eb->args->flags |= __EXEC_HAS_RELOC;
949 eb_unreserve_vma(ev);
951 list_add_tail(&ev->bind_link, &eb->unbound);
952 if (drm_mm_node_allocated(&vma->node)) {
953 err = i915_vma_unbind(vma);
959 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
960 err = dma_resv_reserve_shared(vma->resv, 1);
965 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
966 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
969 if (!list_empty(&eb->unbound))
970 return eb_reserve(eb);
975 static struct eb_vma *
976 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
978 if (eb->lut_size < 0) {
979 if (handle >= -eb->lut_size)
981 return &eb->vma[handle];
983 struct hlist_head *head;
986 head = &eb->buckets[hash_32(handle, eb->lut_size)];
987 hlist_for_each_entry(ev, head, node) {
988 if (ev->handle == handle)
995 static void eb_release_vmas(struct i915_execbuffer *eb, bool final, bool release_userptr)
997 const unsigned int count = eb->buffer_count;
1000 for (i = 0; i < count; i++) {
1001 struct eb_vma *ev = &eb->vma[i];
1002 struct i915_vma *vma = ev->vma;
1007 eb_unreserve_vma(ev);
1009 if (release_userptr && ev->flags & __EXEC_OBJECT_USERPTR_INIT) {
1010 ev->flags &= ~__EXEC_OBJECT_USERPTR_INIT;
1011 i915_gem_object_userptr_submit_fini(vma->obj);
1018 eb_unpin_engine(eb);
1021 static void eb_destroy(const struct i915_execbuffer *eb)
1023 GEM_BUG_ON(eb->reloc_cache.rq);
1025 if (eb->lut_size > 0)
1030 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1031 const struct i915_vma *target)
1033 return gen8_canonical_addr((int)reloc->delta + target->node.start);
1036 static void reloc_cache_clear(struct reloc_cache *cache)
1039 cache->rq_cmd = NULL;
1044 static void reloc_cache_init(struct reloc_cache *cache,
1045 struct drm_i915_private *i915)
1049 /* Must be a variable in the struct to allow GCC to unroll. */
1050 cache->graphics_ver = GRAPHICS_VER(i915);
1051 cache->has_llc = HAS_LLC(i915);
1052 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1053 cache->has_fence = cache->graphics_ver < 4;
1054 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1055 cache->node.flags = 0;
1056 reloc_cache_clear(cache);
1059 static inline void *unmask_page(unsigned long p)
1061 return (void *)(uintptr_t)(p & PAGE_MASK);
1064 static inline unsigned int unmask_flags(unsigned long p)
1066 return p & ~PAGE_MASK;
1069 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1071 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1073 struct drm_i915_private *i915 =
1074 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1078 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1084 * This is a bit nasty, normally we keep objects locked until the end
1085 * of execbuffer, but we already submit this, and have to unlock before
1086 * dropping the reference. Fortunately we can only hold 1 pool node at
1087 * a time, so this should be harmless.
1089 i915_gem_ww_unlock_single(cache->pool->obj);
1090 intel_gt_buffer_pool_put(cache->pool);
1094 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1096 struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1098 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1099 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1101 i915_gem_object_flush_map(obj);
1102 i915_gem_object_unpin_map(obj);
1104 intel_gt_chipset_flush(cache->rq->engine->gt);
1106 i915_request_add(cache->rq);
1107 reloc_cache_put_pool(eb, cache);
1108 reloc_cache_clear(cache);
1110 eb->reloc_pool = NULL;
1113 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1118 reloc_gpu_flush(eb, cache);
1123 vaddr = unmask_page(cache->vaddr);
1124 if (cache->vaddr & KMAP) {
1125 struct drm_i915_gem_object *obj =
1126 (struct drm_i915_gem_object *)cache->node.mm;
1127 if (cache->vaddr & CLFLUSH_AFTER)
1130 kunmap_atomic(vaddr);
1131 i915_gem_object_finish_access(obj);
1133 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1135 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1136 io_mapping_unmap_atomic((void __iomem *)vaddr);
1138 if (drm_mm_node_allocated(&cache->node)) {
1139 ggtt->vm.clear_range(&ggtt->vm,
1142 mutex_lock(&ggtt->vm.mutex);
1143 drm_mm_remove_node(&cache->node);
1144 mutex_unlock(&ggtt->vm.mutex);
1146 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1154 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1155 struct reloc_cache *cache,
1156 unsigned long pageno)
1162 kunmap_atomic(unmask_page(cache->vaddr));
1164 unsigned int flushes;
1167 err = i915_gem_object_prepare_write(obj, &flushes);
1169 return ERR_PTR(err);
1171 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1172 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1174 cache->vaddr = flushes | KMAP;
1175 cache->node.mm = (void *)obj;
1180 page = i915_gem_object_get_page(obj, pageno);
1182 set_page_dirty(page);
1184 vaddr = kmap_atomic(page);
1185 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1186 cache->page = pageno;
1191 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1192 struct i915_execbuffer *eb,
1195 struct reloc_cache *cache = &eb->reloc_cache;
1196 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1197 unsigned long offset;
1201 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1202 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1204 struct i915_vma *vma;
1207 if (i915_gem_object_is_tiled(obj))
1208 return ERR_PTR(-EINVAL);
1210 if (use_cpu_reloc(cache, obj))
1213 err = i915_gem_object_set_to_gtt_domain(obj, true);
1215 return ERR_PTR(err);
1217 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1219 PIN_NONBLOCK /* NOWARN */ |
1221 if (vma == ERR_PTR(-EDEADLK))
1225 memset(&cache->node, 0, sizeof(cache->node));
1226 mutex_lock(&ggtt->vm.mutex);
1227 err = drm_mm_insert_node_in_range
1228 (&ggtt->vm.mm, &cache->node,
1229 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1230 0, ggtt->mappable_end,
1232 mutex_unlock(&ggtt->vm.mutex);
1233 if (err) /* no inactive aperture space, use cpu reloc */
1236 cache->node.start = vma->node.start;
1237 cache->node.mm = (void *)vma;
1241 offset = cache->node.start;
1242 if (drm_mm_node_allocated(&cache->node)) {
1243 ggtt->vm.insert_page(&ggtt->vm,
1244 i915_gem_object_get_dma_address(obj, page),
1245 offset, I915_CACHE_NONE, 0);
1247 offset += page << PAGE_SHIFT;
1250 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1253 cache->vaddr = (unsigned long)vaddr;
1258 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1259 struct i915_execbuffer *eb,
1262 struct reloc_cache *cache = &eb->reloc_cache;
1265 if (cache->page == page) {
1266 vaddr = unmask_page(cache->vaddr);
1269 if ((cache->vaddr & KMAP) == 0)
1270 vaddr = reloc_iomap(obj, eb, page);
1272 vaddr = reloc_kmap(obj, cache, page);
1278 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1280 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1281 if (flushes & CLFLUSH_BEFORE) {
1289 * Writes to the same cacheline are serialised by the CPU
1290 * (including clflush). On the write path, we only require
1291 * that it hits memory in an orderly fashion and place
1292 * mb barriers at the start and end of the relocation phase
1293 * to ensure ordering of clflush wrt to the system.
