2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
68 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 return &conf->stripe_hashtbl[hash];
85 static inline int stripe_hash_locks_hash(sector_t sect)
87 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 spin_lock_irq(conf->hash_locks + hash);
93 spin_lock(&conf->device_lock);
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 spin_unlock(&conf->device_lock);
99 spin_unlock_irq(conf->hash_locks + hash);
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
105 spin_lock_irq(conf->hash_locks);
106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 spin_lock(&conf->device_lock);
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
114 spin_unlock(&conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 spin_unlock(conf->hash_locks + i);
117 spin_unlock_irq(conf->hash_locks);
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
124 /* ddf always start from first device */
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
130 return sh->qd_idx + 1;
132 static inline int raid6_next_disk(int disk, int raid_disks)
135 return (disk < raid_disks) ? disk : 0;
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
159 static void print_raid5_conf (struct r5conf *conf);
161 static int stripe_operations_active(struct stripe_head *sh)
163 return sh->check_state || sh->reconstruct_state ||
164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
168 static bool stripe_is_lowprio(struct stripe_head *sh)
170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 !test_bit(STRIPE_R5C_CACHING, &sh->state);
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
180 int i, cpu = sh->cpu;
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
225 int injournal = 0; /* number of date pages with R5_InJournal */
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 list_add_tail(&sh->lru, &conf->delayed_list);
253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 if (conf->worker_cnt_per_group == 0) {
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
264 list_add_tail(&sh->lru,
267 raid5_wakeup_stripe_thread(sh);
271 md_wakeup_thread(conf->mddev->thread);
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 r5c_check_cached_full_stripe(conf);
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
309 if (atomic_dec_and_test(&sh->count))
310 do_release_stripe(conf, sh, temp_inactive_list);
314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317 * given time. Adding stripes only takes device lock, while deleting stripes
318 * only takes hash lock.
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 struct list_head *temp_inactive_list,
325 bool do_wakeup = false;
328 if (hash == NR_STRIPE_HASH_LOCKS) {
329 size = NR_STRIPE_HASH_LOCKS;
330 hash = NR_STRIPE_HASH_LOCKS - 1;
334 struct list_head *list = &temp_inactive_list[size - 1];
337 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 * remove stripes from the list
340 if (!list_empty_careful(list)) {
341 spin_lock_irqsave(conf->hash_locks + hash, flags);
342 if (list_empty(conf->inactive_list + hash) &&
344 atomic_dec(&conf->empty_inactive_list_nr);
345 list_splice_tail_init(list, conf->inactive_list + hash);
347 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
354 wake_up(&conf->wait_for_stripe);
355 if (atomic_read(&conf->active_stripes) == 0)
356 wake_up(&conf->wait_for_quiescent);
357 if (conf->retry_read_aligned)
358 md_wakeup_thread(conf->mddev->thread);
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
366 struct stripe_head *sh, *t;
368 struct llist_node *head;
370 head = llist_del_all(&conf->released_stripes);
371 head = llist_reverse_order(head);
372 llist_for_each_entry_safe(sh, t, head, release_list) {
375 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 * Don't worry the bit is set here, because if the bit is set
380 * again, the count is always > 1. This is true for
381 * STRIPE_ON_UNPLUG_LIST bit too.
383 hash = sh->hash_lock_index;
384 __release_stripe(conf, sh, &temp_inactive_list[hash]);
391 void raid5_release_stripe(struct stripe_head *sh)
393 struct r5conf *conf = sh->raid_conf;
395 struct list_head list;
399 /* Avoid release_list until the last reference.
401 if (atomic_add_unless(&sh->count, -1, 1))
404 if (unlikely(!conf->mddev->thread) ||
405 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
407 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 md_wakeup_thread(conf->mddev->thread);
412 local_irq_save(flags);
413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
415 INIT_LIST_HEAD(&list);
416 hash = sh->hash_lock_index;
417 do_release_stripe(conf, sh, &list);
418 spin_unlock(&conf->device_lock);
419 release_inactive_stripe_list(conf, &list, hash);
421 local_irq_restore(flags);
424 static inline void remove_hash(struct stripe_head *sh)
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
429 hlist_del_init(&sh->hash);
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
439 hlist_add_head(&sh->hash, hp);
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
448 if (list_empty(conf->inactive_list + hash))
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
462 static void shrink_buffers(struct stripe_head *sh)
466 int num = sh->raid_conf->pool_size;
468 for (i = 0; i < num ; i++) {
469 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
473 sh->dev[i].page = NULL;
478 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
481 int num = sh->raid_conf->pool_size;
483 for (i = 0; i < num; i++) {
486 if (!(page = alloc_page(gfp))) {
489 sh->dev[i].page = page;
490 sh->dev[i].orig_page = page;
496 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
497 struct stripe_head *sh);
499 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
501 struct r5conf *conf = sh->raid_conf;
504 BUG_ON(atomic_read(&sh->count) != 0);
505 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
506 BUG_ON(stripe_operations_active(sh));
507 BUG_ON(sh->batch_head);
509 pr_debug("init_stripe called, stripe %llu\n",
510 (unsigned long long)sector);
512 seq = read_seqcount_begin(&conf->gen_lock);
513 sh->generation = conf->generation - previous;
514 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
516 stripe_set_idx(sector, conf, previous, sh);
519 for (i = sh->disks; i--; ) {
520 struct r5dev *dev = &sh->dev[i];
522 if (dev->toread || dev->read || dev->towrite || dev->written ||
523 test_bit(R5_LOCKED, &dev->flags)) {
524 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
525 (unsigned long long)sh->sector, i, dev->toread,
526 dev->read, dev->towrite, dev->written,
527 test_bit(R5_LOCKED, &dev->flags));
531 dev->sector = raid5_compute_blocknr(sh, i, previous);
533 if (read_seqcount_retry(&conf->gen_lock, seq))
535 sh->overwrite_disks = 0;
536 insert_hash(conf, sh);
537 sh->cpu = smp_processor_id();
538 set_bit(STRIPE_BATCH_READY, &sh->state);
541 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
544 struct stripe_head *sh;
546 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
547 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
548 if (sh->sector == sector && sh->generation == generation)
550 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
555 * Need to check if array has failed when deciding whether to:
557 * - remove non-faulty devices
560 * This determination is simple when no reshape is happening.
561 * However if there is a reshape, we need to carefully check
562 * both the before and after sections.
563 * This is because some failed devices may only affect one
564 * of the two sections, and some non-in_sync devices may
565 * be insync in the section most affected by failed devices.
567 int raid5_calc_degraded(struct r5conf *conf)
569 int degraded, degraded2;
574 for (i = 0; i < conf->previous_raid_disks; i++) {
575 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
576 if (rdev && test_bit(Faulty, &rdev->flags))
577 rdev = rcu_dereference(conf->disks[i].replacement);
578 if (!rdev || test_bit(Faulty, &rdev->flags))
580 else if (test_bit(In_sync, &rdev->flags))
583 /* not in-sync or faulty.
584 * If the reshape increases the number of devices,
585 * this is being recovered by the reshape, so
586 * this 'previous' section is not in_sync.
587 * If the number of devices is being reduced however,
588 * the device can only be part of the array if
589 * we are reverting a reshape, so this section will
592 if (conf->raid_disks >= conf->previous_raid_disks)
596 if (conf->raid_disks == conf->previous_raid_disks)
600 for (i = 0; i < conf->raid_disks; i++) {
601 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
602 if (rdev && test_bit(Faulty, &rdev->flags))
603 rdev = rcu_dereference(conf->disks[i].replacement);
604 if (!rdev || test_bit(Faulty, &rdev->flags))
606 else if (test_bit(In_sync, &rdev->flags))
609 /* not in-sync or faulty.
610 * If reshape increases the number of devices, this
611 * section has already been recovered, else it
612 * almost certainly hasn't.
614 if (conf->raid_disks <= conf->previous_raid_disks)
618 if (degraded2 > degraded)
623 static int has_failed(struct r5conf *conf)
627 if (conf->mddev->reshape_position == MaxSector)
628 return conf->mddev->degraded > conf->max_degraded;
630 degraded = raid5_calc_degraded(conf);
631 if (degraded > conf->max_degraded)
637 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
638 int previous, int noblock, int noquiesce)
640 struct stripe_head *sh;
641 int hash = stripe_hash_locks_hash(sector);
642 int inc_empty_inactive_list_flag;
644 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
646 spin_lock_irq(conf->hash_locks + hash);
649 wait_event_lock_irq(conf->wait_for_quiescent,
650 conf->quiesce == 0 || noquiesce,
651 *(conf->hash_locks + hash));
652 sh = __find_stripe(conf, sector, conf->generation - previous);
654 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
655 sh = get_free_stripe(conf, hash);
656 if (!sh && !test_bit(R5_DID_ALLOC,
658 set_bit(R5_ALLOC_MORE,
661 if (noblock && sh == NULL)
664 r5c_check_stripe_cache_usage(conf);
666 set_bit(R5_INACTIVE_BLOCKED,
668 r5l_wake_reclaim(conf->log, 0);
670 conf->wait_for_stripe,
671 !list_empty(conf->inactive_list + hash) &&
672 (atomic_read(&conf->active_stripes)
673 < (conf->max_nr_stripes * 3 / 4)
674 || !test_bit(R5_INACTIVE_BLOCKED,
675 &conf->cache_state)),
676 *(conf->hash_locks + hash));
677 clear_bit(R5_INACTIVE_BLOCKED,
680 init_stripe(sh, sector, previous);
681 atomic_inc(&sh->count);
683 } else if (!atomic_inc_not_zero(&sh->count)) {
684 spin_lock(&conf->device_lock);
685 if (!atomic_read(&sh->count)) {
686 if (!test_bit(STRIPE_HANDLE, &sh->state))
687 atomic_inc(&conf->active_stripes);
688 BUG_ON(list_empty(&sh->lru) &&
689 !test_bit(STRIPE_EXPANDING, &sh->state));
690 inc_empty_inactive_list_flag = 0;
691 if (!list_empty(conf->inactive_list + hash))
692 inc_empty_inactive_list_flag = 1;
693 list_del_init(&sh->lru);
694 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
695 atomic_inc(&conf->empty_inactive_list_nr);
697 sh->group->stripes_cnt--;
701 atomic_inc(&sh->count);
702 spin_unlock(&conf->device_lock);
704 } while (sh == NULL);
706 spin_unlock_irq(conf->hash_locks + hash);
710 static bool is_full_stripe_write(struct stripe_head *sh)
712 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
713 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
716 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 spin_lock_irq(&sh2->stripe_lock);
720 spin_lock_nested(&sh1->stripe_lock, 1);
722 spin_lock_irq(&sh1->stripe_lock);
723 spin_lock_nested(&sh2->stripe_lock, 1);
727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
729 spin_unlock(&sh1->stripe_lock);
730 spin_unlock_irq(&sh2->stripe_lock);
733 /* Only freshly new full stripe normal write stripe can be added to a batch list */
734 static bool stripe_can_batch(struct stripe_head *sh)
736 struct r5conf *conf = sh->raid_conf;
738 if (conf->log || raid5_has_ppl(conf))
740 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
741 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
742 is_full_stripe_write(sh);
745 /* we only do back search */
746 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
748 struct stripe_head *head;
749 sector_t head_sector, tmp_sec;
752 int inc_empty_inactive_list_flag;
754 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
755 tmp_sec = sh->sector;
756 if (!sector_div(tmp_sec, conf->chunk_sectors))
758 head_sector = sh->sector - STRIPE_SECTORS;
760 hash = stripe_hash_locks_hash(head_sector);
761 spin_lock_irq(conf->hash_locks + hash);
762 head = __find_stripe(conf, head_sector, conf->generation);
763 if (head && !atomic_inc_not_zero(&head->count)) {
764 spin_lock(&conf->device_lock);
765 if (!atomic_read(&head->count)) {
766 if (!test_bit(STRIPE_HANDLE, &head->state))
767 atomic_inc(&conf->active_stripes);
768 BUG_ON(list_empty(&head->lru) &&
769 !test_bit(STRIPE_EXPANDING, &head->state));
770 inc_empty_inactive_list_flag = 0;
771 if (!list_empty(conf->inactive_list + hash))
772 inc_empty_inactive_list_flag = 1;
773 list_del_init(&head->lru);
774 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
775 atomic_inc(&conf->empty_inactive_list_nr);
777 head->group->stripes_cnt--;
781 atomic_inc(&head->count);
782 spin_unlock(&conf->device_lock);
784 spin_unlock_irq(conf->hash_locks + hash);
788 if (!stripe_can_batch(head))
791 lock_two_stripes(head, sh);
792 /* clear_batch_ready clear the flag */
793 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
802 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
803 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
806 if (head->batch_head) {
807 spin_lock(&head->batch_head->batch_lock);
808 /* This batch list is already running */
809 if (!stripe_can_batch(head)) {
810 spin_unlock(&head->batch_head->batch_lock);
814 * We must assign batch_head of this stripe within the
815 * batch_lock, otherwise clear_batch_ready of batch head
816 * stripe could clear BATCH_READY bit of this stripe and
817 * this stripe->batch_head doesn't get assigned, which
818 * could confuse clear_batch_ready for this stripe
820 sh->batch_head = head->batch_head;
823 * at this point, head's BATCH_READY could be cleared, but we
824 * can still add the stripe to batch list
826 list_add(&sh->batch_list, &head->batch_list);
827 spin_unlock(&head->batch_head->batch_lock);
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
839 md_wakeup_thread(conf->mddev->thread);
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
850 atomic_inc(&sh->count);
852 unlock_two_stripes(head, sh);
854 raid5_release_stripe(head);
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
868 if (progress == MaxSector)
870 if (sh->generation == conf->generation - 1)
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
878 static void dispatch_bio_list(struct bio_list *tmp)
882 while ((bio = bio_list_pop(tmp)))
883 generic_make_request(bio);
886 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
888 const struct r5pending_data *da = list_entry(a,
889 struct r5pending_data, sibling);
890 const struct r5pending_data *db = list_entry(b,
891 struct r5pending_data, sibling);
892 if (da->sector > db->sector)
894 if (da->sector < db->sector)
899 static void dispatch_defer_bios(struct r5conf *conf, int target,
900 struct bio_list *list)
902 struct r5pending_data *data;
903 struct list_head *first, *next = NULL;
906 if (conf->pending_data_cnt == 0)
909 list_sort(NULL, &conf->pending_list, cmp_stripe);
911 first = conf->pending_list.next;
913 /* temporarily move the head */
914 if (conf->next_pending_data)
915 list_move_tail(&conf->pending_list,
916 &conf->next_pending_data->sibling);
918 while (!list_empty(&conf->pending_list)) {
919 data = list_first_entry(&conf->pending_list,
920 struct r5pending_data, sibling);
921 if (&data->sibling == first)
922 first = data->sibling.next;
923 next = data->sibling.next;
925 bio_list_merge(list, &data->bios);
926 list_move(&data->sibling, &conf->free_list);
931 conf->pending_data_cnt -= cnt;
932 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
934 if (next != &conf->pending_list)
935 conf->next_pending_data = list_entry(next,
936 struct r5pending_data, sibling);
938 conf->next_pending_data = NULL;
939 /* list isn't empty */
940 if (first != &conf->pending_list)
941 list_move_tail(&conf->pending_list, first);
944 static void flush_deferred_bios(struct r5conf *conf)
946 struct bio_list tmp = BIO_EMPTY_LIST;
948 if (conf->pending_data_cnt == 0)
951 spin_lock(&conf->pending_bios_lock);
952 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
953 BUG_ON(conf->pending_data_cnt != 0);
954 spin_unlock(&conf->pending_bios_lock);
956 dispatch_bio_list(&tmp);
959 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
960 struct bio_list *bios)
962 struct bio_list tmp = BIO_EMPTY_LIST;
963 struct r5pending_data *ent;
965 spin_lock(&conf->pending_bios_lock);
966 ent = list_first_entry(&conf->free_list, struct r5pending_data,
968 list_move_tail(&ent->sibling, &conf->pending_list);
969 ent->sector = sector;
970 bio_list_init(&ent->bios);
971 bio_list_merge(&ent->bios, bios);
972 conf->pending_data_cnt++;
973 if (conf->pending_data_cnt >= PENDING_IO_MAX)
974 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
976 spin_unlock(&conf->pending_bios_lock);
978 dispatch_bio_list(&tmp);
982 raid5_end_read_request(struct bio *bi);
984 raid5_end_write_request(struct bio *bi);
986 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
988 struct r5conf *conf = sh->raid_conf;
989 int i, disks = sh->disks;
990 struct stripe_head *head_sh = sh;
991 struct bio_list pending_bios = BIO_EMPTY_LIST;
996 if (log_stripe(sh, s) == 0)
999 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1001 for (i = disks; i--; ) {
1002 int op, op_flags = 0;
1003 int replace_only = 0;
1004 struct bio *bi, *rbi;
1005 struct md_rdev *rdev, *rrdev = NULL;
1008 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1010 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1012 if (test_bit(R5_Discard, &sh->dev[i].flags))
1013 op = REQ_OP_DISCARD;
1014 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1016 else if (test_and_clear_bit(R5_WantReplace,
1017 &sh->dev[i].flags)) {
1022 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1023 op_flags |= REQ_SYNC;
1026 bi = &sh->dev[i].req;
1027 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1030 rrdev = rcu_dereference(conf->disks[i].replacement);
1031 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032 rdev = rcu_dereference(conf->disks[i].rdev);
1037 if (op_is_write(op)) {
1041 /* We raced and saw duplicates */
1044 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1049 if (rdev && test_bit(Faulty, &rdev->flags))
1052 atomic_inc(&rdev->nr_pending);
1053 if (rrdev && test_bit(Faulty, &rrdev->flags))
1056 atomic_inc(&rrdev->nr_pending);
1059 /* We have already checked bad blocks for reads. Now
1060 * need to check for writes. We never accept write errors
1061 * on the replacement, so we don't to check rrdev.
1063 while (op_is_write(op) && rdev &&
1064 test_bit(WriteErrorSeen, &rdev->flags)) {
1067 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1068 &first_bad, &bad_sectors);
1073 set_bit(BlockedBadBlocks, &rdev->flags);
1074 if (!conf->mddev->external &&
1075 conf->mddev->sb_flags) {
1076 /* It is very unlikely, but we might
1077 * still need to write out the
1078 * bad block log - better give it
1080 md_check_recovery(conf->mddev);
1083 * Because md_wait_for_blocked_rdev
1084 * will dec nr_pending, we must
1085 * increment it first.
1087 atomic_inc(&rdev->nr_pending);
1088 md_wait_for_blocked_rdev(rdev, conf->mddev);
1090 /* Acknowledged bad block - skip the write */
1091 rdev_dec_pending(rdev, conf->mddev);
1097 if (s->syncing || s->expanding || s->expanded
1099 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1101 set_bit(STRIPE_IO_STARTED, &sh->state);
1103 bio_set_dev(bi, rdev->bdev);
1104 bio_set_op_attrs(bi, op, op_flags);
1105 bi->bi_end_io = op_is_write(op)
1106 ? raid5_end_write_request
1107 : raid5_end_read_request;
1108 bi->bi_private = sh;
1110 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1111 __func__, (unsigned long long)sh->sector,
1113 atomic_inc(&sh->count);
1115 atomic_inc(&head_sh->count);
1116 if (use_new_offset(conf, sh))
1117 bi->bi_iter.bi_sector = (sh->sector
1118 + rdev->new_data_offset);
1120 bi->bi_iter.bi_sector = (sh->sector
1121 + rdev->data_offset);
1122 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1123 bi->bi_opf |= REQ_NOMERGE;
1125 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1126 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1128 if (!op_is_write(op) &&
1129 test_bit(R5_InJournal, &sh->dev[i].flags))
1131 * issuing read for a page in journal, this
1132 * must be preparing for prexor in rmw; read
1133 * the data into orig_page
1135 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1137 sh->dev[i].vec.bv_page = sh->dev[i].page;
1139 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1140 bi->bi_io_vec[0].bv_offset = 0;
1141 bi->bi_iter.bi_size = STRIPE_SIZE;
1143 * If this is discard request, set bi_vcnt 0. We don't
1144 * want to confuse SCSI because SCSI will replace payload
1146 if (op == REQ_OP_DISCARD)
1149 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1151 if (conf->mddev->gendisk)
1152 trace_block_bio_remap(bi->bi_disk->queue,
1153 bi, disk_devt(conf->mddev->gendisk),
1155 if (should_defer && op_is_write(op))
1156 bio_list_add(&pending_bios, bi);
1158 generic_make_request(bi);
1161 if (s->syncing || s->expanding || s->expanded
1163 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1165 set_bit(STRIPE_IO_STARTED, &sh->state);
1167 bio_set_dev(rbi, rrdev->bdev);
1168 bio_set_op_attrs(rbi, op, op_flags);
1169 BUG_ON(!op_is_write(op));
1170 rbi->bi_end_io = raid5_end_write_request;
1171 rbi->bi_private = sh;
1173 pr_debug("%s: for %llu schedule op %d on "
1174 "replacement disc %d\n",
1175 __func__, (unsigned long long)sh->sector,
1177 atomic_inc(&sh->count);
1179 atomic_inc(&head_sh->count);
1180 if (use_new_offset(conf, sh))
1181 rbi->bi_iter.bi_sector = (sh->sector
1182 + rrdev->new_data_offset);
1184 rbi->bi_iter.bi_sector = (sh->sector
1185 + rrdev->data_offset);
1186 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1187 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1188 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1190 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1191 rbi->bi_io_vec[0].bv_offset = 0;
1192 rbi->bi_iter.bi_size = STRIPE_SIZE;
1194 * If this is discard request, set bi_vcnt 0. We don't
1195 * want to confuse SCSI because SCSI will replace payload
1197 if (op == REQ_OP_DISCARD)
1199 if (conf->mddev->gendisk)
1200 trace_block_bio_remap(rbi->bi_disk->queue,
1201 rbi, disk_devt(conf->mddev->gendisk),
1203 if (should_defer && op_is_write(op))
1204 bio_list_add(&pending_bios, rbi);
1206 generic_make_request(rbi);
1208 if (!rdev && !rrdev) {
1209 if (op_is_write(op))
1210 set_bit(STRIPE_DEGRADED, &sh->state);
1211 pr_debug("skip op %d on disc %d for sector %llu\n",
1212 bi->bi_opf, i, (unsigned long long)sh->sector);
1213 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1214 set_bit(STRIPE_HANDLE, &sh->state);
1217 if (!head_sh->batch_head)
1219 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1225 if (should_defer && !bio_list_empty(&pending_bios))
1226 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1229 static struct dma_async_tx_descriptor *
1230 async_copy_data(int frombio, struct bio *bio, struct page **page,
1231 sector_t sector, struct dma_async_tx_descriptor *tx,
1232 struct stripe_head *sh, int no_skipcopy)
1235 struct bvec_iter iter;
1236 struct page *bio_page;
1238 struct async_submit_ctl submit;
1239 enum async_tx_flags flags = 0;
1241 if (bio->bi_iter.bi_sector >= sector)
1242 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1244 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1247 flags |= ASYNC_TX_FENCE;
1248 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1250 bio_for_each_segment(bvl, bio, iter) {
1251 int len = bvl.bv_len;
1255 if (page_offset < 0) {
1256 b_offset = -page_offset;
1257 page_offset += b_offset;
1261 if (len > 0 && page_offset + len > STRIPE_SIZE)
1262 clen = STRIPE_SIZE - page_offset;
1267 b_offset += bvl.bv_offset;
1268 bio_page = bvl.bv_page;
1270 if (sh->raid_conf->skip_copy &&
1271 b_offset == 0 && page_offset == 0 &&
1272 clen == STRIPE_SIZE &&
1276 tx = async_memcpy(*page, bio_page, page_offset,
1277 b_offset, clen, &submit);
1279 tx = async_memcpy(bio_page, *page, b_offset,
1280 page_offset, clen, &submit);
1282 /* chain the operations */
1283 submit.depend_tx = tx;
1285 if (clen < len) /* hit end of page */
1293 static void ops_complete_biofill(void *stripe_head_ref)
1295 struct stripe_head *sh = stripe_head_ref;
1298 pr_debug("%s: stripe %llu\n", __func__,
1299 (unsigned long long)sh->sector);
1301 /* clear completed biofills */
1302 for (i = sh->disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1305 /* acknowledge completion of a biofill operation */
1306 /* and check if we need to reply to a read request,
1307 * new R5_Wantfill requests are held off until
1308 * !STRIPE_BIOFILL_RUN
1310 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1311 struct bio *rbi, *rbi2;
1316 while (rbi && rbi->bi_iter.bi_sector <
1317 dev->sector + STRIPE_SECTORS) {
1318 rbi2 = r5_next_bio(rbi, dev->sector);
1324 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1326 set_bit(STRIPE_HANDLE, &sh->state);
1327 raid5_release_stripe(sh);
1330 static void ops_run_biofill(struct stripe_head *sh)
1332 struct dma_async_tx_descriptor *tx = NULL;
1333 struct async_submit_ctl submit;
1336 BUG_ON(sh->batch_head);
1337 pr_debug("%s: stripe %llu\n", __func__,
1338 (unsigned long long)sh->sector);
1340 for (i = sh->disks; i--; ) {
1341 struct r5dev *dev = &sh->dev[i];
1342 if (test_bit(R5_Wantfill, &dev->flags)) {
1344 spin_lock_irq(&sh->stripe_lock);
1345 dev->read = rbi = dev->toread;
1347 spin_unlock_irq(&sh->stripe_lock);
1348 while (rbi && rbi->bi_iter.bi_sector <
1349 dev->sector + STRIPE_SECTORS) {
1350 tx = async_copy_data(0, rbi, &dev->page,
1351 dev->sector, tx, sh, 0);
1352 rbi = r5_next_bio(rbi, dev->sector);
1357 atomic_inc(&sh->count);
1358 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1359 async_trigger_callback(&submit);
1362 static void mark_target_uptodate(struct stripe_head *sh, int target)
1369 tgt = &sh->dev[target];
1370 set_bit(R5_UPTODATE, &tgt->flags);
1371 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1372 clear_bit(R5_Wantcompute, &tgt->flags);
1375 static void ops_complete_compute(void *stripe_head_ref)
1377 struct stripe_head *sh = stripe_head_ref;
1379 pr_debug("%s: stripe %llu\n", __func__,
1380 (unsigned long long)sh->sector);
1382 /* mark the computed target(s) as uptodate */
1383 mark_target_uptodate(sh, sh->ops.target);
1384 mark_target_uptodate(sh, sh->ops.target2);
1386 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1387 if (sh->check_state == check_state_compute_run)
1388 sh->check_state = check_state_compute_result;
1389 set_bit(STRIPE_HANDLE, &sh->state);
1390 raid5_release_stripe(sh);
1393 /* return a pointer to the address conversion region of the scribble buffer */
1394 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1395 struct raid5_percpu *percpu, int i)
1399 addr = flex_array_get(percpu->scribble, i);
1400 return addr + sizeof(struct page *) * (sh->disks + 2);
1403 /* return a pointer to the address conversion region of the scribble buffer */
1404 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1408 addr = flex_array_get(percpu->scribble, i);
1412 static struct dma_async_tx_descriptor *
1413 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1415 int disks = sh->disks;
1416 struct page **xor_srcs = to_addr_page(percpu, 0);
1417 int target = sh->ops.target;
1418 struct r5dev *tgt = &sh->dev[target];
1419 struct page *xor_dest = tgt->page;
1421 struct dma_async_tx_descriptor *tx;
1422 struct async_submit_ctl submit;
1425 BUG_ON(sh->batch_head);
1427 pr_debug("%s: stripe %llu block: %d\n",
1428 __func__, (unsigned long long)sh->sector, target);
1429 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1431 for (i = disks; i--; )
1433 xor_srcs[count++] = sh->dev[i].page;
1435 atomic_inc(&sh->count);
1437 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1438 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1439 if (unlikely(count == 1))
1440 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1442 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1447 /* set_syndrome_sources - populate source buffers for gen_syndrome
1448 * @srcs - (struct page *) array of size sh->disks
1449 * @sh - stripe_head to parse
1451 * Populates srcs in proper layout order for the stripe and returns the
1452 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1453 * destination buffer is recorded in srcs[count] and the Q destination
1454 * is recorded in srcs[count+1]].
