]> Git Repo - linux.git/blob - arch/x86/kvm/cpuid.c
net/smc: fix kernel panic caused by race of smc_sock
[linux.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27
28 /*
29  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
30  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
31  */
32 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
33 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
34
35 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
36 {
37         int feature_bit = 0;
38         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
39
40         xstate_bv &= XFEATURE_MASK_EXTEND;
41         while (xstate_bv) {
42                 if (xstate_bv & 0x1) {
43                         u32 eax, ebx, ecx, edx, offset;
44                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
45                         offset = compacted ? ret : ebx;
46                         ret = max(ret, offset + eax);
47                 }
48
49                 xstate_bv >>= 1;
50                 feature_bit++;
51         }
52
53         return ret;
54 }
55
56 /*
57  * This one is tied to SSB in the user API, and not
58  * visible in /proc/cpuinfo.
59  */
60 #define KVM_X86_FEATURE_PSFD            (13*32+28) /* Predictive Store Forwarding Disable */
61
62 #define F feature_bit
63 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
64
65
66 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
67         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
68 {
69         struct kvm_cpuid_entry2 *e;
70         int i;
71
72         for (i = 0; i < nent; i++) {
73                 e = &entries[i];
74
75                 if (e->function == function &&
76                     (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
77                         return e;
78         }
79
80         return NULL;
81 }
82
83 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
84 {
85         struct kvm_cpuid_entry2 *best;
86
87         /*
88          * The existing code assumes virtual address is 48-bit or 57-bit in the
89          * canonical address checks; exit if it is ever changed.
90          */
91         best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
92         if (best) {
93                 int vaddr_bits = (best->eax & 0xff00) >> 8;
94
95                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
96                         return -EINVAL;
97         }
98
99         return 0;
100 }
101
102 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
103 {
104         u32 function;
105         struct kvm_cpuid_entry2 *entry;
106
107         vcpu->arch.kvm_cpuid_base = 0;
108
109         for_each_possible_hypervisor_cpuid_base(function) {
110                 entry = kvm_find_cpuid_entry(vcpu, function, 0);
111
112                 if (entry) {
113                         u32 signature[3];
114
115                         signature[0] = entry->ebx;
116                         signature[1] = entry->ecx;
117                         signature[2] = entry->edx;
118
119                         BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
120                         if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
121                                 vcpu->arch.kvm_cpuid_base = function;
122                                 break;
123                         }
124                 }
125         }
126 }
127
128 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
129 {
130         u32 base = vcpu->arch.kvm_cpuid_base;
131
132         if (!base)
133                 return NULL;
134
135         return kvm_find_cpuid_entry(vcpu, base | KVM_CPUID_FEATURES, 0);
136 }
137
138 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
139 {
140         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
141
142         /*
143          * save the feature bitmap to avoid cpuid lookup for every PV
144          * operation
145          */
146         if (best)
147                 vcpu->arch.pv_cpuid.features = best->eax;
148 }
149
150 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
151 {
152         struct kvm_cpuid_entry2 *best;
153
154         best = kvm_find_cpuid_entry(vcpu, 1, 0);
155         if (best) {
156                 /* Update OSXSAVE bit */
157                 if (boot_cpu_has(X86_FEATURE_XSAVE))
158                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
159                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
160
161                 cpuid_entry_change(best, X86_FEATURE_APIC,
162                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
163         }
164
165         best = kvm_find_cpuid_entry(vcpu, 7, 0);
166         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
167                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
168                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
169
170         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
171         if (best)
172                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
173
174         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
175         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
176                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
177                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
178
179         best = kvm_find_kvm_cpuid_features(vcpu);
180         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
181                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
182                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
183
184         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
185                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
186                 if (best)
187                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
188                                            vcpu->arch.ia32_misc_enable_msr &
189                                            MSR_IA32_MISC_ENABLE_MWAIT);
190         }
191 }
192 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
193
194 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
195 {
196         struct kvm_lapic *apic = vcpu->arch.apic;
197         struct kvm_cpuid_entry2 *best;
198
199         best = kvm_find_cpuid_entry(vcpu, 1, 0);
200         if (best && apic) {
201                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
202                         apic->lapic_timer.timer_mode_mask = 3 << 17;
203                 else
204                         apic->lapic_timer.timer_mode_mask = 1 << 17;
205
206                 kvm_apic_set_version(vcpu);
207         }
208
209         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
210         if (!best)
211                 vcpu->arch.guest_supported_xcr0 = 0;
212         else
213                 vcpu->arch.guest_supported_xcr0 =
214                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
215
216         /*
217          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
218          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
219          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
220          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
221          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
222          * '1' even on CPUs that don't support XSAVE.