1295 if (flushes & CLFLUSH_AFTER)
1301 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1303 struct drm_i915_gem_object *obj = vma->obj;
1306 assert_vma_held(vma);
1308 if (obj->cache_dirty & ~obj->cache_coherent)
1309 i915_gem_clflush_object(obj, 0);
1310 obj->write_domain = 0;
1312 err = i915_request_await_object(rq, vma->obj, true);
1314 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1319 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1320 struct intel_engine_cs *engine,
1321 struct i915_vma *vma,
1324 struct reloc_cache *cache = &eb->reloc_cache;
1325 struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1326 struct i915_request *rq;
1327 struct i915_vma *batch;
1332 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
1337 return PTR_ERR(pool);
1339 eb->reloc_pool = NULL;
1341 err = i915_gem_object_lock(pool->obj, &eb->ww);
1345 cmd = i915_gem_object_pin_map(pool->obj, pool->type);
1350 intel_gt_buffer_pool_mark_used(pool);
1352 memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1354 batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1355 if (IS_ERR(batch)) {
1356 err = PTR_ERR(batch);
1360 err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1364 if (engine == eb->context->engine) {
1365 rq = i915_request_create(eb->context);
1367 struct intel_context *ce = eb->reloc_context;
1370 ce = intel_context_create(engine);
1376 i915_vm_put(ce->vm);
1377 ce->vm = i915_vm_get(eb->context->vm);
1378 eb->reloc_context = ce;
1381 err = intel_context_pin_ww(ce, &eb->ww);
1385 rq = i915_request_create(ce);
1386 intel_context_unpin(ce);
1393 err = intel_gt_buffer_pool_mark_active(pool, rq);
1397 err = reloc_move_to_gpu(rq, vma);
1401 err = eb->engine->emit_bb_start(rq,
1402 batch->node.start, PAGE_SIZE,
1403 cache->graphics_ver > 5 ? 0 : I915_DISPATCH_SECURE);
1407 assert_vma_held(batch);
1408 err = i915_request_await_object(rq, batch->obj, false);
1410 err = i915_vma_move_to_active(batch, rq, 0);
1415 i915_vma_unpin(batch);
1418 cache->rq_cmd = cmd;
1422 /* Return with batch mapping (cmd) still pinned */
1426 i915_request_set_error_once(rq, err);
1428 i915_request_add(rq);
1430 i915_vma_unpin(batch);
1432 i915_gem_object_unpin_map(pool->obj);
1434 eb->reloc_pool = pool;
1438 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1440 return engine->class != VIDEO_DECODE_CLASS || GRAPHICS_VER(engine->i915) != 6;
1443 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1444 struct i915_vma *vma,
1447 struct reloc_cache *cache = &eb->reloc_cache;
1450 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1451 reloc_gpu_flush(eb, cache);
1453 if (unlikely(!cache->rq)) {
1455 struct intel_engine_cs *engine = eb->engine;
1457 /* If we need to copy for the cmdparser, we will stall anyway */
1458 if (eb_use_cmdparser(eb))
1459 return ERR_PTR(-EWOULDBLOCK);
1461 if (!reloc_can_use_engine(engine)) {
1462 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1464 return ERR_PTR(-ENODEV);
1467 err = __reloc_gpu_alloc(eb, engine, vma, len);
1469 return ERR_PTR(err);
1472 cmd = cache->rq_cmd + cache->rq_size;
1473 cache->rq_size += len;
1478 static inline bool use_reloc_gpu(struct i915_vma *vma)
1480 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1483 if (DBG_FORCE_RELOC)
1486 return !dma_resv_test_signaled(vma->resv, true);
1489 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1494 GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1496 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1497 addr = PFN_PHYS(page_to_pfn(page));
1498 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1500 return addr + offset_in_page(offset);
1503 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1504 struct i915_vma *vma,
1508 const unsigned int ver = eb->reloc_cache.graphics_ver;
1514 len = offset & 7 ? 8 : 5;
1520 batch = reloc_gpu(eb, vma, len);
1521 if (batch == ERR_PTR(-EDEADLK))
1523 else if (IS_ERR(batch))
1526 addr = gen8_canonical_addr(vma->node.start + offset);
1529 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1530 *batch++ = lower_32_bits(addr);
1531 *batch++ = upper_32_bits(addr);
1532 *batch++ = lower_32_bits(target_addr);
1534 addr = gen8_canonical_addr(addr + 4);
1536 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1537 *batch++ = lower_32_bits(addr);
1538 *batch++ = upper_32_bits(addr);
1539 *batch++ = upper_32_bits(target_addr);
1541 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1542 *batch++ = lower_32_bits(addr);
1543 *batch++ = upper_32_bits(addr);
1544 *batch++ = lower_32_bits(target_addr);
1545 *batch++ = upper_32_bits(target_addr);
1547 } else if (ver >= 6) {
1548 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1551 *batch++ = target_addr;
1552 } else if (IS_I965G(eb->i915)) {
1553 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1555 *batch++ = vma_phys_addr(vma, offset);
1556 *batch++ = target_addr;
1557 } else if (ver >= 4) {
1558 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1561 *batch++ = target_addr;
1562 } else if (ver >= 3 &&
1563 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1564 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1566 *batch++ = target_addr;
1568 *batch++ = MI_STORE_DWORD_IMM;
1569 *batch++ = vma_phys_addr(vma, offset);
1570 *batch++ = target_addr;
1576 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1577 struct i915_vma *vma,
1581 if (eb->reloc_cache.vaddr)
1584 if (!use_reloc_gpu(vma))
1587 return __reloc_entry_gpu(eb, vma, offset, target_addr);
1591 relocate_entry(struct i915_vma *vma,