1456 static int set_syndrome_sources(struct page **srcs,
1457 struct stripe_head *sh,
1460 int disks = sh->disks;
1461 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1462 int d0_idx = raid6_d0(sh);
1466 for (i = 0; i < disks; i++)
1472 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1473 struct r5dev *dev = &sh->dev[i];
1475 if (i == sh->qd_idx || i == sh->pd_idx ||
1476 (srctype == SYNDROME_SRC_ALL) ||
1477 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1478 (test_bit(R5_Wantdrain, &dev->flags) ||
1479 test_bit(R5_InJournal, &dev->flags))) ||
1480 (srctype == SYNDROME_SRC_WRITTEN &&
1482 test_bit(R5_InJournal, &dev->flags)))) {
1483 if (test_bit(R5_InJournal, &dev->flags))
1484 srcs[slot] = sh->dev[i].orig_page;
1486 srcs[slot] = sh->dev[i].page;
1488 i = raid6_next_disk(i, disks);
1489 } while (i != d0_idx);
1491 return syndrome_disks;
1494 static struct dma_async_tx_descriptor *
1495 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1497 int disks = sh->disks;
1498 struct page **blocks = to_addr_page(percpu, 0);
1500 int qd_idx = sh->qd_idx;
1501 struct dma_async_tx_descriptor *tx;
1502 struct async_submit_ctl submit;
1508 BUG_ON(sh->batch_head);
1509 if (sh->ops.target < 0)
1510 target = sh->ops.target2;
1511 else if (sh->ops.target2 < 0)
1512 target = sh->ops.target;
1514 /* we should only have one valid target */
1517 pr_debug("%s: stripe %llu block: %d\n",
1518 __func__, (unsigned long long)sh->sector, target);
1520 tgt = &sh->dev[target];
1521 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1524 atomic_inc(&sh->count);
1526 if (target == qd_idx) {
1527 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1528 blocks[count] = NULL; /* regenerating p is not necessary */
1529 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1530 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1531 ops_complete_compute, sh,
1532 to_addr_conv(sh, percpu, 0));
1533 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1535 /* Compute any data- or p-drive using XOR */
1537 for (i = disks; i-- ; ) {
1538 if (i == target || i == qd_idx)
1540 blocks[count++] = sh->dev[i].page;
1543 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1544 NULL, ops_complete_compute, sh,
1545 to_addr_conv(sh, percpu, 0));
1546 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1552 static struct dma_async_tx_descriptor *
1553 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1555 int i, count, disks = sh->disks;
1556 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1557 int d0_idx = raid6_d0(sh);
1558 int faila = -1, failb = -1;
1559 int target = sh->ops.target;
1560 int target2 = sh->ops.target2;
1561 struct r5dev *tgt = &sh->dev[target];
1562 struct r5dev *tgt2 = &sh->dev[target2];
1563 struct dma_async_tx_descriptor *tx;
1564 struct page **blocks = to_addr_page(percpu, 0);
1565 struct async_submit_ctl submit;
1567 BUG_ON(sh->batch_head);
1568 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1569 __func__, (unsigned long long)sh->sector, target, target2);
1570 BUG_ON(target < 0 || target2 < 0);
1571 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1572 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1574 /* we need to open-code set_syndrome_sources to handle the
1575 * slot number conversion for 'faila' and 'failb'
1577 for (i = 0; i < disks ; i++)
1582 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1584 blocks[slot] = sh->dev[i].page;
1590 i = raid6_next_disk(i, disks);
1591 } while (i != d0_idx);
1593 BUG_ON(faila == failb);
1596 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1597 __func__, (unsigned long long)sh->sector, faila, failb);
1599 atomic_inc(&sh->count);
1601 if (failb == syndrome_disks+1) {
1602 /* Q disk is one of the missing disks */
1603 if (faila == syndrome_disks) {
1604 /* Missing P+Q, just recompute */
1605 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1606 ops_complete_compute, sh,
1607 to_addr_conv(sh, percpu, 0));
1608 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1609 STRIPE_SIZE, &submit);
1613 int qd_idx = sh->qd_idx;
1615 /* Missing D+Q: recompute D from P, then recompute Q */
1616 if (target == qd_idx)
1617 data_target = target2;
1619 data_target = target;
1622 for (i = disks; i-- ; ) {
1623 if (i == data_target || i == qd_idx)
1625 blocks[count++] = sh->dev[i].page;
1627 dest = sh->dev[data_target].page;
1628 init_async_submit(&submit,
1629 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1631 to_addr_conv(sh, percpu, 0));
1632 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1635 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1636 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1637 ops_complete_compute, sh,
1638 to_addr_conv(sh, percpu, 0));
1639 return async_gen_syndrome(blocks, 0, count+2,
1640 STRIPE_SIZE, &submit);
1643 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1644 ops_complete_compute, sh,
1645 to_addr_conv(sh, percpu, 0));
1646 if (failb == syndrome_disks) {
1647 /* We're missing D+P. */
1648 return async_raid6_datap_recov(syndrome_disks+2,
1652 /* We're missing D+D. */
1653 return async_raid6_2data_recov(syndrome_disks+2,
1654 STRIPE_SIZE, faila, failb,
1660 static void ops_complete_prexor(void *stripe_head_ref)
1662 struct stripe_head *sh = stripe_head_ref;
1664 pr_debug("%s: stripe %llu\n", __func__,
1665 (unsigned long long)sh->sector);
1667 if (r5c_is_writeback(sh->raid_conf->log))
1669 * raid5-cache write back uses orig_page during prexor.
1670 * After prexor, it is time to free orig_page
1672 r5c_release_extra_page(sh);
1675 static struct dma_async_tx_descriptor *
1676 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1677 struct dma_async_tx_descriptor *tx)
1679 int disks = sh->disks;
1680 struct page **xor_srcs = to_addr_page(percpu, 0);
1681 int count = 0, pd_idx = sh->pd_idx, i;
1682 struct async_submit_ctl submit;
1684 /* existing parity data subtracted */
1685 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1687 BUG_ON(sh->batch_head);
1688 pr_debug("%s: stripe %llu\n", __func__,
1689 (unsigned long long)sh->sector);
1691 for (i = disks; i--; ) {
1692 struct r5dev *dev = &sh->dev[i];
1693 /* Only process blocks that are known to be uptodate */
1694 if (test_bit(R5_InJournal, &dev->flags))
1695 xor_srcs[count++] = dev->orig_page;
1696 else if (test_bit(R5_Wantdrain, &dev->flags))
1697 xor_srcs[count++] = dev->page;
1700 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1701 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1702 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1707 static struct dma_async_tx_descriptor *
1708 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1709 struct dma_async_tx_descriptor *tx)
1711 struct page **blocks = to_addr_page(percpu, 0);
1713 struct async_submit_ctl submit;
1715 pr_debug("%s: stripe %llu\n", __func__,
1716 (unsigned long long)sh->sector);
1718 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1720 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1721 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1722 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1727 static struct dma_async_tx_descriptor *
1728 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1730 struct r5conf *conf = sh->raid_conf;
1731 int disks = sh->disks;
1733 struct stripe_head *head_sh = sh;
1735 pr_debug("%s: stripe %llu\n", __func__,
1736 (unsigned long long)sh->sector);
1738 for (i = disks; i--; ) {
1743 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1749 * clear R5_InJournal, so when rewriting a page in
1750 * journal, it is not skipped by r5l_log_stripe()
1752 clear_bit(R5_InJournal, &dev->flags);
1753 spin_lock_irq(&sh->stripe_lock);
1754 chosen = dev->towrite;
1755 dev->towrite = NULL;
1756 sh->overwrite_disks = 0;
1757 BUG_ON(dev->written);
1758 wbi = dev->written = chosen;
1759 spin_unlock_irq(&sh->stripe_lock);
1760 WARN_ON(dev->page != dev->orig_page);
1762 while (wbi && wbi->bi_iter.bi_sector <
1763 dev->sector + STRIPE_SECTORS) {
1764 if (wbi->bi_opf & REQ_FUA)
1765 set_bit(R5_WantFUA, &dev->flags);
1766 if (wbi->bi_opf & REQ_SYNC)
1767 set_bit(R5_SyncIO, &dev->flags);
1768 if (bio_op(wbi) == REQ_OP_DISCARD)
1769 set_bit(R5_Discard, &dev->flags);
1771 tx = async_copy_data(1, wbi, &dev->page,
1772 dev->sector, tx, sh,
1773 r5c_is_writeback(conf->log));
1774 if (dev->page != dev->orig_page &&
1775 !r5c_is_writeback(conf->log)) {
1776 set_bit(R5_SkipCopy, &dev->flags);
1777 clear_bit(R5_UPTODATE, &dev->flags);
1778 clear_bit(R5_OVERWRITE, &dev->flags);
1781 wbi = r5_next_bio(wbi, dev->sector);
1784 if (head_sh->batch_head) {
1785 sh = list_first_entry(&sh->batch_list,
1798 static void ops_complete_reconstruct(void *stripe_head_ref)
1800 struct stripe_head *sh = stripe_head_ref;
1801 int disks = sh->disks;
1802 int pd_idx = sh->pd_idx;
1803 int qd_idx = sh->qd_idx;
1805 bool fua = false, sync = false, discard = false;
1807 pr_debug("%s: stripe %llu\n", __func__,
1808 (unsigned long long)sh->sector);
1810 for (i = disks; i--; ) {
1811 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1812 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1813 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1816 for (i = disks; i--; ) {
1817 struct r5dev *dev = &sh->dev[i];
1819 if (dev->written || i == pd_idx || i == qd_idx) {
1820 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1821 set_bit(R5_UPTODATE, &dev->flags);
1822 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1823 set_bit(R5_Expanded, &dev->flags);
1826 set_bit(R5_WantFUA, &dev->flags);
1828 set_bit(R5_SyncIO, &dev->flags);
1832 if (sh->reconstruct_state == reconstruct_state_drain_run)
1833 sh->reconstruct_state = reconstruct_state_drain_result;
1834 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1835 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1837 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1838 sh->reconstruct_state = reconstruct_state_result;
1841 set_bit(STRIPE_HANDLE, &sh->state);
1842 raid5_release_stripe(sh);
1846 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1847 struct dma_async_tx_descriptor *tx)
1849 int disks = sh->disks;
1850 struct page **xor_srcs;
1851 struct async_submit_ctl submit;
1852 int count, pd_idx = sh->pd_idx, i;
1853 struct page *xor_dest;
1855 unsigned long flags;
1857 struct stripe_head *head_sh = sh;
1860 pr_debug("%s: stripe %llu\n", __func__,
1861 (unsigned long long)sh->sector);
1863 for (i = 0; i < sh->disks; i++) {
1866 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1869 if (i >= sh->disks) {
1870 atomic_inc(&sh->count);
1871 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1872 ops_complete_reconstruct(sh);
1877 xor_srcs = to_addr_page(percpu, j);
1878 /* check if prexor is active which means only process blocks
1879 * that are part of a read-modify-write (written)
1881 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1883 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1884 for (i = disks; i--; ) {
1885 struct r5dev *dev = &sh->dev[i];
1886 if (head_sh->dev[i].written ||
1887 test_bit(R5_InJournal, &head_sh->dev[i].flags))
1888 xor_srcs[count++] = dev->page;
1891 xor_dest = sh->dev[pd_idx].page;
1892 for (i = disks; i--; ) {
1893 struct r5dev *dev = &sh->dev[i];
1895 xor_srcs[count++] = dev->page;
1899 /* 1/ if we prexor'd then the dest is reused as a source
1900 * 2/ if we did not prexor then we are redoing the parity
1901 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1902 * for the synchronous xor case
1904 last_stripe = !head_sh->batch_head ||
1905 list_first_entry(&sh->batch_list,
1906 struct stripe_head, batch_list) == head_sh;
1908 flags = ASYNC_TX_ACK |
1909 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1911 atomic_inc(&head_sh->count);
1912 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1913 to_addr_conv(sh, percpu, j));
1915 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1916 init_async_submit(&submit, flags, tx, NULL, NULL,
1917 to_addr_conv(sh, percpu, j));
1920 if (unlikely(count == 1))
1921 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1923 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1926 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1933 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1934 struct dma_async_tx_descriptor *tx)
1936 struct async_submit_ctl submit;
1937 struct page **blocks;
1938 int count, i, j = 0;
1939 struct stripe_head *head_sh = sh;
1942 unsigned long txflags;
1944 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1946 for (i = 0; i < sh->disks; i++) {
1947 if (sh->pd_idx == i || sh->qd_idx == i)
1949 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1952 if (i >= sh->disks) {
1953 atomic_inc(&sh->count);
1954 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1955 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1956 ops_complete_reconstruct(sh);
1961 blocks = to_addr_page(percpu, j);
1963 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1964 synflags = SYNDROME_SRC_WRITTEN;
1965 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1967 synflags = SYNDROME_SRC_ALL;
1968 txflags = ASYNC_TX_ACK;
1971 count = set_syndrome_sources(blocks, sh, synflags);
1972 last_stripe = !head_sh->batch_head ||
1973 list_first_entry(&sh->batch_list,
1974 struct stripe_head, batch_list) == head_sh;
1977 atomic_inc(&head_sh->count);
1978 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1979 head_sh, to_addr_conv(sh, percpu, j));
1981 init_async_submit(&submit, 0, tx, NULL, NULL,
1982 to_addr_conv(sh, percpu, j));
1983 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1986 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1992 static void ops_complete_check(void *stripe_head_ref)
1994 struct stripe_head *sh = stripe_head_ref;
1996 pr_debug("%s: stripe %llu\n", __func__,
1997 (unsigned long long)sh->sector);
1999 sh->check_state = check_state_check_result;
2000 set_bit(STRIPE_HANDLE, &sh->state);
2001 raid5_release_stripe(sh);
2004 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2006 int disks = sh->disks;
2007 int pd_idx = sh->pd_idx;
2008 int qd_idx = sh->qd_idx;
2009 struct page *xor_dest;
2010 struct page **xor_srcs = to_addr_page(percpu, 0);
2011 struct dma_async_tx_descriptor *tx;
2012 struct async_submit_ctl submit;
2016 pr_debug("%s: stripe %llu\n", __func__,
2017 (unsigned long long)sh->sector);
2019 BUG_ON(sh->batch_head);
2021 xor_dest = sh->dev[pd_idx].page;
2022 xor_srcs[count++] = xor_dest;
2023 for (i = disks; i--; ) {
2024 if (i == pd_idx || i == qd_idx)
2026 xor_srcs[count++] = sh->dev[i].page;
2029 init_async_submit(&submit, 0, NULL, NULL, NULL,
2030 to_addr_conv(sh, percpu, 0));
2031 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2032 &sh->ops.zero_sum_result, &submit);
2034 atomic_inc(&sh->count);
2035 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2036 tx = async_trigger_callback(&submit);
2039 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2041 struct page **srcs = to_addr_page(percpu, 0);
2042 struct async_submit_ctl submit;
2045 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2046 (unsigned long long)sh->sector, checkp);
2048 BUG_ON(sh->batch_head);
2049 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2053 atomic_inc(&sh->count);
2054 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2055 sh, to_addr_conv(sh, percpu, 0));
2056 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2057 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2060 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2062 int overlap_clear = 0, i, disks = sh->disks;
2063 struct dma_async_tx_descriptor *tx = NULL;
2064 struct r5conf *conf = sh->raid_conf;
2065 int level = conf->level;
2066 struct raid5_percpu *percpu;
2070 percpu = per_cpu_ptr(conf->percpu, cpu);
2071 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2072 ops_run_biofill(sh);
2076 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2078 tx = ops_run_compute5(sh, percpu);
2080 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2081 tx = ops_run_compute6_1(sh, percpu);
2083 tx = ops_run_compute6_2(sh, percpu);
2085 /* terminate the chain if reconstruct is not set to be run */
2086 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2090 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2092 tx = ops_run_prexor5(sh, percpu, tx);
2094 tx = ops_run_prexor6(sh, percpu, tx);
2097 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2098 tx = ops_run_partial_parity(sh, percpu, tx);
2100 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2101 tx = ops_run_biodrain(sh, tx);
2105 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2107 ops_run_reconstruct5(sh, percpu, tx);
2109 ops_run_reconstruct6(sh, percpu, tx);
2112 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2113 if (sh->check_state == check_state_run)
2114 ops_run_check_p(sh, percpu);
2115 else if (sh->check_state == check_state_run_q)
2116 ops_run_check_pq(sh, percpu, 0);
2117 else if (sh->check_state == check_state_run_pq)
2118 ops_run_check_pq(sh, percpu, 1);
2123 if (overlap_clear && !sh->batch_head)
2124 for (i = disks; i--; ) {
2125 struct r5dev *dev = &sh->dev[i];
2126 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2127 wake_up(&sh->raid_conf->wait_for_overlap);
2132 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2135 __free_page(sh->ppl_page);
2136 kmem_cache_free(sc, sh);
2139 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2140 int disks, struct r5conf *conf)
2142 struct stripe_head *sh;
2145 sh = kmem_cache_zalloc(sc, gfp);
2147 spin_lock_init(&sh->stripe_lock);
2148 spin_lock_init(&sh->batch_lock);
2149 INIT_LIST_HEAD(&sh->batch_list);
2150 INIT_LIST_HEAD(&sh->lru);
2151 INIT_LIST_HEAD(&sh->r5c);
2152 INIT_LIST_HEAD(&sh->log_list);
2153 atomic_set(&sh->count, 1);
2154 sh->raid_conf = conf;
2155 sh->log_start = MaxSector;
2156 for (i = 0; i < disks; i++) {
2157 struct r5dev *dev = &sh->dev[i];
2159 bio_init(&dev->req, &dev->vec, 1);
2160 bio_init(&dev->rreq, &dev->rvec, 1);
2163 if (raid5_has_ppl(conf)) {
2164 sh->ppl_page = alloc_page(gfp);
2165 if (!sh->ppl_page) {
2166 free_stripe(sc, sh);
2173 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2175 struct stripe_head *sh;
2177 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2181 if (grow_buffers(sh, gfp)) {
2183 free_stripe(conf->slab_cache, sh);
2186 sh->hash_lock_index =
2187 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2188 /* we just created an active stripe so... */
2189 atomic_inc(&conf->active_stripes);
2191 raid5_release_stripe(sh);
2192 conf->max_nr_stripes++;
2196 static int grow_stripes(struct r5conf *conf, int num)
2198 struct kmem_cache *sc;
2199 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2201 if (conf->mddev->gendisk)
2202 sprintf(conf->cache_name[0],
2203 "raid%d-%s", conf->level, mdname(conf->mddev));
2205 sprintf(conf->cache_name[0],
2206 "raid%d-%p", conf->level, conf->mddev);
2207 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2209 conf->active_name = 0;
2210 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2211 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2215 conf->slab_cache = sc;
2216 conf->pool_size = devs;
2218 if (!grow_one_stripe(conf, GFP_KERNEL))
2225 * scribble_len - return the required size of the scribble region
2226 * @num - total number of disks in the array
2228 * The size must be enough to contain:
2229 * 1/ a struct page pointer for each device in the array +2
2230 * 2/ room to convert each entry in (1) to its corresponding dma
2231 * (dma_map_page()) or page (page_address()) address.
2233 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2234 * calculate over all devices (not just the data blocks), using zeros in place
2235 * of the P and Q blocks.
2237 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2239 struct flex_array *ret;
2242 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2243 ret = flex_array_alloc(len, cnt, flags);
2246 /* always prealloc all elements, so no locking is required */
2247 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2248 flex_array_free(ret);
2254 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2260 * Never shrink. And mddev_suspend() could deadlock if this is called
2261 * from raid5d. In that case, scribble_disks and scribble_sectors
2262 * should equal to new_disks and new_sectors
2264 if (conf->scribble_disks >= new_disks &&
2265 conf->scribble_sectors >= new_sectors)
2267 mddev_suspend(conf->mddev);
2269 for_each_present_cpu(cpu) {
2270 struct raid5_percpu *percpu;
2271 struct flex_array *scribble;
2273 percpu = per_cpu_ptr(conf->percpu, cpu);
2274 scribble = scribble_alloc(new_disks,
2275 new_sectors / STRIPE_SECTORS,
2279 flex_array_free(percpu->scribble);
2280 percpu->scribble = scribble;
2287 mddev_resume(conf->mddev);
2289 conf->scribble_disks = new_disks;
2290 conf->scribble_sectors = new_sectors;
2295 static int resize_stripes(struct r5conf *conf, int newsize)
2297 /* Make all the stripes able to hold 'newsize' devices.
2298 * New slots in each stripe get 'page' set to a new page.
2300 * This happens in stages:
2301 * 1/ create a new kmem_cache and allocate the required number of
2303 * 2/ gather all the old stripe_heads and transfer the pages across
2304 * to the new stripe_heads. This will have the side effect of
2305 * freezing the array as once all stripe_heads have been collected,
2306 * no IO will be possible. Old stripe heads are freed once their
2307 * pages have been transferred over, and the old kmem_cache is
2308 * freed when all stripes are done.
2309 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2310 * we simple return a failure status - no need to clean anything up.
2311 * 4/ allocate new pages for the new slots in the new stripe_heads.
2312 * If this fails, we don't bother trying the shrink the
2313 * stripe_heads down again, we just leave them as they are.
2314 * As each stripe_head is processed the new one is released into
2317 * Once step2 is started, we cannot afford to wait for a write,
2318 * so we use GFP_NOIO allocations.
2320 struct stripe_head *osh, *nsh;
2321 LIST_HEAD(newstripes);
2322 struct disk_info *ndisks;
2324 struct kmem_cache *sc;
2328 md_allow_write(conf->mddev);
2331 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2332 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2337 /* Need to ensure auto-resizing doesn't interfere */
2338 mutex_lock(&conf->cache_size_mutex);
2340 for (i = conf->max_nr_stripes; i; i--) {
2341 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2345 list_add(&nsh->lru, &newstripes);
2348 /* didn't get enough, give up */
2349 while (!list_empty(&newstripes)) {
2350 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2351 list_del(&nsh->lru);
2352 free_stripe(sc, nsh);
2354 kmem_cache_destroy(sc);
2355 mutex_unlock(&conf->cache_size_mutex);
2358 /* Step 2 - Must use GFP_NOIO now.
2359 * OK, we have enough stripes, start collecting inactive
2360 * stripes and copying them over
2364 list_for_each_entry(nsh, &newstripes, lru) {
2365 lock_device_hash_lock(conf, hash);
2366 wait_event_cmd(conf->wait_for_stripe,
2367 !list_empty(conf->inactive_list + hash),
2368 unlock_device_hash_lock(conf, hash),
2369 lock_device_hash_lock(conf, hash));
2370 osh = get_free_stripe(conf, hash);
2371 unlock_device_hash_lock(conf, hash);
2373 for(i=0; i<conf->pool_size; i++) {
2374 nsh->dev[i].page = osh->dev[i].page;
2375 nsh->dev[i].orig_page = osh->dev[i].page;
2377 nsh->hash_lock_index = hash;
2378 free_stripe(conf->slab_cache, osh);
2380 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2381 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2386 kmem_cache_destroy(conf->slab_cache);
2389 * At this point, we are holding all the stripes so the array
2390 * is completely stalled, so now is a good time to resize
2391 * conf->disks and the scribble region
2393 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2395 for (i = 0; i < conf->pool_size; i++)
2396 ndisks[i] = conf->disks[i];
2398 for (i = conf->pool_size; i < newsize; i++) {
2399 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2400 if (!ndisks[i].extra_page)
2405 for (i = conf->pool_size; i < newsize; i++)
2406 if (ndisks[i].extra_page)
2407 put_page(ndisks[i].extra_page);
2411 conf->disks = ndisks;
2416 mutex_unlock(&conf->cache_size_mutex);
2418 conf->slab_cache = sc;
2419 conf->active_name = 1-conf->active_name;
2421 /* Step 4, return new stripes to service */
2422 while(!list_empty(&newstripes)) {
2423 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2424 list_del_init(&nsh->lru);
2426 for (i=conf->raid_disks; i < newsize; i++)
2427 if (nsh->dev[i].page == NULL) {
2428 struct page *p = alloc_page(GFP_NOIO);
2429 nsh->dev[i].page = p;
2430 nsh->dev[i].orig_page = p;
2434 raid5_release_stripe(nsh);
2436 /* critical section pass, GFP_NOIO no longer needed */
2439 conf->pool_size = newsize;
2443 static int drop_one_stripe(struct r5conf *conf)
2445 struct stripe_head *sh;
2446 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2448 spin_lock_irq(conf->hash_locks + hash);
2449 sh = get_free_stripe(conf, hash);
2450 spin_unlock_irq(conf->hash_locks + hash);
2453 BUG_ON(atomic_read(&sh->count));
2455 free_stripe(conf->slab_cache, sh);
2456 atomic_dec(&conf->active_stripes);
2457 conf->max_nr_stripes--;
2461 static void shrink_stripes(struct r5conf *conf)
2463 while (conf->max_nr_stripes &&
2464 drop_one_stripe(conf))
2467 kmem_cache_destroy(conf->slab_cache);
2468 conf->slab_cache = NULL;
2471 static void raid5_end_read_request(struct bio * bi)
2473 struct stripe_head *sh = bi->bi_private;
2474 struct r5conf *conf = sh->raid_conf;
2475 int disks = sh->disks, i;
2476 char b[BDEVNAME_SIZE];
2477 struct md_rdev *rdev = NULL;
2480 for (i=0 ; i<disks; i++)
2481 if (bi == &sh->dev[i].req)
2484 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2485 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2492 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2493 /* If replacement finished while this request was outstanding,
2494 * 'replacement' might be NULL already.