223          */
224         best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1);
225         if (best) {
226                 best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff;
227                 best->edx &= vcpu->arch.guest_supported_xcr0 >> 32;
228                 best->ecx |= XFEATURE_MASK_FPSSE;
229         }
230
231         kvm_update_pv_runtime(vcpu);
232
233         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
234         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
235
236         kvm_pmu_refresh(vcpu);
237         vcpu->arch.cr4_guest_rsvd_bits =
238             __cr4_reserved_bits(guest_cpuid_has, vcpu);
239
240         kvm_hv_set_cpuid(vcpu);
241
242         /* Invoke the vendor callback only after the above state is updated. */
243         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
244
245         /*
246          * Except for the MMU, which needs to do its thing any vendor specific
247          * adjustments to the reserved GPA bits.
248          */
249         kvm_mmu_after_set_cpuid(vcpu);
250 }
251
252 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
253 {
254         struct kvm_cpuid_entry2 *best;
255
256         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
257         if (!best || best->eax < 0x80000008)
258                 goto not_found;
259         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
260         if (best)
261                 return best->eax & 0xff;
262 not_found:
263         return 36;
264 }
265
266 /*
267  * This "raw" version returns the reserved GPA bits without any adjustments for
268  * encryption technologies that usurp bits.  The raw mask should be used if and
269  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
270  */
271 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
272 {
273         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
274 }
275
276 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
277                         int nent)
278 {
279     int r;
280
281     r = kvm_check_cpuid(e2, nent);
282     if (r)
283         return r;
284
285     kvfree(vcpu->arch.cpuid_entries);
286     vcpu->arch.cpuid_entries = e2;
287     vcpu->arch.cpuid_nent = nent;
288
289     kvm_update_kvm_cpuid_base(vcpu);
290     kvm_update_cpuid_runtime(vcpu);
291     kvm_vcpu_after_set_cpuid(vcpu);
292
293     return 0;
294 }
295
296 /* when an old userspace process fills a new kernel module */
297 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
298                              struct kvm_cpuid *cpuid,
299                              struct kvm_cpuid_entry __user *entries)
300 {
301         int r, i;
302         struct kvm_cpuid_entry *e = NULL;
303         struct kvm_cpuid_entry2 *e2 = NULL;
304
305         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
306                 return -E2BIG;
307
308         if (cpuid->nent) {
309                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
310                 if (IS_ERR(e))
311                         return PTR_ERR(e);
312
313                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
314                 if (!e2) {
315                         r = -ENOMEM;
316                         goto out_free_cpuid;
317                 }
318         }
319         for (i = 0; i < cpuid->nent; i++) {
320                 e2[i].function = e[i].function;
321                 e2[i].eax = e[i].eax;
322                 e2[i].ebx = e[i].ebx;
323                 e2[i].ecx = e[i].ecx;
324                 e2[i].edx = e[i].edx;
325                 e2[i].index = 0;
326                 e2[i].flags = 0;
327                 e2[i].padding[0] = 0;
328                 e2[i].padding[1] = 0;
329                 e2[i].padding[2] = 0;
330         }
331
332         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
333         if (r)
334                 kvfree(e2);
335
336 out_free_cpuid:
337         kvfree(e);
338
339         return r;
340 }
341
342 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
343                               struct kvm_cpuid2 *cpuid,
344                               struct kvm_cpuid_entry2 __user *entries)
345 {
346         struct kvm_cpuid_entry2 *e2 = NULL;
347         int r;
348
349         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
350                 return -E2BIG;
351
352         if (cpuid->nent) {
353                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
354                 if (IS_ERR(e2))
355                         return PTR_ERR(e2);
356         }
357
358         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
359         if (r)
360                 kvfree(e2);
361
362         return r;
363 }
364
365 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
366                               struct kvm_cpuid2 *cpuid,
367                               struct kvm_cpuid_entry2 __user *entries)
368 {
369         int r;
370
371         r = -E2BIG;
372         if (cpuid->nent < vcpu->arch.cpuid_nent)
373                 goto out;
374         r = -EFAULT;
375         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
376                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
377                 goto out;
378         return 0;
379
380 out:
381         cpuid->nent = vcpu->arch.cpuid_nent;
382         return r;
383 }
384
385 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
386 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
387 {
388         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
389         struct kvm_cpuid_entry2 entry;
390
391         reverse_cpuid_check(leaf);
392
393         cpuid_count(cpuid.function, cpuid.index,
394                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
395
396         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
397 }
398
399 static __always_inline
400 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
401 {
402         /* Use kvm_cpu_cap_mask for non-scattered leafs. */
403         BUILD_BUG_ON(leaf < NCAPINTS);
404
405         kvm_cpu_caps[leaf] = mask;
406
407         __kvm_cpu_cap_mask(leaf);
408 }
409
410 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
411 {
412         /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
413         BUILD_BUG_ON(leaf >= NCAPINTS);
414
415         kvm_cpu_caps[leaf] &= mask;
416
417         __kvm_cpu_cap_mask(leaf);