1592 const struct drm_i915_gem_relocation_entry *reloc,
1593 struct i915_execbuffer *eb,
1594 const struct i915_vma *target)
1596 u64 target_addr = relocation_target(reloc, target);
1597 u64 offset = reloc->offset;
1598 int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1604 bool wide = eb->reloc_cache.use_64bit_reloc;
1608 vaddr = reloc_vaddr(vma->obj, eb,
1609 offset >> PAGE_SHIFT);
1611 return PTR_ERR(vaddr);
1613 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1614 clflush_write32(vaddr + offset_in_page(offset),
1615 lower_32_bits(target_addr),
1616 eb->reloc_cache.vaddr);
1619 offset += sizeof(u32);
1626 return target->node.start | UPDATE;
1630 eb_relocate_entry(struct i915_execbuffer *eb,
1632 const struct drm_i915_gem_relocation_entry *reloc)
1634 struct drm_i915_private *i915 = eb->i915;
1635 struct eb_vma *target;
1638 /* we've already hold a reference to all valid objects */
1639 target = eb_get_vma(eb, reloc->target_handle);
1640 if (unlikely(!target))
1643 /* Validate that the target is in a valid r/w GPU domain */
1644 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1645 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1646 "target %d offset %d "
1647 "read %08x write %08x",
1648 reloc->target_handle,
1649 (int) reloc->offset,
1650 reloc->read_domains,
1651 reloc->write_domain);
1654 if (unlikely((reloc->write_domain | reloc->read_domains)
1655 & ~I915_GEM_GPU_DOMAINS)) {
1656 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1657 "target %d offset %d "
1658 "read %08x write %08x",
1659 reloc->target_handle,
1660 (int) reloc->offset,
1661 reloc->read_domains,
1662 reloc->write_domain);
1666 if (reloc->write_domain) {
1667 target->flags |= EXEC_OBJECT_WRITE;
1670 * Sandybridge PPGTT errata: We need a global gtt mapping
1671 * for MI and pipe_control writes because the gpu doesn't
1672 * properly redirect them through the ppgtt for non_secure
1675 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1676 GRAPHICS_VER(eb->i915) == 6) {
1677 err = i915_vma_bind(target->vma,
1678 target->vma->obj->cache_level,
1686 * If the relocation already has the right value in it, no
1687 * more work needs to be done.
1689 if (!DBG_FORCE_RELOC &&
1690 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1693 /* Check that the relocation address is valid... */
1694 if (unlikely(reloc->offset >
1695 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1696 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1697 "target %d offset %d size %d.\n",
1698 reloc->target_handle,
1700 (int)ev->vma->size);
1703 if (unlikely(reloc->offset & 3)) {
1704 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1705 "target %d offset %d.\n",
1706 reloc->target_handle,
1707 (int)reloc->offset);
1712 * If we write into the object, we need to force the synchronisation
1713 * barrier, either with an asynchronous clflush or if we executed the
1714 * patching using the GPU (though that should be serialised by the
1715 * timeline). To be completely sure, and since we are required to
1716 * do relocations we are already stalling, disable the user's opt
1717 * out of our synchronisation.
1719 ev->flags &= ~EXEC_OBJECT_ASYNC;
1721 /* and update the user's relocation entry */
1722 return relocate_entry(ev->vma, reloc, eb, target->vma);
1725 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1727 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1728 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1729 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1730 struct drm_i915_gem_relocation_entry __user *urelocs =
1731 u64_to_user_ptr(entry->relocs_ptr);
1732 unsigned long remain = entry->relocation_count;
1734 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1738 * We must check that the entire relocation array is safe
1739 * to read. However, if the array is not writable the user loses
1740 * the updated relocation values.
1742 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1746 struct drm_i915_gem_relocation_entry *r = stack;
1747 unsigned int count =
1748 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1749 unsigned int copied;
1752 * This is the fast path and we cannot handle a pagefault
1753 * whilst holding the struct mutex lest the user pass in the
1754 * relocations contained within a mmaped bo. For in such a case
1755 * we, the page fault handler would call i915_gem_fault() and
1756 * we would try to acquire the struct mutex again. Obviously
1757 * this is bad and so lockdep complains vehemently.
1759 pagefault_disable();
1760 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1762 if (unlikely(copied)) {
1769 u64 offset = eb_relocate_entry(eb, ev, r);
1771 if (likely(offset == 0)) {
1772 } else if ((s64)offset < 0) {
1773 remain = (int)offset;
1777 * Note that reporting an error now
1778 * leaves everything in an inconsistent
1779 * state as we have *already* changed
1780 * the relocation value inside the
1781 * object. As we have not changed the
1782 * reloc.presumed_offset or will not
1783 * change the execobject.offset, on the
1784 * call we may not rewrite the value
1785 * inside the object, leaving it
1786 * dangling and causing a GPU hang. Unless
1787 * userspace dynamically rebuilds the
1788 * relocations on each execbuf rather than
1789 * presume a static tree.
1791 * We did previously check if the relocations
1792 * were writable (access_ok), an error now
1793 * would be a strange race with mprotect,
1794 * having already demonstrated that we
1795 * can read from this userspace address.