2495 * In that case it moved down to 'rdev'.
2496 * rdev is not removed until all requests are finished.
2498 rdev = conf->disks[i].replacement;
2500 rdev = conf->disks[i].rdev;
2502 if (use_new_offset(conf, sh))
2503 s = sh->sector + rdev->new_data_offset;
2505 s = sh->sector + rdev->data_offset;
2506 if (!bi->bi_status) {
2507 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2508 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2509 /* Note that this cannot happen on a
2510 * replacement device. We just fail those on
2513 pr_info_ratelimited(
2514 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2515 mdname(conf->mddev), STRIPE_SECTORS,
2516 (unsigned long long)s,
2517 bdevname(rdev->bdev, b));
2518 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2519 clear_bit(R5_ReadError, &sh->dev[i].flags);
2520 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2521 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2522 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2524 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2526 * end read for a page in journal, this
2527 * must be preparing for prexor in rmw
2529 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2531 if (atomic_read(&rdev->read_errors))
2532 atomic_set(&rdev->read_errors, 0);
2534 const char *bdn = bdevname(rdev->bdev, b);
2538 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2539 atomic_inc(&rdev->read_errors);
2540 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2541 pr_warn_ratelimited(
2542 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2543 mdname(conf->mddev),
2544 (unsigned long long)s,
2546 else if (conf->mddev->degraded >= conf->max_degraded) {
2548 pr_warn_ratelimited(
2549 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2550 mdname(conf->mddev),
2551 (unsigned long long)s,
2553 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2556 pr_warn_ratelimited(
2557 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2558 mdname(conf->mddev),
2559 (unsigned long long)s,
2561 } else if (atomic_read(&rdev->read_errors)
2562 > conf->max_nr_stripes)
2563 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2564 mdname(conf->mddev), bdn);
2567 if (set_bad && test_bit(In_sync, &rdev->flags)
2568 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2571 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2572 set_bit(R5_ReadError, &sh->dev[i].flags);
2573 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2575 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2577 clear_bit(R5_ReadError, &sh->dev[i].flags);
2578 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2580 && test_bit(In_sync, &rdev->flags)
2581 && rdev_set_badblocks(
2582 rdev, sh->sector, STRIPE_SECTORS, 0)))
2583 md_error(conf->mddev, rdev);
2586 rdev_dec_pending(rdev, conf->mddev);
2588 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2589 set_bit(STRIPE_HANDLE, &sh->state);
2590 raid5_release_stripe(sh);
2593 static void raid5_end_write_request(struct bio *bi)
2595 struct stripe_head *sh = bi->bi_private;
2596 struct r5conf *conf = sh->raid_conf;
2597 int disks = sh->disks, i;
2598 struct md_rdev *uninitialized_var(rdev);
2601 int replacement = 0;
2603 for (i = 0 ; i < disks; i++) {
2604 if (bi == &sh->dev[i].req) {
2605 rdev = conf->disks[i].rdev;
2608 if (bi == &sh->dev[i].rreq) {
2609 rdev = conf->disks[i].replacement;
2613 /* rdev was removed and 'replacement'
2614 * replaced it. rdev is not removed
2615 * until all requests are finished.
2617 rdev = conf->disks[i].rdev;
2621 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2622 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2632 md_error(conf->mddev, rdev);
2633 else if (is_badblock(rdev, sh->sector,
2635 &first_bad, &bad_sectors))
2636 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2638 if (bi->bi_status) {
2639 set_bit(STRIPE_DEGRADED, &sh->state);
2640 set_bit(WriteErrorSeen, &rdev->flags);
2641 set_bit(R5_WriteError, &sh->dev[i].flags);
2642 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2643 set_bit(MD_RECOVERY_NEEDED,
2644 &rdev->mddev->recovery);
2645 } else if (is_badblock(rdev, sh->sector,
2647 &first_bad, &bad_sectors)) {
2648 set_bit(R5_MadeGood, &sh->dev[i].flags);
2649 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2650 /* That was a successful write so make
2651 * sure it looks like we already did
2654 set_bit(R5_ReWrite, &sh->dev[i].flags);
2657 rdev_dec_pending(rdev, conf->mddev);
2659 if (sh->batch_head && bi->bi_status && !replacement)
2660 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2663 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2664 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2665 set_bit(STRIPE_HANDLE, &sh->state);
2666 raid5_release_stripe(sh);
2668 if (sh->batch_head && sh != sh->batch_head)
2669 raid5_release_stripe(sh->batch_head);
2672 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674 char b[BDEVNAME_SIZE];
2675 struct r5conf *conf = mddev->private;
2676 unsigned long flags;
2677 pr_debug("raid456: error called\n");
2679 spin_lock_irqsave(&conf->device_lock, flags);
2680 set_bit(Faulty, &rdev->flags);
2681 clear_bit(In_sync, &rdev->flags);
2682 mddev->degraded = raid5_calc_degraded(conf);
2683 spin_unlock_irqrestore(&conf->device_lock, flags);
2684 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2686 set_bit(Blocked, &rdev->flags);
2687 set_mask_bits(&mddev->sb_flags, 0,
2688 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2689 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2690 "md/raid:%s: Operation continuing on %d devices.\n",
2692 bdevname(rdev->bdev, b),
2694 conf->raid_disks - mddev->degraded);
2695 r5c_update_on_rdev_error(mddev, rdev);
2699 * Input: a 'big' sector number,
2700 * Output: index of the data and parity disk, and the sector # in them.
2702 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2703 int previous, int *dd_idx,
2704 struct stripe_head *sh)
2706 sector_t stripe, stripe2;
2707 sector_t chunk_number;
2708 unsigned int chunk_offset;
2711 sector_t new_sector;
2712 int algorithm = previous ? conf->prev_algo
2714 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2715 : conf->chunk_sectors;
2716 int raid_disks = previous ? conf->previous_raid_disks
2718 int data_disks = raid_disks - conf->max_degraded;
2720 /* First compute the information on this sector */
2723 * Compute the chunk number and the sector offset inside the chunk
2725 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2726 chunk_number = r_sector;
2729 * Compute the stripe number
2731 stripe = chunk_number;
2732 *dd_idx = sector_div(stripe, data_disks);
2735 * Select the parity disk based on the user selected algorithm.
2737 pd_idx = qd_idx = -1;
2738 switch(conf->level) {
2740 pd_idx = data_disks;
2743 switch (algorithm) {
2744 case ALGORITHM_LEFT_ASYMMETRIC:
2745 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2746 if (*dd_idx >= pd_idx)
2749 case ALGORITHM_RIGHT_ASYMMETRIC:
2750 pd_idx = sector_div(stripe2, raid_disks);
2751 if (*dd_idx >= pd_idx)
2754 case ALGORITHM_LEFT_SYMMETRIC:
2755 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2756 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758 case ALGORITHM_RIGHT_SYMMETRIC:
2759 pd_idx = sector_div(stripe2, raid_disks);
2760 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762 case ALGORITHM_PARITY_0:
2766 case ALGORITHM_PARITY_N:
2767 pd_idx = data_disks;
2775 switch (algorithm) {
2776 case ALGORITHM_LEFT_ASYMMETRIC:
2777 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2778 qd_idx = pd_idx + 1;
2779 if (pd_idx == raid_disks-1) {
2780 (*dd_idx)++; /* Q D D D P */
2782 } else if (*dd_idx >= pd_idx)
2783 (*dd_idx) += 2; /* D D P Q D */
2785 case ALGORITHM_RIGHT_ASYMMETRIC:
2786 pd_idx = sector_div(stripe2, raid_disks);
2787 qd_idx = pd_idx + 1;
2788 if (pd_idx == raid_disks-1) {
2789 (*dd_idx)++; /* Q D D D P */
2791 } else if (*dd_idx >= pd_idx)
2792 (*dd_idx) += 2; /* D D P Q D */
2794 case ALGORITHM_LEFT_SYMMETRIC:
2795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2796 qd_idx = (pd_idx + 1) % raid_disks;
2797 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799 case ALGORITHM_RIGHT_SYMMETRIC:
2800 pd_idx = sector_div(stripe2, raid_disks);
2801 qd_idx = (pd_idx + 1) % raid_disks;
2802 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2805 case ALGORITHM_PARITY_0:
2810 case ALGORITHM_PARITY_N:
2811 pd_idx = data_disks;
2812 qd_idx = data_disks + 1;
2815 case ALGORITHM_ROTATING_ZERO_RESTART:
2816 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2817 * of blocks for computing Q is different.
2819 pd_idx = sector_div(stripe2, raid_disks);
2820 qd_idx = pd_idx + 1;
2821 if (pd_idx == raid_disks-1) {
2822 (*dd_idx)++; /* Q D D D P */
2824 } else if (*dd_idx >= pd_idx)
2825 (*dd_idx) += 2; /* D D P Q D */
2829 case ALGORITHM_ROTATING_N_RESTART:
2830 /* Same a left_asymmetric, by first stripe is
2831 * D D D P Q rather than
2835 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2836 qd_idx = pd_idx + 1;
2837 if (pd_idx == raid_disks-1) {
2838 (*dd_idx)++; /* Q D D D P */
2840 } else if (*dd_idx >= pd_idx)
2841 (*dd_idx) += 2; /* D D P Q D */
2845 case ALGORITHM_ROTATING_N_CONTINUE:
2846 /* Same as left_symmetric but Q is before P */
2847 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2848 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2849 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2853 case ALGORITHM_LEFT_ASYMMETRIC_6:
2854 /* RAID5 left_asymmetric, with Q on last device */
2855 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2856 if (*dd_idx >= pd_idx)
2858 qd_idx = raid_disks - 1;
2861 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2862 pd_idx = sector_div(stripe2, raid_disks-1);
2863 if (*dd_idx >= pd_idx)
2865 qd_idx = raid_disks - 1;
2868 case ALGORITHM_LEFT_SYMMETRIC_6:
2869 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2870 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2871 qd_idx = raid_disks - 1;
2874 case ALGORITHM_RIGHT_SYMMETRIC_6:
2875 pd_idx = sector_div(stripe2, raid_disks-1);
2876 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2877 qd_idx = raid_disks - 1;
2880 case ALGORITHM_PARITY_0_6:
2883 qd_idx = raid_disks - 1;
2893 sh->pd_idx = pd_idx;
2894 sh->qd_idx = qd_idx;
2895 sh->ddf_layout = ddf_layout;
2898 * Finally, compute the new sector number
2900 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2904 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906 struct r5conf *conf = sh->raid_conf;
2907 int raid_disks = sh->disks;
2908 int data_disks = raid_disks - conf->max_degraded;
2909 sector_t new_sector = sh->sector, check;
2910 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2911 : conf->chunk_sectors;
2912 int algorithm = previous ? conf->prev_algo
2916 sector_t chunk_number;
2917 int dummy1, dd_idx = i;
2919 struct stripe_head sh2;
2921 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2922 stripe = new_sector;
2924 if (i == sh->pd_idx)
2926 switch(conf->level) {
2929 switch (algorithm) {
2930 case ALGORITHM_LEFT_ASYMMETRIC:
2931 case ALGORITHM_RIGHT_ASYMMETRIC:
2935 case ALGORITHM_LEFT_SYMMETRIC:
2936 case ALGORITHM_RIGHT_SYMMETRIC:
2939 i -= (sh->pd_idx + 1);
2941 case ALGORITHM_PARITY_0:
2944 case ALGORITHM_PARITY_N:
2951 if (i == sh->qd_idx)
2952 return 0; /* It is the Q disk */
2953 switch (algorithm) {
2954 case ALGORITHM_LEFT_ASYMMETRIC:
2955 case ALGORITHM_RIGHT_ASYMMETRIC:
2956 case ALGORITHM_ROTATING_ZERO_RESTART:
2957 case ALGORITHM_ROTATING_N_RESTART:
2958 if (sh->pd_idx == raid_disks-1)
2959 i--; /* Q D D D P */
2960 else if (i > sh->pd_idx)
2961 i -= 2; /* D D P Q D */
2963 case ALGORITHM_LEFT_SYMMETRIC:
2964 case ALGORITHM_RIGHT_SYMMETRIC:
2965 if (sh->pd_idx == raid_disks-1)
2966 i--; /* Q D D D P */
2971 i -= (sh->pd_idx + 2);
2974 case ALGORITHM_PARITY_0:
2977 case ALGORITHM_PARITY_N:
2979 case ALGORITHM_ROTATING_N_CONTINUE:
2980 /* Like left_symmetric, but P is before Q */
2981 if (sh->pd_idx == 0)
2982 i--; /* P D D D Q */
2987 i -= (sh->pd_idx + 1);
2990 case ALGORITHM_LEFT_ASYMMETRIC_6:
2991 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2995 case ALGORITHM_LEFT_SYMMETRIC_6:
2996 case ALGORITHM_RIGHT_SYMMETRIC_6:
2998 i += data_disks + 1;
2999 i -= (sh->pd_idx + 1);
3001 case ALGORITHM_PARITY_0_6:
3010 chunk_number = stripe * data_disks + i;
3011 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013 check = raid5_compute_sector(conf, r_sector,
3014 previous, &dummy1, &sh2);
3015 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3016 || sh2.qd_idx != sh->qd_idx) {
3017 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3018 mdname(conf->mddev));
3025 * There are cases where we want handle_stripe_dirtying() and
3026 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028 * This function checks whether we want to delay the towrite. Specifically,
3029 * we delay the towrite when:
3031 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3032 * stripe has data in journal (for other devices).
3034 * In this case, when reading data for the non-overwrite dev, it is
3035 * necessary to handle complex rmw of write back cache (prexor with
3036 * orig_page, and xor with page). To keep read path simple, we would
3037 * like to flush data in journal to RAID disks first, so complex rmw
3038 * is handled in the write patch (handle_stripe_dirtying).
3040 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042 * It is important to be able to flush all stripes in raid5-cache.
3043 * Therefore, we need reserve some space on the journal device for
3044 * these flushes. If flush operation includes pending writes to the
3045 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3046 * for the flush out. If we exclude these pending writes from flush
3047 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3048 * Therefore, excluding pending writes in these cases enables more
3049 * efficient use of the journal device.
3051 * Note: To make sure the stripe makes progress, we only delay
3052 * towrite for stripes with data already in journal (injournal > 0).
3053 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3054 * no_space_stripes list.
3056 * 3. during journal failure
3057 * In journal failure, we try to flush all cached data to raid disks
3058 * based on data in stripe cache. The array is read-only to upper
3059 * layers, so we would skip all pending writes.
3062 static inline bool delay_towrite(struct r5conf *conf,
3064 struct stripe_head_state *s)
3067 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3068 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3071 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3075 if (s->log_failed && s->injournal)
3081 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3082 int rcw, int expand)
3084 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3085 struct r5conf *conf = sh->raid_conf;
3086 int level = conf->level;
3090 * In some cases, handle_stripe_dirtying initially decided to
3091 * run rmw and allocates extra page for prexor. However, rcw is
3092 * cheaper later on. We need to free the extra page now,
3093 * because we won't be able to do that in ops_complete_prexor().
3095 r5c_release_extra_page(sh);
3097 for (i = disks; i--; ) {
3098 struct r5dev *dev = &sh->dev[i];
3100 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3101 set_bit(R5_LOCKED, &dev->flags);
3102 set_bit(R5_Wantdrain, &dev->flags);
3104 clear_bit(R5_UPTODATE, &dev->flags);
3106 } else if (test_bit(R5_InJournal, &dev->flags)) {
3107 set_bit(R5_LOCKED, &dev->flags);
3111 /* if we are not expanding this is a proper write request, and
3112 * there will be bios with new data to be drained into the
3117 /* False alarm, nothing to do */
3119 sh->reconstruct_state = reconstruct_state_drain_run;
3120 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122 sh->reconstruct_state = reconstruct_state_run;
3124 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126 if (s->locked + conf->max_degraded == disks)
3127 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3128 atomic_inc(&conf->pending_full_writes);
3130 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3131 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3132 BUG_ON(level == 6 &&
3133 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3134 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136 for (i = disks; i--; ) {
3137 struct r5dev *dev = &sh->dev[i];
3138 if (i == pd_idx || i == qd_idx)
3142 (test_bit(R5_UPTODATE, &dev->flags) ||
3143 test_bit(R5_Wantcompute, &dev->flags))) {
3144 set_bit(R5_Wantdrain, &dev->flags);
3145 set_bit(R5_LOCKED, &dev->flags);
3146 clear_bit(R5_UPTODATE, &dev->flags);
3148 } else if (test_bit(R5_InJournal, &dev->flags)) {
3149 set_bit(R5_LOCKED, &dev->flags);
3154 /* False alarm - nothing to do */
3156 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3157 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3158 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3159 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3162 /* keep the parity disk(s) locked while asynchronous operations
3165 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3166 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3170 int qd_idx = sh->qd_idx;
3171 struct r5dev *dev = &sh->dev[qd_idx];
3173 set_bit(R5_LOCKED, &dev->flags);
3174 clear_bit(R5_UPTODATE, &dev->flags);
3178 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3179 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3180 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3181 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3182 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3185 __func__, (unsigned long long)sh->sector,
3186 s->locked, s->ops_request);
3190 * Each stripe/dev can have one or more bion attached.
3191 * toread/towrite point to the first in a chain.
3192 * The bi_next chain must be in order.
3194 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3195 int forwrite, int previous)
3198 struct r5conf *conf = sh->raid_conf;
3201 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3202 (unsigned long long)bi->bi_iter.bi_sector,
3203 (unsigned long long)sh->sector);
3205 spin_lock_irq(&sh->stripe_lock);
3206 /* Don't allow new IO added to stripes in batch list */
3210 bip = &sh->dev[dd_idx].towrite;
3214 bip = &sh->dev[dd_idx].toread;
3215 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3216 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218 bip = & (*bip)->bi_next;
3220 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3223 if (forwrite && raid5_has_ppl(conf)) {
3225 * With PPL only writes to consecutive data chunks within a
3226 * stripe are allowed because for a single stripe_head we can
3227 * only have one PPL entry at a time, which describes one data
3228 * range. Not really an overlap, but wait_for_overlap can be
3229 * used to handle this.
3237 for (i = 0; i < sh->disks; i++) {
3238 if (i != sh->pd_idx &&
3239 (i == dd_idx || sh->dev[i].towrite)) {
3240 sector = sh->dev[i].sector;
3241 if (count == 0 || sector < first)
3249 if (first + conf->chunk_sectors * (count - 1) != last)
3253 if (!forwrite || previous)
3254 clear_bit(STRIPE_BATCH_READY, &sh->state);
3256 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3260 bio_inc_remaining(bi);
3261 md_write_inc(conf->mddev, bi);
3264 /* check if page is covered */
3265 sector_t sector = sh->dev[dd_idx].sector;
3266 for (bi=sh->dev[dd_idx].towrite;
3267 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3268 bi && bi->bi_iter.bi_sector <= sector;
3269 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3270 if (bio_end_sector(bi) >= sector)
3271 sector = bio_end_sector(bi);
3273 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3274 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3275 sh->overwrite_disks++;
3278 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3279 (unsigned long long)(*bip)->bi_iter.bi_sector,
3280 (unsigned long long)sh->sector, dd_idx);
3282 if (conf->mddev->bitmap && firstwrite) {
3283 /* Cannot hold spinlock over bitmap_startwrite,
3284 * but must ensure this isn't added to a batch until
3285 * we have added to the bitmap and set bm_seq.
3286 * So set STRIPE_BITMAP_PENDING to prevent
3288 * If multiple add_stripe_bio() calls race here they
3289 * much all set STRIPE_BITMAP_PENDING. So only the first one
3290 * to complete "bitmap_startwrite" gets to set
3291 * STRIPE_BIT_DELAY. This is important as once a stripe
3292 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3295 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3296 spin_unlock_irq(&sh->stripe_lock);
3297 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299 spin_lock_irq(&sh->stripe_lock);
3300 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3301 if (!sh->batch_head) {
3302 sh->bm_seq = conf->seq_flush+1;
3303 set_bit(STRIPE_BIT_DELAY, &sh->state);
3306 spin_unlock_irq(&sh->stripe_lock);
3308 if (stripe_can_batch(sh))
3309 stripe_add_to_batch_list(conf, sh);
3313 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3314 spin_unlock_irq(&sh->stripe_lock);
3318 static void end_reshape(struct r5conf *conf);
3320 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3321 struct stripe_head *sh)
3323 int sectors_per_chunk =
3324 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3327 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329 raid5_compute_sector(conf,
3330 stripe * (disks - conf->max_degraded)
3331 *sectors_per_chunk + chunk_offset,
3337 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3338 struct stripe_head_state *s, int disks)
3341 BUG_ON(sh->batch_head);
3342 for (i = disks; i--; ) {
3346 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3347 struct md_rdev *rdev;
3349 rdev = rcu_dereference(conf->disks[i].rdev);
3350 if (rdev && test_bit(In_sync, &rdev->flags) &&
3351 !test_bit(Faulty, &rdev->flags))
3352 atomic_inc(&rdev->nr_pending);
3357 if (!rdev_set_badblocks(
3361 md_error(conf->mddev, rdev);
3362 rdev_dec_pending(rdev, conf->mddev);
3365 spin_lock_irq(&sh->stripe_lock);
3366 /* fail all writes first */
3367 bi = sh->dev[i].towrite;
3368 sh->dev[i].towrite = NULL;
3369 sh->overwrite_disks = 0;
3370 spin_unlock_irq(&sh->stripe_lock);
3374 log_stripe_write_finished(sh);
3376 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3377 wake_up(&conf->wait_for_overlap);
3379 while (bi && bi->bi_iter.bi_sector <
3380 sh->dev[i].sector + STRIPE_SECTORS) {
3381 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383 md_write_end(conf->mddev);
3388 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3389 STRIPE_SECTORS, 0, 0);
3391 /* and fail all 'written' */
3392 bi = sh->dev[i].written;
3393 sh->dev[i].written = NULL;
3394 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3395 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3396 sh->dev[i].page = sh->dev[i].orig_page;
3399 if (bi) bitmap_end = 1;
3400 while (bi && bi->bi_iter.bi_sector <
3401 sh->dev[i].sector + STRIPE_SECTORS) {
3402 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3404 md_write_end(conf->mddev);
3409 /* fail any reads if this device is non-operational and
3410 * the data has not reached the cache yet.
3412 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3413 s->failed > conf->max_degraded &&
3414 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3415 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3416 spin_lock_irq(&sh->stripe_lock);
3417 bi = sh->dev[i].toread;
3418 sh->dev[i].toread = NULL;
3419 spin_unlock_irq(&sh->stripe_lock);
3420 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3421 wake_up(&conf->wait_for_overlap);
3424 while (bi && bi->bi_iter.bi_sector <
3425 sh->dev[i].sector + STRIPE_SECTORS) {
3426 struct bio *nextbi =
3427 r5_next_bio(bi, sh->dev[i].sector);
3434 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3435 STRIPE_SECTORS, 0, 0);
3436 /* If we were in the middle of a write the parity block might
3437 * still be locked - so just clear all R5_LOCKED flags
3439 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3444 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3445 if (atomic_dec_and_test(&conf->pending_full_writes))
3446 md_wakeup_thread(conf->mddev->thread);
3450 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3451 struct stripe_head_state *s)
3456 BUG_ON(sh->batch_head);
3457 clear_bit(STRIPE_SYNCING, &sh->state);
3458 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3459 wake_up(&conf->wait_for_overlap);
3462 /* There is nothing more to do for sync/check/repair.
3463 * Don't even need to abort as that is handled elsewhere
3464 * if needed, and not always wanted e.g. if there is a known
3466 * For recover/replace we need to record a bad block on all
3467 * non-sync devices, or abort the recovery
3469 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3470 /* During recovery devices cannot be removed, so
3471 * locking and refcounting of rdevs is not needed
3474 for (i = 0; i < conf->raid_disks; i++) {
3475 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3477 && !test_bit(Faulty, &rdev->flags)
3478 && !test_bit(In_sync, &rdev->flags)
3479 && !rdev_set_badblocks(rdev, sh->sector,
3482 rdev = rcu_dereference(conf->disks[i].replacement);
3484 && !test_bit(Faulty, &rdev->flags)
3485 && !test_bit(In_sync, &rdev->flags)
3486 && !rdev_set_badblocks(rdev, sh->sector,
3492 conf->recovery_disabled =
3493 conf->mddev->recovery_disabled;
3495 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3498 static int want_replace(struct stripe_head *sh, int disk_idx)
3500 struct md_rdev *rdev;
3504 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3506 && !test_bit(Faulty, &rdev->flags)
3507 && !test_bit(In_sync, &rdev->flags)
3508 && (rdev->recovery_offset <= sh->sector
3509 || rdev->mddev->recovery_cp <= sh->sector))
3515 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3516 int disk_idx, int disks)
3518 struct r5dev *dev = &sh->dev[disk_idx];
3519 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3520 &sh->dev[s->failed_num[1]] };
3524 if (test_bit(R5_LOCKED, &dev->flags) ||
3525 test_bit(R5_UPTODATE, &dev->flags))
3526 /* No point reading this as we already have it or have
3527 * decided to get it.