418 }
419
420 void kvm_set_cpu_caps(void)
421 {
422 #ifdef CONFIG_X86_64
423         unsigned int f_gbpages = F(GBPAGES);
424         unsigned int f_lm = F(LM);
425 #else
426         unsigned int f_gbpages = 0;
427         unsigned int f_lm = 0;
428 #endif
429         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
430
431         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
432                      sizeof(boot_cpu_data.x86_capability));
433
434         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
435                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
436
437         kvm_cpu_cap_mask(CPUID_1_ECX,
438                 /*
439                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
440                  * advertised to guests via CPUID!
441                  */
442                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
443                 0 /* DS-CPL, VMX, SMX, EST */ |
444                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
445                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
446                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
447                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
448                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
449                 F(F16C) | F(RDRAND)
450         );
451         /* KVM emulates x2apic in software irrespective of host support. */
452         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
453
454         kvm_cpu_cap_mask(CPUID_1_EDX,
455                 F(FPU) | F(VME) | F(DE) | F(PSE) |
456                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
457                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
458                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
459                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
460                 0 /* Reserved, DS, ACPI */ | F(MMX) |
461                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
462                 0 /* HTT, TM, Reserved, PBE */
463         );
464
465         kvm_cpu_cap_mask(CPUID_7_0_EBX,
466                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
467                 F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
468                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
469                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
470                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
471         );
472
473         kvm_cpu_cap_mask(CPUID_7_ECX,
474                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
475                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
476                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
477                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
478                 F(SGX_LC) | F(BUS_LOCK_DETECT)
479         );
480         /* Set LA57 based on hardware capability. */
481         if (cpuid_ecx(7) & F(LA57))
482                 kvm_cpu_cap_set(X86_FEATURE_LA57);
483
484         /*
485          * PKU not yet implemented for shadow paging and requires OSPKE
486          * to be set on the host. Clear it if that is not the case
487          */
488         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
489                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
490
491         kvm_cpu_cap_mask(CPUID_7_EDX,
492                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
493                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
494                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
495                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
496         );
497
498         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
499         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
500         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
501
502         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
503                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
504         if (boot_cpu_has(X86_FEATURE_STIBP))
505                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
506         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
507                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
508
509         kvm_cpu_cap_mask(CPUID_7_1_EAX,
510                 F(AVX_VNNI) | F(AVX512_BF16)
511         );
512
513         kvm_cpu_cap_mask(CPUID_D_1_EAX,
514                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
515         );
516
517         kvm_cpu_cap_init_scattered(CPUID_12_EAX,
518                 SF(SGX1) | SF(SGX2)
519         );
520
521         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
522                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
523                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
524                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
525                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
526                 F(TOPOEXT) | F(PERFCTR_CORE)
527         );
528
529         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
530                 F(FPU) | F(VME) | F(DE) | F(PSE) |
531                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
532                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
533                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
534                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
535                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
536                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
537                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
538         );
539
540         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
541                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
542
543         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
544                 F(CLZERO) | F(XSAVEERPTR) |
545                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
546                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
547                 __feature_bit(KVM_X86_FEATURE_PSFD)
548         );
549
550         /*
551          * AMD has separate bits for each SPEC_CTRL bit.