1797 offset = gen8_canonical_addr(offset & ~UPDATE);
1799 &urelocs[r - stack].presumed_offset);
1801 } while (r++, --count);
1802 urelocs += ARRAY_SIZE(stack);
1805 reloc_cache_reset(&eb->reloc_cache, eb);
1810 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1812 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1813 struct drm_i915_gem_relocation_entry *relocs =
1814 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1818 for (i = 0; i < entry->relocation_count; i++) {
1819 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1821 if ((s64)offset < 0) {
1828 reloc_cache_reset(&eb->reloc_cache, eb);
1832 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1834 const char __user *addr, *end;
1836 char __maybe_unused c;
1838 size = entry->relocation_count;
1842 if (size > N_RELOC(ULONG_MAX))
1845 addr = u64_to_user_ptr(entry->relocs_ptr);
1846 size *= sizeof(struct drm_i915_gem_relocation_entry);
1847 if (!access_ok(addr, size))
1851 for (; addr < end; addr += PAGE_SIZE) {
1852 int err = __get_user(c, addr);
1856 return __get_user(c, end - 1);
1859 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1861 struct drm_i915_gem_relocation_entry *relocs;
1862 const unsigned int count = eb->buffer_count;
1866 for (i = 0; i < count; i++) {
1867 const unsigned int nreloc = eb->exec[i].relocation_count;
1868 struct drm_i915_gem_relocation_entry __user *urelocs;
1870 unsigned long copied;
1875 err = check_relocations(&eb->exec[i]);
1879 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1880 size = nreloc * sizeof(*relocs);
1882 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1888 /* copy_from_user is limited to < 4GiB */
1892 min_t(u64, BIT_ULL(31), size - copied);
1894 if (__copy_from_user((char *)relocs + copied,
1895 (char __user *)urelocs + copied,
1900 } while (copied < size);
1903 * As we do not update the known relocation offsets after
1904 * relocating (due to the complexities in lock handling),
1905 * we need to mark them as invalid now so that we force the
1906 * relocation processing next time. Just in case the target
1907 * object is evicted and then rebound into its old
1908 * presumed_offset before the next execbuffer - if that
1909 * happened we would make the mistake of assuming that the
1910 * relocations were valid.
1912 if (!user_access_begin(urelocs, size))
1915 for (copied = 0; copied < nreloc; copied++)
1917 &urelocs[copied].presumed_offset,
1921 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1933 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1934 if (eb->exec[i].relocation_count)
1940 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1942 const unsigned int count = eb->buffer_count;
1945 for (i = 0; i < count; i++) {
1948 err = check_relocations(&eb->exec[i]);
1956 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1958 const unsigned int count = eb->buffer_count;
1962 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1965 for (i = 0; i < count; i++) {
1966 struct eb_vma *ev = &eb->vma[i];
1968 if (!i915_gem_object_is_userptr(ev->vma->obj))
1971 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1975 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1981 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1982 struct i915_request *rq)
1984 bool have_copy = false;
1989 if (signal_pending(current)) {
1994 /* We may process another execbuffer during the unlock... */
1995 eb_release_vmas(eb, false, true);
1996 i915_gem_ww_ctx_fini(&eb->ww);
1999 /* nonblocking is always false */
2000 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2001 MAX_SCHEDULE_TIMEOUT) < 0) {
2002 i915_request_put(rq);
2009 i915_request_put(rq);
2014 * We take 3 passes through the slowpatch.
2016 * 1 - we try to just prefault all the user relocation entries and
2017 * then attempt to reuse the atomic pagefault disabled fast path again.
2019 * 2 - we copy the user entries to a local buffer here outside of the
2020 * local and allow ourselves to wait upon any rendering before
2023 * 3 - we already have a local copy of the relocation entries, but
2024 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
2027 err = eb_prefault_relocations(eb);
2028 } else if (!have_copy) {
2029 err = eb_copy_relocations(eb);
2030 have_copy = err == 0;
2037 err = eb_reinit_userptr(eb);
2040 i915_gem_ww_ctx_init(&eb->ww, true);
2044 /* reacquire the objects */
2046 rq = eb_pin_engine(eb, false);
2053 /* We didn't throttle, should be NULL */
2056 err = eb_validate_vmas(eb);
2060 GEM_BUG_ON(!eb->batch);
2062 list_for_each_entry(ev, &eb->relocs, reloc_link) {
2064 pagefault_disable();
2065 err = eb_relocate_vma(eb, ev);
2070 err = eb_relocate_vma_slow(eb, ev);
2076 if (err == -EDEADLK)
2079 if (err && !have_copy)
2085 /* as last step, parse the command buffer */
2091 * Leave the user relocations as are, this is the painfully slow path,
2092 * and we want to avoid the complication of dropping the lock whilst
2093 * having buffers reserved in the aperture and so causing spurious
2094 * ENOSPC for random operations.
2098 if (err == -EDEADLK) {
2099 eb_release_vmas(eb, false, false);
2100 err = i915_gem_ww_ctx_backoff(&eb->ww);
2102 goto repeat_validate;
2110 const unsigned int count = eb->buffer_count;
2113 for (i = 0; i < count; i++) {
2114 const struct drm_i915_gem_exec_object2 *entry =
2116 struct drm_i915_gem_relocation_entry *relocs;
2118 if (!entry->relocation_count)
2121 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2127 i915_request_put(rq);
2132 static int eb_relocate_parse(struct i915_execbuffer *eb)
2135 struct i915_request *rq = NULL;
2136 bool throttle = true;
2139 rq = eb_pin_engine(eb, throttle);
2143 if (err != -EDEADLK)
2150 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2152 /* Need to drop all locks now for throttling, take slowpath */
2153 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2154 if (err == -ETIME) {
2157 i915_request_put(rq);
2162 i915_request_put(rq);
2166 /* only throttle once, even if we didn't need to throttle */
2169 err = eb_validate_vmas(eb);
2175 /* The objects are in their final locations, apply the relocations. */
2176 if (eb->args->flags & __EXEC_HAS_RELOC) {
2179 list_for_each_entry(ev, &eb->relocs, reloc_link) {
2180 err = eb_relocate_vma(eb, ev);
2185 if (err == -EDEADLK)
2195 if (err == -EDEADLK) {
2196 eb_release_vmas(eb, false, false);
2197 err = i915_gem_ww_ctx_backoff(&eb->ww);
2205 err = eb_relocate_parse_slow(eb, rq);
2208 * If the user expects the execobject.offset and
2209 * reloc.presumed_offset to be an exact match,
2210 * as for using NO_RELOC, then we cannot update
2211 * the execobject.offset until we have completed
2214 eb->args->flags &= ~__EXEC_HAS_RELOC;
2219 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2221 const unsigned int count = eb->buffer_count;
2222 unsigned int i = count;
2226 struct eb_vma *ev = &eb->vma[i];
2227 struct i915_vma *vma = ev->vma;
2228 unsigned int flags = ev->flags;
2229 struct drm_i915_gem_object *obj = vma->obj;
2231 assert_vma_held(vma);
2233 if (flags & EXEC_OBJECT_CAPTURE) {
2234 struct i915_capture_list *capture;
2236 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2238 capture->next = eb->request->capture_list;
2240 eb->request->capture_list = capture;
2245 * If the GPU is not _reading_ through the CPU cache, we need
2246 * to make sure that any writes (both previous GPU writes from
2247 * before a change in snooping levels and normal CPU writes)
2248 * caught in that cache are flushed to main memory.