3532 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3533 /* We need this block to directly satisfy a request */
3536 if (s->syncing || s->expanding ||
3537 (s->replacing && want_replace(sh, disk_idx)))
3538 /* When syncing, or expanding we read everything.
3539 * When replacing, we need the replaced block.
3543 if ((s->failed >= 1 && fdev[0]->toread) ||
3544 (s->failed >= 2 && fdev[1]->toread))
3545 /* If we want to read from a failed device, then
3546 * we need to actually read every other device.
3550 /* Sometimes neither read-modify-write nor reconstruct-write
3551 * cycles can work. In those cases we read every block we
3552 * can. Then the parity-update is certain to have enough to
3554 * This can only be a problem when we need to write something,
3555 * and some device has failed. If either of those tests
3556 * fail we need look no further.
3558 if (!s->failed || !s->to_write)
3561 if (test_bit(R5_Insync, &dev->flags) &&
3562 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3563 /* Pre-reads at not permitted until after short delay
3564 * to gather multiple requests. However if this
3565 * device is no Insync, the block could only be computed
3566 * and there is no need to delay that.
3570 for (i = 0; i < s->failed && i < 2; i++) {
3571 if (fdev[i]->towrite &&
3572 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3573 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3574 /* If we have a partial write to a failed
3575 * device, then we will need to reconstruct
3576 * the content of that device, so all other
3577 * devices must be read.
3582 /* If we are forced to do a reconstruct-write, either because
3583 * the current RAID6 implementation only supports that, or
3584 * because parity cannot be trusted and we are currently
3585 * recovering it, there is extra need to be careful.
3586 * If one of the devices that we would need to read, because
3587 * it is not being overwritten (and maybe not written at all)
3588 * is missing/faulty, then we need to read everything we can.
3590 if (sh->raid_conf->level != 6 &&
3591 sh->sector < sh->raid_conf->mddev->recovery_cp)
3592 /* reconstruct-write isn't being forced */
3594 for (i = 0; i < s->failed && i < 2; i++) {
3595 if (s->failed_num[i] != sh->pd_idx &&
3596 s->failed_num[i] != sh->qd_idx &&
3597 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3598 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3605 /* fetch_block - checks the given member device to see if its data needs
3606 * to be read or computed to satisfy a request.
3608 * Returns 1 when no more member devices need to be checked, otherwise returns
3609 * 0 to tell the loop in handle_stripe_fill to continue
3611 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3612 int disk_idx, int disks)
3614 struct r5dev *dev = &sh->dev[disk_idx];
3616 /* is the data in this block needed, and can we get it? */
3617 if (need_this_block(sh, s, disk_idx, disks)) {
3618 /* we would like to get this block, possibly by computing it,
3619 * otherwise read it if the backing disk is insync
3621 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3622 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3623 BUG_ON(sh->batch_head);
3626 * In the raid6 case if the only non-uptodate disk is P
3627 * then we already trusted P to compute the other failed
3628 * drives. It is safe to compute rather than re-read P.
3629 * In other cases we only compute blocks from failed
3630 * devices, otherwise check/repair might fail to detect
3631 * a real inconsistency.
3634 if ((s->uptodate == disks - 1) &&
3635 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3636 (s->failed && (disk_idx == s->failed_num[0] ||
3637 disk_idx == s->failed_num[1])))) {
3638 /* have disk failed, and we're requested to fetch it;
3641 pr_debug("Computing stripe %llu block %d\n",
3642 (unsigned long long)sh->sector, disk_idx);
3643 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3644 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3645 set_bit(R5_Wantcompute, &dev->flags);
3646 sh->ops.target = disk_idx;
3647 sh->ops.target2 = -1; /* no 2nd target */
3649 /* Careful: from this point on 'uptodate' is in the eye
3650 * of raid_run_ops which services 'compute' operations
3651 * before writes. R5_Wantcompute flags a block that will
3652 * be R5_UPTODATE by the time it is needed for a
3653 * subsequent operation.
3657 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3658 /* Computing 2-failure is *very* expensive; only
3659 * do it if failed >= 2
3662 for (other = disks; other--; ) {
3663 if (other == disk_idx)
3665 if (!test_bit(R5_UPTODATE,
3666 &sh->dev[other].flags))
3670 pr_debug("Computing stripe %llu blocks %d,%d\n",
3671 (unsigned long long)sh->sector,
3673 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3674 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3675 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3676 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3677 sh->ops.target = disk_idx;
3678 sh->ops.target2 = other;
3682 } else if (test_bit(R5_Insync, &dev->flags)) {
3683 set_bit(R5_LOCKED, &dev->flags);
3684 set_bit(R5_Wantread, &dev->flags);
3686 pr_debug("Reading block %d (sync=%d)\n",
3687 disk_idx, s->syncing);
3695 * handle_stripe_fill - read or compute data to satisfy pending requests.
3697 static void handle_stripe_fill(struct stripe_head *sh,
3698 struct stripe_head_state *s,
3703 /* look for blocks to read/compute, skip this if a compute
3704 * is already in flight, or if the stripe contents are in the
3705 * midst of changing due to a write
3707 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3708 !sh->reconstruct_state) {
3711 * For degraded stripe with data in journal, do not handle
3712 * read requests yet, instead, flush the stripe to raid
3713 * disks first, this avoids handling complex rmw of write
3714 * back cache (prexor with orig_page, and then xor with
3715 * page) in the read path
3717 if (s->injournal && s->failed) {
3718 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3719 r5c_make_stripe_write_out(sh);
3723 for (i = disks; i--; )
3724 if (fetch_block(sh, s, i, disks))
3728 set_bit(STRIPE_HANDLE, &sh->state);
3731 static void break_stripe_batch_list(struct stripe_head *head_sh,
3732 unsigned long handle_flags);
3733 /* handle_stripe_clean_event
3734 * any written block on an uptodate or failed drive can be returned.
3735 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3736 * never LOCKED, so we don't need to test 'failed' directly.
3738 static void handle_stripe_clean_event(struct r5conf *conf,
3739 struct stripe_head *sh, int disks)
3743 int discard_pending = 0;
3744 struct stripe_head *head_sh = sh;
3745 bool do_endio = false;
3747 for (i = disks; i--; )
3748 if (sh->dev[i].written) {
3750 if (!test_bit(R5_LOCKED, &dev->flags) &&
3751 (test_bit(R5_UPTODATE, &dev->flags) ||
3752 test_bit(R5_Discard, &dev->flags) ||
3753 test_bit(R5_SkipCopy, &dev->flags))) {
3754 /* We can return any write requests */
3755 struct bio *wbi, *wbi2;
3756 pr_debug("Return write for disc %d\n", i);
3757 if (test_and_clear_bit(R5_Discard, &dev->flags))
3758 clear_bit(R5_UPTODATE, &dev->flags);
3759 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3760 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3765 dev->page = dev->orig_page;
3767 dev->written = NULL;
3768 while (wbi && wbi->bi_iter.bi_sector <
3769 dev->sector + STRIPE_SECTORS) {
3770 wbi2 = r5_next_bio(wbi, dev->sector);
3771 md_write_end(conf->mddev);
3775 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3777 !test_bit(STRIPE_DEGRADED, &sh->state),
3779 if (head_sh->batch_head) {
3780 sh = list_first_entry(&sh->batch_list,
3783 if (sh != head_sh) {
3790 } else if (test_bit(R5_Discard, &dev->flags))
3791 discard_pending = 1;
3794 log_stripe_write_finished(sh);
3796 if (!discard_pending &&
3797 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3799 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3800 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3801 if (sh->qd_idx >= 0) {
3802 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3803 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3805 /* now that discard is done we can proceed with any sync */
3806 clear_bit(STRIPE_DISCARD, &sh->state);
3808 * SCSI discard will change some bio fields and the stripe has
3809 * no updated data, so remove it from hash list and the stripe
3810 * will be reinitialized
3813 hash = sh->hash_lock_index;
3814 spin_lock_irq(conf->hash_locks + hash);
3816 spin_unlock_irq(conf->hash_locks + hash);
3817 if (head_sh->batch_head) {
3818 sh = list_first_entry(&sh->batch_list,
3819 struct stripe_head, batch_list);
3825 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3826 set_bit(STRIPE_HANDLE, &sh->state);
3830 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3831 if (atomic_dec_and_test(&conf->pending_full_writes))
3832 md_wakeup_thread(conf->mddev->thread);
3834 if (head_sh->batch_head && do_endio)
3835 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3839 * For RMW in write back cache, we need extra page in prexor to store the
3840 * old data. This page is stored in dev->orig_page.
3842 * This function checks whether we have data for prexor. The exact logic
3844 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3846 static inline bool uptodate_for_rmw(struct r5dev *dev)
3848 return (test_bit(R5_UPTODATE, &dev->flags)) &&
3849 (!test_bit(R5_InJournal, &dev->flags) ||
3850 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3853 static int handle_stripe_dirtying(struct r5conf *conf,
3854 struct stripe_head *sh,
3855 struct stripe_head_state *s,
3858 int rmw = 0, rcw = 0, i;
3859 sector_t recovery_cp = conf->mddev->recovery_cp;
3861 /* Check whether resync is now happening or should start.
3862 * If yes, then the array is dirty (after unclean shutdown or
3863 * initial creation), so parity in some stripes might be inconsistent.
3864 * In this case, we need to always do reconstruct-write, to ensure
3865 * that in case of drive failure or read-error correction, we
3866 * generate correct data from the parity.
3868 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3869 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3871 /* Calculate the real rcw later - for now make it
3872 * look like rcw is cheaper
3875 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3876 conf->rmw_level, (unsigned long long)recovery_cp,
3877 (unsigned long long)sh->sector);
3878 } else for (i = disks; i--; ) {
3879 /* would I have to read this buffer for read_modify_write */
3880 struct r5dev *dev = &sh->dev[i];
3881 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3882 i == sh->pd_idx || i == sh->qd_idx ||
3883 test_bit(R5_InJournal, &dev->flags)) &&
3884 !test_bit(R5_LOCKED, &dev->flags) &&
3885 !(uptodate_for_rmw(dev) ||
3886 test_bit(R5_Wantcompute, &dev->flags))) {
3887 if (test_bit(R5_Insync, &dev->flags))
3890 rmw += 2*disks; /* cannot read it */
3892 /* Would I have to read this buffer for reconstruct_write */
3893 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3894 i != sh->pd_idx && i != sh->qd_idx &&
3895 !test_bit(R5_LOCKED, &dev->flags) &&
3896 !(test_bit(R5_UPTODATE, &dev->flags) ||
3897 test_bit(R5_Wantcompute, &dev->flags))) {
3898 if (test_bit(R5_Insync, &dev->flags))
3905 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3906 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3907 set_bit(STRIPE_HANDLE, &sh->state);
3908 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3909 /* prefer read-modify-write, but need to get some data */
3910 if (conf->mddev->queue)
3911 blk_add_trace_msg(conf->mddev->queue,
3912 "raid5 rmw %llu %d",
3913 (unsigned long long)sh->sector, rmw);
3914 for (i = disks; i--; ) {
3915 struct r5dev *dev = &sh->dev[i];
3916 if (test_bit(R5_InJournal, &dev->flags) &&
3917 dev->page == dev->orig_page &&
3918 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3919 /* alloc page for prexor */
3920 struct page *p = alloc_page(GFP_NOIO);
3928 * alloc_page() failed, try use
3929 * disk_info->extra_page
3931 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3932 &conf->cache_state)) {
3933 r5c_use_extra_page(sh);
3937 /* extra_page in use, add to delayed_list */
3938 set_bit(STRIPE_DELAYED, &sh->state);
3939 s->waiting_extra_page = 1;
3944 for (i = disks; i--; ) {
3945 struct r5dev *dev = &sh->dev[i];
3946 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3947 i == sh->pd_idx || i == sh->qd_idx ||
3948 test_bit(R5_InJournal, &dev->flags)) &&
3949 !test_bit(R5_LOCKED, &dev->flags) &&
3950 !(uptodate_for_rmw(dev) ||
3951 test_bit(R5_Wantcompute, &dev->flags)) &&
3952 test_bit(R5_Insync, &dev->flags)) {
3953 if (test_bit(STRIPE_PREREAD_ACTIVE,
3955 pr_debug("Read_old block %d for r-m-w\n",
3957 set_bit(R5_LOCKED, &dev->flags);
3958 set_bit(R5_Wantread, &dev->flags);
3961 set_bit(STRIPE_DELAYED, &sh->state);
3962 set_bit(STRIPE_HANDLE, &sh->state);
3967 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3968 /* want reconstruct write, but need to get some data */
3971 for (i = disks; i--; ) {
3972 struct r5dev *dev = &sh->dev[i];
3973 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3974 i != sh->pd_idx && i != sh->qd_idx &&
3975 !test_bit(R5_LOCKED, &dev->flags) &&
3976 !(test_bit(R5_UPTODATE, &dev->flags) ||
3977 test_bit(R5_Wantcompute, &dev->flags))) {
3979 if (test_bit(R5_Insync, &dev->flags) &&
3980 test_bit(STRIPE_PREREAD_ACTIVE,
3982 pr_debug("Read_old block "
3983 "%d for Reconstruct\n", i);
3984 set_bit(R5_LOCKED, &dev->flags);
3985 set_bit(R5_Wantread, &dev->flags);
3989 set_bit(STRIPE_DELAYED, &sh->state);
3990 set_bit(STRIPE_HANDLE, &sh->state);
3994 if (rcw && conf->mddev->queue)
3995 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3996 (unsigned long long)sh->sector,
3997 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4000 if (rcw > disks && rmw > disks &&
4001 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4002 set_bit(STRIPE_DELAYED, &sh->state);
4004 /* now if nothing is locked, and if we have enough data,
4005 * we can start a write request
4007 /* since handle_stripe can be called at any time we need to handle the
4008 * case where a compute block operation has been submitted and then a
4009 * subsequent call wants to start a write request. raid_run_ops only
4010 * handles the case where compute block and reconstruct are requested
4011 * simultaneously. If this is not the case then new writes need to be
4012 * held off until the compute completes.
4014 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4015 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4016 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4017 schedule_reconstruction(sh, s, rcw == 0, 0);
4021 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4022 struct stripe_head_state *s, int disks)
4024 struct r5dev *dev = NULL;
4026 BUG_ON(sh->batch_head);
4027 set_bit(STRIPE_HANDLE, &sh->state);
4029 switch (sh->check_state) {
4030 case check_state_idle:
4031 /* start a new check operation if there are no failures */
4032 if (s->failed == 0) {
4033 BUG_ON(s->uptodate != disks);
4034 sh->check_state = check_state_run;
4035 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4036 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4040 dev = &sh->dev[s->failed_num[0]];
4042 case check_state_compute_result:
4043 sh->check_state = check_state_idle;
4045 dev = &sh->dev[sh->pd_idx];
4047 /* check that a write has not made the stripe insync */
4048 if (test_bit(STRIPE_INSYNC, &sh->state))
4051 /* either failed parity check, or recovery is happening */
4052 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4053 BUG_ON(s->uptodate != disks);
4055 set_bit(R5_LOCKED, &dev->flags);
4057 set_bit(R5_Wantwrite, &dev->flags);
4059 clear_bit(STRIPE_DEGRADED, &sh->state);
4060 set_bit(STRIPE_INSYNC, &sh->state);
4062 case check_state_run:
4063 break; /* we will be called again upon completion */
4064 case check_state_check_result:
4065 sh->check_state = check_state_idle;
4067 /* if a failure occurred during the check operation, leave
4068 * STRIPE_INSYNC not set and let the stripe be handled again
4073 /* handle a successful check operation, if parity is correct
4074 * we are done. Otherwise update the mismatch count and repair
4075 * parity if !MD_RECOVERY_CHECK
4077 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4078 /* parity is correct (on disc,
4079 * not in buffer any more)
4081 set_bit(STRIPE_INSYNC, &sh->state);
4083 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4084 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4085 /* don't try to repair!! */
4086 set_bit(STRIPE_INSYNC, &sh->state);
4087 pr_warn_ratelimited("%s: mismatch sector in range "
4088 "%llu-%llu\n", mdname(conf->mddev),
4089 (unsigned long long) sh->sector,
4090 (unsigned long long) sh->sector +
4093 sh->check_state = check_state_compute_run;
4094 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4095 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4096 set_bit(R5_Wantcompute,
4097 &sh->dev[sh->pd_idx].flags);
4098 sh->ops.target = sh->pd_idx;
4099 sh->ops.target2 = -1;
4104 case check_state_compute_run:
4107 pr_err("%s: unknown check_state: %d sector: %llu\n",
4108 __func__, sh->check_state,
4109 (unsigned long long) sh->sector);
4114 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4115 struct stripe_head_state *s,
4118 int pd_idx = sh->pd_idx;
4119 int qd_idx = sh->qd_idx;
4122 BUG_ON(sh->batch_head);
4123 set_bit(STRIPE_HANDLE, &sh->state);
4125 BUG_ON(s->failed > 2);
4127 /* Want to check and possibly repair P and Q.
4128 * However there could be one 'failed' device, in which
4129 * case we can only check one of them, possibly using the
4130 * other to generate missing data
4133 switch (sh->check_state) {
4134 case check_state_idle:
4135 /* start a new check operation if there are < 2 failures */
4136 if (s->failed == s->q_failed) {
4137 /* The only possible failed device holds Q, so it
4138 * makes sense to check P (If anything else were failed,
4139 * we would have used P to recreate it).
4141 sh->check_state = check_state_run;
4143 if (!s->q_failed && s->failed < 2) {
4144 /* Q is not failed, and we didn't use it to generate
4145 * anything, so it makes sense to check it
4147 if (sh->check_state == check_state_run)
4148 sh->check_state = check_state_run_pq;
4150 sh->check_state = check_state_run_q;
4153 /* discard potentially stale zero_sum_result */
4154 sh->ops.zero_sum_result = 0;
4156 if (sh->check_state == check_state_run) {
4157 /* async_xor_zero_sum destroys the contents of P */
4158 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4161 if (sh->check_state >= check_state_run &&
4162 sh->check_state <= check_state_run_pq) {
4163 /* async_syndrome_zero_sum preserves P and Q, so
4164 * no need to mark them !uptodate here
4166 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4170 /* we have 2-disk failure */
4171 BUG_ON(s->failed != 2);
4173 case check_state_compute_result:
4174 sh->check_state = check_state_idle;
4176 /* check that a write has not made the stripe insync */
4177 if (test_bit(STRIPE_INSYNC, &sh->state))
4180 /* now write out any block on a failed drive,
4181 * or P or Q if they were recomputed
4183 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4184 if (s->failed == 2) {
4185 dev = &sh->dev[s->failed_num[1]];
4187 set_bit(R5_LOCKED, &dev->flags);
4188 set_bit(R5_Wantwrite, &dev->flags);
4190 if (s->failed >= 1) {
4191 dev = &sh->dev[s->failed_num[0]];
4193 set_bit(R5_LOCKED, &dev->flags);
4194 set_bit(R5_Wantwrite, &dev->flags);
4196 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4197 dev = &sh->dev[pd_idx];
4199 set_bit(R5_LOCKED, &dev->flags);
4200 set_bit(R5_Wantwrite, &dev->flags);
4202 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4203 dev = &sh->dev[qd_idx];
4205 set_bit(R5_LOCKED, &dev->flags);
4206 set_bit(R5_Wantwrite, &dev->flags);
4208 clear_bit(STRIPE_DEGRADED, &sh->state);
4210 set_bit(STRIPE_INSYNC, &sh->state);
4212 case check_state_run:
4213 case check_state_run_q:
4214 case check_state_run_pq:
4215 break; /* we will be called again upon completion */
4216 case check_state_check_result:
4217 sh->check_state = check_state_idle;
4219 /* handle a successful check operation, if parity is correct
4220 * we are done. Otherwise update the mismatch count and repair
4221 * parity if !MD_RECOVERY_CHECK
4223 if (sh->ops.zero_sum_result == 0) {
4224 /* both parities are correct */
4226 set_bit(STRIPE_INSYNC, &sh->state);
4228 /* in contrast to the raid5 case we can validate
4229 * parity, but still have a failure to write
4232 sh->check_state = check_state_compute_result;
4233 /* Returning at this point means that we may go
4234 * off and bring p and/or q uptodate again so
4235 * we make sure to check zero_sum_result again
4236 * to verify if p or q need writeback
4240 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4241 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4242 /* don't try to repair!! */
4243 set_bit(STRIPE_INSYNC, &sh->state);
4244 pr_warn_ratelimited("%s: mismatch sector in range "
4245 "%llu-%llu\n", mdname(conf->mddev),
4246 (unsigned long long) sh->sector,
4247 (unsigned long long) sh->sector +
4250 int *target = &sh->ops.target;
4252 sh->ops.target = -1;
4253 sh->ops.target2 = -1;
4254 sh->check_state = check_state_compute_run;
4255 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4256 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4257 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4258 set_bit(R5_Wantcompute,
4259 &sh->dev[pd_idx].flags);
4261 target = &sh->ops.target2;
4264 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4265 set_bit(R5_Wantcompute,
4266 &sh->dev[qd_idx].flags);
4273 case check_state_compute_run:
4276 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4277 __func__, sh->check_state,
4278 (unsigned long long) sh->sector);
4283 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4287 /* We have read all the blocks in this stripe and now we need to
4288 * copy some of them into a target stripe for expand.
4290 struct dma_async_tx_descriptor *tx = NULL;
4291 BUG_ON(sh->batch_head);
4292 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4293 for (i = 0; i < sh->disks; i++)
4294 if (i != sh->pd_idx && i != sh->qd_idx) {
4296 struct stripe_head *sh2;
4297 struct async_submit_ctl submit;
4299 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4300 sector_t s = raid5_compute_sector(conf, bn, 0,
4302 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4304 /* so far only the early blocks of this stripe
4305 * have been requested. When later blocks
4306 * get requested, we will try again
4309 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4310 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4311 /* must have already done this block */
4312 raid5_release_stripe(sh2);
4316 /* place all the copies on one channel */
4317 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4318 tx = async_memcpy(sh2->dev[dd_idx].page,
4319 sh->dev[i].page, 0, 0, STRIPE_SIZE,
4322 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4323 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4324 for (j = 0; j < conf->raid_disks; j++)
4325 if (j != sh2->pd_idx &&
4327 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4329 if (j == conf->raid_disks) {
4330 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4331 set_bit(STRIPE_HANDLE, &sh2->state);
4333 raid5_release_stripe(sh2);
4336 /* done submitting copies, wait for them to complete */
4337 async_tx_quiesce(&tx);
4341 * handle_stripe - do things to a stripe.
4343 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4344 * state of various bits to see what needs to be done.
4346 * return some read requests which now have data
4347 * return some write requests which are safely on storage
4348 * schedule a read on some buffers
4349 * schedule a write of some buffers
4350 * return confirmation of parity correctness
4354 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4356 struct r5conf *conf = sh->raid_conf;
4357 int disks = sh->disks;
4360 int do_recovery = 0;
4362 memset(s, 0, sizeof(*s));
4364 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4365 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4366 s->failed_num[0] = -1;
4367 s->failed_num[1] = -1;
4368 s->log_failed = r5l_log_disk_error(conf);
4370 /* Now to look around and see what can be done */
4372 for (i=disks; i--; ) {
4373 struct md_rdev *rdev;
4380 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4382 dev->toread, dev->towrite, dev->written);
4383 /* maybe we can reply to a read
4385 * new wantfill requests are only permitted while
4386 * ops_complete_biofill is guaranteed to be inactive
4388 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4389 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4390 set_bit(R5_Wantfill, &dev->flags);
4392 /* now count some things */
4393 if (test_bit(R5_LOCKED, &dev->flags))
4395 if (test_bit(R5_UPTODATE, &dev->flags))
4397 if (test_bit(R5_Wantcompute, &dev->flags)) {
4399 BUG_ON(s->compute > 2);
4402 if (test_bit(R5_Wantfill, &dev->flags))
4404 else if (dev->toread)
4408 if (!test_bit(R5_OVERWRITE, &dev->flags))
4413 /* Prefer to use the replacement for reads, but only
4414 * if it is recovered enough and has no bad blocks.
4416 rdev = rcu_dereference(conf->disks[i].replacement);
4417 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4418 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4419 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4420 &first_bad, &bad_sectors))
4421 set_bit(R5_ReadRepl, &dev->flags);
4423 if (rdev && !test_bit(Faulty, &rdev->flags))
4424 set_bit(R5_NeedReplace, &dev->flags);
4426 clear_bit(R5_NeedReplace, &dev->flags);
4427 rdev = rcu_dereference(conf->disks[i].rdev);
4428 clear_bit(R5_ReadRepl, &dev->flags);
4430 if (rdev && test_bit(Faulty, &rdev->flags))
4433 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4434 &first_bad, &bad_sectors);
4435 if (s->blocked_rdev == NULL
4436 && (test_bit(Blocked, &rdev->flags)
4439 set_bit(BlockedBadBlocks,
4441 s->blocked_rdev = rdev;
4442 atomic_inc(&rdev->nr_pending);
4445 clear_bit(R5_Insync, &dev->flags);
4449 /* also not in-sync */
4450 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4451 test_bit(R5_UPTODATE, &dev->flags)) {
4452 /* treat as in-sync, but with a read error
4453 * which we can now try to correct
4455 set_bit(R5_Insync, &dev->flags);
4456 set_bit(R5_ReadError, &dev->flags);
4458 } else if (test_bit(In_sync, &rdev->flags))
4459 set_bit(R5_Insync, &dev->flags);
4460 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4461 /* in sync if before recovery_offset */
4462 set_bit(R5_Insync, &dev->flags);
4463 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4464 test_bit(R5_Expanded, &dev->flags))
4465 /* If we've reshaped into here, we assume it is Insync.