552          * arch/x86/kernel/cpu/bugs.c is kind enough to
553          * record that in cpufeatures so use them.
554          */
555         if (boot_cpu_has(X86_FEATURE_IBPB))
556                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
557         if (boot_cpu_has(X86_FEATURE_IBRS))
558                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
559         if (boot_cpu_has(X86_FEATURE_STIBP))
560                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
561         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
562                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
563         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
564                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
565         /*
566          * The preference is to use SPEC CTRL MSR instead of the
567          * VIRT_SPEC MSR.
568          */
569         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
570             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
571                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
572
573         /*
574          * Hide all SVM features by default, SVM will set the cap bits for
575          * features it emulates and/or exposes for L1.
576          */
577         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
578
579         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
580                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
581                 F(SME_COHERENT));
582
583         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
584                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
585                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
586                 F(PMM) | F(PMM_EN)
587         );
588
589         /*
590          * Hide RDTSCP and RDPID if either feature is reported as supported but
591          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
592          * should never happen, but the guest will likely crash if RDTSCP or
593          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
594          * the past.  For example, the sanity check may fire if this instance of
595          * KVM is running as L1 on top of an older, broken KVM.
596          */
597         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
598                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
599                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
600                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
601                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
602         }
603 }
604 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
605
606 struct kvm_cpuid_array {
607         struct kvm_cpuid_entry2 *entries;
608         int maxnent;
609         int nent;
610 };
611
612 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
613                                               u32 function, u32 index)
614 {
615         struct kvm_cpuid_entry2 *entry;
616
617         if (array->nent >= array->maxnent)
618                 return NULL;
619
620         entry = &array->entries[array->nent++];
621
622         entry->function = function;
623         entry->index = index;
624         entry->flags = 0;
625
626         cpuid_count(entry->function, entry->index,
627                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
628
629         switch (function) {
630         case 4:
631         case 7:
632         case 0xb:
633         case 0xd:
634         case 0xf:
635         case 0x10:
636         case 0x12:
637         case 0x14:
638         case 0x17:
639         case 0x18:
640         case 0x1f:
641         case 0x8000001d:
642                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
643                 break;
644         }
645
646         return entry;
647 }
648
649 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
650 {
651         struct kvm_cpuid_entry2 *entry;
652
653         if (array->nent >= array->maxnent)
654                 return -E2BIG;
655
656         entry = &array->entries[array->nent];
657         entry->function = func;
658         entry->index = 0;
659         entry->flags = 0;
660
661         switch (func) {
662         case 0:
663                 entry->eax = 7;
664                 ++array->nent;
665                 break;
666         case 1:
667                 entry->ecx = F(MOVBE);
668                 ++array->nent;
669                 break;
670         case 7:
671                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
672                 entry->eax = 0;
673                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
674                         entry->ecx = F(RDPID);
675                 ++array->nent;
676                 break;
677         default:
678                 break;
679         }
680
681         return 0;
682 }
683
684 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
685 {
686         struct kvm_cpuid_entry2 *entry;
687         int r, i, max_idx;
688
689         /* all calls to cpuid_count() should be made on the same cpu */
690         get_cpu();
691
692         r = -E2BIG;
693
694         entry = do_host_cpuid(array, function, 0);
695         if (!entry)
696                 goto out;
697
698         switch (function) {
699         case 0:
700                 /* Limited to the highest leaf implemented in KVM. */
701                 entry->eax = min(entry->eax, 0x1fU);
702                 break;
703         case 1:
704                 cpuid_entry_override(entry, CPUID_1_EDX);
705                 cpuid_entry_override(entry, CPUID_1_ECX);
706                 break;
707         case 2:
708                 /*
709                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
710                  * CPUID(function=2, index=0) may return different results each
711                  * time, with the least-significant byte in EAX enumerating the
712                  * number of times software should do CPUID(2, 0).
713                  *
714                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
715                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
716                  * return 01H. Software should ignore this value and not
717                  * interpret it as an informational descriptor", while AMD's
718                  * APM states that CPUID(2) is reserved.