2251 * obj->cache_dirty &&
2252 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2253 * but gcc's optimiser doesn't handle that as well and emits
2254 * two jumps instead of one. Maybe one day...
2256 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2257 if (i915_gem_clflush_object(obj, 0))
2258 flags &= ~EXEC_OBJECT_ASYNC;
2261 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2262 err = i915_request_await_object
2263 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2267 err = i915_vma_move_to_active(vma, eb->request,
2268 flags | __EXEC_OBJECT_NO_RESERVE);
2271 #ifdef CONFIG_MMU_NOTIFIER
2272 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2273 spin_lock(&eb->i915->mm.notifier_lock);
2276 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2277 * could not have been set
2279 for (i = 0; i < count; i++) {
2280 struct eb_vma *ev = &eb->vma[i];
2281 struct drm_i915_gem_object *obj = ev->vma->obj;
2283 if (!i915_gem_object_is_userptr(obj))
2286 err = i915_gem_object_userptr_submit_done(obj);
2291 spin_unlock(&eb->i915->mm.notifier_lock);
2298 /* Unconditionally flush any chipset caches (for streaming writes). */
2299 intel_gt_chipset_flush(eb->engine->gt);
2303 i915_request_set_error_once(eb->request, err);
2307 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2309 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2312 /* Kernel clipping was a DRI1 misfeature */
2313 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2314 I915_EXEC_USE_EXTENSIONS))) {
2315 if (exec->num_cliprects || exec->cliprects_ptr)
2319 if (exec->DR4 == 0xffffffff) {
2320 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2323 if (exec->DR1 || exec->DR4)
2326 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2332 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2337 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2338 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2342 cs = intel_ring_begin(rq, 4 * 2 + 2);
2346 *cs++ = MI_LOAD_REGISTER_IMM(4);
2347 for (i = 0; i < 4; i++) {
2348 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2352 intel_ring_advance(rq, cs);
2357 static struct i915_vma *
2358 shadow_batch_pin(struct i915_execbuffer *eb,
2359 struct drm_i915_gem_object *obj,
2360 struct i915_address_space *vm,
2363 struct i915_vma *vma;
2366 vma = i915_vma_instance(obj, vm, NULL);
2370 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2372 return ERR_PTR(err);
2377 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2380 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2381 * batch" bit. Hence we need to pin secure batches into the global gtt.
2382 * hsw should have this fixed, but bdw mucks it up again. */
2383 if (eb->batch_flags & I915_DISPATCH_SECURE)
2384 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2389 static int eb_parse(struct i915_execbuffer *eb)
2391 struct drm_i915_private *i915 = eb->i915;
2392 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2393 struct i915_vma *shadow, *trampoline, *batch;
2397 if (!eb_use_cmdparser(eb)) {
2398 batch = eb_dispatch_secure(eb, eb->batch->vma);
2400 return PTR_ERR(batch);
2405 len = eb->batch_len;
2406 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2408 * ppGTT backed shadow buffers must be mapped RO, to prevent
2409 * post-scan tampering
2411 if (!eb->context->vm->has_read_only) {
2413 "Cannot prevent post-scan tampering without RO capable vm\n");
2417 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2419 if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2423 pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
2426 return PTR_ERR(pool);
2427 eb->batch_pool = pool;
2430 err = i915_gem_object_lock(pool->obj, &eb->ww);
2434 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2435 if (IS_ERR(shadow)) {
2436 err = PTR_ERR(shadow);
2439 intel_gt_buffer_pool_mark_used(pool);
2440 i915_gem_object_set_readonly(shadow->obj);
2441 shadow->private = pool;
2444 if (CMDPARSER_USES_GGTT(eb->i915)) {
2445 trampoline = shadow;
2447 shadow = shadow_batch_pin(eb, pool->obj,
2448 &eb->engine->gt->ggtt->vm,
2450 if (IS_ERR(shadow)) {
2451 err = PTR_ERR(shadow);
2452 shadow = trampoline;
2455 shadow->private = pool;
2457 eb->batch_flags |= I915_DISPATCH_SECURE;
2460 batch = eb_dispatch_secure(eb, shadow);
2461 if (IS_ERR(batch)) {
2462 err = PTR_ERR(batch);
2463 goto err_trampoline;
2466 err = dma_resv_reserve_shared(shadow->resv, 1);
2468 goto err_trampoline;
2470 err = intel_engine_cmd_parser(eb->engine,
2472 eb->batch_start_offset,
2474 shadow, trampoline);
2476 goto err_unpin_batch;
2478 eb->batch = &eb->vma[eb->buffer_count++];
2479 eb->batch->vma = i915_vma_get(shadow);
2480 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2482 eb->trampoline = trampoline;
2483 eb->batch_start_offset = 0;
2487 eb->batch = &eb->vma[eb->buffer_count++];
2488 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2489 eb->batch->vma = i915_vma_get(batch);
2495 i915_vma_unpin(batch);
2498 i915_vma_unpin(trampoline);
2500 i915_vma_unpin(shadow);
2505 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2509 if (intel_context_nopreempt(eb->context))
2510 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2512 err = eb_move_to_gpu(eb);
2516 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2517 err = i915_reset_gen7_sol_offsets(eb->request);
2523 * After we completed waiting for other engines (using HW semaphores)
2524 * then we can signal that this request/batch is ready to run. This
2525 * allows us to determine if the batch is still waiting on the GPU
2526 * or actually running by checking the breadcrumb.
2528 if (eb->engine->emit_init_breadcrumb) {
2529 err = eb->engine->emit_init_breadcrumb(eb->request);
2534 err = eb->engine->emit_bb_start(eb->request,
2536 eb->batch_start_offset,
2542 if (eb->trampoline) {
2543 GEM_BUG_ON(eb->batch_start_offset);
2544 err = eb->engine->emit_bb_start(eb->request,
2545 eb->trampoline->node.start +
2555 static int num_vcs_engines(const struct drm_i915_private *i915)
2557 return hweight_long(VDBOX_MASK(&i915->gt));
2561 * Find one BSD ring to dispatch the corresponding BSD command.