4466 * We will shortly update recovery_offset to make
4469 set_bit(R5_Insync, &dev->flags);
4471 if (test_bit(R5_WriteError, &dev->flags)) {
4472 /* This flag does not apply to '.replacement'
4473 * only to .rdev, so make sure to check that*/
4474 struct md_rdev *rdev2 = rcu_dereference(
4475 conf->disks[i].rdev);
4477 clear_bit(R5_Insync, &dev->flags);
4478 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4479 s->handle_bad_blocks = 1;
4480 atomic_inc(&rdev2->nr_pending);
4482 clear_bit(R5_WriteError, &dev->flags);
4484 if (test_bit(R5_MadeGood, &dev->flags)) {
4485 /* This flag does not apply to '.replacement'
4486 * only to .rdev, so make sure to check that*/
4487 struct md_rdev *rdev2 = rcu_dereference(
4488 conf->disks[i].rdev);
4489 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4490 s->handle_bad_blocks = 1;
4491 atomic_inc(&rdev2->nr_pending);
4493 clear_bit(R5_MadeGood, &dev->flags);
4495 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4496 struct md_rdev *rdev2 = rcu_dereference(
4497 conf->disks[i].replacement);
4498 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4499 s->handle_bad_blocks = 1;
4500 atomic_inc(&rdev2->nr_pending);
4502 clear_bit(R5_MadeGoodRepl, &dev->flags);
4504 if (!test_bit(R5_Insync, &dev->flags)) {
4505 /* The ReadError flag will just be confusing now */
4506 clear_bit(R5_ReadError, &dev->flags);
4507 clear_bit(R5_ReWrite, &dev->flags);
4509 if (test_bit(R5_ReadError, &dev->flags))
4510 clear_bit(R5_Insync, &dev->flags);
4511 if (!test_bit(R5_Insync, &dev->flags)) {
4513 s->failed_num[s->failed] = i;
4515 if (rdev && !test_bit(Faulty, &rdev->flags))
4519 if (test_bit(R5_InJournal, &dev->flags))
4521 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4524 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4525 /* If there is a failed device being replaced,
4526 * we must be recovering.
4527 * else if we are after recovery_cp, we must be syncing
4528 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4529 * else we can only be replacing
4530 * sync and recovery both need to read all devices, and so
4531 * use the same flag.
4534 sh->sector >= conf->mddev->recovery_cp ||
4535 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4543 static int clear_batch_ready(struct stripe_head *sh)
4545 /* Return '1' if this is a member of batch, or
4546 * '0' if it is a lone stripe or a head which can now be
4549 struct stripe_head *tmp;
4550 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4551 return (sh->batch_head && sh->batch_head != sh);
4552 spin_lock(&sh->stripe_lock);
4553 if (!sh->batch_head) {
4554 spin_unlock(&sh->stripe_lock);
4559 * this stripe could be added to a batch list before we check
4560 * BATCH_READY, skips it
4562 if (sh->batch_head != sh) {
4563 spin_unlock(&sh->stripe_lock);
4566 spin_lock(&sh->batch_lock);
4567 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4568 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4569 spin_unlock(&sh->batch_lock);
4570 spin_unlock(&sh->stripe_lock);
4573 * BATCH_READY is cleared, no new stripes can be added.
4574 * batch_list can be accessed without lock
4579 static void break_stripe_batch_list(struct stripe_head *head_sh,
4580 unsigned long handle_flags)
4582 struct stripe_head *sh, *next;
4586 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4588 list_del_init(&sh->batch_list);
4590 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4591 (1 << STRIPE_SYNCING) |
4592 (1 << STRIPE_REPLACED) |
4593 (1 << STRIPE_DELAYED) |
4594 (1 << STRIPE_BIT_DELAY) |
4595 (1 << STRIPE_FULL_WRITE) |
4596 (1 << STRIPE_BIOFILL_RUN) |
4597 (1 << STRIPE_COMPUTE_RUN) |
4598 (1 << STRIPE_OPS_REQ_PENDING) |
4599 (1 << STRIPE_DISCARD) |
4600 (1 << STRIPE_BATCH_READY) |
4601 (1 << STRIPE_BATCH_ERR) |
4602 (1 << STRIPE_BITMAP_PENDING)),
4603 "stripe state: %lx\n", sh->state);
4604 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4605 (1 << STRIPE_REPLACED)),
4606 "head stripe state: %lx\n", head_sh->state);
4608 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4609 (1 << STRIPE_PREREAD_ACTIVE) |
4610 (1 << STRIPE_DEGRADED) |
4611 (1 << STRIPE_ON_UNPLUG_LIST)),
4612 head_sh->state & (1 << STRIPE_INSYNC));
4614 sh->check_state = head_sh->check_state;
4615 sh->reconstruct_state = head_sh->reconstruct_state;
4616 for (i = 0; i < sh->disks; i++) {
4617 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4619 sh->dev[i].flags = head_sh->dev[i].flags &
4620 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4622 spin_lock_irq(&sh->stripe_lock);
4623 sh->batch_head = NULL;
4624 spin_unlock_irq(&sh->stripe_lock);
4625 if (handle_flags == 0 ||
4626 sh->state & handle_flags)
4627 set_bit(STRIPE_HANDLE, &sh->state);
4628 raid5_release_stripe(sh);
4630 spin_lock_irq(&head_sh->stripe_lock);
4631 head_sh->batch_head = NULL;
4632 spin_unlock_irq(&head_sh->stripe_lock);
4633 for (i = 0; i < head_sh->disks; i++)
4634 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4636 if (head_sh->state & handle_flags)
4637 set_bit(STRIPE_HANDLE, &head_sh->state);
4640 wake_up(&head_sh->raid_conf->wait_for_overlap);
4643 static void handle_stripe(struct stripe_head *sh)
4645 struct stripe_head_state s;
4646 struct r5conf *conf = sh->raid_conf;
4649 int disks = sh->disks;
4650 struct r5dev *pdev, *qdev;
4652 clear_bit(STRIPE_HANDLE, &sh->state);
4653 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4654 /* already being handled, ensure it gets handled
4655 * again when current action finishes */
4656 set_bit(STRIPE_HANDLE, &sh->state);
4660 if (clear_batch_ready(sh) ) {
4661 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4665 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4666 break_stripe_batch_list(sh, 0);
4668 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4669 spin_lock(&sh->stripe_lock);
4671 * Cannot process 'sync' concurrently with 'discard'.
4672 * Flush data in r5cache before 'sync'.
4674 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4675 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4676 !test_bit(STRIPE_DISCARD, &sh->state) &&
4677 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4678 set_bit(STRIPE_SYNCING, &sh->state);
4679 clear_bit(STRIPE_INSYNC, &sh->state);
4680 clear_bit(STRIPE_REPLACED, &sh->state);
4682 spin_unlock(&sh->stripe_lock);
4684 clear_bit(STRIPE_DELAYED, &sh->state);
4686 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4687 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4688 (unsigned long long)sh->sector, sh->state,
4689 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4690 sh->check_state, sh->reconstruct_state);
4692 analyse_stripe(sh, &s);
4694 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4697 if (s.handle_bad_blocks ||
4698 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4699 set_bit(STRIPE_HANDLE, &sh->state);
4703 if (unlikely(s.blocked_rdev)) {
4704 if (s.syncing || s.expanding || s.expanded ||
4705 s.replacing || s.to_write || s.written) {
4706 set_bit(STRIPE_HANDLE, &sh->state);
4709 /* There is nothing for the blocked_rdev to block */
4710 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4711 s.blocked_rdev = NULL;
4714 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4715 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4716 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4719 pr_debug("locked=%d uptodate=%d to_read=%d"
4720 " to_write=%d failed=%d failed_num=%d,%d\n",
4721 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4722 s.failed_num[0], s.failed_num[1]);
4724 * check if the array has lost more than max_degraded devices and,
4725 * if so, some requests might need to be failed.
4727 * When journal device failed (log_failed), we will only process
4728 * the stripe if there is data need write to raid disks
4730 if (s.failed > conf->max_degraded ||
4731 (s.log_failed && s.injournal == 0)) {
4732 sh->check_state = 0;
4733 sh->reconstruct_state = 0;
4734 break_stripe_batch_list(sh, 0);
4735 if (s.to_read+s.to_write+s.written)
4736 handle_failed_stripe(conf, sh, &s, disks);
4737 if (s.syncing + s.replacing)
4738 handle_failed_sync(conf, sh, &s);
4741 /* Now we check to see if any write operations have recently
4745 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4747 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4748 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4749 sh->reconstruct_state = reconstruct_state_idle;
4751 /* All the 'written' buffers and the parity block are ready to
4752 * be written back to disk
4754 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4755 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4756 BUG_ON(sh->qd_idx >= 0 &&
4757 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4758 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4759 for (i = disks; i--; ) {
4760 struct r5dev *dev = &sh->dev[i];
4761 if (test_bit(R5_LOCKED, &dev->flags) &&
4762 (i == sh->pd_idx || i == sh->qd_idx ||
4763 dev->written || test_bit(R5_InJournal,
4765 pr_debug("Writing block %d\n", i);
4766 set_bit(R5_Wantwrite, &dev->flags);
4771 if (!test_bit(R5_Insync, &dev->flags) ||
4772 ((i == sh->pd_idx || i == sh->qd_idx) &&
4774 set_bit(STRIPE_INSYNC, &sh->state);
4777 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4778 s.dec_preread_active = 1;
4782 * might be able to return some write requests if the parity blocks
4783 * are safe, or on a failed drive
4785 pdev = &sh->dev[sh->pd_idx];
4786 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4787 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4788 qdev = &sh->dev[sh->qd_idx];
4789 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4790 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4794 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4795 && !test_bit(R5_LOCKED, &pdev->flags)
4796 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4797 test_bit(R5_Discard, &pdev->flags))))) &&
4798 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4799 && !test_bit(R5_LOCKED, &qdev->flags)
4800 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4801 test_bit(R5_Discard, &qdev->flags))))))
4802 handle_stripe_clean_event(conf, sh, disks);
4805 r5c_handle_cached_data_endio(conf, sh, disks);
4806 log_stripe_write_finished(sh);
4808 /* Now we might consider reading some blocks, either to check/generate
4809 * parity, or to satisfy requests
4810 * or to load a block that is being partially written.
4812 if (s.to_read || s.non_overwrite
4813 || (conf->level == 6 && s.to_write && s.failed)
4814 || (s.syncing && (s.uptodate + s.compute < disks))
4817 handle_stripe_fill(sh, &s, disks);
4820 * When the stripe finishes full journal write cycle (write to journal
4821 * and raid disk), this is the clean up procedure so it is ready for
4824 r5c_finish_stripe_write_out(conf, sh, &s);
4827 * Now to consider new write requests, cache write back and what else,
4828 * if anything should be read. We do not handle new writes when:
4829 * 1/ A 'write' operation (copy+xor) is already in flight.
4830 * 2/ A 'check' operation is in flight, as it may clobber the parity
4832 * 3/ A r5c cache log write is in flight.
4835 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4836 if (!r5c_is_writeback(conf->log)) {
4838 handle_stripe_dirtying(conf, sh, &s, disks);
4839 } else { /* write back cache */
4842 /* First, try handle writes in caching phase */
4844 ret = r5c_try_caching_write(conf, sh, &s,
4847 * If caching phase failed: ret == -EAGAIN
4849 * stripe under reclaim: !caching && injournal
4851 * fall back to handle_stripe_dirtying()
4853 if (ret == -EAGAIN ||
4854 /* stripe under reclaim: !caching && injournal */
4855 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4857 ret = handle_stripe_dirtying(conf, sh, &s,
4865 /* maybe we need to check and possibly fix the parity for this stripe
4866 * Any reads will already have been scheduled, so we just see if enough
4867 * data is available. The parity check is held off while parity
4868 * dependent operations are in flight.
4870 if (sh->check_state ||
4871 (s.syncing && s.locked == 0 &&
4872 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4873 !test_bit(STRIPE_INSYNC, &sh->state))) {
4874 if (conf->level == 6)
4875 handle_parity_checks6(conf, sh, &s, disks);
4877 handle_parity_checks5(conf, sh, &s, disks);
4880 if ((s.replacing || s.syncing) && s.locked == 0
4881 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4882 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4883 /* Write out to replacement devices where possible */
4884 for (i = 0; i < conf->raid_disks; i++)
4885 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4886 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4887 set_bit(R5_WantReplace, &sh->dev[i].flags);
4888 set_bit(R5_LOCKED, &sh->dev[i].flags);
4892 set_bit(STRIPE_INSYNC, &sh->state);
4893 set_bit(STRIPE_REPLACED, &sh->state);
4895 if ((s.syncing || s.replacing) && s.locked == 0 &&
4896 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4897 test_bit(STRIPE_INSYNC, &sh->state)) {
4898 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4899 clear_bit(STRIPE_SYNCING, &sh->state);
4900 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4901 wake_up(&conf->wait_for_overlap);
4904 /* If the failed drives are just a ReadError, then we might need
4905 * to progress the repair/check process
4907 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4908 for (i = 0; i < s.failed; i++) {
4909 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4910 if (test_bit(R5_ReadError, &dev->flags)
4911 && !test_bit(R5_LOCKED, &dev->flags)
4912 && test_bit(R5_UPTODATE, &dev->flags)
4914 if (!test_bit(R5_ReWrite, &dev->flags)) {
4915 set_bit(R5_Wantwrite, &dev->flags);
4916 set_bit(R5_ReWrite, &dev->flags);
4917 set_bit(R5_LOCKED, &dev->flags);
4920 /* let's read it back */
4921 set_bit(R5_Wantread, &dev->flags);
4922 set_bit(R5_LOCKED, &dev->flags);
4928 /* Finish reconstruct operations initiated by the expansion process */
4929 if (sh->reconstruct_state == reconstruct_state_result) {
4930 struct stripe_head *sh_src
4931 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4932 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4933 /* sh cannot be written until sh_src has been read.
4934 * so arrange for sh to be delayed a little
4936 set_bit(STRIPE_DELAYED, &sh->state);
4937 set_bit(STRIPE_HANDLE, &sh->state);
4938 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4940 atomic_inc(&conf->preread_active_stripes);
4941 raid5_release_stripe(sh_src);
4945 raid5_release_stripe(sh_src);
4947 sh->reconstruct_state = reconstruct_state_idle;
4948 clear_bit(STRIPE_EXPANDING, &sh->state);
4949 for (i = conf->raid_disks; i--; ) {
4950 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4951 set_bit(R5_LOCKED, &sh->dev[i].flags);
4956 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4957 !sh->reconstruct_state) {
4958 /* Need to write out all blocks after computing parity */
4959 sh->disks = conf->raid_disks;
4960 stripe_set_idx(sh->sector, conf, 0, sh);
4961 schedule_reconstruction(sh, &s, 1, 1);
4962 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4963 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4964 atomic_dec(&conf->reshape_stripes);
4965 wake_up(&conf->wait_for_overlap);
4966 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4969 if (s.expanding && s.locked == 0 &&
4970 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4971 handle_stripe_expansion(conf, sh);
4974 /* wait for this device to become unblocked */
4975 if (unlikely(s.blocked_rdev)) {
4976 if (conf->mddev->external)
4977 md_wait_for_blocked_rdev(s.blocked_rdev,
4980 /* Internal metadata will immediately
4981 * be written by raid5d, so we don't
4982 * need to wait here.
4984 rdev_dec_pending(s.blocked_rdev,
4988 if (s.handle_bad_blocks)
4989 for (i = disks; i--; ) {
4990 struct md_rdev *rdev;
4991 struct r5dev *dev = &sh->dev[i];
4992 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4993 /* We own a safe reference to the rdev */
4994 rdev = conf->disks[i].rdev;
4995 if (!rdev_set_badblocks(rdev, sh->sector,
4997 md_error(conf->mddev, rdev);
4998 rdev_dec_pending(rdev, conf->mddev);
5000 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5001 rdev = conf->disks[i].rdev;
5002 rdev_clear_badblocks(rdev, sh->sector,
5004 rdev_dec_pending(rdev, conf->mddev);
5006 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5007 rdev = conf->disks[i].replacement;
5009 /* rdev have been moved down */
5010 rdev = conf->disks[i].rdev;
5011 rdev_clear_badblocks(rdev, sh->sector,
5013 rdev_dec_pending(rdev, conf->mddev);
5018 raid_run_ops(sh, s.ops_request);
5022 if (s.dec_preread_active) {
5023 /* We delay this until after ops_run_io so that if make_request
5024 * is waiting on a flush, it won't continue until the writes
5025 * have actually been submitted.
5027 atomic_dec(&conf->preread_active_stripes);
5028 if (atomic_read(&conf->preread_active_stripes) <
5030 md_wakeup_thread(conf->mddev->thread);
5033 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5036 static void raid5_activate_delayed(struct r5conf *conf)
5038 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5039 while (!list_empty(&conf->delayed_list)) {
5040 struct list_head *l = conf->delayed_list.next;
5041 struct stripe_head *sh;
5042 sh = list_entry(l, struct stripe_head, lru);
5044 clear_bit(STRIPE_DELAYED, &sh->state);
5045 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5046 atomic_inc(&conf->preread_active_stripes);
5047 list_add_tail(&sh->lru, &conf->hold_list);
5048 raid5_wakeup_stripe_thread(sh);
5053 static void activate_bit_delay(struct r5conf *conf,
5054 struct list_head *temp_inactive_list)
5056 /* device_lock is held */
5057 struct list_head head;
5058 list_add(&head, &conf->bitmap_list);
5059 list_del_init(&conf->bitmap_list);
5060 while (!list_empty(&head)) {
5061 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5063 list_del_init(&sh->lru);
5064 atomic_inc(&sh->count);
5065 hash = sh->hash_lock_index;
5066 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5070 static int raid5_congested(struct mddev *mddev, int bits)
5072 struct r5conf *conf = mddev->private;
5074 /* No difference between reads and writes. Just check
5075 * how busy the stripe_cache is
5078 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5081 /* Also checks whether there is pressure on r5cache log space */
5082 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5086 if (atomic_read(&conf->empty_inactive_list_nr))
5092 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5094 struct r5conf *conf = mddev->private;
5095 sector_t sector = bio->bi_iter.bi_sector;
5096 unsigned int chunk_sectors;
5097 unsigned int bio_sectors = bio_sectors(bio);
5099 WARN_ON_ONCE(bio->bi_partno);
5101 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5102 return chunk_sectors >=
5103 ((sector & (chunk_sectors - 1)) + bio_sectors);
5107 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5108 * later sampled by raid5d.
5110 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5112 unsigned long flags;
5114 spin_lock_irqsave(&conf->device_lock, flags);
5116 bi->bi_next = conf->retry_read_aligned_list;
5117 conf->retry_read_aligned_list = bi;
5119 spin_unlock_irqrestore(&conf->device_lock, flags);
5120 md_wakeup_thread(conf->mddev->thread);
5123 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5124 unsigned int *offset)
5128 bi = conf->retry_read_aligned;
5130 *offset = conf->retry_read_offset;
5131 conf->retry_read_aligned = NULL;
5134 bi = conf->retry_read_aligned_list;
5136 conf->retry_read_aligned_list = bi->bi_next;
5145 * The "raid5_align_endio" should check if the read succeeded and if it
5146 * did, call bio_endio on the original bio (having bio_put the new bio
5148 * If the read failed..
5150 static void raid5_align_endio(struct bio *bi)
5152 struct bio* raid_bi = bi->bi_private;
5153 struct mddev *mddev;
5154 struct r5conf *conf;
5155 struct md_rdev *rdev;
5156 blk_status_t error = bi->bi_status;
5160 rdev = (void*)raid_bi->bi_next;
5161 raid_bi->bi_next = NULL;
5162 mddev = rdev->mddev;
5163 conf = mddev->private;
5165 rdev_dec_pending(rdev, conf->mddev);
5169 if (atomic_dec_and_test(&conf->active_aligned_reads))
5170 wake_up(&conf->wait_for_quiescent);
5174 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5176 add_bio_to_retry(raid_bi, conf);
5179 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5181 struct r5conf *conf = mddev->private;
5183 struct bio* align_bi;
5184 struct md_rdev *rdev;
5185 sector_t end_sector;
5187 if (!in_chunk_boundary(mddev, raid_bio)) {
5188 pr_debug("%s: non aligned\n", __func__);
5192 * use bio_clone_fast to make a copy of the bio
5194 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5198 * set bi_end_io to a new function, and set bi_private to the
5201 align_bi->bi_end_io = raid5_align_endio;
5202 align_bi->bi_private = raid_bio;
5206 align_bi->bi_iter.bi_sector =
5207 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5210 end_sector = bio_end_sector(align_bi);
5212 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5213 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5214 rdev->recovery_offset < end_sector) {
5215 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217 (test_bit(Faulty, &rdev->flags) ||
5218 !(test_bit(In_sync, &rdev->flags) ||
5219 rdev->recovery_offset >= end_sector)))
5223 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5233 atomic_inc(&rdev->nr_pending);
5235 raid_bio->bi_next = (void*)rdev;
5236 bio_set_dev(align_bi, rdev->bdev);
5237 bio_clear_flag(align_bi, BIO_SEG_VALID);
5239 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5240 bio_sectors(align_bi),
5241 &first_bad, &bad_sectors)) {
5243 rdev_dec_pending(rdev, mddev);
5247 /* No reshape active, so we can trust rdev->data_offset */
5248 align_bi->bi_iter.bi_sector += rdev->data_offset;
5250 spin_lock_irq(&conf->device_lock);
5251 wait_event_lock_irq(conf->wait_for_quiescent,
5254 atomic_inc(&conf->active_aligned_reads);
5255 spin_unlock_irq(&conf->device_lock);
5258 trace_block_bio_remap(align_bi->bi_disk->queue,
5259 align_bi, disk_devt(mddev->gendisk),
5260 raid_bio->bi_iter.bi_sector);
5261 generic_make_request(align_bi);
5270 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5273 sector_t sector = raid_bio->bi_iter.bi_sector;
5274 unsigned chunk_sects = mddev->chunk_sectors;
5275 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5277 if (sectors < bio_sectors(raid_bio)) {
5278 struct r5conf *conf = mddev->private;
5279 split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5280 bio_chain(split, raid_bio);
5281 generic_make_request(raid_bio);
5285 if (!raid5_read_one_chunk(mddev, raid_bio))
5291 /* __get_priority_stripe - get the next stripe to process
5293 * Full stripe writes are allowed to pass preread active stripes up until
5294 * the bypass_threshold is exceeded. In general the bypass_count
5295 * increments when the handle_list is handled before the hold_list; however, it
5296 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5297 * stripe with in flight i/o. The bypass_count will be reset when the
5298 * head of the hold_list has changed, i.e. the head was promoted to the
5301 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5303 struct stripe_head *sh, *tmp;
5304 struct list_head *handle_list = NULL;
5305 struct r5worker_group *wg;
5306 bool second_try = !r5c_is_writeback(conf->log) &&
5307 !r5l_log_disk_error(conf);
5308 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5309 r5l_log_disk_error(conf);
5314 if (conf->worker_cnt_per_group == 0) {
5315 handle_list = try_loprio ? &conf->loprio_list :
5317 } else if (group != ANY_GROUP) {
5318 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5319 &conf->worker_groups[group].handle_list;
5320 wg = &conf->worker_groups[group];
5323 for (i = 0; i < conf->group_cnt; i++) {
5324 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5325 &conf->worker_groups[i].handle_list;
5326 wg = &conf->worker_groups[i];
5327 if (!list_empty(handle_list))
5332 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334 list_empty(handle_list) ? "empty" : "busy",
5335 list_empty(&conf->hold_list) ? "empty" : "busy",
5336 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338 if (!list_empty(handle_list)) {
5339 sh = list_entry(handle_list->next, typeof(*sh), lru);
5341 if (list_empty(&conf->hold_list))
5342 conf->bypass_count = 0;
5343 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5344 if (conf->hold_list.next == conf->last_hold)
5345 conf->bypass_count++;
5347 conf->last_hold = conf->hold_list.next;
5348 conf->bypass_count -= conf->bypass_threshold;
5349 if (conf->bypass_count < 0)
5350 conf->bypass_count = 0;
5353 } else if (!list_empty(&conf->hold_list) &&
5354 ((conf->bypass_threshold &&
5355 conf->bypass_count > conf->bypass_threshold) ||
5356 atomic_read(&conf->pending_full_writes) == 0)) {
5358 list_for_each_entry(tmp, &conf->hold_list, lru) {
5359 if (conf->worker_cnt_per_group == 0 ||
5360 group == ANY_GROUP ||
5361 !cpu_online(tmp->cpu) ||
5362 cpu_to_group(tmp->cpu) == group) {
5369 conf->bypass_count -= conf->bypass_threshold;
5370 if (conf->bypass_count < 0)
5371 conf->bypass_count = 0;
5380 try_loprio = !try_loprio;
5388 list_del_init(&sh->lru);
5389 BUG_ON(atomic_inc_return(&sh->count) != 1);
5393 struct raid5_plug_cb {
5394 struct blk_plug_cb cb;
5395 struct list_head list;
5396 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5399 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401 struct raid5_plug_cb *cb = container_of(
5402 blk_cb, struct raid5_plug_cb, cb);
5403 struct stripe_head *sh;
5404 struct mddev *mddev = cb->cb.data;
5405 struct r5conf *conf = mddev->private;
5409 if (cb->list.next && !list_empty(&cb->list)) {
5410 spin_lock_irq(&conf->device_lock);
5411 while (!list_empty(&cb->list)) {
5412 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5413 list_del_init(&sh->lru);
5415 * avoid race release_stripe_plug() sees
5416 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5417 * is still in our list
5419 smp_mb__before_atomic();
5420 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5422 * STRIPE_ON_RELEASE_LIST could be set here. In that
5423 * case, the count is always > 1 here
5425 hash = sh->hash_lock_index;
5426 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5429 spin_unlock_irq(&conf->device_lock);
5431 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5432 NR_STRIPE_HASH_LOCKS);
5434 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5438 static void release_stripe_plug(struct mddev *mddev,
5439 struct stripe_head *sh)
5441 struct blk_plug_cb *blk_cb = blk_check_plugged(
5442 raid5_unplug, mddev,
5443 sizeof(struct raid5_plug_cb));
5444 struct raid5_plug_cb *cb;
5447 raid5_release_stripe(sh);
5451 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453 if (cb->list.next == NULL) {
5455 INIT_LIST_HEAD(&cb->list);
5456 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5457 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5460 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5461 list_add_tail(&sh->lru, &cb->list);
5463 raid5_release_stripe(sh);
5466 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468 struct r5conf *conf = mddev->private;
5469 sector_t logical_sector, last_sector;
5470 struct stripe_head *sh;
5473 if (mddev->reshape_position != MaxSector)
5474 /* Skip discard while reshape is happening */
5477 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5478 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5482 stripe_sectors = conf->chunk_sectors *
5483 (conf->raid_disks - conf->max_degraded);
5484 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5486 sector_div(last_sector, stripe_sectors);
5488 logical_sector *= conf->chunk_sectors;
5489 last_sector *= conf->chunk_sectors;
5491 for (; logical_sector < last_sector;
5492 logical_sector += STRIPE_SECTORS) {
5496 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5497 prepare_to_wait(&conf->wait_for_overlap, &w,
5498 TASK_UNINTERRUPTIBLE);
5499 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5500 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5501 raid5_release_stripe(sh);
5505 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5506 spin_lock_irq(&sh->stripe_lock);
5507 for (d = 0; d < conf->raid_disks; d++) {
5508 if (d == sh->pd_idx || d == sh->qd_idx)
5510 if (sh->dev[d].towrite || sh->dev[d].toread) {
5511 set_bit(R5_Overlap, &sh->dev[d].flags);
5512 spin_unlock_irq(&sh->stripe_lock);
5513 raid5_release_stripe(sh);
5518 set_bit(STRIPE_DISCARD, &sh->state);
5519 finish_wait(&conf->wait_for_overlap, &w);
5520 sh->overwrite_disks = 0;
5521 for (d = 0; d < conf->raid_disks; d++) {
5522 if (d == sh->pd_idx || d == sh->qd_idx)
5524 sh->dev[d].towrite = bi;
5525 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5526 bio_inc_remaining(bi);
5527 md_write_inc(mddev, bi);
5528 sh->overwrite_disks++;
5530 spin_unlock_irq(&sh->stripe_lock);
5531 if (conf->mddev->bitmap) {
5533 d < conf->raid_disks - conf->max_degraded;
5535 bitmap_startwrite(mddev->bitmap,
5539 sh->bm_seq = conf->seq_flush + 1;
5540 set_bit(STRIPE_BIT_DELAY, &sh->state);
5543 set_bit(STRIPE_HANDLE, &sh->state);
5544 clear_bit(STRIPE_DELAYED, &sh->state);
5545 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5546 atomic_inc(&conf->preread_active_stripes);
5547 release_stripe_plug(mddev, sh);
5553 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5555 struct r5conf *conf = mddev->private;
5557 sector_t new_sector;
5558 sector_t logical_sector, last_sector;
5559 struct stripe_head *sh;
5560 const int rw = bio_data_dir(bi);
5563 bool do_flush = false;
5565 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5566 int ret = log_handle_flush_request(conf, bi);
5570 if (ret == -ENODEV) {
5571 md_flush_request(mddev, bi);
5574 /* ret == -EAGAIN, fallback */
5576 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5577 * we need to flush journal device
5579 do_flush = bi->bi_opf & REQ_PREFLUSH;
5582 if (!md_write_start(mddev, bi))
5585 * If array is degraded, better not do chunk aligned read because
5586 * later we might have to read it again in order to reconstruct
5587 * data on failed drives.