719                  *
720                  * WARN if a frankenstein CPU that supports virtualization and
721                  * a stateful CPUID.0x2 is encountered.
722                  */
723                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
724                 break;
725         /* functions 4 and 0x8000001d have additional index. */
726         case 4:
727         case 0x8000001d:
728                 /*
729                  * Read entries until the cache type in the previous entry is
730                  * zero, i.e. indicates an invalid entry.
731                  */
732                 for (i = 1; entry->eax & 0x1f; ++i) {
733                         entry = do_host_cpuid(array, function, i);
734                         if (!entry)
735                                 goto out;
736                 }
737                 break;
738         case 6: /* Thermal management */
739                 entry->eax = 0x4; /* allow ARAT */
740                 entry->ebx = 0;
741                 entry->ecx = 0;
742                 entry->edx = 0;
743                 break;
744         /* function 7 has additional index. */
745         case 7:
746                 entry->eax = min(entry->eax, 1u);
747                 cpuid_entry_override(entry, CPUID_7_0_EBX);
748                 cpuid_entry_override(entry, CPUID_7_ECX);
749                 cpuid_entry_override(entry, CPUID_7_EDX);
750
751                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
752                 if (entry->eax == 1) {
753                         entry = do_host_cpuid(array, function, 1);
754                         if (!entry)
755                                 goto out;
756
757                         cpuid_entry_override(entry, CPUID_7_1_EAX);
758                         entry->ebx = 0;
759                         entry->ecx = 0;
760                         entry->edx = 0;
761                 }
762                 break;
763         case 9:
764                 break;
765         case 0xa: { /* Architectural Performance Monitoring */
766                 struct x86_pmu_capability cap;
767                 union cpuid10_eax eax;
768                 union cpuid10_edx edx;
769
770                 perf_get_x86_pmu_capability(&cap);
771
772                 /*
773                  * Only support guest architectural pmu on a host
774                  * with architectural pmu.
775                  */
776                 if (!cap.version)
777                         memset(&cap, 0, sizeof(cap));
778
779                 eax.split.version_id = min(cap.version, 2);
780                 eax.split.num_counters = cap.num_counters_gp;
781                 eax.split.bit_width = cap.bit_width_gp;
782                 eax.split.mask_length = cap.events_mask_len;
783
784                 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
785                 edx.split.bit_width_fixed = cap.bit_width_fixed;
786                 if (cap.version)
787                         edx.split.anythread_deprecated = 1;
788                 edx.split.reserved1 = 0;
789                 edx.split.reserved2 = 0;
790
791                 entry->eax = eax.full;
792                 entry->ebx = cap.events_mask;
793                 entry->ecx = 0;
794                 entry->edx = edx.full;
795                 break;
796         }
797         /*
798          * Per Intel's SDM, the 0x1f is a superset of 0xb,
799          * thus they can be handled by common code.
800          */
801         case 0x1f:
802         case 0xb:
803                 /*
804                  * Populate entries until the level type (ECX[15:8]) of the
805                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
806                  * the starting entry, filled by the primary do_host_cpuid().
807                  */
808                 for (i = 1; entry->ecx & 0xff00; ++i) {
809                         entry = do_host_cpuid(array, function, i);
810                         if (!entry)
811                                 goto out;
812                 }
813                 break;
814         case 0xd:
815                 entry->eax &= supported_xcr0;
816                 entry->ebx = xstate_required_size(supported_xcr0, false);
817                 entry->ecx = entry->ebx;
818                 entry->edx &= supported_xcr0 >> 32;
819                 if (!supported_xcr0)
820                         break;
821
822                 entry = do_host_cpuid(array, function, 1);
823                 if (!entry)
824                         goto out;
825
826                 cpuid_entry_override(entry, CPUID_D_1_EAX);
827                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
828                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
829                                                           true);
830                 else {
831                         WARN_ON_ONCE(supported_xss != 0);
832                         entry->ebx = 0;
833                 }
834                 entry->ecx &= supported_xss;
835                 entry->edx &= supported_xss >> 32;
836
837                 for (i = 2; i < 64; ++i) {
838                         bool s_state;
839                         if (supported_xcr0 & BIT_ULL(i))
840                                 s_state = false;
841                         else if (supported_xss & BIT_ULL(i))
842                                 s_state = true;
843                         else
844                                 continue;
845
846                         entry = do_host_cpuid(array, function, i);
847                         if (!entry)
848                                 goto out;
849
850                         /*
851                          * The supported check above should have filtered out
852                          * invalid sub-leafs.  Only valid sub-leafs should
853                          * reach this point, and they should have a non-zero
854                          * save state size.  Furthermore, check whether the
855                          * processor agrees with supported_xcr0/supported_xss
856                          * on whether this is an XCR0- or IA32_XSS-managed area.