2562 * The engine index is returned.
2565 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2566 struct drm_file *file)
2568 struct drm_i915_file_private *file_priv = file->driver_priv;
2570 /* Check whether the file_priv has already selected one ring. */
2571 if ((int)file_priv->bsd_engine < 0)
2572 file_priv->bsd_engine =
2573 get_random_int() % num_vcs_engines(dev_priv);
2575 return file_priv->bsd_engine;
2578 static const enum intel_engine_id user_ring_map[] = {
2579 [I915_EXEC_DEFAULT] = RCS0,
2580 [I915_EXEC_RENDER] = RCS0,
2581 [I915_EXEC_BLT] = BCS0,
2582 [I915_EXEC_BSD] = VCS0,
2583 [I915_EXEC_VEBOX] = VECS0
2586 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2588 struct intel_ring *ring = ce->ring;
2589 struct intel_timeline *tl = ce->timeline;
2590 struct i915_request *rq;
2593 * Completely unscientific finger-in-the-air estimates for suitable
2594 * maximum user request size (to avoid blocking) and then backoff.
2596 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2600 * Find a request that after waiting upon, there will be at least half
2601 * the ring available. The hysteresis allows us to compete for the
2602 * shared ring and should mean that we sleep less often prior to
2603 * claiming our resources, but not so long that the ring completely
2604 * drains before we can submit our next request.
2606 list_for_each_entry(rq, &tl->requests, link) {
2607 if (rq->ring != ring)
2610 if (__intel_ring_space(rq->postfix,
2611 ring->emit, ring->size) > ring->size / 2)
2614 if (&rq->link == &tl->requests)
2615 return NULL; /* weird, we will check again later for real */
2617 return i915_request_get(rq);
2620 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2622 struct intel_context *ce = eb->context;
2623 struct intel_timeline *tl;
2624 struct i915_request *rq = NULL;
2627 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2629 if (unlikely(intel_context_is_banned(ce)))
2630 return ERR_PTR(-EIO);
2633 * Pinning the contexts may generate requests in order to acquire
2634 * GGTT space, so do this first before we reserve a seqno for
2637 err = intel_context_pin_ww(ce, &eb->ww);
2639 return ERR_PTR(err);
2642 * Take a local wakeref for preparing to dispatch the execbuf as
2643 * we expect to access the hardware fairly frequently in the
2644 * process, and require the engine to be kept awake between accesses.
2645 * Upon dispatch, we acquire another prolonged wakeref that we hold
2646 * until the timeline is idle, which in turn releases the wakeref
2647 * taken on the engine, and the parent device.
2649 tl = intel_context_timeline_lock(ce);
2651 intel_context_unpin(ce);
2652 return ERR_CAST(tl);
2655 intel_context_enter(ce);
2657 rq = eb_throttle(eb, ce);
2658 intel_context_timeline_unlock(tl);
2660 eb->args->flags |= __EXEC_ENGINE_PINNED;
2664 static void eb_unpin_engine(struct i915_execbuffer *eb)
2666 struct intel_context *ce = eb->context;
2667 struct intel_timeline *tl = ce->timeline;
2669 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2672 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2674 mutex_lock(&tl->mutex);
2675 intel_context_exit(ce);
2676 mutex_unlock(&tl->mutex);
2678 intel_context_unpin(ce);
2682 eb_select_legacy_ring(struct i915_execbuffer *eb)
2684 struct drm_i915_private *i915 = eb->i915;
2685 struct drm_i915_gem_execbuffer2 *args = eb->args;
2686 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2688 if (user_ring_id != I915_EXEC_BSD &&
2689 (args->flags & I915_EXEC_BSD_MASK)) {
2691 "execbuf with non bsd ring but with invalid "
2692 "bsd dispatch flags: %d\n", (int)(args->flags));
2696 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2697 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2699 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2700 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2701 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2702 bsd_idx <= I915_EXEC_BSD_RING2) {
2703 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2707 "execbuf with unknown bsd ring: %u\n",
2712 return _VCS(bsd_idx);
2715 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2716 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2721 return user_ring_map[user_ring_id];
2725 eb_select_engine(struct i915_execbuffer *eb)
2727 struct intel_context *ce;
2731 if (i915_gem_context_user_engines(eb->gem_context))
2732 idx = eb->args->flags & I915_EXEC_RING_MASK;
2734 idx = eb_select_legacy_ring(eb);
2736 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2740 intel_gt_pm_get(ce->engine->gt);
2742 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2743 err = intel_context_alloc_state(ce);
2749 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2750 * EIO if the GPU is already wedged.
2752 err = intel_gt_terminally_wedged(ce->engine->gt);
2757 eb->engine = ce->engine;
2760 * Make sure engine pool stays alive even if we call intel_context_put
2761 * during ww handling. The pool is destroyed when last pm reference
2762 * is dropped, which breaks our -EDEADLK handling.
2767 intel_gt_pm_put(ce->engine->gt);
2768 intel_context_put(ce);
2773 eb_put_engine(struct i915_execbuffer *eb)
2775 intel_gt_pm_put(eb->engine->gt);
2776 intel_context_put(eb->context);
2780 __free_fence_array(struct eb_fence *fences, unsigned int n)
2783 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2784 dma_fence_put(fences[n].dma_fence);
2785 dma_fence_chain_free(fences[n].chain_fence);
2791 add_timeline_fence_array(struct i915_execbuffer *eb,
2792 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2794 struct drm_i915_gem_exec_fence __user *user_fences;
2795 u64 __user *user_values;
2800 nfences = timeline_fences->fence_count;
2804 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2805 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2806 if (nfences > min_t(unsigned long,
2807 ULONG_MAX / sizeof(*user_fences),
2808 SIZE_MAX / sizeof(*f)) - eb->num_fences)
2811 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2812 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2815 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2816 if (!access_ok(user_values, nfences * sizeof(*user_values)))
2819 f = krealloc(eb->fences,
2820 (eb->num_fences + nfences) * sizeof(*f),
2821 __GFP_NOWARN | GFP_KERNEL);
2826 f += eb->num_fences;
2828 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2829 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2832 struct drm_i915_gem_exec_fence user_fence;
2833 struct drm_syncobj *syncobj;
2834 struct dma_fence *fence = NULL;
2837 if (__copy_from_user(&user_fence,
2839 sizeof(user_fence)))
2842 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2845 if (__get_user(point, user_values++))
2848 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2850 DRM_DEBUG("Invalid syncobj handle provided\n");
2854 fence = drm_syncobj_fence_get(syncobj);
2856 if (!fence && user_fence.flags &&
2857 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2858 DRM_DEBUG("Syncobj handle has no fence\n");
2859 drm_syncobj_put(syncobj);
2864 err = dma_fence_chain_find_seqno(&fence, point);
2866 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2867 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2868 dma_fence_put(fence);
2869 drm_syncobj_put(syncobj);
2874 * A point might have been signaled already and
2875 * garbage collected from the timeline. In this case
2876 * just ignore the point and carry on.