5589 if (rw == READ && mddev->degraded == 0 &&
5590 mddev->reshape_position == MaxSector) {
5591 bi = chunk_aligned_read(mddev, bi);
5596 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5597 make_discard_request(mddev, bi);
5598 md_write_end(mddev);
5602 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5603 last_sector = bio_end_sector(bi);
5606 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5607 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5613 seq = read_seqcount_begin(&conf->gen_lock);
5616 prepare_to_wait(&conf->wait_for_overlap, &w,
5617 TASK_UNINTERRUPTIBLE);
5618 if (unlikely(conf->reshape_progress != MaxSector)) {
5619 /* spinlock is needed as reshape_progress may be
5620 * 64bit on a 32bit platform, and so it might be
5621 * possible to see a half-updated value
5622 * Of course reshape_progress could change after
5623 * the lock is dropped, so once we get a reference
5624 * to the stripe that we think it is, we will have
5627 spin_lock_irq(&conf->device_lock);
5628 if (mddev->reshape_backwards
5629 ? logical_sector < conf->reshape_progress
5630 : logical_sector >= conf->reshape_progress) {
5633 if (mddev->reshape_backwards
5634 ? logical_sector < conf->reshape_safe
5635 : logical_sector >= conf->reshape_safe) {
5636 spin_unlock_irq(&conf->device_lock);
5642 spin_unlock_irq(&conf->device_lock);
5645 new_sector = raid5_compute_sector(conf, logical_sector,
5648 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5649 (unsigned long long)new_sector,
5650 (unsigned long long)logical_sector);
5652 sh = raid5_get_active_stripe(conf, new_sector, previous,
5653 (bi->bi_opf & REQ_RAHEAD), 0);
5655 if (unlikely(previous)) {
5656 /* expansion might have moved on while waiting for a
5657 * stripe, so we must do the range check again.
5658 * Expansion could still move past after this
5659 * test, but as we are holding a reference to
5660 * 'sh', we know that if that happens,
5661 * STRIPE_EXPANDING will get set and the expansion
5662 * won't proceed until we finish with the stripe.
5665 spin_lock_irq(&conf->device_lock);
5666 if (mddev->reshape_backwards
5667 ? logical_sector >= conf->reshape_progress
5668 : logical_sector < conf->reshape_progress)
5669 /* mismatch, need to try again */
5671 spin_unlock_irq(&conf->device_lock);
5673 raid5_release_stripe(sh);
5679 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5680 /* Might have got the wrong stripe_head
5683 raid5_release_stripe(sh);
5687 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5688 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5689 /* Stripe is busy expanding or
5690 * add failed due to overlap. Flush everything
5693 md_wakeup_thread(mddev->thread);
5694 raid5_release_stripe(sh);
5700 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5701 /* we only need flush for one stripe */
5705 set_bit(STRIPE_HANDLE, &sh->state);
5706 clear_bit(STRIPE_DELAYED, &sh->state);
5707 if ((!sh->batch_head || sh == sh->batch_head) &&
5708 (bi->bi_opf & REQ_SYNC) &&
5709 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5710 atomic_inc(&conf->preread_active_stripes);
5711 release_stripe_plug(mddev, sh);
5713 /* cannot get stripe for read-ahead, just give-up */
5714 bi->bi_status = BLK_STS_IOERR;
5718 finish_wait(&conf->wait_for_overlap, &w);
5721 md_write_end(mddev);
5726 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5728 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5730 /* reshaping is quite different to recovery/resync so it is
5731 * handled quite separately ... here.
5733 * On each call to sync_request, we gather one chunk worth of
5734 * destination stripes and flag them as expanding.
5735 * Then we find all the source stripes and request reads.
5736 * As the reads complete, handle_stripe will copy the data
5737 * into the destination stripe and release that stripe.
5739 struct r5conf *conf = mddev->private;
5740 struct stripe_head *sh;
5741 struct md_rdev *rdev;
5742 sector_t first_sector, last_sector;
5743 int raid_disks = conf->previous_raid_disks;
5744 int data_disks = raid_disks - conf->max_degraded;
5745 int new_data_disks = conf->raid_disks - conf->max_degraded;
5748 sector_t writepos, readpos, safepos;
5749 sector_t stripe_addr;
5750 int reshape_sectors;
5751 struct list_head stripes;
5754 if (sector_nr == 0) {
5755 /* If restarting in the middle, skip the initial sectors */
5756 if (mddev->reshape_backwards &&
5757 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5758 sector_nr = raid5_size(mddev, 0, 0)
5759 - conf->reshape_progress;
5760 } else if (mddev->reshape_backwards &&
5761 conf->reshape_progress == MaxSector) {
5762 /* shouldn't happen, but just in case, finish up.*/
5763 sector_nr = MaxSector;
5764 } else if (!mddev->reshape_backwards &&
5765 conf->reshape_progress > 0)
5766 sector_nr = conf->reshape_progress;
5767 sector_div(sector_nr, new_data_disks);
5769 mddev->curr_resync_completed = sector_nr;
5770 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5777 /* We need to process a full chunk at a time.
5778 * If old and new chunk sizes differ, we need to process the
5782 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5784 /* We update the metadata at least every 10 seconds, or when
5785 * the data about to be copied would over-write the source of
5786 * the data at the front of the range. i.e. one new_stripe
5787 * along from reshape_progress new_maps to after where
5788 * reshape_safe old_maps to
5790 writepos = conf->reshape_progress;
5791 sector_div(writepos, new_data_disks);
5792 readpos = conf->reshape_progress;
5793 sector_div(readpos, data_disks);
5794 safepos = conf->reshape_safe;
5795 sector_div(safepos, data_disks);
5796 if (mddev->reshape_backwards) {
5797 BUG_ON(writepos < reshape_sectors);
5798 writepos -= reshape_sectors;
5799 readpos += reshape_sectors;
5800 safepos += reshape_sectors;
5802 writepos += reshape_sectors;
5803 /* readpos and safepos are worst-case calculations.
5804 * A negative number is overly pessimistic, and causes
5805 * obvious problems for unsigned storage. So clip to 0.
5807 readpos -= min_t(sector_t, reshape_sectors, readpos);
5808 safepos -= min_t(sector_t, reshape_sectors, safepos);
5811 /* Having calculated the 'writepos' possibly use it
5812 * to set 'stripe_addr' which is where we will write to.
5814 if (mddev->reshape_backwards) {
5815 BUG_ON(conf->reshape_progress == 0);
5816 stripe_addr = writepos;
5817 BUG_ON((mddev->dev_sectors &
5818 ~((sector_t)reshape_sectors - 1))
5819 - reshape_sectors - stripe_addr
5822 BUG_ON(writepos != sector_nr + reshape_sectors);
5823 stripe_addr = sector_nr;
5826 /* 'writepos' is the most advanced device address we might write.
5827 * 'readpos' is the least advanced device address we might read.
5828 * 'safepos' is the least address recorded in the metadata as having
5830 * If there is a min_offset_diff, these are adjusted either by
5831 * increasing the safepos/readpos if diff is negative, or
5832 * increasing writepos if diff is positive.
5833 * If 'readpos' is then behind 'writepos', there is no way that we can
5834 * ensure safety in the face of a crash - that must be done by userspace
5835 * making a backup of the data. So in that case there is no particular
5836 * rush to update metadata.
5837 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5838 * update the metadata to advance 'safepos' to match 'readpos' so that
5839 * we can be safe in the event of a crash.
5840 * So we insist on updating metadata if safepos is behind writepos and
5841 * readpos is beyond writepos.
5842 * In any case, update the metadata every 10 seconds.
5843 * Maybe that number should be configurable, but I'm not sure it is
5844 * worth it.... maybe it could be a multiple of safemode_delay???
5846 if (conf->min_offset_diff < 0) {
5847 safepos += -conf->min_offset_diff;
5848 readpos += -conf->min_offset_diff;
5850 writepos += conf->min_offset_diff;
5852 if ((mddev->reshape_backwards
5853 ? (safepos > writepos && readpos < writepos)
5854 : (safepos < writepos && readpos > writepos)) ||
5855 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5856 /* Cannot proceed until we've updated the superblock... */
5857 wait_event(conf->wait_for_overlap,
5858 atomic_read(&conf->reshape_stripes)==0
5859 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5860 if (atomic_read(&conf->reshape_stripes) != 0)
5862 mddev->reshape_position = conf->reshape_progress;
5863 mddev->curr_resync_completed = sector_nr;
5864 if (!mddev->reshape_backwards)
5865 /* Can update recovery_offset */
5866 rdev_for_each(rdev, mddev)
5867 if (rdev->raid_disk >= 0 &&
5868 !test_bit(Journal, &rdev->flags) &&
5869 !test_bit(In_sync, &rdev->flags) &&
5870 rdev->recovery_offset < sector_nr)
5871 rdev->recovery_offset = sector_nr;
5873 conf->reshape_checkpoint = jiffies;
5874 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5875 md_wakeup_thread(mddev->thread);
5876 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5877 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5878 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5880 spin_lock_irq(&conf->device_lock);
5881 conf->reshape_safe = mddev->reshape_position;
5882 spin_unlock_irq(&conf->device_lock);
5883 wake_up(&conf->wait_for_overlap);
5884 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5887 INIT_LIST_HEAD(&stripes);
5888 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5890 int skipped_disk = 0;
5891 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5892 set_bit(STRIPE_EXPANDING, &sh->state);
5893 atomic_inc(&conf->reshape_stripes);
5894 /* If any of this stripe is beyond the end of the old
5895 * array, then we need to zero those blocks
5897 for (j=sh->disks; j--;) {
5899 if (j == sh->pd_idx)
5901 if (conf->level == 6 &&
5904 s = raid5_compute_blocknr(sh, j, 0);
5905 if (s < raid5_size(mddev, 0, 0)) {
5909 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5910 set_bit(R5_Expanded, &sh->dev[j].flags);
5911 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5913 if (!skipped_disk) {
5914 set_bit(STRIPE_EXPAND_READY, &sh->state);
5915 set_bit(STRIPE_HANDLE, &sh->state);
5917 list_add(&sh->lru, &stripes);
5919 spin_lock_irq(&conf->device_lock);
5920 if (mddev->reshape_backwards)
5921 conf->reshape_progress -= reshape_sectors * new_data_disks;
5923 conf->reshape_progress += reshape_sectors * new_data_disks;
5924 spin_unlock_irq(&conf->device_lock);
5925 /* Ok, those stripe are ready. We can start scheduling
5926 * reads on the source stripes.
5927 * The source stripes are determined by mapping the first and last
5928 * block on the destination stripes.
5931 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5934 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5935 * new_data_disks - 1),
5937 if (last_sector >= mddev->dev_sectors)
5938 last_sector = mddev->dev_sectors - 1;
5939 while (first_sector <= last_sector) {
5940 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5941 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5942 set_bit(STRIPE_HANDLE, &sh->state);
5943 raid5_release_stripe(sh);
5944 first_sector += STRIPE_SECTORS;
5946 /* Now that the sources are clearly marked, we can release
5947 * the destination stripes
5949 while (!list_empty(&stripes)) {
5950 sh = list_entry(stripes.next, struct stripe_head, lru);
5951 list_del_init(&sh->lru);
5952 raid5_release_stripe(sh);
5954 /* If this takes us to the resync_max point where we have to pause,
5955 * then we need to write out the superblock.
5957 sector_nr += reshape_sectors;
5958 retn = reshape_sectors;
5960 if (mddev->curr_resync_completed > mddev->resync_max ||
5961 (sector_nr - mddev->curr_resync_completed) * 2
5962 >= mddev->resync_max - mddev->curr_resync_completed) {
5963 /* Cannot proceed until we've updated the superblock... */
5964 wait_event(conf->wait_for_overlap,
5965 atomic_read(&conf->reshape_stripes) == 0
5966 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5967 if (atomic_read(&conf->reshape_stripes) != 0)
5969 mddev->reshape_position = conf->reshape_progress;
5970 mddev->curr_resync_completed = sector_nr;
5971 if (!mddev->reshape_backwards)
5972 /* Can update recovery_offset */
5973 rdev_for_each(rdev, mddev)
5974 if (rdev->raid_disk >= 0 &&
5975 !test_bit(Journal, &rdev->flags) &&
5976 !test_bit(In_sync, &rdev->flags) &&
5977 rdev->recovery_offset < sector_nr)
5978 rdev->recovery_offset = sector_nr;
5979 conf->reshape_checkpoint = jiffies;
5980 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5981 md_wakeup_thread(mddev->thread);
5982 wait_event(mddev->sb_wait,
5983 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5984 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5985 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5987 spin_lock_irq(&conf->device_lock);
5988 conf->reshape_safe = mddev->reshape_position;
5989 spin_unlock_irq(&conf->device_lock);
5990 wake_up(&conf->wait_for_overlap);
5991 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5997 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6000 struct r5conf *conf = mddev->private;
6001 struct stripe_head *sh;
6002 sector_t max_sector = mddev->dev_sectors;
6003 sector_t sync_blocks;
6004 int still_degraded = 0;
6007 if (sector_nr >= max_sector) {
6008 /* just being told to finish up .. nothing much to do */
6010 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6015 if (mddev->curr_resync < max_sector) /* aborted */
6016 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6018 else /* completed sync */
6020 bitmap_close_sync(mddev->bitmap);
6025 /* Allow raid5_quiesce to complete */
6026 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6028 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6029 return reshape_request(mddev, sector_nr, skipped);
6031 /* No need to check resync_max as we never do more than one
6032 * stripe, and as resync_max will always be on a chunk boundary,
6033 * if the check in md_do_sync didn't fire, there is no chance
6034 * of overstepping resync_max here
6037 /* if there is too many failed drives and we are trying
6038 * to resync, then assert that we are finished, because there is
6039 * nothing we can do.
6041 if (mddev->degraded >= conf->max_degraded &&
6042 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6043 sector_t rv = mddev->dev_sectors - sector_nr;
6047 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6049 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6050 sync_blocks >= STRIPE_SECTORS) {
6051 /* we can skip this block, and probably more */
6052 sync_blocks /= STRIPE_SECTORS;
6054 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6057 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6059 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6061 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6062 /* make sure we don't swamp the stripe cache if someone else
6063 * is trying to get access
6065 schedule_timeout_uninterruptible(1);
6067 /* Need to check if array will still be degraded after recovery/resync
6068 * Note in case of > 1 drive failures it's possible we're rebuilding
6069 * one drive while leaving another faulty drive in array.
6072 for (i = 0; i < conf->raid_disks; i++) {
6073 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6075 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6080 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6082 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6083 set_bit(STRIPE_HANDLE, &sh->state);
6085 raid5_release_stripe(sh);
6087 return STRIPE_SECTORS;
6090 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6091 unsigned int offset)
6093 /* We may not be able to submit a whole bio at once as there
6094 * may not be enough stripe_heads available.
6095 * We cannot pre-allocate enough stripe_heads as we may need
6096 * more than exist in the cache (if we allow ever large chunks).
6097 * So we do one stripe head at a time and record in
6098 * ->bi_hw_segments how many have been done.
6100 * We *know* that this entire raid_bio is in one chunk, so
6101 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6103 struct stripe_head *sh;
6105 sector_t sector, logical_sector, last_sector;
6109 logical_sector = raid_bio->bi_iter.bi_sector &
6110 ~((sector_t)STRIPE_SECTORS-1);
6111 sector = raid5_compute_sector(conf, logical_sector,
6113 last_sector = bio_end_sector(raid_bio);
6115 for (; logical_sector < last_sector;
6116 logical_sector += STRIPE_SECTORS,
6117 sector += STRIPE_SECTORS,
6121 /* already done this stripe */
6124 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6127 /* failed to get a stripe - must wait */
6128 conf->retry_read_aligned = raid_bio;
6129 conf->retry_read_offset = scnt;
6133 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6134 raid5_release_stripe(sh);
6135 conf->retry_read_aligned = raid_bio;
6136 conf->retry_read_offset = scnt;
6140 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6142 raid5_release_stripe(sh);
6146 bio_endio(raid_bio);
6148 if (atomic_dec_and_test(&conf->active_aligned_reads))
6149 wake_up(&conf->wait_for_quiescent);
6153 static int handle_active_stripes(struct r5conf *conf, int group,
6154 struct r5worker *worker,
6155 struct list_head *temp_inactive_list)
6157 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6158 int i, batch_size = 0, hash;
6159 bool release_inactive = false;
6161 while (batch_size < MAX_STRIPE_BATCH &&
6162 (sh = __get_priority_stripe(conf, group)) != NULL)
6163 batch[batch_size++] = sh;
6165 if (batch_size == 0) {
6166 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6167 if (!list_empty(temp_inactive_list + i))
6169 if (i == NR_STRIPE_HASH_LOCKS) {
6170 spin_unlock_irq(&conf->device_lock);
6171 log_flush_stripe_to_raid(conf);
6172 spin_lock_irq(&conf->device_lock);
6175 release_inactive = true;
6177 spin_unlock_irq(&conf->device_lock);
6179 release_inactive_stripe_list(conf, temp_inactive_list,
6180 NR_STRIPE_HASH_LOCKS);
6182 r5l_flush_stripe_to_raid(conf->log);
6183 if (release_inactive) {
6184 spin_lock_irq(&conf->device_lock);
6188 for (i = 0; i < batch_size; i++)
6189 handle_stripe(batch[i]);
6190 log_write_stripe_run(conf);
6194 spin_lock_irq(&conf->device_lock);
6195 for (i = 0; i < batch_size; i++) {
6196 hash = batch[i]->hash_lock_index;
6197 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6202 static void raid5_do_work(struct work_struct *work)
6204 struct r5worker *worker = container_of(work, struct r5worker, work);
6205 struct r5worker_group *group = worker->group;
6206 struct r5conf *conf = group->conf;
6207 struct mddev *mddev = conf->mddev;
6208 int group_id = group - conf->worker_groups;
6210 struct blk_plug plug;
6212 pr_debug("+++ raid5worker active\n");
6214 blk_start_plug(&plug);
6216 spin_lock_irq(&conf->device_lock);
6218 int batch_size, released;
6220 released = release_stripe_list(conf, worker->temp_inactive_list);
6222 batch_size = handle_active_stripes(conf, group_id, worker,
6223 worker->temp_inactive_list);
6224 worker->working = false;
6225 if (!batch_size && !released)
6227 handled += batch_size;
6228 wait_event_lock_irq(mddev->sb_wait,
6229 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6232 pr_debug("%d stripes handled\n", handled);
6234 spin_unlock_irq(&conf->device_lock);
6236 flush_deferred_bios(conf);
6238 r5l_flush_stripe_to_raid(conf->log);
6240 async_tx_issue_pending_all();
6241 blk_finish_plug(&plug);
6243 pr_debug("--- raid5worker inactive\n");
6247 * This is our raid5 kernel thread.
6249 * We scan the hash table for stripes which can be handled now.
6250 * During the scan, completed stripes are saved for us by the interrupt
6251 * handler, so that they will not have to wait for our next wakeup.