857                          */
858                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
859                                 --array->nent;
860                                 continue;
861                         }
862                         entry->edx = 0;
863                 }
864                 break;
865         case 0x12:
866                 /* Intel SGX */
867                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
868                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
869                         break;
870                 }
871
872                 /*
873                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
874                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
875                  * are restricted by kernel and KVM capabilities (like most
876                  * feature flags), while enclave size is unrestricted.
877                  */
878                 cpuid_entry_override(entry, CPUID_12_EAX);
879                 entry->ebx &= SGX_MISC_EXINFO;
880
881                 entry = do_host_cpuid(array, function, 1);
882                 if (!entry)
883                         goto out;
884
885                 /*
886                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
887                  * feature flags.  Advertise all supported flags, including
888                  * privileged attributes that require explicit opt-in from
889                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
890                  * expected to derive it from supported XCR0.
891                  */
892                 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
893                               SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
894                               SGX_ATTR_KSS;
895                 entry->ebx &= 0;
896                 break;
897         /* Intel PT */
898         case 0x14:
899                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
900                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
901                         break;
902                 }
903
904                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
905                         if (!do_host_cpuid(array, function, i))
906                                 goto out;
907                 }
908                 break;
909         case KVM_CPUID_SIGNATURE: {
910                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
911                 entry->eax = KVM_CPUID_FEATURES;
912                 entry->ebx = sigptr[0];
913                 entry->ecx = sigptr[1];
914                 entry->edx = sigptr[2];
915                 break;
916         }
917         case KVM_CPUID_FEATURES:
918                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
919                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
920                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
921                              (1 << KVM_FEATURE_ASYNC_PF) |
922                              (1 << KVM_FEATURE_PV_EOI) |
923                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
924                              (1 << KVM_FEATURE_PV_UNHALT) |
925                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
926                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
927                              (1 << KVM_FEATURE_PV_SEND_IPI) |
928                              (1 << KVM_FEATURE_POLL_CONTROL) |
929                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
930                              (1 << KVM_FEATURE_ASYNC_PF_INT);
931
932                 if (sched_info_on())
933                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
934
935                 entry->ebx = 0;
936                 entry->ecx = 0;
937                 entry->edx = 0;
938                 break;
939         case 0x80000000:
940                 entry->eax = min(entry->eax, 0x8000001f);
941                 break;
942         case 0x80000001:
943                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
944                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
945                 break;
946         case 0x80000006:
947                 /* L2 cache and TLB: pass through host info. */
948                 break;
949         case 0x80000007: /* Advanced power management */
950                 /* invariant TSC is CPUID.80000007H:EDX[8] */
951                 entry->edx &= (1 << 8);
952                 /* mask against host */
953                 entry->edx &= boot_cpu_data.x86_power;
954                 entry->eax = entry->ebx = entry->ecx = 0;
955                 break;
956         case 0x80000008: {
957                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
958                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
959                 unsigned phys_as = entry->eax & 0xff;
960
961                 /*
962                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
963                  * the guest operates in the same PA space as the host, i.e.
964                  * reductions in MAXPHYADDR for memory encryption affect shadow
965                  * paging, too.
966                  *
967                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
968                  * provided, use the raw bare metal MAXPHYADDR as reductions to
969                  * the HPAs do not affect GPAs.