2878 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2879 drm_syncobj_put(syncobj);
2884 * For timeline syncobjs we need to preallocate chains for
2887 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2889 * Waiting and signaling the same point (when point !=
2890 * 0) would break the timeline.
2892 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2893 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2894 dma_fence_put(fence);
2895 drm_syncobj_put(syncobj);
2899 f->chain_fence = dma_fence_chain_alloc();
2900 if (!f->chain_fence) {
2901 drm_syncobj_put(syncobj);
2902 dma_fence_put(fence);
2906 f->chain_fence = NULL;
2909 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2910 f->dma_fence = fence;
2919 static int add_fence_array(struct i915_execbuffer *eb)
2921 struct drm_i915_gem_execbuffer2 *args = eb->args;
2922 struct drm_i915_gem_exec_fence __user *user;
2923 unsigned long num_fences = args->num_cliprects;
2926 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2932 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2933 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2934 if (num_fences > min_t(unsigned long,
2935 ULONG_MAX / sizeof(*user),
2936 SIZE_MAX / sizeof(*f) - eb->num_fences))
2939 user = u64_to_user_ptr(args->cliprects_ptr);
2940 if (!access_ok(user, num_fences * sizeof(*user)))
2943 f = krealloc(eb->fences,
2944 (eb->num_fences + num_fences) * sizeof(*f),
2945 __GFP_NOWARN | GFP_KERNEL);
2950 f += eb->num_fences;
2951 while (num_fences--) {
2952 struct drm_i915_gem_exec_fence user_fence;
2953 struct drm_syncobj *syncobj;
2954 struct dma_fence *fence = NULL;
2956 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2959 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2962 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2964 DRM_DEBUG("Invalid syncobj handle provided\n");
2968 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2969 fence = drm_syncobj_fence_get(syncobj);
2971 DRM_DEBUG("Syncobj handle has no fence\n");
2972 drm_syncobj_put(syncobj);
2977 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2978 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2980 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2981 f->dma_fence = fence;
2983 f->chain_fence = NULL;
2991 static void put_fence_array(struct eb_fence *fences, int num_fences)
2994 __free_fence_array(fences, num_fences);
2998 await_fence_array(struct i915_execbuffer *eb)
3003 for (n = 0; n < eb->num_fences; n++) {
3004 struct drm_syncobj *syncobj;
3007 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3009 if (!eb->fences[n].dma_fence)
3012 err = i915_request_await_dma_fence(eb->request,
3013 eb->fences[n].dma_fence);
3021 static void signal_fence_array(const struct i915_execbuffer *eb)
3023 struct dma_fence * const fence = &eb->request->fence;
3026 for (n = 0; n < eb->num_fences; n++) {
3027 struct drm_syncobj *syncobj;
3030 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3031 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3034 if (eb->fences[n].chain_fence) {
3035 drm_syncobj_add_point(syncobj,
3036 eb->fences[n].chain_fence,
3038 eb->fences[n].value);
3040 * The chain's ownership is transferred to the
3043 eb->fences[n].chain_fence = NULL;
3045 drm_syncobj_replace_fence(syncobj, fence);
3051 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3053 struct i915_execbuffer *eb = data;
3054 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3056 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3059 return add_timeline_fence_array(eb, &timeline_fences);
3062 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3064 struct i915_request *rq, *rn;
3066 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3067 if (rq == end || !i915_request_retire(rq))
3071 static int eb_request_add(struct i915_execbuffer *eb, int err)
3073 struct i915_request *rq = eb->request;
3074 struct intel_timeline * const tl = i915_request_timeline(rq);
3075 struct i915_sched_attr attr = {};
3076 struct i915_request *prev;
3078 lockdep_assert_held(&tl->mutex);
3079 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3081 trace_i915_request_add(rq);
3083 prev = __i915_request_commit(rq);
3085 /* Check that the context wasn't destroyed before submission */
3086 if (likely(!intel_context_is_closed(eb->context))) {
3087 attr = eb->gem_context->sched;
3089 /* Serialise with context_close via the add_to_timeline */
3090 i915_request_set_error_once(rq, -ENOENT);
3091 __i915_request_skip(rq);
3092 err = -ENOENT; /* override any transient errors */
3095 __i915_request_queue(rq, &attr);
3097 /* Try to clean up the client's timeline after submitting the request */
3099 retire_requests(tl, prev);
3101 mutex_unlock(&tl->mutex);
3106 static const i915_user_extension_fn execbuf_extensions[] = {
3107 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3111 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3112 struct i915_execbuffer *eb)
3114 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3117 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3118 * have another flag also using it at the same time.