6253 static void raid5d(struct md_thread *thread)
6255 struct mddev *mddev = thread->mddev;
6256 struct r5conf *conf = mddev->private;
6258 struct blk_plug plug;
6260 pr_debug("+++ raid5d active\n");
6262 md_check_recovery(mddev);
6264 blk_start_plug(&plug);
6266 spin_lock_irq(&conf->device_lock);
6269 int batch_size, released;
6270 unsigned int offset;
6272 released = release_stripe_list(conf, conf->temp_inactive_list);
6274 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6277 !list_empty(&conf->bitmap_list)) {
6278 /* Now is a good time to flush some bitmap updates */
6280 spin_unlock_irq(&conf->device_lock);
6281 bitmap_unplug(mddev->bitmap);
6282 spin_lock_irq(&conf->device_lock);
6283 conf->seq_write = conf->seq_flush;
6284 activate_bit_delay(conf, conf->temp_inactive_list);
6286 raid5_activate_delayed(conf);
6288 while ((bio = remove_bio_from_retry(conf, &offset))) {
6290 spin_unlock_irq(&conf->device_lock);
6291 ok = retry_aligned_read(conf, bio, offset);
6292 spin_lock_irq(&conf->device_lock);
6298 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6299 conf->temp_inactive_list);
6300 if (!batch_size && !released)
6302 handled += batch_size;
6304 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6305 spin_unlock_irq(&conf->device_lock);
6306 md_check_recovery(mddev);
6307 spin_lock_irq(&conf->device_lock);
6310 pr_debug("%d stripes handled\n", handled);
6312 spin_unlock_irq(&conf->device_lock);
6313 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6314 mutex_trylock(&conf->cache_size_mutex)) {
6315 grow_one_stripe(conf, __GFP_NOWARN);
6316 /* Set flag even if allocation failed. This helps
6317 * slow down allocation requests when mem is short
6319 set_bit(R5_DID_ALLOC, &conf->cache_state);
6320 mutex_unlock(&conf->cache_size_mutex);
6323 flush_deferred_bios(conf);
6325 r5l_flush_stripe_to_raid(conf->log);
6327 async_tx_issue_pending_all();
6328 blk_finish_plug(&plug);
6330 pr_debug("--- raid5d inactive\n");
6334 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6336 struct r5conf *conf;
6338 spin_lock(&mddev->lock);
6339 conf = mddev->private;
6341 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6342 spin_unlock(&mddev->lock);
6347 raid5_set_cache_size(struct mddev *mddev, int size)
6349 struct r5conf *conf = mddev->private;
6351 if (size <= 16 || size > 32768)
6354 conf->min_nr_stripes = size;
6355 mutex_lock(&conf->cache_size_mutex);
6356 while (size < conf->max_nr_stripes &&
6357 drop_one_stripe(conf))
6359 mutex_unlock(&conf->cache_size_mutex);
6361 md_allow_write(mddev);
6363 mutex_lock(&conf->cache_size_mutex);
6364 while (size > conf->max_nr_stripes)
6365 if (!grow_one_stripe(conf, GFP_KERNEL))
6367 mutex_unlock(&conf->cache_size_mutex);
6371 EXPORT_SYMBOL(raid5_set_cache_size);
6374 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6376 struct r5conf *conf;
6380 if (len >= PAGE_SIZE)
6382 if (kstrtoul(page, 10, &new))
6384 err = mddev_lock(mddev);
6387 conf = mddev->private;
6391 err = raid5_set_cache_size(mddev, new);
6392 mddev_unlock(mddev);
6397 static struct md_sysfs_entry
6398 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6399 raid5_show_stripe_cache_size,
6400 raid5_store_stripe_cache_size);
6403 raid5_show_rmw_level(struct mddev *mddev, char *page)
6405 struct r5conf *conf = mddev->private;
6407 return sprintf(page, "%d\n", conf->rmw_level);
6413 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6415 struct r5conf *conf = mddev->private;
6421 if (len >= PAGE_SIZE)
6424 if (kstrtoul(page, 10, &new))
6427 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6430 if (new != PARITY_DISABLE_RMW &&
6431 new != PARITY_ENABLE_RMW &&
6432 new != PARITY_PREFER_RMW)
6435 conf->rmw_level = new;
6439 static struct md_sysfs_entry
6440 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6441 raid5_show_rmw_level,
6442 raid5_store_rmw_level);
6446 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6448 struct r5conf *conf;
6450 spin_lock(&mddev->lock);
6451 conf = mddev->private;
6453 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6454 spin_unlock(&mddev->lock);
6459 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6461 struct r5conf *conf;
6465 if (len >= PAGE_SIZE)
6467 if (kstrtoul(page, 10, &new))
6470 err = mddev_lock(mddev);
6473 conf = mddev->private;
6476 else if (new > conf->min_nr_stripes)
6479 conf->bypass_threshold = new;
6480 mddev_unlock(mddev);
6484 static struct md_sysfs_entry
6485 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6487 raid5_show_preread_threshold,
6488 raid5_store_preread_threshold);
6491 raid5_show_skip_copy(struct mddev *mddev, char *page)
6493 struct r5conf *conf;
6495 spin_lock(&mddev->lock);
6496 conf = mddev->private;
6498 ret = sprintf(page, "%d\n", conf->skip_copy);
6499 spin_unlock(&mddev->lock);
6504 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6506 struct r5conf *conf;
6510 if (len >= PAGE_SIZE)
6512 if (kstrtoul(page, 10, &new))
6516 err = mddev_lock(mddev);
6519 conf = mddev->private;
6522 else if (new != conf->skip_copy) {
6523 mddev_suspend(mddev);
6524 conf->skip_copy = new;
6526 mddev->queue->backing_dev_info->capabilities |=
6527 BDI_CAP_STABLE_WRITES;
6529 mddev->queue->backing_dev_info->capabilities &=
6530 ~BDI_CAP_STABLE_WRITES;
6531 mddev_resume(mddev);
6533 mddev_unlock(mddev);
6537 static struct md_sysfs_entry
6538 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6539 raid5_show_skip_copy,
6540 raid5_store_skip_copy);
6543 stripe_cache_active_show(struct mddev *mddev, char *page)
6545 struct r5conf *conf = mddev->private;
6547 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6552 static struct md_sysfs_entry
6553 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6556 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6558 struct r5conf *conf;
6560 spin_lock(&mddev->lock);
6561 conf = mddev->private;
6563 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6564 spin_unlock(&mddev->lock);
6568 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6570 int *worker_cnt_per_group,
6571 struct r5worker_group **worker_groups);
6573 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6575 struct r5conf *conf;
6578 struct r5worker_group *new_groups, *old_groups;
6579 int group_cnt, worker_cnt_per_group;
6581 if (len >= PAGE_SIZE)
6583 if (kstrtouint(page, 10, &new))
6585 /* 8192 should be big enough */
6589 err = mddev_lock(mddev);
6592 conf = mddev->private;
6595 else if (new != conf->worker_cnt_per_group) {
6596 mddev_suspend(mddev);
6598 old_groups = conf->worker_groups;
6600 flush_workqueue(raid5_wq);
6602 err = alloc_thread_groups(conf, new,
6603 &group_cnt, &worker_cnt_per_group,
6606 spin_lock_irq(&conf->device_lock);
6607 conf->group_cnt = group_cnt;
6608 conf->worker_cnt_per_group = worker_cnt_per_group;
6609 conf->worker_groups = new_groups;
6610 spin_unlock_irq(&conf->device_lock);
6613 kfree(old_groups[0].workers);
6616 mddev_resume(mddev);
6618 mddev_unlock(mddev);
6623 static struct md_sysfs_entry
6624 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6625 raid5_show_group_thread_cnt,
6626 raid5_store_group_thread_cnt);
6628 static struct attribute *raid5_attrs[] = {
6629 &raid5_stripecache_size.attr,
6630 &raid5_stripecache_active.attr,
6631 &raid5_preread_bypass_threshold.attr,
6632 &raid5_group_thread_cnt.attr,
6633 &raid5_skip_copy.attr,
6634 &raid5_rmw_level.attr,
6635 &r5c_journal_mode.attr,
6638 static struct attribute_group raid5_attrs_group = {
6640 .attrs = raid5_attrs,
6643 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6645 int *worker_cnt_per_group,
6646 struct r5worker_group **worker_groups)
6650 struct r5worker *workers;
6652 *worker_cnt_per_group = cnt;
6655 *worker_groups = NULL;
6658 *group_cnt = num_possible_nodes();
6659 size = sizeof(struct r5worker) * cnt;
6660 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6661 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6662 *group_cnt, GFP_NOIO);
6663 if (!*worker_groups || !workers) {
6665 kfree(*worker_groups);
6669 for (i = 0; i < *group_cnt; i++) {
6670 struct r5worker_group *group;
6672 group = &(*worker_groups)[i];
6673 INIT_LIST_HEAD(&group->handle_list);
6674 INIT_LIST_HEAD(&group->loprio_list);
6676 group->workers = workers + i * cnt;
6678 for (j = 0; j < cnt; j++) {
6679 struct r5worker *worker = group->workers + j;
6680 worker->group = group;
6681 INIT_WORK(&worker->work, raid5_do_work);
6683 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6684 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6691 static void free_thread_groups(struct r5conf *conf)
6693 if (conf->worker_groups)
6694 kfree(conf->worker_groups[0].workers);
6695 kfree(conf->worker_groups);
6696 conf->worker_groups = NULL;
6700 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6702 struct r5conf *conf = mddev->private;
6705 sectors = mddev->dev_sectors;
6707 /* size is defined by the smallest of previous and new size */
6708 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6710 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6711 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6712 return sectors * (raid_disks - conf->max_degraded);
6715 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6717 safe_put_page(percpu->spare_page);
6718 if (percpu->scribble)
6719 flex_array_free(percpu->scribble);
6720 percpu->spare_page = NULL;
6721 percpu->scribble = NULL;
6724 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6726 if (conf->level == 6 && !percpu->spare_page)
6727 percpu->spare_page = alloc_page(GFP_KERNEL);
6728 if (!percpu->scribble)
6729 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6730 conf->previous_raid_disks),
6731 max(conf->chunk_sectors,
6732 conf->prev_chunk_sectors)
6736 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6737 free_scratch_buffer(conf, percpu);
6744 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6746 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6748 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6752 static void raid5_free_percpu(struct r5conf *conf)
6757 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6758 free_percpu(conf->percpu);
6761 static void free_conf(struct r5conf *conf)
6767 if (conf->shrinker.nr_deferred)
6768 unregister_shrinker(&conf->shrinker);
6770 free_thread_groups(conf);
6771 shrink_stripes(conf);
6772 raid5_free_percpu(conf);
6773 for (i = 0; i < conf->pool_size; i++)
6774 if (conf->disks[i].extra_page)
6775 put_page(conf->disks[i].extra_page);
6777 if (conf->bio_split)
6778 bioset_free(conf->bio_split);
6779 kfree(conf->stripe_hashtbl);
6780 kfree(conf->pending_data);
6784 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6786 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6787 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6789 if (alloc_scratch_buffer(conf, percpu)) {
6790 pr_warn("%s: failed memory allocation for cpu%u\n",
6797 static int raid5_alloc_percpu(struct r5conf *conf)
6801 conf->percpu = alloc_percpu(struct raid5_percpu);
6805 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6807 conf->scribble_disks = max(conf->raid_disks,
6808 conf->previous_raid_disks);
6809 conf->scribble_sectors = max(conf->chunk_sectors,
6810 conf->prev_chunk_sectors);
6815 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6816 struct shrink_control *sc)
6818 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6819 unsigned long ret = SHRINK_STOP;
6821 if (mutex_trylock(&conf->cache_size_mutex)) {
6823 while (ret < sc->nr_to_scan &&
6824 conf->max_nr_stripes > conf->min_nr_stripes) {
6825 if (drop_one_stripe(conf) == 0) {
6831 mutex_unlock(&conf->cache_size_mutex);
6836 static unsigned long raid5_cache_count(struct shrinker *shrink,
6837 struct shrink_control *sc)
6839 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6841 if (conf->max_nr_stripes < conf->min_nr_stripes)
6842 /* unlikely, but not impossible */
6844 return conf->max_nr_stripes - conf->min_nr_stripes;
6847 static struct r5conf *setup_conf(struct mddev *mddev)
6849 struct r5conf *conf;
6850 int raid_disk, memory, max_disks;
6851 struct md_rdev *rdev;
6852 struct disk_info *disk;
6855 int group_cnt, worker_cnt_per_group;
6856 struct r5worker_group *new_group;
6858 if (mddev->new_level != 5
6859 && mddev->new_level != 4
6860 && mddev->new_level != 6) {
6861 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6862 mdname(mddev), mddev->new_level);
6863 return ERR_PTR(-EIO);
6865 if ((mddev->new_level == 5
6866 && !algorithm_valid_raid5(mddev->new_layout)) ||
6867 (mddev->new_level == 6
6868 && !algorithm_valid_raid6(mddev->new_layout))) {
6869 pr_warn("md/raid:%s: layout %d not supported\n",
6870 mdname(mddev), mddev->new_layout);
6871 return ERR_PTR(-EIO);
6873 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6874 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6875 mdname(mddev), mddev->raid_disks);
6876 return ERR_PTR(-EINVAL);
6879 if (!mddev->new_chunk_sectors ||
6880 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6881 !is_power_of_2(mddev->new_chunk_sectors)) {
6882 pr_warn("md/raid:%s: invalid chunk size %d\n",
6883 mdname(mddev), mddev->new_chunk_sectors << 9);
6884 return ERR_PTR(-EINVAL);
6887 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6890 INIT_LIST_HEAD(&conf->free_list);
6891 INIT_LIST_HEAD(&conf->pending_list);
6892 conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6893 PENDING_IO_MAX, GFP_KERNEL);
6894 if (!conf->pending_data)
6896 for (i = 0; i < PENDING_IO_MAX; i++)
6897 list_add(&conf->pending_data[i].sibling, &conf->free_list);
6898 /* Don't enable multi-threading by default*/
6899 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6901 conf->group_cnt = group_cnt;
6902 conf->worker_cnt_per_group = worker_cnt_per_group;
6903 conf->worker_groups = new_group;
6906 spin_lock_init(&conf->device_lock);
6907 seqcount_init(&conf->gen_lock);
6908 mutex_init(&conf->cache_size_mutex);
6909 init_waitqueue_head(&conf->wait_for_quiescent);
6910 init_waitqueue_head(&conf->wait_for_stripe);
6911 init_waitqueue_head(&conf->wait_for_overlap);
6912 INIT_LIST_HEAD(&conf->handle_list);
6913 INIT_LIST_HEAD(&conf->loprio_list);
6914 INIT_LIST_HEAD(&conf->hold_list);
6915 INIT_LIST_HEAD(&conf->delayed_list);
6916 INIT_LIST_HEAD(&conf->bitmap_list);
6917 init_llist_head(&conf->released_stripes);
6918 atomic_set(&conf->active_stripes, 0);
6919 atomic_set(&conf->preread_active_stripes, 0);
6920 atomic_set(&conf->active_aligned_reads, 0);
6921 spin_lock_init(&conf->pending_bios_lock);
6922 conf->batch_bio_dispatch = true;
6923 rdev_for_each(rdev, mddev) {
6924 if (test_bit(Journal, &rdev->flags))
6926 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6927 conf->batch_bio_dispatch = false;
6932 conf->bypass_threshold = BYPASS_THRESHOLD;
6933 conf->recovery_disabled = mddev->recovery_disabled - 1;
6935 conf->raid_disks = mddev->raid_disks;
6936 if (mddev->reshape_position == MaxSector)
6937 conf->previous_raid_disks = mddev->raid_disks;
6939 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6940 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6942 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6948 for (i = 0; i < max_disks; i++) {
6949 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6950 if (!conf->disks[i].extra_page)
6954 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6955 if (!conf->bio_split)
6957 conf->mddev = mddev;
6959 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6962 /* We init hash_locks[0] separately to that it can be used
6963 * as the reference lock in the spin_lock_nest_lock() call
6964 * in lock_all_device_hash_locks_irq in order to convince
6965 * lockdep that we know what we are doing.
6967 spin_lock_init(conf->hash_locks);
6968 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6969 spin_lock_init(conf->hash_locks + i);
6971 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6972 INIT_LIST_HEAD(conf->inactive_list + i);
6974 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6975 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6977 atomic_set(&conf->r5c_cached_full_stripes, 0);
6978 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6979 atomic_set(&conf->r5c_cached_partial_stripes, 0);
6980 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6981 atomic_set(&conf->r5c_flushing_full_stripes, 0);
6982 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6984 conf->level = mddev->new_level;
6985 conf->chunk_sectors = mddev->new_chunk_sectors;
6986 if (raid5_alloc_percpu(conf) != 0)
6989 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6991 rdev_for_each(rdev, mddev) {
6992 raid_disk = rdev->raid_disk;
6993 if (raid_disk >= max_disks
6994 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6996 disk = conf->disks + raid_disk;
6998 if (test_bit(Replacement, &rdev->flags)) {
6999 if (disk->replacement)
7001 disk->replacement = rdev;
7008 if (test_bit(In_sync, &rdev->flags)) {
7009 char b[BDEVNAME_SIZE];
7010 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7011 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7012 } else if (rdev->saved_raid_disk != raid_disk)
7013 /* Cannot rely on bitmap to complete recovery */
7017 conf->level = mddev->new_level;
7018 if (conf->level == 6) {
7019 conf->max_degraded = 2;
7020 if (raid6_call.xor_syndrome)
7021 conf->rmw_level = PARITY_ENABLE_RMW;
7023 conf->rmw_level = PARITY_DISABLE_RMW;
7025 conf->max_degraded = 1;
7026 conf->rmw_level = PARITY_ENABLE_RMW;
7028 conf->algorithm = mddev->new_layout;
7029 conf->reshape_progress = mddev->reshape_position;
7030 if (conf->reshape_progress != MaxSector) {
7031 conf->prev_chunk_sectors = mddev->chunk_sectors;
7032 conf->prev_algo = mddev->layout;
7034 conf->prev_chunk_sectors = conf->chunk_sectors;
7035 conf->prev_algo = conf->algorithm;
7038 conf->min_nr_stripes = NR_STRIPES;
7039 if (mddev->reshape_position != MaxSector) {
7040 int stripes = max_t(int,
7041 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7042 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7043 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7044 if (conf->min_nr_stripes != NR_STRIPES)
7045 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7046 mdname(mddev), conf->min_nr_stripes);
7048 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7049 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7050 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7051 if (grow_stripes(conf, conf->min_nr_stripes)) {
7052 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7053 mdname(mddev), memory);
7056 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7058 * Losing a stripe head costs more than the time to refill it,
7059 * it reduces the queue depth and so can hurt throughput.
7060 * So set it rather large, scaled by number of devices.
7062 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7063 conf->shrinker.scan_objects = raid5_cache_scan;
7064 conf->shrinker.count_objects = raid5_cache_count;
7065 conf->shrinker.batch = 128;
7066 conf->shrinker.flags = 0;
7067 if (register_shrinker(&conf->shrinker)) {
7068 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7073 sprintf(pers_name, "raid%d", mddev->new_level);
7074 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7075 if (!conf->thread) {
7076 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7086 return ERR_PTR(-EIO);
7088 return ERR_PTR(-ENOMEM);
7091 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7094 case ALGORITHM_PARITY_0:
7095 if (raid_disk < max_degraded)
7098 case ALGORITHM_PARITY_N:
7099 if (raid_disk >= raid_disks - max_degraded)
7102 case ALGORITHM_PARITY_0_6:
7103 if (raid_disk == 0 ||
7104 raid_disk == raid_disks - 1)
7107 case ALGORITHM_LEFT_ASYMMETRIC_6:
7108 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7109 case ALGORITHM_LEFT_SYMMETRIC_6:
7110 case ALGORITHM_RIGHT_SYMMETRIC_6:
7111 if (raid_disk == raid_disks - 1)
7117 static int raid5_run(struct mddev *mddev)
7119 struct r5conf *conf;
7120 int working_disks = 0;
7121 int dirty_parity_disks = 0;
7122 struct md_rdev *rdev;
7123 struct md_rdev *journal_dev = NULL;
7124 sector_t reshape_offset = 0;
7126 long long min_offset_diff = 0;
7129 if (mddev_init_writes_pending(mddev) < 0)
7132 if (mddev->recovery_cp != MaxSector)
7133 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7136 rdev_for_each(rdev, mddev) {
7139 if (test_bit(Journal, &rdev->flags)) {
7143 if (rdev->raid_disk < 0)
7145 diff = (rdev->new_data_offset - rdev->data_offset);
7147 min_offset_diff = diff;
7149 } else if (mddev->reshape_backwards &&
7150 diff < min_offset_diff)
7151 min_offset_diff = diff;
7152 else if (!mddev->reshape_backwards &&
7153 diff > min_offset_diff)
7154 min_offset_diff = diff;
7157 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7158 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7159 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7164 if (mddev->reshape_position != MaxSector) {
7165 /* Check that we can continue the reshape.
7166 * Difficulties arise if the stripe we would write to
7167 * next is at or after the stripe we would read from next.
7168 * For a reshape that changes the number of devices, this
7169 * is only possible for a very short time, and mdadm makes
7170 * sure that time appears to have past before assembling
7171 * the array. So we fail if that time hasn't passed.
7172 * For a reshape that keeps the number of devices the same
7173 * mdadm must be monitoring the reshape can keeping the
7174 * critical areas read-only and backed up. It will start
7175 * the array in read-only mode, so we check for that.
7177 sector_t here_new, here_old;
7179 int max_degraded = (mddev->level == 6 ? 2 : 1);
7184 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7189 if (mddev->new_level != mddev->level) {
7190 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7194 old_disks = mddev->raid_disks - mddev->delta_disks;
7195 /* reshape_position must be on a new-stripe boundary, and one
7196 * further up in new geometry must map after here in old
7198 * If the chunk sizes are different, then as we perform reshape
7199 * in units of the largest of the two, reshape_position needs
7200 * be a multiple of the largest chunk size times new data disks.
7202 here_new = mddev->reshape_position;
7203 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7204 new_data_disks = mddev->raid_disks - max_degraded;
7205 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7206 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7210 reshape_offset = here_new * chunk_sectors;
7211 /* here_new is the stripe we will write to */
7212 here_old = mddev->reshape_position;
7213 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7214 /* here_old is the first stripe that we might need to read
7216 if (mddev->delta_disks == 0) {
7217 /* We cannot be sure it is safe to start an in-place
7218 * reshape. It is only safe if user-space is monitoring
7219 * and taking constant backups.
7220 * mdadm always starts a situation like this in
7221 * readonly mode so it can take control before
7222 * allowing any writes. So just check for that.
7224 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7225 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7226 /* not really in-place - so OK */;
7227 else if (mddev->ro == 0) {
7228 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7232 } else if (mddev->reshape_backwards
7233 ? (here_new * chunk_sectors + min_offset_diff <=
7234 here_old * chunk_sectors)
7235 : (here_new * chunk_sectors >=
7236 here_old * chunk_sectors + (-min_offset_diff))) {
7237 /* Reading from the same stripe as writing to - bad */
7238 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7242 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7243 /* OK, we should be able to continue; */
7245 BUG_ON(mddev->level != mddev->new_level);
7246 BUG_ON(mddev->layout != mddev->new_layout);
7247 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7248 BUG_ON(mddev->delta_disks != 0);
7251 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7252 test_bit(MD_HAS_PPL, &mddev->flags)) {
7253 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7255 clear_bit(MD_HAS_PPL, &mddev->flags);
7256 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7259 if (mddev->private == NULL)
7260 conf = setup_conf(mddev);
7262 conf = mddev->private;
7265 return PTR_ERR(conf);
7267 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7269 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7272 set_disk_ro(mddev->gendisk, 1);
7273 } else if (mddev->recovery_cp == MaxSector)
7274 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7277 conf->min_offset_diff = min_offset_diff;
7278 mddev->thread = conf->thread;
7279 conf->thread = NULL;
7280 mddev->private = conf;
7282 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7284 rdev = conf->disks[i].rdev;
7285 if (!rdev && conf->disks[i].replacement) {
7286 /* The replacement is all we have yet */
7287 rdev = conf->disks[i].replacement;
7288 conf->disks[i].replacement = NULL;
7289 clear_bit(Replacement, &rdev->flags);
7290 conf->disks[i].rdev = rdev;
7294 if (conf->disks[i].replacement &&
7295 conf->reshape_progress != MaxSector) {
7296 /* replacements and reshape simply do not mix. */
7297 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7300 if (test_bit(In_sync, &rdev->flags)) {
7304 /* This disc is not fully in-sync. However if it
7305 * just stored parity (beyond the recovery_offset),
7306 * when we don't need to be concerned about the
7307 * array being dirty.
7308 * When reshape goes 'backwards', we never have
7309 * partially completed devices, so we only need
7310 * to worry about reshape going forwards.
7312 /* Hack because v0.91 doesn't store recovery_offset properly. */
7313 if (mddev->major_version == 0 &&
7314 mddev->minor_version > 90)
7315 rdev->recovery_offset = reshape_offset;
7317 if (rdev->recovery_offset < reshape_offset) {
7318 /* We need to check old and new layout */
7319 if (!only_parity(rdev->raid_disk,
7322 conf->max_degraded))
7325 if (!only_parity(rdev->raid_disk,
7327 conf->previous_raid_disks,
7328 conf->max_degraded))
7330 dirty_parity_disks++;
7334 * 0 for a fully functional array, 1 or 2 for a degraded array.
7336 mddev->degraded = raid5_calc_degraded(conf);
7338 if (has_failed(conf)) {
7339 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7340 mdname(mddev), mddev->degraded, conf->raid_disks);
7344 /* device size must be a multiple of chunk size */
7345 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7346 mddev->resync_max_sectors = mddev->dev_sectors;
7348 if (mddev->degraded > dirty_parity_disks &&
7349 mddev->recovery_cp != MaxSector) {
7350 if (test_bit(MD_HAS_PPL, &mddev->flags))
7351 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7353 else if (mddev->ok_start_degraded)
7354 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7357 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7363 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7364 mdname(mddev), conf->level,
7365 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7368 print_raid5_conf(conf);
7370 if (conf->reshape_progress != MaxSector) {
7371 conf->reshape_safe = conf->reshape_progress;
7372 atomic_set(&conf->reshape_stripes, 0);
7373 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7374 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7375 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7376 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7377 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7381 /* Ok, everything is just fine now */
7382 if (mddev->to_remove == &raid5_attrs_group)
7383 mddev->to_remove = NULL;
7384 else if (mddev->kobj.sd &&
7385 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7386 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7388 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7392 /* read-ahead size must cover two whole stripes, which
7393 * is 2 * (datadisks) * chunksize where 'n' is the
7394 * number of raid devices
7396 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7397 int stripe = data_disks *
7398 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7399 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7400 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7402 chunk_size = mddev->chunk_sectors << 9;
7403 blk_queue_io_min(mddev->queue, chunk_size);
7404 blk_queue_io_opt(mddev->queue, chunk_size *
7405 (conf->raid_disks - conf->max_degraded));
7406 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7408 * We can only discard a whole stripe. It doesn't make sense to
7409 * discard data disk but write parity disk
7411 stripe = stripe * PAGE_SIZE;
7412 /* Round up to power of 2, as discard handling
7413 * currently assumes that */
7414 while ((stripe-1) & stripe)
7415 stripe = (stripe | (stripe-1)) + 1;
7416 mddev->queue->limits.discard_alignment = stripe;
7417 mddev->queue->limits.discard_granularity = stripe;
7419 blk_queue_max_write_same_sectors(mddev->queue, 0);
7420 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7422 rdev_for_each(rdev, mddev) {
7423 disk_stack_limits(mddev->gendisk, rdev->bdev,
7424 rdev->data_offset << 9);
7425 disk_stack_limits(mddev->gendisk, rdev->bdev,
7426 rdev->new_data_offset << 9);
7430 * zeroing is required, otherwise data
7431 * could be lost. Consider a scenario: discard a stripe
7432 * (the stripe could be inconsistent if
7433 * discard_zeroes_data is 0); write one disk of the
7434 * stripe (the stripe could be inconsistent again
7435 * depending on which disks are used to calculate
7436 * parity); the disk is broken; The stripe data of this
7439 * We only allow DISCARD if the sysadmin has confirmed that
7440 * only safe devices are in use by setting a module parameter.
7441 * A better idea might be to turn DISCARD into WRITE_ZEROES
7442 * requests, as that is required to be safe.
7444 if (devices_handle_discard_safely &&
7445 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7446 mddev->queue->limits.discard_granularity >= stripe)
7447 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7450 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7453 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7456 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7461 md_unregister_thread(&mddev->thread);
7462 print_raid5_conf(conf);
7464 mddev->private = NULL;
7465 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7469 static void raid5_free(struct mddev *mddev, void *priv)
7471 struct r5conf *conf = priv;
7474 mddev->to_remove = &raid5_attrs_group;
7477 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7479 struct r5conf *conf = mddev->private;
7482 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7483 conf->chunk_sectors / 2, mddev->layout);
7484 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7486 for (i = 0; i < conf->raid_disks; i++) {
7487 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7488 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7491 seq_printf (seq, "]");
7494 static void print_raid5_conf (struct r5conf *conf)
7497 struct disk_info *tmp;
7499 pr_debug("RAID conf printout:\n");
7501 pr_debug("(conf==NULL)\n");
7504 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7506 conf->raid_disks - conf->mddev->degraded);
7508 for (i = 0; i < conf->raid_disks; i++) {
7509 char b[BDEVNAME_SIZE];
7510 tmp = conf->disks + i;
7512 pr_debug(" disk %d, o:%d, dev:%s\n",
7513 i, !test_bit(Faulty, &tmp->rdev->flags),
7514 bdevname(tmp->rdev->bdev, b));
7518 static int raid5_spare_active(struct mddev *mddev)
7521 struct r5conf *conf = mddev->private;
7522 struct disk_info *tmp;
7524 unsigned long flags;
7526 for (i = 0; i < conf->raid_disks; i++) {
7527 tmp = conf->disks + i;
7528 if (tmp->replacement
7529 && tmp->replacement->recovery_offset == MaxSector
7530 && !test_bit(Faulty, &tmp->replacement->flags)
7531 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7532 /* Replacement has just become active. */
7534 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7537 /* Replaced device not technically faulty,
7538 * but we need to be sure it gets removed
7539 * and never re-added.