970                  */
971                 if (!tdp_enabled)
972                         g_phys_as = boot_cpu_data.x86_phys_bits;
973                 else if (!g_phys_as)
974                         g_phys_as = phys_as;
975
976                 entry->eax = g_phys_as | (virt_as << 8);
977                 entry->edx = 0;
978                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
979                 break;
980         }
981         case 0x8000000A:
982                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
983                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
984                         break;
985                 }
986                 entry->eax = 1; /* SVM revision 1 */
987                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
988                                    ASID emulation to nested SVM */
989                 entry->ecx = 0; /* Reserved */
990                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
991                 break;
992         case 0x80000019:
993                 entry->ecx = entry->edx = 0;
994                 break;
995         case 0x8000001a:
996         case 0x8000001e:
997                 break;
998         case 0x8000001F:
999                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1000                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1001                 } else {
1002                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1003
1004                         /*
1005                          * Enumerate '0' for "PA bits reduction", the adjusted
1006                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1007                          */
1008                         entry->ebx &= ~GENMASK(11, 6);
1009                 }
1010                 break;
1011         /*Add support for Centaur's CPUID instruction*/
1012         case 0xC0000000:
1013                 /*Just support up to 0xC0000004 now*/
1014                 entry->eax = min(entry->eax, 0xC0000004);
1015                 break;
1016         case 0xC0000001:
1017                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1018                 break;
1019         case 3: /* Processor serial number */
1020         case 5: /* MONITOR/MWAIT */
1021         case 0xC0000002:
1022         case 0xC0000003:
1023         case 0xC0000004:
1024         default:
1025                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1026                 break;
1027         }
1028
1029         r = 0;
1030
1031 out:
1032         put_cpu();
1033
1034         return r;
1035 }
1036
1037 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1038                          unsigned int type)
1039 {
1040         if (type == KVM_GET_EMULATED_CPUID)
1041                 return __do_cpuid_func_emulated(array, func);
1042
1043         return __do_cpuid_func(array, func);
1044 }
1045
1046 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1047
1048 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1049                           unsigned int type)
1050 {
1051         u32 limit;
1052         int r;
1053
1054         if (func == CENTAUR_CPUID_SIGNATURE &&
1055             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1056                 return 0;
1057
1058         r = do_cpuid_func(array, func, type);
1059         if (r)
1060                 return r;
1061
1062         limit = array->entries[array->nent - 1].eax;
1063         for (func = func + 1; func <= limit; ++func) {
1064                 r = do_cpuid_func(array, func, type);
1065                 if (r)
1066                         break;
1067         }
1068
1069         return r;
1070 }
1071
1072 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1073                                  __u32 num_entries, unsigned int ioctl_type)
1074 {
1075         int i;
1076         __u32 pad[3];
1077
1078         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1079                 return false;
1080
1081         /*
1082          * We want to make sure that ->padding is being passed clean from
1083          * userspace in case we want to use it for something in the future.
1084          *
1085          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1086          * have to give ourselves satisfied only with the emulated side. /me
1087          * sheds a tear.
1088          */
1089         for (i = 0; i < num_entries; i++) {
1090                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1091                         return true;
1092
1093                 if (pad[0] || pad[1] || pad[2])
1094                         return true;
1095         }
1096         return false;
1097 }
1098
1099 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1100                             struct kvm_cpuid_entry2 __user *entries,
1101                             unsigned int type)
1102 {
1103         static const u32 funcs[] = {
1104                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1105         };
1106
1107         struct kvm_cpuid_array array = {
1108                 .nent = 0,
1109         };
1110         int r, i;
1111
1112         if (cpuid->nent < 1)
1113                 return -E2BIG;
1114         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1115                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1116
1117         if (sanity_check_entries(entries, cpuid->nent, type))
1118                 return -EINVAL;
1119
1120         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
1121                                            cpuid->nent));
1122         if (!array.entries)
1123                 return -ENOMEM;
1124
1125         array.maxnent = cpuid->nent;
1126
1127         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1128                 r = get_cpuid_func(&array, funcs[i], type);
1129                 if (r)
1130                         goto out_free;
1131         }
1132         cpuid->nent = array.nent;
1133
1134         if (copy_to_user(entries, array.entries,
1135                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1136                 r = -EFAULT;
1137
1138 out_free:
1139         vfree(array.entries);
1140         return r;
1141 }
1142
1143 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1144                                               u32 function, u32 index)
1145 {
1146         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1147                                  function, index);
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1150
1151 /*
1152  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1153  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1154  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1155  * range.  Centaur/VIA follows Intel semantics.