3120 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3123 if (args->num_cliprects != 0)
3126 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3128 ARRAY_SIZE(execbuf_extensions),
3133 i915_gem_do_execbuffer(struct drm_device *dev,
3134 struct drm_file *file,
3135 struct drm_i915_gem_execbuffer2 *args,
3136 struct drm_i915_gem_exec_object2 *exec)
3138 struct drm_i915_private *i915 = to_i915(dev);
3139 struct i915_execbuffer eb;
3140 struct dma_fence *in_fence = NULL;
3141 struct sync_file *out_fence = NULL;
3142 struct i915_vma *batch;
3143 int out_fence_fd = -1;
3146 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3147 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3148 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3153 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3154 args->flags |= __EXEC_HAS_RELOC;
3157 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3158 eb.vma[0].vma = NULL;
3159 eb.reloc_pool = eb.batch_pool = NULL;
3160 eb.reloc_context = NULL;
3162 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3163 reloc_cache_init(&eb.reloc_cache, eb.i915);
3165 eb.buffer_count = args->buffer_count;
3166 eb.batch_start_offset = args->batch_start_offset;
3167 eb.batch_len = args->batch_len;
3168 eb.trampoline = NULL;
3174 if (args->flags & I915_EXEC_SECURE) {
3175 if (GRAPHICS_VER(i915) >= 11)
3178 /* Return -EPERM to trigger fallback code on old binaries. */
3179 if (!HAS_SECURE_BATCHES(i915))
3182 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3185 eb.batch_flags |= I915_DISPATCH_SECURE;
3187 if (args->flags & I915_EXEC_IS_PINNED)
3188 eb.batch_flags |= I915_DISPATCH_PINNED;
3190 err = parse_execbuf2_extensions(args, &eb);
3194 err = add_fence_array(&eb);
3198 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3199 if (args->flags & IN_FENCES) {
3200 if ((args->flags & IN_FENCES) == IN_FENCES)
3203 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3211 if (args->flags & I915_EXEC_FENCE_OUT) {
3212 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3213 if (out_fence_fd < 0) {
3219 err = eb_create(&eb);
3223 GEM_BUG_ON(!eb.lut_size);
3225 err = eb_select_context(&eb);
3229 err = eb_select_engine(&eb);
3233 err = eb_lookup_vmas(&eb);
3235 eb_release_vmas(&eb, true, true);
3239 i915_gem_ww_ctx_init(&eb.ww, true);
3241 err = eb_relocate_parse(&eb);
3244 * If the user expects the execobject.offset and
3245 * reloc.presumed_offset to be an exact match,
3246 * as for using NO_RELOC, then we cannot update
3247 * the execobject.offset until we have completed
3250 args->flags &= ~__EXEC_HAS_RELOC;
3254 ww_acquire_done(&eb.ww.ctx);
3256 batch = eb.batch->vma;
3258 /* All GPU relocation batches must be submitted prior to the user rq */
3259 GEM_BUG_ON(eb.reloc_cache.rq);
3261 /* Allocate a request for this batch buffer nice and early. */
3262 eb.request = i915_request_create(eb.context);
3263 if (IS_ERR(eb.request)) {
3264 err = PTR_ERR(eb.request);
3269 if (args->flags & I915_EXEC_FENCE_SUBMIT)
3270 err = i915_request_await_execution(eb.request,
3272 eb.engine->bond_execute);
3274 err = i915_request_await_dma_fence(eb.request,
3281 err = await_fence_array(&eb);
3286 if (out_fence_fd != -1) {
3287 out_fence = sync_file_create(&eb.request->fence);
3295 * Whilst this request exists, batch_obj will be on the
3296 * active_list, and so will hold the active reference. Only when this
3297 * request is retired will the the batch_obj be moved onto the
3298 * inactive_list and lose its active reference. Hence we do not need
3299 * to explicitly hold another reference here.
3301 eb.request->batch = batch;
3303 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3305 trace_i915_request_queue(eb.request, eb.batch_flags);
3306 err = eb_submit(&eb, batch);
3309 i915_request_get(eb.request);
3310 err = eb_request_add(&eb, err);
3313 signal_fence_array(&eb);
3317 fd_install(out_fence_fd, out_fence->file);
3318 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3319 args->rsvd2 |= (u64)out_fence_fd << 32;
3322 fput(out_fence->file);
3325 i915_request_put(eb.request);
3328 eb_release_vmas(&eb, true, true);
3330 i915_vma_unpin(eb.trampoline);
3331 WARN_ON(err == -EDEADLK);
3332 i915_gem_ww_ctx_fini(&eb.ww);
3335 intel_gt_buffer_pool_put(eb.batch_pool);
3337 intel_gt_buffer_pool_put(eb.reloc_pool);
3338 if (eb.reloc_context)
3339 intel_context_put(eb.reloc_context);
3343 i915_gem_context_put(eb.gem_context);
3347 if (out_fence_fd != -1)
3348 put_unused_fd(out_fence_fd);
3350 dma_fence_put(in_fence);
3352 put_fence_array(eb.fences, eb.num_fences);
3356 static size_t eb_element_size(void)
3358 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3361 static bool check_buffer_count(size_t count)
3363 const size_t sz = eb_element_size();
3366 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3367 * array size (see eb_create()). Otherwise, we can accept an array as
3368 * large as can be addressed (though use large arrays at your peril)!
3371 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3375 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3376 struct drm_file *file)
3378 struct drm_i915_private *i915 = to_i915(dev);
3379 struct drm_i915_gem_execbuffer2 *args = data;
3380 struct drm_i915_gem_exec_object2 *exec2_list;
3381 const size_t count = args->buffer_count;
3384 if (!check_buffer_count(count)) {
3385 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3389 err = i915_gem_check_execbuffer(args);
3393 /* Allocate extra slots for use by the command parser */
3394 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3395 __GFP_NOWARN | GFP_KERNEL);
3396 if (exec2_list == NULL) {
3397 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3401 if (copy_from_user(exec2_list,
3402 u64_to_user_ptr(args->buffers_ptr),
3403 sizeof(*exec2_list) * count)) {
3404 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3409 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3412 * Now that we have begun execution of the batchbuffer, we ignore
3413 * any new error after this point. Also given that we have already
3414 * updated the associated relocations, we try to write out the current
3415 * object locations irrespective of any error.
3417 if (args->flags & __EXEC_HAS_RELOC) {
3418 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3419 u64_to_user_ptr(args->buffers_ptr);
3422 /* Copy the new buffer offsets back to the user's exec list. */
3424 * Note: count * sizeof(*user_exec_list) does not overflow,
3425 * because we checked 'count' in check_buffer_count().
3427 * And this range already got effectively checked earlier
3428 * when we did the "copy_from_user()" above.
3430 if (!user_write_access_begin(user_exec_list,
3431 count * sizeof(*user_exec_list)))
3434 for (i = 0; i < args->buffer_count; i++) {
3435 if (!(exec2_list[i].offset & UPDATE))
3438 exec2_list[i].offset =
3439 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3440 unsafe_put_user(exec2_list[i].offset,
3441 &user_exec_list[i].offset,
3445 user_write_access_end();
3449 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3454 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3455 #include "selftests/i915_gem_execbuffer.c"