7541 set_bit(Faulty, &tmp->rdev->flags);
7542 sysfs_notify_dirent_safe(
7543 tmp->rdev->sysfs_state);
7545 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7546 } else if (tmp->rdev
7547 && tmp->rdev->recovery_offset == MaxSector
7548 && !test_bit(Faulty, &tmp->rdev->flags)
7549 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7551 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7554 spin_lock_irqsave(&conf->device_lock, flags);
7555 mddev->degraded = raid5_calc_degraded(conf);
7556 spin_unlock_irqrestore(&conf->device_lock, flags);
7557 print_raid5_conf(conf);
7561 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7563 struct r5conf *conf = mddev->private;
7565 int number = rdev->raid_disk;
7566 struct md_rdev **rdevp;
7567 struct disk_info *p = conf->disks + number;
7569 print_raid5_conf(conf);
7570 if (test_bit(Journal, &rdev->flags) && conf->log) {
7572 * we can't wait pending write here, as this is called in
7573 * raid5d, wait will deadlock.
7574 * neilb: there is no locking about new writes here,
7575 * so this cannot be safe.
7577 if (atomic_read(&conf->active_stripes) ||
7578 atomic_read(&conf->r5c_cached_full_stripes) ||
7579 atomic_read(&conf->r5c_cached_partial_stripes)) {
7585 if (rdev == p->rdev)
7587 else if (rdev == p->replacement)
7588 rdevp = &p->replacement;
7592 if (number >= conf->raid_disks &&
7593 conf->reshape_progress == MaxSector)
7594 clear_bit(In_sync, &rdev->flags);
7596 if (test_bit(In_sync, &rdev->flags) ||
7597 atomic_read(&rdev->nr_pending)) {
7601 /* Only remove non-faulty devices if recovery
7604 if (!test_bit(Faulty, &rdev->flags) &&
7605 mddev->recovery_disabled != conf->recovery_disabled &&
7606 !has_failed(conf) &&
7607 (!p->replacement || p->replacement == rdev) &&
7608 number < conf->raid_disks) {
7613 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7615 if (atomic_read(&rdev->nr_pending)) {
7616 /* lost the race, try later */
7622 err = log_modify(conf, rdev, false);
7626 if (p->replacement) {
7627 /* We must have just cleared 'rdev' */
7628 p->rdev = p->replacement;
7629 clear_bit(Replacement, &p->replacement->flags);
7630 smp_mb(); /* Make sure other CPUs may see both as identical
7631 * but will never see neither - if they are careful
7633 p->replacement = NULL;
7636 err = log_modify(conf, p->rdev, true);
7639 clear_bit(WantReplacement, &rdev->flags);
7642 print_raid5_conf(conf);
7646 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7648 struct r5conf *conf = mddev->private;
7651 struct disk_info *p;
7653 int last = conf->raid_disks - 1;
7655 if (test_bit(Journal, &rdev->flags)) {
7659 rdev->raid_disk = 0;
7661 * The array is in readonly mode if journal is missing, so no
7662 * write requests running. We should be safe
7664 log_init(conf, rdev, false);
7667 if (mddev->recovery_disabled == conf->recovery_disabled)
7670 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7671 /* no point adding a device */
7674 if (rdev->raid_disk >= 0)
7675 first = last = rdev->raid_disk;
7678 * find the disk ... but prefer rdev->saved_raid_disk
7681 if (rdev->saved_raid_disk >= 0 &&
7682 rdev->saved_raid_disk >= first &&
7683 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7684 first = rdev->saved_raid_disk;
7686 for (disk = first; disk <= last; disk++) {
7687 p = conf->disks + disk;
7688 if (p->rdev == NULL) {
7689 clear_bit(In_sync, &rdev->flags);
7690 rdev->raid_disk = disk;
7691 if (rdev->saved_raid_disk != disk)
7693 rcu_assign_pointer(p->rdev, rdev);
7695 err = log_modify(conf, rdev, true);
7700 for (disk = first; disk <= last; disk++) {
7701 p = conf->disks + disk;
7702 if (test_bit(WantReplacement, &p->rdev->flags) &&
7703 p->replacement == NULL) {
7704 clear_bit(In_sync, &rdev->flags);
7705 set_bit(Replacement, &rdev->flags);
7706 rdev->raid_disk = disk;
7709 rcu_assign_pointer(p->replacement, rdev);
7714 print_raid5_conf(conf);
7718 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7720 /* no resync is happening, and there is enough space
7721 * on all devices, so we can resize.
7722 * We need to make sure resync covers any new space.
7723 * If the array is shrinking we should possibly wait until
7724 * any io in the removed space completes, but it hardly seems
7728 struct r5conf *conf = mddev->private;
7730 if (conf->log || raid5_has_ppl(conf))
7732 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7733 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7734 if (mddev->external_size &&
7735 mddev->array_sectors > newsize)
7737 if (mddev->bitmap) {
7738 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7742 md_set_array_sectors(mddev, newsize);
7743 if (sectors > mddev->dev_sectors &&
7744 mddev->recovery_cp > mddev->dev_sectors) {
7745 mddev->recovery_cp = mddev->dev_sectors;
7746 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7748 mddev->dev_sectors = sectors;
7749 mddev->resync_max_sectors = sectors;
7753 static int check_stripe_cache(struct mddev *mddev)
7755 /* Can only proceed if there are plenty of stripe_heads.
7756 * We need a minimum of one full stripe,, and for sensible progress
7757 * it is best to have about 4 times that.
7758 * If we require 4 times, then the default 256 4K stripe_heads will
7759 * allow for chunk sizes up to 256K, which is probably OK.
7760 * If the chunk size is greater, user-space should request more
7761 * stripe_heads first.
7763 struct r5conf *conf = mddev->private;
7764 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7765 > conf->min_nr_stripes ||
7766 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7767 > conf->min_nr_stripes) {
7768 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7770 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7777 static int check_reshape(struct mddev *mddev)
7779 struct r5conf *conf = mddev->private;
7781 if (conf->log || raid5_has_ppl(conf))
7783 if (mddev->delta_disks == 0 &&
7784 mddev->new_layout == mddev->layout &&
7785 mddev->new_chunk_sectors == mddev->chunk_sectors)
7786 return 0; /* nothing to do */
7787 if (has_failed(conf))
7789 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7790 /* We might be able to shrink, but the devices must
7791 * be made bigger first.
7792 * For raid6, 4 is the minimum size.
7793 * Otherwise 2 is the minimum
7796 if (mddev->level == 6)
7798 if (mddev->raid_disks + mddev->delta_disks < min)
7802 if (!check_stripe_cache(mddev))
7805 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7806 mddev->delta_disks > 0)
7807 if (resize_chunks(conf,
7808 conf->previous_raid_disks
7809 + max(0, mddev->delta_disks),
7810 max(mddev->new_chunk_sectors,
7811 mddev->chunk_sectors)
7815 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7816 return 0; /* never bother to shrink */
7817 return resize_stripes(conf, (conf->previous_raid_disks
7818 + mddev->delta_disks));
7821 static int raid5_start_reshape(struct mddev *mddev)
7823 struct r5conf *conf = mddev->private;
7824 struct md_rdev *rdev;
7826 unsigned long flags;
7828 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7831 if (!check_stripe_cache(mddev))
7834 if (has_failed(conf))
7837 rdev_for_each(rdev, mddev) {
7838 if (!test_bit(In_sync, &rdev->flags)
7839 && !test_bit(Faulty, &rdev->flags))
7843 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7844 /* Not enough devices even to make a degraded array
7849 /* Refuse to reduce size of the array. Any reductions in
7850 * array size must be through explicit setting of array_size
7853 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7854 < mddev->array_sectors) {
7855 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7860 atomic_set(&conf->reshape_stripes, 0);
7861 spin_lock_irq(&conf->device_lock);
7862 write_seqcount_begin(&conf->gen_lock);
7863 conf->previous_raid_disks = conf->raid_disks;
7864 conf->raid_disks += mddev->delta_disks;
7865 conf->prev_chunk_sectors = conf->chunk_sectors;
7866 conf->chunk_sectors = mddev->new_chunk_sectors;
7867 conf->prev_algo = conf->algorithm;
7868 conf->algorithm = mddev->new_layout;
7870 /* Code that selects data_offset needs to see the generation update
7871 * if reshape_progress has been set - so a memory barrier needed.
7874 if (mddev->reshape_backwards)
7875 conf->reshape_progress = raid5_size(mddev, 0, 0);
7877 conf->reshape_progress = 0;
7878 conf->reshape_safe = conf->reshape_progress;
7879 write_seqcount_end(&conf->gen_lock);
7880 spin_unlock_irq(&conf->device_lock);
7882 /* Now make sure any requests that proceeded on the assumption
7883 * the reshape wasn't running - like Discard or Read - have
7886 mddev_suspend(mddev);
7887 mddev_resume(mddev);
7889 /* Add some new drives, as many as will fit.
7890 * We know there are enough to make the newly sized array work.
7891 * Don't add devices if we are reducing the number of
7892 * devices in the array. This is because it is not possible
7893 * to correctly record the "partially reconstructed" state of
7894 * such devices during the reshape and confusion could result.
7896 if (mddev->delta_disks >= 0) {
7897 rdev_for_each(rdev, mddev)
7898 if (rdev->raid_disk < 0 &&
7899 !test_bit(Faulty, &rdev->flags)) {
7900 if (raid5_add_disk(mddev, rdev) == 0) {
7902 >= conf->previous_raid_disks)
7903 set_bit(In_sync, &rdev->flags);
7905 rdev->recovery_offset = 0;
7907 if (sysfs_link_rdev(mddev, rdev))
7908 /* Failure here is OK */;
7910 } else if (rdev->raid_disk >= conf->previous_raid_disks
7911 && !test_bit(Faulty, &rdev->flags)) {
7912 /* This is a spare that was manually added */
7913 set_bit(In_sync, &rdev->flags);
7916 /* When a reshape changes the number of devices,
7917 * ->degraded is measured against the larger of the
7918 * pre and post number of devices.
7920 spin_lock_irqsave(&conf->device_lock, flags);
7921 mddev->degraded = raid5_calc_degraded(conf);
7922 spin_unlock_irqrestore(&conf->device_lock, flags);
7924 mddev->raid_disks = conf->raid_disks;
7925 mddev->reshape_position = conf->reshape_progress;
7926 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7928 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7929 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7930 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7931 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7932 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7933 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7935 if (!mddev->sync_thread) {
7936 mddev->recovery = 0;
7937 spin_lock_irq(&conf->device_lock);
7938 write_seqcount_begin(&conf->gen_lock);
7939 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7940 mddev->new_chunk_sectors =
7941 conf->chunk_sectors = conf->prev_chunk_sectors;
7942 mddev->new_layout = conf->algorithm = conf->prev_algo;
7943 rdev_for_each(rdev, mddev)
7944 rdev->new_data_offset = rdev->data_offset;
7946 conf->generation --;
7947 conf->reshape_progress = MaxSector;
7948 mddev->reshape_position = MaxSector;
7949 write_seqcount_end(&conf->gen_lock);
7950 spin_unlock_irq(&conf->device_lock);
7953 conf->reshape_checkpoint = jiffies;
7954 md_wakeup_thread(mddev->sync_thread);
7955 md_new_event(mddev);
7959 /* This is called from the reshape thread and should make any
7960 * changes needed in 'conf'
7962 static void end_reshape(struct r5conf *conf)
7965 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7966 struct md_rdev *rdev;
7968 spin_lock_irq(&conf->device_lock);
7969 conf->previous_raid_disks = conf->raid_disks;
7970 md_finish_reshape(conf->mddev);
7972 conf->reshape_progress = MaxSector;
7973 conf->mddev->reshape_position = MaxSector;
7974 rdev_for_each(rdev, conf->mddev)
7975 if (rdev->raid_disk >= 0 &&
7976 !test_bit(Journal, &rdev->flags) &&
7977 !test_bit(In_sync, &rdev->flags))
7978 rdev->recovery_offset = MaxSector;
7979 spin_unlock_irq(&conf->device_lock);
7980 wake_up(&conf->wait_for_overlap);
7982 /* read-ahead size must cover two whole stripes, which is
7983 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7985 if (conf->mddev->queue) {
7986 int data_disks = conf->raid_disks - conf->max_degraded;
7987 int stripe = data_disks * ((conf->chunk_sectors << 9)
7989 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7990 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7995 /* This is called from the raid5d thread with mddev_lock held.
7996 * It makes config changes to the device.
7998 static void raid5_finish_reshape(struct mddev *mddev)
8000 struct r5conf *conf = mddev->private;
8002 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8004 if (mddev->delta_disks > 0) {
8005 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8007 set_capacity(mddev->gendisk, mddev->array_sectors);
8008 revalidate_disk(mddev->gendisk);
8012 spin_lock_irq(&conf->device_lock);
8013 mddev->degraded = raid5_calc_degraded(conf);
8014 spin_unlock_irq(&conf->device_lock);
8015 for (d = conf->raid_disks ;
8016 d < conf->raid_disks - mddev->delta_disks;
8018 struct md_rdev *rdev = conf->disks[d].rdev;
8020 clear_bit(In_sync, &rdev->flags);
8021 rdev = conf->disks[d].replacement;
8023 clear_bit(In_sync, &rdev->flags);
8026 mddev->layout = conf->algorithm;
8027 mddev->chunk_sectors = conf->chunk_sectors;
8028 mddev->reshape_position = MaxSector;
8029 mddev->delta_disks = 0;
8030 mddev->reshape_backwards = 0;
8034 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8036 struct r5conf *conf = mddev->private;
8039 /* stop all writes */
8040 lock_all_device_hash_locks_irq(conf);
8041 /* '2' tells resync/reshape to pause so that all
8042 * active stripes can drain
8044 r5c_flush_cache(conf, INT_MAX);
8046 wait_event_cmd(conf->wait_for_quiescent,
8047 atomic_read(&conf->active_stripes) == 0 &&
8048 atomic_read(&conf->active_aligned_reads) == 0,
8049 unlock_all_device_hash_locks_irq(conf),
8050 lock_all_device_hash_locks_irq(conf));
8052 unlock_all_device_hash_locks_irq(conf);
8053 /* allow reshape to continue */
8054 wake_up(&conf->wait_for_overlap);
8056 /* re-enable writes */
8057 lock_all_device_hash_locks_irq(conf);
8059 wake_up(&conf->wait_for_quiescent);
8060 wake_up(&conf->wait_for_overlap);
8061 unlock_all_device_hash_locks_irq(conf);
8063 log_quiesce(conf, quiesce);
8066 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8068 struct r0conf *raid0_conf = mddev->private;
8071 /* for raid0 takeover only one zone is supported */
8072 if (raid0_conf->nr_strip_zones > 1) {
8073 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8075 return ERR_PTR(-EINVAL);
8078 sectors = raid0_conf->strip_zone[0].zone_end;
8079 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8080 mddev->dev_sectors = sectors;
8081 mddev->new_level = level;
8082 mddev->new_layout = ALGORITHM_PARITY_N;
8083 mddev->new_chunk_sectors = mddev->chunk_sectors;
8084 mddev->raid_disks += 1;
8085 mddev->delta_disks = 1;
8086 /* make sure it will be not marked as dirty */
8087 mddev->recovery_cp = MaxSector;
8089 return setup_conf(mddev);
8092 static void *raid5_takeover_raid1(struct mddev *mddev)
8097 if (mddev->raid_disks != 2 ||
8098 mddev->degraded > 1)
8099 return ERR_PTR(-EINVAL);
8101 /* Should check if there are write-behind devices? */
8103 chunksect = 64*2; /* 64K by default */
8105 /* The array must be an exact multiple of chunksize */
8106 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8109 if ((chunksect<<9) < STRIPE_SIZE)
8110 /* array size does not allow a suitable chunk size */
8111 return ERR_PTR(-EINVAL);
8113 mddev->new_level = 5;
8114 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8115 mddev->new_chunk_sectors = chunksect;
8117 ret = setup_conf(mddev);
8119 mddev_clear_unsupported_flags(mddev,
8120 UNSUPPORTED_MDDEV_FLAGS);
8124 static void *raid5_takeover_raid6(struct mddev *mddev)
8128 switch (mddev->layout) {
8129 case ALGORITHM_LEFT_ASYMMETRIC_6:
8130 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8132 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8133 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8135 case ALGORITHM_LEFT_SYMMETRIC_6:
8136 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8138 case ALGORITHM_RIGHT_SYMMETRIC_6:
8139 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8141 case ALGORITHM_PARITY_0_6:
8142 new_layout = ALGORITHM_PARITY_0;
8144 case ALGORITHM_PARITY_N:
8145 new_layout = ALGORITHM_PARITY_N;
8148 return ERR_PTR(-EINVAL);
8150 mddev->new_level = 5;
8151 mddev->new_layout = new_layout;
8152 mddev->delta_disks = -1;
8153 mddev->raid_disks -= 1;
8154 return setup_conf(mddev);
8157 static int raid5_check_reshape(struct mddev *mddev)
8159 /* For a 2-drive array, the layout and chunk size can be changed
8160 * immediately as not restriping is needed.
8161 * For larger arrays we record the new value - after validation
8162 * to be used by a reshape pass.
8164 struct r5conf *conf = mddev->private;
8165 int new_chunk = mddev->new_chunk_sectors;
8167 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8169 if (new_chunk > 0) {
8170 if (!is_power_of_2(new_chunk))
8172 if (new_chunk < (PAGE_SIZE>>9))
8174 if (mddev->array_sectors & (new_chunk-1))
8175 /* not factor of array size */
8179 /* They look valid */
8181 if (mddev->raid_disks == 2) {
8182 /* can make the change immediately */
8183 if (mddev->new_layout >= 0) {
8184 conf->algorithm = mddev->new_layout;
8185 mddev->layout = mddev->new_layout;
8187 if (new_chunk > 0) {
8188 conf->chunk_sectors = new_chunk ;
8189 mddev->chunk_sectors = new_chunk;
8191 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8192 md_wakeup_thread(mddev->thread);
8194 return check_reshape(mddev);
8197 static int raid6_check_reshape(struct mddev *mddev)
8199 int new_chunk = mddev->new_chunk_sectors;
8201 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8203 if (new_chunk > 0) {
8204 if (!is_power_of_2(new_chunk))
8206 if (new_chunk < (PAGE_SIZE >> 9))
8208 if (mddev->array_sectors & (new_chunk-1))
8209 /* not factor of array size */
8213 /* They look valid */
8214 return check_reshape(mddev);
8217 static void *raid5_takeover(struct mddev *mddev)
8219 /* raid5 can take over:
8220 * raid0 - if there is only one strip zone - make it a raid4 layout
8221 * raid1 - if there are two drives. We need to know the chunk size
8222 * raid4 - trivial - just use a raid4 layout.
8223 * raid6 - Providing it is a *_6 layout
8225 if (mddev->level == 0)
8226 return raid45_takeover_raid0(mddev, 5);
8227 if (mddev->level == 1)
8228 return raid5_takeover_raid1(mddev);
8229 if (mddev->level == 4) {
8230 mddev->new_layout = ALGORITHM_PARITY_N;
8231 mddev->new_level = 5;
8232 return setup_conf(mddev);
8234 if (mddev->level == 6)
8235 return raid5_takeover_raid6(mddev);
8237 return ERR_PTR(-EINVAL);
8240 static void *raid4_takeover(struct mddev *mddev)
8242 /* raid4 can take over:
8243 * raid0 - if there is only one strip zone
8244 * raid5 - if layout is right
8246 if (mddev->level == 0)
8247 return raid45_takeover_raid0(mddev, 4);
8248 if (mddev->level == 5 &&
8249 mddev->layout == ALGORITHM_PARITY_N) {
8250 mddev->new_layout = 0;
8251 mddev->new_level = 4;
8252 return setup_conf(mddev);
8254 return ERR_PTR(-EINVAL);
8257 static struct md_personality raid5_personality;
8259 static void *raid6_takeover(struct mddev *mddev)
8261 /* Currently can only take over a raid5. We map the
8262 * personality to an equivalent raid6 personality
8263 * with the Q block at the end.
8267 if (mddev->pers != &raid5_personality)
8268 return ERR_PTR(-EINVAL);
8269 if (mddev->degraded > 1)
8270 return ERR_PTR(-EINVAL);
8271 if (mddev->raid_disks > 253)
8272 return ERR_PTR(-EINVAL);
8273 if (mddev->raid_disks < 3)
8274 return ERR_PTR(-EINVAL);
8276 switch (mddev->layout) {
8277 case ALGORITHM_LEFT_ASYMMETRIC:
8278 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8280 case ALGORITHM_RIGHT_ASYMMETRIC:
8281 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8283 case ALGORITHM_LEFT_SYMMETRIC:
8284 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8286 case ALGORITHM_RIGHT_SYMMETRIC:
8287 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8289 case ALGORITHM_PARITY_0:
8290 new_layout = ALGORITHM_PARITY_0_6;
8292 case ALGORITHM_PARITY_N:
8293 new_layout = ALGORITHM_PARITY_N;
8296 return ERR_PTR(-EINVAL);
8298 mddev->new_level = 6;
8299 mddev->new_layout = new_layout;
8300 mddev->delta_disks = 1;
8301 mddev->raid_disks += 1;
8302 return setup_conf(mddev);
8305 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8307 struct r5conf *conf;
8310 err = mddev_lock(mddev);
8313 conf = mddev->private;
8315 mddev_unlock(mddev);
8319 if (strncmp(buf, "ppl", 3) == 0) {
8320 /* ppl only works with RAID 5 */
8321 if (!raid5_has_ppl(conf) && conf->level == 5) {
8322 err = log_init(conf, NULL, true);
8324 err = resize_stripes(conf, conf->pool_size);
8330 } else if (strncmp(buf, "resync", 6) == 0) {
8331 if (raid5_has_ppl(conf)) {
8332 mddev_suspend(mddev);
8334 mddev_resume(mddev);
8335 err = resize_stripes(conf, conf->pool_size);
8336 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8337 r5l_log_disk_error(conf)) {
8338 bool journal_dev_exists = false;
8339 struct md_rdev *rdev;
8341 rdev_for_each(rdev, mddev)
8342 if (test_bit(Journal, &rdev->flags)) {
8343 journal_dev_exists = true;
8347 if (!journal_dev_exists) {
8348 mddev_suspend(mddev);
8349 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8350 mddev_resume(mddev);
8351 } else /* need remove journal device first */
8360 md_update_sb(mddev, 1);
8362 mddev_unlock(mddev);
8367 static int raid5_start(struct mddev *mddev)
8369 struct r5conf *conf = mddev->private;
8371 return r5l_start(conf->log);
8374 static struct md_personality raid6_personality =
8378 .owner = THIS_MODULE,
8379 .make_request = raid5_make_request,
8381 .start = raid5_start,
8383 .status = raid5_status,
8384 .error_handler = raid5_error,
8385 .hot_add_disk = raid5_add_disk,
8386 .hot_remove_disk= raid5_remove_disk,
8387 .spare_active = raid5_spare_active,
8388 .sync_request = raid5_sync_request,
8389 .resize = raid5_resize,
8391 .check_reshape = raid6_check_reshape,
8392 .start_reshape = raid5_start_reshape,
8393 .finish_reshape = raid5_finish_reshape,
8394 .quiesce = raid5_quiesce,
8395 .takeover = raid6_takeover,
8396 .congested = raid5_congested,
8397 .change_consistency_policy = raid5_change_consistency_policy,
8399 static struct md_personality raid5_personality =
8403 .owner = THIS_MODULE,
8404 .make_request = raid5_make_request,
8406 .start = raid5_start,
8408 .status = raid5_status,
8409 .error_handler = raid5_error,
8410 .hot_add_disk = raid5_add_disk,
8411 .hot_remove_disk= raid5_remove_disk,
8412 .spare_active = raid5_spare_active,
8413 .sync_request = raid5_sync_request,
8414 .resize = raid5_resize,
8416 .check_reshape = raid5_check_reshape,
8417 .start_reshape = raid5_start_reshape,
8418 .finish_reshape = raid5_finish_reshape,
8419 .quiesce = raid5_quiesce,
8420 .takeover = raid5_takeover,
8421 .congested = raid5_congested,
8422 .change_consistency_policy = raid5_change_consistency_policy,
8425 static struct md_personality raid4_personality =
8429 .owner = THIS_MODULE,
8430 .make_request = raid5_make_request,
8432 .start = raid5_start,
8434 .status = raid5_status,
8435 .error_handler = raid5_error,
8436 .hot_add_disk = raid5_add_disk,
8437 .hot_remove_disk= raid5_remove_disk,
8438 .spare_active = raid5_spare_active,
8439 .sync_request = raid5_sync_request,
8440 .resize = raid5_resize,
8442 .check_reshape = raid5_check_reshape,
8443 .start_reshape = raid5_start_reshape,
8444 .finish_reshape = raid5_finish_reshape,
8445 .quiesce = raid5_quiesce,
8446 .takeover = raid4_takeover,
8447 .congested = raid5_congested,
8448 .change_consistency_policy = raid5_change_consistency_policy,
8451 static int __init raid5_init(void)
8455 raid5_wq = alloc_workqueue("raid5wq",
8456 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8460 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8462 raid456_cpu_up_prepare,
8465 destroy_workqueue(raid5_wq);
8468 register_md_personality(&raid6_personality);
8469 register_md_personality(&raid5_personality);
8470 register_md_personality(&raid4_personality);
8474 static void raid5_exit(void)
8476 unregister_md_personality(&raid6_personality);
8477 unregister_md_personality(&raid5_personality);
8478 unregister_md_personality(&raid4_personality);
8479 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8480 destroy_workqueue(raid5_wq);
8483 module_init(raid5_init);
8484 module_exit(raid5_exit);
8485 MODULE_LICENSE("GPL");
8486 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8487 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8488 MODULE_ALIAS("md-raid5");
8489 MODULE_ALIAS("md-raid4");
8490 MODULE_ALIAS("md-level-5");
8491 MODULE_ALIAS("md-level-4");
8492 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8493 MODULE_ALIAS("md-raid6");
8494 MODULE_ALIAS("md-level-6");
8496 /* This used to be two separate modules, they were: */
8497 MODULE_ALIAS("raid5");
8498 MODULE_ALIAS("raid6");