1156  *
1157  * A leaf is considered out-of-range if its function is higher than the maximum
1158  * supported leaf of its associated class or if its associated class does not
1159  * exist.
1160  *
1161  * There are three primary classes to be considered, with their respective
1162  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1163  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1164  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1165  *
1166  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1167  *  - Hypervisor: 0x40000000 - 0x4fffffff
1168  *  - Extended:   0x80000000 - 0xbfffffff
1169  *  - Centaur:    0xc0000000 - 0xcfffffff
1170  *
1171  * The Hypervisor class is further subdivided into sub-classes that each act as
1172  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1173  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1174  * CPUID sub-classes are:
1175  *
1176  *  - HyperV:     0x40000000 - 0x400000ff
1177  *  - KVM:        0x40000100 - 0x400001ff
1178  */
1179 static struct kvm_cpuid_entry2 *
1180 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1181 {
1182         struct kvm_cpuid_entry2 *basic, *class;
1183         u32 function = *fn_ptr;
1184
1185         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1186         if (!basic)
1187                 return NULL;
1188
1189         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1190             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1191                 return NULL;
1192
1193         if (function >= 0x40000000 && function <= 0x4fffffff)
1194                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1195         else if (function >= 0xc0000000)
1196                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1197         else
1198                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1199
1200         if (class && function <= class->eax)
1201                 return NULL;
1202
1203         /*
1204          * Leaf specific adjustments are also applied when redirecting to the
1205          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1206          * entry for CPUID.0xb.index (see below), then the output value for EDX
1207          * needs to be pulled from CPUID.0xb.1.
1208          */
1209         *fn_ptr = basic->eax;
1210
1211         /*
1212          * The class does not exist or the requested function is out of range;
1213          * the effective CPUID entry is the max basic leaf.  Note, the index of
1214          * the original requested leaf is observed!
1215          */
1216         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1217 }
1218
1219 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1220                u32 *ecx, u32 *edx, bool exact_only)
1221 {
1222         u32 orig_function = *eax, function = *eax, index = *ecx;
1223         struct kvm_cpuid_entry2 *entry;
1224         bool exact, used_max_basic = false;
1225
1226         entry = kvm_find_cpuid_entry(vcpu, function, index);
1227         exact = !!entry;
1228
1229         if (!entry && !exact_only) {
1230                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1231                 used_max_basic = !!entry;
1232         }
1233
1234         if (entry) {
1235                 *eax = entry->eax;
1236                 *ebx = entry->ebx;
1237                 *ecx = entry->ecx;
1238                 *edx = entry->edx;
1239                 if (function == 7 && index == 0) {
1240                         u64 data;
1241                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1242                             (data & TSX_CTRL_CPUID_CLEAR))
1243                                 *ebx &= ~(F(RTM) | F(HLE));
1244                 }
1245         } else {
1246                 *eax = *ebx = *ecx = *edx = 0;
1247                 /*
1248                  * When leaf 0BH or 1FH is defined, CL is pass-through
1249                  * and EDX is always the x2APIC ID, even for undefined
1250                  * subleaves. Index 1 will exist iff the leaf is
1251                  * implemented, so we pass through CL iff leaf 1
1252                  * exists. EDX can be copied from any existing index.
1253                  */
1254                 if (function == 0xb || function == 0x1f) {
1255                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1256                         if (entry) {
1257                                 *ecx = index & 0xff;
1258                                 *edx = entry->edx;
1259                         }
1260                 }
1261         }
1262         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1263                         used_max_basic);
1264         return exact;
1265 }
1266 EXPORT_SYMBOL_GPL(kvm_cpuid);
1267
1268 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1269 {
1270         u32 eax, ebx, ecx, edx;
1271
1272         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1273                 return 1;
1274
1275         eax = kvm_rax_read(vcpu);
1276         ecx = kvm_rcx_read(vcpu);
1277         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1278         kvm_rax_write(vcpu, eax);
1279         kvm_rbx_write(vcpu, ebx);
1280         kvm_rcx_write(vcpu, ecx);
1281         kvm_rdx_write(vcpu, edx);
1282         return kvm_skip_emulated_instruction(vcpu);
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
This page took 0.107266 seconds and 4 git commands to generate.